]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[gdb/testsuite] Fix regexp in skip_opencl_tests
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
128 struct type *, int,
129 innermost_block_tracker *);
14f9c5c9 130
e9d9f57e 131static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 132 struct symbol *, const struct block *);
14f9c5c9 133
d2e4a39e 134static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 135
a121b7c1 136static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
137
138static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 139
d2e4a39e 140static int numeric_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int integer_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int scalar_type_p (struct type *);
14f9c5c9 145
d2e4a39e 146static int discrete_type_p (struct type *);
14f9c5c9 147
aeb5907d
JB
148static enum ada_renaming_category parse_old_style_renaming (struct type *,
149 const char **,
150 int *,
151 const char **);
152
153static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 154 const struct block *);
aeb5907d 155
a121b7c1 156static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 157 int, int);
4c4b4cd2 158
d2e4a39e 159static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 160
b4ba55a1
JB
161static struct type *ada_find_parallel_type_with_name (struct type *,
162 const char *);
163
d2e4a39e 164static int is_dynamic_field (struct type *, int);
14f9c5c9 165
10a2c479 166static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 167 const gdb_byte *,
4c4b4cd2
PH
168 CORE_ADDR, struct value *);
169
170static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 171
28c85d6c 172static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 173
d2e4a39e 174static struct type *to_static_fixed_type (struct type *);
f192137b 175static struct type *static_unwrap_type (struct type *type);
14f9c5c9 176
d2e4a39e 177static struct value *unwrap_value (struct value *);
14f9c5c9 178
ad82864c 179static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 180
ad82864c 181static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 182
ad82864c
JB
183static long decode_packed_array_bitsize (struct type *);
184
185static struct value *decode_constrained_packed_array (struct value *);
186
187static int ada_is_packed_array_type (struct type *);
188
189static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 190
d2e4a39e 191static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 192 struct value **);
14f9c5c9 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
b5ec771e 205static bool wild_match (const char *name, const char *patn);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2 226
d12307c1 227static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 228 struct value **, int, const char *,
2a612529 229 struct type *, int);
4c4b4cd2 230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab 235
52ce6436
PH
236static struct value *ada_index_struct_field (int, struct value *, int,
237 struct type *);
238
239static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
240 struct expression *,
241 int *, enum noside);
52ce6436
PH
242
243static void aggregate_assign_from_choices (struct value *, struct value *,
244 struct expression *,
245 int *, LONGEST *, int *,
246 int, LONGEST, LONGEST);
247
248static void aggregate_assign_positional (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *, int,
251 LONGEST, LONGEST);
252
253
254static void aggregate_assign_others (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int, LONGEST, LONGEST);
257
258
259static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
260
261
262static struct value *ada_evaluate_subexp (struct type *, struct expression *,
263 int *, enum noside);
264
265static void ada_forward_operator_length (struct expression *, int, int *,
266 int *);
852dff6c
JB
267
268static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
269
270static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
271 (const lookup_name_info &lookup_name);
272
4c4b4cd2
PH
273\f
274
ee01b665
JB
275/* The result of a symbol lookup to be stored in our symbol cache. */
276
277struct cache_entry
278{
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
fe978cb0 282 domain_enum domain;
ee01b665
JB
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291};
292
293/* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302#define HASH_SIZE 1009
303
304struct ada_symbol_cache
305{
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311};
312
313static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 314
4c4b4cd2 315/* Maximum-sized dynamic type. */
14f9c5c9
AS
316static unsigned int varsize_limit;
317
67cb5b2d 318static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
c6044dd1
JB
344/* Maintenance-related settings for this module. */
345
346static struct cmd_list_element *maint_set_ada_cmdlist;
347static struct cmd_list_element *maint_show_ada_cmdlist;
348
349/* Implement the "maintenance set ada" (prefix) command. */
350
351static void
981a3fb3 352maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 353{
635c7e8a
TT
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
c6044dd1
JB
356}
357
358/* Implement the "maintenance show ada" (prefix) command. */
359
360static void
981a3fb3 361maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
362{
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364}
365
366/* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368static int ada_ignore_descriptive_types_p = 0;
369
e802dbe0
JB
370 /* Inferior-specific data. */
371
372/* Per-inferior data for this module. */
373
374struct ada_inferior_data
375{
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
3eecfa55
JB
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
e802dbe0
JB
386};
387
388/* Our key to this module's inferior data. */
389static const struct inferior_data *ada_inferior_data;
390
391/* A cleanup routine for our inferior data. */
392static void
393ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394{
395 struct ada_inferior_data *data;
396
9a3c8263 397 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
398 if (data != NULL)
399 xfree (data);
400}
401
402/* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410static struct ada_inferior_data *
411get_ada_inferior_data (struct inferior *inf)
412{
413 struct ada_inferior_data *data;
414
9a3c8263 415 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
416 if (data == NULL)
417 {
41bf6aca 418 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423}
424
425/* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428static void
429ada_inferior_exit (struct inferior *inf)
430{
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433}
434
ee01b665
JB
435
436 /* program-space-specific data. */
437
438/* This module's per-program-space data. */
439struct ada_pspace_data
440{
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443};
444
445/* Key to our per-program-space data. */
446static const struct program_space_data *ada_pspace_data_handle;
447
448/* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453static struct ada_pspace_data *
454get_ada_pspace_data (struct program_space *pspace)
455{
456 struct ada_pspace_data *data;
457
9a3c8263
SM
458 data = ((struct ada_pspace_data *)
459 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
460 if (data == NULL)
461 {
462 data = XCNEW (struct ada_pspace_data);
463 set_program_space_data (pspace, ada_pspace_data_handle, data);
464 }
465
466 return data;
467}
468
469/* The cleanup callback for this module's per-program-space data. */
470
471static void
472ada_pspace_data_cleanup (struct program_space *pspace, void *data)
473{
9a3c8263 474 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
475
476 if (pspace_data->sym_cache != NULL)
477 ada_free_symbol_cache (pspace_data->sym_cache);
478 xfree (pspace_data);
479}
480
4c4b4cd2
PH
481 /* Utilities */
482
720d1a40 483/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 484 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
485
486 Normally, we really expect a typedef type to only have 1 typedef layer.
487 In other words, we really expect the target type of a typedef type to be
488 a non-typedef type. This is particularly true for Ada units, because
489 the language does not have a typedef vs not-typedef distinction.
490 In that respect, the Ada compiler has been trying to eliminate as many
491 typedef definitions in the debugging information, since they generally
492 do not bring any extra information (we still use typedef under certain
493 circumstances related mostly to the GNAT encoding).
494
495 Unfortunately, we have seen situations where the debugging information
496 generated by the compiler leads to such multiple typedef layers. For
497 instance, consider the following example with stabs:
498
499 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
500 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
501
502 This is an error in the debugging information which causes type
503 pck__float_array___XUP to be defined twice, and the second time,
504 it is defined as a typedef of a typedef.
505
506 This is on the fringe of legality as far as debugging information is
507 concerned, and certainly unexpected. But it is easy to handle these
508 situations correctly, so we can afford to be lenient in this case. */
509
510static struct type *
511ada_typedef_target_type (struct type *type)
512{
513 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
514 type = TYPE_TARGET_TYPE (type);
515 return type;
516}
517
41d27058
JB
518/* Given DECODED_NAME a string holding a symbol name in its
519 decoded form (ie using the Ada dotted notation), returns
520 its unqualified name. */
521
522static const char *
523ada_unqualified_name (const char *decoded_name)
524{
2b0f535a
JB
525 const char *result;
526
527 /* If the decoded name starts with '<', it means that the encoded
528 name does not follow standard naming conventions, and thus that
529 it is not your typical Ada symbol name. Trying to unqualify it
530 is therefore pointless and possibly erroneous. */
531 if (decoded_name[0] == '<')
532 return decoded_name;
533
534 result = strrchr (decoded_name, '.');
41d27058
JB
535 if (result != NULL)
536 result++; /* Skip the dot... */
537 else
538 result = decoded_name;
539
540 return result;
541}
542
39e7af3e 543/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 544
39e7af3e 545static std::string
41d27058
JB
546add_angle_brackets (const char *str)
547{
39e7af3e 548 return string_printf ("<%s>", str);
41d27058 549}
96d887e8 550
67cb5b2d 551static const char *
4c4b4cd2
PH
552ada_get_gdb_completer_word_break_characters (void)
553{
554 return ada_completer_word_break_characters;
555}
556
e79af960
JB
557/* Print an array element index using the Ada syntax. */
558
559static void
560ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 561 const struct value_print_options *options)
e79af960 562{
79a45b7d 563 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
564 fprintf_filtered (stream, " => ");
565}
566
e2b7af72
JB
567/* la_watch_location_expression for Ada. */
568
569gdb::unique_xmalloc_ptr<char>
570ada_watch_location_expression (struct type *type, CORE_ADDR addr)
571{
572 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
573 std::string name = type_to_string (type);
574 return gdb::unique_xmalloc_ptr<char>
575 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
576}
577
f27cf670 578/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 579 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 580 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 581
f27cf670
AS
582void *
583grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 584{
d2e4a39e
AS
585 if (*size < min_size)
586 {
587 *size *= 2;
588 if (*size < min_size)
4c4b4cd2 589 *size = min_size;
f27cf670 590 vect = xrealloc (vect, *size * element_size);
d2e4a39e 591 }
f27cf670 592 return vect;
14f9c5c9
AS
593}
594
595/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 596 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
597
598static int
ebf56fd3 599field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
600{
601 int len = strlen (target);
5b4ee69b 602
d2e4a39e 603 return
4c4b4cd2
PH
604 (strncmp (field_name, target, len) == 0
605 && (field_name[len] == '\0'
61012eef 606 || (startswith (field_name + len, "___")
76a01679
JB
607 && strcmp (field_name + strlen (field_name) - 6,
608 "___XVN") != 0)));
14f9c5c9
AS
609}
610
611
872c8b51
JB
612/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
613 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
614 and return its index. This function also handles fields whose name
615 have ___ suffixes because the compiler sometimes alters their name
616 by adding such a suffix to represent fields with certain constraints.
617 If the field could not be found, return a negative number if
618 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
619
620int
621ada_get_field_index (const struct type *type, const char *field_name,
622 int maybe_missing)
623{
624 int fieldno;
872c8b51
JB
625 struct type *struct_type = check_typedef ((struct type *) type);
626
627 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
628 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
629 return fieldno;
630
631 if (!maybe_missing)
323e0a4a 632 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 633 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
634
635 return -1;
636}
637
638/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
639
640int
d2e4a39e 641ada_name_prefix_len (const char *name)
14f9c5c9
AS
642{
643 if (name == NULL)
644 return 0;
d2e4a39e 645 else
14f9c5c9 646 {
d2e4a39e 647 const char *p = strstr (name, "___");
5b4ee69b 648
14f9c5c9 649 if (p == NULL)
4c4b4cd2 650 return strlen (name);
14f9c5c9 651 else
4c4b4cd2 652 return p - name;
14f9c5c9
AS
653 }
654}
655
4c4b4cd2
PH
656/* Return non-zero if SUFFIX is a suffix of STR.
657 Return zero if STR is null. */
658
14f9c5c9 659static int
d2e4a39e 660is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
661{
662 int len1, len2;
5b4ee69b 663
14f9c5c9
AS
664 if (str == NULL)
665 return 0;
666 len1 = strlen (str);
667 len2 = strlen (suffix);
4c4b4cd2 668 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
669}
670
4c4b4cd2
PH
671/* The contents of value VAL, treated as a value of type TYPE. The
672 result is an lval in memory if VAL is. */
14f9c5c9 673
d2e4a39e 674static struct value *
4c4b4cd2 675coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 676{
61ee279c 677 type = ada_check_typedef (type);
df407dfe 678 if (value_type (val) == type)
4c4b4cd2 679 return val;
d2e4a39e 680 else
14f9c5c9 681 {
4c4b4cd2
PH
682 struct value *result;
683
684 /* Make sure that the object size is not unreasonable before
685 trying to allocate some memory for it. */
c1b5a1a6 686 ada_ensure_varsize_limit (type);
4c4b4cd2 687
41e8491f
JK
688 if (value_lazy (val)
689 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
690 result = allocate_value_lazy (type);
691 else
692 {
693 result = allocate_value (type);
9a0dc9e3 694 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 695 }
74bcbdf3 696 set_value_component_location (result, val);
9bbda503
AC
697 set_value_bitsize (result, value_bitsize (val));
698 set_value_bitpos (result, value_bitpos (val));
42ae5230 699 set_value_address (result, value_address (val));
14f9c5c9
AS
700 return result;
701 }
702}
703
fc1a4b47
AC
704static const gdb_byte *
705cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
706{
707 if (valaddr == NULL)
708 return NULL;
709 else
710 return valaddr + offset;
711}
712
713static CORE_ADDR
ebf56fd3 714cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
715{
716 if (address == 0)
717 return 0;
d2e4a39e 718 else
14f9c5c9
AS
719 return address + offset;
720}
721
4c4b4cd2
PH
722/* Issue a warning (as for the definition of warning in utils.c, but
723 with exactly one argument rather than ...), unless the limit on the
724 number of warnings has passed during the evaluation of the current
725 expression. */
a2249542 726
77109804
AC
727/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
728 provided by "complaint". */
a0b31db1 729static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 730
14f9c5c9 731static void
a2249542 732lim_warning (const char *format, ...)
14f9c5c9 733{
a2249542 734 va_list args;
a2249542 735
5b4ee69b 736 va_start (args, format);
4c4b4cd2
PH
737 warnings_issued += 1;
738 if (warnings_issued <= warning_limit)
a2249542
MK
739 vwarning (format, args);
740
741 va_end (args);
4c4b4cd2
PH
742}
743
714e53ab
PH
744/* Issue an error if the size of an object of type T is unreasonable,
745 i.e. if it would be a bad idea to allocate a value of this type in
746 GDB. */
747
c1b5a1a6
JB
748void
749ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
750{
751 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 752 error (_("object size is larger than varsize-limit"));
714e53ab
PH
753}
754
0963b4bd 755/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 756static LONGEST
c3e5cd34 757max_of_size (int size)
4c4b4cd2 758{
76a01679 759 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 760
76a01679 761 return top_bit | (top_bit - 1);
4c4b4cd2
PH
762}
763
0963b4bd 764/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 765static LONGEST
c3e5cd34 766min_of_size (int size)
4c4b4cd2 767{
c3e5cd34 768 return -max_of_size (size) - 1;
4c4b4cd2
PH
769}
770
0963b4bd 771/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 772static ULONGEST
c3e5cd34 773umax_of_size (int size)
4c4b4cd2 774{
76a01679 775 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 776
76a01679 777 return top_bit | (top_bit - 1);
4c4b4cd2
PH
778}
779
0963b4bd 780/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782max_of_type (struct type *t)
4c4b4cd2 783{
c3e5cd34
PH
784 if (TYPE_UNSIGNED (t))
785 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
786 else
787 return max_of_size (TYPE_LENGTH (t));
788}
789
0963b4bd 790/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
791static LONGEST
792min_of_type (struct type *t)
793{
794 if (TYPE_UNSIGNED (t))
795 return 0;
796 else
797 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
798}
799
800/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
801LONGEST
802ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 803{
c3345124 804 type = resolve_dynamic_type (type, NULL, 0);
76a01679 805 switch (TYPE_CODE (type))
4c4b4cd2
PH
806 {
807 case TYPE_CODE_RANGE:
690cc4eb 808 return TYPE_HIGH_BOUND (type);
4c4b4cd2 809 case TYPE_CODE_ENUM:
14e75d8e 810 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
811 case TYPE_CODE_BOOL:
812 return 1;
813 case TYPE_CODE_CHAR:
76a01679 814 case TYPE_CODE_INT:
690cc4eb 815 return max_of_type (type);
4c4b4cd2 816 default:
43bbcdc2 817 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
818 }
819}
820
14e75d8e 821/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
822LONGEST
823ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 824{
c3345124 825 type = resolve_dynamic_type (type, NULL, 0);
76a01679 826 switch (TYPE_CODE (type))
4c4b4cd2
PH
827 {
828 case TYPE_CODE_RANGE:
690cc4eb 829 return TYPE_LOW_BOUND (type);
4c4b4cd2 830 case TYPE_CODE_ENUM:
14e75d8e 831 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
832 case TYPE_CODE_BOOL:
833 return 0;
834 case TYPE_CODE_CHAR:
76a01679 835 case TYPE_CODE_INT:
690cc4eb 836 return min_of_type (type);
4c4b4cd2 837 default:
43bbcdc2 838 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
839 }
840}
841
842/* The identity on non-range types. For range types, the underlying
76a01679 843 non-range scalar type. */
4c4b4cd2
PH
844
845static struct type *
18af8284 846get_base_type (struct type *type)
4c4b4cd2
PH
847{
848 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
849 {
76a01679
JB
850 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
851 return type;
4c4b4cd2
PH
852 type = TYPE_TARGET_TYPE (type);
853 }
854 return type;
14f9c5c9 855}
41246937
JB
856
857/* Return a decoded version of the given VALUE. This means returning
858 a value whose type is obtained by applying all the GNAT-specific
859 encondings, making the resulting type a static but standard description
860 of the initial type. */
861
862struct value *
863ada_get_decoded_value (struct value *value)
864{
865 struct type *type = ada_check_typedef (value_type (value));
866
867 if (ada_is_array_descriptor_type (type)
868 || (ada_is_constrained_packed_array_type (type)
869 && TYPE_CODE (type) != TYPE_CODE_PTR))
870 {
871 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
872 value = ada_coerce_to_simple_array_ptr (value);
873 else
874 value = ada_coerce_to_simple_array (value);
875 }
876 else
877 value = ada_to_fixed_value (value);
878
879 return value;
880}
881
882/* Same as ada_get_decoded_value, but with the given TYPE.
883 Because there is no associated actual value for this type,
884 the resulting type might be a best-effort approximation in
885 the case of dynamic types. */
886
887struct type *
888ada_get_decoded_type (struct type *type)
889{
890 type = to_static_fixed_type (type);
891 if (ada_is_constrained_packed_array_type (type))
892 type = ada_coerce_to_simple_array_type (type);
893 return type;
894}
895
4c4b4cd2 896\f
76a01679 897
4c4b4cd2 898 /* Language Selection */
14f9c5c9
AS
899
900/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 901 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 902
14f9c5c9 903enum language
ccefe4c4 904ada_update_initial_language (enum language lang)
14f9c5c9 905{
d2e4a39e 906 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 907 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 908 return language_ada;
14f9c5c9
AS
909
910 return lang;
911}
96d887e8
PH
912
913/* If the main procedure is written in Ada, then return its name.
914 The result is good until the next call. Return NULL if the main
915 procedure doesn't appear to be in Ada. */
916
917char *
918ada_main_name (void)
919{
3b7344d5 920 struct bound_minimal_symbol msym;
e83e4e24 921 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 922
96d887e8
PH
923 /* For Ada, the name of the main procedure is stored in a specific
924 string constant, generated by the binder. Look for that symbol,
925 extract its address, and then read that string. If we didn't find
926 that string, then most probably the main procedure is not written
927 in Ada. */
928 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
929
3b7344d5 930 if (msym.minsym != NULL)
96d887e8 931 {
f9bc20b9
JB
932 CORE_ADDR main_program_name_addr;
933 int err_code;
934
77e371c0 935 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 936 if (main_program_name_addr == 0)
323e0a4a 937 error (_("Invalid address for Ada main program name."));
96d887e8 938
f9bc20b9
JB
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
e83e4e24 944 return main_program_name.get ();
96d887e8
PH
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949}
14f9c5c9 950\f
4c4b4cd2 951 /* Symbols */
d2e4a39e 952
4c4b4cd2
PH
953/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
14f9c5c9 955
d2e4a39e
AS
956const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
14f9c5c9
AS
979};
980
b5ec771e
PA
981/* The "encoded" form of DECODED, according to GNAT conventions. The
982 result is valid until the next call to ada_encode. If
983 THROW_ERRORS, throw an error if invalid operator name is found.
984 Otherwise, return NULL in that case. */
4c4b4cd2 985
b5ec771e
PA
986static char *
987ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 988{
4c4b4cd2
PH
989 static char *encoding_buffer = NULL;
990 static size_t encoding_buffer_size = 0;
d2e4a39e 991 const char *p;
14f9c5c9 992 int k;
d2e4a39e 993
4c4b4cd2 994 if (decoded == NULL)
14f9c5c9
AS
995 return NULL;
996
4c4b4cd2
PH
997 GROW_VECT (encoding_buffer, encoding_buffer_size,
998 2 * strlen (decoded) + 10);
14f9c5c9
AS
999
1000 k = 0;
4c4b4cd2 1001 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1002 {
cdc7bb92 1003 if (*p == '.')
4c4b4cd2
PH
1004 {
1005 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1006 k += 2;
1007 }
14f9c5c9 1008 else if (*p == '"')
4c4b4cd2
PH
1009 {
1010 const struct ada_opname_map *mapping;
1011
1012 for (mapping = ada_opname_table;
1265e4aa 1013 mapping->encoded != NULL
61012eef 1014 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1015 ;
1016 if (mapping->encoded == NULL)
b5ec771e
PA
1017 {
1018 if (throw_errors)
1019 error (_("invalid Ada operator name: %s"), p);
1020 else
1021 return NULL;
1022 }
4c4b4cd2
PH
1023 strcpy (encoding_buffer + k, mapping->encoded);
1024 k += strlen (mapping->encoded);
1025 break;
1026 }
d2e4a39e 1027 else
4c4b4cd2
PH
1028 {
1029 encoding_buffer[k] = *p;
1030 k += 1;
1031 }
14f9c5c9
AS
1032 }
1033
4c4b4cd2
PH
1034 encoding_buffer[k] = '\0';
1035 return encoding_buffer;
14f9c5c9
AS
1036}
1037
b5ec771e
PA
1038/* The "encoded" form of DECODED, according to GNAT conventions.
1039 The result is valid until the next call to ada_encode. */
1040
1041char *
1042ada_encode (const char *decoded)
1043{
1044 return ada_encode_1 (decoded, true);
1045}
1046
14f9c5c9 1047/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1048 quotes, unfolded, but with the quotes stripped away. Result good
1049 to next call. */
1050
d2e4a39e
AS
1051char *
1052ada_fold_name (const char *name)
14f9c5c9 1053{
d2e4a39e 1054 static char *fold_buffer = NULL;
14f9c5c9
AS
1055 static size_t fold_buffer_size = 0;
1056
1057 int len = strlen (name);
d2e4a39e 1058 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1059
1060 if (name[0] == '\'')
1061 {
d2e4a39e
AS
1062 strncpy (fold_buffer, name + 1, len - 2);
1063 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1064 }
1065 else
1066 {
1067 int i;
5b4ee69b 1068
14f9c5c9 1069 for (i = 0; i <= len; i += 1)
4c4b4cd2 1070 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1071 }
1072
1073 return fold_buffer;
1074}
1075
529cad9c
PH
1076/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1077
1078static int
1079is_lower_alphanum (const char c)
1080{
1081 return (isdigit (c) || (isalpha (c) && islower (c)));
1082}
1083
c90092fe
JB
1084/* ENCODED is the linkage name of a symbol and LEN contains its length.
1085 This function saves in LEN the length of that same symbol name but
1086 without either of these suffixes:
29480c32
JB
1087 . .{DIGIT}+
1088 . ${DIGIT}+
1089 . ___{DIGIT}+
1090 . __{DIGIT}+.
c90092fe 1091
29480c32
JB
1092 These are suffixes introduced by the compiler for entities such as
1093 nested subprogram for instance, in order to avoid name clashes.
1094 They do not serve any purpose for the debugger. */
1095
1096static void
1097ada_remove_trailing_digits (const char *encoded, int *len)
1098{
1099 if (*len > 1 && isdigit (encoded[*len - 1]))
1100 {
1101 int i = *len - 2;
5b4ee69b 1102
29480c32
JB
1103 while (i > 0 && isdigit (encoded[i]))
1104 i--;
1105 if (i >= 0 && encoded[i] == '.')
1106 *len = i;
1107 else if (i >= 0 && encoded[i] == '$')
1108 *len = i;
61012eef 1109 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1110 *len = i - 2;
61012eef 1111 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1112 *len = i - 1;
1113 }
1114}
1115
1116/* Remove the suffix introduced by the compiler for protected object
1117 subprograms. */
1118
1119static void
1120ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1121{
1122 /* Remove trailing N. */
1123
1124 /* Protected entry subprograms are broken into two
1125 separate subprograms: The first one is unprotected, and has
1126 a 'N' suffix; the second is the protected version, and has
0963b4bd 1127 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1128 the protection. Since the P subprograms are internally generated,
1129 we leave these names undecoded, giving the user a clue that this
1130 entity is internal. */
1131
1132 if (*len > 1
1133 && encoded[*len - 1] == 'N'
1134 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1135 *len = *len - 1;
1136}
1137
69fadcdf
JB
1138/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1139
1140static void
1141ada_remove_Xbn_suffix (const char *encoded, int *len)
1142{
1143 int i = *len - 1;
1144
1145 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1146 i--;
1147
1148 if (encoded[i] != 'X')
1149 return;
1150
1151 if (i == 0)
1152 return;
1153
1154 if (isalnum (encoded[i-1]))
1155 *len = i;
1156}
1157
29480c32
JB
1158/* If ENCODED follows the GNAT entity encoding conventions, then return
1159 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1160 replaced by ENCODED.
14f9c5c9 1161
4c4b4cd2 1162 The resulting string is valid until the next call of ada_decode.
29480c32 1163 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1164 is returned. */
1165
1166const char *
1167ada_decode (const char *encoded)
14f9c5c9
AS
1168{
1169 int i, j;
1170 int len0;
d2e4a39e 1171 const char *p;
4c4b4cd2 1172 char *decoded;
14f9c5c9 1173 int at_start_name;
4c4b4cd2
PH
1174 static char *decoding_buffer = NULL;
1175 static size_t decoding_buffer_size = 0;
d2e4a39e 1176
0d81f350
JG
1177 /* With function descriptors on PPC64, the value of a symbol named
1178 ".FN", if it exists, is the entry point of the function "FN". */
1179 if (encoded[0] == '.')
1180 encoded += 1;
1181
29480c32
JB
1182 /* The name of the Ada main procedure starts with "_ada_".
1183 This prefix is not part of the decoded name, so skip this part
1184 if we see this prefix. */
61012eef 1185 if (startswith (encoded, "_ada_"))
4c4b4cd2 1186 encoded += 5;
14f9c5c9 1187
29480c32
JB
1188 /* If the name starts with '_', then it is not a properly encoded
1189 name, so do not attempt to decode it. Similarly, if the name
1190 starts with '<', the name should not be decoded. */
4c4b4cd2 1191 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1192 goto Suppress;
1193
4c4b4cd2 1194 len0 = strlen (encoded);
4c4b4cd2 1195
29480c32
JB
1196 ada_remove_trailing_digits (encoded, &len0);
1197 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1198
4c4b4cd2
PH
1199 /* Remove the ___X.* suffix if present. Do not forget to verify that
1200 the suffix is located before the current "end" of ENCODED. We want
1201 to avoid re-matching parts of ENCODED that have previously been
1202 marked as discarded (by decrementing LEN0). */
1203 p = strstr (encoded, "___");
1204 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1205 {
1206 if (p[3] == 'X')
4c4b4cd2 1207 len0 = p - encoded;
14f9c5c9 1208 else
4c4b4cd2 1209 goto Suppress;
14f9c5c9 1210 }
4c4b4cd2 1211
29480c32
JB
1212 /* Remove any trailing TKB suffix. It tells us that this symbol
1213 is for the body of a task, but that information does not actually
1214 appear in the decoded name. */
1215
61012eef 1216 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1217 len0 -= 3;
76a01679 1218
a10967fa
JB
1219 /* Remove any trailing TB suffix. The TB suffix is slightly different
1220 from the TKB suffix because it is used for non-anonymous task
1221 bodies. */
1222
61012eef 1223 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1224 len0 -= 2;
1225
29480c32
JB
1226 /* Remove trailing "B" suffixes. */
1227 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1228
61012eef 1229 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1230 len0 -= 1;
1231
4c4b4cd2 1232 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1233
4c4b4cd2
PH
1234 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1235 decoded = decoding_buffer;
14f9c5c9 1236
29480c32
JB
1237 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1238
4c4b4cd2 1239 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1240 {
4c4b4cd2
PH
1241 i = len0 - 2;
1242 while ((i >= 0 && isdigit (encoded[i]))
1243 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1244 i -= 1;
1245 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1246 len0 = i - 1;
1247 else if (encoded[i] == '$')
1248 len0 = i;
d2e4a39e 1249 }
14f9c5c9 1250
29480c32
JB
1251 /* The first few characters that are not alphabetic are not part
1252 of any encoding we use, so we can copy them over verbatim. */
1253
4c4b4cd2
PH
1254 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1255 decoded[j] = encoded[i];
14f9c5c9
AS
1256
1257 at_start_name = 1;
1258 while (i < len0)
1259 {
29480c32 1260 /* Is this a symbol function? */
4c4b4cd2
PH
1261 if (at_start_name && encoded[i] == 'O')
1262 {
1263 int k;
5b4ee69b 1264
4c4b4cd2
PH
1265 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1266 {
1267 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1268 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1269 op_len - 1) == 0)
1270 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1271 {
1272 strcpy (decoded + j, ada_opname_table[k].decoded);
1273 at_start_name = 0;
1274 i += op_len;
1275 j += strlen (ada_opname_table[k].decoded);
1276 break;
1277 }
1278 }
1279 if (ada_opname_table[k].encoded != NULL)
1280 continue;
1281 }
14f9c5c9
AS
1282 at_start_name = 0;
1283
529cad9c
PH
1284 /* Replace "TK__" with "__", which will eventually be translated
1285 into "." (just below). */
1286
61012eef 1287 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1288 i += 2;
529cad9c 1289
29480c32
JB
1290 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1291 be translated into "." (just below). These are internal names
1292 generated for anonymous blocks inside which our symbol is nested. */
1293
1294 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1295 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1296 && isdigit (encoded [i+4]))
1297 {
1298 int k = i + 5;
1299
1300 while (k < len0 && isdigit (encoded[k]))
1301 k++; /* Skip any extra digit. */
1302
1303 /* Double-check that the "__B_{DIGITS}+" sequence we found
1304 is indeed followed by "__". */
1305 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1306 i = k;
1307 }
1308
529cad9c
PH
1309 /* Remove _E{DIGITS}+[sb] */
1310
1311 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1312 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1313 one implements the actual entry code, and has a suffix following
1314 the convention above; the second one implements the barrier and
1315 uses the same convention as above, except that the 'E' is replaced
1316 by a 'B'.
1317
1318 Just as above, we do not decode the name of barrier functions
1319 to give the user a clue that the code he is debugging has been
1320 internally generated. */
1321
1322 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1323 && isdigit (encoded[i+2]))
1324 {
1325 int k = i + 3;
1326
1327 while (k < len0 && isdigit (encoded[k]))
1328 k++;
1329
1330 if (k < len0
1331 && (encoded[k] == 'b' || encoded[k] == 's'))
1332 {
1333 k++;
1334 /* Just as an extra precaution, make sure that if this
1335 suffix is followed by anything else, it is a '_'.
1336 Otherwise, we matched this sequence by accident. */
1337 if (k == len0
1338 || (k < len0 && encoded[k] == '_'))
1339 i = k;
1340 }
1341 }
1342
1343 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1344 the GNAT front-end in protected object subprograms. */
1345
1346 if (i < len0 + 3
1347 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1348 {
1349 /* Backtrack a bit up until we reach either the begining of
1350 the encoded name, or "__". Make sure that we only find
1351 digits or lowercase characters. */
1352 const char *ptr = encoded + i - 1;
1353
1354 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1355 ptr--;
1356 if (ptr < encoded
1357 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1358 i++;
1359 }
1360
4c4b4cd2
PH
1361 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1362 {
29480c32
JB
1363 /* This is a X[bn]* sequence not separated from the previous
1364 part of the name with a non-alpha-numeric character (in other
1365 words, immediately following an alpha-numeric character), then
1366 verify that it is placed at the end of the encoded name. If
1367 not, then the encoding is not valid and we should abort the
1368 decoding. Otherwise, just skip it, it is used in body-nested
1369 package names. */
4c4b4cd2
PH
1370 do
1371 i += 1;
1372 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1373 if (i < len0)
1374 goto Suppress;
1375 }
cdc7bb92 1376 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1377 {
29480c32 1378 /* Replace '__' by '.'. */
4c4b4cd2
PH
1379 decoded[j] = '.';
1380 at_start_name = 1;
1381 i += 2;
1382 j += 1;
1383 }
14f9c5c9 1384 else
4c4b4cd2 1385 {
29480c32
JB
1386 /* It's a character part of the decoded name, so just copy it
1387 over. */
4c4b4cd2
PH
1388 decoded[j] = encoded[i];
1389 i += 1;
1390 j += 1;
1391 }
14f9c5c9 1392 }
4c4b4cd2 1393 decoded[j] = '\000';
14f9c5c9 1394
29480c32
JB
1395 /* Decoded names should never contain any uppercase character.
1396 Double-check this, and abort the decoding if we find one. */
1397
4c4b4cd2
PH
1398 for (i = 0; decoded[i] != '\0'; i += 1)
1399 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1400 goto Suppress;
1401
4c4b4cd2
PH
1402 if (strcmp (decoded, encoded) == 0)
1403 return encoded;
1404 else
1405 return decoded;
14f9c5c9
AS
1406
1407Suppress:
4c4b4cd2
PH
1408 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1409 decoded = decoding_buffer;
1410 if (encoded[0] == '<')
1411 strcpy (decoded, encoded);
14f9c5c9 1412 else
88c15c34 1413 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1414 return decoded;
1415
1416}
1417
1418/* Table for keeping permanent unique copies of decoded names. Once
1419 allocated, names in this table are never released. While this is a
1420 storage leak, it should not be significant unless there are massive
1421 changes in the set of decoded names in successive versions of a
1422 symbol table loaded during a single session. */
1423static struct htab *decoded_names_store;
1424
1425/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1426 in the language-specific part of GSYMBOL, if it has not been
1427 previously computed. Tries to save the decoded name in the same
1428 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1429 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1430 GSYMBOL).
4c4b4cd2
PH
1431 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1432 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1433 when a decoded name is cached in it. */
4c4b4cd2 1434
45e6c716 1435const char *
f85f34ed 1436ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1437{
f85f34ed
TT
1438 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1439 const char **resultp =
615b3f62 1440 &gsymbol->language_specific.demangled_name;
5b4ee69b 1441
f85f34ed 1442 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1443 {
1444 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1445 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1446
f85f34ed 1447 gsymbol->ada_mangled = 1;
5b4ee69b 1448
f85f34ed 1449 if (obstack != NULL)
224c3ddb
SM
1450 *resultp
1451 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1452 else
76a01679 1453 {
f85f34ed
TT
1454 /* Sometimes, we can't find a corresponding objfile, in
1455 which case, we put the result on the heap. Since we only
1456 decode when needed, we hope this usually does not cause a
1457 significant memory leak (FIXME). */
1458
76a01679
JB
1459 char **slot = (char **) htab_find_slot (decoded_names_store,
1460 decoded, INSERT);
5b4ee69b 1461
76a01679
JB
1462 if (*slot == NULL)
1463 *slot = xstrdup (decoded);
1464 *resultp = *slot;
1465 }
4c4b4cd2 1466 }
14f9c5c9 1467
4c4b4cd2
PH
1468 return *resultp;
1469}
76a01679 1470
2c0b251b 1471static char *
76a01679 1472ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1473{
1474 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1475}
1476
8b302db8
TT
1477/* Implement la_sniff_from_mangled_name for Ada. */
1478
1479static int
1480ada_sniff_from_mangled_name (const char *mangled, char **out)
1481{
1482 const char *demangled = ada_decode (mangled);
1483
1484 *out = NULL;
1485
1486 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1487 {
1488 /* Set the gsymbol language to Ada, but still return 0.
1489 Two reasons for that:
1490
1491 1. For Ada, we prefer computing the symbol's decoded name
1492 on the fly rather than pre-compute it, in order to save
1493 memory (Ada projects are typically very large).
1494
1495 2. There are some areas in the definition of the GNAT
1496 encoding where, with a bit of bad luck, we might be able
1497 to decode a non-Ada symbol, generating an incorrect
1498 demangled name (Eg: names ending with "TB" for instance
1499 are identified as task bodies and so stripped from
1500 the decoded name returned).
1501
1502 Returning 1, here, but not setting *DEMANGLED, helps us get a
1503 little bit of the best of both worlds. Because we're last,
1504 we should not affect any of the other languages that were
1505 able to demangle the symbol before us; we get to correctly
1506 tag Ada symbols as such; and even if we incorrectly tagged a
1507 non-Ada symbol, which should be rare, any routing through the
1508 Ada language should be transparent (Ada tries to behave much
1509 like C/C++ with non-Ada symbols). */
1510 return 1;
1511 }
1512
1513 return 0;
1514}
1515
14f9c5c9 1516\f
d2e4a39e 1517
4c4b4cd2 1518 /* Arrays */
14f9c5c9 1519
28c85d6c
JB
1520/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1521 generated by the GNAT compiler to describe the index type used
1522 for each dimension of an array, check whether it follows the latest
1523 known encoding. If not, fix it up to conform to the latest encoding.
1524 Otherwise, do nothing. This function also does nothing if
1525 INDEX_DESC_TYPE is NULL.
1526
1527 The GNAT encoding used to describle the array index type evolved a bit.
1528 Initially, the information would be provided through the name of each
1529 field of the structure type only, while the type of these fields was
1530 described as unspecified and irrelevant. The debugger was then expected
1531 to perform a global type lookup using the name of that field in order
1532 to get access to the full index type description. Because these global
1533 lookups can be very expensive, the encoding was later enhanced to make
1534 the global lookup unnecessary by defining the field type as being
1535 the full index type description.
1536
1537 The purpose of this routine is to allow us to support older versions
1538 of the compiler by detecting the use of the older encoding, and by
1539 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1540 we essentially replace each field's meaningless type by the associated
1541 index subtype). */
1542
1543void
1544ada_fixup_array_indexes_type (struct type *index_desc_type)
1545{
1546 int i;
1547
1548 if (index_desc_type == NULL)
1549 return;
1550 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1551
1552 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1553 to check one field only, no need to check them all). If not, return
1554 now.
1555
1556 If our INDEX_DESC_TYPE was generated using the older encoding,
1557 the field type should be a meaningless integer type whose name
1558 is not equal to the field name. */
1559 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1560 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1561 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1562 return;
1563
1564 /* Fixup each field of INDEX_DESC_TYPE. */
1565 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1566 {
0d5cff50 1567 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1568 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1569
1570 if (raw_type)
1571 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1572 }
1573}
1574
4c4b4cd2 1575/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1576
a121b7c1 1577static const char *bound_name[] = {
d2e4a39e 1578 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1579 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1580};
1581
1582/* Maximum number of array dimensions we are prepared to handle. */
1583
4c4b4cd2 1584#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1585
14f9c5c9 1586
4c4b4cd2
PH
1587/* The desc_* routines return primitive portions of array descriptors
1588 (fat pointers). */
14f9c5c9
AS
1589
1590/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1591 level of indirection, if needed. */
1592
d2e4a39e
AS
1593static struct type *
1594desc_base_type (struct type *type)
14f9c5c9
AS
1595{
1596 if (type == NULL)
1597 return NULL;
61ee279c 1598 type = ada_check_typedef (type);
720d1a40
JB
1599 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1600 type = ada_typedef_target_type (type);
1601
1265e4aa
JB
1602 if (type != NULL
1603 && (TYPE_CODE (type) == TYPE_CODE_PTR
1604 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1605 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1606 else
1607 return type;
1608}
1609
4c4b4cd2
PH
1610/* True iff TYPE indicates a "thin" array pointer type. */
1611
14f9c5c9 1612static int
d2e4a39e 1613is_thin_pntr (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 return
14f9c5c9
AS
1616 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1617 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1618}
1619
4c4b4cd2
PH
1620/* The descriptor type for thin pointer type TYPE. */
1621
d2e4a39e
AS
1622static struct type *
1623thin_descriptor_type (struct type *type)
14f9c5c9 1624{
d2e4a39e 1625 struct type *base_type = desc_base_type (type);
5b4ee69b 1626
14f9c5c9
AS
1627 if (base_type == NULL)
1628 return NULL;
1629 if (is_suffix (ada_type_name (base_type), "___XVE"))
1630 return base_type;
d2e4a39e 1631 else
14f9c5c9 1632 {
d2e4a39e 1633 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1634
14f9c5c9 1635 if (alt_type == NULL)
4c4b4cd2 1636 return base_type;
14f9c5c9 1637 else
4c4b4cd2 1638 return alt_type;
14f9c5c9
AS
1639 }
1640}
1641
4c4b4cd2
PH
1642/* A pointer to the array data for thin-pointer value VAL. */
1643
d2e4a39e
AS
1644static struct value *
1645thin_data_pntr (struct value *val)
14f9c5c9 1646{
828292f2 1647 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1648 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1649
556bdfd4
UW
1650 data_type = lookup_pointer_type (data_type);
1651
14f9c5c9 1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1653 return value_cast (data_type, value_copy (val));
d2e4a39e 1654 else
42ae5230 1655 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* True iff TYPE indicates a "thick" array pointer type. */
1659
14f9c5c9 1660static int
d2e4a39e 1661is_thick_pntr (struct type *type)
14f9c5c9
AS
1662{
1663 type = desc_base_type (type);
1664 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1665 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1666}
1667
4c4b4cd2
PH
1668/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1669 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1670
d2e4a39e
AS
1671static struct type *
1672desc_bounds_type (struct type *type)
14f9c5c9 1673{
d2e4a39e 1674 struct type *r;
14f9c5c9
AS
1675
1676 type = desc_base_type (type);
1677
1678 if (type == NULL)
1679 return NULL;
1680 else if (is_thin_pntr (type))
1681 {
1682 type = thin_descriptor_type (type);
1683 if (type == NULL)
4c4b4cd2 1684 return NULL;
14f9c5c9
AS
1685 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (r);
14f9c5c9
AS
1688 }
1689 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1690 {
1691 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1692 if (r != NULL)
61ee279c 1693 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1694 }
1695 return NULL;
1696}
1697
1698/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1699 one, a pointer to its bounds data. Otherwise NULL. */
1700
d2e4a39e
AS
1701static struct value *
1702desc_bounds (struct value *arr)
14f9c5c9 1703{
df407dfe 1704 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1705
d2e4a39e 1706 if (is_thin_pntr (type))
14f9c5c9 1707 {
d2e4a39e 1708 struct type *bounds_type =
4c4b4cd2 1709 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1710 LONGEST addr;
1711
4cdfadb1 1712 if (bounds_type == NULL)
323e0a4a 1713 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1714
1715 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1716 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1717 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1718 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1719 addr = value_as_long (arr);
d2e4a39e 1720 else
42ae5230 1721 addr = value_address (arr);
14f9c5c9 1722
d2e4a39e 1723 return
4c4b4cd2
PH
1724 value_from_longest (lookup_pointer_type (bounds_type),
1725 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1726 }
1727
1728 else if (is_thick_pntr (type))
05e522ef
JB
1729 {
1730 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1731 _("Bad GNAT array descriptor"));
1732 struct type *p_bounds_type = value_type (p_bounds);
1733
1734 if (p_bounds_type
1735 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1736 {
1737 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1738
1739 if (TYPE_STUB (target_type))
1740 p_bounds = value_cast (lookup_pointer_type
1741 (ada_check_typedef (target_type)),
1742 p_bounds);
1743 }
1744 else
1745 error (_("Bad GNAT array descriptor"));
1746
1747 return p_bounds;
1748 }
14f9c5c9
AS
1749 else
1750 return NULL;
1751}
1752
4c4b4cd2
PH
1753/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the bounds data. */
1755
14f9c5c9 1756static int
d2e4a39e 1757fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1758{
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1760}
1761
1762/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1763 size of the field containing the address of the bounds data. */
1764
14f9c5c9 1765static int
d2e4a39e 1766fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1767{
1768 type = desc_base_type (type);
1769
d2e4a39e 1770 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1771 return TYPE_FIELD_BITSIZE (type, 1);
1772 else
61ee279c 1773 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1774}
1775
4c4b4cd2 1776/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1777 pointer to one, the type of its array data (a array-with-no-bounds type);
1778 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1779 data. */
4c4b4cd2 1780
d2e4a39e 1781static struct type *
556bdfd4 1782desc_data_target_type (struct type *type)
14f9c5c9
AS
1783{
1784 type = desc_base_type (type);
1785
4c4b4cd2 1786 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1787 if (is_thin_pntr (type))
556bdfd4 1788 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1789 else if (is_thick_pntr (type))
556bdfd4
UW
1790 {
1791 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1792
1793 if (data_type
1794 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1795 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1796 }
1797
1798 return NULL;
14f9c5c9
AS
1799}
1800
1801/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1802 its array data. */
4c4b4cd2 1803
d2e4a39e
AS
1804static struct value *
1805desc_data (struct value *arr)
14f9c5c9 1806{
df407dfe 1807 struct type *type = value_type (arr);
5b4ee69b 1808
14f9c5c9
AS
1809 if (is_thin_pntr (type))
1810 return thin_data_pntr (arr);
1811 else if (is_thick_pntr (type))
d2e4a39e 1812 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1813 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1814 else
1815 return NULL;
1816}
1817
1818
1819/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1820 position of the field containing the address of the data. */
1821
14f9c5c9 1822static int
d2e4a39e 1823fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1824{
1825 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1826}
1827
1828/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1829 size of the field containing the address of the data. */
1830
14f9c5c9 1831static int
d2e4a39e 1832fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1838 else
14f9c5c9
AS
1839 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1840}
1841
4c4b4cd2 1842/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1843 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1844 bound, if WHICH is 1. The first bound is I=1. */
1845
d2e4a39e
AS
1846static struct value *
1847desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1848{
d2e4a39e 1849 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1850 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit position
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
14f9c5c9 1857static int
d2e4a39e 1858desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1859{
d2e4a39e 1860 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1861}
1862
1863/* If BOUNDS is an array-bounds structure type, return the bit field size
1864 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1865 bound, if WHICH is 1. The first bound is I=1. */
1866
76a01679 1867static int
d2e4a39e 1868desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1869{
1870 type = desc_base_type (type);
1871
d2e4a39e
AS
1872 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1873 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1874 else
1875 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1876}
1877
1878/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1879 Ith bound (numbering from 1). Otherwise, NULL. */
1880
d2e4a39e
AS
1881static struct type *
1882desc_index_type (struct type *type, int i)
14f9c5c9
AS
1883{
1884 type = desc_base_type (type);
1885
1886 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1887 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1888 else
14f9c5c9
AS
1889 return NULL;
1890}
1891
4c4b4cd2
PH
1892/* The number of index positions in the array-bounds type TYPE.
1893 Return 0 if TYPE is NULL. */
1894
14f9c5c9 1895static int
d2e4a39e 1896desc_arity (struct type *type)
14f9c5c9
AS
1897{
1898 type = desc_base_type (type);
1899
1900 if (type != NULL)
1901 return TYPE_NFIELDS (type) / 2;
1902 return 0;
1903}
1904
4c4b4cd2
PH
1905/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1906 an array descriptor type (representing an unconstrained array
1907 type). */
1908
76a01679
JB
1909static int
1910ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1911{
1912 if (type == NULL)
1913 return 0;
61ee279c 1914 type = ada_check_typedef (type);
4c4b4cd2 1915 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1916 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1917}
1918
52ce6436 1919/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1920 * to one. */
52ce6436 1921
2c0b251b 1922static int
52ce6436
PH
1923ada_is_array_type (struct type *type)
1924{
1925 while (type != NULL
1926 && (TYPE_CODE (type) == TYPE_CODE_PTR
1927 || TYPE_CODE (type) == TYPE_CODE_REF))
1928 type = TYPE_TARGET_TYPE (type);
1929 return ada_is_direct_array_type (type);
1930}
1931
4c4b4cd2 1932/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1933
14f9c5c9 1934int
4c4b4cd2 1935ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1936{
1937 if (type == NULL)
1938 return 0;
61ee279c 1939 type = ada_check_typedef (type);
14f9c5c9 1940 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1941 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1942 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1943 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1944}
1945
4c4b4cd2
PH
1946/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1947
14f9c5c9 1948int
4c4b4cd2 1949ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1950{
556bdfd4 1951 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1952
1953 if (type == NULL)
1954 return 0;
61ee279c 1955 type = ada_check_typedef (type);
556bdfd4
UW
1956 return (data_type != NULL
1957 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1958 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1959}
1960
1961/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1962 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1963 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1964 is still needed. */
1965
14f9c5c9 1966int
ebf56fd3 1967ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1968{
d2e4a39e 1969 return
14f9c5c9
AS
1970 type != NULL
1971 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1972 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1973 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1974 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1975}
1976
1977
4c4b4cd2 1978/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1979 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1980 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1981 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1982 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1983 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1984 a descriptor. */
d2e4a39e
AS
1985struct type *
1986ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1987{
ad82864c
JB
1988 if (ada_is_constrained_packed_array_type (value_type (arr)))
1989 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1990
df407dfe
AC
1991 if (!ada_is_array_descriptor_type (value_type (arr)))
1992 return value_type (arr);
d2e4a39e
AS
1993
1994 if (!bounds)
ad82864c
JB
1995 {
1996 struct type *array_type =
1997 ada_check_typedef (desc_data_target_type (value_type (arr)));
1998
1999 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2000 TYPE_FIELD_BITSIZE (array_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002
2003 return array_type;
2004 }
14f9c5c9
AS
2005 else
2006 {
d2e4a39e 2007 struct type *elt_type;
14f9c5c9 2008 int arity;
d2e4a39e 2009 struct value *descriptor;
14f9c5c9 2010
df407dfe
AC
2011 elt_type = ada_array_element_type (value_type (arr), -1);
2012 arity = ada_array_arity (value_type (arr));
14f9c5c9 2013
d2e4a39e 2014 if (elt_type == NULL || arity == 0)
df407dfe 2015 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2016
2017 descriptor = desc_bounds (arr);
d2e4a39e 2018 if (value_as_long (descriptor) == 0)
4c4b4cd2 2019 return NULL;
d2e4a39e 2020 while (arity > 0)
4c4b4cd2 2021 {
e9bb382b
UW
2022 struct type *range_type = alloc_type_copy (value_type (arr));
2023 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2024 struct value *low = desc_one_bound (descriptor, arity, 0);
2025 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2026
5b4ee69b 2027 arity -= 1;
0c9c3474
SA
2028 create_static_range_type (range_type, value_type (low),
2029 longest_to_int (value_as_long (low)),
2030 longest_to_int (value_as_long (high)));
4c4b4cd2 2031 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2032
2033 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2034 {
2035 /* We need to store the element packed bitsize, as well as
2036 recompute the array size, because it was previously
2037 computed based on the unpacked element size. */
2038 LONGEST lo = value_as_long (low);
2039 LONGEST hi = value_as_long (high);
2040
2041 TYPE_FIELD_BITSIZE (elt_type, 0) =
2042 decode_packed_array_bitsize (value_type (arr));
2043 /* If the array has no element, then the size is already
2044 zero, and does not need to be recomputed. */
2045 if (lo < hi)
2046 {
2047 int array_bitsize =
2048 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2049
2050 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2051 }
2052 }
4c4b4cd2 2053 }
14f9c5c9
AS
2054
2055 return lookup_pointer_type (elt_type);
2056 }
2057}
2058
2059/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2060 Otherwise, returns either a standard GDB array with bounds set
2061 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2062 GDB array. Returns NULL if ARR is a null fat pointer. */
2063
d2e4a39e
AS
2064struct value *
2065ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2066{
df407dfe 2067 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2068 {
d2e4a39e 2069 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2070
14f9c5c9 2071 if (arrType == NULL)
4c4b4cd2 2072 return NULL;
14f9c5c9
AS
2073 return value_cast (arrType, value_copy (desc_data (arr)));
2074 }
ad82864c
JB
2075 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2076 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2077 else
2078 return arr;
2079}
2080
2081/* If ARR does not represent an array, returns ARR unchanged.
2082 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2083 be ARR itself if it already is in the proper form). */
2084
720d1a40 2085struct value *
d2e4a39e 2086ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2087{
df407dfe 2088 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2089 {
d2e4a39e 2090 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2091
14f9c5c9 2092 if (arrVal == NULL)
323e0a4a 2093 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2094 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2095 return value_ind (arrVal);
2096 }
ad82864c
JB
2097 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2098 return decode_constrained_packed_array (arr);
d2e4a39e 2099 else
14f9c5c9
AS
2100 return arr;
2101}
2102
2103/* If TYPE represents a GNAT array type, return it translated to an
2104 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2105 packing). For other types, is the identity. */
2106
d2e4a39e
AS
2107struct type *
2108ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2109{
ad82864c
JB
2110 if (ada_is_constrained_packed_array_type (type))
2111 return decode_constrained_packed_array_type (type);
17280b9f
UW
2112
2113 if (ada_is_array_descriptor_type (type))
556bdfd4 2114 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2115
2116 return type;
14f9c5c9
AS
2117}
2118
4c4b4cd2
PH
2119/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2120
ad82864c
JB
2121static int
2122ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2123{
2124 if (type == NULL)
2125 return 0;
4c4b4cd2 2126 type = desc_base_type (type);
61ee279c 2127 type = ada_check_typedef (type);
d2e4a39e 2128 return
14f9c5c9
AS
2129 ada_type_name (type) != NULL
2130 && strstr (ada_type_name (type), "___XP") != NULL;
2131}
2132
ad82864c
JB
2133/* Non-zero iff TYPE represents a standard GNAT constrained
2134 packed-array type. */
2135
2136int
2137ada_is_constrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && !ada_is_array_descriptor_type (type);
2141}
2142
2143/* Non-zero iff TYPE represents an array descriptor for a
2144 unconstrained packed-array type. */
2145
2146static int
2147ada_is_unconstrained_packed_array_type (struct type *type)
2148{
2149 return ada_is_packed_array_type (type)
2150 && ada_is_array_descriptor_type (type);
2151}
2152
2153/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2154 return the size of its elements in bits. */
2155
2156static long
2157decode_packed_array_bitsize (struct type *type)
2158{
0d5cff50
DE
2159 const char *raw_name;
2160 const char *tail;
ad82864c
JB
2161 long bits;
2162
720d1a40
JB
2163 /* Access to arrays implemented as fat pointers are encoded as a typedef
2164 of the fat pointer type. We need the name of the fat pointer type
2165 to do the decoding, so strip the typedef layer. */
2166 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2167 type = ada_typedef_target_type (type);
2168
2169 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2170 if (!raw_name)
2171 raw_name = ada_type_name (desc_base_type (type));
2172
2173 if (!raw_name)
2174 return 0;
2175
2176 tail = strstr (raw_name, "___XP");
720d1a40 2177 gdb_assert (tail != NULL);
ad82864c
JB
2178
2179 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2180 {
2181 lim_warning
2182 (_("could not understand bit size information on packed array"));
2183 return 0;
2184 }
2185
2186 return bits;
2187}
2188
14f9c5c9
AS
2189/* Given that TYPE is a standard GDB array type with all bounds filled
2190 in, and that the element size of its ultimate scalar constituents
2191 (that is, either its elements, or, if it is an array of arrays, its
2192 elements' elements, etc.) is *ELT_BITS, return an identical type,
2193 but with the bit sizes of its elements (and those of any
2194 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2195 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2196 in bits.
2197
2198 Note that, for arrays whose index type has an XA encoding where
2199 a bound references a record discriminant, getting that discriminant,
2200 and therefore the actual value of that bound, is not possible
2201 because none of the given parameters gives us access to the record.
2202 This function assumes that it is OK in the context where it is being
2203 used to return an array whose bounds are still dynamic and where
2204 the length is arbitrary. */
4c4b4cd2 2205
d2e4a39e 2206static struct type *
ad82864c 2207constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2208{
d2e4a39e
AS
2209 struct type *new_elt_type;
2210 struct type *new_type;
99b1c762
JB
2211 struct type *index_type_desc;
2212 struct type *index_type;
14f9c5c9
AS
2213 LONGEST low_bound, high_bound;
2214
61ee279c 2215 type = ada_check_typedef (type);
14f9c5c9
AS
2216 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2217 return type;
2218
99b1c762
JB
2219 index_type_desc = ada_find_parallel_type (type, "___XA");
2220 if (index_type_desc)
2221 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2222 NULL);
2223 else
2224 index_type = TYPE_INDEX_TYPE (type);
2225
e9bb382b 2226 new_type = alloc_type_copy (type);
ad82864c
JB
2227 new_elt_type =
2228 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2229 elt_bits);
99b1c762 2230 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2231 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2232 TYPE_NAME (new_type) = ada_type_name (type);
2233
4a46959e
JB
2234 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2235 && is_dynamic_type (check_typedef (index_type)))
2236 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2237 low_bound = high_bound = 0;
2238 if (high_bound < low_bound)
2239 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2240 else
14f9c5c9
AS
2241 {
2242 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2243 TYPE_LENGTH (new_type) =
4c4b4cd2 2244 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2245 }
2246
876cecd0 2247 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2248 return new_type;
2249}
2250
ad82864c
JB
2251/* The array type encoded by TYPE, where
2252 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2253
d2e4a39e 2254static struct type *
ad82864c 2255decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2256{
0d5cff50 2257 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2258 char *name;
0d5cff50 2259 const char *tail;
d2e4a39e 2260 struct type *shadow_type;
14f9c5c9 2261 long bits;
14f9c5c9 2262
727e3d2e
JB
2263 if (!raw_name)
2264 raw_name = ada_type_name (desc_base_type (type));
2265
2266 if (!raw_name)
2267 return NULL;
2268
2269 name = (char *) alloca (strlen (raw_name) + 1);
2270 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2271 type = desc_base_type (type);
2272
14f9c5c9
AS
2273 memcpy (name, raw_name, tail - raw_name);
2274 name[tail - raw_name] = '\000';
2275
b4ba55a1
JB
2276 shadow_type = ada_find_parallel_type_with_name (type, name);
2277
2278 if (shadow_type == NULL)
14f9c5c9 2279 {
323e0a4a 2280 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2281 return NULL;
2282 }
f168693b 2283 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2284
2285 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2286 {
0963b4bd
MS
2287 lim_warning (_("could not understand bounds "
2288 "information on packed array"));
14f9c5c9
AS
2289 return NULL;
2290 }
d2e4a39e 2291
ad82864c
JB
2292 bits = decode_packed_array_bitsize (type);
2293 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2294}
2295
ad82864c
JB
2296/* Given that ARR is a struct value *indicating a GNAT constrained packed
2297 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2298 standard GDB array type except that the BITSIZEs of the array
2299 target types are set to the number of bits in each element, and the
4c4b4cd2 2300 type length is set appropriately. */
14f9c5c9 2301
d2e4a39e 2302static struct value *
ad82864c 2303decode_constrained_packed_array (struct value *arr)
14f9c5c9 2304{
4c4b4cd2 2305 struct type *type;
14f9c5c9 2306
11aa919a
PMR
2307 /* If our value is a pointer, then dereference it. Likewise if
2308 the value is a reference. Make sure that this operation does not
2309 cause the target type to be fixed, as this would indirectly cause
2310 this array to be decoded. The rest of the routine assumes that
2311 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2312 and "value_ind" routines to perform the dereferencing, as opposed
2313 to using "ada_coerce_ref" or "ada_value_ind". */
2314 arr = coerce_ref (arr);
828292f2 2315 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2316 arr = value_ind (arr);
4c4b4cd2 2317
ad82864c 2318 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2319 if (type == NULL)
2320 {
323e0a4a 2321 error (_("can't unpack array"));
14f9c5c9
AS
2322 return NULL;
2323 }
61ee279c 2324
50810684 2325 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2326 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2327 {
2328 /* This is a (right-justified) modular type representing a packed
2329 array with no wrapper. In order to interpret the value through
2330 the (left-justified) packed array type we just built, we must
2331 first left-justify it. */
2332 int bit_size, bit_pos;
2333 ULONGEST mod;
2334
df407dfe 2335 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2336 bit_size = 0;
2337 while (mod > 0)
2338 {
2339 bit_size += 1;
2340 mod >>= 1;
2341 }
df407dfe 2342 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2343 arr = ada_value_primitive_packed_val (arr, NULL,
2344 bit_pos / HOST_CHAR_BIT,
2345 bit_pos % HOST_CHAR_BIT,
2346 bit_size,
2347 type);
2348 }
2349
4c4b4cd2 2350 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2351}
2352
2353
2354/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2355 given in IND. ARR must be a simple array. */
14f9c5c9 2356
d2e4a39e
AS
2357static struct value *
2358value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2359{
2360 int i;
2361 int bits, elt_off, bit_off;
2362 long elt_total_bit_offset;
d2e4a39e
AS
2363 struct type *elt_type;
2364 struct value *v;
14f9c5c9
AS
2365
2366 bits = 0;
2367 elt_total_bit_offset = 0;
df407dfe 2368 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2369 for (i = 0; i < arity; i += 1)
14f9c5c9 2370 {
d2e4a39e 2371 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2372 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2373 error
0963b4bd
MS
2374 (_("attempt to do packed indexing of "
2375 "something other than a packed array"));
14f9c5c9 2376 else
4c4b4cd2
PH
2377 {
2378 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2379 LONGEST lowerbound, upperbound;
2380 LONGEST idx;
2381
2382 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2383 {
323e0a4a 2384 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2385 lowerbound = upperbound = 0;
2386 }
2387
3cb382c9 2388 idx = pos_atr (ind[i]);
4c4b4cd2 2389 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2390 lim_warning (_("packed array index %ld out of bounds"),
2391 (long) idx);
4c4b4cd2
PH
2392 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2393 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2394 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2395 }
14f9c5c9
AS
2396 }
2397 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2398 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2399
2400 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2401 bits, elt_type);
14f9c5c9
AS
2402 return v;
2403}
2404
4c4b4cd2 2405/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2406
2407static int
d2e4a39e 2408has_negatives (struct type *type)
14f9c5c9 2409{
d2e4a39e
AS
2410 switch (TYPE_CODE (type))
2411 {
2412 default:
2413 return 0;
2414 case TYPE_CODE_INT:
2415 return !TYPE_UNSIGNED (type);
2416 case TYPE_CODE_RANGE:
2417 return TYPE_LOW_BOUND (type) < 0;
2418 }
14f9c5c9 2419}
d2e4a39e 2420
f93fca70 2421/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2422 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2423 the unpacked buffer.
14f9c5c9 2424
5b639dea
JB
2425 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2426 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2427
f93fca70
JB
2428 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2429 zero otherwise.
14f9c5c9 2430
f93fca70 2431 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2432
f93fca70
JB
2433 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2434
2435static void
2436ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2437 gdb_byte *unpacked, int unpacked_len,
2438 int is_big_endian, int is_signed_type,
2439 int is_scalar)
2440{
a1c95e6b
JB
2441 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2442 int src_idx; /* Index into the source area */
2443 int src_bytes_left; /* Number of source bytes left to process. */
2444 int srcBitsLeft; /* Number of source bits left to move */
2445 int unusedLS; /* Number of bits in next significant
2446 byte of source that are unused */
2447
a1c95e6b
JB
2448 int unpacked_idx; /* Index into the unpacked buffer */
2449 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2450
4c4b4cd2 2451 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2452 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2453 unsigned char sign;
a1c95e6b 2454
4c4b4cd2
PH
2455 /* Transmit bytes from least to most significant; delta is the direction
2456 the indices move. */
f93fca70 2457 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2458
5b639dea
JB
2459 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2460 bits from SRC. .*/
2461 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2462 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2463 bit_size, unpacked_len);
2464
14f9c5c9 2465 srcBitsLeft = bit_size;
086ca51f 2466 src_bytes_left = src_len;
f93fca70 2467 unpacked_bytes_left = unpacked_len;
14f9c5c9 2468 sign = 0;
f93fca70
JB
2469
2470 if (is_big_endian)
14f9c5c9 2471 {
086ca51f 2472 src_idx = src_len - 1;
f93fca70
JB
2473 if (is_signed_type
2474 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2475 sign = ~0;
d2e4a39e
AS
2476
2477 unusedLS =
4c4b4cd2
PH
2478 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2479 % HOST_CHAR_BIT;
14f9c5c9 2480
f93fca70
JB
2481 if (is_scalar)
2482 {
2483 accumSize = 0;
2484 unpacked_idx = unpacked_len - 1;
2485 }
2486 else
2487 {
4c4b4cd2
PH
2488 /* Non-scalar values must be aligned at a byte boundary... */
2489 accumSize =
2490 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2491 /* ... And are placed at the beginning (most-significant) bytes
2492 of the target. */
086ca51f
JB
2493 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2494 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2495 }
14f9c5c9 2496 }
d2e4a39e 2497 else
14f9c5c9
AS
2498 {
2499 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2500
086ca51f 2501 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2502 unusedLS = bit_offset;
2503 accumSize = 0;
2504
f93fca70 2505 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2506 sign = ~0;
14f9c5c9 2507 }
d2e4a39e 2508
14f9c5c9 2509 accum = 0;
086ca51f 2510 while (src_bytes_left > 0)
14f9c5c9
AS
2511 {
2512 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2513 part of the value. */
d2e4a39e 2514 unsigned int unusedMSMask =
4c4b4cd2
PH
2515 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2516 1;
2517 /* Sign-extend bits for this byte. */
14f9c5c9 2518 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2519
d2e4a39e 2520 accum |=
086ca51f 2521 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2522 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2523 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2524 {
db297a65 2525 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2526 accumSize -= HOST_CHAR_BIT;
2527 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2528 unpacked_bytes_left -= 1;
2529 unpacked_idx += delta;
4c4b4cd2 2530 }
14f9c5c9
AS
2531 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2532 unusedLS = 0;
086ca51f
JB
2533 src_bytes_left -= 1;
2534 src_idx += delta;
14f9c5c9 2535 }
086ca51f 2536 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2537 {
2538 accum |= sign << accumSize;
db297a65 2539 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2540 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2541 if (accumSize < 0)
2542 accumSize = 0;
14f9c5c9 2543 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2544 unpacked_bytes_left -= 1;
2545 unpacked_idx += delta;
14f9c5c9 2546 }
f93fca70
JB
2547}
2548
2549/* Create a new value of type TYPE from the contents of OBJ starting
2550 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2551 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2552 assigning through the result will set the field fetched from.
2553 VALADDR is ignored unless OBJ is NULL, in which case,
2554 VALADDR+OFFSET must address the start of storage containing the
2555 packed value. The value returned in this case is never an lval.
2556 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2557
2558struct value *
2559ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2560 long offset, int bit_offset, int bit_size,
2561 struct type *type)
2562{
2563 struct value *v;
bfb1c796 2564 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2565 gdb_byte *unpacked;
220475ed 2566 const int is_scalar = is_scalar_type (type);
d0a9e810 2567 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2568 gdb::byte_vector staging;
f93fca70
JB
2569
2570 type = ada_check_typedef (type);
2571
d0a9e810 2572 if (obj == NULL)
bfb1c796 2573 src = valaddr + offset;
d0a9e810 2574 else
bfb1c796 2575 src = value_contents (obj) + offset;
d0a9e810
JB
2576
2577 if (is_dynamic_type (type))
2578 {
2579 /* The length of TYPE might by dynamic, so we need to resolve
2580 TYPE in order to know its actual size, which we then use
2581 to create the contents buffer of the value we return.
2582 The difficulty is that the data containing our object is
2583 packed, and therefore maybe not at a byte boundary. So, what
2584 we do, is unpack the data into a byte-aligned buffer, and then
2585 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2586 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2587 staging.resize (staging_len);
d0a9e810
JB
2588
2589 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2590 staging.data (), staging.size (),
d0a9e810
JB
2591 is_big_endian, has_negatives (type),
2592 is_scalar);
d5722aa2 2593 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2594 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2595 {
2596 /* This happens when the length of the object is dynamic,
2597 and is actually smaller than the space reserved for it.
2598 For instance, in an array of variant records, the bit_size
2599 we're given is the array stride, which is constant and
2600 normally equal to the maximum size of its element.
2601 But, in reality, each element only actually spans a portion
2602 of that stride. */
2603 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2604 }
d0a9e810
JB
2605 }
2606
f93fca70
JB
2607 if (obj == NULL)
2608 {
2609 v = allocate_value (type);
bfb1c796 2610 src = valaddr + offset;
f93fca70
JB
2611 }
2612 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2613 {
0cafa88c 2614 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2615 gdb_byte *buf;
0cafa88c 2616
f93fca70 2617 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2618 buf = (gdb_byte *) alloca (src_len);
2619 read_memory (value_address (v), buf, src_len);
2620 src = buf;
f93fca70
JB
2621 }
2622 else
2623 {
2624 v = allocate_value (type);
bfb1c796 2625 src = value_contents (obj) + offset;
f93fca70
JB
2626 }
2627
2628 if (obj != NULL)
2629 {
2630 long new_offset = offset;
2631
2632 set_value_component_location (v, obj);
2633 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2634 set_value_bitsize (v, bit_size);
2635 if (value_bitpos (v) >= HOST_CHAR_BIT)
2636 {
2637 ++new_offset;
2638 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2639 }
2640 set_value_offset (v, new_offset);
2641
2642 /* Also set the parent value. This is needed when trying to
2643 assign a new value (in inferior memory). */
2644 set_value_parent (v, obj);
2645 }
2646 else
2647 set_value_bitsize (v, bit_size);
bfb1c796 2648 unpacked = value_contents_writeable (v);
f93fca70
JB
2649
2650 if (bit_size == 0)
2651 {
2652 memset (unpacked, 0, TYPE_LENGTH (type));
2653 return v;
2654 }
2655
d5722aa2 2656 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2657 {
d0a9e810
JB
2658 /* Small short-cut: If we've unpacked the data into a buffer
2659 of the same size as TYPE's length, then we can reuse that,
2660 instead of doing the unpacking again. */
d5722aa2 2661 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2662 }
d0a9e810
JB
2663 else
2664 ada_unpack_from_contents (src, bit_offset, bit_size,
2665 unpacked, TYPE_LENGTH (type),
2666 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2667
14f9c5c9
AS
2668 return v;
2669}
d2e4a39e 2670
14f9c5c9
AS
2671/* Store the contents of FROMVAL into the location of TOVAL.
2672 Return a new value with the location of TOVAL and contents of
2673 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2674 floating-point or non-scalar types. */
14f9c5c9 2675
d2e4a39e
AS
2676static struct value *
2677ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2678{
df407dfe
AC
2679 struct type *type = value_type (toval);
2680 int bits = value_bitsize (toval);
14f9c5c9 2681
52ce6436
PH
2682 toval = ada_coerce_ref (toval);
2683 fromval = ada_coerce_ref (fromval);
2684
2685 if (ada_is_direct_array_type (value_type (toval)))
2686 toval = ada_coerce_to_simple_array (toval);
2687 if (ada_is_direct_array_type (value_type (fromval)))
2688 fromval = ada_coerce_to_simple_array (fromval);
2689
88e3b34b 2690 if (!deprecated_value_modifiable (toval))
323e0a4a 2691 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2692
d2e4a39e 2693 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2694 && bits > 0
d2e4a39e 2695 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2696 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2697 {
df407dfe
AC
2698 int len = (value_bitpos (toval)
2699 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2700 int from_size;
224c3ddb 2701 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2702 struct value *val;
42ae5230 2703 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2704
2705 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2706 fromval = value_cast (type, fromval);
14f9c5c9 2707
52ce6436 2708 read_memory (to_addr, buffer, len);
aced2898
PH
2709 from_size = value_bitsize (fromval);
2710 if (from_size == 0)
2711 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2712 if (gdbarch_bits_big_endian (get_type_arch (type)))
a99bc3d2
JB
2713 copy_bitwise (buffer, value_bitpos (toval),
2714 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2715 else
a99bc3d2
JB
2716 copy_bitwise (buffer, value_bitpos (toval),
2717 value_contents (fromval), 0, bits, 0);
972daa01 2718 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2719
14f9c5c9 2720 val = value_copy (toval);
0fd88904 2721 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2722 TYPE_LENGTH (type));
04624583 2723 deprecated_set_value_type (val, type);
d2e4a39e 2724
14f9c5c9
AS
2725 return val;
2726 }
2727
2728 return value_assign (toval, fromval);
2729}
2730
2731
7c512744
JB
2732/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2733 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2734 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2735 COMPONENT, and not the inferior's memory. The current contents
2736 of COMPONENT are ignored.
2737
2738 Although not part of the initial design, this function also works
2739 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2740 had a null address, and COMPONENT had an address which is equal to
2741 its offset inside CONTAINER. */
2742
52ce6436
PH
2743static void
2744value_assign_to_component (struct value *container, struct value *component,
2745 struct value *val)
2746{
2747 LONGEST offset_in_container =
42ae5230 2748 (LONGEST) (value_address (component) - value_address (container));
7c512744 2749 int bit_offset_in_container =
52ce6436
PH
2750 value_bitpos (component) - value_bitpos (container);
2751 int bits;
7c512744 2752
52ce6436
PH
2753 val = value_cast (value_type (component), val);
2754
2755 if (value_bitsize (component) == 0)
2756 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2757 else
2758 bits = value_bitsize (component);
2759
50810684 2760 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2761 {
2762 int src_offset;
2763
2764 if (is_scalar_type (check_typedef (value_type (component))))
2765 src_offset
2766 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2767 else
2768 src_offset = 0;
a99bc3d2
JB
2769 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2770 value_bitpos (container) + bit_offset_in_container,
2771 value_contents (val), src_offset, bits, 1);
2a62dfa9 2772 }
52ce6436 2773 else
a99bc3d2
JB
2774 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2775 value_bitpos (container) + bit_offset_in_container,
2776 value_contents (val), 0, bits, 0);
7c512744
JB
2777}
2778
736ade86
XR
2779/* Determine if TYPE is an access to an unconstrained array. */
2780
d91e9ea8 2781bool
736ade86
XR
2782ada_is_access_to_unconstrained_array (struct type *type)
2783{
2784 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2785 && is_thick_pntr (ada_typedef_target_type (type)));
2786}
2787
4c4b4cd2
PH
2788/* The value of the element of array ARR at the ARITY indices given in IND.
2789 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2790 thereto. */
2791
d2e4a39e
AS
2792struct value *
2793ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2794{
2795 int k;
d2e4a39e
AS
2796 struct value *elt;
2797 struct type *elt_type;
14f9c5c9
AS
2798
2799 elt = ada_coerce_to_simple_array (arr);
2800
df407dfe 2801 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2802 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2803 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2804 return value_subscript_packed (elt, arity, ind);
2805
2806 for (k = 0; k < arity; k += 1)
2807 {
b9c50e9a
XR
2808 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2809
14f9c5c9 2810 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2811 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2812
2497b498 2813 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2814
2815 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2816 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2817 {
2818 /* The element is a typedef to an unconstrained array,
2819 except that the value_subscript call stripped the
2820 typedef layer. The typedef layer is GNAT's way to
2821 specify that the element is, at the source level, an
2822 access to the unconstrained array, rather than the
2823 unconstrained array. So, we need to restore that
2824 typedef layer, which we can do by forcing the element's
2825 type back to its original type. Otherwise, the returned
2826 value is going to be printed as the array, rather
2827 than as an access. Another symptom of the same issue
2828 would be that an expression trying to dereference the
2829 element would also be improperly rejected. */
2830 deprecated_set_value_type (elt, saved_elt_type);
2831 }
2832
2833 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2834 }
b9c50e9a 2835
14f9c5c9
AS
2836 return elt;
2837}
2838
deede10c
JB
2839/* Assuming ARR is a pointer to a GDB array, the value of the element
2840 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2841 Does not read the entire array into memory.
2842
2843 Note: Unlike what one would expect, this function is used instead of
2844 ada_value_subscript for basically all non-packed array types. The reason
2845 for this is that a side effect of doing our own pointer arithmetics instead
2846 of relying on value_subscript is that there is no implicit typedef peeling.
2847 This is important for arrays of array accesses, where it allows us to
2848 preserve the fact that the array's element is an array access, where the
2849 access part os encoded in a typedef layer. */
14f9c5c9 2850
2c0b251b 2851static struct value *
deede10c 2852ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2853{
2854 int k;
919e6dbe 2855 struct value *array_ind = ada_value_ind (arr);
deede10c 2856 struct type *type
919e6dbe
PMR
2857 = check_typedef (value_enclosing_type (array_ind));
2858
2859 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2860 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2861 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2862
2863 for (k = 0; k < arity; k += 1)
2864 {
2865 LONGEST lwb, upb;
aa715135 2866 struct value *lwb_value;
14f9c5c9
AS
2867
2868 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2869 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2870 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2871 value_copy (arr));
14f9c5c9 2872 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2873 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2874 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2875 type = TYPE_TARGET_TYPE (type);
2876 }
2877
2878 return value_ind (arr);
2879}
2880
0b5d8877 2881/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2882 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2883 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2884 this array is LOW, as per Ada rules. */
0b5d8877 2885static struct value *
f5938064
JG
2886ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2887 int low, int high)
0b5d8877 2888{
b0dd7688 2889 struct type *type0 = ada_check_typedef (type);
aa715135 2890 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2891 struct type *index_type
aa715135 2892 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2893 struct type *slice_type = create_array_type_with_stride
2894 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2895 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2896 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2897 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2898 LONGEST base_low_pos, low_pos;
2899 CORE_ADDR base;
2900
2901 if (!discrete_position (base_index_type, low, &low_pos)
2902 || !discrete_position (base_index_type, base_low, &base_low_pos))
2903 {
2904 warning (_("unable to get positions in slice, use bounds instead"));
2905 low_pos = low;
2906 base_low_pos = base_low;
2907 }
5b4ee69b 2908
aa715135
JG
2909 base = value_as_address (array_ptr)
2910 + ((low_pos - base_low_pos)
2911 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2912 return value_at_lazy (slice_type, base);
0b5d8877
PH
2913}
2914
2915
2916static struct value *
2917ada_value_slice (struct value *array, int low, int high)
2918{
b0dd7688 2919 struct type *type = ada_check_typedef (value_type (array));
aa715135 2920 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2921 struct type *index_type
2922 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2923 struct type *slice_type = create_array_type_with_stride
2924 (NULL, TYPE_TARGET_TYPE (type), index_type,
2925 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2926 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2927 LONGEST low_pos, high_pos;
5b4ee69b 2928
aa715135
JG
2929 if (!discrete_position (base_index_type, low, &low_pos)
2930 || !discrete_position (base_index_type, high, &high_pos))
2931 {
2932 warning (_("unable to get positions in slice, use bounds instead"));
2933 low_pos = low;
2934 high_pos = high;
2935 }
2936
2937 return value_cast (slice_type,
2938 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2939}
2940
14f9c5c9
AS
2941/* If type is a record type in the form of a standard GNAT array
2942 descriptor, returns the number of dimensions for type. If arr is a
2943 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2944 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2945
2946int
d2e4a39e 2947ada_array_arity (struct type *type)
14f9c5c9
AS
2948{
2949 int arity;
2950
2951 if (type == NULL)
2952 return 0;
2953
2954 type = desc_base_type (type);
2955
2956 arity = 0;
d2e4a39e 2957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2958 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2959 else
2960 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2961 {
4c4b4cd2 2962 arity += 1;
61ee279c 2963 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2964 }
d2e4a39e 2965
14f9c5c9
AS
2966 return arity;
2967}
2968
2969/* If TYPE is a record type in the form of a standard GNAT array
2970 descriptor or a simple array type, returns the element type for
2971 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2972 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2973
d2e4a39e
AS
2974struct type *
2975ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2976{
2977 type = desc_base_type (type);
2978
d2e4a39e 2979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2980 {
2981 int k;
d2e4a39e 2982 struct type *p_array_type;
14f9c5c9 2983
556bdfd4 2984 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2985
2986 k = ada_array_arity (type);
2987 if (k == 0)
4c4b4cd2 2988 return NULL;
d2e4a39e 2989
4c4b4cd2 2990 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2991 if (nindices >= 0 && k > nindices)
4c4b4cd2 2992 k = nindices;
d2e4a39e 2993 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2994 {
61ee279c 2995 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2996 k -= 1;
2997 }
14f9c5c9
AS
2998 return p_array_type;
2999 }
3000 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3001 {
3002 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3003 {
3004 type = TYPE_TARGET_TYPE (type);
3005 nindices -= 1;
3006 }
14f9c5c9
AS
3007 return type;
3008 }
3009
3010 return NULL;
3011}
3012
4c4b4cd2 3013/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3014 Does not examine memory. Throws an error if N is invalid or TYPE
3015 is not an array type. NAME is the name of the Ada attribute being
3016 evaluated ('range, 'first, 'last, or 'length); it is used in building
3017 the error message. */
14f9c5c9 3018
1eea4ebd
UW
3019static struct type *
3020ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3021{
4c4b4cd2
PH
3022 struct type *result_type;
3023
14f9c5c9
AS
3024 type = desc_base_type (type);
3025
1eea4ebd
UW
3026 if (n < 0 || n > ada_array_arity (type))
3027 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3028
4c4b4cd2 3029 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3030 {
3031 int i;
3032
3033 for (i = 1; i < n; i += 1)
4c4b4cd2 3034 type = TYPE_TARGET_TYPE (type);
262452ec 3035 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3036 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3037 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3038 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3039 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3040 result_type = NULL;
14f9c5c9 3041 }
d2e4a39e 3042 else
1eea4ebd
UW
3043 {
3044 result_type = desc_index_type (desc_bounds_type (type), n);
3045 if (result_type == NULL)
3046 error (_("attempt to take bound of something that is not an array"));
3047 }
3048
3049 return result_type;
14f9c5c9
AS
3050}
3051
3052/* Given that arr is an array type, returns the lower bound of the
3053 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3054 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3055 array-descriptor type. It works for other arrays with bounds supplied
3056 by run-time quantities other than discriminants. */
14f9c5c9 3057
abb68b3e 3058static LONGEST
fb5e3d5c 3059ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3060{
8a48ac95 3061 struct type *type, *index_type_desc, *index_type;
1ce677a4 3062 int i;
262452ec
JK
3063
3064 gdb_assert (which == 0 || which == 1);
14f9c5c9 3065
ad82864c
JB
3066 if (ada_is_constrained_packed_array_type (arr_type))
3067 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3068
4c4b4cd2 3069 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3070 return (LONGEST) - which;
14f9c5c9
AS
3071
3072 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3073 type = TYPE_TARGET_TYPE (arr_type);
3074 else
3075 type = arr_type;
3076
bafffb51
JB
3077 if (TYPE_FIXED_INSTANCE (type))
3078 {
3079 /* The array has already been fixed, so we do not need to
3080 check the parallel ___XA type again. That encoding has
3081 already been applied, so ignore it now. */
3082 index_type_desc = NULL;
3083 }
3084 else
3085 {
3086 index_type_desc = ada_find_parallel_type (type, "___XA");
3087 ada_fixup_array_indexes_type (index_type_desc);
3088 }
3089
262452ec 3090 if (index_type_desc != NULL)
28c85d6c
JB
3091 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3092 NULL);
262452ec 3093 else
8a48ac95
JB
3094 {
3095 struct type *elt_type = check_typedef (type);
3096
3097 for (i = 1; i < n; i++)
3098 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3099
3100 index_type = TYPE_INDEX_TYPE (elt_type);
3101 }
262452ec 3102
43bbcdc2
PH
3103 return
3104 (LONGEST) (which == 0
3105 ? ada_discrete_type_low_bound (index_type)
3106 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3107}
3108
3109/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3110 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3111 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3112 supplied by run-time quantities other than discriminants. */
14f9c5c9 3113
1eea4ebd 3114static LONGEST
4dc81987 3115ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3116{
eb479039
JB
3117 struct type *arr_type;
3118
3119 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3120 arr = value_ind (arr);
3121 arr_type = value_enclosing_type (arr);
14f9c5c9 3122
ad82864c
JB
3123 if (ada_is_constrained_packed_array_type (arr_type))
3124 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3125 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3126 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3127 else
1eea4ebd 3128 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3129}
3130
3131/* Given that arr is an array value, returns the length of the
3132 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3133 supplied by run-time quantities other than discriminants.
3134 Does not work for arrays indexed by enumeration types with representation
3135 clauses at the moment. */
14f9c5c9 3136
1eea4ebd 3137static LONGEST
d2e4a39e 3138ada_array_length (struct value *arr, int n)
14f9c5c9 3139{
aa715135
JG
3140 struct type *arr_type, *index_type;
3141 int low, high;
eb479039
JB
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
14f9c5c9 3146
ad82864c
JB
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3149
4c4b4cd2 3150 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3151 {
3152 low = ada_array_bound_from_type (arr_type, n, 0);
3153 high = ada_array_bound_from_type (arr_type, n, 1);
3154 }
14f9c5c9 3155 else
aa715135
JG
3156 {
3157 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3158 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3159 }
3160
f168693b 3161 arr_type = check_typedef (arr_type);
7150d33c 3162 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3163 if (index_type != NULL)
3164 {
3165 struct type *base_type;
3166 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3167 base_type = TYPE_TARGET_TYPE (index_type);
3168 else
3169 base_type = index_type;
3170
3171 low = pos_atr (value_from_longest (base_type, low));
3172 high = pos_atr (value_from_longest (base_type, high));
3173 }
3174 return high - low + 1;
4c4b4cd2
PH
3175}
3176
bff8c71f
TT
3177/* An array whose type is that of ARR_TYPE (an array type), with
3178 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3179 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3180
3181static struct value *
bff8c71f 3182empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3183{
b0dd7688 3184 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3185 struct type *index_type
3186 = create_static_range_type
bff8c71f
TT
3187 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3188 high < low ? low - 1 : high);
b0dd7688 3189 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3190
0b5d8877 3191 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3192}
14f9c5c9 3193\f
d2e4a39e 3194
4c4b4cd2 3195 /* Name resolution */
14f9c5c9 3196
4c4b4cd2
PH
3197/* The "decoded" name for the user-definable Ada operator corresponding
3198 to OP. */
14f9c5c9 3199
d2e4a39e 3200static const char *
4c4b4cd2 3201ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3202{
3203 int i;
3204
4c4b4cd2 3205 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3206 {
3207 if (ada_opname_table[i].op == op)
4c4b4cd2 3208 return ada_opname_table[i].decoded;
14f9c5c9 3209 }
323e0a4a 3210 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3211}
3212
3213
4c4b4cd2
PH
3214/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3215 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3216 undefined namespace) and converts operators that are
3217 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3218 non-null, it provides a preferred result type [at the moment, only
3219 type void has any effect---causing procedures to be preferred over
3220 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3221 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3222
4c4b4cd2 3223static void
699bd4cf
TT
3224resolve (expression_up *expp, int void_context_p, int parse_completion,
3225 innermost_block_tracker *tracker)
14f9c5c9 3226{
30b15541
UW
3227 struct type *context_type = NULL;
3228 int pc = 0;
3229
3230 if (void_context_p)
3231 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3232
699bd4cf 3233 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3234}
3235
4c4b4cd2
PH
3236/* Resolve the operator of the subexpression beginning at
3237 position *POS of *EXPP. "Resolving" consists of replacing
3238 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3239 with their resolutions, replacing built-in operators with
3240 function calls to user-defined operators, where appropriate, and,
3241 when DEPROCEDURE_P is non-zero, converting function-valued variables
3242 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3243 are as in ada_resolve, above. */
14f9c5c9 3244
d2e4a39e 3245static struct value *
e9d9f57e 3246resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3247 struct type *context_type, int parse_completion,
3248 innermost_block_tracker *tracker)
14f9c5c9
AS
3249{
3250 int pc = *pos;
3251 int i;
4c4b4cd2 3252 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3253 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3254 struct value **argvec; /* Vector of operand types (alloca'ed). */
3255 int nargs; /* Number of operands. */
52ce6436 3256 int oplen;
14f9c5c9
AS
3257
3258 argvec = NULL;
3259 nargs = 0;
e9d9f57e 3260 exp = expp->get ();
14f9c5c9 3261
52ce6436
PH
3262 /* Pass one: resolve operands, saving their types and updating *pos,
3263 if needed. */
14f9c5c9
AS
3264 switch (op)
3265 {
4c4b4cd2
PH
3266 case OP_FUNCALL:
3267 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3268 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3269 *pos += 7;
4c4b4cd2
PH
3270 else
3271 {
3272 *pos += 3;
699bd4cf 3273 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3274 }
3275 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3276 break;
3277
14f9c5c9 3278 case UNOP_ADDR:
4c4b4cd2 3279 *pos += 1;
699bd4cf 3280 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3281 break;
3282
52ce6436
PH
3283 case UNOP_QUAL:
3284 *pos += 3;
2a612529 3285 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3286 parse_completion, tracker);
4c4b4cd2
PH
3287 break;
3288
52ce6436 3289 case OP_ATR_MODULUS:
4c4b4cd2
PH
3290 case OP_ATR_SIZE:
3291 case OP_ATR_TAG:
4c4b4cd2
PH
3292 case OP_ATR_FIRST:
3293 case OP_ATR_LAST:
3294 case OP_ATR_LENGTH:
3295 case OP_ATR_POS:
3296 case OP_ATR_VAL:
4c4b4cd2
PH
3297 case OP_ATR_MIN:
3298 case OP_ATR_MAX:
52ce6436
PH
3299 case TERNOP_IN_RANGE:
3300 case BINOP_IN_BOUNDS:
3301 case UNOP_IN_RANGE:
3302 case OP_AGGREGATE:
3303 case OP_OTHERS:
3304 case OP_CHOICES:
3305 case OP_POSITIONAL:
3306 case OP_DISCRETE_RANGE:
3307 case OP_NAME:
3308 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3309 *pos += oplen;
14f9c5c9
AS
3310 break;
3311
3312 case BINOP_ASSIGN:
3313 {
4c4b4cd2
PH
3314 struct value *arg1;
3315
3316 *pos += 1;
699bd4cf 3317 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3318 if (arg1 == NULL)
699bd4cf 3319 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3320 else
699bd4cf
TT
3321 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3322 tracker);
4c4b4cd2 3323 break;
14f9c5c9
AS
3324 }
3325
4c4b4cd2 3326 case UNOP_CAST:
4c4b4cd2
PH
3327 *pos += 3;
3328 nargs = 1;
3329 break;
14f9c5c9 3330
4c4b4cd2
PH
3331 case BINOP_ADD:
3332 case BINOP_SUB:
3333 case BINOP_MUL:
3334 case BINOP_DIV:
3335 case BINOP_REM:
3336 case BINOP_MOD:
3337 case BINOP_EXP:
3338 case BINOP_CONCAT:
3339 case BINOP_LOGICAL_AND:
3340 case BINOP_LOGICAL_OR:
3341 case BINOP_BITWISE_AND:
3342 case BINOP_BITWISE_IOR:
3343 case BINOP_BITWISE_XOR:
14f9c5c9 3344
4c4b4cd2
PH
3345 case BINOP_EQUAL:
3346 case BINOP_NOTEQUAL:
3347 case BINOP_LESS:
3348 case BINOP_GTR:
3349 case BINOP_LEQ:
3350 case BINOP_GEQ:
14f9c5c9 3351
4c4b4cd2
PH
3352 case BINOP_REPEAT:
3353 case BINOP_SUBSCRIPT:
3354 case BINOP_COMMA:
40c8aaa9
JB
3355 *pos += 1;
3356 nargs = 2;
3357 break;
14f9c5c9 3358
4c4b4cd2
PH
3359 case UNOP_NEG:
3360 case UNOP_PLUS:
3361 case UNOP_LOGICAL_NOT:
3362 case UNOP_ABS:
3363 case UNOP_IND:
3364 *pos += 1;
3365 nargs = 1;
3366 break;
14f9c5c9 3367
4c4b4cd2 3368 case OP_LONG:
edd079d9 3369 case OP_FLOAT:
4c4b4cd2 3370 case OP_VAR_VALUE:
74ea4be4 3371 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3372 *pos += 4;
3373 break;
14f9c5c9 3374
4c4b4cd2
PH
3375 case OP_TYPE:
3376 case OP_BOOL:
3377 case OP_LAST:
4c4b4cd2
PH
3378 case OP_INTERNALVAR:
3379 *pos += 3;
3380 break;
14f9c5c9 3381
4c4b4cd2
PH
3382 case UNOP_MEMVAL:
3383 *pos += 3;
3384 nargs = 1;
3385 break;
3386
67f3407f
DJ
3387 case OP_REGISTER:
3388 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3389 break;
3390
4c4b4cd2
PH
3391 case STRUCTOP_STRUCT:
3392 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3393 nargs = 1;
3394 break;
3395
4c4b4cd2 3396 case TERNOP_SLICE:
4c4b4cd2
PH
3397 *pos += 1;
3398 nargs = 3;
3399 break;
3400
52ce6436 3401 case OP_STRING:
14f9c5c9 3402 break;
4c4b4cd2
PH
3403
3404 default:
323e0a4a 3405 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3406 }
3407
8d749320 3408 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3409 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3410 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3411 tracker);
4c4b4cd2 3412 argvec[i] = NULL;
e9d9f57e 3413 exp = expp->get ();
4c4b4cd2
PH
3414
3415 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3416 switch (op)
3417 {
3418 default:
3419 break;
3420
14f9c5c9 3421 case OP_VAR_VALUE:
4c4b4cd2 3422 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3423 {
54d343a2 3424 std::vector<struct block_symbol> candidates;
76a01679
JB
3425 int n_candidates;
3426
3427 n_candidates =
3428 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3429 (exp->elts[pc + 2].symbol),
3430 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3431 &candidates);
76a01679
JB
3432
3433 if (n_candidates > 1)
3434 {
3435 /* Types tend to get re-introduced locally, so if there
3436 are any local symbols that are not types, first filter
3437 out all types. */
3438 int j;
3439 for (j = 0; j < n_candidates; j += 1)
d12307c1 3440 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3441 {
3442 case LOC_REGISTER:
3443 case LOC_ARG:
3444 case LOC_REF_ARG:
76a01679
JB
3445 case LOC_REGPARM_ADDR:
3446 case LOC_LOCAL:
76a01679 3447 case LOC_COMPUTED:
76a01679
JB
3448 goto FoundNonType;
3449 default:
3450 break;
3451 }
3452 FoundNonType:
3453 if (j < n_candidates)
3454 {
3455 j = 0;
3456 while (j < n_candidates)
3457 {
d12307c1 3458 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3459 {
3460 candidates[j] = candidates[n_candidates - 1];
3461 n_candidates -= 1;
3462 }
3463 else
3464 j += 1;
3465 }
3466 }
3467 }
3468
3469 if (n_candidates == 0)
323e0a4a 3470 error (_("No definition found for %s"),
76a01679
JB
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 else if (n_candidates == 1)
3473 i = 0;
3474 else if (deprocedure_p
54d343a2 3475 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3476 {
06d5cf63 3477 i = ada_resolve_function
54d343a2 3478 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3480 context_type, parse_completion);
76a01679 3481 if (i < 0)
323e0a4a 3482 error (_("Could not find a match for %s"),
76a01679
JB
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 }
3485 else
3486 {
323e0a4a 3487 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3489 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3490 i = 0;
3491 }
3492
3493 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3494 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3495 tracker->update (candidates[i]);
76a01679
JB
3496 }
3497
3498 if (deprocedure_p
3499 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3500 == TYPE_CODE_FUNC))
3501 {
424da6cf 3502 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3503 exp->elts[pc + 2].symbol,
3504 exp->elts[pc + 1].block);
e9d9f57e 3505 exp = expp->get ();
76a01679 3506 }
14f9c5c9
AS
3507 break;
3508
3509 case OP_FUNCALL:
3510 {
4c4b4cd2 3511 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3512 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3513 {
54d343a2 3514 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3515 int n_candidates;
3516
3517 n_candidates =
76a01679
JB
3518 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3519 (exp->elts[pc + 5].symbol),
3520 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3521 &candidates);
ec6a20c2 3522
4c4b4cd2
PH
3523 if (n_candidates == 1)
3524 i = 0;
3525 else
3526 {
06d5cf63 3527 i = ada_resolve_function
54d343a2 3528 (candidates.data (), n_candidates,
06d5cf63
JB
3529 argvec, nargs,
3530 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3531 context_type, parse_completion);
4c4b4cd2 3532 if (i < 0)
323e0a4a 3533 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3534 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3535 }
3536
3537 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3538 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3539 tracker->update (candidates[i]);
4c4b4cd2 3540 }
14f9c5c9
AS
3541 }
3542 break;
3543 case BINOP_ADD:
3544 case BINOP_SUB:
3545 case BINOP_MUL:
3546 case BINOP_DIV:
3547 case BINOP_REM:
3548 case BINOP_MOD:
3549 case BINOP_CONCAT:
3550 case BINOP_BITWISE_AND:
3551 case BINOP_BITWISE_IOR:
3552 case BINOP_BITWISE_XOR:
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
3559 case BINOP_EXP:
3560 case UNOP_NEG:
3561 case UNOP_PLUS:
3562 case UNOP_LOGICAL_NOT:
3563 case UNOP_ABS:
3564 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3565 {
54d343a2 3566 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3567 int n_candidates;
3568
3569 n_candidates =
b5ec771e 3570 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3571 NULL, VAR_DOMAIN,
4eeaa230 3572 &candidates);
ec6a20c2 3573
54d343a2 3574 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3575 nargs, ada_decoded_op_name (op), NULL,
3576 parse_completion);
4c4b4cd2
PH
3577 if (i < 0)
3578 break;
3579
d12307c1
PMR
3580 replace_operator_with_call (expp, pc, nargs, 1,
3581 candidates[i].symbol,
3582 candidates[i].block);
e9d9f57e 3583 exp = expp->get ();
4c4b4cd2 3584 }
14f9c5c9 3585 break;
4c4b4cd2
PH
3586
3587 case OP_TYPE:
b3dbf008 3588 case OP_REGISTER:
4c4b4cd2 3589 return NULL;
14f9c5c9
AS
3590 }
3591
3592 *pos = pc;
ced9779b
JB
3593 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3594 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3595 exp->elts[pc + 1].objfile,
3596 exp->elts[pc + 2].msymbol);
3597 else
3598 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3599}
3600
3601/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3602 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3603 a non-pointer. */
14f9c5c9 3604/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3605 liberal. */
14f9c5c9
AS
3606
3607static int
4dc81987 3608ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3609{
61ee279c
PH
3610 ftype = ada_check_typedef (ftype);
3611 atype = ada_check_typedef (atype);
14f9c5c9
AS
3612
3613 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3614 ftype = TYPE_TARGET_TYPE (ftype);
3615 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3616 atype = TYPE_TARGET_TYPE (atype);
3617
d2e4a39e 3618 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3619 {
3620 default:
5b3d5b7d 3621 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3622 case TYPE_CODE_PTR:
3623 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3624 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3625 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3626 else
1265e4aa
JB
3627 return (may_deref
3628 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3629 case TYPE_CODE_INT:
3630 case TYPE_CODE_ENUM:
3631 case TYPE_CODE_RANGE:
3632 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3633 {
3634 case TYPE_CODE_INT:
3635 case TYPE_CODE_ENUM:
3636 case TYPE_CODE_RANGE:
3637 return 1;
3638 default:
3639 return 0;
3640 }
14f9c5c9
AS
3641
3642 case TYPE_CODE_ARRAY:
d2e4a39e 3643 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3644 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3645
3646 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3647 if (ada_is_array_descriptor_type (ftype))
3648 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3649 || ada_is_array_descriptor_type (atype));
14f9c5c9 3650 else
4c4b4cd2
PH
3651 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3652 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_UNION:
3655 case TYPE_CODE_FLT:
3656 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3657 }
3658}
3659
3660/* Return non-zero if the formals of FUNC "sufficiently match" the
3661 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3662 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3663 argument function. */
14f9c5c9
AS
3664
3665static int
d2e4a39e 3666ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3667{
3668 int i;
d2e4a39e 3669 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3670
1265e4aa
JB
3671 if (SYMBOL_CLASS (func) == LOC_CONST
3672 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3673 return (n_actuals == 0);
3674 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3675 return 0;
3676
3677 if (TYPE_NFIELDS (func_type) != n_actuals)
3678 return 0;
3679
3680 for (i = 0; i < n_actuals; i += 1)
3681 {
4c4b4cd2 3682 if (actuals[i] == NULL)
76a01679
JB
3683 return 0;
3684 else
3685 {
5b4ee69b
MS
3686 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3687 i));
df407dfe 3688 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3689
76a01679
JB
3690 if (!ada_type_match (ftype, atype, 1))
3691 return 0;
3692 }
14f9c5c9
AS
3693 }
3694 return 1;
3695}
3696
3697/* False iff function type FUNC_TYPE definitely does not produce a value
3698 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3699 FUNC_TYPE is not a valid function type with a non-null return type
3700 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3701
3702static int
d2e4a39e 3703return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3704{
d2e4a39e 3705 struct type *return_type;
14f9c5c9
AS
3706
3707 if (func_type == NULL)
3708 return 1;
3709
4c4b4cd2 3710 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3711 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3712 else
18af8284 3713 return_type = get_base_type (func_type);
14f9c5c9
AS
3714 if (return_type == NULL)
3715 return 1;
3716
18af8284 3717 context_type = get_base_type (context_type);
14f9c5c9
AS
3718
3719 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3720 return context_type == NULL || return_type == context_type;
3721 else if (context_type == NULL)
3722 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3723 else
3724 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3725}
3726
3727
4c4b4cd2 3728/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3729 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3730 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3731 that returns that type, then eliminate matches that don't. If
3732 CONTEXT_TYPE is void and there is at least one match that does not
3733 return void, eliminate all matches that do.
3734
14f9c5c9
AS
3735 Asks the user if there is more than one match remaining. Returns -1
3736 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3737 solely for messages. May re-arrange and modify SYMS in
3738 the process; the index returned is for the modified vector. */
14f9c5c9 3739
4c4b4cd2 3740static int
d12307c1 3741ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3742 int nsyms, struct value **args, int nargs,
2a612529
TT
3743 const char *name, struct type *context_type,
3744 int parse_completion)
14f9c5c9 3745{
30b15541 3746 int fallback;
14f9c5c9 3747 int k;
4c4b4cd2 3748 int m; /* Number of hits */
14f9c5c9 3749
d2e4a39e 3750 m = 0;
30b15541
UW
3751 /* In the first pass of the loop, we only accept functions matching
3752 context_type. If none are found, we add a second pass of the loop
3753 where every function is accepted. */
3754 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3755 {
3756 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3757 {
d12307c1 3758 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3759
d12307c1 3760 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3761 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3762 {
3763 syms[m] = syms[k];
3764 m += 1;
3765 }
3766 }
14f9c5c9
AS
3767 }
3768
dc5c8746
PMR
3769 /* If we got multiple matches, ask the user which one to use. Don't do this
3770 interactive thing during completion, though, as the purpose of the
3771 completion is providing a list of all possible matches. Prompting the
3772 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3773 if (m == 0)
3774 return -1;
dc5c8746 3775 else if (m > 1 && !parse_completion)
14f9c5c9 3776 {
323e0a4a 3777 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3778 user_select_syms (syms, m, 1);
14f9c5c9
AS
3779 return 0;
3780 }
3781 return 0;
3782}
3783
4c4b4cd2
PH
3784/* Returns true (non-zero) iff decoded name N0 should appear before N1
3785 in a listing of choices during disambiguation (see sort_choices, below).
3786 The idea is that overloadings of a subprogram name from the
3787 same package should sort in their source order. We settle for ordering
3788 such symbols by their trailing number (__N or $N). */
3789
14f9c5c9 3790static int
0d5cff50 3791encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3792{
3793 if (N1 == NULL)
3794 return 0;
3795 else if (N0 == NULL)
3796 return 1;
3797 else
3798 {
3799 int k0, k1;
5b4ee69b 3800
d2e4a39e 3801 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3802 ;
d2e4a39e 3803 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3804 ;
d2e4a39e 3805 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3806 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3807 {
3808 int n0, n1;
5b4ee69b 3809
4c4b4cd2
PH
3810 n0 = k0;
3811 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3812 n0 -= 1;
3813 n1 = k1;
3814 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3815 n1 -= 1;
3816 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3817 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3818 }
14f9c5c9
AS
3819 return (strcmp (N0, N1) < 0);
3820 }
3821}
d2e4a39e 3822
4c4b4cd2
PH
3823/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3824 encoded names. */
3825
d2e4a39e 3826static void
d12307c1 3827sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3828{
4c4b4cd2 3829 int i;
5b4ee69b 3830
d2e4a39e 3831 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3832 {
d12307c1 3833 struct block_symbol sym = syms[i];
14f9c5c9
AS
3834 int j;
3835
d2e4a39e 3836 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3837 {
d12307c1
PMR
3838 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3839 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3840 break;
3841 syms[j + 1] = syms[j];
3842 }
d2e4a39e 3843 syms[j + 1] = sym;
14f9c5c9
AS
3844 }
3845}
3846
d72413e6
PMR
3847/* Whether GDB should display formals and return types for functions in the
3848 overloads selection menu. */
3849static int print_signatures = 1;
3850
3851/* Print the signature for SYM on STREAM according to the FLAGS options. For
3852 all but functions, the signature is just the name of the symbol. For
3853 functions, this is the name of the function, the list of types for formals
3854 and the return type (if any). */
3855
3856static void
3857ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3858 const struct type_print_options *flags)
3859{
3860 struct type *type = SYMBOL_TYPE (sym);
3861
3862 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3863 if (!print_signatures
3864 || type == NULL
3865 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3866 return;
3867
3868 if (TYPE_NFIELDS (type) > 0)
3869 {
3870 int i;
3871
3872 fprintf_filtered (stream, " (");
3873 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3874 {
3875 if (i > 0)
3876 fprintf_filtered (stream, "; ");
3877 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3878 flags);
3879 }
3880 fprintf_filtered (stream, ")");
3881 }
3882 if (TYPE_TARGET_TYPE (type) != NULL
3883 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3884 {
3885 fprintf_filtered (stream, " return ");
3886 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3887 }
3888}
3889
4c4b4cd2
PH
3890/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3891 by asking the user (if necessary), returning the number selected,
3892 and setting the first elements of SYMS items. Error if no symbols
3893 selected. */
14f9c5c9
AS
3894
3895/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3896 to be re-integrated one of these days. */
14f9c5c9
AS
3897
3898int
d12307c1 3899user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3900{
3901 int i;
8d749320 3902 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3903 int n_chosen;
3904 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3905 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3906
3907 if (max_results < 1)
323e0a4a 3908 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3909 if (nsyms <= 1)
3910 return nsyms;
3911
717d2f5a
JB
3912 if (select_mode == multiple_symbols_cancel)
3913 error (_("\
3914canceled because the command is ambiguous\n\
3915See set/show multiple-symbol."));
a0087920 3916
717d2f5a
JB
3917 /* If select_mode is "all", then return all possible symbols.
3918 Only do that if more than one symbol can be selected, of course.
3919 Otherwise, display the menu as usual. */
3920 if (select_mode == multiple_symbols_all && max_results > 1)
3921 return nsyms;
3922
a0087920 3923 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3924 if (max_results > 1)
a0087920 3925 printf_filtered (_("[1] all\n"));
14f9c5c9 3926
4c4b4cd2 3927 sort_choices (syms, nsyms);
14f9c5c9
AS
3928
3929 for (i = 0; i < nsyms; i += 1)
3930 {
d12307c1 3931 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3932 continue;
3933
d12307c1 3934 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3935 {
76a01679 3936 struct symtab_and_line sal =
d12307c1 3937 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3938
a0087920 3939 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3940 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3941 &type_print_raw_options);
323e0a4a 3942 if (sal.symtab == NULL)
a0087920
TT
3943 printf_filtered (_(" at <no source file available>:%d\n"),
3944 sal.line);
323e0a4a 3945 else
a0087920
TT
3946 printf_filtered (_(" at %s:%d\n"),
3947 symtab_to_filename_for_display (sal.symtab),
3948 sal.line);
4c4b4cd2
PH
3949 continue;
3950 }
d2e4a39e 3951 else
4c4b4cd2
PH
3952 {
3953 int is_enumeral =
d12307c1
PMR
3954 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3955 && SYMBOL_TYPE (syms[i].symbol) != NULL
3956 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3957 struct symtab *symtab = NULL;
3958
d12307c1
PMR
3959 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3960 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3961
d12307c1 3962 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3963 {
a0087920 3964 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3965 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3966 &type_print_raw_options);
a0087920
TT
3967 printf_filtered (_(" at %s:%d\n"),
3968 symtab_to_filename_for_display (symtab),
3969 SYMBOL_LINE (syms[i].symbol));
d72413e6 3970 }
76a01679 3971 else if (is_enumeral
d12307c1 3972 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3973 {
a0087920 3974 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3975 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3976 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3977 printf_filtered (_("'(%s) (enumeral)\n"),
3978 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3979 }
d72413e6
PMR
3980 else
3981 {
a0087920 3982 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3983 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3984 &type_print_raw_options);
3985
3986 if (symtab != NULL)
a0087920
TT
3987 printf_filtered (is_enumeral
3988 ? _(" in %s (enumeral)\n")
3989 : _(" at %s:?\n"),
3990 symtab_to_filename_for_display (symtab));
d72413e6 3991 else
a0087920
TT
3992 printf_filtered (is_enumeral
3993 ? _(" (enumeral)\n")
3994 : _(" at ?\n"));
d72413e6 3995 }
4c4b4cd2 3996 }
14f9c5c9 3997 }
d2e4a39e 3998
14f9c5c9 3999 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4000 "overload-choice");
14f9c5c9
AS
4001
4002 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4003 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4004
4005 return n_chosen;
4006}
4007
4008/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4009 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4010 order in CHOICES[0 .. N-1], and return N.
4011
4012 The user types choices as a sequence of numbers on one line
4013 separated by blanks, encoding them as follows:
4014
4c4b4cd2 4015 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4016 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4017 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4018
4c4b4cd2 4019 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4020
4021 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4022 prompts (for use with the -f switch). */
14f9c5c9
AS
4023
4024int
d2e4a39e 4025get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4026 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4027{
d2e4a39e 4028 char *args;
a121b7c1 4029 const char *prompt;
14f9c5c9
AS
4030 int n_chosen;
4031 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4032
14f9c5c9
AS
4033 prompt = getenv ("PS2");
4034 if (prompt == NULL)
0bcd0149 4035 prompt = "> ";
14f9c5c9 4036
89fbedf3 4037 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4038
14f9c5c9 4039 if (args == NULL)
323e0a4a 4040 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4041
4042 n_chosen = 0;
76a01679 4043
4c4b4cd2
PH
4044 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4045 order, as given in args. Choices are validated. */
14f9c5c9
AS
4046 while (1)
4047 {
d2e4a39e 4048 char *args2;
14f9c5c9
AS
4049 int choice, j;
4050
0fcd72ba 4051 args = skip_spaces (args);
14f9c5c9 4052 if (*args == '\0' && n_chosen == 0)
323e0a4a 4053 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4054 else if (*args == '\0')
4c4b4cd2 4055 break;
14f9c5c9
AS
4056
4057 choice = strtol (args, &args2, 10);
d2e4a39e 4058 if (args == args2 || choice < 0
4c4b4cd2 4059 || choice > n_choices + first_choice - 1)
323e0a4a 4060 error (_("Argument must be choice number"));
14f9c5c9
AS
4061 args = args2;
4062
d2e4a39e 4063 if (choice == 0)
323e0a4a 4064 error (_("cancelled"));
14f9c5c9
AS
4065
4066 if (choice < first_choice)
4c4b4cd2
PH
4067 {
4068 n_chosen = n_choices;
4069 for (j = 0; j < n_choices; j += 1)
4070 choices[j] = j;
4071 break;
4072 }
14f9c5c9
AS
4073 choice -= first_choice;
4074
d2e4a39e 4075 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4076 {
4077 }
14f9c5c9
AS
4078
4079 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4080 {
4081 int k;
5b4ee69b 4082
4c4b4cd2
PH
4083 for (k = n_chosen - 1; k > j; k -= 1)
4084 choices[k + 1] = choices[k];
4085 choices[j + 1] = choice;
4086 n_chosen += 1;
4087 }
14f9c5c9
AS
4088 }
4089
4090 if (n_chosen > max_results)
323e0a4a 4091 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4092
14f9c5c9
AS
4093 return n_chosen;
4094}
4095
4c4b4cd2
PH
4096/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4097 on the function identified by SYM and BLOCK, and taking NARGS
4098 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4099
4100static void
e9d9f57e 4101replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4102 int oplen, struct symbol *sym,
270140bd 4103 const struct block *block)
14f9c5c9
AS
4104{
4105 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4106 symbol, -oplen for operator being replaced). */
d2e4a39e 4107 struct expression *newexp = (struct expression *)
8c1a34e7 4108 xzalloc (sizeof (struct expression)
4c4b4cd2 4109 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4110 struct expression *exp = expp->get ();
14f9c5c9
AS
4111
4112 newexp->nelts = exp->nelts + 7 - oplen;
4113 newexp->language_defn = exp->language_defn;
3489610d 4114 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4115 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4116 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4117 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4118
4119 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4120 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4121
4122 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4123 newexp->elts[pc + 4].block = block;
4124 newexp->elts[pc + 5].symbol = sym;
4125
e9d9f57e 4126 expp->reset (newexp);
d2e4a39e 4127}
14f9c5c9
AS
4128
4129/* Type-class predicates */
4130
4c4b4cd2
PH
4131/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4132 or FLOAT). */
14f9c5c9
AS
4133
4134static int
d2e4a39e 4135numeric_type_p (struct type *type)
14f9c5c9
AS
4136{
4137 if (type == NULL)
4138 return 0;
d2e4a39e
AS
4139 else
4140 {
4141 switch (TYPE_CODE (type))
4c4b4cd2
PH
4142 {
4143 case TYPE_CODE_INT:
4144 case TYPE_CODE_FLT:
4145 return 1;
4146 case TYPE_CODE_RANGE:
4147 return (type == TYPE_TARGET_TYPE (type)
4148 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4149 default:
4150 return 0;
4151 }
d2e4a39e 4152 }
14f9c5c9
AS
4153}
4154
4c4b4cd2 4155/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4156
4157static int
d2e4a39e 4158integer_type_p (struct type *type)
14f9c5c9
AS
4159{
4160 if (type == NULL)
4161 return 0;
d2e4a39e
AS
4162 else
4163 {
4164 switch (TYPE_CODE (type))
4c4b4cd2
PH
4165 {
4166 case TYPE_CODE_INT:
4167 return 1;
4168 case TYPE_CODE_RANGE:
4169 return (type == TYPE_TARGET_TYPE (type)
4170 || integer_type_p (TYPE_TARGET_TYPE (type)));
4171 default:
4172 return 0;
4173 }
d2e4a39e 4174 }
14f9c5c9
AS
4175}
4176
4c4b4cd2 4177/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4178
4179static int
d2e4a39e 4180scalar_type_p (struct type *type)
14f9c5c9
AS
4181{
4182 if (type == NULL)
4183 return 0;
d2e4a39e
AS
4184 else
4185 {
4186 switch (TYPE_CODE (type))
4c4b4cd2
PH
4187 {
4188 case TYPE_CODE_INT:
4189 case TYPE_CODE_RANGE:
4190 case TYPE_CODE_ENUM:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 default:
4194 return 0;
4195 }
d2e4a39e 4196 }
14f9c5c9
AS
4197}
4198
4c4b4cd2 4199/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4200
4201static int
d2e4a39e 4202discrete_type_p (struct type *type)
14f9c5c9
AS
4203{
4204 if (type == NULL)
4205 return 0;
d2e4a39e
AS
4206 else
4207 {
4208 switch (TYPE_CODE (type))
4c4b4cd2
PH
4209 {
4210 case TYPE_CODE_INT:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_ENUM:
872f0337 4213 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4214 return 1;
4215 default:
4216 return 0;
4217 }
d2e4a39e 4218 }
14f9c5c9
AS
4219}
4220
4c4b4cd2
PH
4221/* Returns non-zero if OP with operands in the vector ARGS could be
4222 a user-defined function. Errs on the side of pre-defined operators
4223 (i.e., result 0). */
14f9c5c9
AS
4224
4225static int
d2e4a39e 4226possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4227{
76a01679 4228 struct type *type0 =
df407dfe 4229 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4230 struct type *type1 =
df407dfe 4231 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4232
4c4b4cd2
PH
4233 if (type0 == NULL)
4234 return 0;
4235
14f9c5c9
AS
4236 switch (op)
4237 {
4238 default:
4239 return 0;
4240
4241 case BINOP_ADD:
4242 case BINOP_SUB:
4243 case BINOP_MUL:
4244 case BINOP_DIV:
d2e4a39e 4245 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4246
4247 case BINOP_REM:
4248 case BINOP_MOD:
4249 case BINOP_BITWISE_AND:
4250 case BINOP_BITWISE_IOR:
4251 case BINOP_BITWISE_XOR:
d2e4a39e 4252 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4253
4254 case BINOP_EQUAL:
4255 case BINOP_NOTEQUAL:
4256 case BINOP_LESS:
4257 case BINOP_GTR:
4258 case BINOP_LEQ:
4259 case BINOP_GEQ:
d2e4a39e 4260 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4261
4262 case BINOP_CONCAT:
ee90b9ab 4263 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4264
4265 case BINOP_EXP:
d2e4a39e 4266 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4267
4268 case UNOP_NEG:
4269 case UNOP_PLUS:
4270 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4271 case UNOP_ABS:
4272 return (!numeric_type_p (type0));
14f9c5c9
AS
4273
4274 }
4275}
4276\f
4c4b4cd2 4277 /* Renaming */
14f9c5c9 4278
aeb5907d
JB
4279/* NOTES:
4280
4281 1. In the following, we assume that a renaming type's name may
4282 have an ___XD suffix. It would be nice if this went away at some
4283 point.
4284 2. We handle both the (old) purely type-based representation of
4285 renamings and the (new) variable-based encoding. At some point,
4286 it is devoutly to be hoped that the former goes away
4287 (FIXME: hilfinger-2007-07-09).
4288 3. Subprogram renamings are not implemented, although the XRS
4289 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4290
4291/* If SYM encodes a renaming,
4292
4293 <renaming> renames <renamed entity>,
4294
4295 sets *LEN to the length of the renamed entity's name,
4296 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4297 the string describing the subcomponent selected from the renamed
0963b4bd 4298 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4299 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4300 are undefined). Otherwise, returns a value indicating the category
4301 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4302 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4303 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4304 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4305 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4306 may be NULL, in which case they are not assigned.
4307
4308 [Currently, however, GCC does not generate subprogram renamings.] */
4309
4310enum ada_renaming_category
4311ada_parse_renaming (struct symbol *sym,
4312 const char **renamed_entity, int *len,
4313 const char **renaming_expr)
4314{
4315 enum ada_renaming_category kind;
4316 const char *info;
4317 const char *suffix;
4318
4319 if (sym == NULL)
4320 return ADA_NOT_RENAMING;
4321 switch (SYMBOL_CLASS (sym))
14f9c5c9 4322 {
aeb5907d
JB
4323 default:
4324 return ADA_NOT_RENAMING;
4325 case LOC_TYPEDEF:
4326 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4327 renamed_entity, len, renaming_expr);
4328 case LOC_LOCAL:
4329 case LOC_STATIC:
4330 case LOC_COMPUTED:
4331 case LOC_OPTIMIZED_OUT:
4332 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4333 if (info == NULL)
4334 return ADA_NOT_RENAMING;
4335 switch (info[5])
4336 {
4337 case '_':
4338 kind = ADA_OBJECT_RENAMING;
4339 info += 6;
4340 break;
4341 case 'E':
4342 kind = ADA_EXCEPTION_RENAMING;
4343 info += 7;
4344 break;
4345 case 'P':
4346 kind = ADA_PACKAGE_RENAMING;
4347 info += 7;
4348 break;
4349 case 'S':
4350 kind = ADA_SUBPROGRAM_RENAMING;
4351 info += 7;
4352 break;
4353 default:
4354 return ADA_NOT_RENAMING;
4355 }
14f9c5c9 4356 }
4c4b4cd2 4357
aeb5907d
JB
4358 if (renamed_entity != NULL)
4359 *renamed_entity = info;
4360 suffix = strstr (info, "___XE");
4361 if (suffix == NULL || suffix == info)
4362 return ADA_NOT_RENAMING;
4363 if (len != NULL)
4364 *len = strlen (info) - strlen (suffix);
4365 suffix += 5;
4366 if (renaming_expr != NULL)
4367 *renaming_expr = suffix;
4368 return kind;
4369}
4370
4371/* Assuming TYPE encodes a renaming according to the old encoding in
4372 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4373 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4374 ADA_NOT_RENAMING otherwise. */
4375static enum ada_renaming_category
4376parse_old_style_renaming (struct type *type,
4377 const char **renamed_entity, int *len,
4378 const char **renaming_expr)
4379{
4380 enum ada_renaming_category kind;
4381 const char *name;
4382 const char *info;
4383 const char *suffix;
14f9c5c9 4384
aeb5907d
JB
4385 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4386 || TYPE_NFIELDS (type) != 1)
4387 return ADA_NOT_RENAMING;
14f9c5c9 4388
a737d952 4389 name = TYPE_NAME (type);
aeb5907d
JB
4390 if (name == NULL)
4391 return ADA_NOT_RENAMING;
4392
4393 name = strstr (name, "___XR");
4394 if (name == NULL)
4395 return ADA_NOT_RENAMING;
4396 switch (name[5])
4397 {
4398 case '\0':
4399 case '_':
4400 kind = ADA_OBJECT_RENAMING;
4401 break;
4402 case 'E':
4403 kind = ADA_EXCEPTION_RENAMING;
4404 break;
4405 case 'P':
4406 kind = ADA_PACKAGE_RENAMING;
4407 break;
4408 case 'S':
4409 kind = ADA_SUBPROGRAM_RENAMING;
4410 break;
4411 default:
4412 return ADA_NOT_RENAMING;
4413 }
14f9c5c9 4414
aeb5907d
JB
4415 info = TYPE_FIELD_NAME (type, 0);
4416 if (info == NULL)
4417 return ADA_NOT_RENAMING;
4418 if (renamed_entity != NULL)
4419 *renamed_entity = info;
4420 suffix = strstr (info, "___XE");
4421 if (renaming_expr != NULL)
4422 *renaming_expr = suffix + 5;
4423 if (suffix == NULL || suffix == info)
4424 return ADA_NOT_RENAMING;
4425 if (len != NULL)
4426 *len = suffix - info;
4427 return kind;
a5ee536b
JB
4428}
4429
4430/* Compute the value of the given RENAMING_SYM, which is expected to
4431 be a symbol encoding a renaming expression. BLOCK is the block
4432 used to evaluate the renaming. */
52ce6436 4433
a5ee536b
JB
4434static struct value *
4435ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4436 const struct block *block)
a5ee536b 4437{
bbc13ae3 4438 const char *sym_name;
a5ee536b 4439
bbc13ae3 4440 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4441 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4442 return evaluate_expression (expr.get ());
a5ee536b 4443}
14f9c5c9 4444\f
d2e4a39e 4445
4c4b4cd2 4446 /* Evaluation: Function Calls */
14f9c5c9 4447
4c4b4cd2 4448/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4449 lvalues, and otherwise has the side-effect of allocating memory
4450 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4451
d2e4a39e 4452static struct value *
40bc484c 4453ensure_lval (struct value *val)
14f9c5c9 4454{
40bc484c
JB
4455 if (VALUE_LVAL (val) == not_lval
4456 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4457 {
df407dfe 4458 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4459 const CORE_ADDR addr =
4460 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4461
a84a8a0d 4462 VALUE_LVAL (val) = lval_memory;
1a088441 4463 set_value_address (val, addr);
40bc484c 4464 write_memory (addr, value_contents (val), len);
c3e5cd34 4465 }
14f9c5c9
AS
4466
4467 return val;
4468}
4469
4470/* Return the value ACTUAL, converted to be an appropriate value for a
4471 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4472 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4473 values not residing in memory, updating it as needed. */
14f9c5c9 4474
a93c0eb6 4475struct value *
40bc484c 4476ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4477{
df407dfe 4478 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4479 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4480 struct type *formal_target =
4481 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4482 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4483 struct type *actual_target =
4484 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4485 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4486
4c4b4cd2 4487 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4488 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4489 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4490 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4491 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4492 {
a84a8a0d 4493 struct value *result;
5b4ee69b 4494
14f9c5c9 4495 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4496 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4497 result = desc_data (actual);
cb923fcc 4498 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4499 {
4500 if (VALUE_LVAL (actual) != lval_memory)
4501 {
4502 struct value *val;
5b4ee69b 4503
df407dfe 4504 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4505 val = allocate_value (actual_type);
990a07ab 4506 memcpy ((char *) value_contents_raw (val),
0fd88904 4507 (char *) value_contents (actual),
4c4b4cd2 4508 TYPE_LENGTH (actual_type));
40bc484c 4509 actual = ensure_lval (val);
4c4b4cd2 4510 }
a84a8a0d 4511 result = value_addr (actual);
4c4b4cd2 4512 }
a84a8a0d
JB
4513 else
4514 return actual;
b1af9e97 4515 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4516 }
4517 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4518 return ada_value_ind (actual);
8344af1e
JB
4519 else if (ada_is_aligner_type (formal_type))
4520 {
4521 /* We need to turn this parameter into an aligner type
4522 as well. */
4523 struct value *aligner = allocate_value (formal_type);
4524 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4525
4526 value_assign_to_component (aligner, component, actual);
4527 return aligner;
4528 }
14f9c5c9
AS
4529
4530 return actual;
4531}
4532
438c98a1
JB
4533/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4534 type TYPE. This is usually an inefficient no-op except on some targets
4535 (such as AVR) where the representation of a pointer and an address
4536 differs. */
4537
4538static CORE_ADDR
4539value_pointer (struct value *value, struct type *type)
4540{
4541 struct gdbarch *gdbarch = get_type_arch (type);
4542 unsigned len = TYPE_LENGTH (type);
224c3ddb 4543 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4544 CORE_ADDR addr;
4545
4546 addr = value_address (value);
4547 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4548 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4549 return addr;
4550}
4551
14f9c5c9 4552
4c4b4cd2
PH
4553/* Push a descriptor of type TYPE for array value ARR on the stack at
4554 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4555 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4556 to-descriptor type rather than a descriptor type), a struct value *
4557 representing a pointer to this descriptor. */
14f9c5c9 4558
d2e4a39e 4559static struct value *
40bc484c 4560make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4561{
d2e4a39e
AS
4562 struct type *bounds_type = desc_bounds_type (type);
4563 struct type *desc_type = desc_base_type (type);
4564 struct value *descriptor = allocate_value (desc_type);
4565 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4566 int i;
d2e4a39e 4567
0963b4bd
MS
4568 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4569 i > 0; i -= 1)
14f9c5c9 4570 {
19f220c3
JK
4571 modify_field (value_type (bounds), value_contents_writeable (bounds),
4572 ada_array_bound (arr, i, 0),
4573 desc_bound_bitpos (bounds_type, i, 0),
4574 desc_bound_bitsize (bounds_type, i, 0));
4575 modify_field (value_type (bounds), value_contents_writeable (bounds),
4576 ada_array_bound (arr, i, 1),
4577 desc_bound_bitpos (bounds_type, i, 1),
4578 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4579 }
d2e4a39e 4580
40bc484c 4581 bounds = ensure_lval (bounds);
d2e4a39e 4582
19f220c3
JK
4583 modify_field (value_type (descriptor),
4584 value_contents_writeable (descriptor),
4585 value_pointer (ensure_lval (arr),
4586 TYPE_FIELD_TYPE (desc_type, 0)),
4587 fat_pntr_data_bitpos (desc_type),
4588 fat_pntr_data_bitsize (desc_type));
4589
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (bounds,
4593 TYPE_FIELD_TYPE (desc_type, 1)),
4594 fat_pntr_bounds_bitpos (desc_type),
4595 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4596
40bc484c 4597 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4598
4599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4600 return value_addr (descriptor);
4601 else
4602 return descriptor;
4603}
14f9c5c9 4604\f
3d9434b5
JB
4605 /* Symbol Cache Module */
4606
3d9434b5 4607/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4608 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4609 on the type of entity being printed, the cache can make it as much
4610 as an order of magnitude faster than without it.
4611
4612 The descriptive type DWARF extension has significantly reduced
4613 the need for this cache, at least when DWARF is being used. However,
4614 even in this case, some expensive name-based symbol searches are still
4615 sometimes necessary - to find an XVZ variable, mostly. */
4616
ee01b665 4617/* Initialize the contents of SYM_CACHE. */
3d9434b5 4618
ee01b665
JB
4619static void
4620ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4621{
4622 obstack_init (&sym_cache->cache_space);
4623 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4624}
3d9434b5 4625
ee01b665
JB
4626/* Free the memory used by SYM_CACHE. */
4627
4628static void
4629ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4630{
ee01b665
JB
4631 obstack_free (&sym_cache->cache_space, NULL);
4632 xfree (sym_cache);
4633}
3d9434b5 4634
ee01b665
JB
4635/* Return the symbol cache associated to the given program space PSPACE.
4636 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4637
ee01b665
JB
4638static struct ada_symbol_cache *
4639ada_get_symbol_cache (struct program_space *pspace)
4640{
4641 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4642
66c168ae 4643 if (pspace_data->sym_cache == NULL)
ee01b665 4644 {
66c168ae
JB
4645 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4646 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4647 }
4648
66c168ae 4649 return pspace_data->sym_cache;
ee01b665 4650}
3d9434b5
JB
4651
4652/* Clear all entries from the symbol cache. */
4653
4654static void
4655ada_clear_symbol_cache (void)
4656{
ee01b665
JB
4657 struct ada_symbol_cache *sym_cache
4658 = ada_get_symbol_cache (current_program_space);
4659
4660 obstack_free (&sym_cache->cache_space, NULL);
4661 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4662}
4663
fe978cb0 4664/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4665 Return it if found, or NULL otherwise. */
4666
4667static struct cache_entry **
fe978cb0 4668find_entry (const char *name, domain_enum domain)
3d9434b5 4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4672 int h = msymbol_hash (name) % HASH_SIZE;
4673 struct cache_entry **e;
4674
ee01b665 4675 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4676 {
fe978cb0 4677 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4678 return e;
4679 }
4680 return NULL;
4681}
4682
fe978cb0 4683/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4684 Return 1 if found, 0 otherwise.
4685
4686 If an entry was found and SYM is not NULL, set *SYM to the entry's
4687 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4688
96d887e8 4689static int
fe978cb0 4690lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4691 struct symbol **sym, const struct block **block)
96d887e8 4692{
fe978cb0 4693 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4694
4695 if (e == NULL)
4696 return 0;
4697 if (sym != NULL)
4698 *sym = (*e)->sym;
4699 if (block != NULL)
4700 *block = (*e)->block;
4701 return 1;
96d887e8
PH
4702}
4703
3d9434b5 4704/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4705 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4706
96d887e8 4707static void
fe978cb0 4708cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4709 const struct block *block)
96d887e8 4710{
ee01b665
JB
4711 struct ada_symbol_cache *sym_cache
4712 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4713 int h;
4714 char *copy;
4715 struct cache_entry *e;
4716
1994afbf
DE
4717 /* Symbols for builtin types don't have a block.
4718 For now don't cache such symbols. */
4719 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4720 return;
4721
3d9434b5
JB
4722 /* If the symbol is a local symbol, then do not cache it, as a search
4723 for that symbol depends on the context. To determine whether
4724 the symbol is local or not, we check the block where we found it
4725 against the global and static blocks of its associated symtab. */
4726 if (sym
08be3fe3 4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4728 GLOBAL_BLOCK) != block
08be3fe3 4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4730 STATIC_BLOCK) != block)
3d9434b5
JB
4731 return;
4732
4733 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4734 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4735 e->next = sym_cache->root[h];
4736 sym_cache->root[h] = e;
224c3ddb
SM
4737 e->name = copy
4738 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4739 strcpy (copy, name);
4740 e->sym = sym;
fe978cb0 4741 e->domain = domain;
3d9434b5 4742 e->block = block;
96d887e8 4743}
4c4b4cd2
PH
4744\f
4745 /* Symbol Lookup */
4746
b5ec771e
PA
4747/* Return the symbol name match type that should be used used when
4748 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4749
4750 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4751 for Ada lookups. */
c0431670 4752
b5ec771e
PA
4753static symbol_name_match_type
4754name_match_type_from_name (const char *lookup_name)
c0431670 4755{
b5ec771e
PA
4756 return (strstr (lookup_name, "__") == NULL
4757 ? symbol_name_match_type::WILD
4758 : symbol_name_match_type::FULL);
c0431670
JB
4759}
4760
4c4b4cd2
PH
4761/* Return the result of a standard (literal, C-like) lookup of NAME in
4762 given DOMAIN, visible from lexical block BLOCK. */
4763
4764static struct symbol *
4765standard_lookup (const char *name, const struct block *block,
4766 domain_enum domain)
4767{
acbd605d 4768 /* Initialize it just to avoid a GCC false warning. */
6640a367 4769 struct block_symbol sym = {};
4c4b4cd2 4770
d12307c1
PMR
4771 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4772 return sym.symbol;
a2cd4f14 4773 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4774 cache_symbol (name, domain, sym.symbol, sym.block);
4775 return sym.symbol;
4c4b4cd2
PH
4776}
4777
4778
4779/* Non-zero iff there is at least one non-function/non-enumeral symbol
4780 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4781 since they contend in overloading in the same way. */
4782static int
d12307c1 4783is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4784{
4785 int i;
4786
4787 for (i = 0; i < n; i += 1)
d12307c1
PMR
4788 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4789 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4790 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4791 return 1;
4792
4793 return 0;
4794}
4795
4796/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4797 struct types. Otherwise, they may not. */
14f9c5c9
AS
4798
4799static int
d2e4a39e 4800equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4801{
d2e4a39e 4802 if (type0 == type1)
14f9c5c9 4803 return 1;
d2e4a39e 4804 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4805 || TYPE_CODE (type0) != TYPE_CODE (type1))
4806 return 0;
d2e4a39e 4807 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4808 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4809 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4810 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4811 return 1;
d2e4a39e 4812
14f9c5c9
AS
4813 return 0;
4814}
4815
4816/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4817 no more defined than that of SYM1. */
14f9c5c9
AS
4818
4819static int
d2e4a39e 4820lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4821{
4822 if (sym0 == sym1)
4823 return 1;
176620f1 4824 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4825 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4826 return 0;
4827
d2e4a39e 4828 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4829 {
4830 case LOC_UNDEF:
4831 return 1;
4832 case LOC_TYPEDEF:
4833 {
4c4b4cd2
PH
4834 struct type *type0 = SYMBOL_TYPE (sym0);
4835 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4836 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4837 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4838 int len0 = strlen (name0);
5b4ee69b 4839
4c4b4cd2
PH
4840 return
4841 TYPE_CODE (type0) == TYPE_CODE (type1)
4842 && (equiv_types (type0, type1)
4843 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4844 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4845 }
4846 case LOC_CONST:
4847 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4848 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4849 default:
4850 return 0;
14f9c5c9
AS
4851 }
4852}
4853
d12307c1 4854/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4855 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4856
4857static void
76a01679
JB
4858add_defn_to_vec (struct obstack *obstackp,
4859 struct symbol *sym,
f0c5f9b2 4860 const struct block *block)
14f9c5c9
AS
4861{
4862 int i;
d12307c1 4863 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4864
529cad9c
PH
4865 /* Do not try to complete stub types, as the debugger is probably
4866 already scanning all symbols matching a certain name at the
4867 time when this function is called. Trying to replace the stub
4868 type by its associated full type will cause us to restart a scan
4869 which may lead to an infinite recursion. Instead, the client
4870 collecting the matching symbols will end up collecting several
4871 matches, with at least one of them complete. It can then filter
4872 out the stub ones if needed. */
4873
4c4b4cd2
PH
4874 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4875 {
d12307c1 4876 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4877 return;
d12307c1 4878 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4879 {
d12307c1 4880 prevDefns[i].symbol = sym;
4c4b4cd2 4881 prevDefns[i].block = block;
4c4b4cd2 4882 return;
76a01679 4883 }
4c4b4cd2
PH
4884 }
4885
4886 {
d12307c1 4887 struct block_symbol info;
4c4b4cd2 4888
d12307c1 4889 info.symbol = sym;
4c4b4cd2 4890 info.block = block;
d12307c1 4891 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4892 }
4893}
4894
d12307c1
PMR
4895/* Number of block_symbol structures currently collected in current vector in
4896 OBSTACKP. */
4c4b4cd2 4897
76a01679
JB
4898static int
4899num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4900{
d12307c1 4901 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4902}
4903
d12307c1
PMR
4904/* Vector of block_symbol structures currently collected in current vector in
4905 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4906
d12307c1 4907static struct block_symbol *
4c4b4cd2
PH
4908defns_collected (struct obstack *obstackp, int finish)
4909{
4910 if (finish)
224c3ddb 4911 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4912 else
d12307c1 4913 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4914}
4915
7c7b6655
TT
4916/* Return a bound minimal symbol matching NAME according to Ada
4917 decoding rules. Returns an invalid symbol if there is no such
4918 minimal symbol. Names prefixed with "standard__" are handled
4919 specially: "standard__" is first stripped off, and only static and
4920 global symbols are searched. */
4c4b4cd2 4921
7c7b6655 4922struct bound_minimal_symbol
96d887e8 4923ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4924{
7c7b6655 4925 struct bound_minimal_symbol result;
4c4b4cd2 4926
7c7b6655
TT
4927 memset (&result, 0, sizeof (result));
4928
b5ec771e
PA
4929 symbol_name_match_type match_type = name_match_type_from_name (name);
4930 lookup_name_info lookup_name (name, match_type);
4931
4932 symbol_name_matcher_ftype *match_name
4933 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4934
2030c079 4935 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4936 {
7932255d 4937 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4938 {
4939 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4940 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4941 {
4942 result.minsym = msymbol;
4943 result.objfile = objfile;
4944 break;
4945 }
4946 }
4947 }
4c4b4cd2 4948
7c7b6655 4949 return result;
96d887e8 4950}
4c4b4cd2 4951
96d887e8
PH
4952/* For all subprograms that statically enclose the subprogram of the
4953 selected frame, add symbols matching identifier NAME in DOMAIN
4954 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4955 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4956 with a wildcard prefix. */
4c4b4cd2 4957
96d887e8
PH
4958static void
4959add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4960 const lookup_name_info &lookup_name,
4961 domain_enum domain)
96d887e8 4962{
96d887e8 4963}
14f9c5c9 4964
96d887e8
PH
4965/* True if TYPE is definitely an artificial type supplied to a symbol
4966 for which no debugging information was given in the symbol file. */
14f9c5c9 4967
96d887e8
PH
4968static int
4969is_nondebugging_type (struct type *type)
4970{
0d5cff50 4971 const char *name = ada_type_name (type);
5b4ee69b 4972
96d887e8
PH
4973 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4974}
4c4b4cd2 4975
8f17729f
JB
4976/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4977 that are deemed "identical" for practical purposes.
4978
4979 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4980 types and that their number of enumerals is identical (in other
4981 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4982
4983static int
4984ada_identical_enum_types_p (struct type *type1, struct type *type2)
4985{
4986 int i;
4987
4988 /* The heuristic we use here is fairly conservative. We consider
4989 that 2 enumerate types are identical if they have the same
4990 number of enumerals and that all enumerals have the same
4991 underlying value and name. */
4992
4993 /* All enums in the type should have an identical underlying value. */
4994 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4995 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4996 return 0;
4997
4998 /* All enumerals should also have the same name (modulo any numerical
4999 suffix). */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5001 {
0d5cff50
DE
5002 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5003 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5004 int len_1 = strlen (name_1);
5005 int len_2 = strlen (name_2);
5006
5007 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5009 if (len_1 != len_2
5010 || strncmp (TYPE_FIELD_NAME (type1, i),
5011 TYPE_FIELD_NAME (type2, i),
5012 len_1) != 0)
5013 return 0;
5014 }
5015
5016 return 1;
5017}
5018
5019/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5020 that are deemed "identical" for practical purposes. Sometimes,
5021 enumerals are not strictly identical, but their types are so similar
5022 that they can be considered identical.
5023
5024 For instance, consider the following code:
5025
5026 type Color is (Black, Red, Green, Blue, White);
5027 type RGB_Color is new Color range Red .. Blue;
5028
5029 Type RGB_Color is a subrange of an implicit type which is a copy
5030 of type Color. If we call that implicit type RGB_ColorB ("B" is
5031 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5032 As a result, when an expression references any of the enumeral
5033 by name (Eg. "print green"), the expression is technically
5034 ambiguous and the user should be asked to disambiguate. But
5035 doing so would only hinder the user, since it wouldn't matter
5036 what choice he makes, the outcome would always be the same.
5037 So, for practical purposes, we consider them as the same. */
5038
5039static int
54d343a2 5040symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5041{
5042 int i;
5043
5044 /* Before performing a thorough comparison check of each type,
5045 we perform a series of inexpensive checks. We expect that these
5046 checks will quickly fail in the vast majority of cases, and thus
5047 help prevent the unnecessary use of a more expensive comparison.
5048 Said comparison also expects us to make some of these checks
5049 (see ada_identical_enum_types_p). */
5050
5051 /* Quick check: All symbols should have an enum type. */
54d343a2 5052 for (i = 0; i < syms.size (); i++)
d12307c1 5053 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5054 return 0;
5055
5056 /* Quick check: They should all have the same value. */
54d343a2 5057 for (i = 1; i < syms.size (); i++)
d12307c1 5058 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5059 return 0;
5060
5061 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5062 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5063 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5064 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5065 return 0;
5066
5067 /* All the sanity checks passed, so we might have a set of
5068 identical enumeration types. Perform a more complete
5069 comparison of the type of each symbol. */
54d343a2 5070 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5071 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5072 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5073 return 0;
5074
5075 return 1;
5076}
5077
54d343a2 5078/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5079 duplicate other symbols in the list (The only case I know of where
5080 this happens is when object files containing stabs-in-ecoff are
5081 linked with files containing ordinary ecoff debugging symbols (or no
5082 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5083 Returns the number of items in the modified list. */
4c4b4cd2 5084
96d887e8 5085static int
54d343a2 5086remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5087{
5088 int i, j;
4c4b4cd2 5089
8f17729f
JB
5090 /* We should never be called with less than 2 symbols, as there
5091 cannot be any extra symbol in that case. But it's easy to
5092 handle, since we have nothing to do in that case. */
54d343a2
TT
5093 if (syms->size () < 2)
5094 return syms->size ();
8f17729f 5095
96d887e8 5096 i = 0;
54d343a2 5097 while (i < syms->size ())
96d887e8 5098 {
a35ddb44 5099 int remove_p = 0;
339c13b6
JB
5100
5101 /* If two symbols have the same name and one of them is a stub type,
5102 the get rid of the stub. */
5103
54d343a2
TT
5104 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5105 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5106 {
54d343a2 5107 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5108 {
5109 if (j != i
54d343a2
TT
5110 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5112 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5113 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5114 remove_p = 1;
339c13b6
JB
5115 }
5116 }
5117
5118 /* Two symbols with the same name, same class and same address
5119 should be identical. */
5120
54d343a2
TT
5121 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5122 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5123 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5124 {
54d343a2 5125 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5126 {
5127 if (i != j
54d343a2
TT
5128 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5130 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5131 && SYMBOL_CLASS ((*syms)[i].symbol)
5132 == SYMBOL_CLASS ((*syms)[j].symbol)
5133 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5134 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5135 remove_p = 1;
4c4b4cd2 5136 }
4c4b4cd2 5137 }
339c13b6 5138
a35ddb44 5139 if (remove_p)
54d343a2 5140 syms->erase (syms->begin () + i);
339c13b6 5141
96d887e8 5142 i += 1;
14f9c5c9 5143 }
8f17729f
JB
5144
5145 /* If all the remaining symbols are identical enumerals, then
5146 just keep the first one and discard the rest.
5147
5148 Unlike what we did previously, we do not discard any entry
5149 unless they are ALL identical. This is because the symbol
5150 comparison is not a strict comparison, but rather a practical
5151 comparison. If all symbols are considered identical, then
5152 we can just go ahead and use the first one and discard the rest.
5153 But if we cannot reduce the list to a single element, we have
5154 to ask the user to disambiguate anyways. And if we have to
5155 present a multiple-choice menu, it's less confusing if the list
5156 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5157 if (symbols_are_identical_enums (*syms))
5158 syms->resize (1);
8f17729f 5159
54d343a2 5160 return syms->size ();
14f9c5c9
AS
5161}
5162
96d887e8
PH
5163/* Given a type that corresponds to a renaming entity, use the type name
5164 to extract the scope (package name or function name, fully qualified,
5165 and following the GNAT encoding convention) where this renaming has been
49d83361 5166 defined. */
4c4b4cd2 5167
49d83361 5168static std::string
96d887e8 5169xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5170{
96d887e8 5171 /* The renaming types adhere to the following convention:
0963b4bd 5172 <scope>__<rename>___<XR extension>.
96d887e8
PH
5173 So, to extract the scope, we search for the "___XR" extension,
5174 and then backtrack until we find the first "__". */
76a01679 5175
a737d952 5176 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5177 const char *suffix = strstr (name, "___XR");
5178 const char *last;
14f9c5c9 5179
96d887e8
PH
5180 /* Now, backtrack a bit until we find the first "__". Start looking
5181 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5182
96d887e8
PH
5183 for (last = suffix - 3; last > name; last--)
5184 if (last[0] == '_' && last[1] == '_')
5185 break;
76a01679 5186
96d887e8 5187 /* Make a copy of scope and return it. */
49d83361 5188 return std::string (name, last);
4c4b4cd2
PH
5189}
5190
96d887e8 5191/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5192
96d887e8
PH
5193static int
5194is_package_name (const char *name)
4c4b4cd2 5195{
96d887e8
PH
5196 /* Here, We take advantage of the fact that no symbols are generated
5197 for packages, while symbols are generated for each function.
5198 So the condition for NAME represent a package becomes equivalent
5199 to NAME not existing in our list of symbols. There is only one
5200 small complication with library-level functions (see below). */
4c4b4cd2 5201
96d887e8
PH
5202 /* If it is a function that has not been defined at library level,
5203 then we should be able to look it up in the symbols. */
5204 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5205 return 0;
14f9c5c9 5206
96d887e8
PH
5207 /* Library-level function names start with "_ada_". See if function
5208 "_ada_" followed by NAME can be found. */
14f9c5c9 5209
96d887e8 5210 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5211 functions names cannot contain "__" in them. */
96d887e8
PH
5212 if (strstr (name, "__") != NULL)
5213 return 0;
4c4b4cd2 5214
528e1572 5215 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5216
528e1572 5217 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5218}
14f9c5c9 5219
96d887e8 5220/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5221 not visible from FUNCTION_NAME. */
14f9c5c9 5222
96d887e8 5223static int
0d5cff50 5224old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5225{
aeb5907d
JB
5226 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5227 return 0;
5228
49d83361 5229 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5230
96d887e8 5231 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5232 if (is_package_name (scope.c_str ()))
5233 return 0;
14f9c5c9 5234
96d887e8
PH
5235 /* Check that the rename is in the current function scope by checking
5236 that its name starts with SCOPE. */
76a01679 5237
96d887e8
PH
5238 /* If the function name starts with "_ada_", it means that it is
5239 a library-level function. Strip this prefix before doing the
5240 comparison, as the encoding for the renaming does not contain
5241 this prefix. */
61012eef 5242 if (startswith (function_name, "_ada_"))
96d887e8 5243 function_name += 5;
f26caa11 5244
49d83361 5245 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5246}
5247
aeb5907d
JB
5248/* Remove entries from SYMS that corresponds to a renaming entity that
5249 is not visible from the function associated with CURRENT_BLOCK or
5250 that is superfluous due to the presence of more specific renaming
5251 information. Places surviving symbols in the initial entries of
5252 SYMS and returns the number of surviving symbols.
96d887e8
PH
5253
5254 Rationale:
aeb5907d
JB
5255 First, in cases where an object renaming is implemented as a
5256 reference variable, GNAT may produce both the actual reference
5257 variable and the renaming encoding. In this case, we discard the
5258 latter.
5259
5260 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5261 entity. Unfortunately, STABS currently does not support the definition
5262 of types that are local to a given lexical block, so all renamings types
5263 are emitted at library level. As a consequence, if an application
5264 contains two renaming entities using the same name, and a user tries to
5265 print the value of one of these entities, the result of the ada symbol
5266 lookup will also contain the wrong renaming type.
f26caa11 5267
96d887e8
PH
5268 This function partially covers for this limitation by attempting to
5269 remove from the SYMS list renaming symbols that should be visible
5270 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5271 method with the current information available. The implementation
5272 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5273
5274 - When the user tries to print a rename in a function while there
5275 is another rename entity defined in a package: Normally, the
5276 rename in the function has precedence over the rename in the
5277 package, so the latter should be removed from the list. This is
5278 currently not the case.
5279
5280 - This function will incorrectly remove valid renames if
5281 the CURRENT_BLOCK corresponds to a function which symbol name
5282 has been changed by an "Export" pragma. As a consequence,
5283 the user will be unable to print such rename entities. */
4c4b4cd2 5284
14f9c5c9 5285static int
54d343a2
TT
5286remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5287 const struct block *current_block)
4c4b4cd2
PH
5288{
5289 struct symbol *current_function;
0d5cff50 5290 const char *current_function_name;
4c4b4cd2 5291 int i;
aeb5907d
JB
5292 int is_new_style_renaming;
5293
5294 /* If there is both a renaming foo___XR... encoded as a variable and
5295 a simple variable foo in the same block, discard the latter.
0963b4bd 5296 First, zero out such symbols, then compress. */
aeb5907d 5297 is_new_style_renaming = 0;
54d343a2 5298 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5299 {
54d343a2
TT
5300 struct symbol *sym = (*syms)[i].symbol;
5301 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5302 const char *name;
5303 const char *suffix;
5304
5305 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5306 continue;
5307 name = SYMBOL_LINKAGE_NAME (sym);
5308 suffix = strstr (name, "___XR");
5309
5310 if (suffix != NULL)
5311 {
5312 int name_len = suffix - name;
5313 int j;
5b4ee69b 5314
aeb5907d 5315 is_new_style_renaming = 1;
54d343a2
TT
5316 for (j = 0; j < syms->size (); j += 1)
5317 if (i != j && (*syms)[j].symbol != NULL
5318 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5319 name_len) == 0
54d343a2
TT
5320 && block == (*syms)[j].block)
5321 (*syms)[j].symbol = NULL;
aeb5907d
JB
5322 }
5323 }
5324 if (is_new_style_renaming)
5325 {
5326 int j, k;
5327
54d343a2
TT
5328 for (j = k = 0; j < syms->size (); j += 1)
5329 if ((*syms)[j].symbol != NULL)
aeb5907d 5330 {
54d343a2 5331 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5332 k += 1;
5333 }
5334 return k;
5335 }
4c4b4cd2
PH
5336
5337 /* Extract the function name associated to CURRENT_BLOCK.
5338 Abort if unable to do so. */
76a01679 5339
4c4b4cd2 5340 if (current_block == NULL)
54d343a2 5341 return syms->size ();
76a01679 5342
7f0df278 5343 current_function = block_linkage_function (current_block);
4c4b4cd2 5344 if (current_function == NULL)
54d343a2 5345 return syms->size ();
4c4b4cd2
PH
5346
5347 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5348 if (current_function_name == NULL)
54d343a2 5349 return syms->size ();
4c4b4cd2
PH
5350
5351 /* Check each of the symbols, and remove it from the list if it is
5352 a type corresponding to a renaming that is out of the scope of
5353 the current block. */
5354
5355 i = 0;
54d343a2 5356 while (i < syms->size ())
4c4b4cd2 5357 {
54d343a2 5358 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5359 == ADA_OBJECT_RENAMING
54d343a2
TT
5360 && old_renaming_is_invisible ((*syms)[i].symbol,
5361 current_function_name))
5362 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5363 else
5364 i += 1;
5365 }
5366
54d343a2 5367 return syms->size ();
4c4b4cd2
PH
5368}
5369
339c13b6
JB
5370/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5371 whose name and domain match NAME and DOMAIN respectively.
5372 If no match was found, then extend the search to "enclosing"
5373 routines (in other words, if we're inside a nested function,
5374 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5375 If WILD_MATCH_P is nonzero, perform the naming matching in
5376 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5377
5378 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5379
5380static void
b5ec771e
PA
5381ada_add_local_symbols (struct obstack *obstackp,
5382 const lookup_name_info &lookup_name,
5383 const struct block *block, domain_enum domain)
339c13b6
JB
5384{
5385 int block_depth = 0;
5386
5387 while (block != NULL)
5388 {
5389 block_depth += 1;
b5ec771e 5390 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5391
5392 /* If we found a non-function match, assume that's the one. */
5393 if (is_nonfunction (defns_collected (obstackp, 0),
5394 num_defns_collected (obstackp)))
5395 return;
5396
5397 block = BLOCK_SUPERBLOCK (block);
5398 }
5399
5400 /* If no luck so far, try to find NAME as a local symbol in some lexically
5401 enclosing subprogram. */
5402 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5403 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5404}
5405
ccefe4c4 5406/* An object of this type is used as the user_data argument when
40658b94 5407 calling the map_matching_symbols method. */
ccefe4c4 5408
40658b94 5409struct match_data
ccefe4c4 5410{
40658b94 5411 struct objfile *objfile;
ccefe4c4 5412 struct obstack *obstackp;
40658b94
PH
5413 struct symbol *arg_sym;
5414 int found_sym;
ccefe4c4
TT
5415};
5416
22cee43f 5417/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5418 to a list of symbols. DATA0 is a pointer to a struct match_data *
5419 containing the obstack that collects the symbol list, the file that SYM
5420 must come from, a flag indicating whether a non-argument symbol has
5421 been found in the current block, and the last argument symbol
5422 passed in SYM within the current block (if any). When SYM is null,
5423 marking the end of a block, the argument symbol is added if no
5424 other has been found. */
ccefe4c4 5425
40658b94 5426static int
582942f4
TT
5427aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5428 void *data0)
ccefe4c4 5429{
40658b94
PH
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456}
5457
b5ec771e
PA
5458/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5461
5462static int
5463ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
b5ec771e
PA
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
22cee43f
PMR
5467{
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
b5ec771e
PA
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
22cee43f
PMR
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
22cee43f
PMR
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
b5ec771e
PA
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
22cee43f
PMR
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513}
5514
db230ce3
JB
5515/* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5b4ee69b 5517
40658b94 5518static int
db230ce3
JB
5519compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
40658b94
PH
5521{
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
db230ce3
JB
5524 char c1, c2;
5525
40658b94
PH
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
40658b94 5540 break;
db230ce3 5541
40658b94
PH
5542 string1 += 1;
5543 string2 += 1;
5544 }
db230ce3 5545
40658b94
PH
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
052874e8 5553 if (is_name_suffix (string1))
40658b94
PH
5554 return 0;
5555 else
1a1d5513 5556 return 1;
40658b94 5557 }
dbb8534f 5558 /* FALLTHROUGH */
40658b94
PH
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
db230ce3
JB
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
40658b94 5569 }
ccefe4c4
TT
5570}
5571
db230ce3
JB
5572/* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583static int
5584compare_names (const char *string1, const char *string2)
5585{
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598}
5599
b5ec771e
PA
5600/* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603static const char *
5604ada_lookup_name (const lookup_name_info &lookup_name)
5605{
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607}
5608
339c13b6 5609/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
339c13b6
JB
5613
5614static void
b5ec771e
PA
5615add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
339c13b6 5618{
40658b94 5619 struct match_data data;
339c13b6 5620
6475f2fe 5621 memset (&data, 0, sizeof data);
ccefe4c4 5622 data.obstackp = obstackp;
339c13b6 5623
b5ec771e
PA
5624 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5625
2030c079 5626 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5627 {
5628 data.objfile = objfile;
5629
5630 if (is_wild_match)
b5ec771e
PA
5631 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5632 domain, global,
4186eb54 5633 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5634 symbol_name_match_type::WILD,
5635 NULL);
40658b94 5636 else
b5ec771e
PA
5637 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5638 domain, global,
4186eb54 5639 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5640 symbol_name_match_type::FULL,
5641 compare_names);
22cee43f 5642
b669c953 5643 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5644 {
5645 const struct block *global_block
5646 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5647
b5ec771e
PA
5648 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5649 domain))
22cee43f
PMR
5650 data.found_sym = 1;
5651 }
40658b94
PH
5652 }
5653
5654 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5655 {
b5ec771e
PA
5656 const char *name = ada_lookup_name (lookup_name);
5657 std::string name1 = std::string ("<_ada_") + name + '>';
5658
2030c079 5659 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5660 {
40658b94 5661 data.objfile = objfile;
b5ec771e
PA
5662 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5663 domain, global,
0963b4bd
MS
5664 aux_add_nonlocal_symbols,
5665 &data,
b5ec771e
PA
5666 symbol_name_match_type::FULL,
5667 compare_names);
40658b94
PH
5668 }
5669 }
339c13b6
JB
5670}
5671
b5ec771e
PA
5672/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5673 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5674 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5675
22cee43f
PMR
5676 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5677 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5678 is the one match returned (no other matches in that or
d9680e73 5679 enclosing blocks is returned). If there are any matches in or
22cee43f 5680 surrounding BLOCK, then these alone are returned.
4eeaa230 5681
b5ec771e
PA
5682 Names prefixed with "standard__" are handled specially:
5683 "standard__" is first stripped off (by the lookup_name
5684 constructor), and only static and global symbols are searched.
14f9c5c9 5685
22cee43f
PMR
5686 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5687 to lookup global symbols. */
5688
5689static void
5690ada_add_all_symbols (struct obstack *obstackp,
5691 const struct block *block,
b5ec771e 5692 const lookup_name_info &lookup_name,
22cee43f
PMR
5693 domain_enum domain,
5694 int full_search,
5695 int *made_global_lookup_p)
14f9c5c9
AS
5696{
5697 struct symbol *sym;
14f9c5c9 5698
22cee43f
PMR
5699 if (made_global_lookup_p)
5700 *made_global_lookup_p = 0;
339c13b6
JB
5701
5702 /* Special case: If the user specifies a symbol name inside package
5703 Standard, do a non-wild matching of the symbol name without
5704 the "standard__" prefix. This was primarily introduced in order
5705 to allow the user to specifically access the standard exceptions
5706 using, for instance, Standard.Constraint_Error when Constraint_Error
5707 is ambiguous (due to the user defining its own Constraint_Error
5708 entity inside its program). */
b5ec771e
PA
5709 if (lookup_name.ada ().standard_p ())
5710 block = NULL;
4c4b4cd2 5711
339c13b6 5712 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5713
4eeaa230
DE
5714 if (block != NULL)
5715 {
5716 if (full_search)
b5ec771e 5717 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5718 else
5719 {
5720 /* In the !full_search case we're are being called by
5721 ada_iterate_over_symbols, and we don't want to search
5722 superblocks. */
b5ec771e 5723 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5724 }
22cee43f
PMR
5725 if (num_defns_collected (obstackp) > 0 || !full_search)
5726 return;
4eeaa230 5727 }
d2e4a39e 5728
339c13b6
JB
5729 /* No non-global symbols found. Check our cache to see if we have
5730 already performed this search before. If we have, then return
5731 the same result. */
5732
b5ec771e
PA
5733 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5734 domain, &sym, &block))
4c4b4cd2
PH
5735 {
5736 if (sym != NULL)
b5ec771e 5737 add_defn_to_vec (obstackp, sym, block);
22cee43f 5738 return;
4c4b4cd2 5739 }
14f9c5c9 5740
22cee43f
PMR
5741 if (made_global_lookup_p)
5742 *made_global_lookup_p = 1;
b1eedac9 5743
339c13b6
JB
5744 /* Search symbols from all global blocks. */
5745
b5ec771e 5746 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5747
4c4b4cd2 5748 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5749 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5750
22cee43f 5751 if (num_defns_collected (obstackp) == 0)
b5ec771e 5752 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5753}
5754
b5ec771e
PA
5755/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5756 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5757 matches.
54d343a2
TT
5758 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5759 found and the blocks and symbol tables (if any) in which they were
5760 found.
22cee43f
PMR
5761
5762 When full_search is non-zero, any non-function/non-enumeral
5763 symbol match within the nest of blocks whose innermost member is BLOCK,
5764 is the one match returned (no other matches in that or
5765 enclosing blocks is returned). If there are any matches in or
5766 surrounding BLOCK, then these alone are returned.
5767
5768 Names prefixed with "standard__" are handled specially: "standard__"
5769 is first stripped off, and only static and global symbols are searched. */
5770
5771static int
b5ec771e
PA
5772ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5773 const struct block *block,
22cee43f 5774 domain_enum domain,
54d343a2 5775 std::vector<struct block_symbol> *results,
22cee43f
PMR
5776 int full_search)
5777{
22cee43f
PMR
5778 int syms_from_global_search;
5779 int ndefns;
ec6a20c2 5780 auto_obstack obstack;
22cee43f 5781
ec6a20c2 5782 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5783 domain, full_search, &syms_from_global_search);
14f9c5c9 5784
ec6a20c2
JB
5785 ndefns = num_defns_collected (&obstack);
5786
54d343a2
TT
5787 struct block_symbol *base = defns_collected (&obstack, 1);
5788 for (int i = 0; i < ndefns; ++i)
5789 results->push_back (base[i]);
4c4b4cd2 5790
54d343a2 5791 ndefns = remove_extra_symbols (results);
4c4b4cd2 5792
b1eedac9 5793 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5794 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5795
b1eedac9 5796 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5797 cache_symbol (ada_lookup_name (lookup_name), domain,
5798 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5799
54d343a2 5800 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5801
14f9c5c9
AS
5802 return ndefns;
5803}
5804
b5ec771e 5805/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5806 in global scopes, returning the number of matches, and filling *RESULTS
5807 with (SYM,BLOCK) tuples.
ec6a20c2 5808
4eeaa230
DE
5809 See ada_lookup_symbol_list_worker for further details. */
5810
5811int
b5ec771e 5812ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5813 domain_enum domain,
5814 std::vector<struct block_symbol> *results)
4eeaa230 5815{
b5ec771e
PA
5816 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5817 lookup_name_info lookup_name (name, name_match_type);
5818
5819 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5820}
5821
5822/* Implementation of the la_iterate_over_symbols method. */
5823
5824static void
14bc53a8 5825ada_iterate_over_symbols
b5ec771e
PA
5826 (const struct block *block, const lookup_name_info &name,
5827 domain_enum domain,
14bc53a8 5828 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5829{
5830 int ndefs, i;
54d343a2 5831 std::vector<struct block_symbol> results;
4eeaa230
DE
5832
5833 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5834
4eeaa230
DE
5835 for (i = 0; i < ndefs; ++i)
5836 {
7e41c8db 5837 if (!callback (&results[i]))
4eeaa230
DE
5838 break;
5839 }
5840}
5841
4e5c77fe
JB
5842/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5843 to 1, but choosing the first symbol found if there are multiple
5844 choices.
5845
5e2336be
JB
5846 The result is stored in *INFO, which must be non-NULL.
5847 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5848
5849void
5850ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5851 domain_enum domain,
d12307c1 5852 struct block_symbol *info)
14f9c5c9 5853{
b5ec771e
PA
5854 /* Since we already have an encoded name, wrap it in '<>' to force a
5855 verbatim match. Otherwise, if the name happens to not look like
5856 an encoded name (because it doesn't include a "__"),
5857 ada_lookup_name_info would re-encode/fold it again, and that
5858 would e.g., incorrectly lowercase object renaming names like
5859 "R28b" -> "r28b". */
5860 std::string verbatim = std::string ("<") + name + '>';
5861
5e2336be 5862 gdb_assert (info != NULL);
f98fc17b 5863 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5864}
aeb5907d
JB
5865
5866/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5867 scope and in global scopes, or NULL if none. NAME is folded and
5868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5869 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5870 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5871
d12307c1 5872struct block_symbol
aeb5907d 5873ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5874 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5875{
5876 if (is_a_field_of_this != NULL)
5877 *is_a_field_of_this = 0;
5878
54d343a2 5879 std::vector<struct block_symbol> candidates;
f98fc17b 5880 int n_candidates;
f98fc17b
PA
5881
5882 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5883
5884 if (n_candidates == 0)
54d343a2 5885 return {};
f98fc17b
PA
5886
5887 block_symbol info = candidates[0];
5888 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5889 return info;
4c4b4cd2 5890}
14f9c5c9 5891
d12307c1 5892static struct block_symbol
f606139a
DE
5893ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5894 const char *name,
76a01679 5895 const struct block *block,
21b556f4 5896 const domain_enum domain)
4c4b4cd2 5897{
d12307c1 5898 struct block_symbol sym;
04dccad0
JB
5899
5900 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5901 if (sym.symbol != NULL)
04dccad0
JB
5902 return sym;
5903
5904 /* If we haven't found a match at this point, try the primitive
5905 types. In other languages, this search is performed before
5906 searching for global symbols in order to short-circuit that
5907 global-symbol search if it happens that the name corresponds
5908 to a primitive type. But we cannot do the same in Ada, because
5909 it is perfectly legitimate for a program to declare a type which
5910 has the same name as a standard type. If looking up a type in
5911 that situation, we have traditionally ignored the primitive type
5912 in favor of user-defined types. This is why, unlike most other
5913 languages, we search the primitive types this late and only after
5914 having searched the global symbols without success. */
5915
5916 if (domain == VAR_DOMAIN)
5917 {
5918 struct gdbarch *gdbarch;
5919
5920 if (block == NULL)
5921 gdbarch = target_gdbarch ();
5922 else
5923 gdbarch = block_gdbarch (block);
d12307c1
PMR
5924 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5925 if (sym.symbol != NULL)
04dccad0
JB
5926 return sym;
5927 }
5928
6640a367 5929 return {};
14f9c5c9
AS
5930}
5931
5932
4c4b4cd2
PH
5933/* True iff STR is a possible encoded suffix of a normal Ada name
5934 that is to be ignored for matching purposes. Suffixes of parallel
5935 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5936 are given by any of the regular expressions:
4c4b4cd2 5937
babe1480
JB
5938 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5939 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5940 TKB [subprogram suffix for task bodies]
babe1480 5941 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5942 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5943
5944 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5945 match is performed. This sequence is used to differentiate homonyms,
5946 is an optional part of a valid name suffix. */
4c4b4cd2 5947
14f9c5c9 5948static int
d2e4a39e 5949is_name_suffix (const char *str)
14f9c5c9
AS
5950{
5951 int k;
4c4b4cd2
PH
5952 const char *matching;
5953 const int len = strlen (str);
5954
babe1480
JB
5955 /* Skip optional leading __[0-9]+. */
5956
4c4b4cd2
PH
5957 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5958 {
babe1480
JB
5959 str += 3;
5960 while (isdigit (str[0]))
5961 str += 1;
4c4b4cd2 5962 }
babe1480
JB
5963
5964 /* [.$][0-9]+ */
4c4b4cd2 5965
babe1480 5966 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5967 {
babe1480 5968 matching = str + 1;
4c4b4cd2
PH
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* ___[0-9]+ */
babe1480 5976
4c4b4cd2
PH
5977 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5978 {
5979 matching = str + 3;
5980 while (isdigit (matching[0]))
5981 matching += 1;
5982 if (matching[0] == '\0')
5983 return 1;
5984 }
5985
9ac7f98e
JB
5986 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5987
5988 if (strcmp (str, "TKB") == 0)
5989 return 1;
5990
529cad9c
PH
5991#if 0
5992 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5993 with a N at the end. Unfortunately, the compiler uses the same
5994 convention for other internal types it creates. So treating
529cad9c 5995 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5996 some regressions. For instance, consider the case of an enumerated
5997 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5998 name ends with N.
5999 Having a single character like this as a suffix carrying some
0963b4bd 6000 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6001 to be something like "_N" instead. In the meantime, do not do
6002 the following check. */
6003 /* Protected Object Subprograms */
6004 if (len == 1 && str [0] == 'N')
6005 return 1;
6006#endif
6007
6008 /* _E[0-9]+[bs]$ */
6009 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6010 {
6011 matching = str + 3;
6012 while (isdigit (matching[0]))
6013 matching += 1;
6014 if ((matching[0] == 'b' || matching[0] == 's')
6015 && matching [1] == '\0')
6016 return 1;
6017 }
6018
4c4b4cd2
PH
6019 /* ??? We should not modify STR directly, as we are doing below. This
6020 is fine in this case, but may become problematic later if we find
6021 that this alternative did not work, and want to try matching
6022 another one from the begining of STR. Since we modified it, we
6023 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6024 if (str[0] == 'X')
6025 {
6026 str += 1;
d2e4a39e 6027 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6028 {
6029 if (str[0] != 'n' && str[0] != 'b')
6030 return 0;
6031 str += 1;
6032 }
14f9c5c9 6033 }
babe1480 6034
14f9c5c9
AS
6035 if (str[0] == '\000')
6036 return 1;
babe1480 6037
d2e4a39e 6038 if (str[0] == '_')
14f9c5c9
AS
6039 {
6040 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6041 return 0;
d2e4a39e 6042 if (str[2] == '_')
4c4b4cd2 6043 {
61ee279c
PH
6044 if (strcmp (str + 3, "JM") == 0)
6045 return 1;
6046 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6047 the LJM suffix in favor of the JM one. But we will
6048 still accept LJM as a valid suffix for a reasonable
6049 amount of time, just to allow ourselves to debug programs
6050 compiled using an older version of GNAT. */
4c4b4cd2
PH
6051 if (strcmp (str + 3, "LJM") == 0)
6052 return 1;
6053 if (str[3] != 'X')
6054 return 0;
1265e4aa
JB
6055 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6056 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6057 return 1;
6058 if (str[4] == 'R' && str[5] != 'T')
6059 return 1;
6060 return 0;
6061 }
6062 if (!isdigit (str[2]))
6063 return 0;
6064 for (k = 3; str[k] != '\0'; k += 1)
6065 if (!isdigit (str[k]) && str[k] != '_')
6066 return 0;
14f9c5c9
AS
6067 return 1;
6068 }
4c4b4cd2 6069 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6070 {
4c4b4cd2
PH
6071 for (k = 2; str[k] != '\0'; k += 1)
6072 if (!isdigit (str[k]) && str[k] != '_')
6073 return 0;
14f9c5c9
AS
6074 return 1;
6075 }
6076 return 0;
6077}
d2e4a39e 6078
aeb5907d
JB
6079/* Return non-zero if the string starting at NAME and ending before
6080 NAME_END contains no capital letters. */
529cad9c
PH
6081
6082static int
6083is_valid_name_for_wild_match (const char *name0)
6084{
6085 const char *decoded_name = ada_decode (name0);
6086 int i;
6087
5823c3ef
JB
6088 /* If the decoded name starts with an angle bracket, it means that
6089 NAME0 does not follow the GNAT encoding format. It should then
6090 not be allowed as a possible wild match. */
6091 if (decoded_name[0] == '<')
6092 return 0;
6093
529cad9c
PH
6094 for (i=0; decoded_name[i] != '\0'; i++)
6095 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6096 return 0;
6097
6098 return 1;
6099}
6100
73589123
PH
6101/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6102 that could start a simple name. Assumes that *NAMEP points into
6103 the string beginning at NAME0. */
4c4b4cd2 6104
14f9c5c9 6105static int
73589123 6106advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6107{
73589123 6108 const char *name = *namep;
5b4ee69b 6109
5823c3ef 6110 while (1)
14f9c5c9 6111 {
aa27d0b3 6112 int t0, t1;
73589123
PH
6113
6114 t0 = *name;
6115 if (t0 == '_')
6116 {
6117 t1 = name[1];
6118 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6119 {
6120 name += 1;
61012eef 6121 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6122 break;
6123 else
6124 name += 1;
6125 }
aa27d0b3
JB
6126 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6127 || name[2] == target0))
73589123
PH
6128 {
6129 name += 2;
6130 break;
6131 }
6132 else
6133 return 0;
6134 }
6135 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6136 name += 1;
6137 else
5823c3ef 6138 return 0;
73589123
PH
6139 }
6140
6141 *namep = name;
6142 return 1;
6143}
6144
b5ec771e
PA
6145/* Return true iff NAME encodes a name of the form prefix.PATN.
6146 Ignores any informational suffixes of NAME (i.e., for which
6147 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6148 simple name. */
73589123 6149
b5ec771e 6150static bool
73589123
PH
6151wild_match (const char *name, const char *patn)
6152{
22e048c9 6153 const char *p;
73589123
PH
6154 const char *name0 = name;
6155
6156 while (1)
6157 {
6158 const char *match = name;
6159
6160 if (*name == *patn)
6161 {
6162 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6163 if (*p != *name)
6164 break;
6165 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6166 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6167
6168 if (name[-1] == '_')
6169 name -= 1;
6170 }
6171 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6172 return false;
96d887e8 6173 }
96d887e8
PH
6174}
6175
b5ec771e
PA
6176/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6177 any trailing suffixes that encode debugging information or leading
6178 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6179 information that is ignored). */
40658b94 6180
b5ec771e 6181static bool
c4d840bd
PH
6182full_match (const char *sym_name, const char *search_name)
6183{
b5ec771e
PA
6184 size_t search_name_len = strlen (search_name);
6185
6186 if (strncmp (sym_name, search_name, search_name_len) == 0
6187 && is_name_suffix (sym_name + search_name_len))
6188 return true;
6189
6190 if (startswith (sym_name, "_ada_")
6191 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6192 && is_name_suffix (sym_name + search_name_len + 5))
6193 return true;
c4d840bd 6194
b5ec771e
PA
6195 return false;
6196}
c4d840bd 6197
b5ec771e
PA
6198/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6199 *defn_symbols, updating the list of symbols in OBSTACKP (if
6200 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6201
6202static void
6203ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6204 const struct block *block,
6205 const lookup_name_info &lookup_name,
6206 domain_enum domain, struct objfile *objfile)
96d887e8 6207{
8157b174 6208 struct block_iterator iter;
96d887e8
PH
6209 /* A matching argument symbol, if any. */
6210 struct symbol *arg_sym;
6211 /* Set true when we find a matching non-argument symbol. */
6212 int found_sym;
6213 struct symbol *sym;
6214
6215 arg_sym = NULL;
6216 found_sym = 0;
b5ec771e
PA
6217 for (sym = block_iter_match_first (block, lookup_name, &iter);
6218 sym != NULL;
6219 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6220 {
b5ec771e
PA
6221 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6222 SYMBOL_DOMAIN (sym), domain))
6223 {
6224 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6225 {
6226 if (SYMBOL_IS_ARGUMENT (sym))
6227 arg_sym = sym;
6228 else
6229 {
6230 found_sym = 1;
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (sym, objfile),
6233 block);
6234 }
6235 }
6236 }
96d887e8
PH
6237 }
6238
22cee43f
PMR
6239 /* Handle renamings. */
6240
b5ec771e 6241 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6242 found_sym = 1;
6243
96d887e8
PH
6244 if (!found_sym && arg_sym != NULL)
6245 {
76a01679
JB
6246 add_defn_to_vec (obstackp,
6247 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6248 block);
96d887e8
PH
6249 }
6250
b5ec771e 6251 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6252 {
6253 arg_sym = NULL;
6254 found_sym = 0;
b5ec771e
PA
6255 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6256 const char *name = ada_lookup_name.c_str ();
6257 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6258
6259 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6260 {
4186eb54
KS
6261 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6262 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6263 {
6264 int cmp;
6265
6266 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6267 if (cmp == 0)
6268 {
61012eef 6269 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6270 if (cmp == 0)
6271 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6272 name_len);
6273 }
6274
6275 if (cmp == 0
6276 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6277 {
2a2d4dc3
AS
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
76a01679
JB
6290 }
6291 }
76a01679 6292 }
96d887e8
PH
6293
6294 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6295 They aren't parameters, right? */
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
76a01679 6299 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6300 block);
96d887e8
PH
6301 }
6302 }
6303}
6304\f
41d27058
JB
6305
6306 /* Symbol Completion */
6307
b5ec771e 6308/* See symtab.h. */
41d27058 6309
b5ec771e
PA
6310bool
6311ada_lookup_name_info::matches
6312 (const char *sym_name,
6313 symbol_name_match_type match_type,
a207cff2 6314 completion_match_result *comp_match_res) const
41d27058 6315{
b5ec771e
PA
6316 bool match = false;
6317 const char *text = m_encoded_name.c_str ();
6318 size_t text_len = m_encoded_name.size ();
41d27058
JB
6319
6320 /* First, test against the fully qualified name of the symbol. */
6321
6322 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6323 match = true;
41d27058 6324
b5ec771e 6325 if (match && !m_encoded_p)
41d27058
JB
6326 {
6327 /* One needed check before declaring a positive match is to verify
6328 that iff we are doing a verbatim match, the decoded version
6329 of the symbol name starts with '<'. Otherwise, this symbol name
6330 is not a suitable completion. */
6331 const char *sym_name_copy = sym_name;
b5ec771e 6332 bool has_angle_bracket;
41d27058
JB
6333
6334 sym_name = ada_decode (sym_name);
6335 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6336 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6337 sym_name = sym_name_copy;
6338 }
6339
b5ec771e 6340 if (match && !m_verbatim_p)
41d27058
JB
6341 {
6342 /* When doing non-verbatim match, another check that needs to
6343 be done is to verify that the potentially matching symbol name
6344 does not include capital letters, because the ada-mode would
6345 not be able to understand these symbol names without the
6346 angle bracket notation. */
6347 const char *tmp;
6348
6349 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6350 if (*tmp != '\0')
b5ec771e 6351 match = false;
41d27058
JB
6352 }
6353
6354 /* Second: Try wild matching... */
6355
b5ec771e 6356 if (!match && m_wild_match_p)
41d27058
JB
6357 {
6358 /* Since we are doing wild matching, this means that TEXT
6359 may represent an unqualified symbol name. We therefore must
6360 also compare TEXT against the unqualified name of the symbol. */
6361 sym_name = ada_unqualified_name (ada_decode (sym_name));
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6364 match = true;
41d27058
JB
6365 }
6366
b5ec771e 6367 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6368
6369 if (!match)
b5ec771e 6370 return false;
41d27058 6371
a207cff2 6372 if (comp_match_res != NULL)
b5ec771e 6373 {
a207cff2 6374 std::string &match_str = comp_match_res->match.storage ();
41d27058 6375
b5ec771e 6376 if (!m_encoded_p)
a207cff2 6377 match_str = ada_decode (sym_name);
b5ec771e
PA
6378 else
6379 {
6380 if (m_verbatim_p)
6381 match_str = add_angle_brackets (sym_name);
6382 else
6383 match_str = sym_name;
41d27058 6384
b5ec771e 6385 }
a207cff2
PA
6386
6387 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6388 }
6389
b5ec771e 6390 return true;
41d27058
JB
6391}
6392
b5ec771e 6393/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6394 WORD is the entire command on which completion is made. */
41d27058 6395
eb3ff9a5
PA
6396static void
6397ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6398 complete_symbol_mode mode,
b5ec771e
PA
6399 symbol_name_match_type name_match_type,
6400 const char *text, const char *word,
eb3ff9a5 6401 enum type_code code)
41d27058 6402{
41d27058 6403 struct symbol *sym;
3977b71f 6404 const struct block *b, *surrounding_static_block = 0;
8157b174 6405 struct block_iterator iter;
41d27058 6406
2f68a895
TT
6407 gdb_assert (code == TYPE_CODE_UNDEF);
6408
1b026119 6409 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6410
6411 /* First, look at the partial symtab symbols. */
14bc53a8 6412 expand_symtabs_matching (NULL,
b5ec771e
PA
6413 lookup_name,
6414 NULL,
14bc53a8
PA
6415 NULL,
6416 ALL_DOMAIN);
41d27058
JB
6417
6418 /* At this point scan through the misc symbol vectors and add each
6419 symbol you find to the list. Eventually we want to ignore
6420 anything that isn't a text symbol (everything else will be
6421 handled by the psymtab code above). */
6422
2030c079 6423 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6424 {
7932255d 6425 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6426 {
6427 QUIT;
6428
6429 if (completion_skip_symbol (mode, msymbol))
6430 continue;
6431
6432 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6433
6434 /* Ada minimal symbols won't have their language set to Ada. If
6435 we let completion_list_add_name compare using the
6436 default/C-like matcher, then when completing e.g., symbols in a
6437 package named "pck", we'd match internal Ada symbols like
6438 "pckS", which are invalid in an Ada expression, unless you wrap
6439 them in '<' '>' to request a verbatim match.
6440
6441 Unfortunately, some Ada encoded names successfully demangle as
6442 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6443 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6444 with the wrong language set. Paper over that issue here. */
6445 if (symbol_language == language_auto
6446 || symbol_language == language_cplus)
6447 symbol_language = language_ada;
6448
6449 completion_list_add_name (tracker,
6450 symbol_language,
6451 MSYMBOL_LINKAGE_NAME (msymbol),
6452 lookup_name, text, word);
6453 }
6454 }
41d27058
JB
6455
6456 /* Search upwards from currently selected frame (so that we can
6457 complete on local vars. */
6458
6459 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6460 {
6461 if (!BLOCK_SUPERBLOCK (b))
6462 surrounding_static_block = b; /* For elmin of dups */
6463
6464 ALL_BLOCK_SYMBOLS (b, iter, sym)
6465 {
f9d67a22
PA
6466 if (completion_skip_symbol (mode, sym))
6467 continue;
6468
b5ec771e
PA
6469 completion_list_add_name (tracker,
6470 SYMBOL_LANGUAGE (sym),
6471 SYMBOL_LINKAGE_NAME (sym),
1b026119 6472 lookup_name, text, word);
41d27058
JB
6473 }
6474 }
6475
6476 /* Go through the symtabs and check the externs and statics for
43f3e411 6477 symbols which match. */
41d27058 6478
2030c079 6479 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6480 {
b669c953 6481 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
f9d67a22 6489
d8aeb77f
TT
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
41d27058 6496 }
41d27058 6497
2030c079 6498 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6499 {
b669c953 6500 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6501 {
6502 QUIT;
6503 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6504 /* Don't do this block twice. */
6505 if (b == surrounding_static_block)
6506 continue;
6507 ALL_BLOCK_SYMBOLS (b, iter, sym)
6508 {
6509 if (completion_skip_symbol (mode, sym))
6510 continue;
f9d67a22 6511
d8aeb77f
TT
6512 completion_list_add_name (tracker,
6513 SYMBOL_LANGUAGE (sym),
6514 SYMBOL_LINKAGE_NAME (sym),
6515 lookup_name, text, word);
6516 }
6517 }
41d27058 6518 }
41d27058
JB
6519}
6520
963a6417 6521 /* Field Access */
96d887e8 6522
73fb9985
JB
6523/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6524 for tagged types. */
6525
6526static int
6527ada_is_dispatch_table_ptr_type (struct type *type)
6528{
0d5cff50 6529 const char *name;
73fb9985
JB
6530
6531 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6532 return 0;
6533
6534 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6535 if (name == NULL)
6536 return 0;
6537
6538 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6539}
6540
ac4a2da4
JG
6541/* Return non-zero if TYPE is an interface tag. */
6542
6543static int
6544ada_is_interface_tag (struct type *type)
6545{
6546 const char *name = TYPE_NAME (type);
6547
6548 if (name == NULL)
6549 return 0;
6550
6551 return (strcmp (name, "ada__tags__interface_tag") == 0);
6552}
6553
963a6417
PH
6554/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6555 to be invisible to users. */
96d887e8 6556
963a6417
PH
6557int
6558ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6559{
963a6417
PH
6560 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6561 return 1;
ffde82bf 6562
73fb9985
JB
6563 /* Check the name of that field. */
6564 {
6565 const char *name = TYPE_FIELD_NAME (type, field_num);
6566
6567 /* Anonymous field names should not be printed.
6568 brobecker/2007-02-20: I don't think this can actually happen
6569 but we don't want to print the value of annonymous fields anyway. */
6570 if (name == NULL)
6571 return 1;
6572
ffde82bf
JB
6573 /* Normally, fields whose name start with an underscore ("_")
6574 are fields that have been internally generated by the compiler,
6575 and thus should not be printed. The "_parent" field is special,
6576 however: This is a field internally generated by the compiler
6577 for tagged types, and it contains the components inherited from
6578 the parent type. This field should not be printed as is, but
6579 should not be ignored either. */
61012eef 6580 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6581 return 1;
6582 }
6583
ac4a2da4
JG
6584 /* If this is the dispatch table of a tagged type or an interface tag,
6585 then ignore. */
73fb9985 6586 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6587 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6588 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6589 return 1;
6590
6591 /* Not a special field, so it should not be ignored. */
6592 return 0;
963a6417 6593}
96d887e8 6594
963a6417 6595/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6596 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6597
963a6417
PH
6598int
6599ada_is_tagged_type (struct type *type, int refok)
6600{
988f6b3d 6601 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6602}
96d887e8 6603
963a6417 6604/* True iff TYPE represents the type of X'Tag */
96d887e8 6605
963a6417
PH
6606int
6607ada_is_tag_type (struct type *type)
6608{
460efde1
JB
6609 type = ada_check_typedef (type);
6610
963a6417
PH
6611 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6612 return 0;
6613 else
96d887e8 6614 {
963a6417 6615 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6616
963a6417
PH
6617 return (name != NULL
6618 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6619 }
96d887e8
PH
6620}
6621
963a6417 6622/* The type of the tag on VAL. */
76a01679 6623
963a6417
PH
6624struct type *
6625ada_tag_type (struct value *val)
96d887e8 6626{
988f6b3d 6627 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6628}
96d887e8 6629
b50d69b5
JG
6630/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6631 retired at Ada 05). */
6632
6633static int
6634is_ada95_tag (struct value *tag)
6635{
6636 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6637}
6638
963a6417 6639/* The value of the tag on VAL. */
96d887e8 6640
963a6417
PH
6641struct value *
6642ada_value_tag (struct value *val)
6643{
03ee6b2e 6644 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6645}
6646
963a6417
PH
6647/* The value of the tag on the object of type TYPE whose contents are
6648 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6649 ADDRESS. */
96d887e8 6650
963a6417 6651static struct value *
10a2c479 6652value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6653 const gdb_byte *valaddr,
963a6417 6654 CORE_ADDR address)
96d887e8 6655{
b5385fc0 6656 int tag_byte_offset;
963a6417 6657 struct type *tag_type;
5b4ee69b 6658
963a6417 6659 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6660 NULL, NULL, NULL))
96d887e8 6661 {
fc1a4b47 6662 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6663 ? NULL
6664 : valaddr + tag_byte_offset);
963a6417 6665 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6666
963a6417 6667 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6668 }
963a6417
PH
6669 return NULL;
6670}
96d887e8 6671
963a6417
PH
6672static struct type *
6673type_from_tag (struct value *tag)
6674{
6675 const char *type_name = ada_tag_name (tag);
5b4ee69b 6676
963a6417
PH
6677 if (type_name != NULL)
6678 return ada_find_any_type (ada_encode (type_name));
6679 return NULL;
6680}
96d887e8 6681
b50d69b5
JG
6682/* Given a value OBJ of a tagged type, return a value of this
6683 type at the base address of the object. The base address, as
6684 defined in Ada.Tags, it is the address of the primary tag of
6685 the object, and therefore where the field values of its full
6686 view can be fetched. */
6687
6688struct value *
6689ada_tag_value_at_base_address (struct value *obj)
6690{
b50d69b5
JG
6691 struct value *val;
6692 LONGEST offset_to_top = 0;
6693 struct type *ptr_type, *obj_type;
6694 struct value *tag;
6695 CORE_ADDR base_address;
6696
6697 obj_type = value_type (obj);
6698
6699 /* It is the responsability of the caller to deref pointers. */
6700
6701 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6702 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6703 return obj;
6704
6705 tag = ada_value_tag (obj);
6706 if (!tag)
6707 return obj;
6708
6709 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6710
6711 if (is_ada95_tag (tag))
6712 return obj;
6713
08f49010
XR
6714 ptr_type = language_lookup_primitive_type
6715 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6716 ptr_type = lookup_pointer_type (ptr_type);
6717 val = value_cast (ptr_type, tag);
6718 if (!val)
6719 return obj;
6720
6721 /* It is perfectly possible that an exception be raised while
6722 trying to determine the base address, just like for the tag;
6723 see ada_tag_name for more details. We do not print the error
6724 message for the same reason. */
6725
a70b8144 6726 try
b50d69b5
JG
6727 {
6728 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6729 }
6730
230d2906 6731 catch (const gdb_exception_error &e)
492d29ea
PA
6732 {
6733 return obj;
6734 }
b50d69b5
JG
6735
6736 /* If offset is null, nothing to do. */
6737
6738 if (offset_to_top == 0)
6739 return obj;
6740
6741 /* -1 is a special case in Ada.Tags; however, what should be done
6742 is not quite clear from the documentation. So do nothing for
6743 now. */
6744
6745 if (offset_to_top == -1)
6746 return obj;
6747
08f49010
XR
6748 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6749 from the base address. This was however incompatible with
6750 C++ dispatch table: C++ uses a *negative* value to *add*
6751 to the base address. Ada's convention has therefore been
6752 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6753 use the same convention. Here, we support both cases by
6754 checking the sign of OFFSET_TO_TOP. */
6755
6756 if (offset_to_top > 0)
6757 offset_to_top = -offset_to_top;
6758
6759 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6760 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6761
6762 /* Make sure that we have a proper tag at the new address.
6763 Otherwise, offset_to_top is bogus (which can happen when
6764 the object is not initialized yet). */
6765
6766 if (!tag)
6767 return obj;
6768
6769 obj_type = type_from_tag (tag);
6770
6771 if (!obj_type)
6772 return obj;
6773
6774 return value_from_contents_and_address (obj_type, NULL, base_address);
6775}
6776
1b611343
JB
6777/* Return the "ada__tags__type_specific_data" type. */
6778
6779static struct type *
6780ada_get_tsd_type (struct inferior *inf)
963a6417 6781{
1b611343 6782 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6783
1b611343
JB
6784 if (data->tsd_type == 0)
6785 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6786 return data->tsd_type;
6787}
529cad9c 6788
1b611343
JB
6789/* Return the TSD (type-specific data) associated to the given TAG.
6790 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6791
1b611343 6792 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6793
1b611343
JB
6794static struct value *
6795ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6796{
4c4b4cd2 6797 struct value *val;
1b611343 6798 struct type *type;
5b4ee69b 6799
1b611343
JB
6800 /* First option: The TSD is simply stored as a field of our TAG.
6801 Only older versions of GNAT would use this format, but we have
6802 to test it first, because there are no visible markers for
6803 the current approach except the absence of that field. */
529cad9c 6804
1b611343
JB
6805 val = ada_value_struct_elt (tag, "tsd", 1);
6806 if (val)
6807 return val;
e802dbe0 6808
1b611343
JB
6809 /* Try the second representation for the dispatch table (in which
6810 there is no explicit 'tsd' field in the referent of the tag pointer,
6811 and instead the tsd pointer is stored just before the dispatch
6812 table. */
e802dbe0 6813
1b611343
JB
6814 type = ada_get_tsd_type (current_inferior());
6815 if (type == NULL)
6816 return NULL;
6817 type = lookup_pointer_type (lookup_pointer_type (type));
6818 val = value_cast (type, tag);
6819 if (val == NULL)
6820 return NULL;
6821 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6822}
6823
1b611343
JB
6824/* Given the TSD of a tag (type-specific data), return a string
6825 containing the name of the associated type.
6826
6827 The returned value is good until the next call. May return NULL
6828 if we are unable to determine the tag name. */
6829
6830static char *
6831ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6832{
529cad9c
PH
6833 static char name[1024];
6834 char *p;
1b611343 6835 struct value *val;
529cad9c 6836
1b611343 6837 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6838 if (val == NULL)
1b611343 6839 return NULL;
4c4b4cd2
PH
6840 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6841 for (p = name; *p != '\0'; p += 1)
6842 if (isalpha (*p))
6843 *p = tolower (*p);
1b611343 6844 return name;
4c4b4cd2
PH
6845}
6846
6847/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6848 a C string.
6849
6850 Return NULL if the TAG is not an Ada tag, or if we were unable to
6851 determine the name of that tag. The result is good until the next
6852 call. */
4c4b4cd2
PH
6853
6854const char *
6855ada_tag_name (struct value *tag)
6856{
1b611343 6857 char *name = NULL;
5b4ee69b 6858
df407dfe 6859 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6860 return NULL;
1b611343
JB
6861
6862 /* It is perfectly possible that an exception be raised while trying
6863 to determine the TAG's name, even under normal circumstances:
6864 The associated variable may be uninitialized or corrupted, for
6865 instance. We do not let any exception propagate past this point.
6866 instead we return NULL.
6867
6868 We also do not print the error message either (which often is very
6869 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6870 the caller print a more meaningful message if necessary. */
a70b8144 6871 try
1b611343
JB
6872 {
6873 struct value *tsd = ada_get_tsd_from_tag (tag);
6874
6875 if (tsd != NULL)
6876 name = ada_tag_name_from_tsd (tsd);
6877 }
230d2906 6878 catch (const gdb_exception_error &e)
492d29ea
PA
6879 {
6880 }
1b611343
JB
6881
6882 return name;
4c4b4cd2
PH
6883}
6884
6885/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6886
d2e4a39e 6887struct type *
ebf56fd3 6888ada_parent_type (struct type *type)
14f9c5c9
AS
6889{
6890 int i;
6891
61ee279c 6892 type = ada_check_typedef (type);
14f9c5c9
AS
6893
6894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6895 return NULL;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6899 {
6900 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6901
6902 /* If the _parent field is a pointer, then dereference it. */
6903 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6904 parent_type = TYPE_TARGET_TYPE (parent_type);
6905 /* If there is a parallel XVS type, get the actual base type. */
6906 parent_type = ada_get_base_type (parent_type);
6907
6908 return ada_check_typedef (parent_type);
6909 }
14f9c5c9
AS
6910
6911 return NULL;
6912}
6913
4c4b4cd2
PH
6914/* True iff field number FIELD_NUM of structure type TYPE contains the
6915 parent-type (inherited) fields of a derived type. Assumes TYPE is
6916 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6917
6918int
ebf56fd3 6919ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6920{
61ee279c 6921 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6922
4c4b4cd2 6923 return (name != NULL
61012eef
GB
6924 && (startswith (name, "PARENT")
6925 || startswith (name, "_parent")));
14f9c5c9
AS
6926}
6927
4c4b4cd2 6928/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6929 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6930 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6931 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6932 structures. */
14f9c5c9
AS
6933
6934int
ebf56fd3 6935ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6936{
d2e4a39e 6937 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6938
dddc0e16
JB
6939 if (name != NULL && strcmp (name, "RETVAL") == 0)
6940 {
6941 /* This happens in functions with "out" or "in out" parameters
6942 which are passed by copy. For such functions, GNAT describes
6943 the function's return type as being a struct where the return
6944 value is in a field called RETVAL, and where the other "out"
6945 or "in out" parameters are fields of that struct. This is not
6946 a wrapper. */
6947 return 0;
6948 }
6949
d2e4a39e 6950 return (name != NULL
61012eef 6951 && (startswith (name, "PARENT")
4c4b4cd2 6952 || strcmp (name, "REP") == 0
61012eef 6953 || startswith (name, "_parent")
4c4b4cd2 6954 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6955}
6956
4c4b4cd2
PH
6957/* True iff field number FIELD_NUM of structure or union type TYPE
6958 is a variant wrapper. Assumes TYPE is a structure type with at least
6959 FIELD_NUM+1 fields. */
14f9c5c9
AS
6960
6961int
ebf56fd3 6962ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6963{
8ecb59f8
TT
6964 /* Only Ada types are eligible. */
6965 if (!ADA_TYPE_P (type))
6966 return 0;
6967
d2e4a39e 6968 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6969
14f9c5c9 6970 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6971 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6972 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6973 == TYPE_CODE_UNION)));
14f9c5c9
AS
6974}
6975
6976/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6977 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6978 returns the type of the controlling discriminant for the variant.
6979 May return NULL if the type could not be found. */
14f9c5c9 6980
d2e4a39e 6981struct type *
ebf56fd3 6982ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6983{
a121b7c1 6984 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6985
988f6b3d 6986 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6987}
6988
4c4b4cd2 6989/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6990 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6991 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6992
6993int
ebf56fd3 6994ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6995{
d2e4a39e 6996 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6997
14f9c5c9
AS
6998 return (name != NULL && name[0] == 'O');
6999}
7000
7001/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7002 returns the name of the discriminant controlling the variant.
7003 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7004
a121b7c1 7005const char *
ebf56fd3 7006ada_variant_discrim_name (struct type *type0)
14f9c5c9 7007{
d2e4a39e 7008 static char *result = NULL;
14f9c5c9 7009 static size_t result_len = 0;
d2e4a39e
AS
7010 struct type *type;
7011 const char *name;
7012 const char *discrim_end;
7013 const char *discrim_start;
14f9c5c9
AS
7014
7015 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7016 type = TYPE_TARGET_TYPE (type0);
7017 else
7018 type = type0;
7019
7020 name = ada_type_name (type);
7021
7022 if (name == NULL || name[0] == '\000')
7023 return "";
7024
7025 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7026 discrim_end -= 1)
7027 {
61012eef 7028 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7029 break;
14f9c5c9
AS
7030 }
7031 if (discrim_end == name)
7032 return "";
7033
d2e4a39e 7034 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7035 discrim_start -= 1)
7036 {
d2e4a39e 7037 if (discrim_start == name + 1)
4c4b4cd2 7038 return "";
76a01679 7039 if ((discrim_start > name + 3
61012eef 7040 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7041 || discrim_start[-1] == '.')
7042 break;
14f9c5c9
AS
7043 }
7044
7045 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7046 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7047 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7048 return result;
7049}
7050
4c4b4cd2
PH
7051/* Scan STR for a subtype-encoded number, beginning at position K.
7052 Put the position of the character just past the number scanned in
7053 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7054 Return 1 if there was a valid number at the given position, and 0
7055 otherwise. A "subtype-encoded" number consists of the absolute value
7056 in decimal, followed by the letter 'm' to indicate a negative number.
7057 Assumes 0m does not occur. */
14f9c5c9
AS
7058
7059int
d2e4a39e 7060ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7061{
7062 ULONGEST RU;
7063
d2e4a39e 7064 if (!isdigit (str[k]))
14f9c5c9
AS
7065 return 0;
7066
4c4b4cd2 7067 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7068 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7069 LONGEST. */
14f9c5c9
AS
7070 RU = 0;
7071 while (isdigit (str[k]))
7072 {
d2e4a39e 7073 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7074 k += 1;
7075 }
7076
d2e4a39e 7077 if (str[k] == 'm')
14f9c5c9
AS
7078 {
7079 if (R != NULL)
4c4b4cd2 7080 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7081 k += 1;
7082 }
7083 else if (R != NULL)
7084 *R = (LONGEST) RU;
7085
4c4b4cd2 7086 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7087 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7088 number representable as a LONGEST (although either would probably work
7089 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7090 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7091
7092 if (new_k != NULL)
7093 *new_k = k;
7094 return 1;
7095}
7096
4c4b4cd2
PH
7097/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7098 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7099 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7100
d2e4a39e 7101int
ebf56fd3 7102ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7103{
d2e4a39e 7104 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7105 int p;
7106
7107 p = 0;
7108 while (1)
7109 {
d2e4a39e 7110 switch (name[p])
4c4b4cd2
PH
7111 {
7112 case '\0':
7113 return 0;
7114 case 'S':
7115 {
7116 LONGEST W;
5b4ee69b 7117
4c4b4cd2
PH
7118 if (!ada_scan_number (name, p + 1, &W, &p))
7119 return 0;
7120 if (val == W)
7121 return 1;
7122 break;
7123 }
7124 case 'R':
7125 {
7126 LONGEST L, U;
5b4ee69b 7127
4c4b4cd2
PH
7128 if (!ada_scan_number (name, p + 1, &L, &p)
7129 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7130 return 0;
7131 if (val >= L && val <= U)
7132 return 1;
7133 break;
7134 }
7135 case 'O':
7136 return 1;
7137 default:
7138 return 0;
7139 }
7140 }
7141}
7142
0963b4bd 7143/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7144
7145/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7146 ARG_TYPE, extract and return the value of one of its (non-static)
7147 fields. FIELDNO says which field. Differs from value_primitive_field
7148 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7149
4c4b4cd2 7150static struct value *
d2e4a39e 7151ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7152 struct type *arg_type)
14f9c5c9 7153{
14f9c5c9
AS
7154 struct type *type;
7155
61ee279c 7156 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7157 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7158
4c4b4cd2 7159 /* Handle packed fields. */
14f9c5c9
AS
7160
7161 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7162 {
7163 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7164 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7165
0fd88904 7166 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7167 offset + bit_pos / 8,
7168 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7169 }
7170 else
7171 return value_primitive_field (arg1, offset, fieldno, arg_type);
7172}
7173
52ce6436
PH
7174/* Find field with name NAME in object of type TYPE. If found,
7175 set the following for each argument that is non-null:
7176 - *FIELD_TYPE_P to the field's type;
7177 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7178 an object of that type;
7179 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7180 - *BIT_SIZE_P to its size in bits if the field is packed, and
7181 0 otherwise;
7182 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7183 fields up to but not including the desired field, or by the total
7184 number of fields if not found. A NULL value of NAME never
7185 matches; the function just counts visible fields in this case.
7186
828d5846
XR
7187 Notice that we need to handle when a tagged record hierarchy
7188 has some components with the same name, like in this scenario:
7189
7190 type Top_T is tagged record
7191 N : Integer := 1;
7192 U : Integer := 974;
7193 A : Integer := 48;
7194 end record;
7195
7196 type Middle_T is new Top.Top_T with record
7197 N : Character := 'a';
7198 C : Integer := 3;
7199 end record;
7200
7201 type Bottom_T is new Middle.Middle_T with record
7202 N : Float := 4.0;
7203 C : Character := '5';
7204 X : Integer := 6;
7205 A : Character := 'J';
7206 end record;
7207
7208 Let's say we now have a variable declared and initialized as follow:
7209
7210 TC : Top_A := new Bottom_T;
7211
7212 And then we use this variable to call this function
7213
7214 procedure Assign (Obj: in out Top_T; TV : Integer);
7215
7216 as follow:
7217
7218 Assign (Top_T (B), 12);
7219
7220 Now, we're in the debugger, and we're inside that procedure
7221 then and we want to print the value of obj.c:
7222
7223 Usually, the tagged record or one of the parent type owns the
7224 component to print and there's no issue but in this particular
7225 case, what does it mean to ask for Obj.C? Since the actual
7226 type for object is type Bottom_T, it could mean two things: type
7227 component C from the Middle_T view, but also component C from
7228 Bottom_T. So in that "undefined" case, when the component is
7229 not found in the non-resolved type (which includes all the
7230 components of the parent type), then resolve it and see if we
7231 get better luck once expanded.
7232
7233 In the case of homonyms in the derived tagged type, we don't
7234 guaranty anything, and pick the one that's easiest for us
7235 to program.
7236
0963b4bd 7237 Returns 1 if found, 0 otherwise. */
52ce6436 7238
4c4b4cd2 7239static int
0d5cff50 7240find_struct_field (const char *name, struct type *type, int offset,
76a01679 7241 struct type **field_type_p,
52ce6436
PH
7242 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7243 int *index_p)
4c4b4cd2
PH
7244{
7245 int i;
828d5846 7246 int parent_offset = -1;
4c4b4cd2 7247
61ee279c 7248 type = ada_check_typedef (type);
76a01679 7249
52ce6436
PH
7250 if (field_type_p != NULL)
7251 *field_type_p = NULL;
7252 if (byte_offset_p != NULL)
d5d6fca5 7253 *byte_offset_p = 0;
52ce6436
PH
7254 if (bit_offset_p != NULL)
7255 *bit_offset_p = 0;
7256 if (bit_size_p != NULL)
7257 *bit_size_p = 0;
7258
7259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7260 {
7261 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7262 int fld_offset = offset + bit_pos / 8;
0d5cff50 7263 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7264
4c4b4cd2
PH
7265 if (t_field_name == NULL)
7266 continue;
7267
828d5846
XR
7268 else if (ada_is_parent_field (type, i))
7269 {
7270 /* This is a field pointing us to the parent type of a tagged
7271 type. As hinted in this function's documentation, we give
7272 preference to fields in the current record first, so what
7273 we do here is just record the index of this field before
7274 we skip it. If it turns out we couldn't find our field
7275 in the current record, then we'll get back to it and search
7276 inside it whether the field might exist in the parent. */
7277
7278 parent_offset = i;
7279 continue;
7280 }
7281
52ce6436 7282 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7283 {
7284 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7285
52ce6436
PH
7286 if (field_type_p != NULL)
7287 *field_type_p = TYPE_FIELD_TYPE (type, i);
7288 if (byte_offset_p != NULL)
7289 *byte_offset_p = fld_offset;
7290 if (bit_offset_p != NULL)
7291 *bit_offset_p = bit_pos % 8;
7292 if (bit_size_p != NULL)
7293 *bit_size_p = bit_size;
76a01679
JB
7294 return 1;
7295 }
4c4b4cd2
PH
7296 else if (ada_is_wrapper_field (type, i))
7297 {
52ce6436
PH
7298 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7299 field_type_p, byte_offset_p, bit_offset_p,
7300 bit_size_p, index_p))
76a01679
JB
7301 return 1;
7302 }
4c4b4cd2
PH
7303 else if (ada_is_variant_part (type, i))
7304 {
52ce6436
PH
7305 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7306 fixed type?? */
4c4b4cd2 7307 int j;
52ce6436
PH
7308 struct type *field_type
7309 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7310
52ce6436 7311 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7312 {
76a01679
JB
7313 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7314 fld_offset
7315 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7316 field_type_p, byte_offset_p,
52ce6436 7317 bit_offset_p, bit_size_p, index_p))
76a01679 7318 return 1;
4c4b4cd2
PH
7319 }
7320 }
52ce6436
PH
7321 else if (index_p != NULL)
7322 *index_p += 1;
4c4b4cd2 7323 }
828d5846
XR
7324
7325 /* Field not found so far. If this is a tagged type which
7326 has a parent, try finding that field in the parent now. */
7327
7328 if (parent_offset != -1)
7329 {
7330 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7331 int fld_offset = offset + bit_pos / 8;
7332
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7334 fld_offset, field_type_p, byte_offset_p,
7335 bit_offset_p, bit_size_p, index_p))
7336 return 1;
7337 }
7338
4c4b4cd2
PH
7339 return 0;
7340}
7341
0963b4bd 7342/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7343
52ce6436
PH
7344static int
7345num_visible_fields (struct type *type)
7346{
7347 int n;
5b4ee69b 7348
52ce6436
PH
7349 n = 0;
7350 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7351 return n;
7352}
14f9c5c9 7353
4c4b4cd2 7354/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7355 and search in it assuming it has (class) type TYPE.
7356 If found, return value, else return NULL.
7357
828d5846
XR
7358 Searches recursively through wrapper fields (e.g., '_parent').
7359
7360 In the case of homonyms in the tagged types, please refer to the
7361 long explanation in find_struct_field's function documentation. */
14f9c5c9 7362
4c4b4cd2 7363static struct value *
108d56a4 7364ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7365 struct type *type)
14f9c5c9
AS
7366{
7367 int i;
828d5846 7368 int parent_offset = -1;
14f9c5c9 7369
5b4ee69b 7370 type = ada_check_typedef (type);
52ce6436 7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7372 {
0d5cff50 7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7374
7375 if (t_field_name == NULL)
4c4b4cd2 7376 continue;
14f9c5c9 7377
828d5846
XR
7378 else if (ada_is_parent_field (type, i))
7379 {
7380 /* This is a field pointing us to the parent type of a tagged
7381 type. As hinted in this function's documentation, we give
7382 preference to fields in the current record first, so what
7383 we do here is just record the index of this field before
7384 we skip it. If it turns out we couldn't find our field
7385 in the current record, then we'll get back to it and search
7386 inside it whether the field might exist in the parent. */
7387
7388 parent_offset = i;
7389 continue;
7390 }
7391
14f9c5c9 7392 else if (field_name_match (t_field_name, name))
4c4b4cd2 7393 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7394
7395 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7396 {
0963b4bd 7397 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7398 ada_search_struct_field (name, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7401
4c4b4cd2
PH
7402 if (v != NULL)
7403 return v;
7404 }
14f9c5c9
AS
7405
7406 else if (ada_is_variant_part (type, i))
4c4b4cd2 7407 {
0963b4bd 7408 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7409 int j;
5b4ee69b
MS
7410 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7411 i));
4c4b4cd2
PH
7412 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7413
52ce6436 7414 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7415 {
0963b4bd
MS
7416 struct value *v = ada_search_struct_field /* Force line
7417 break. */
06d5cf63
JB
7418 (name, arg,
7419 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7420 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7421
4c4b4cd2
PH
7422 if (v != NULL)
7423 return v;
7424 }
7425 }
14f9c5c9 7426 }
828d5846
XR
7427
7428 /* Field not found so far. If this is a tagged type which
7429 has a parent, try finding that field in the parent now. */
7430
7431 if (parent_offset != -1)
7432 {
7433 struct value *v = ada_search_struct_field (
7434 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7435 TYPE_FIELD_TYPE (type, parent_offset));
7436
7437 if (v != NULL)
7438 return v;
7439 }
7440
14f9c5c9
AS
7441 return NULL;
7442}
d2e4a39e 7443
52ce6436
PH
7444static struct value *ada_index_struct_field_1 (int *, struct value *,
7445 int, struct type *);
7446
7447
7448/* Return field #INDEX in ARG, where the index is that returned by
7449 * find_struct_field through its INDEX_P argument. Adjust the address
7450 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7451 * If found, return value, else return NULL. */
52ce6436
PH
7452
7453static struct value *
7454ada_index_struct_field (int index, struct value *arg, int offset,
7455 struct type *type)
7456{
7457 return ada_index_struct_field_1 (&index, arg, offset, type);
7458}
7459
7460
7461/* Auxiliary function for ada_index_struct_field. Like
7462 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7463 * *INDEX_P. */
52ce6436
PH
7464
7465static struct value *
7466ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7467 struct type *type)
7468{
7469 int i;
7470 type = ada_check_typedef (type);
7471
7472 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7473 {
7474 if (TYPE_FIELD_NAME (type, i) == NULL)
7475 continue;
7476 else if (ada_is_wrapper_field (type, i))
7477 {
0963b4bd 7478 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7479 ada_index_struct_field_1 (index_p, arg,
7480 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7481 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7482
52ce6436
PH
7483 if (v != NULL)
7484 return v;
7485 }
7486
7487 else if (ada_is_variant_part (type, i))
7488 {
7489 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7490 find_struct_field. */
52ce6436
PH
7491 error (_("Cannot assign this kind of variant record"));
7492 }
7493 else if (*index_p == 0)
7494 return ada_value_primitive_field (arg, offset, i, type);
7495 else
7496 *index_p -= 1;
7497 }
7498 return NULL;
7499}
7500
4c4b4cd2
PH
7501/* Given ARG, a value of type (pointer or reference to a)*
7502 structure/union, extract the component named NAME from the ultimate
7503 target structure/union and return it as a value with its
f5938064 7504 appropriate type.
14f9c5c9 7505
4c4b4cd2
PH
7506 The routine searches for NAME among all members of the structure itself
7507 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7508 (e.g., '_parent').
7509
03ee6b2e
PH
7510 If NO_ERR, then simply return NULL in case of error, rather than
7511 calling error. */
14f9c5c9 7512
d2e4a39e 7513struct value *
a121b7c1 7514ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7515{
4c4b4cd2 7516 struct type *t, *t1;
d2e4a39e 7517 struct value *v;
1f5d1570 7518 int check_tag;
14f9c5c9 7519
4c4b4cd2 7520 v = NULL;
df407dfe 7521 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7522 if (TYPE_CODE (t) == TYPE_CODE_REF)
7523 {
7524 t1 = TYPE_TARGET_TYPE (t);
7525 if (t1 == NULL)
03ee6b2e 7526 goto BadValue;
61ee279c 7527 t1 = ada_check_typedef (t1);
4c4b4cd2 7528 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7529 {
994b9211 7530 arg = coerce_ref (arg);
76a01679
JB
7531 t = t1;
7532 }
4c4b4cd2 7533 }
14f9c5c9 7534
4c4b4cd2
PH
7535 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7536 {
7537 t1 = TYPE_TARGET_TYPE (t);
7538 if (t1 == NULL)
03ee6b2e 7539 goto BadValue;
61ee279c 7540 t1 = ada_check_typedef (t1);
4c4b4cd2 7541 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7542 {
7543 arg = value_ind (arg);
7544 t = t1;
7545 }
4c4b4cd2 7546 else
76a01679 7547 break;
4c4b4cd2 7548 }
14f9c5c9 7549
4c4b4cd2 7550 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7551 goto BadValue;
14f9c5c9 7552
4c4b4cd2
PH
7553 if (t1 == t)
7554 v = ada_search_struct_field (name, arg, 0, t);
7555 else
7556 {
7557 int bit_offset, bit_size, byte_offset;
7558 struct type *field_type;
7559 CORE_ADDR address;
7560
76a01679 7561 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7562 address = value_address (ada_value_ind (arg));
4c4b4cd2 7563 else
b50d69b5 7564 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7565
828d5846
XR
7566 /* Check to see if this is a tagged type. We also need to handle
7567 the case where the type is a reference to a tagged type, but
7568 we have to be careful to exclude pointers to tagged types.
7569 The latter should be shown as usual (as a pointer), whereas
7570 a reference should mostly be transparent to the user. */
7571
7572 if (ada_is_tagged_type (t1, 0)
7573 || (TYPE_CODE (t1) == TYPE_CODE_REF
7574 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7575 {
7576 /* We first try to find the searched field in the current type.
7577 If not found then let's look in the fixed type. */
7578
7579 if (!find_struct_field (name, t1, 0,
7580 &field_type, &byte_offset, &bit_offset,
7581 &bit_size, NULL))
1f5d1570
JG
7582 check_tag = 1;
7583 else
7584 check_tag = 0;
828d5846
XR
7585 }
7586 else
1f5d1570
JG
7587 check_tag = 0;
7588
7589 /* Convert to fixed type in all cases, so that we have proper
7590 offsets to each field in unconstrained record types. */
7591 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7592 address, NULL, check_tag);
828d5846 7593
76a01679
JB
7594 if (find_struct_field (name, t1, 0,
7595 &field_type, &byte_offset, &bit_offset,
52ce6436 7596 &bit_size, NULL))
76a01679
JB
7597 {
7598 if (bit_size != 0)
7599 {
714e53ab
PH
7600 if (TYPE_CODE (t) == TYPE_CODE_REF)
7601 arg = ada_coerce_ref (arg);
7602 else
7603 arg = ada_value_ind (arg);
76a01679
JB
7604 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7605 bit_offset, bit_size,
7606 field_type);
7607 }
7608 else
f5938064 7609 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7610 }
7611 }
7612
03ee6b2e
PH
7613 if (v != NULL || no_err)
7614 return v;
7615 else
323e0a4a 7616 error (_("There is no member named %s."), name);
14f9c5c9 7617
03ee6b2e
PH
7618 BadValue:
7619 if (no_err)
7620 return NULL;
7621 else
0963b4bd
MS
7622 error (_("Attempt to extract a component of "
7623 "a value that is not a record."));
14f9c5c9
AS
7624}
7625
3b4de39c 7626/* Return a string representation of type TYPE. */
99bbb428 7627
3b4de39c 7628static std::string
99bbb428
PA
7629type_as_string (struct type *type)
7630{
d7e74731 7631 string_file tmp_stream;
99bbb428 7632
d7e74731 7633 type_print (type, "", &tmp_stream, -1);
99bbb428 7634
d7e74731 7635 return std::move (tmp_stream.string ());
99bbb428
PA
7636}
7637
14f9c5c9 7638/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7639 If DISPP is non-null, add its byte displacement from the beginning of a
7640 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7641 work for packed fields).
7642
7643 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7644 followed by "___".
14f9c5c9 7645
0963b4bd 7646 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7647 be a (pointer or reference)+ to a struct or union, and the
7648 ultimate target type will be searched.
14f9c5c9
AS
7649
7650 Looks recursively into variant clauses and parent types.
7651
828d5846
XR
7652 In the case of homonyms in the tagged types, please refer to the
7653 long explanation in find_struct_field's function documentation.
7654
4c4b4cd2
PH
7655 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7656 TYPE is not a type of the right kind. */
14f9c5c9 7657
4c4b4cd2 7658static struct type *
a121b7c1 7659ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7660 int noerr)
14f9c5c9
AS
7661{
7662 int i;
828d5846 7663 int parent_offset = -1;
14f9c5c9
AS
7664
7665 if (name == NULL)
7666 goto BadName;
7667
76a01679 7668 if (refok && type != NULL)
4c4b4cd2
PH
7669 while (1)
7670 {
61ee279c 7671 type = ada_check_typedef (type);
76a01679
JB
7672 if (TYPE_CODE (type) != TYPE_CODE_PTR
7673 && TYPE_CODE (type) != TYPE_CODE_REF)
7674 break;
7675 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7676 }
14f9c5c9 7677
76a01679 7678 if (type == NULL
1265e4aa
JB
7679 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7680 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7681 {
4c4b4cd2 7682 if (noerr)
76a01679 7683 return NULL;
99bbb428 7684
3b4de39c
PA
7685 error (_("Type %s is not a structure or union type"),
7686 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7687 }
7688
7689 type = to_static_fixed_type (type);
7690
7691 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7692 {
0d5cff50 7693 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7694 struct type *t;
d2e4a39e 7695
14f9c5c9 7696 if (t_field_name == NULL)
4c4b4cd2 7697 continue;
14f9c5c9 7698
828d5846
XR
7699 else if (ada_is_parent_field (type, i))
7700 {
7701 /* This is a field pointing us to the parent type of a tagged
7702 type. As hinted in this function's documentation, we give
7703 preference to fields in the current record first, so what
7704 we do here is just record the index of this field before
7705 we skip it. If it turns out we couldn't find our field
7706 in the current record, then we'll get back to it and search
7707 inside it whether the field might exist in the parent. */
7708
7709 parent_offset = i;
7710 continue;
7711 }
7712
14f9c5c9 7713 else if (field_name_match (t_field_name, name))
988f6b3d 7714 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7715
7716 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7717 {
4c4b4cd2 7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7719 0, 1);
4c4b4cd2 7720 if (t != NULL)
988f6b3d 7721 return t;
4c4b4cd2 7722 }
14f9c5c9
AS
7723
7724 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7725 {
7726 int j;
5b4ee69b
MS
7727 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7728 i));
4c4b4cd2
PH
7729
7730 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7731 {
b1f33ddd
JB
7732 /* FIXME pnh 2008/01/26: We check for a field that is
7733 NOT wrapped in a struct, since the compiler sometimes
7734 generates these for unchecked variant types. Revisit
0963b4bd 7735 if the compiler changes this practice. */
0d5cff50 7736 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7737
b1f33ddd
JB
7738 if (v_field_name != NULL
7739 && field_name_match (v_field_name, name))
460efde1 7740 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7741 else
0963b4bd
MS
7742 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7743 j),
988f6b3d 7744 name, 0, 1);
b1f33ddd 7745
4c4b4cd2 7746 if (t != NULL)
988f6b3d 7747 return t;
4c4b4cd2
PH
7748 }
7749 }
14f9c5c9
AS
7750
7751 }
7752
828d5846
XR
7753 /* Field not found so far. If this is a tagged type which
7754 has a parent, try finding that field in the parent now. */
7755
7756 if (parent_offset != -1)
7757 {
7758 struct type *t;
7759
7760 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7761 name, 0, 1);
7762 if (t != NULL)
7763 return t;
7764 }
7765
14f9c5c9 7766BadName:
d2e4a39e 7767 if (!noerr)
14f9c5c9 7768 {
2b2798cc 7769 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7770
7771 error (_("Type %s has no component named %s"),
3b4de39c 7772 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7773 }
7774
7775 return NULL;
7776}
7777
b1f33ddd
JB
7778/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780 represents an unchecked union (that is, the variant part of a
0963b4bd 7781 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7782
7783static int
7784is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785{
a121b7c1 7786 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7787
988f6b3d 7788 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7789}
7790
7791
14f9c5c9
AS
7792/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7793 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7794 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7795 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7796
d2e4a39e 7797int
ebf56fd3 7798ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7799 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7800{
7801 int others_clause;
7802 int i;
a121b7c1 7803 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7804 struct value *outer;
7805 struct value *discrim;
14f9c5c9
AS
7806 LONGEST discrim_val;
7807
012370f6
TT
7808 /* Using plain value_from_contents_and_address here causes problems
7809 because we will end up trying to resolve a type that is currently
7810 being constructed. */
7811 outer = value_from_contents_and_address_unresolved (outer_type,
7812 outer_valaddr, 0);
0c281816
JB
7813 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7814 if (discrim == NULL)
14f9c5c9 7815 return -1;
0c281816 7816 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7817
7818 others_clause = -1;
7819 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7820 {
7821 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7822 others_clause = i;
14f9c5c9 7823 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7824 return i;
14f9c5c9
AS
7825 }
7826
7827 return others_clause;
7828}
d2e4a39e 7829\f
14f9c5c9
AS
7830
7831
4c4b4cd2 7832 /* Dynamic-Sized Records */
14f9c5c9
AS
7833
7834/* Strategy: The type ostensibly attached to a value with dynamic size
7835 (i.e., a size that is not statically recorded in the debugging
7836 data) does not accurately reflect the size or layout of the value.
7837 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7838 conventional types that are constructed on the fly. */
14f9c5c9
AS
7839
7840/* There is a subtle and tricky problem here. In general, we cannot
7841 determine the size of dynamic records without its data. However,
7842 the 'struct value' data structure, which GDB uses to represent
7843 quantities in the inferior process (the target), requires the size
7844 of the type at the time of its allocation in order to reserve space
7845 for GDB's internal copy of the data. That's why the
7846 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7847 rather than struct value*s.
14f9c5c9
AS
7848
7849 However, GDB's internal history variables ($1, $2, etc.) are
7850 struct value*s containing internal copies of the data that are not, in
7851 general, the same as the data at their corresponding addresses in
7852 the target. Fortunately, the types we give to these values are all
7853 conventional, fixed-size types (as per the strategy described
7854 above), so that we don't usually have to perform the
7855 'to_fixed_xxx_type' conversions to look at their values.
7856 Unfortunately, there is one exception: if one of the internal
7857 history variables is an array whose elements are unconstrained
7858 records, then we will need to create distinct fixed types for each
7859 element selected. */
7860
7861/* The upshot of all of this is that many routines take a (type, host
7862 address, target address) triple as arguments to represent a value.
7863 The host address, if non-null, is supposed to contain an internal
7864 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7865 target at the target address. */
14f9c5c9
AS
7866
7867/* Assuming that VAL0 represents a pointer value, the result of
7868 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7869 dynamic-sized types. */
14f9c5c9 7870
d2e4a39e
AS
7871struct value *
7872ada_value_ind (struct value *val0)
14f9c5c9 7873{
c48db5ca 7874 struct value *val = value_ind (val0);
5b4ee69b 7875
b50d69b5
JG
7876 if (ada_is_tagged_type (value_type (val), 0))
7877 val = ada_tag_value_at_base_address (val);
7878
4c4b4cd2 7879 return ada_to_fixed_value (val);
14f9c5c9
AS
7880}
7881
7882/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7883 qualifiers on VAL0. */
7884
d2e4a39e
AS
7885static struct value *
7886ada_coerce_ref (struct value *val0)
7887{
df407dfe 7888 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7889 {
7890 struct value *val = val0;
5b4ee69b 7891
994b9211 7892 val = coerce_ref (val);
b50d69b5
JG
7893
7894 if (ada_is_tagged_type (value_type (val), 0))
7895 val = ada_tag_value_at_base_address (val);
7896
4c4b4cd2 7897 return ada_to_fixed_value (val);
d2e4a39e
AS
7898 }
7899 else
14f9c5c9
AS
7900 return val0;
7901}
7902
7903/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7904 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7905
7906static unsigned int
ebf56fd3 7907align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7908{
7909 return (off + alignment - 1) & ~(alignment - 1);
7910}
7911
4c4b4cd2 7912/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7913
7914static unsigned int
ebf56fd3 7915field_alignment (struct type *type, int f)
14f9c5c9 7916{
d2e4a39e 7917 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7918 int len;
14f9c5c9
AS
7919 int align_offset;
7920
64a1bf19
JB
7921 /* The field name should never be null, unless the debugging information
7922 is somehow malformed. In this case, we assume the field does not
7923 require any alignment. */
7924 if (name == NULL)
7925 return 1;
7926
7927 len = strlen (name);
7928
4c4b4cd2
PH
7929 if (!isdigit (name[len - 1]))
7930 return 1;
14f9c5c9 7931
d2e4a39e 7932 if (isdigit (name[len - 2]))
14f9c5c9
AS
7933 align_offset = len - 2;
7934 else
7935 align_offset = len - 1;
7936
61012eef 7937 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7938 return TARGET_CHAR_BIT;
7939
4c4b4cd2
PH
7940 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7941}
7942
852dff6c 7943/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7944
852dff6c
JB
7945static struct symbol *
7946ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7947{
7948 struct symbol *sym;
7949
7950 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7951 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7952 return sym;
7953
4186eb54
KS
7954 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7955 return sym;
14f9c5c9
AS
7956}
7957
dddfab26
UW
7958/* Find a type named NAME. Ignores ambiguity. This routine will look
7959 solely for types defined by debug info, it will not search the GDB
7960 primitive types. */
4c4b4cd2 7961
852dff6c 7962static struct type *
ebf56fd3 7963ada_find_any_type (const char *name)
14f9c5c9 7964{
852dff6c 7965 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7966
14f9c5c9 7967 if (sym != NULL)
dddfab26 7968 return SYMBOL_TYPE (sym);
14f9c5c9 7969
dddfab26 7970 return NULL;
14f9c5c9
AS
7971}
7972
739593e0
JB
7973/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7974 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7975 symbol, in which case it is returned. Otherwise, this looks for
7976 symbols whose name is that of NAME_SYM suffixed with "___XR".
7977 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7978
7979struct symbol *
270140bd 7980ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7981{
739593e0 7982 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7983 struct symbol *sym;
7984
739593e0
JB
7985 if (strstr (name, "___XR") != NULL)
7986 return name_sym;
7987
aeb5907d
JB
7988 sym = find_old_style_renaming_symbol (name, block);
7989
7990 if (sym != NULL)
7991 return sym;
7992
0963b4bd 7993 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7994 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7995 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7996 return sym;
7997 else
7998 return NULL;
7999}
8000
8001static struct symbol *
270140bd 8002find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8003{
7f0df278 8004 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8005 char *rename;
8006
8007 if (function_sym != NULL)
8008 {
8009 /* If the symbol is defined inside a function, NAME is not fully
8010 qualified. This means we need to prepend the function name
8011 as well as adding the ``___XR'' suffix to build the name of
8012 the associated renaming symbol. */
0d5cff50 8013 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8014 /* Function names sometimes contain suffixes used
8015 for instance to qualify nested subprograms. When building
8016 the XR type name, we need to make sure that this suffix is
8017 not included. So do not include any suffix in the function
8018 name length below. */
69fadcdf 8019 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8020 const int rename_len = function_name_len + 2 /* "__" */
8021 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8022
529cad9c 8023 /* Strip the suffix if necessary. */
69fadcdf
JB
8024 ada_remove_trailing_digits (function_name, &function_name_len);
8025 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8026 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8027
4c4b4cd2
PH
8028 /* Library-level functions are a special case, as GNAT adds
8029 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8030 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8031 have this prefix, so we need to skip this prefix if present. */
8032 if (function_name_len > 5 /* "_ada_" */
8033 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8034 {
8035 function_name += 5;
8036 function_name_len -= 5;
8037 }
4c4b4cd2
PH
8038
8039 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8040 strncpy (rename, function_name, function_name_len);
8041 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8042 "__%s___XR", name);
4c4b4cd2
PH
8043 }
8044 else
8045 {
8046 const int rename_len = strlen (name) + 6;
5b4ee69b 8047
4c4b4cd2 8048 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8049 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8050 }
8051
852dff6c 8052 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8053}
8054
14f9c5c9 8055/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8056 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8057 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8058 otherwise return 0. */
8059
14f9c5c9 8060int
d2e4a39e 8061ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8062{
8063 if (type1 == NULL)
8064 return 1;
8065 else if (type0 == NULL)
8066 return 0;
8067 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8068 return 1;
8069 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8070 return 0;
4c4b4cd2
PH
8071 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8072 return 1;
ad82864c 8073 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8074 return 1;
4c4b4cd2
PH
8075 else if (ada_is_array_descriptor_type (type0)
8076 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8077 return 1;
aeb5907d
JB
8078 else
8079 {
a737d952
TT
8080 const char *type0_name = TYPE_NAME (type0);
8081 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8082
8083 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8084 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8085 return 1;
8086 }
14f9c5c9
AS
8087 return 0;
8088}
8089
e86ca25f
TT
8090/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8091 null. */
4c4b4cd2 8092
0d5cff50 8093const char *
d2e4a39e 8094ada_type_name (struct type *type)
14f9c5c9 8095{
d2e4a39e 8096 if (type == NULL)
14f9c5c9 8097 return NULL;
e86ca25f 8098 return TYPE_NAME (type);
14f9c5c9
AS
8099}
8100
b4ba55a1
JB
8101/* Search the list of "descriptive" types associated to TYPE for a type
8102 whose name is NAME. */
8103
8104static struct type *
8105find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8106{
931e5bc3 8107 struct type *result, *tmp;
b4ba55a1 8108
c6044dd1
JB
8109 if (ada_ignore_descriptive_types_p)
8110 return NULL;
8111
b4ba55a1
JB
8112 /* If there no descriptive-type info, then there is no parallel type
8113 to be found. */
8114 if (!HAVE_GNAT_AUX_INFO (type))
8115 return NULL;
8116
8117 result = TYPE_DESCRIPTIVE_TYPE (type);
8118 while (result != NULL)
8119 {
0d5cff50 8120 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8121
8122 if (result_name == NULL)
8123 {
8124 warning (_("unexpected null name on descriptive type"));
8125 return NULL;
8126 }
8127
8128 /* If the names match, stop. */
8129 if (strcmp (result_name, name) == 0)
8130 break;
8131
8132 /* Otherwise, look at the next item on the list, if any. */
8133 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8134 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8135 else
8136 tmp = NULL;
8137
8138 /* If not found either, try after having resolved the typedef. */
8139 if (tmp != NULL)
8140 result = tmp;
b4ba55a1 8141 else
931e5bc3 8142 {
f168693b 8143 result = check_typedef (result);
931e5bc3
JG
8144 if (HAVE_GNAT_AUX_INFO (result))
8145 result = TYPE_DESCRIPTIVE_TYPE (result);
8146 else
8147 result = NULL;
8148 }
b4ba55a1
JB
8149 }
8150
8151 /* If we didn't find a match, see whether this is a packed array. With
8152 older compilers, the descriptive type information is either absent or
8153 irrelevant when it comes to packed arrays so the above lookup fails.
8154 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8155 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8156 return ada_find_any_type (name);
8157
8158 return result;
8159}
8160
8161/* Find a parallel type to TYPE with the specified NAME, using the
8162 descriptive type taken from the debugging information, if available,
8163 and otherwise using the (slower) name-based method. */
8164
8165static struct type *
8166ada_find_parallel_type_with_name (struct type *type, const char *name)
8167{
8168 struct type *result = NULL;
8169
8170 if (HAVE_GNAT_AUX_INFO (type))
8171 result = find_parallel_type_by_descriptive_type (type, name);
8172 else
8173 result = ada_find_any_type (name);
8174
8175 return result;
8176}
8177
8178/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8179 SUFFIX to the name of TYPE. */
14f9c5c9 8180
d2e4a39e 8181struct type *
ebf56fd3 8182ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8183{
0d5cff50 8184 char *name;
fe978cb0 8185 const char *type_name = ada_type_name (type);
14f9c5c9 8186 int len;
d2e4a39e 8187
fe978cb0 8188 if (type_name == NULL)
14f9c5c9
AS
8189 return NULL;
8190
fe978cb0 8191 len = strlen (type_name);
14f9c5c9 8192
b4ba55a1 8193 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8194
fe978cb0 8195 strcpy (name, type_name);
14f9c5c9
AS
8196 strcpy (name + len, suffix);
8197
b4ba55a1 8198 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8199}
8200
14f9c5c9 8201/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8202 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8203
d2e4a39e
AS
8204static struct type *
8205dynamic_template_type (struct type *type)
14f9c5c9 8206{
61ee279c 8207 type = ada_check_typedef (type);
14f9c5c9
AS
8208
8209 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8210 || ada_type_name (type) == NULL)
14f9c5c9 8211 return NULL;
d2e4a39e 8212 else
14f9c5c9
AS
8213 {
8214 int len = strlen (ada_type_name (type));
5b4ee69b 8215
4c4b4cd2
PH
8216 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8217 return type;
14f9c5c9 8218 else
4c4b4cd2 8219 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8220 }
8221}
8222
8223/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8224 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8225
d2e4a39e
AS
8226static int
8227is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8228{
8229 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8230
d2e4a39e 8231 return name != NULL
14f9c5c9
AS
8232 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8233 && strstr (name, "___XVL") != NULL;
8234}
8235
4c4b4cd2
PH
8236/* The index of the variant field of TYPE, or -1 if TYPE does not
8237 represent a variant record type. */
14f9c5c9 8238
d2e4a39e 8239static int
4c4b4cd2 8240variant_field_index (struct type *type)
14f9c5c9
AS
8241{
8242 int f;
8243
4c4b4cd2
PH
8244 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8245 return -1;
8246
8247 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8248 {
8249 if (ada_is_variant_part (type, f))
8250 return f;
8251 }
8252 return -1;
14f9c5c9
AS
8253}
8254
4c4b4cd2
PH
8255/* A record type with no fields. */
8256
d2e4a39e 8257static struct type *
fe978cb0 8258empty_record (struct type *templ)
14f9c5c9 8259{
fe978cb0 8260 struct type *type = alloc_type_copy (templ);
5b4ee69b 8261
14f9c5c9
AS
8262 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8263 TYPE_NFIELDS (type) = 0;
8264 TYPE_FIELDS (type) = NULL;
8ecb59f8 8265 INIT_NONE_SPECIFIC (type);
14f9c5c9 8266 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8267 TYPE_LENGTH (type) = 0;
8268 return type;
8269}
8270
8271/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8272 the value of type TYPE at VALADDR or ADDRESS (see comments at
8273 the beginning of this section) VAL according to GNAT conventions.
8274 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8275 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8276 an outer-level type (i.e., as opposed to a branch of a variant.) A
8277 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8278 of the variant.
14f9c5c9 8279
4c4b4cd2
PH
8280 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8281 length are not statically known are discarded. As a consequence,
8282 VALADDR, ADDRESS and DVAL0 are ignored.
8283
8284 NOTE: Limitations: For now, we assume that dynamic fields and
8285 variants occupy whole numbers of bytes. However, they need not be
8286 byte-aligned. */
8287
8288struct type *
10a2c479 8289ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8290 const gdb_byte *valaddr,
4c4b4cd2
PH
8291 CORE_ADDR address, struct value *dval0,
8292 int keep_dynamic_fields)
14f9c5c9 8293{
d2e4a39e
AS
8294 struct value *mark = value_mark ();
8295 struct value *dval;
8296 struct type *rtype;
14f9c5c9 8297 int nfields, bit_len;
4c4b4cd2 8298 int variant_field;
14f9c5c9 8299 long off;
d94e4f4f 8300 int fld_bit_len;
14f9c5c9
AS
8301 int f;
8302
4c4b4cd2
PH
8303 /* Compute the number of fields in this record type that are going
8304 to be processed: unless keep_dynamic_fields, this includes only
8305 fields whose position and length are static will be processed. */
8306 if (keep_dynamic_fields)
8307 nfields = TYPE_NFIELDS (type);
8308 else
8309 {
8310 nfields = 0;
76a01679 8311 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8312 && !ada_is_variant_part (type, nfields)
8313 && !is_dynamic_field (type, nfields))
8314 nfields++;
8315 }
8316
e9bb382b 8317 rtype = alloc_type_copy (type);
14f9c5c9 8318 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8319 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8320 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8321 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8322 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8323 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8324 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8325 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8326
d2e4a39e
AS
8327 off = 0;
8328 bit_len = 0;
4c4b4cd2
PH
8329 variant_field = -1;
8330
14f9c5c9
AS
8331 for (f = 0; f < nfields; f += 1)
8332 {
6c038f32
PH
8333 off = align_value (off, field_alignment (type, f))
8334 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8335 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8336 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8337
d2e4a39e 8338 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8339 {
8340 variant_field = f;
d94e4f4f 8341 fld_bit_len = 0;
4c4b4cd2 8342 }
14f9c5c9 8343 else if (is_dynamic_field (type, f))
4c4b4cd2 8344 {
284614f0
JB
8345 const gdb_byte *field_valaddr = valaddr;
8346 CORE_ADDR field_address = address;
8347 struct type *field_type =
8348 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8349
4c4b4cd2 8350 if (dval0 == NULL)
b5304971
JG
8351 {
8352 /* rtype's length is computed based on the run-time
8353 value of discriminants. If the discriminants are not
8354 initialized, the type size may be completely bogus and
0963b4bd 8355 GDB may fail to allocate a value for it. So check the
b5304971 8356 size first before creating the value. */
c1b5a1a6 8357 ada_ensure_varsize_limit (rtype);
012370f6
TT
8358 /* Using plain value_from_contents_and_address here
8359 causes problems because we will end up trying to
8360 resolve a type that is currently being
8361 constructed. */
8362 dval = value_from_contents_and_address_unresolved (rtype,
8363 valaddr,
8364 address);
9f1f738a 8365 rtype = value_type (dval);
b5304971 8366 }
4c4b4cd2
PH
8367 else
8368 dval = dval0;
8369
284614f0
JB
8370 /* If the type referenced by this field is an aligner type, we need
8371 to unwrap that aligner type, because its size might not be set.
8372 Keeping the aligner type would cause us to compute the wrong
8373 size for this field, impacting the offset of the all the fields
8374 that follow this one. */
8375 if (ada_is_aligner_type (field_type))
8376 {
8377 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8378
8379 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8380 field_address = cond_offset_target (field_address, field_offset);
8381 field_type = ada_aligned_type (field_type);
8382 }
8383
8384 field_valaddr = cond_offset_host (field_valaddr,
8385 off / TARGET_CHAR_BIT);
8386 field_address = cond_offset_target (field_address,
8387 off / TARGET_CHAR_BIT);
8388
8389 /* Get the fixed type of the field. Note that, in this case,
8390 we do not want to get the real type out of the tag: if
8391 the current field is the parent part of a tagged record,
8392 we will get the tag of the object. Clearly wrong: the real
8393 type of the parent is not the real type of the child. We
8394 would end up in an infinite loop. */
8395 field_type = ada_get_base_type (field_type);
8396 field_type = ada_to_fixed_type (field_type, field_valaddr,
8397 field_address, dval, 0);
27f2a97b
JB
8398 /* If the field size is already larger than the maximum
8399 object size, then the record itself will necessarily
8400 be larger than the maximum object size. We need to make
8401 this check now, because the size might be so ridiculously
8402 large (due to an uninitialized variable in the inferior)
8403 that it would cause an overflow when adding it to the
8404 record size. */
c1b5a1a6 8405 ada_ensure_varsize_limit (field_type);
284614f0
JB
8406
8407 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8408 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8409 /* The multiplication can potentially overflow. But because
8410 the field length has been size-checked just above, and
8411 assuming that the maximum size is a reasonable value,
8412 an overflow should not happen in practice. So rather than
8413 adding overflow recovery code to this already complex code,
8414 we just assume that it's not going to happen. */
d94e4f4f 8415 fld_bit_len =
4c4b4cd2
PH
8416 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8417 }
14f9c5c9 8418 else
4c4b4cd2 8419 {
5ded5331
JB
8420 /* Note: If this field's type is a typedef, it is important
8421 to preserve the typedef layer.
8422
8423 Otherwise, we might be transforming a typedef to a fat
8424 pointer (encoding a pointer to an unconstrained array),
8425 into a basic fat pointer (encoding an unconstrained
8426 array). As both types are implemented using the same
8427 structure, the typedef is the only clue which allows us
8428 to distinguish between the two options. Stripping it
8429 would prevent us from printing this field appropriately. */
8430 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8431 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8432 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8433 fld_bit_len =
4c4b4cd2
PH
8434 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8435 else
5ded5331
JB
8436 {
8437 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8438
8439 /* We need to be careful of typedefs when computing
8440 the length of our field. If this is a typedef,
8441 get the length of the target type, not the length
8442 of the typedef. */
8443 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8444 field_type = ada_typedef_target_type (field_type);
8445
8446 fld_bit_len =
8447 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8448 }
4c4b4cd2 8449 }
14f9c5c9 8450 if (off + fld_bit_len > bit_len)
4c4b4cd2 8451 bit_len = off + fld_bit_len;
d94e4f4f 8452 off += fld_bit_len;
4c4b4cd2
PH
8453 TYPE_LENGTH (rtype) =
8454 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8455 }
4c4b4cd2
PH
8456
8457 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8458 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8459 the record. This can happen in the presence of representation
8460 clauses. */
8461 if (variant_field >= 0)
8462 {
8463 struct type *branch_type;
8464
8465 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8466
8467 if (dval0 == NULL)
9f1f738a 8468 {
012370f6
TT
8469 /* Using plain value_from_contents_and_address here causes
8470 problems because we will end up trying to resolve a type
8471 that is currently being constructed. */
8472 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8473 address);
9f1f738a
SA
8474 rtype = value_type (dval);
8475 }
4c4b4cd2
PH
8476 else
8477 dval = dval0;
8478
8479 branch_type =
8480 to_fixed_variant_branch_type
8481 (TYPE_FIELD_TYPE (type, variant_field),
8482 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8483 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8484 if (branch_type == NULL)
8485 {
8486 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8487 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8488 TYPE_NFIELDS (rtype) -= 1;
8489 }
8490 else
8491 {
8492 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8493 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8494 fld_bit_len =
8495 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8496 TARGET_CHAR_BIT;
8497 if (off + fld_bit_len > bit_len)
8498 bit_len = off + fld_bit_len;
8499 TYPE_LENGTH (rtype) =
8500 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8501 }
8502 }
8503
714e53ab
PH
8504 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8505 should contain the alignment of that record, which should be a strictly
8506 positive value. If null or negative, then something is wrong, most
8507 probably in the debug info. In that case, we don't round up the size
0963b4bd 8508 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8509 the current RTYPE length might be good enough for our purposes. */
8510 if (TYPE_LENGTH (type) <= 0)
8511 {
323e0a4a 8512 if (TYPE_NAME (rtype))
cc1defb1
KS
8513 warning (_("Invalid type size for `%s' detected: %s."),
8514 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8515 else
cc1defb1
KS
8516 warning (_("Invalid type size for <unnamed> detected: %s."),
8517 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8518 }
8519 else
8520 {
8521 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8522 TYPE_LENGTH (type));
8523 }
14f9c5c9
AS
8524
8525 value_free_to_mark (mark);
d2e4a39e 8526 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8527 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8528 return rtype;
8529}
8530
4c4b4cd2
PH
8531/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8532 of 1. */
14f9c5c9 8533
d2e4a39e 8534static struct type *
fc1a4b47 8535template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8536 CORE_ADDR address, struct value *dval0)
8537{
8538 return ada_template_to_fixed_record_type_1 (type, valaddr,
8539 address, dval0, 1);
8540}
8541
8542/* An ordinary record type in which ___XVL-convention fields and
8543 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8544 static approximations, containing all possible fields. Uses
8545 no runtime values. Useless for use in values, but that's OK,
8546 since the results are used only for type determinations. Works on both
8547 structs and unions. Representation note: to save space, we memorize
8548 the result of this function in the TYPE_TARGET_TYPE of the
8549 template type. */
8550
8551static struct type *
8552template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8553{
8554 struct type *type;
8555 int nfields;
8556 int f;
8557
9e195661
PMR
8558 /* No need no do anything if the input type is already fixed. */
8559 if (TYPE_FIXED_INSTANCE (type0))
8560 return type0;
8561
8562 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8563 if (TYPE_TARGET_TYPE (type0) != NULL)
8564 return TYPE_TARGET_TYPE (type0);
8565
9e195661 8566 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8567 type = type0;
9e195661
PMR
8568 nfields = TYPE_NFIELDS (type0);
8569
8570 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8571 recompute all over next time. */
8572 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8573
8574 for (f = 0; f < nfields; f += 1)
8575 {
460efde1 8576 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8577 struct type *new_type;
14f9c5c9 8578
4c4b4cd2 8579 if (is_dynamic_field (type0, f))
460efde1
JB
8580 {
8581 field_type = ada_check_typedef (field_type);
8582 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8583 }
14f9c5c9 8584 else
f192137b 8585 new_type = static_unwrap_type (field_type);
9e195661
PMR
8586
8587 if (new_type != field_type)
8588 {
8589 /* Clone TYPE0 only the first time we get a new field type. */
8590 if (type == type0)
8591 {
8592 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8593 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8594 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8595 TYPE_NFIELDS (type) = nfields;
8596 TYPE_FIELDS (type) = (struct field *)
8597 TYPE_ALLOC (type, nfields * sizeof (struct field));
8598 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8599 sizeof (struct field) * nfields);
8600 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8601 TYPE_FIXED_INSTANCE (type) = 1;
8602 TYPE_LENGTH (type) = 0;
8603 }
8604 TYPE_FIELD_TYPE (type, f) = new_type;
8605 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8606 }
14f9c5c9 8607 }
9e195661 8608
14f9c5c9
AS
8609 return type;
8610}
8611
4c4b4cd2 8612/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8613 whose address in memory is ADDRESS, returns a revision of TYPE,
8614 which should be a non-dynamic-sized record, in which the variant
8615 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8616 for discriminant values in DVAL0, which can be NULL if the record
8617 contains the necessary discriminant values. */
8618
d2e4a39e 8619static struct type *
fc1a4b47 8620to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8621 CORE_ADDR address, struct value *dval0)
14f9c5c9 8622{
d2e4a39e 8623 struct value *mark = value_mark ();
4c4b4cd2 8624 struct value *dval;
d2e4a39e 8625 struct type *rtype;
14f9c5c9
AS
8626 struct type *branch_type;
8627 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8628 int variant_field = variant_field_index (type);
14f9c5c9 8629
4c4b4cd2 8630 if (variant_field == -1)
14f9c5c9
AS
8631 return type;
8632
4c4b4cd2 8633 if (dval0 == NULL)
9f1f738a
SA
8634 {
8635 dval = value_from_contents_and_address (type, valaddr, address);
8636 type = value_type (dval);
8637 }
4c4b4cd2
PH
8638 else
8639 dval = dval0;
8640
e9bb382b 8641 rtype = alloc_type_copy (type);
14f9c5c9 8642 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8643 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8644 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8645 TYPE_FIELDS (rtype) =
8646 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8647 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8648 sizeof (struct field) * nfields);
14f9c5c9 8649 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8650 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8651 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8652
4c4b4cd2
PH
8653 branch_type = to_fixed_variant_branch_type
8654 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8655 cond_offset_host (valaddr,
4c4b4cd2
PH
8656 TYPE_FIELD_BITPOS (type, variant_field)
8657 / TARGET_CHAR_BIT),
d2e4a39e 8658 cond_offset_target (address,
4c4b4cd2
PH
8659 TYPE_FIELD_BITPOS (type, variant_field)
8660 / TARGET_CHAR_BIT), dval);
d2e4a39e 8661 if (branch_type == NULL)
14f9c5c9 8662 {
4c4b4cd2 8663 int f;
5b4ee69b 8664
4c4b4cd2
PH
8665 for (f = variant_field + 1; f < nfields; f += 1)
8666 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8667 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8668 }
8669 else
8670 {
4c4b4cd2
PH
8671 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8672 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8673 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8674 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8675 }
4c4b4cd2 8676 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8677
4c4b4cd2 8678 value_free_to_mark (mark);
14f9c5c9
AS
8679 return rtype;
8680}
8681
8682/* An ordinary record type (with fixed-length fields) that describes
8683 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8684 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8685 should be in DVAL, a record value; it may be NULL if the object
8686 at ADDR itself contains any necessary discriminant values.
8687 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8688 values from the record are needed. Except in the case that DVAL,
8689 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8690 unchecked) is replaced by a particular branch of the variant.
8691
8692 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8693 is questionable and may be removed. It can arise during the
8694 processing of an unconstrained-array-of-record type where all the
8695 variant branches have exactly the same size. This is because in
8696 such cases, the compiler does not bother to use the XVS convention
8697 when encoding the record. I am currently dubious of this
8698 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8699
d2e4a39e 8700static struct type *
fc1a4b47 8701to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8702 CORE_ADDR address, struct value *dval)
14f9c5c9 8703{
d2e4a39e 8704 struct type *templ_type;
14f9c5c9 8705
876cecd0 8706 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8707 return type0;
8708
d2e4a39e 8709 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8710
8711 if (templ_type != NULL)
8712 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8713 else if (variant_field_index (type0) >= 0)
8714 {
8715 if (dval == NULL && valaddr == NULL && address == 0)
8716 return type0;
8717 return to_record_with_fixed_variant_part (type0, valaddr, address,
8718 dval);
8719 }
14f9c5c9
AS
8720 else
8721 {
876cecd0 8722 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8723 return type0;
8724 }
8725
8726}
8727
8728/* An ordinary record type (with fixed-length fields) that describes
8729 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8730 union type. Any necessary discriminants' values should be in DVAL,
8731 a record value. That is, this routine selects the appropriate
8732 branch of the union at ADDR according to the discriminant value
b1f33ddd 8733 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8734 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8735
d2e4a39e 8736static struct type *
fc1a4b47 8737to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8738 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8739{
8740 int which;
d2e4a39e
AS
8741 struct type *templ_type;
8742 struct type *var_type;
14f9c5c9
AS
8743
8744 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8745 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8746 else
14f9c5c9
AS
8747 var_type = var_type0;
8748
8749 templ_type = ada_find_parallel_type (var_type, "___XVU");
8750
8751 if (templ_type != NULL)
8752 var_type = templ_type;
8753
b1f33ddd
JB
8754 if (is_unchecked_variant (var_type, value_type (dval)))
8755 return var_type0;
d2e4a39e
AS
8756 which =
8757 ada_which_variant_applies (var_type,
0fd88904 8758 value_type (dval), value_contents (dval));
14f9c5c9
AS
8759
8760 if (which < 0)
e9bb382b 8761 return empty_record (var_type);
14f9c5c9 8762 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8763 return to_fixed_record_type
d2e4a39e
AS
8764 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8765 valaddr, address, dval);
4c4b4cd2 8766 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8767 return
8768 to_fixed_record_type
8769 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8770 else
8771 return TYPE_FIELD_TYPE (var_type, which);
8772}
8773
8908fca5
JB
8774/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8775 ENCODING_TYPE, a type following the GNAT conventions for discrete
8776 type encodings, only carries redundant information. */
8777
8778static int
8779ada_is_redundant_range_encoding (struct type *range_type,
8780 struct type *encoding_type)
8781{
108d56a4 8782 const char *bounds_str;
8908fca5
JB
8783 int n;
8784 LONGEST lo, hi;
8785
8786 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8787
005e2509
JB
8788 if (TYPE_CODE (get_base_type (range_type))
8789 != TYPE_CODE (get_base_type (encoding_type)))
8790 {
8791 /* The compiler probably used a simple base type to describe
8792 the range type instead of the range's actual base type,
8793 expecting us to get the real base type from the encoding
8794 anyway. In this situation, the encoding cannot be ignored
8795 as redundant. */
8796 return 0;
8797 }
8798
8908fca5
JB
8799 if (is_dynamic_type (range_type))
8800 return 0;
8801
8802 if (TYPE_NAME (encoding_type) == NULL)
8803 return 0;
8804
8805 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8806 if (bounds_str == NULL)
8807 return 0;
8808
8809 n = 8; /* Skip "___XDLU_". */
8810 if (!ada_scan_number (bounds_str, n, &lo, &n))
8811 return 0;
8812 if (TYPE_LOW_BOUND (range_type) != lo)
8813 return 0;
8814
8815 n += 2; /* Skip the "__" separator between the two bounds. */
8816 if (!ada_scan_number (bounds_str, n, &hi, &n))
8817 return 0;
8818 if (TYPE_HIGH_BOUND (range_type) != hi)
8819 return 0;
8820
8821 return 1;
8822}
8823
8824/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8825 a type following the GNAT encoding for describing array type
8826 indices, only carries redundant information. */
8827
8828static int
8829ada_is_redundant_index_type_desc (struct type *array_type,
8830 struct type *desc_type)
8831{
8832 struct type *this_layer = check_typedef (array_type);
8833 int i;
8834
8835 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8836 {
8837 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8838 TYPE_FIELD_TYPE (desc_type, i)))
8839 return 0;
8840 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8841 }
8842
8843 return 1;
8844}
8845
14f9c5c9
AS
8846/* Assuming that TYPE0 is an array type describing the type of a value
8847 at ADDR, and that DVAL describes a record containing any
8848 discriminants used in TYPE0, returns a type for the value that
8849 contains no dynamic components (that is, no components whose sizes
8850 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8851 true, gives an error message if the resulting type's size is over
4c4b4cd2 8852 varsize_limit. */
14f9c5c9 8853
d2e4a39e
AS
8854static struct type *
8855to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8856 int ignore_too_big)
14f9c5c9 8857{
d2e4a39e
AS
8858 struct type *index_type_desc;
8859 struct type *result;
ad82864c 8860 int constrained_packed_array_p;
931e5bc3 8861 static const char *xa_suffix = "___XA";
14f9c5c9 8862
b0dd7688 8863 type0 = ada_check_typedef (type0);
284614f0 8864 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8865 return type0;
14f9c5c9 8866
ad82864c
JB
8867 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8868 if (constrained_packed_array_p)
8869 type0 = decode_constrained_packed_array_type (type0);
284614f0 8870
931e5bc3
JG
8871 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8872
8873 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8874 encoding suffixed with 'P' may still be generated. If so,
8875 it should be used to find the XA type. */
8876
8877 if (index_type_desc == NULL)
8878 {
1da0522e 8879 const char *type_name = ada_type_name (type0);
931e5bc3 8880
1da0522e 8881 if (type_name != NULL)
931e5bc3 8882 {
1da0522e 8883 const int len = strlen (type_name);
931e5bc3
JG
8884 char *name = (char *) alloca (len + strlen (xa_suffix));
8885
1da0522e 8886 if (type_name[len - 1] == 'P')
931e5bc3 8887 {
1da0522e 8888 strcpy (name, type_name);
931e5bc3
JG
8889 strcpy (name + len - 1, xa_suffix);
8890 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8891 }
8892 }
8893 }
8894
28c85d6c 8895 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8896 if (index_type_desc != NULL
8897 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8898 {
8899 /* Ignore this ___XA parallel type, as it does not bring any
8900 useful information. This allows us to avoid creating fixed
8901 versions of the array's index types, which would be identical
8902 to the original ones. This, in turn, can also help avoid
8903 the creation of fixed versions of the array itself. */
8904 index_type_desc = NULL;
8905 }
8906
14f9c5c9
AS
8907 if (index_type_desc == NULL)
8908 {
61ee279c 8909 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8910
14f9c5c9 8911 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8912 depend on the contents of the array in properly constructed
8913 debugging data. */
529cad9c
PH
8914 /* Create a fixed version of the array element type.
8915 We're not providing the address of an element here,
e1d5a0d2 8916 and thus the actual object value cannot be inspected to do
529cad9c
PH
8917 the conversion. This should not be a problem, since arrays of
8918 unconstrained objects are not allowed. In particular, all
8919 the elements of an array of a tagged type should all be of
8920 the same type specified in the debugging info. No need to
8921 consult the object tag. */
1ed6ede0 8922 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8923
284614f0
JB
8924 /* Make sure we always create a new array type when dealing with
8925 packed array types, since we're going to fix-up the array
8926 type length and element bitsize a little further down. */
ad82864c 8927 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8928 result = type0;
14f9c5c9 8929 else
e9bb382b 8930 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8931 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8932 }
8933 else
8934 {
8935 int i;
8936 struct type *elt_type0;
8937
8938 elt_type0 = type0;
8939 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8941
8942 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8943 depend on the contents of the array in properly constructed
8944 debugging data. */
529cad9c
PH
8945 /* Create a fixed version of the array element type.
8946 We're not providing the address of an element here,
e1d5a0d2 8947 and thus the actual object value cannot be inspected to do
529cad9c
PH
8948 the conversion. This should not be a problem, since arrays of
8949 unconstrained objects are not allowed. In particular, all
8950 the elements of an array of a tagged type should all be of
8951 the same type specified in the debugging info. No need to
8952 consult the object tag. */
1ed6ede0
JB
8953 result =
8954 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8955
8956 elt_type0 = type0;
14f9c5c9 8957 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8958 {
8959 struct type *range_type =
28c85d6c 8960 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8961
e9bb382b 8962 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8963 result, range_type);
1ce677a4 8964 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8965 }
d2e4a39e 8966 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8967 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8968 }
8969
2e6fda7d
JB
8970 /* We want to preserve the type name. This can be useful when
8971 trying to get the type name of a value that has already been
8972 printed (for instance, if the user did "print VAR; whatis $". */
8973 TYPE_NAME (result) = TYPE_NAME (type0);
8974
ad82864c 8975 if (constrained_packed_array_p)
284614f0
JB
8976 {
8977 /* So far, the resulting type has been created as if the original
8978 type was a regular (non-packed) array type. As a result, the
8979 bitsize of the array elements needs to be set again, and the array
8980 length needs to be recomputed based on that bitsize. */
8981 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8982 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8983
8984 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8985 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8986 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8987 TYPE_LENGTH (result)++;
8988 }
8989
876cecd0 8990 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8991 return result;
d2e4a39e 8992}
14f9c5c9
AS
8993
8994
8995/* A standard type (containing no dynamically sized components)
8996 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8997 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8998 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8999 ADDRESS or in VALADDR contains these discriminants.
9000
1ed6ede0
JB
9001 If CHECK_TAG is not null, in the case of tagged types, this function
9002 attempts to locate the object's tag and use it to compute the actual
9003 type. However, when ADDRESS is null, we cannot use it to determine the
9004 location of the tag, and therefore compute the tagged type's actual type.
9005 So we return the tagged type without consulting the tag. */
529cad9c 9006
f192137b
JB
9007static struct type *
9008ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9009 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9010{
61ee279c 9011 type = ada_check_typedef (type);
8ecb59f8
TT
9012
9013 /* Only un-fixed types need to be handled here. */
9014 if (!HAVE_GNAT_AUX_INFO (type))
9015 return type;
9016
d2e4a39e
AS
9017 switch (TYPE_CODE (type))
9018 {
9019 default:
14f9c5c9 9020 return type;
d2e4a39e 9021 case TYPE_CODE_STRUCT:
4c4b4cd2 9022 {
76a01679 9023 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9024 struct type *fixed_record_type =
9025 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9026
529cad9c
PH
9027 /* If STATIC_TYPE is a tagged type and we know the object's address,
9028 then we can determine its tag, and compute the object's actual
0963b4bd 9029 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9030 type (the parent part of the record may have dynamic fields
9031 and the way the location of _tag is expressed may depend on
9032 them). */
529cad9c 9033
1ed6ede0 9034 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9035 {
b50d69b5
JG
9036 struct value *tag =
9037 value_tag_from_contents_and_address
9038 (fixed_record_type,
9039 valaddr,
9040 address);
9041 struct type *real_type = type_from_tag (tag);
9042 struct value *obj =
9043 value_from_contents_and_address (fixed_record_type,
9044 valaddr,
9045 address);
9f1f738a 9046 fixed_record_type = value_type (obj);
76a01679 9047 if (real_type != NULL)
b50d69b5
JG
9048 return to_fixed_record_type
9049 (real_type, NULL,
9050 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9051 }
4af88198
JB
9052
9053 /* Check to see if there is a parallel ___XVZ variable.
9054 If there is, then it provides the actual size of our type. */
9055 else if (ada_type_name (fixed_record_type) != NULL)
9056 {
0d5cff50 9057 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9058 char *xvz_name
9059 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9060 bool xvz_found = false;
4af88198
JB
9061 LONGEST size;
9062
88c15c34 9063 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 9064 try
eccab96d
JB
9065 {
9066 xvz_found = get_int_var_value (xvz_name, size);
9067 }
230d2906 9068 catch (const gdb_exception_error &except)
eccab96d
JB
9069 {
9070 /* We found the variable, but somehow failed to read
9071 its value. Rethrow the same error, but with a little
9072 bit more information, to help the user understand
9073 what went wrong (Eg: the variable might have been
9074 optimized out). */
9075 throw_error (except.error,
9076 _("unable to read value of %s (%s)"),
3d6e9d23 9077 xvz_name, except.what ());
eccab96d 9078 }
eccab96d
JB
9079
9080 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9081 {
9082 fixed_record_type = copy_type (fixed_record_type);
9083 TYPE_LENGTH (fixed_record_type) = size;
9084
9085 /* The FIXED_RECORD_TYPE may have be a stub. We have
9086 observed this when the debugging info is STABS, and
9087 apparently it is something that is hard to fix.
9088
9089 In practice, we don't need the actual type definition
9090 at all, because the presence of the XVZ variable allows us
9091 to assume that there must be a XVS type as well, which we
9092 should be able to use later, when we need the actual type
9093 definition.
9094
9095 In the meantime, pretend that the "fixed" type we are
9096 returning is NOT a stub, because this can cause trouble
9097 when using this type to create new types targeting it.
9098 Indeed, the associated creation routines often check
9099 whether the target type is a stub and will try to replace
0963b4bd 9100 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9101 might cause the new type to have the wrong size too.
9102 Consider the case of an array, for instance, where the size
9103 of the array is computed from the number of elements in
9104 our array multiplied by the size of its element. */
9105 TYPE_STUB (fixed_record_type) = 0;
9106 }
9107 }
1ed6ede0 9108 return fixed_record_type;
4c4b4cd2 9109 }
d2e4a39e 9110 case TYPE_CODE_ARRAY:
4c4b4cd2 9111 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9112 case TYPE_CODE_UNION:
9113 if (dval == NULL)
4c4b4cd2 9114 return type;
d2e4a39e 9115 else
4c4b4cd2 9116 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9117 }
14f9c5c9
AS
9118}
9119
f192137b
JB
9120/* The same as ada_to_fixed_type_1, except that it preserves the type
9121 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9122
9123 The typedef layer needs be preserved in order to differentiate between
9124 arrays and array pointers when both types are implemented using the same
9125 fat pointer. In the array pointer case, the pointer is encoded as
9126 a typedef of the pointer type. For instance, considering:
9127
9128 type String_Access is access String;
9129 S1 : String_Access := null;
9130
9131 To the debugger, S1 is defined as a typedef of type String. But
9132 to the user, it is a pointer. So if the user tries to print S1,
9133 we should not dereference the array, but print the array address
9134 instead.
9135
9136 If we didn't preserve the typedef layer, we would lose the fact that
9137 the type is to be presented as a pointer (needs de-reference before
9138 being printed). And we would also use the source-level type name. */
f192137b
JB
9139
9140struct type *
9141ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9142 CORE_ADDR address, struct value *dval, int check_tag)
9143
9144{
9145 struct type *fixed_type =
9146 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9147
96dbd2c1
JB
9148 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9149 then preserve the typedef layer.
9150
9151 Implementation note: We can only check the main-type portion of
9152 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9153 from TYPE now returns a type that has the same instance flags
9154 as TYPE. For instance, if TYPE is a "typedef const", and its
9155 target type is a "struct", then the typedef elimination will return
9156 a "const" version of the target type. See check_typedef for more
9157 details about how the typedef layer elimination is done.
9158
9159 brobecker/2010-11-19: It seems to me that the only case where it is
9160 useful to preserve the typedef layer is when dealing with fat pointers.
9161 Perhaps, we could add a check for that and preserve the typedef layer
9162 only in that situation. But this seems unecessary so far, probably
9163 because we call check_typedef/ada_check_typedef pretty much everywhere.
9164 */
f192137b 9165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9166 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9167 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9168 return type;
9169
9170 return fixed_type;
9171}
9172
14f9c5c9 9173/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9174 TYPE0, but based on no runtime data. */
14f9c5c9 9175
d2e4a39e
AS
9176static struct type *
9177to_static_fixed_type (struct type *type0)
14f9c5c9 9178{
d2e4a39e 9179 struct type *type;
14f9c5c9
AS
9180
9181 if (type0 == NULL)
9182 return NULL;
9183
876cecd0 9184 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9185 return type0;
9186
61ee279c 9187 type0 = ada_check_typedef (type0);
d2e4a39e 9188
14f9c5c9
AS
9189 switch (TYPE_CODE (type0))
9190 {
9191 default:
9192 return type0;
9193 case TYPE_CODE_STRUCT:
9194 type = dynamic_template_type (type0);
d2e4a39e 9195 if (type != NULL)
4c4b4cd2
PH
9196 return template_to_static_fixed_type (type);
9197 else
9198 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9199 case TYPE_CODE_UNION:
9200 type = ada_find_parallel_type (type0, "___XVU");
9201 if (type != NULL)
4c4b4cd2
PH
9202 return template_to_static_fixed_type (type);
9203 else
9204 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9205 }
9206}
9207
4c4b4cd2
PH
9208/* A static approximation of TYPE with all type wrappers removed. */
9209
d2e4a39e
AS
9210static struct type *
9211static_unwrap_type (struct type *type)
14f9c5c9
AS
9212{
9213 if (ada_is_aligner_type (type))
9214 {
61ee279c 9215 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9216 if (ada_type_name (type1) == NULL)
4c4b4cd2 9217 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9218
9219 return static_unwrap_type (type1);
9220 }
d2e4a39e 9221 else
14f9c5c9 9222 {
d2e4a39e 9223 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9224
d2e4a39e 9225 if (raw_real_type == type)
4c4b4cd2 9226 return type;
14f9c5c9 9227 else
4c4b4cd2 9228 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9229 }
9230}
9231
9232/* In some cases, incomplete and private types require
4c4b4cd2 9233 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9234 type Foo;
9235 type FooP is access Foo;
9236 V: FooP;
9237 type Foo is array ...;
4c4b4cd2 9238 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9239 cross-references to such types, we instead substitute for FooP a
9240 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9241 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9242
9243/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9244 exists, otherwise TYPE. */
9245
d2e4a39e 9246struct type *
61ee279c 9247ada_check_typedef (struct type *type)
14f9c5c9 9248{
727e3d2e
JB
9249 if (type == NULL)
9250 return NULL;
9251
736ade86
XR
9252 /* If our type is an access to an unconstrained array, which is encoded
9253 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9254 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9255 what allows us to distinguish between fat pointers that represent
9256 array types, and fat pointers that represent array access types
9257 (in both cases, the compiler implements them as fat pointers). */
736ade86 9258 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9259 return type;
9260
f168693b 9261 type = check_typedef (type);
14f9c5c9 9262 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9263 || !TYPE_STUB (type)
e86ca25f 9264 || TYPE_NAME (type) == NULL)
14f9c5c9 9265 return type;
d2e4a39e 9266 else
14f9c5c9 9267 {
e86ca25f 9268 const char *name = TYPE_NAME (type);
d2e4a39e 9269 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9270
05e522ef
JB
9271 if (type1 == NULL)
9272 return type;
9273
9274 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9275 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9276 types, only for the typedef-to-array types). If that's the case,
9277 strip the typedef layer. */
9278 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9279 type1 = ada_check_typedef (type1);
9280
9281 return type1;
14f9c5c9
AS
9282 }
9283}
9284
9285/* A value representing the data at VALADDR/ADDRESS as described by
9286 type TYPE0, but with a standard (static-sized) type that correctly
9287 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9288 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9289 creation of struct values]. */
14f9c5c9 9290
4c4b4cd2
PH
9291static struct value *
9292ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9293 struct value *val0)
14f9c5c9 9294{
1ed6ede0 9295 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9296
14f9c5c9
AS
9297 if (type == type0 && val0 != NULL)
9298 return val0;
cc0e770c
JB
9299
9300 if (VALUE_LVAL (val0) != lval_memory)
9301 {
9302 /* Our value does not live in memory; it could be a convenience
9303 variable, for instance. Create a not_lval value using val0's
9304 contents. */
9305 return value_from_contents (type, value_contents (val0));
9306 }
9307
9308 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9309}
9310
9311/* A value representing VAL, but with a standard (static-sized) type
9312 that correctly describes it. Does not necessarily create a new
9313 value. */
9314
0c3acc09 9315struct value *
4c4b4cd2
PH
9316ada_to_fixed_value (struct value *val)
9317{
c48db5ca 9318 val = unwrap_value (val);
d8ce9127 9319 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9320 return val;
14f9c5c9 9321}
d2e4a39e 9322\f
14f9c5c9 9323
14f9c5c9
AS
9324/* Attributes */
9325
4c4b4cd2
PH
9326/* Table mapping attribute numbers to names.
9327 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9328
d2e4a39e 9329static const char *attribute_names[] = {
14f9c5c9
AS
9330 "<?>",
9331
d2e4a39e 9332 "first",
14f9c5c9
AS
9333 "last",
9334 "length",
9335 "image",
14f9c5c9
AS
9336 "max",
9337 "min",
4c4b4cd2
PH
9338 "modulus",
9339 "pos",
9340 "size",
9341 "tag",
14f9c5c9 9342 "val",
14f9c5c9
AS
9343 0
9344};
9345
d2e4a39e 9346const char *
4c4b4cd2 9347ada_attribute_name (enum exp_opcode n)
14f9c5c9 9348{
4c4b4cd2
PH
9349 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9350 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9351 else
9352 return attribute_names[0];
9353}
9354
4c4b4cd2 9355/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9356
4c4b4cd2
PH
9357static LONGEST
9358pos_atr (struct value *arg)
14f9c5c9 9359{
24209737
PH
9360 struct value *val = coerce_ref (arg);
9361 struct type *type = value_type (val);
aa715135 9362 LONGEST result;
14f9c5c9 9363
d2e4a39e 9364 if (!discrete_type_p (type))
323e0a4a 9365 error (_("'POS only defined on discrete types"));
14f9c5c9 9366
aa715135
JG
9367 if (!discrete_position (type, value_as_long (val), &result))
9368 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9369
aa715135 9370 return result;
4c4b4cd2
PH
9371}
9372
9373static struct value *
3cb382c9 9374value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9375{
3cb382c9 9376 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9377}
9378
4c4b4cd2 9379/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9380
d2e4a39e
AS
9381static struct value *
9382value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9383{
d2e4a39e 9384 if (!discrete_type_p (type))
323e0a4a 9385 error (_("'VAL only defined on discrete types"));
df407dfe 9386 if (!integer_type_p (value_type (arg)))
323e0a4a 9387 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9388
9389 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9390 {
9391 long pos = value_as_long (arg);
5b4ee69b 9392
14f9c5c9 9393 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9394 error (_("argument to 'VAL out of range"));
14e75d8e 9395 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9396 }
9397 else
9398 return value_from_longest (type, value_as_long (arg));
9399}
14f9c5c9 9400\f
d2e4a39e 9401
4c4b4cd2 9402 /* Evaluation */
14f9c5c9 9403
4c4b4cd2
PH
9404/* True if TYPE appears to be an Ada character type.
9405 [At the moment, this is true only for Character and Wide_Character;
9406 It is a heuristic test that could stand improvement]. */
14f9c5c9 9407
d2e4a39e
AS
9408int
9409ada_is_character_type (struct type *type)
14f9c5c9 9410{
7b9f71f2
JB
9411 const char *name;
9412
9413 /* If the type code says it's a character, then assume it really is,
9414 and don't check any further. */
9415 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9416 return 1;
9417
9418 /* Otherwise, assume it's a character type iff it is a discrete type
9419 with a known character type name. */
9420 name = ada_type_name (type);
9421 return (name != NULL
9422 && (TYPE_CODE (type) == TYPE_CODE_INT
9423 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9424 && (strcmp (name, "character") == 0
9425 || strcmp (name, "wide_character") == 0
5a517ebd 9426 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9427 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9428}
9429
4c4b4cd2 9430/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9431
9432int
ebf56fd3 9433ada_is_string_type (struct type *type)
14f9c5c9 9434{
61ee279c 9435 type = ada_check_typedef (type);
d2e4a39e 9436 if (type != NULL
14f9c5c9 9437 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9438 && (ada_is_simple_array_type (type)
9439 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9440 && ada_array_arity (type) == 1)
9441 {
9442 struct type *elttype = ada_array_element_type (type, 1);
9443
9444 return ada_is_character_type (elttype);
9445 }
d2e4a39e 9446 else
14f9c5c9
AS
9447 return 0;
9448}
9449
5bf03f13
JB
9450/* The compiler sometimes provides a parallel XVS type for a given
9451 PAD type. Normally, it is safe to follow the PAD type directly,
9452 but older versions of the compiler have a bug that causes the offset
9453 of its "F" field to be wrong. Following that field in that case
9454 would lead to incorrect results, but this can be worked around
9455 by ignoring the PAD type and using the associated XVS type instead.
9456
9457 Set to True if the debugger should trust the contents of PAD types.
9458 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9459static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9460
9461/* True if TYPE is a struct type introduced by the compiler to force the
9462 alignment of a value. Such types have a single field with a
4c4b4cd2 9463 distinctive name. */
14f9c5c9
AS
9464
9465int
ebf56fd3 9466ada_is_aligner_type (struct type *type)
14f9c5c9 9467{
61ee279c 9468 type = ada_check_typedef (type);
714e53ab 9469
5bf03f13 9470 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9471 return 0;
9472
14f9c5c9 9473 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9474 && TYPE_NFIELDS (type) == 1
9475 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9476}
9477
9478/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9479 the parallel type. */
14f9c5c9 9480
d2e4a39e
AS
9481struct type *
9482ada_get_base_type (struct type *raw_type)
14f9c5c9 9483{
d2e4a39e
AS
9484 struct type *real_type_namer;
9485 struct type *raw_real_type;
14f9c5c9
AS
9486
9487 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9488 return raw_type;
9489
284614f0
JB
9490 if (ada_is_aligner_type (raw_type))
9491 /* The encoding specifies that we should always use the aligner type.
9492 So, even if this aligner type has an associated XVS type, we should
9493 simply ignore it.
9494
9495 According to the compiler gurus, an XVS type parallel to an aligner
9496 type may exist because of a stabs limitation. In stabs, aligner
9497 types are empty because the field has a variable-sized type, and
9498 thus cannot actually be used as an aligner type. As a result,
9499 we need the associated parallel XVS type to decode the type.
9500 Since the policy in the compiler is to not change the internal
9501 representation based on the debugging info format, we sometimes
9502 end up having a redundant XVS type parallel to the aligner type. */
9503 return raw_type;
9504
14f9c5c9 9505 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9506 if (real_type_namer == NULL
14f9c5c9
AS
9507 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9508 || TYPE_NFIELDS (real_type_namer) != 1)
9509 return raw_type;
9510
f80d3ff2
JB
9511 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9512 {
9513 /* This is an older encoding form where the base type needs to be
9514 looked up by name. We prefer the newer enconding because it is
9515 more efficient. */
9516 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9517 if (raw_real_type == NULL)
9518 return raw_type;
9519 else
9520 return raw_real_type;
9521 }
9522
9523 /* The field in our XVS type is a reference to the base type. */
9524 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9525}
14f9c5c9 9526
4c4b4cd2 9527/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9528
d2e4a39e
AS
9529struct type *
9530ada_aligned_type (struct type *type)
14f9c5c9
AS
9531{
9532 if (ada_is_aligner_type (type))
9533 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9534 else
9535 return ada_get_base_type (type);
9536}
9537
9538
9539/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9540 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9541
fc1a4b47
AC
9542const gdb_byte *
9543ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9544{
d2e4a39e 9545 if (ada_is_aligner_type (type))
14f9c5c9 9546 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9547 valaddr +
9548 TYPE_FIELD_BITPOS (type,
9549 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9550 else
9551 return valaddr;
9552}
9553
4c4b4cd2
PH
9554
9555
14f9c5c9 9556/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9557 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9558const char *
9559ada_enum_name (const char *name)
14f9c5c9 9560{
4c4b4cd2
PH
9561 static char *result;
9562 static size_t result_len = 0;
e6a959d6 9563 const char *tmp;
14f9c5c9 9564
4c4b4cd2
PH
9565 /* First, unqualify the enumeration name:
9566 1. Search for the last '.' character. If we find one, then skip
177b42fe 9567 all the preceding characters, the unqualified name starts
76a01679 9568 right after that dot.
4c4b4cd2 9569 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9570 translates dots into "__". Search forward for double underscores,
9571 but stop searching when we hit an overloading suffix, which is
9572 of the form "__" followed by digits. */
4c4b4cd2 9573
c3e5cd34
PH
9574 tmp = strrchr (name, '.');
9575 if (tmp != NULL)
4c4b4cd2
PH
9576 name = tmp + 1;
9577 else
14f9c5c9 9578 {
4c4b4cd2
PH
9579 while ((tmp = strstr (name, "__")) != NULL)
9580 {
9581 if (isdigit (tmp[2]))
9582 break;
9583 else
9584 name = tmp + 2;
9585 }
14f9c5c9
AS
9586 }
9587
9588 if (name[0] == 'Q')
9589 {
14f9c5c9 9590 int v;
5b4ee69b 9591
14f9c5c9 9592 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9593 {
9594 if (sscanf (name + 2, "%x", &v) != 1)
9595 return name;
9596 }
14f9c5c9 9597 else
4c4b4cd2 9598 return name;
14f9c5c9 9599
4c4b4cd2 9600 GROW_VECT (result, result_len, 16);
14f9c5c9 9601 if (isascii (v) && isprint (v))
88c15c34 9602 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9603 else if (name[1] == 'U')
88c15c34 9604 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9605 else
88c15c34 9606 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9607
9608 return result;
9609 }
d2e4a39e 9610 else
4c4b4cd2 9611 {
c3e5cd34
PH
9612 tmp = strstr (name, "__");
9613 if (tmp == NULL)
9614 tmp = strstr (name, "$");
9615 if (tmp != NULL)
4c4b4cd2
PH
9616 {
9617 GROW_VECT (result, result_len, tmp - name + 1);
9618 strncpy (result, name, tmp - name);
9619 result[tmp - name] = '\0';
9620 return result;
9621 }
9622
9623 return name;
9624 }
14f9c5c9
AS
9625}
9626
14f9c5c9
AS
9627/* Evaluate the subexpression of EXP starting at *POS as for
9628 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9629 expression. */
14f9c5c9 9630
d2e4a39e
AS
9631static struct value *
9632evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9633{
4b27a620 9634 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9635}
9636
9637/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9638 value it wraps. */
14f9c5c9 9639
d2e4a39e
AS
9640static struct value *
9641unwrap_value (struct value *val)
14f9c5c9 9642{
df407dfe 9643 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9644
14f9c5c9
AS
9645 if (ada_is_aligner_type (type))
9646 {
de4d072f 9647 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9648 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9649
14f9c5c9 9650 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9651 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9652
9653 return unwrap_value (v);
9654 }
d2e4a39e 9655 else
14f9c5c9 9656 {
d2e4a39e 9657 struct type *raw_real_type =
61ee279c 9658 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9659
5bf03f13
JB
9660 /* If there is no parallel XVS or XVE type, then the value is
9661 already unwrapped. Return it without further modification. */
9662 if ((type == raw_real_type)
9663 && ada_find_parallel_type (type, "___XVE") == NULL)
9664 return val;
14f9c5c9 9665
d2e4a39e 9666 return
4c4b4cd2
PH
9667 coerce_unspec_val_to_type
9668 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9669 value_address (val),
1ed6ede0 9670 NULL, 1));
14f9c5c9
AS
9671 }
9672}
d2e4a39e
AS
9673
9674static struct value *
50eff16b 9675cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9676{
50eff16b
UW
9677 struct value *scale = ada_scaling_factor (value_type (arg));
9678 arg = value_cast (value_type (scale), arg);
14f9c5c9 9679
50eff16b
UW
9680 arg = value_binop (arg, scale, BINOP_MUL);
9681 return value_cast (type, arg);
14f9c5c9
AS
9682}
9683
d2e4a39e 9684static struct value *
50eff16b 9685cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9686{
50eff16b
UW
9687 if (type == value_type (arg))
9688 return arg;
5b4ee69b 9689
50eff16b
UW
9690 struct value *scale = ada_scaling_factor (type);
9691 if (ada_is_fixed_point_type (value_type (arg)))
9692 arg = cast_from_fixed (value_type (scale), arg);
9693 else
9694 arg = value_cast (value_type (scale), arg);
9695
9696 arg = value_binop (arg, scale, BINOP_DIV);
9697 return value_cast (type, arg);
14f9c5c9
AS
9698}
9699
d99dcf51
JB
9700/* Given two array types T1 and T2, return nonzero iff both arrays
9701 contain the same number of elements. */
9702
9703static int
9704ada_same_array_size_p (struct type *t1, struct type *t2)
9705{
9706 LONGEST lo1, hi1, lo2, hi2;
9707
9708 /* Get the array bounds in order to verify that the size of
9709 the two arrays match. */
9710 if (!get_array_bounds (t1, &lo1, &hi1)
9711 || !get_array_bounds (t2, &lo2, &hi2))
9712 error (_("unable to determine array bounds"));
9713
9714 /* To make things easier for size comparison, normalize a bit
9715 the case of empty arrays by making sure that the difference
9716 between upper bound and lower bound is always -1. */
9717 if (lo1 > hi1)
9718 hi1 = lo1 - 1;
9719 if (lo2 > hi2)
9720 hi2 = lo2 - 1;
9721
9722 return (hi1 - lo1 == hi2 - lo2);
9723}
9724
9725/* Assuming that VAL is an array of integrals, and TYPE represents
9726 an array with the same number of elements, but with wider integral
9727 elements, return an array "casted" to TYPE. In practice, this
9728 means that the returned array is built by casting each element
9729 of the original array into TYPE's (wider) element type. */
9730
9731static struct value *
9732ada_promote_array_of_integrals (struct type *type, struct value *val)
9733{
9734 struct type *elt_type = TYPE_TARGET_TYPE (type);
9735 LONGEST lo, hi;
9736 struct value *res;
9737 LONGEST i;
9738
9739 /* Verify that both val and type are arrays of scalars, and
9740 that the size of val's elements is smaller than the size
9741 of type's element. */
9742 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9743 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9744 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9745 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9746 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9747 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9748
9749 if (!get_array_bounds (type, &lo, &hi))
9750 error (_("unable to determine array bounds"));
9751
9752 res = allocate_value (type);
9753
9754 /* Promote each array element. */
9755 for (i = 0; i < hi - lo + 1; i++)
9756 {
9757 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9758
9759 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9760 value_contents_all (elt), TYPE_LENGTH (elt_type));
9761 }
9762
9763 return res;
9764}
9765
4c4b4cd2
PH
9766/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9767 return the converted value. */
9768
d2e4a39e
AS
9769static struct value *
9770coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9771{
df407dfe 9772 struct type *type2 = value_type (val);
5b4ee69b 9773
14f9c5c9
AS
9774 if (type == type2)
9775 return val;
9776
61ee279c
PH
9777 type2 = ada_check_typedef (type2);
9778 type = ada_check_typedef (type);
14f9c5c9 9779
d2e4a39e
AS
9780 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9781 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9782 {
9783 val = ada_value_ind (val);
df407dfe 9784 type2 = value_type (val);
14f9c5c9
AS
9785 }
9786
d2e4a39e 9787 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9788 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9789 {
d99dcf51
JB
9790 if (!ada_same_array_size_p (type, type2))
9791 error (_("cannot assign arrays of different length"));
9792
9793 if (is_integral_type (TYPE_TARGET_TYPE (type))
9794 && is_integral_type (TYPE_TARGET_TYPE (type2))
9795 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9796 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9797 {
9798 /* Allow implicit promotion of the array elements to
9799 a wider type. */
9800 return ada_promote_array_of_integrals (type, val);
9801 }
9802
9803 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9804 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9805 error (_("Incompatible types in assignment"));
04624583 9806 deprecated_set_value_type (val, type);
14f9c5c9 9807 }
d2e4a39e 9808 return val;
14f9c5c9
AS
9809}
9810
4c4b4cd2
PH
9811static struct value *
9812ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9813{
9814 struct value *val;
9815 struct type *type1, *type2;
9816 LONGEST v, v1, v2;
9817
994b9211
AC
9818 arg1 = coerce_ref (arg1);
9819 arg2 = coerce_ref (arg2);
18af8284
JB
9820 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9821 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9822
76a01679
JB
9823 if (TYPE_CODE (type1) != TYPE_CODE_INT
9824 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9825 return value_binop (arg1, arg2, op);
9826
76a01679 9827 switch (op)
4c4b4cd2
PH
9828 {
9829 case BINOP_MOD:
9830 case BINOP_DIV:
9831 case BINOP_REM:
9832 break;
9833 default:
9834 return value_binop (arg1, arg2, op);
9835 }
9836
9837 v2 = value_as_long (arg2);
9838 if (v2 == 0)
323e0a4a 9839 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9840
9841 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9842 return value_binop (arg1, arg2, op);
9843
9844 v1 = value_as_long (arg1);
9845 switch (op)
9846 {
9847 case BINOP_DIV:
9848 v = v1 / v2;
76a01679
JB
9849 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9850 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9851 break;
9852 case BINOP_REM:
9853 v = v1 % v2;
76a01679
JB
9854 if (v * v1 < 0)
9855 v -= v2;
4c4b4cd2
PH
9856 break;
9857 default:
9858 /* Should not reach this point. */
9859 v = 0;
9860 }
9861
9862 val = allocate_value (type1);
990a07ab 9863 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9864 TYPE_LENGTH (value_type (val)),
9865 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9866 return val;
9867}
9868
9869static int
9870ada_value_equal (struct value *arg1, struct value *arg2)
9871{
df407dfe
AC
9872 if (ada_is_direct_array_type (value_type (arg1))
9873 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9874 {
79e8fcaa
JB
9875 struct type *arg1_type, *arg2_type;
9876
f58b38bf
JB
9877 /* Automatically dereference any array reference before
9878 we attempt to perform the comparison. */
9879 arg1 = ada_coerce_ref (arg1);
9880 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9881
4c4b4cd2
PH
9882 arg1 = ada_coerce_to_simple_array (arg1);
9883 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9884
9885 arg1_type = ada_check_typedef (value_type (arg1));
9886 arg2_type = ada_check_typedef (value_type (arg2));
9887
9888 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9889 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9890 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9891 /* FIXME: The following works only for types whose
76a01679
JB
9892 representations use all bits (no padding or undefined bits)
9893 and do not have user-defined equality. */
79e8fcaa
JB
9894 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9895 && memcmp (value_contents (arg1), value_contents (arg2),
9896 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9897 }
9898 return value_equal (arg1, arg2);
9899}
9900
52ce6436
PH
9901/* Total number of component associations in the aggregate starting at
9902 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9903 OP_AGGREGATE. */
52ce6436
PH
9904
9905static int
9906num_component_specs (struct expression *exp, int pc)
9907{
9908 int n, m, i;
5b4ee69b 9909
52ce6436
PH
9910 m = exp->elts[pc + 1].longconst;
9911 pc += 3;
9912 n = 0;
9913 for (i = 0; i < m; i += 1)
9914 {
9915 switch (exp->elts[pc].opcode)
9916 {
9917 default:
9918 n += 1;
9919 break;
9920 case OP_CHOICES:
9921 n += exp->elts[pc + 1].longconst;
9922 break;
9923 }
9924 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9925 }
9926 return n;
9927}
9928
9929/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9930 component of LHS (a simple array or a record), updating *POS past
9931 the expression, assuming that LHS is contained in CONTAINER. Does
9932 not modify the inferior's memory, nor does it modify LHS (unless
9933 LHS == CONTAINER). */
9934
9935static void
9936assign_component (struct value *container, struct value *lhs, LONGEST index,
9937 struct expression *exp, int *pos)
9938{
9939 struct value *mark = value_mark ();
9940 struct value *elt;
0e2da9f0 9941 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9942
0e2da9f0 9943 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9944 {
22601c15
UW
9945 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9946 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9947
52ce6436
PH
9948 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9949 }
9950 else
9951 {
9952 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9953 elt = ada_to_fixed_value (elt);
52ce6436
PH
9954 }
9955
9956 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9957 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9958 else
9959 value_assign_to_component (container, elt,
9960 ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962
9963 value_free_to_mark (mark);
9964}
9965
9966/* Assuming that LHS represents an lvalue having a record or array
9967 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9968 of that aggregate's value to LHS, advancing *POS past the
9969 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9970 lvalue containing LHS (possibly LHS itself). Does not modify
9971 the inferior's memory, nor does it modify the contents of
0963b4bd 9972 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9973
9974static struct value *
9975assign_aggregate (struct value *container,
9976 struct value *lhs, struct expression *exp,
9977 int *pos, enum noside noside)
9978{
9979 struct type *lhs_type;
9980 int n = exp->elts[*pos+1].longconst;
9981 LONGEST low_index, high_index;
9982 int num_specs;
9983 LONGEST *indices;
9984 int max_indices, num_indices;
52ce6436 9985 int i;
52ce6436
PH
9986
9987 *pos += 3;
9988 if (noside != EVAL_NORMAL)
9989 {
52ce6436
PH
9990 for (i = 0; i < n; i += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, noside);
9992 return container;
9993 }
9994
9995 container = ada_coerce_ref (container);
9996 if (ada_is_direct_array_type (value_type (container)))
9997 container = ada_coerce_to_simple_array (container);
9998 lhs = ada_coerce_ref (lhs);
9999 if (!deprecated_value_modifiable (lhs))
10000 error (_("Left operand of assignment is not a modifiable lvalue."));
10001
0e2da9f0 10002 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10003 if (ada_is_direct_array_type (lhs_type))
10004 {
10005 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10006 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10007 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10008 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10009 }
10010 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10011 {
10012 low_index = 0;
10013 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10014 }
10015 else
10016 error (_("Left-hand side must be array or record."));
10017
10018 num_specs = num_component_specs (exp, *pos - 3);
10019 max_indices = 4 * num_specs + 4;
8d749320 10020 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10021 indices[0] = indices[1] = low_index - 1;
10022 indices[2] = indices[3] = high_index + 1;
10023 num_indices = 4;
10024
10025 for (i = 0; i < n; i += 1)
10026 {
10027 switch (exp->elts[*pos].opcode)
10028 {
1fbf5ada
JB
10029 case OP_CHOICES:
10030 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10031 &num_indices, max_indices,
10032 low_index, high_index);
10033 break;
10034 case OP_POSITIONAL:
10035 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10036 &num_indices, max_indices,
10037 low_index, high_index);
1fbf5ada
JB
10038 break;
10039 case OP_OTHERS:
10040 if (i != n-1)
10041 error (_("Misplaced 'others' clause"));
10042 aggregate_assign_others (container, lhs, exp, pos, indices,
10043 num_indices, low_index, high_index);
10044 break;
10045 default:
10046 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10047 }
10048 }
10049
10050 return container;
10051}
10052
10053/* Assign into the component of LHS indexed by the OP_POSITIONAL
10054 construct at *POS, updating *POS past the construct, given that
10055 the positions are relative to lower bound LOW, where HIGH is the
10056 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10057 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10058 assign_aggregate. */
52ce6436
PH
10059static void
10060aggregate_assign_positional (struct value *container,
10061 struct value *lhs, struct expression *exp,
10062 int *pos, LONGEST *indices, int *num_indices,
10063 int max_indices, LONGEST low, LONGEST high)
10064{
10065 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10066
10067 if (ind - 1 == high)
e1d5a0d2 10068 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10069 if (ind <= high)
10070 {
10071 add_component_interval (ind, ind, indices, num_indices, max_indices);
10072 *pos += 3;
10073 assign_component (container, lhs, ind, exp, pos);
10074 }
10075 else
10076 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10077}
10078
10079/* Assign into the components of LHS indexed by the OP_CHOICES
10080 construct at *POS, updating *POS past the construct, given that
10081 the allowable indices are LOW..HIGH. Record the indices assigned
10082 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10083 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10084static void
10085aggregate_assign_from_choices (struct value *container,
10086 struct value *lhs, struct expression *exp,
10087 int *pos, LONGEST *indices, int *num_indices,
10088 int max_indices, LONGEST low, LONGEST high)
10089{
10090 int j;
10091 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10092 int choice_pos, expr_pc;
10093 int is_array = ada_is_direct_array_type (value_type (lhs));
10094
10095 choice_pos = *pos += 3;
10096
10097 for (j = 0; j < n_choices; j += 1)
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 expr_pc = *pos;
10100 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10101
10102 for (j = 0; j < n_choices; j += 1)
10103 {
10104 LONGEST lower, upper;
10105 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10106
52ce6436
PH
10107 if (op == OP_DISCRETE_RANGE)
10108 {
10109 choice_pos += 1;
10110 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10111 EVAL_NORMAL));
10112 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10113 EVAL_NORMAL));
10114 }
10115 else if (is_array)
10116 {
10117 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10118 EVAL_NORMAL));
10119 upper = lower;
10120 }
10121 else
10122 {
10123 int ind;
0d5cff50 10124 const char *name;
5b4ee69b 10125
52ce6436
PH
10126 switch (op)
10127 {
10128 case OP_NAME:
10129 name = &exp->elts[choice_pos + 2].string;
10130 break;
10131 case OP_VAR_VALUE:
10132 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10133 break;
10134 default:
10135 error (_("Invalid record component association."));
10136 }
10137 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10138 ind = 0;
10139 if (! find_struct_field (name, value_type (lhs), 0,
10140 NULL, NULL, NULL, NULL, &ind))
10141 error (_("Unknown component name: %s."), name);
10142 lower = upper = ind;
10143 }
10144
10145 if (lower <= upper && (lower < low || upper > high))
10146 error (_("Index in component association out of bounds."));
10147
10148 add_component_interval (lower, upper, indices, num_indices,
10149 max_indices);
10150 while (lower <= upper)
10151 {
10152 int pos1;
5b4ee69b 10153
52ce6436
PH
10154 pos1 = expr_pc;
10155 assign_component (container, lhs, lower, exp, &pos1);
10156 lower += 1;
10157 }
10158 }
10159}
10160
10161/* Assign the value of the expression in the OP_OTHERS construct in
10162 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10163 have not been previously assigned. The index intervals already assigned
10164 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10165 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10166static void
10167aggregate_assign_others (struct value *container,
10168 struct value *lhs, struct expression *exp,
10169 int *pos, LONGEST *indices, int num_indices,
10170 LONGEST low, LONGEST high)
10171{
10172 int i;
5ce64950 10173 int expr_pc = *pos + 1;
52ce6436
PH
10174
10175 for (i = 0; i < num_indices - 2; i += 2)
10176 {
10177 LONGEST ind;
5b4ee69b 10178
52ce6436
PH
10179 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10180 {
5ce64950 10181 int localpos;
5b4ee69b 10182
5ce64950
MS
10183 localpos = expr_pc;
10184 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10185 }
10186 }
10187 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10188}
10189
10190/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10191 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10192 modifying *SIZE as needed. It is an error if *SIZE exceeds
10193 MAX_SIZE. The resulting intervals do not overlap. */
10194static void
10195add_component_interval (LONGEST low, LONGEST high,
10196 LONGEST* indices, int *size, int max_size)
10197{
10198 int i, j;
5b4ee69b 10199
52ce6436
PH
10200 for (i = 0; i < *size; i += 2) {
10201 if (high >= indices[i] && low <= indices[i + 1])
10202 {
10203 int kh;
5b4ee69b 10204
52ce6436
PH
10205 for (kh = i + 2; kh < *size; kh += 2)
10206 if (high < indices[kh])
10207 break;
10208 if (low < indices[i])
10209 indices[i] = low;
10210 indices[i + 1] = indices[kh - 1];
10211 if (high > indices[i + 1])
10212 indices[i + 1] = high;
10213 memcpy (indices + i + 2, indices + kh, *size - kh);
10214 *size -= kh - i - 2;
10215 return;
10216 }
10217 else if (high < indices[i])
10218 break;
10219 }
10220
10221 if (*size == max_size)
10222 error (_("Internal error: miscounted aggregate components."));
10223 *size += 2;
10224 for (j = *size-1; j >= i+2; j -= 1)
10225 indices[j] = indices[j - 2];
10226 indices[i] = low;
10227 indices[i + 1] = high;
10228}
10229
6e48bd2c
JB
10230/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10231 is different. */
10232
10233static struct value *
b7e22850 10234ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10235{
10236 if (type == ada_check_typedef (value_type (arg2)))
10237 return arg2;
10238
10239 if (ada_is_fixed_point_type (type))
95f39a5b 10240 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10241
10242 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10243 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10244
10245 return value_cast (type, arg2);
10246}
10247
284614f0
JB
10248/* Evaluating Ada expressions, and printing their result.
10249 ------------------------------------------------------
10250
21649b50
JB
10251 1. Introduction:
10252 ----------------
10253
284614f0
JB
10254 We usually evaluate an Ada expression in order to print its value.
10255 We also evaluate an expression in order to print its type, which
10256 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10257 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10258 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10259 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10260 similar.
10261
10262 Evaluating expressions is a little more complicated for Ada entities
10263 than it is for entities in languages such as C. The main reason for
10264 this is that Ada provides types whose definition might be dynamic.
10265 One example of such types is variant records. Or another example
10266 would be an array whose bounds can only be known at run time.
10267
10268 The following description is a general guide as to what should be
10269 done (and what should NOT be done) in order to evaluate an expression
10270 involving such types, and when. This does not cover how the semantic
10271 information is encoded by GNAT as this is covered separatly. For the
10272 document used as the reference for the GNAT encoding, see exp_dbug.ads
10273 in the GNAT sources.
10274
10275 Ideally, we should embed each part of this description next to its
10276 associated code. Unfortunately, the amount of code is so vast right
10277 now that it's hard to see whether the code handling a particular
10278 situation might be duplicated or not. One day, when the code is
10279 cleaned up, this guide might become redundant with the comments
10280 inserted in the code, and we might want to remove it.
10281
21649b50
JB
10282 2. ``Fixing'' an Entity, the Simple Case:
10283 -----------------------------------------
10284
284614f0
JB
10285 When evaluating Ada expressions, the tricky issue is that they may
10286 reference entities whose type contents and size are not statically
10287 known. Consider for instance a variant record:
10288
10289 type Rec (Empty : Boolean := True) is record
10290 case Empty is
10291 when True => null;
10292 when False => Value : Integer;
10293 end case;
10294 end record;
10295 Yes : Rec := (Empty => False, Value => 1);
10296 No : Rec := (empty => True);
10297
10298 The size and contents of that record depends on the value of the
10299 descriminant (Rec.Empty). At this point, neither the debugging
10300 information nor the associated type structure in GDB are able to
10301 express such dynamic types. So what the debugger does is to create
10302 "fixed" versions of the type that applies to the specific object.
10303 We also informally refer to this opperation as "fixing" an object,
10304 which means creating its associated fixed type.
10305
10306 Example: when printing the value of variable "Yes" above, its fixed
10307 type would look like this:
10308
10309 type Rec is record
10310 Empty : Boolean;
10311 Value : Integer;
10312 end record;
10313
10314 On the other hand, if we printed the value of "No", its fixed type
10315 would become:
10316
10317 type Rec is record
10318 Empty : Boolean;
10319 end record;
10320
10321 Things become a little more complicated when trying to fix an entity
10322 with a dynamic type that directly contains another dynamic type,
10323 such as an array of variant records, for instance. There are
10324 two possible cases: Arrays, and records.
10325
21649b50
JB
10326 3. ``Fixing'' Arrays:
10327 ---------------------
10328
10329 The type structure in GDB describes an array in terms of its bounds,
10330 and the type of its elements. By design, all elements in the array
10331 have the same type and we cannot represent an array of variant elements
10332 using the current type structure in GDB. When fixing an array,
10333 we cannot fix the array element, as we would potentially need one
10334 fixed type per element of the array. As a result, the best we can do
10335 when fixing an array is to produce an array whose bounds and size
10336 are correct (allowing us to read it from memory), but without having
10337 touched its element type. Fixing each element will be done later,
10338 when (if) necessary.
10339
10340 Arrays are a little simpler to handle than records, because the same
10341 amount of memory is allocated for each element of the array, even if
1b536f04 10342 the amount of space actually used by each element differs from element
21649b50 10343 to element. Consider for instance the following array of type Rec:
284614f0
JB
10344
10345 type Rec_Array is array (1 .. 2) of Rec;
10346
1b536f04
JB
10347 The actual amount of memory occupied by each element might be different
10348 from element to element, depending on the value of their discriminant.
21649b50 10349 But the amount of space reserved for each element in the array remains
1b536f04 10350 fixed regardless. So we simply need to compute that size using
21649b50
JB
10351 the debugging information available, from which we can then determine
10352 the array size (we multiply the number of elements of the array by
10353 the size of each element).
10354
10355 The simplest case is when we have an array of a constrained element
10356 type. For instance, consider the following type declarations:
10357
10358 type Bounded_String (Max_Size : Integer) is
10359 Length : Integer;
10360 Buffer : String (1 .. Max_Size);
10361 end record;
10362 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10363
10364 In this case, the compiler describes the array as an array of
10365 variable-size elements (identified by its XVS suffix) for which
10366 the size can be read in the parallel XVZ variable.
10367
10368 In the case of an array of an unconstrained element type, the compiler
10369 wraps the array element inside a private PAD type. This type should not
10370 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10371 that we also use the adjective "aligner" in our code to designate
10372 these wrapper types.
10373
1b536f04 10374 In some cases, the size allocated for each element is statically
21649b50
JB
10375 known. In that case, the PAD type already has the correct size,
10376 and the array element should remain unfixed.
10377
10378 But there are cases when this size is not statically known.
10379 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10380
10381 type Dynamic is array (1 .. Five) of Integer;
10382 type Wrapper (Has_Length : Boolean := False) is record
10383 Data : Dynamic;
10384 case Has_Length is
10385 when True => Length : Integer;
10386 when False => null;
10387 end case;
10388 end record;
10389 type Wrapper_Array is array (1 .. 2) of Wrapper;
10390
10391 Hello : Wrapper_Array := (others => (Has_Length => True,
10392 Data => (others => 17),
10393 Length => 1));
10394
10395
10396 The debugging info would describe variable Hello as being an
10397 array of a PAD type. The size of that PAD type is not statically
10398 known, but can be determined using a parallel XVZ variable.
10399 In that case, a copy of the PAD type with the correct size should
10400 be used for the fixed array.
10401
21649b50
JB
10402 3. ``Fixing'' record type objects:
10403 ----------------------------------
10404
10405 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10406 record types. In this case, in order to compute the associated
10407 fixed type, we need to determine the size and offset of each of
10408 its components. This, in turn, requires us to compute the fixed
10409 type of each of these components.
10410
10411 Consider for instance the example:
10412
10413 type Bounded_String (Max_Size : Natural) is record
10414 Str : String (1 .. Max_Size);
10415 Length : Natural;
10416 end record;
10417 My_String : Bounded_String (Max_Size => 10);
10418
10419 In that case, the position of field "Length" depends on the size
10420 of field Str, which itself depends on the value of the Max_Size
21649b50 10421 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10422 we need to fix the type of field Str. Therefore, fixing a variant
10423 record requires us to fix each of its components.
10424
10425 However, if a component does not have a dynamic size, the component
10426 should not be fixed. In particular, fields that use a PAD type
10427 should not fixed. Here is an example where this might happen
10428 (assuming type Rec above):
10429
10430 type Container (Big : Boolean) is record
10431 First : Rec;
10432 After : Integer;
10433 case Big is
10434 when True => Another : Integer;
10435 when False => null;
10436 end case;
10437 end record;
10438 My_Container : Container := (Big => False,
10439 First => (Empty => True),
10440 After => 42);
10441
10442 In that example, the compiler creates a PAD type for component First,
10443 whose size is constant, and then positions the component After just
10444 right after it. The offset of component After is therefore constant
10445 in this case.
10446
10447 The debugger computes the position of each field based on an algorithm
10448 that uses, among other things, the actual position and size of the field
21649b50
JB
10449 preceding it. Let's now imagine that the user is trying to print
10450 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10451 end up computing the offset of field After based on the size of the
10452 fixed version of field First. And since in our example First has
10453 only one actual field, the size of the fixed type is actually smaller
10454 than the amount of space allocated to that field, and thus we would
10455 compute the wrong offset of field After.
10456
21649b50
JB
10457 To make things more complicated, we need to watch out for dynamic
10458 components of variant records (identified by the ___XVL suffix in
10459 the component name). Even if the target type is a PAD type, the size
10460 of that type might not be statically known. So the PAD type needs
10461 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10462 we might end up with the wrong size for our component. This can be
10463 observed with the following type declarations:
284614f0
JB
10464
10465 type Octal is new Integer range 0 .. 7;
10466 type Octal_Array is array (Positive range <>) of Octal;
10467 pragma Pack (Octal_Array);
10468
10469 type Octal_Buffer (Size : Positive) is record
10470 Buffer : Octal_Array (1 .. Size);
10471 Length : Integer;
10472 end record;
10473
10474 In that case, Buffer is a PAD type whose size is unset and needs
10475 to be computed by fixing the unwrapped type.
10476
21649b50
JB
10477 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10478 ----------------------------------------------------------
10479
10480 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10481 thus far, be actually fixed?
10482
10483 The answer is: Only when referencing that element. For instance
10484 when selecting one component of a record, this specific component
10485 should be fixed at that point in time. Or when printing the value
10486 of a record, each component should be fixed before its value gets
10487 printed. Similarly for arrays, the element of the array should be
10488 fixed when printing each element of the array, or when extracting
10489 one element out of that array. On the other hand, fixing should
10490 not be performed on the elements when taking a slice of an array!
10491
31432a67 10492 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10493 size of each field is that we end up also miscomputing the size
10494 of the containing type. This can have adverse results when computing
10495 the value of an entity. GDB fetches the value of an entity based
10496 on the size of its type, and thus a wrong size causes GDB to fetch
10497 the wrong amount of memory. In the case where the computed size is
10498 too small, GDB fetches too little data to print the value of our
31432a67 10499 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10500 past the buffer containing the data =:-o. */
10501
ced9779b
JB
10502/* Evaluate a subexpression of EXP, at index *POS, and return a value
10503 for that subexpression cast to TO_TYPE. Advance *POS over the
10504 subexpression. */
10505
10506static value *
10507ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10508 enum noside noside, struct type *to_type)
10509{
10510 int pc = *pos;
10511
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10513 || exp->elts[pc].opcode == OP_VAR_VALUE)
10514 {
10515 (*pos) += 4;
10516
10517 value *val;
10518 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10519 {
10520 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10521 return value_zero (to_type, not_lval);
10522
10523 val = evaluate_var_msym_value (noside,
10524 exp->elts[pc + 1].objfile,
10525 exp->elts[pc + 2].msymbol);
10526 }
10527 else
10528 val = evaluate_var_value (noside,
10529 exp->elts[pc + 1].block,
10530 exp->elts[pc + 2].symbol);
10531
10532 if (noside == EVAL_SKIP)
10533 return eval_skip_value (exp);
10534
10535 val = ada_value_cast (to_type, val);
10536
10537 /* Follow the Ada language semantics that do not allow taking
10538 an address of the result of a cast (view conversion in Ada). */
10539 if (VALUE_LVAL (val) == lval_memory)
10540 {
10541 if (value_lazy (val))
10542 value_fetch_lazy (val);
10543 VALUE_LVAL (val) = not_lval;
10544 }
10545 return val;
10546 }
10547
10548 value *val = evaluate_subexp (to_type, exp, pos, noside);
10549 if (noside == EVAL_SKIP)
10550 return eval_skip_value (exp);
10551 return ada_value_cast (to_type, val);
10552}
10553
284614f0
JB
10554/* Implement the evaluate_exp routine in the exp_descriptor structure
10555 for the Ada language. */
10556
52ce6436 10557static struct value *
ebf56fd3 10558ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10559 int *pos, enum noside noside)
14f9c5c9
AS
10560{
10561 enum exp_opcode op;
b5385fc0 10562 int tem;
14f9c5c9 10563 int pc;
5ec18f2b 10564 int preeval_pos;
14f9c5c9
AS
10565 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10566 struct type *type;
52ce6436 10567 int nargs, oplen;
d2e4a39e 10568 struct value **argvec;
14f9c5c9 10569
d2e4a39e
AS
10570 pc = *pos;
10571 *pos += 1;
14f9c5c9
AS
10572 op = exp->elts[pc].opcode;
10573
d2e4a39e 10574 switch (op)
14f9c5c9
AS
10575 {
10576 default:
10577 *pos -= 1;
6e48bd2c 10578 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10579
10580 if (noside == EVAL_NORMAL)
10581 arg1 = unwrap_value (arg1);
6e48bd2c 10582
edd079d9 10583 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10584 then we need to perform the conversion manually, because
10585 evaluate_subexp_standard doesn't do it. This conversion is
10586 necessary in Ada because the different kinds of float/fixed
10587 types in Ada have different representations.
10588
10589 Similarly, we need to perform the conversion from OP_LONG
10590 ourselves. */
edd079d9 10591 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10592 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10593
10594 return arg1;
4c4b4cd2
PH
10595
10596 case OP_STRING:
10597 {
76a01679 10598 struct value *result;
5b4ee69b 10599
76a01679
JB
10600 *pos -= 1;
10601 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10602 /* The result type will have code OP_STRING, bashed there from
10603 OP_ARRAY. Bash it back. */
df407dfe
AC
10604 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10605 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10606 return result;
4c4b4cd2 10607 }
14f9c5c9
AS
10608
10609 case UNOP_CAST:
10610 (*pos) += 2;
10611 type = exp->elts[pc + 1].type;
ced9779b 10612 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10613
4c4b4cd2
PH
10614 case UNOP_QUAL:
10615 (*pos) += 2;
10616 type = exp->elts[pc + 1].type;
10617 return ada_evaluate_subexp (type, exp, pos, noside);
10618
14f9c5c9
AS
10619 case BINOP_ASSIGN:
10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10621 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10622 {
10623 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10624 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10625 return arg1;
10626 return ada_value_assign (arg1, arg1);
10627 }
003f3813
JB
10628 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10629 except if the lhs of our assignment is a convenience variable.
10630 In the case of assigning to a convenience variable, the lhs
10631 should be exactly the result of the evaluation of the rhs. */
10632 type = value_type (arg1);
10633 if (VALUE_LVAL (arg1) == lval_internalvar)
10634 type = NULL;
10635 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10636 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10637 return arg1;
df407dfe
AC
10638 if (ada_is_fixed_point_type (value_type (arg1)))
10639 arg2 = cast_to_fixed (value_type (arg1), arg2);
10640 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10641 error
323e0a4a 10642 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10643 else
df407dfe 10644 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10645 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10646
10647 case BINOP_ADD:
10648 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10649 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10650 if (noside == EVAL_SKIP)
4c4b4cd2 10651 goto nosideret;
2ac8a782
JB
10652 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10653 return (value_from_longest
10654 (value_type (arg1),
10655 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10656 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10657 return (value_from_longest
10658 (value_type (arg2),
10659 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10660 if ((ada_is_fixed_point_type (value_type (arg1))
10661 || ada_is_fixed_point_type (value_type (arg2)))
10662 && value_type (arg1) != value_type (arg2))
323e0a4a 10663 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10664 /* Do the addition, and cast the result to the type of the first
10665 argument. We cannot cast the result to a reference type, so if
10666 ARG1 is a reference type, find its underlying type. */
10667 type = value_type (arg1);
10668 while (TYPE_CODE (type) == TYPE_CODE_REF)
10669 type = TYPE_TARGET_TYPE (type);
f44316fa 10670 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10671 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10672
10673 case BINOP_SUB:
10674 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10675 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10676 if (noside == EVAL_SKIP)
4c4b4cd2 10677 goto nosideret;
2ac8a782
JB
10678 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10679 return (value_from_longest
10680 (value_type (arg1),
10681 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10682 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10683 return (value_from_longest
10684 (value_type (arg2),
10685 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10686 if ((ada_is_fixed_point_type (value_type (arg1))
10687 || ada_is_fixed_point_type (value_type (arg2)))
10688 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10689 error (_("Operands of fixed-point subtraction "
10690 "must have the same type"));
b7789565
JB
10691 /* Do the substraction, and cast the result to the type of the first
10692 argument. We cannot cast the result to a reference type, so if
10693 ARG1 is a reference type, find its underlying type. */
10694 type = value_type (arg1);
10695 while (TYPE_CODE (type) == TYPE_CODE_REF)
10696 type = TYPE_TARGET_TYPE (type);
f44316fa 10697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10698 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10699
10700 case BINOP_MUL:
10701 case BINOP_DIV:
e1578042
JB
10702 case BINOP_REM:
10703 case BINOP_MOD:
14f9c5c9
AS
10704 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10705 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 if (noside == EVAL_SKIP)
4c4b4cd2 10707 goto nosideret;
e1578042 10708 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10709 {
10710 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10711 return value_zero (value_type (arg1), not_lval);
10712 }
14f9c5c9 10713 else
4c4b4cd2 10714 {
a53b7a21 10715 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10716 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10717 arg1 = cast_from_fixed (type, arg1);
df407dfe 10718 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10719 arg2 = cast_from_fixed (type, arg2);
f44316fa 10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10721 return ada_value_binop (arg1, arg2, op);
10722 }
10723
4c4b4cd2
PH
10724 case BINOP_EQUAL:
10725 case BINOP_NOTEQUAL:
14f9c5c9 10726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10727 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10728 if (noside == EVAL_SKIP)
76a01679 10729 goto nosideret;
4c4b4cd2 10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10731 tem = 0;
4c4b4cd2 10732 else
f44316fa
UW
10733 {
10734 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10735 tem = ada_value_equal (arg1, arg2);
10736 }
4c4b4cd2 10737 if (op == BINOP_NOTEQUAL)
76a01679 10738 tem = !tem;
fbb06eb1
UW
10739 type = language_bool_type (exp->language_defn, exp->gdbarch);
10740 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10741
10742 case UNOP_NEG:
10743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10744 if (noside == EVAL_SKIP)
10745 goto nosideret;
df407dfe
AC
10746 else if (ada_is_fixed_point_type (value_type (arg1)))
10747 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10748 else
f44316fa
UW
10749 {
10750 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10751 return value_neg (arg1);
10752 }
4c4b4cd2 10753
2330c6c6
JB
10754 case BINOP_LOGICAL_AND:
10755 case BINOP_LOGICAL_OR:
10756 case UNOP_LOGICAL_NOT:
000d5124
JB
10757 {
10758 struct value *val;
10759
10760 *pos -= 1;
10761 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10762 type = language_bool_type (exp->language_defn, exp->gdbarch);
10763 return value_cast (type, val);
000d5124 10764 }
2330c6c6
JB
10765
10766 case BINOP_BITWISE_AND:
10767 case BINOP_BITWISE_IOR:
10768 case BINOP_BITWISE_XOR:
000d5124
JB
10769 {
10770 struct value *val;
10771
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10773 *pos = pc;
10774 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10775
10776 return value_cast (value_type (arg1), val);
10777 }
2330c6c6 10778
14f9c5c9
AS
10779 case OP_VAR_VALUE:
10780 *pos -= 1;
6799def4 10781
14f9c5c9 10782 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10783 {
10784 *pos += 4;
10785 goto nosideret;
10786 }
da5c522f
JB
10787
10788 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10789 /* Only encountered when an unresolved symbol occurs in a
10790 context other than a function call, in which case, it is
52ce6436 10791 invalid. */
323e0a4a 10792 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10793 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10794
10795 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10796 {
0c1f74cf 10797 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10798 /* Check to see if this is a tagged type. We also need to handle
10799 the case where the type is a reference to a tagged type, but
10800 we have to be careful to exclude pointers to tagged types.
10801 The latter should be shown as usual (as a pointer), whereas
10802 a reference should mostly be transparent to the user. */
10803 if (ada_is_tagged_type (type, 0)
023db19c 10804 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10805 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10806 {
10807 /* Tagged types are a little special in the fact that the real
10808 type is dynamic and can only be determined by inspecting the
10809 object's tag. This means that we need to get the object's
10810 value first (EVAL_NORMAL) and then extract the actual object
10811 type from its tag.
10812
10813 Note that we cannot skip the final step where we extract
10814 the object type from its tag, because the EVAL_NORMAL phase
10815 results in dynamic components being resolved into fixed ones.
10816 This can cause problems when trying to print the type
10817 description of tagged types whose parent has a dynamic size:
10818 We use the type name of the "_parent" component in order
10819 to print the name of the ancestor type in the type description.
10820 If that component had a dynamic size, the resolution into
10821 a fixed type would result in the loss of that type name,
10822 thus preventing us from printing the name of the ancestor
10823 type in the type description. */
10824 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10825
10826 if (TYPE_CODE (type) != TYPE_CODE_REF)
10827 {
10828 struct type *actual_type;
10829
10830 actual_type = type_from_tag (ada_value_tag (arg1));
10831 if (actual_type == NULL)
10832 /* If, for some reason, we were unable to determine
10833 the actual type from the tag, then use the static
10834 approximation that we just computed as a fallback.
10835 This can happen if the debugging information is
10836 incomplete, for instance. */
10837 actual_type = type;
10838 return value_zero (actual_type, not_lval);
10839 }
10840 else
10841 {
10842 /* In the case of a ref, ada_coerce_ref takes care
10843 of determining the actual type. But the evaluation
10844 should return a ref as it should be valid to ask
10845 for its address; so rebuild a ref after coerce. */
10846 arg1 = ada_coerce_ref (arg1);
a65cfae5 10847 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10848 }
10849 }
0c1f74cf 10850
84754697
JB
10851 /* Records and unions for which GNAT encodings have been
10852 generated need to be statically fixed as well.
10853 Otherwise, non-static fixing produces a type where
10854 all dynamic properties are removed, which prevents "ptype"
10855 from being able to completely describe the type.
10856 For instance, a case statement in a variant record would be
10857 replaced by the relevant components based on the actual
10858 value of the discriminants. */
10859 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10860 && dynamic_template_type (type) != NULL)
10861 || (TYPE_CODE (type) == TYPE_CODE_UNION
10862 && ada_find_parallel_type (type, "___XVU") != NULL))
10863 {
10864 *pos += 4;
10865 return value_zero (to_static_fixed_type (type), not_lval);
10866 }
4c4b4cd2 10867 }
da5c522f
JB
10868
10869 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10870 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10871
10872 case OP_FUNCALL:
10873 (*pos) += 2;
10874
10875 /* Allocate arg vector, including space for the function to be
10876 called in argvec[0] and a terminating NULL. */
10877 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10878 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10879
10880 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10881 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10882 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10883 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10884 else
10885 {
10886 for (tem = 0; tem <= nargs; tem += 1)
10887 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10888 argvec[tem] = 0;
10889
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892 }
10893
ad82864c
JB
10894 if (ada_is_constrained_packed_array_type
10895 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10896 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10899 /* This is a packed array that has already been fixed, and
10900 therefore already coerced to a simple array. Nothing further
10901 to do. */
10902 ;
e6c2c623
PMR
10903 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10904 {
10905 /* Make sure we dereference references so that all the code below
10906 feels like it's really handling the referenced value. Wrapping
10907 types (for alignment) may be there, so make sure we strip them as
10908 well. */
10909 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10910 }
10911 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10912 && VALUE_LVAL (argvec[0]) == lval_memory)
10913 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10914
df407dfe 10915 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10916
10917 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10918 them. So, if this is an array typedef (encoding use for array
10919 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10920 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10921 type = ada_typedef_target_type (type);
10922
4c4b4cd2
PH
10923 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10924 {
61ee279c 10925 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10926 {
10927 case TYPE_CODE_FUNC:
61ee279c 10928 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10929 break;
10930 case TYPE_CODE_ARRAY:
10931 break;
10932 case TYPE_CODE_STRUCT:
10933 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10934 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10935 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10936 break;
10937 default:
323e0a4a 10938 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10939 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10940 break;
10941 }
10942 }
10943
10944 switch (TYPE_CODE (type))
10945 {
10946 case TYPE_CODE_FUNC:
10947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10948 {
7022349d
PA
10949 if (TYPE_TARGET_TYPE (type) == NULL)
10950 error_call_unknown_return_type (NULL);
10951 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10952 }
e71585ff
PA
10953 return call_function_by_hand (argvec[0], NULL,
10954 gdb::make_array_view (argvec + 1,
10955 nargs));
c8ea1972
PH
10956 case TYPE_CODE_INTERNAL_FUNCTION:
10957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10958 /* We don't know anything about what the internal
10959 function might return, but we have to return
10960 something. */
10961 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10962 not_lval);
10963 else
10964 return call_internal_function (exp->gdbarch, exp->language_defn,
10965 argvec[0], nargs, argvec + 1);
10966
4c4b4cd2
PH
10967 case TYPE_CODE_STRUCT:
10968 {
10969 int arity;
10970
4c4b4cd2
PH
10971 arity = ada_array_arity (type);
10972 type = ada_array_element_type (type, nargs);
10973 if (type == NULL)
323e0a4a 10974 error (_("cannot subscript or call a record"));
4c4b4cd2 10975 if (arity != nargs)
323e0a4a 10976 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10978 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10979 return
10980 unwrap_value (ada_value_subscript
10981 (argvec[0], nargs, argvec + 1));
10982 }
10983 case TYPE_CODE_ARRAY:
10984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 {
10986 type = ada_array_element_type (type, nargs);
10987 if (type == NULL)
323e0a4a 10988 error (_("element type of array unknown"));
4c4b4cd2 10989 else
0a07e705 10990 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10991 }
10992 return
10993 unwrap_value (ada_value_subscript
10994 (ada_coerce_to_simple_array (argvec[0]),
10995 nargs, argvec + 1));
10996 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10998 {
deede10c 10999 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11000 type = ada_array_element_type (type, nargs);
11001 if (type == NULL)
323e0a4a 11002 error (_("element type of array unknown"));
4c4b4cd2 11003 else
0a07e705 11004 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11005 }
11006 return
deede10c
JB
11007 unwrap_value (ada_value_ptr_subscript (argvec[0],
11008 nargs, argvec + 1));
4c4b4cd2
PH
11009
11010 default:
e1d5a0d2
PH
11011 error (_("Attempt to index or call something other than an "
11012 "array or function"));
4c4b4cd2
PH
11013 }
11014
11015 case TERNOP_SLICE:
11016 {
11017 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 struct value *low_bound_val =
11019 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11020 struct value *high_bound_val =
11021 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022 LONGEST low_bound;
11023 LONGEST high_bound;
5b4ee69b 11024
994b9211
AC
11025 low_bound_val = coerce_ref (low_bound_val);
11026 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11027 low_bound = value_as_long (low_bound_val);
11028 high_bound = value_as_long (high_bound_val);
963a6417 11029
4c4b4cd2
PH
11030 if (noside == EVAL_SKIP)
11031 goto nosideret;
11032
4c4b4cd2
PH
11033 /* If this is a reference to an aligner type, then remove all
11034 the aligners. */
df407dfe
AC
11035 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11036 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11037 TYPE_TARGET_TYPE (value_type (array)) =
11038 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11039
ad82864c 11040 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11041 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11042
11043 /* If this is a reference to an array or an array lvalue,
11044 convert to a pointer. */
df407dfe
AC
11045 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11046 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11047 && VALUE_LVAL (array) == lval_memory))
11048 array = value_addr (array);
11049
1265e4aa 11050 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11051 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11052 (value_type (array))))
bff8c71f
TT
11053 return empty_array (ada_type_of_array (array, 0), low_bound,
11054 high_bound);
4c4b4cd2
PH
11055
11056 array = ada_coerce_to_simple_array_ptr (array);
11057
714e53ab
PH
11058 /* If we have more than one level of pointer indirection,
11059 dereference the value until we get only one level. */
df407dfe
AC
11060 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11061 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11062 == TYPE_CODE_PTR))
11063 array = value_ind (array);
11064
11065 /* Make sure we really do have an array type before going further,
11066 to avoid a SEGV when trying to get the index type or the target
11067 type later down the road if the debug info generated by
11068 the compiler is incorrect or incomplete. */
df407dfe 11069 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11070 error (_("cannot take slice of non-array"));
714e53ab 11071
828292f2
JB
11072 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11073 == TYPE_CODE_PTR)
4c4b4cd2 11074 {
828292f2
JB
11075 struct type *type0 = ada_check_typedef (value_type (array));
11076
0b5d8877 11077 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11078 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11079 else
11080 {
11081 struct type *arr_type0 =
828292f2 11082 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11083
f5938064
JG
11084 return ada_value_slice_from_ptr (array, arr_type0,
11085 longest_to_int (low_bound),
11086 longest_to_int (high_bound));
4c4b4cd2
PH
11087 }
11088 }
11089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11090 return array;
11091 else if (high_bound < low_bound)
bff8c71f 11092 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11093 else
529cad9c
PH
11094 return ada_value_slice (array, longest_to_int (low_bound),
11095 longest_to_int (high_bound));
4c4b4cd2 11096 }
14f9c5c9 11097
4c4b4cd2
PH
11098 case UNOP_IN_RANGE:
11099 (*pos) += 2;
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11101 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11102
14f9c5c9 11103 if (noside == EVAL_SKIP)
4c4b4cd2 11104 goto nosideret;
14f9c5c9 11105
4c4b4cd2
PH
11106 switch (TYPE_CODE (type))
11107 {
11108 default:
e1d5a0d2
PH
11109 lim_warning (_("Membership test incompletely implemented; "
11110 "always returns true"));
fbb06eb1
UW
11111 type = language_bool_type (exp->language_defn, exp->gdbarch);
11112 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11113
11114 case TYPE_CODE_RANGE:
030b4912
UW
11115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11119 type = language_bool_type (exp->language_defn, exp->gdbarch);
11120 return
11121 value_from_longest (type,
4c4b4cd2
PH
11122 (value_less (arg1, arg3)
11123 || value_equal (arg1, arg3))
11124 && (value_less (arg2, arg1)
11125 || value_equal (arg2, arg1)));
11126 }
11127
11128 case BINOP_IN_BOUNDS:
14f9c5c9 11129 (*pos) += 2;
4c4b4cd2
PH
11130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11132
4c4b4cd2
PH
11133 if (noside == EVAL_SKIP)
11134 goto nosideret;
14f9c5c9 11135
4c4b4cd2 11136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11137 {
11138 type = language_bool_type (exp->language_defn, exp->gdbarch);
11139 return value_zero (type, not_lval);
11140 }
14f9c5c9 11141
4c4b4cd2 11142 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11143
1eea4ebd
UW
11144 type = ada_index_type (value_type (arg2), tem, "range");
11145 if (!type)
11146 type = value_type (arg1);
14f9c5c9 11147
1eea4ebd
UW
11148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11150
f44316fa
UW
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11153 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11154 return
fbb06eb1 11155 value_from_longest (type,
4c4b4cd2
PH
11156 (value_less (arg1, arg3)
11157 || value_equal (arg1, arg3))
11158 && (value_less (arg2, arg1)
11159 || value_equal (arg2, arg1)));
11160
11161 case TERNOP_IN_RANGE:
11162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11165
11166 if (noside == EVAL_SKIP)
11167 goto nosideret;
11168
f44316fa
UW
11169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11171 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11172 return
fbb06eb1 11173 value_from_longest (type,
4c4b4cd2
PH
11174 (value_less (arg1, arg3)
11175 || value_equal (arg1, arg3))
11176 && (value_less (arg2, arg1)
11177 || value_equal (arg2, arg1)));
11178
11179 case OP_ATR_FIRST:
11180 case OP_ATR_LAST:
11181 case OP_ATR_LENGTH:
11182 {
76a01679 11183 struct type *type_arg;
5b4ee69b 11184
76a01679
JB
11185 if (exp->elts[*pos].opcode == OP_TYPE)
11186 {
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11188 arg1 = NULL;
5bc23cb3 11189 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11190 }
11191 else
11192 {
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 type_arg = NULL;
11195 }
11196
11197 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11198 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11199 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11200 *pos += 4;
11201
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204
11205 if (type_arg == NULL)
11206 {
11207 arg1 = ada_coerce_ref (arg1);
11208
ad82864c 11209 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11210 arg1 = ada_coerce_to_simple_array (arg1);
11211
aa4fb036 11212 if (op == OP_ATR_LENGTH)
1eea4ebd 11213 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11214 else
11215 {
11216 type = ada_index_type (value_type (arg1), tem,
11217 ada_attribute_name (op));
11218 if (type == NULL)
11219 type = builtin_type (exp->gdbarch)->builtin_int;
11220 }
76a01679
JB
11221
11222 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11223 return allocate_value (type);
76a01679
JB
11224
11225 switch (op)
11226 {
11227 default: /* Should never happen. */
323e0a4a 11228 error (_("unexpected attribute encountered"));
76a01679 11229 case OP_ATR_FIRST:
1eea4ebd
UW
11230 return value_from_longest
11231 (type, ada_array_bound (arg1, tem, 0));
76a01679 11232 case OP_ATR_LAST:
1eea4ebd
UW
11233 return value_from_longest
11234 (type, ada_array_bound (arg1, tem, 1));
76a01679 11235 case OP_ATR_LENGTH:
1eea4ebd
UW
11236 return value_from_longest
11237 (type, ada_array_length (arg1, tem));
76a01679
JB
11238 }
11239 }
11240 else if (discrete_type_p (type_arg))
11241 {
11242 struct type *range_type;
0d5cff50 11243 const char *name = ada_type_name (type_arg);
5b4ee69b 11244
76a01679
JB
11245 range_type = NULL;
11246 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11247 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11248 if (range_type == NULL)
11249 range_type = type_arg;
11250 switch (op)
11251 {
11252 default:
323e0a4a 11253 error (_("unexpected attribute encountered"));
76a01679 11254 case OP_ATR_FIRST:
690cc4eb 11255 return value_from_longest
43bbcdc2 11256 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11257 case OP_ATR_LAST:
690cc4eb 11258 return value_from_longest
43bbcdc2 11259 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11260 case OP_ATR_LENGTH:
323e0a4a 11261 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11262 }
11263 }
11264 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11265 error (_("unimplemented type attribute"));
76a01679
JB
11266 else
11267 {
11268 LONGEST low, high;
11269
ad82864c
JB
11270 if (ada_is_constrained_packed_array_type (type_arg))
11271 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11272
aa4fb036 11273 if (op == OP_ATR_LENGTH)
1eea4ebd 11274 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11275 else
11276 {
11277 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11278 if (type == NULL)
11279 type = builtin_type (exp->gdbarch)->builtin_int;
11280 }
1eea4ebd 11281
76a01679
JB
11282 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11283 return allocate_value (type);
11284
11285 switch (op)
11286 {
11287 default:
323e0a4a 11288 error (_("unexpected attribute encountered"));
76a01679 11289 case OP_ATR_FIRST:
1eea4ebd 11290 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11291 return value_from_longest (type, low);
11292 case OP_ATR_LAST:
1eea4ebd 11293 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11294 return value_from_longest (type, high);
11295 case OP_ATR_LENGTH:
1eea4ebd
UW
11296 low = ada_array_bound_from_type (type_arg, tem, 0);
11297 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11298 return value_from_longest (type, high - low + 1);
11299 }
11300 }
14f9c5c9
AS
11301 }
11302
4c4b4cd2
PH
11303 case OP_ATR_TAG:
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
76a01679 11306 goto nosideret;
4c4b4cd2
PH
11307
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11309 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11310
11311 return ada_value_tag (arg1);
11312
11313 case OP_ATR_MIN:
11314 case OP_ATR_MAX:
11315 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11316 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11317 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11318 if (noside == EVAL_SKIP)
76a01679 11319 goto nosideret;
d2e4a39e 11320 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11321 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11322 else
f44316fa
UW
11323 {
11324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11325 return value_binop (arg1, arg2,
11326 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11327 }
14f9c5c9 11328
4c4b4cd2
PH
11329 case OP_ATR_MODULUS:
11330 {
31dedfee 11331 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11332
5b4ee69b 11333 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11334 if (noside == EVAL_SKIP)
11335 goto nosideret;
4c4b4cd2 11336
76a01679 11337 if (!ada_is_modular_type (type_arg))
323e0a4a 11338 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11339
76a01679
JB
11340 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11341 ada_modulus (type_arg));
4c4b4cd2
PH
11342 }
11343
11344
11345 case OP_ATR_POS:
11346 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11348 if (noside == EVAL_SKIP)
76a01679 11349 goto nosideret;
3cb382c9
UW
11350 type = builtin_type (exp->gdbarch)->builtin_int;
11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 return value_zero (type, not_lval);
14f9c5c9 11353 else
3cb382c9 11354 return value_pos_atr (type, arg1);
14f9c5c9 11355
4c4b4cd2
PH
11356 case OP_ATR_SIZE:
11357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11358 type = value_type (arg1);
11359
11360 /* If the argument is a reference, then dereference its type, since
11361 the user is really asking for the size of the actual object,
11362 not the size of the pointer. */
11363 if (TYPE_CODE (type) == TYPE_CODE_REF)
11364 type = TYPE_TARGET_TYPE (type);
11365
4c4b4cd2 11366 if (noside == EVAL_SKIP)
76a01679 11367 goto nosideret;
4c4b4cd2 11368 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11369 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11370 else
22601c15 11371 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11372 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11373
11374 case OP_ATR_VAL:
11375 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11377 type = exp->elts[pc + 2].type;
14f9c5c9 11378 if (noside == EVAL_SKIP)
76a01679 11379 goto nosideret;
4c4b4cd2 11380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11381 return value_zero (type, not_lval);
4c4b4cd2 11382 else
76a01679 11383 return value_val_atr (type, arg1);
4c4b4cd2
PH
11384
11385 case BINOP_EXP:
11386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11387 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11388 if (noside == EVAL_SKIP)
11389 goto nosideret;
11390 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11391 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11392 else
f44316fa
UW
11393 {
11394 /* For integer exponentiation operations,
11395 only promote the first argument. */
11396 if (is_integral_type (value_type (arg2)))
11397 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11398 else
11399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11400
11401 return value_binop (arg1, arg2, op);
11402 }
4c4b4cd2
PH
11403
11404 case UNOP_PLUS:
11405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406 if (noside == EVAL_SKIP)
11407 goto nosideret;
11408 else
11409 return arg1;
11410
11411 case UNOP_ABS:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 if (noside == EVAL_SKIP)
11414 goto nosideret;
f44316fa 11415 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11416 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11417 return value_neg (arg1);
14f9c5c9 11418 else
4c4b4cd2 11419 return arg1;
14f9c5c9
AS
11420
11421 case UNOP_IND:
5ec18f2b 11422 preeval_pos = *pos;
6b0d7253 11423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11424 if (noside == EVAL_SKIP)
4c4b4cd2 11425 goto nosideret;
df407dfe 11426 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11427 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11428 {
11429 if (ada_is_array_descriptor_type (type))
11430 /* GDB allows dereferencing GNAT array descriptors. */
11431 {
11432 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11433
4c4b4cd2 11434 if (arrType == NULL)
323e0a4a 11435 error (_("Attempt to dereference null array pointer."));
00a4c844 11436 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11437 }
11438 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11439 || TYPE_CODE (type) == TYPE_CODE_REF
11440 /* In C you can dereference an array to get the 1st elt. */
11441 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11442 {
5ec18f2b
JG
11443 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11444 only be determined by inspecting the object's tag.
11445 This means that we need to evaluate completely the
11446 expression in order to get its type. */
11447
023db19c
JB
11448 if ((TYPE_CODE (type) == TYPE_CODE_REF
11449 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11450 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11451 {
11452 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11453 EVAL_NORMAL);
11454 type = value_type (ada_value_ind (arg1));
11455 }
11456 else
11457 {
11458 type = to_static_fixed_type
11459 (ada_aligned_type
11460 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11461 }
c1b5a1a6 11462 ada_ensure_varsize_limit (type);
714e53ab
PH
11463 return value_zero (type, lval_memory);
11464 }
4c4b4cd2 11465 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11466 {
11467 /* GDB allows dereferencing an int. */
11468 if (expect_type == NULL)
11469 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11470 lval_memory);
11471 else
11472 {
11473 expect_type =
11474 to_static_fixed_type (ada_aligned_type (expect_type));
11475 return value_zero (expect_type, lval_memory);
11476 }
11477 }
4c4b4cd2 11478 else
323e0a4a 11479 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11480 }
0963b4bd 11481 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11482 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11483
96967637
JB
11484 if (TYPE_CODE (type) == TYPE_CODE_INT)
11485 /* GDB allows dereferencing an int. If we were given
11486 the expect_type, then use that as the target type.
11487 Otherwise, assume that the target type is an int. */
11488 {
11489 if (expect_type != NULL)
11490 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11491 arg1));
11492 else
11493 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11494 (CORE_ADDR) value_as_address (arg1));
11495 }
6b0d7253 11496
4c4b4cd2
PH
11497 if (ada_is_array_descriptor_type (type))
11498 /* GDB allows dereferencing GNAT array descriptors. */
11499 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11500 else
4c4b4cd2 11501 return ada_value_ind (arg1);
14f9c5c9
AS
11502
11503 case STRUCTOP_STRUCT:
11504 tem = longest_to_int (exp->elts[pc + 1].longconst);
11505 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11506 preeval_pos = *pos;
14f9c5c9
AS
11507 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11508 if (noside == EVAL_SKIP)
4c4b4cd2 11509 goto nosideret;
14f9c5c9 11510 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11511 {
df407dfe 11512 struct type *type1 = value_type (arg1);
5b4ee69b 11513
76a01679
JB
11514 if (ada_is_tagged_type (type1, 1))
11515 {
11516 type = ada_lookup_struct_elt_type (type1,
11517 &exp->elts[pc + 2].string,
988f6b3d 11518 1, 1);
5ec18f2b
JG
11519
11520 /* If the field is not found, check if it exists in the
11521 extension of this object's type. This means that we
11522 need to evaluate completely the expression. */
11523
76a01679 11524 if (type == NULL)
5ec18f2b
JG
11525 {
11526 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11527 EVAL_NORMAL);
11528 arg1 = ada_value_struct_elt (arg1,
11529 &exp->elts[pc + 2].string,
11530 0);
11531 arg1 = unwrap_value (arg1);
11532 type = value_type (ada_to_fixed_value (arg1));
11533 }
76a01679
JB
11534 }
11535 else
11536 type =
11537 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11538 0);
76a01679
JB
11539
11540 return value_zero (ada_aligned_type (type), lval_memory);
11541 }
14f9c5c9 11542 else
a579cd9a
MW
11543 {
11544 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11545 arg1 = unwrap_value (arg1);
11546 return ada_to_fixed_value (arg1);
11547 }
284614f0 11548
14f9c5c9 11549 case OP_TYPE:
4c4b4cd2
PH
11550 /* The value is not supposed to be used. This is here to make it
11551 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11552 (*pos) += 2;
11553 if (noside == EVAL_SKIP)
4c4b4cd2 11554 goto nosideret;
14f9c5c9 11555 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11556 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11557 else
323e0a4a 11558 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11559
11560 case OP_AGGREGATE:
11561 case OP_CHOICES:
11562 case OP_OTHERS:
11563 case OP_DISCRETE_RANGE:
11564 case OP_POSITIONAL:
11565 case OP_NAME:
11566 if (noside == EVAL_NORMAL)
11567 switch (op)
11568 {
11569 case OP_NAME:
11570 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11571 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11572 case OP_AGGREGATE:
11573 error (_("Aggregates only allowed on the right of an assignment"));
11574 default:
0963b4bd
MS
11575 internal_error (__FILE__, __LINE__,
11576 _("aggregate apparently mangled"));
52ce6436
PH
11577 }
11578
11579 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11580 *pos += oplen - 1;
11581 for (tem = 0; tem < nargs; tem += 1)
11582 ada_evaluate_subexp (NULL, exp, pos, noside);
11583 goto nosideret;
14f9c5c9
AS
11584 }
11585
11586nosideret:
ced9779b 11587 return eval_skip_value (exp);
14f9c5c9 11588}
14f9c5c9 11589\f
d2e4a39e 11590
4c4b4cd2 11591 /* Fixed point */
14f9c5c9
AS
11592
11593/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11594 type name that encodes the 'small and 'delta information.
4c4b4cd2 11595 Otherwise, return NULL. */
14f9c5c9 11596
d2e4a39e 11597static const char *
ebf56fd3 11598fixed_type_info (struct type *type)
14f9c5c9 11599{
d2e4a39e 11600 const char *name = ada_type_name (type);
14f9c5c9
AS
11601 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11602
d2e4a39e
AS
11603 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11604 {
14f9c5c9 11605 const char *tail = strstr (name, "___XF_");
5b4ee69b 11606
14f9c5c9 11607 if (tail == NULL)
4c4b4cd2 11608 return NULL;
d2e4a39e 11609 else
4c4b4cd2 11610 return tail + 5;
14f9c5c9
AS
11611 }
11612 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11613 return fixed_type_info (TYPE_TARGET_TYPE (type));
11614 else
11615 return NULL;
11616}
11617
4c4b4cd2 11618/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11619
11620int
ebf56fd3 11621ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11622{
11623 return fixed_type_info (type) != NULL;
11624}
11625
4c4b4cd2
PH
11626/* Return non-zero iff TYPE represents a System.Address type. */
11627
11628int
11629ada_is_system_address_type (struct type *type)
11630{
11631 return (TYPE_NAME (type)
11632 && strcmp (TYPE_NAME (type), "system__address") == 0);
11633}
11634
14f9c5c9 11635/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11636 type, return the target floating-point type to be used to represent
11637 of this type during internal computation. */
11638
11639static struct type *
11640ada_scaling_type (struct type *type)
11641{
11642 return builtin_type (get_type_arch (type))->builtin_long_double;
11643}
11644
11645/* Assuming that TYPE is the representation of an Ada fixed-point
11646 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11647 delta cannot be determined. */
14f9c5c9 11648
50eff16b 11649struct value *
ebf56fd3 11650ada_delta (struct type *type)
14f9c5c9
AS
11651{
11652 const char *encoding = fixed_type_info (type);
50eff16b
UW
11653 struct type *scale_type = ada_scaling_type (type);
11654
11655 long long num, den;
11656
11657 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11658 return nullptr;
d2e4a39e 11659 else
50eff16b
UW
11660 return value_binop (value_from_longest (scale_type, num),
11661 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11662}
11663
11664/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11665 factor ('SMALL value) associated with the type. */
14f9c5c9 11666
50eff16b
UW
11667struct value *
11668ada_scaling_factor (struct type *type)
14f9c5c9
AS
11669{
11670 const char *encoding = fixed_type_info (type);
50eff16b
UW
11671 struct type *scale_type = ada_scaling_type (type);
11672
11673 long long num0, den0, num1, den1;
14f9c5c9 11674 int n;
d2e4a39e 11675
50eff16b 11676 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11677 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11678
11679 if (n < 2)
50eff16b 11680 return value_from_longest (scale_type, 1);
14f9c5c9 11681 else if (n == 4)
50eff16b
UW
11682 return value_binop (value_from_longest (scale_type, num1),
11683 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11684 else
50eff16b
UW
11685 return value_binop (value_from_longest (scale_type, num0),
11686 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11687}
11688
14f9c5c9 11689\f
d2e4a39e 11690
4c4b4cd2 11691 /* Range types */
14f9c5c9
AS
11692
11693/* Scan STR beginning at position K for a discriminant name, and
11694 return the value of that discriminant field of DVAL in *PX. If
11695 PNEW_K is not null, put the position of the character beyond the
11696 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11697 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11698
11699static int
108d56a4 11700scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11701 int *pnew_k)
14f9c5c9
AS
11702{
11703 static char *bound_buffer = NULL;
11704 static size_t bound_buffer_len = 0;
5da1a4d3 11705 const char *pstart, *pend, *bound;
d2e4a39e 11706 struct value *bound_val;
14f9c5c9
AS
11707
11708 if (dval == NULL || str == NULL || str[k] == '\0')
11709 return 0;
11710
5da1a4d3
SM
11711 pstart = str + k;
11712 pend = strstr (pstart, "__");
14f9c5c9
AS
11713 if (pend == NULL)
11714 {
5da1a4d3 11715 bound = pstart;
14f9c5c9
AS
11716 k += strlen (bound);
11717 }
d2e4a39e 11718 else
14f9c5c9 11719 {
5da1a4d3
SM
11720 int len = pend - pstart;
11721
11722 /* Strip __ and beyond. */
11723 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11724 strncpy (bound_buffer, pstart, len);
11725 bound_buffer[len] = '\0';
11726
14f9c5c9 11727 bound = bound_buffer;
d2e4a39e 11728 k = pend - str;
14f9c5c9 11729 }
d2e4a39e 11730
df407dfe 11731 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11732 if (bound_val == NULL)
11733 return 0;
11734
11735 *px = value_as_long (bound_val);
11736 if (pnew_k != NULL)
11737 *pnew_k = k;
11738 return 1;
11739}
11740
11741/* Value of variable named NAME in the current environment. If
11742 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11743 otherwise causes an error with message ERR_MSG. */
11744
d2e4a39e 11745static struct value *
edb0c9cb 11746get_var_value (const char *name, const char *err_msg)
14f9c5c9 11747{
b5ec771e 11748 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11749
54d343a2 11750 std::vector<struct block_symbol> syms;
b5ec771e
PA
11751 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11752 get_selected_block (0),
11753 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11754
11755 if (nsyms != 1)
11756 {
11757 if (err_msg == NULL)
4c4b4cd2 11758 return 0;
14f9c5c9 11759 else
8a3fe4f8 11760 error (("%s"), err_msg);
14f9c5c9
AS
11761 }
11762
54d343a2 11763 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11764}
d2e4a39e 11765
edb0c9cb
PA
11766/* Value of integer variable named NAME in the current environment.
11767 If no such variable is found, returns false. Otherwise, sets VALUE
11768 to the variable's value and returns true. */
4c4b4cd2 11769
edb0c9cb
PA
11770bool
11771get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11772{
4c4b4cd2 11773 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11774
14f9c5c9 11775 if (var_val == 0)
edb0c9cb
PA
11776 return false;
11777
11778 value = value_as_long (var_val);
11779 return true;
14f9c5c9 11780}
d2e4a39e 11781
14f9c5c9
AS
11782
11783/* Return a range type whose base type is that of the range type named
11784 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11785 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11786 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11787 corresponding range type from debug information; fall back to using it
11788 if symbol lookup fails. If a new type must be created, allocate it
11789 like ORIG_TYPE was. The bounds information, in general, is encoded
11790 in NAME, the base type given in the named range type. */
14f9c5c9 11791
d2e4a39e 11792static struct type *
28c85d6c 11793to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11794{
0d5cff50 11795 const char *name;
14f9c5c9 11796 struct type *base_type;
108d56a4 11797 const char *subtype_info;
14f9c5c9 11798
28c85d6c
JB
11799 gdb_assert (raw_type != NULL);
11800 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11801
1ce677a4 11802 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11803 base_type = TYPE_TARGET_TYPE (raw_type);
11804 else
11805 base_type = raw_type;
11806
28c85d6c 11807 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11808 subtype_info = strstr (name, "___XD");
11809 if (subtype_info == NULL)
690cc4eb 11810 {
43bbcdc2
PH
11811 LONGEST L = ada_discrete_type_low_bound (raw_type);
11812 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11813
690cc4eb
PH
11814 if (L < INT_MIN || U > INT_MAX)
11815 return raw_type;
11816 else
0c9c3474
SA
11817 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11818 L, U);
690cc4eb 11819 }
14f9c5c9
AS
11820 else
11821 {
11822 static char *name_buf = NULL;
11823 static size_t name_len = 0;
11824 int prefix_len = subtype_info - name;
11825 LONGEST L, U;
11826 struct type *type;
108d56a4 11827 const char *bounds_str;
14f9c5c9
AS
11828 int n;
11829
11830 GROW_VECT (name_buf, name_len, prefix_len + 5);
11831 strncpy (name_buf, name, prefix_len);
11832 name_buf[prefix_len] = '\0';
11833
11834 subtype_info += 5;
11835 bounds_str = strchr (subtype_info, '_');
11836 n = 1;
11837
d2e4a39e 11838 if (*subtype_info == 'L')
4c4b4cd2
PH
11839 {
11840 if (!ada_scan_number (bounds_str, n, &L, &n)
11841 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11842 return raw_type;
11843 if (bounds_str[n] == '_')
11844 n += 2;
0963b4bd 11845 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11846 n += 1;
11847 subtype_info += 1;
11848 }
d2e4a39e 11849 else
4c4b4cd2 11850 {
4c4b4cd2 11851 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11852 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11853 {
323e0a4a 11854 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11855 L = 1;
11856 }
11857 }
14f9c5c9 11858
d2e4a39e 11859 if (*subtype_info == 'U')
4c4b4cd2
PH
11860 {
11861 if (!ada_scan_number (bounds_str, n, &U, &n)
11862 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11863 return raw_type;
11864 }
d2e4a39e 11865 else
4c4b4cd2 11866 {
4c4b4cd2 11867 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11868 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11869 {
323e0a4a 11870 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11871 U = L;
11872 }
11873 }
14f9c5c9 11874
0c9c3474
SA
11875 type = create_static_range_type (alloc_type_copy (raw_type),
11876 base_type, L, U);
f5a91472
JB
11877 /* create_static_range_type alters the resulting type's length
11878 to match the size of the base_type, which is not what we want.
11879 Set it back to the original range type's length. */
11880 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11881 TYPE_NAME (type) = name;
14f9c5c9
AS
11882 return type;
11883 }
11884}
11885
4c4b4cd2
PH
11886/* True iff NAME is the name of a range type. */
11887
14f9c5c9 11888int
d2e4a39e 11889ada_is_range_type_name (const char *name)
14f9c5c9
AS
11890{
11891 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11892}
14f9c5c9 11893\f
d2e4a39e 11894
4c4b4cd2
PH
11895 /* Modular types */
11896
11897/* True iff TYPE is an Ada modular type. */
14f9c5c9 11898
14f9c5c9 11899int
d2e4a39e 11900ada_is_modular_type (struct type *type)
14f9c5c9 11901{
18af8284 11902 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11903
11904 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11905 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11906 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11907}
11908
4c4b4cd2
PH
11909/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11910
61ee279c 11911ULONGEST
0056e4d5 11912ada_modulus (struct type *type)
14f9c5c9 11913{
43bbcdc2 11914 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11915}
d2e4a39e 11916\f
f7f9143b
JB
11917
11918/* Ada exception catchpoint support:
11919 ---------------------------------
11920
11921 We support 3 kinds of exception catchpoints:
11922 . catchpoints on Ada exceptions
11923 . catchpoints on unhandled Ada exceptions
11924 . catchpoints on failed assertions
11925
11926 Exceptions raised during failed assertions, or unhandled exceptions
11927 could perfectly be caught with the general catchpoint on Ada exceptions.
11928 However, we can easily differentiate these two special cases, and having
11929 the option to distinguish these two cases from the rest can be useful
11930 to zero-in on certain situations.
11931
11932 Exception catchpoints are a specialized form of breakpoint,
11933 since they rely on inserting breakpoints inside known routines
11934 of the GNAT runtime. The implementation therefore uses a standard
11935 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11936 of breakpoint_ops.
11937
0259addd
JB
11938 Support in the runtime for exception catchpoints have been changed
11939 a few times already, and these changes affect the implementation
11940 of these catchpoints. In order to be able to support several
11941 variants of the runtime, we use a sniffer that will determine
28010a5d 11942 the runtime variant used by the program being debugged. */
f7f9143b 11943
82eacd52
JB
11944/* Ada's standard exceptions.
11945
11946 The Ada 83 standard also defined Numeric_Error. But there so many
11947 situations where it was unclear from the Ada 83 Reference Manual
11948 (RM) whether Constraint_Error or Numeric_Error should be raised,
11949 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11950 Interpretation saying that anytime the RM says that Numeric_Error
11951 should be raised, the implementation may raise Constraint_Error.
11952 Ada 95 went one step further and pretty much removed Numeric_Error
11953 from the list of standard exceptions (it made it a renaming of
11954 Constraint_Error, to help preserve compatibility when compiling
11955 an Ada83 compiler). As such, we do not include Numeric_Error from
11956 this list of standard exceptions. */
3d0b0fa3 11957
a121b7c1 11958static const char *standard_exc[] = {
3d0b0fa3
JB
11959 "constraint_error",
11960 "program_error",
11961 "storage_error",
11962 "tasking_error"
11963};
11964
0259addd
JB
11965typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11966
11967/* A structure that describes how to support exception catchpoints
11968 for a given executable. */
11969
11970struct exception_support_info
11971{
11972 /* The name of the symbol to break on in order to insert
11973 a catchpoint on exceptions. */
11974 const char *catch_exception_sym;
11975
11976 /* The name of the symbol to break on in order to insert
11977 a catchpoint on unhandled exceptions. */
11978 const char *catch_exception_unhandled_sym;
11979
11980 /* The name of the symbol to break on in order to insert
11981 a catchpoint on failed assertions. */
11982 const char *catch_assert_sym;
11983
9f757bf7
XR
11984 /* The name of the symbol to break on in order to insert
11985 a catchpoint on exception handling. */
11986 const char *catch_handlers_sym;
11987
0259addd
JB
11988 /* Assuming that the inferior just triggered an unhandled exception
11989 catchpoint, this function is responsible for returning the address
11990 in inferior memory where the name of that exception is stored.
11991 Return zero if the address could not be computed. */
11992 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11993};
11994
11995static CORE_ADDR ada_unhandled_exception_name_addr (void);
11996static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11997
11998/* The following exception support info structure describes how to
11999 implement exception catchpoints with the latest version of the
12000 Ada runtime (as of 2007-03-06). */
12001
12002static const struct exception_support_info default_exception_support_info =
12003{
12004 "__gnat_debug_raise_exception", /* catch_exception_sym */
12005 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12006 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12007 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12008 ada_unhandled_exception_name_addr
12009};
12010
12011/* The following exception support info structure describes how to
12012 implement exception catchpoints with a slightly older version
12013 of the Ada runtime. */
12014
12015static const struct exception_support_info exception_support_info_fallback =
12016{
12017 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12018 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12019 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12020 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12021 ada_unhandled_exception_name_addr_from_raise
12022};
12023
f17011e0
JB
12024/* Return nonzero if we can detect the exception support routines
12025 described in EINFO.
12026
12027 This function errors out if an abnormal situation is detected
12028 (for instance, if we find the exception support routines, but
12029 that support is found to be incomplete). */
12030
12031static int
12032ada_has_this_exception_support (const struct exception_support_info *einfo)
12033{
12034 struct symbol *sym;
12035
12036 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12037 that should be compiled with debugging information. As a result, we
12038 expect to find that symbol in the symtabs. */
12039
12040 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12041 if (sym == NULL)
a6af7abe
JB
12042 {
12043 /* Perhaps we did not find our symbol because the Ada runtime was
12044 compiled without debugging info, or simply stripped of it.
12045 It happens on some GNU/Linux distributions for instance, where
12046 users have to install a separate debug package in order to get
12047 the runtime's debugging info. In that situation, let the user
12048 know why we cannot insert an Ada exception catchpoint.
12049
12050 Note: Just for the purpose of inserting our Ada exception
12051 catchpoint, we could rely purely on the associated minimal symbol.
12052 But we would be operating in degraded mode anyway, since we are
12053 still lacking the debugging info needed later on to extract
12054 the name of the exception being raised (this name is printed in
12055 the catchpoint message, and is also used when trying to catch
12056 a specific exception). We do not handle this case for now. */
3b7344d5 12057 struct bound_minimal_symbol msym
1c8e84b0
JB
12058 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12059
3b7344d5 12060 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12061 error (_("Your Ada runtime appears to be missing some debugging "
12062 "information.\nCannot insert Ada exception catchpoint "
12063 "in this configuration."));
12064
12065 return 0;
12066 }
f17011e0
JB
12067
12068 /* Make sure that the symbol we found corresponds to a function. */
12069
12070 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12071 error (_("Symbol \"%s\" is not a function (class = %d)"),
12072 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12073
12074 return 1;
12075}
12076
0259addd
JB
12077/* Inspect the Ada runtime and determine which exception info structure
12078 should be used to provide support for exception catchpoints.
12079
3eecfa55
JB
12080 This function will always set the per-inferior exception_info,
12081 or raise an error. */
0259addd
JB
12082
12083static void
12084ada_exception_support_info_sniffer (void)
12085{
3eecfa55 12086 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12087
12088 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12089 if (data->exception_info != NULL)
0259addd
JB
12090 return;
12091
12092 /* Check the latest (default) exception support info. */
f17011e0 12093 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12094 {
3eecfa55 12095 data->exception_info = &default_exception_support_info;
0259addd
JB
12096 return;
12097 }
12098
12099 /* Try our fallback exception suport info. */
f17011e0 12100 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12101 {
3eecfa55 12102 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12103 return;
12104 }
12105
12106 /* Sometimes, it is normal for us to not be able to find the routine
12107 we are looking for. This happens when the program is linked with
12108 the shared version of the GNAT runtime, and the program has not been
12109 started yet. Inform the user of these two possible causes if
12110 applicable. */
12111
ccefe4c4 12112 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12113 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12114
12115 /* If the symbol does not exist, then check that the program is
12116 already started, to make sure that shared libraries have been
12117 loaded. If it is not started, this may mean that the symbol is
12118 in a shared library. */
12119
e99b03dc 12120 if (inferior_ptid.pid () == 0)
0259addd
JB
12121 error (_("Unable to insert catchpoint. Try to start the program first."));
12122
12123 /* At this point, we know that we are debugging an Ada program and
12124 that the inferior has been started, but we still are not able to
0963b4bd 12125 find the run-time symbols. That can mean that we are in
0259addd
JB
12126 configurable run time mode, or that a-except as been optimized
12127 out by the linker... In any case, at this point it is not worth
12128 supporting this feature. */
12129
7dda8cff 12130 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12131}
12132
f7f9143b
JB
12133/* True iff FRAME is very likely to be that of a function that is
12134 part of the runtime system. This is all very heuristic, but is
12135 intended to be used as advice as to what frames are uninteresting
12136 to most users. */
12137
12138static int
12139is_known_support_routine (struct frame_info *frame)
12140{
692465f1 12141 enum language func_lang;
f7f9143b 12142 int i;
f35a17b5 12143 const char *fullname;
f7f9143b 12144
4ed6b5be
JB
12145 /* If this code does not have any debugging information (no symtab),
12146 This cannot be any user code. */
f7f9143b 12147
51abb421 12148 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12149 if (sal.symtab == NULL)
12150 return 1;
12151
4ed6b5be
JB
12152 /* If there is a symtab, but the associated source file cannot be
12153 located, then assume this is not user code: Selecting a frame
12154 for which we cannot display the code would not be very helpful
12155 for the user. This should also take care of case such as VxWorks
12156 where the kernel has some debugging info provided for a few units. */
f7f9143b 12157
f35a17b5
JK
12158 fullname = symtab_to_fullname (sal.symtab);
12159 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12160 return 1;
12161
4ed6b5be
JB
12162 /* Check the unit filename againt the Ada runtime file naming.
12163 We also check the name of the objfile against the name of some
12164 known system libraries that sometimes come with debugging info
12165 too. */
12166
f7f9143b
JB
12167 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12168 {
12169 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12170 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12171 return 1;
eb822aa6
DE
12172 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12173 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12174 return 1;
f7f9143b
JB
12175 }
12176
4ed6b5be 12177 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12178
c6dc63a1
TT
12179 gdb::unique_xmalloc_ptr<char> func_name
12180 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12181 if (func_name == NULL)
12182 return 1;
12183
12184 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12185 {
12186 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12187 if (re_exec (func_name.get ()))
12188 return 1;
f7f9143b
JB
12189 }
12190
12191 return 0;
12192}
12193
12194/* Find the first frame that contains debugging information and that is not
12195 part of the Ada run-time, starting from FI and moving upward. */
12196
0ef643c8 12197void
f7f9143b
JB
12198ada_find_printable_frame (struct frame_info *fi)
12199{
12200 for (; fi != NULL; fi = get_prev_frame (fi))
12201 {
12202 if (!is_known_support_routine (fi))
12203 {
12204 select_frame (fi);
12205 break;
12206 }
12207 }
12208
12209}
12210
12211/* Assuming that the inferior just triggered an unhandled exception
12212 catchpoint, return the address in inferior memory where the name
12213 of the exception is stored.
12214
12215 Return zero if the address could not be computed. */
12216
12217static CORE_ADDR
12218ada_unhandled_exception_name_addr (void)
0259addd
JB
12219{
12220 return parse_and_eval_address ("e.full_name");
12221}
12222
12223/* Same as ada_unhandled_exception_name_addr, except that this function
12224 should be used when the inferior uses an older version of the runtime,
12225 where the exception name needs to be extracted from a specific frame
12226 several frames up in the callstack. */
12227
12228static CORE_ADDR
12229ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12230{
12231 int frame_level;
12232 struct frame_info *fi;
3eecfa55 12233 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12234
12235 /* To determine the name of this exception, we need to select
12236 the frame corresponding to RAISE_SYM_NAME. This frame is
12237 at least 3 levels up, so we simply skip the first 3 frames
12238 without checking the name of their associated function. */
12239 fi = get_current_frame ();
12240 for (frame_level = 0; frame_level < 3; frame_level += 1)
12241 if (fi != NULL)
12242 fi = get_prev_frame (fi);
12243
12244 while (fi != NULL)
12245 {
692465f1
JB
12246 enum language func_lang;
12247
c6dc63a1
TT
12248 gdb::unique_xmalloc_ptr<char> func_name
12249 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12250 if (func_name != NULL)
12251 {
c6dc63a1 12252 if (strcmp (func_name.get (),
55b87a52
KS
12253 data->exception_info->catch_exception_sym) == 0)
12254 break; /* We found the frame we were looking for... */
55b87a52 12255 }
fb44b1a7 12256 fi = get_prev_frame (fi);
f7f9143b
JB
12257 }
12258
12259 if (fi == NULL)
12260 return 0;
12261
12262 select_frame (fi);
12263 return parse_and_eval_address ("id.full_name");
12264}
12265
12266/* Assuming the inferior just triggered an Ada exception catchpoint
12267 (of any type), return the address in inferior memory where the name
12268 of the exception is stored, if applicable.
12269
45db7c09
PA
12270 Assumes the selected frame is the current frame.
12271
f7f9143b
JB
12272 Return zero if the address could not be computed, or if not relevant. */
12273
12274static CORE_ADDR
761269c8 12275ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12276 struct breakpoint *b)
12277{
3eecfa55
JB
12278 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12279
f7f9143b
JB
12280 switch (ex)
12281 {
761269c8 12282 case ada_catch_exception:
f7f9143b
JB
12283 return (parse_and_eval_address ("e.full_name"));
12284 break;
12285
761269c8 12286 case ada_catch_exception_unhandled:
3eecfa55 12287 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12288 break;
9f757bf7
XR
12289
12290 case ada_catch_handlers:
12291 return 0; /* The runtimes does not provide access to the exception
12292 name. */
12293 break;
12294
761269c8 12295 case ada_catch_assert:
f7f9143b
JB
12296 return 0; /* Exception name is not relevant in this case. */
12297 break;
12298
12299 default:
12300 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12301 break;
12302 }
12303
12304 return 0; /* Should never be reached. */
12305}
12306
e547c119
JB
12307/* Assuming the inferior is stopped at an exception catchpoint,
12308 return the message which was associated to the exception, if
12309 available. Return NULL if the message could not be retrieved.
12310
e547c119
JB
12311 Note: The exception message can be associated to an exception
12312 either through the use of the Raise_Exception function, or
12313 more simply (Ada 2005 and later), via:
12314
12315 raise Exception_Name with "exception message";
12316
12317 */
12318
6f46ac85 12319static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12320ada_exception_message_1 (void)
12321{
12322 struct value *e_msg_val;
e547c119 12323 int e_msg_len;
e547c119
JB
12324
12325 /* For runtimes that support this feature, the exception message
12326 is passed as an unbounded string argument called "message". */
12327 e_msg_val = parse_and_eval ("message");
12328 if (e_msg_val == NULL)
12329 return NULL; /* Exception message not supported. */
12330
12331 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12332 gdb_assert (e_msg_val != NULL);
12333 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12334
12335 /* If the message string is empty, then treat it as if there was
12336 no exception message. */
12337 if (e_msg_len <= 0)
12338 return NULL;
12339
6f46ac85
TT
12340 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12341 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12342 e_msg.get ()[e_msg_len] = '\0';
e547c119 12343
e547c119
JB
12344 return e_msg;
12345}
12346
12347/* Same as ada_exception_message_1, except that all exceptions are
12348 contained here (returning NULL instead). */
12349
6f46ac85 12350static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12351ada_exception_message (void)
12352{
6f46ac85 12353 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12354
a70b8144 12355 try
e547c119
JB
12356 {
12357 e_msg = ada_exception_message_1 ();
12358 }
230d2906 12359 catch (const gdb_exception_error &e)
e547c119 12360 {
6f46ac85 12361 e_msg.reset (nullptr);
e547c119 12362 }
e547c119
JB
12363
12364 return e_msg;
12365}
12366
f7f9143b
JB
12367/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12368 any error that ada_exception_name_addr_1 might cause to be thrown.
12369 When an error is intercepted, a warning with the error message is printed,
12370 and zero is returned. */
12371
12372static CORE_ADDR
761269c8 12373ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12374 struct breakpoint *b)
12375{
f7f9143b
JB
12376 CORE_ADDR result = 0;
12377
a70b8144 12378 try
f7f9143b
JB
12379 {
12380 result = ada_exception_name_addr_1 (ex, b);
12381 }
12382
230d2906 12383 catch (const gdb_exception_error &e)
f7f9143b 12384 {
3d6e9d23 12385 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12386 return 0;
12387 }
12388
12389 return result;
12390}
12391
cb7de75e 12392static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12393 (const char *excep_string,
12394 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12395
12396/* Ada catchpoints.
12397
12398 In the case of catchpoints on Ada exceptions, the catchpoint will
12399 stop the target on every exception the program throws. When a user
12400 specifies the name of a specific exception, we translate this
12401 request into a condition expression (in text form), and then parse
12402 it into an expression stored in each of the catchpoint's locations.
12403 We then use this condition to check whether the exception that was
12404 raised is the one the user is interested in. If not, then the
12405 target is resumed again. We store the name of the requested
12406 exception, in order to be able to re-set the condition expression
12407 when symbols change. */
12408
12409/* An instance of this type is used to represent an Ada catchpoint
5625a286 12410 breakpoint location. */
28010a5d 12411
5625a286 12412class ada_catchpoint_location : public bp_location
28010a5d 12413{
5625a286 12414public:
5f486660
TT
12415 ada_catchpoint_location (breakpoint *owner)
12416 : bp_location (owner)
5625a286 12417 {}
28010a5d
PA
12418
12419 /* The condition that checks whether the exception that was raised
12420 is the specific exception the user specified on catchpoint
12421 creation. */
4d01a485 12422 expression_up excep_cond_expr;
28010a5d
PA
12423};
12424
c1fc2657 12425/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12426
c1fc2657 12427struct ada_catchpoint : public breakpoint
28010a5d 12428{
28010a5d 12429 /* The name of the specific exception the user specified. */
bc18fbb5 12430 std::string excep_string;
28010a5d
PA
12431};
12432
12433/* Parse the exception condition string in the context of each of the
12434 catchpoint's locations, and store them for later evaluation. */
12435
12436static void
9f757bf7
XR
12437create_excep_cond_exprs (struct ada_catchpoint *c,
12438 enum ada_exception_catchpoint_kind ex)
28010a5d 12439{
28010a5d 12440 struct bp_location *bl;
28010a5d
PA
12441
12442 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12443 if (c->excep_string.empty ())
28010a5d
PA
12444 return;
12445
12446 /* Same if there are no locations... */
c1fc2657 12447 if (c->loc == NULL)
28010a5d
PA
12448 return;
12449
12450 /* Compute the condition expression in text form, from the specific
12451 expection we want to catch. */
cb7de75e 12452 std::string cond_string
bc18fbb5 12453 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12454
12455 /* Iterate over all the catchpoint's locations, and parse an
12456 expression for each. */
c1fc2657 12457 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12458 {
12459 struct ada_catchpoint_location *ada_loc
12460 = (struct ada_catchpoint_location *) bl;
4d01a485 12461 expression_up exp;
28010a5d
PA
12462
12463 if (!bl->shlib_disabled)
12464 {
bbc13ae3 12465 const char *s;
28010a5d 12466
cb7de75e 12467 s = cond_string.c_str ();
a70b8144 12468 try
28010a5d 12469 {
036e657b
JB
12470 exp = parse_exp_1 (&s, bl->address,
12471 block_for_pc (bl->address),
12472 0);
28010a5d 12473 }
230d2906 12474 catch (const gdb_exception_error &e)
849f2b52
JB
12475 {
12476 warning (_("failed to reevaluate internal exception condition "
12477 "for catchpoint %d: %s"),
3d6e9d23 12478 c->number, e.what ());
849f2b52 12479 }
28010a5d
PA
12480 }
12481
b22e99fd 12482 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12483 }
28010a5d
PA
12484}
12485
28010a5d
PA
12486/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12487 structure for all exception catchpoint kinds. */
12488
12489static struct bp_location *
761269c8 12490allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12491 struct breakpoint *self)
12492{
5f486660 12493 return new ada_catchpoint_location (self);
28010a5d
PA
12494}
12495
12496/* Implement the RE_SET method in the breakpoint_ops structure for all
12497 exception catchpoint kinds. */
12498
12499static void
761269c8 12500re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12501{
12502 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12503
12504 /* Call the base class's method. This updates the catchpoint's
12505 locations. */
2060206e 12506 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12507
12508 /* Reparse the exception conditional expressions. One for each
12509 location. */
9f757bf7 12510 create_excep_cond_exprs (c, ex);
28010a5d
PA
12511}
12512
12513/* Returns true if we should stop for this breakpoint hit. If the
12514 user specified a specific exception, we only want to cause a stop
12515 if the program thrown that exception. */
12516
12517static int
12518should_stop_exception (const struct bp_location *bl)
12519{
12520 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12521 const struct ada_catchpoint_location *ada_loc
12522 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12523 int stop;
12524
12525 /* With no specific exception, should always stop. */
bc18fbb5 12526 if (c->excep_string.empty ())
28010a5d
PA
12527 return 1;
12528
12529 if (ada_loc->excep_cond_expr == NULL)
12530 {
12531 /* We will have a NULL expression if back when we were creating
12532 the expressions, this location's had failed to parse. */
12533 return 1;
12534 }
12535
12536 stop = 1;
a70b8144 12537 try
28010a5d
PA
12538 {
12539 struct value *mark;
12540
12541 mark = value_mark ();
4d01a485 12542 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12543 value_free_to_mark (mark);
12544 }
230d2906 12545 catch (const gdb_exception &ex)
492d29ea
PA
12546 {
12547 exception_fprintf (gdb_stderr, ex,
12548 _("Error in testing exception condition:\n"));
12549 }
492d29ea 12550
28010a5d
PA
12551 return stop;
12552}
12553
12554/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12555 for all exception catchpoint kinds. */
12556
12557static void
761269c8 12558check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12559{
12560 bs->stop = should_stop_exception (bs->bp_location_at);
12561}
12562
f7f9143b
JB
12563/* Implement the PRINT_IT method in the breakpoint_ops structure
12564 for all exception catchpoint kinds. */
12565
12566static enum print_stop_action
761269c8 12567print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12568{
79a45e25 12569 struct ui_out *uiout = current_uiout;
348d480f
PA
12570 struct breakpoint *b = bs->breakpoint_at;
12571
956a9fb9 12572 annotate_catchpoint (b->number);
f7f9143b 12573
112e8700 12574 if (uiout->is_mi_like_p ())
f7f9143b 12575 {
112e8700 12576 uiout->field_string ("reason",
956a9fb9 12577 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12578 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12579 }
12580
112e8700
SM
12581 uiout->text (b->disposition == disp_del
12582 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12583 uiout->field_int ("bkptno", b->number);
12584 uiout->text (", ");
f7f9143b 12585
45db7c09
PA
12586 /* ada_exception_name_addr relies on the selected frame being the
12587 current frame. Need to do this here because this function may be
12588 called more than once when printing a stop, and below, we'll
12589 select the first frame past the Ada run-time (see
12590 ada_find_printable_frame). */
12591 select_frame (get_current_frame ());
12592
f7f9143b
JB
12593 switch (ex)
12594 {
761269c8
JB
12595 case ada_catch_exception:
12596 case ada_catch_exception_unhandled:
9f757bf7 12597 case ada_catch_handlers:
956a9fb9
JB
12598 {
12599 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12600 char exception_name[256];
12601
12602 if (addr != 0)
12603 {
c714b426
PA
12604 read_memory (addr, (gdb_byte *) exception_name,
12605 sizeof (exception_name) - 1);
956a9fb9
JB
12606 exception_name [sizeof (exception_name) - 1] = '\0';
12607 }
12608 else
12609 {
12610 /* For some reason, we were unable to read the exception
12611 name. This could happen if the Runtime was compiled
12612 without debugging info, for instance. In that case,
12613 just replace the exception name by the generic string
12614 "exception" - it will read as "an exception" in the
12615 notification we are about to print. */
967cff16 12616 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12617 }
12618 /* In the case of unhandled exception breakpoints, we print
12619 the exception name as "unhandled EXCEPTION_NAME", to make
12620 it clearer to the user which kind of catchpoint just got
12621 hit. We used ui_out_text to make sure that this extra
12622 info does not pollute the exception name in the MI case. */
761269c8 12623 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12624 uiout->text ("unhandled ");
12625 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12626 }
12627 break;
761269c8 12628 case ada_catch_assert:
956a9fb9
JB
12629 /* In this case, the name of the exception is not really
12630 important. Just print "failed assertion" to make it clearer
12631 that his program just hit an assertion-failure catchpoint.
12632 We used ui_out_text because this info does not belong in
12633 the MI output. */
112e8700 12634 uiout->text ("failed assertion");
956a9fb9 12635 break;
f7f9143b 12636 }
e547c119 12637
6f46ac85 12638 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12639 if (exception_message != NULL)
12640 {
e547c119 12641 uiout->text (" (");
6f46ac85 12642 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12643 uiout->text (")");
e547c119
JB
12644 }
12645
112e8700 12646 uiout->text (" at ");
956a9fb9 12647 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12648
12649 return PRINT_SRC_AND_LOC;
12650}
12651
12652/* Implement the PRINT_ONE method in the breakpoint_ops structure
12653 for all exception catchpoint kinds. */
12654
12655static void
761269c8 12656print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12657 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12658{
79a45e25 12659 struct ui_out *uiout = current_uiout;
28010a5d 12660 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12661 struct value_print_options opts;
12662
12663 get_user_print_options (&opts);
12664 if (opts.addressprint)
f7f9143b
JB
12665 {
12666 annotate_field (4);
112e8700 12667 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12668 }
12669
12670 annotate_field (5);
a6d9a66e 12671 *last_loc = b->loc;
f7f9143b
JB
12672 switch (ex)
12673 {
761269c8 12674 case ada_catch_exception:
bc18fbb5 12675 if (!c->excep_string.empty ())
f7f9143b 12676 {
bc18fbb5
TT
12677 std::string msg = string_printf (_("`%s' Ada exception"),
12678 c->excep_string.c_str ());
28010a5d 12679
112e8700 12680 uiout->field_string ("what", msg);
f7f9143b
JB
12681 }
12682 else
112e8700 12683 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12684
12685 break;
12686
761269c8 12687 case ada_catch_exception_unhandled:
112e8700 12688 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12689 break;
12690
9f757bf7 12691 case ada_catch_handlers:
bc18fbb5 12692 if (!c->excep_string.empty ())
9f757bf7
XR
12693 {
12694 uiout->field_fmt ("what",
12695 _("`%s' Ada exception handlers"),
bc18fbb5 12696 c->excep_string.c_str ());
9f757bf7
XR
12697 }
12698 else
12699 uiout->field_string ("what", "all Ada exceptions handlers");
12700 break;
12701
761269c8 12702 case ada_catch_assert:
112e8700 12703 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12704 break;
12705
12706 default:
12707 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12708 break;
12709 }
12710}
12711
12712/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12713 for all exception catchpoint kinds. */
12714
12715static void
761269c8 12716print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12717 struct breakpoint *b)
12718{
28010a5d 12719 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12720 struct ui_out *uiout = current_uiout;
28010a5d 12721
112e8700 12722 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12723 : _("Catchpoint "));
112e8700
SM
12724 uiout->field_int ("bkptno", b->number);
12725 uiout->text (": ");
00eb2c4a 12726
f7f9143b
JB
12727 switch (ex)
12728 {
761269c8 12729 case ada_catch_exception:
bc18fbb5 12730 if (!c->excep_string.empty ())
00eb2c4a 12731 {
862d101a 12732 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12733 c->excep_string.c_str ());
862d101a 12734 uiout->text (info.c_str ());
00eb2c4a 12735 }
f7f9143b 12736 else
112e8700 12737 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12738 break;
12739
761269c8 12740 case ada_catch_exception_unhandled:
112e8700 12741 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12742 break;
9f757bf7
XR
12743
12744 case ada_catch_handlers:
bc18fbb5 12745 if (!c->excep_string.empty ())
9f757bf7
XR
12746 {
12747 std::string info
12748 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12749 c->excep_string.c_str ());
9f757bf7
XR
12750 uiout->text (info.c_str ());
12751 }
12752 else
12753 uiout->text (_("all Ada exceptions handlers"));
12754 break;
12755
761269c8 12756 case ada_catch_assert:
112e8700 12757 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12758 break;
12759
12760 default:
12761 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12762 break;
12763 }
12764}
12765
6149aea9
PA
12766/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12767 for all exception catchpoint kinds. */
12768
12769static void
761269c8 12770print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12771 struct breakpoint *b, struct ui_file *fp)
12772{
28010a5d
PA
12773 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12774
6149aea9
PA
12775 switch (ex)
12776 {
761269c8 12777 case ada_catch_exception:
6149aea9 12778 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12779 if (!c->excep_string.empty ())
12780 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12781 break;
12782
761269c8 12783 case ada_catch_exception_unhandled:
78076abc 12784 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12785 break;
12786
9f757bf7
XR
12787 case ada_catch_handlers:
12788 fprintf_filtered (fp, "catch handlers");
12789 break;
12790
761269c8 12791 case ada_catch_assert:
6149aea9
PA
12792 fprintf_filtered (fp, "catch assert");
12793 break;
12794
12795 default:
12796 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12797 }
d9b3f62e 12798 print_recreate_thread (b, fp);
6149aea9
PA
12799}
12800
f7f9143b
JB
12801/* Virtual table for "catch exception" breakpoints. */
12802
28010a5d
PA
12803static struct bp_location *
12804allocate_location_catch_exception (struct breakpoint *self)
12805{
761269c8 12806 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12807}
12808
12809static void
12810re_set_catch_exception (struct breakpoint *b)
12811{
761269c8 12812 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12813}
12814
12815static void
12816check_status_catch_exception (bpstat bs)
12817{
761269c8 12818 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12819}
12820
f7f9143b 12821static enum print_stop_action
348d480f 12822print_it_catch_exception (bpstat bs)
f7f9143b 12823{
761269c8 12824 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12825}
12826
12827static void
a6d9a66e 12828print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12829{
761269c8 12830 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12831}
12832
12833static void
12834print_mention_catch_exception (struct breakpoint *b)
12835{
761269c8 12836 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12837}
12838
6149aea9
PA
12839static void
12840print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12841{
761269c8 12842 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12843}
12844
2060206e 12845static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12846
12847/* Virtual table for "catch exception unhandled" breakpoints. */
12848
28010a5d
PA
12849static struct bp_location *
12850allocate_location_catch_exception_unhandled (struct breakpoint *self)
12851{
761269c8 12852 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12853}
12854
12855static void
12856re_set_catch_exception_unhandled (struct breakpoint *b)
12857{
761269c8 12858 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12859}
12860
12861static void
12862check_status_catch_exception_unhandled (bpstat bs)
12863{
761269c8 12864 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12865}
12866
f7f9143b 12867static enum print_stop_action
348d480f 12868print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12869{
761269c8 12870 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12871}
12872
12873static void
a6d9a66e
UW
12874print_one_catch_exception_unhandled (struct breakpoint *b,
12875 struct bp_location **last_loc)
f7f9143b 12876{
761269c8 12877 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12878}
12879
12880static void
12881print_mention_catch_exception_unhandled (struct breakpoint *b)
12882{
761269c8 12883 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12884}
12885
6149aea9
PA
12886static void
12887print_recreate_catch_exception_unhandled (struct breakpoint *b,
12888 struct ui_file *fp)
12889{
761269c8 12890 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12891}
12892
2060206e 12893static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12894
12895/* Virtual table for "catch assert" breakpoints. */
12896
28010a5d
PA
12897static struct bp_location *
12898allocate_location_catch_assert (struct breakpoint *self)
12899{
761269c8 12900 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12901}
12902
12903static void
12904re_set_catch_assert (struct breakpoint *b)
12905{
761269c8 12906 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12907}
12908
12909static void
12910check_status_catch_assert (bpstat bs)
12911{
761269c8 12912 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12913}
12914
f7f9143b 12915static enum print_stop_action
348d480f 12916print_it_catch_assert (bpstat bs)
f7f9143b 12917{
761269c8 12918 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12919}
12920
12921static void
a6d9a66e 12922print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12923{
761269c8 12924 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12925}
12926
12927static void
12928print_mention_catch_assert (struct breakpoint *b)
12929{
761269c8 12930 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12931}
12932
6149aea9
PA
12933static void
12934print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12935{
761269c8 12936 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12937}
12938
2060206e 12939static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12940
9f757bf7
XR
12941/* Virtual table for "catch handlers" breakpoints. */
12942
12943static struct bp_location *
12944allocate_location_catch_handlers (struct breakpoint *self)
12945{
12946 return allocate_location_exception (ada_catch_handlers, self);
12947}
12948
12949static void
12950re_set_catch_handlers (struct breakpoint *b)
12951{
12952 re_set_exception (ada_catch_handlers, b);
12953}
12954
12955static void
12956check_status_catch_handlers (bpstat bs)
12957{
12958 check_status_exception (ada_catch_handlers, bs);
12959}
12960
12961static enum print_stop_action
12962print_it_catch_handlers (bpstat bs)
12963{
12964 return print_it_exception (ada_catch_handlers, bs);
12965}
12966
12967static void
12968print_one_catch_handlers (struct breakpoint *b,
12969 struct bp_location **last_loc)
12970{
12971 print_one_exception (ada_catch_handlers, b, last_loc);
12972}
12973
12974static void
12975print_mention_catch_handlers (struct breakpoint *b)
12976{
12977 print_mention_exception (ada_catch_handlers, b);
12978}
12979
12980static void
12981print_recreate_catch_handlers (struct breakpoint *b,
12982 struct ui_file *fp)
12983{
12984 print_recreate_exception (ada_catch_handlers, b, fp);
12985}
12986
12987static struct breakpoint_ops catch_handlers_breakpoint_ops;
12988
f7f9143b
JB
12989/* Split the arguments specified in a "catch exception" command.
12990 Set EX to the appropriate catchpoint type.
28010a5d 12991 Set EXCEP_STRING to the name of the specific exception if
5845583d 12992 specified by the user.
9f757bf7
XR
12993 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12994 "catch handlers" command. False otherwise.
5845583d
JB
12995 If a condition is found at the end of the arguments, the condition
12996 expression is stored in COND_STRING (memory must be deallocated
12997 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12998
12999static void
a121b7c1 13000catch_ada_exception_command_split (const char *args,
9f757bf7 13001 bool is_catch_handlers_cmd,
761269c8 13002 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13003 std::string *excep_string,
13004 std::string *cond_string)
f7f9143b 13005{
bc18fbb5 13006 std::string exception_name;
f7f9143b 13007
bc18fbb5
TT
13008 exception_name = extract_arg (&args);
13009 if (exception_name == "if")
5845583d
JB
13010 {
13011 /* This is not an exception name; this is the start of a condition
13012 expression for a catchpoint on all exceptions. So, "un-get"
13013 this token, and set exception_name to NULL. */
bc18fbb5 13014 exception_name.clear ();
5845583d
JB
13015 args -= 2;
13016 }
f7f9143b 13017
5845583d 13018 /* Check to see if we have a condition. */
f7f9143b 13019
f1735a53 13020 args = skip_spaces (args);
61012eef 13021 if (startswith (args, "if")
5845583d
JB
13022 && (isspace (args[2]) || args[2] == '\0'))
13023 {
13024 args += 2;
f1735a53 13025 args = skip_spaces (args);
5845583d
JB
13026
13027 if (args[0] == '\0')
13028 error (_("Condition missing after `if' keyword"));
bc18fbb5 13029 *cond_string = args;
5845583d
JB
13030
13031 args += strlen (args);
13032 }
13033
13034 /* Check that we do not have any more arguments. Anything else
13035 is unexpected. */
f7f9143b
JB
13036
13037 if (args[0] != '\0')
13038 error (_("Junk at end of expression"));
13039
9f757bf7
XR
13040 if (is_catch_handlers_cmd)
13041 {
13042 /* Catch handling of exceptions. */
13043 *ex = ada_catch_handlers;
13044 *excep_string = exception_name;
13045 }
bc18fbb5 13046 else if (exception_name.empty ())
f7f9143b
JB
13047 {
13048 /* Catch all exceptions. */
761269c8 13049 *ex = ada_catch_exception;
bc18fbb5 13050 excep_string->clear ();
f7f9143b 13051 }
bc18fbb5 13052 else if (exception_name == "unhandled")
f7f9143b
JB
13053 {
13054 /* Catch unhandled exceptions. */
761269c8 13055 *ex = ada_catch_exception_unhandled;
bc18fbb5 13056 excep_string->clear ();
f7f9143b
JB
13057 }
13058 else
13059 {
13060 /* Catch a specific exception. */
761269c8 13061 *ex = ada_catch_exception;
28010a5d 13062 *excep_string = exception_name;
f7f9143b
JB
13063 }
13064}
13065
13066/* Return the name of the symbol on which we should break in order to
13067 implement a catchpoint of the EX kind. */
13068
13069static const char *
761269c8 13070ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13071{
3eecfa55
JB
13072 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13073
13074 gdb_assert (data->exception_info != NULL);
0259addd 13075
f7f9143b
JB
13076 switch (ex)
13077 {
761269c8 13078 case ada_catch_exception:
3eecfa55 13079 return (data->exception_info->catch_exception_sym);
f7f9143b 13080 break;
761269c8 13081 case ada_catch_exception_unhandled:
3eecfa55 13082 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13083 break;
761269c8 13084 case ada_catch_assert:
3eecfa55 13085 return (data->exception_info->catch_assert_sym);
f7f9143b 13086 break;
9f757bf7
XR
13087 case ada_catch_handlers:
13088 return (data->exception_info->catch_handlers_sym);
13089 break;
f7f9143b
JB
13090 default:
13091 internal_error (__FILE__, __LINE__,
13092 _("unexpected catchpoint kind (%d)"), ex);
13093 }
13094}
13095
13096/* Return the breakpoint ops "virtual table" used for catchpoints
13097 of the EX kind. */
13098
c0a91b2b 13099static const struct breakpoint_ops *
761269c8 13100ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13101{
13102 switch (ex)
13103 {
761269c8 13104 case ada_catch_exception:
f7f9143b
JB
13105 return (&catch_exception_breakpoint_ops);
13106 break;
761269c8 13107 case ada_catch_exception_unhandled:
f7f9143b
JB
13108 return (&catch_exception_unhandled_breakpoint_ops);
13109 break;
761269c8 13110 case ada_catch_assert:
f7f9143b
JB
13111 return (&catch_assert_breakpoint_ops);
13112 break;
9f757bf7
XR
13113 case ada_catch_handlers:
13114 return (&catch_handlers_breakpoint_ops);
13115 break;
f7f9143b
JB
13116 default:
13117 internal_error (__FILE__, __LINE__,
13118 _("unexpected catchpoint kind (%d)"), ex);
13119 }
13120}
13121
13122/* Return the condition that will be used to match the current exception
13123 being raised with the exception that the user wants to catch. This
13124 assumes that this condition is used when the inferior just triggered
13125 an exception catchpoint.
cb7de75e 13126 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13127
cb7de75e 13128static std::string
9f757bf7
XR
13129ada_exception_catchpoint_cond_string (const char *excep_string,
13130 enum ada_exception_catchpoint_kind ex)
f7f9143b 13131{
3d0b0fa3 13132 int i;
9f757bf7 13133 bool is_standard_exc = false;
cb7de75e 13134 std::string result;
9f757bf7
XR
13135
13136 if (ex == ada_catch_handlers)
13137 {
13138 /* For exception handlers catchpoints, the condition string does
13139 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13140 result = ("long_integer (GNAT_GCC_exception_Access"
13141 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13142 }
13143 else
cb7de75e 13144 result = "long_integer (e)";
3d0b0fa3 13145
0963b4bd 13146 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13147 runtime units that have been compiled without debugging info; if
28010a5d 13148 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13149 exception (e.g. "constraint_error") then, during the evaluation
13150 of the condition expression, the symbol lookup on this name would
0963b4bd 13151 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13152 may then be set only on user-defined exceptions which have the
13153 same not-fully-qualified name (e.g. my_package.constraint_error).
13154
13155 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13156 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13157 exception constraint_error" is rewritten into "catch exception
13158 standard.constraint_error".
13159
13160 If an exception named contraint_error is defined in another package of
13161 the inferior program, then the only way to specify this exception as a
13162 breakpoint condition is to use its fully-qualified named:
13163 e.g. my_package.constraint_error. */
13164
13165 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13166 {
28010a5d 13167 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13168 {
9f757bf7
XR
13169 is_standard_exc = true;
13170 break;
3d0b0fa3
JB
13171 }
13172 }
9f757bf7 13173
cb7de75e
TT
13174 result += " = ";
13175
9f757bf7 13176 if (is_standard_exc)
cb7de75e 13177 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13178 else
cb7de75e 13179 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13180
9f757bf7 13181 return result;
f7f9143b
JB
13182}
13183
13184/* Return the symtab_and_line that should be used to insert an exception
13185 catchpoint of the TYPE kind.
13186
28010a5d
PA
13187 ADDR_STRING returns the name of the function where the real
13188 breakpoint that implements the catchpoints is set, depending on the
13189 type of catchpoint we need to create. */
f7f9143b
JB
13190
13191static struct symtab_and_line
bc18fbb5 13192ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13193 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13194{
13195 const char *sym_name;
13196 struct symbol *sym;
f7f9143b 13197
0259addd
JB
13198 /* First, find out which exception support info to use. */
13199 ada_exception_support_info_sniffer ();
13200
13201 /* Then lookup the function on which we will break in order to catch
f7f9143b 13202 the Ada exceptions requested by the user. */
f7f9143b
JB
13203 sym_name = ada_exception_sym_name (ex);
13204 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13205
57aff202
JB
13206 if (sym == NULL)
13207 error (_("Catchpoint symbol not found: %s"), sym_name);
13208
13209 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13210 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13211
13212 /* Set ADDR_STRING. */
cc12f4a8 13213 *addr_string = sym_name;
f7f9143b 13214
f7f9143b 13215 /* Set OPS. */
4b9eee8c 13216 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13217
f17011e0 13218 return find_function_start_sal (sym, 1);
f7f9143b
JB
13219}
13220
b4a5b78b 13221/* Create an Ada exception catchpoint.
f7f9143b 13222
b4a5b78b 13223 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13224
bc18fbb5 13225 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13226 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13227 of the exception to which this catchpoint applies.
2df4d1d5 13228
bc18fbb5 13229 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13230
b4a5b78b
JB
13231 TEMPFLAG, if nonzero, means that the underlying breakpoint
13232 should be temporary.
28010a5d 13233
b4a5b78b 13234 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13235
349774ef 13236void
28010a5d 13237create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13238 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13239 const std::string &excep_string,
56ecd069 13240 const std::string &cond_string,
28010a5d 13241 int tempflag,
349774ef 13242 int disabled,
28010a5d
PA
13243 int from_tty)
13244{
cc12f4a8 13245 std::string addr_string;
b4a5b78b 13246 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13247 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13248
b270e6f9 13249 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13250 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13251 ops, tempflag, disabled, from_tty);
28010a5d 13252 c->excep_string = excep_string;
9f757bf7 13253 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13254 if (!cond_string.empty ())
13255 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13256 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13257}
13258
9ac4176b
PA
13259/* Implement the "catch exception" command. */
13260
13261static void
eb4c3f4a 13262catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13263 struct cmd_list_element *command)
13264{
a121b7c1 13265 const char *arg = arg_entry;
9ac4176b
PA
13266 struct gdbarch *gdbarch = get_current_arch ();
13267 int tempflag;
761269c8 13268 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13269 std::string excep_string;
56ecd069 13270 std::string cond_string;
9ac4176b
PA
13271
13272 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13273
13274 if (!arg)
13275 arg = "";
9f757bf7 13276 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13277 &cond_string);
9f757bf7
XR
13278 create_ada_exception_catchpoint (gdbarch, ex_kind,
13279 excep_string, cond_string,
13280 tempflag, 1 /* enabled */,
13281 from_tty);
13282}
13283
13284/* Implement the "catch handlers" command. */
13285
13286static void
13287catch_ada_handlers_command (const char *arg_entry, int from_tty,
13288 struct cmd_list_element *command)
13289{
13290 const char *arg = arg_entry;
13291 struct gdbarch *gdbarch = get_current_arch ();
13292 int tempflag;
13293 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13294 std::string excep_string;
56ecd069 13295 std::string cond_string;
9f757bf7
XR
13296
13297 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13298
13299 if (!arg)
13300 arg = "";
13301 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13302 &cond_string);
b4a5b78b
JB
13303 create_ada_exception_catchpoint (gdbarch, ex_kind,
13304 excep_string, cond_string,
349774ef
JB
13305 tempflag, 1 /* enabled */,
13306 from_tty);
9ac4176b
PA
13307}
13308
b4a5b78b 13309/* Split the arguments specified in a "catch assert" command.
5845583d 13310
b4a5b78b
JB
13311 ARGS contains the command's arguments (or the empty string if
13312 no arguments were passed).
5845583d
JB
13313
13314 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13315 (the memory needs to be deallocated after use). */
5845583d 13316
b4a5b78b 13317static void
56ecd069 13318catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13319{
f1735a53 13320 args = skip_spaces (args);
f7f9143b 13321
5845583d 13322 /* Check whether a condition was provided. */
61012eef 13323 if (startswith (args, "if")
5845583d 13324 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13325 {
5845583d 13326 args += 2;
f1735a53 13327 args = skip_spaces (args);
5845583d
JB
13328 if (args[0] == '\0')
13329 error (_("condition missing after `if' keyword"));
56ecd069 13330 cond_string.assign (args);
f7f9143b
JB
13331 }
13332
5845583d
JB
13333 /* Otherwise, there should be no other argument at the end of
13334 the command. */
13335 else if (args[0] != '\0')
13336 error (_("Junk at end of arguments."));
f7f9143b
JB
13337}
13338
9ac4176b
PA
13339/* Implement the "catch assert" command. */
13340
13341static void
eb4c3f4a 13342catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13343 struct cmd_list_element *command)
13344{
a121b7c1 13345 const char *arg = arg_entry;
9ac4176b
PA
13346 struct gdbarch *gdbarch = get_current_arch ();
13347 int tempflag;
56ecd069 13348 std::string cond_string;
9ac4176b
PA
13349
13350 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13351
13352 if (!arg)
13353 arg = "";
56ecd069 13354 catch_ada_assert_command_split (arg, cond_string);
761269c8 13355 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13356 "", cond_string,
349774ef
JB
13357 tempflag, 1 /* enabled */,
13358 from_tty);
9ac4176b 13359}
778865d3
JB
13360
13361/* Return non-zero if the symbol SYM is an Ada exception object. */
13362
13363static int
13364ada_is_exception_sym (struct symbol *sym)
13365{
a737d952 13366 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13367
13368 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13369 && SYMBOL_CLASS (sym) != LOC_BLOCK
13370 && SYMBOL_CLASS (sym) != LOC_CONST
13371 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13372 && type_name != NULL && strcmp (type_name, "exception") == 0);
13373}
13374
13375/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13376 Ada exception object. This matches all exceptions except the ones
13377 defined by the Ada language. */
13378
13379static int
13380ada_is_non_standard_exception_sym (struct symbol *sym)
13381{
13382 int i;
13383
13384 if (!ada_is_exception_sym (sym))
13385 return 0;
13386
13387 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13388 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13389 return 0; /* A standard exception. */
13390
13391 /* Numeric_Error is also a standard exception, so exclude it.
13392 See the STANDARD_EXC description for more details as to why
13393 this exception is not listed in that array. */
13394 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13395 return 0;
13396
13397 return 1;
13398}
13399
ab816a27 13400/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13401 objects.
13402
13403 The comparison is determined first by exception name, and then
13404 by exception address. */
13405
ab816a27 13406bool
cc536b21 13407ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13408{
778865d3
JB
13409 int result;
13410
ab816a27
TT
13411 result = strcmp (name, other.name);
13412 if (result < 0)
13413 return true;
13414 if (result == 0 && addr < other.addr)
13415 return true;
13416 return false;
13417}
778865d3 13418
ab816a27 13419bool
cc536b21 13420ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13421{
13422 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13423}
13424
13425/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13426 routine, but keeping the first SKIP elements untouched.
13427
13428 All duplicates are also removed. */
13429
13430static void
ab816a27 13431sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13432 int skip)
13433{
ab816a27
TT
13434 std::sort (exceptions->begin () + skip, exceptions->end ());
13435 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13436 exceptions->end ());
778865d3
JB
13437}
13438
778865d3
JB
13439/* Add all exceptions defined by the Ada standard whose name match
13440 a regular expression.
13441
13442 If PREG is not NULL, then this regexp_t object is used to
13443 perform the symbol name matching. Otherwise, no name-based
13444 filtering is performed.
13445
13446 EXCEPTIONS is a vector of exceptions to which matching exceptions
13447 gets pushed. */
13448
13449static void
2d7cc5c7 13450ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13451 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13452{
13453 int i;
13454
13455 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13456 {
13457 if (preg == NULL
2d7cc5c7 13458 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13459 {
13460 struct bound_minimal_symbol msymbol
13461 = ada_lookup_simple_minsym (standard_exc[i]);
13462
13463 if (msymbol.minsym != NULL)
13464 {
13465 struct ada_exc_info info
77e371c0 13466 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13467
ab816a27 13468 exceptions->push_back (info);
778865d3
JB
13469 }
13470 }
13471 }
13472}
13473
13474/* Add all Ada exceptions defined locally and accessible from the given
13475 FRAME.
13476
13477 If PREG is not NULL, then this regexp_t object is used to
13478 perform the symbol name matching. Otherwise, no name-based
13479 filtering is performed.
13480
13481 EXCEPTIONS is a vector of exceptions to which matching exceptions
13482 gets pushed. */
13483
13484static void
2d7cc5c7
PA
13485ada_add_exceptions_from_frame (compiled_regex *preg,
13486 struct frame_info *frame,
ab816a27 13487 std::vector<ada_exc_info> *exceptions)
778865d3 13488{
3977b71f 13489 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13490
13491 while (block != 0)
13492 {
13493 struct block_iterator iter;
13494 struct symbol *sym;
13495
13496 ALL_BLOCK_SYMBOLS (block, iter, sym)
13497 {
13498 switch (SYMBOL_CLASS (sym))
13499 {
13500 case LOC_TYPEDEF:
13501 case LOC_BLOCK:
13502 case LOC_CONST:
13503 break;
13504 default:
13505 if (ada_is_exception_sym (sym))
13506 {
13507 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13508 SYMBOL_VALUE_ADDRESS (sym)};
13509
ab816a27 13510 exceptions->push_back (info);
778865d3
JB
13511 }
13512 }
13513 }
13514 if (BLOCK_FUNCTION (block) != NULL)
13515 break;
13516 block = BLOCK_SUPERBLOCK (block);
13517 }
13518}
13519
14bc53a8
PA
13520/* Return true if NAME matches PREG or if PREG is NULL. */
13521
13522static bool
2d7cc5c7 13523name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13524{
13525 return (preg == NULL
2d7cc5c7 13526 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13527}
13528
778865d3
JB
13529/* Add all exceptions defined globally whose name name match
13530 a regular expression, excluding standard exceptions.
13531
13532 The reason we exclude standard exceptions is that they need
13533 to be handled separately: Standard exceptions are defined inside
13534 a runtime unit which is normally not compiled with debugging info,
13535 and thus usually do not show up in our symbol search. However,
13536 if the unit was in fact built with debugging info, we need to
13537 exclude them because they would duplicate the entry we found
13538 during the special loop that specifically searches for those
13539 standard exceptions.
13540
13541 If PREG is not NULL, then this regexp_t object is used to
13542 perform the symbol name matching. Otherwise, no name-based
13543 filtering is performed.
13544
13545 EXCEPTIONS is a vector of exceptions to which matching exceptions
13546 gets pushed. */
13547
13548static void
2d7cc5c7 13549ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13550 std::vector<ada_exc_info> *exceptions)
778865d3 13551{
14bc53a8
PA
13552 /* In Ada, the symbol "search name" is a linkage name, whereas the
13553 regular expression used to do the matching refers to the natural
13554 name. So match against the decoded name. */
13555 expand_symtabs_matching (NULL,
b5ec771e 13556 lookup_name_info::match_any (),
14bc53a8
PA
13557 [&] (const char *search_name)
13558 {
13559 const char *decoded = ada_decode (search_name);
13560 return name_matches_regex (decoded, preg);
13561 },
13562 NULL,
13563 VARIABLES_DOMAIN);
778865d3 13564
2030c079 13565 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13566 {
b669c953 13567 for (compunit_symtab *s : objfile->compunits ())
778865d3 13568 {
d8aeb77f
TT
13569 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13570 int i;
778865d3 13571
d8aeb77f
TT
13572 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13573 {
582942f4 13574 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13575 struct block_iterator iter;
13576 struct symbol *sym;
778865d3 13577
d8aeb77f
TT
13578 ALL_BLOCK_SYMBOLS (b, iter, sym)
13579 if (ada_is_non_standard_exception_sym (sym)
13580 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13581 {
13582 struct ada_exc_info info
13583 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13584
13585 exceptions->push_back (info);
13586 }
13587 }
778865d3
JB
13588 }
13589 }
13590}
13591
13592/* Implements ada_exceptions_list with the regular expression passed
13593 as a regex_t, rather than a string.
13594
13595 If not NULL, PREG is used to filter out exceptions whose names
13596 do not match. Otherwise, all exceptions are listed. */
13597
ab816a27 13598static std::vector<ada_exc_info>
2d7cc5c7 13599ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13600{
ab816a27 13601 std::vector<ada_exc_info> result;
778865d3
JB
13602 int prev_len;
13603
13604 /* First, list the known standard exceptions. These exceptions
13605 need to be handled separately, as they are usually defined in
13606 runtime units that have been compiled without debugging info. */
13607
13608 ada_add_standard_exceptions (preg, &result);
13609
13610 /* Next, find all exceptions whose scope is local and accessible
13611 from the currently selected frame. */
13612
13613 if (has_stack_frames ())
13614 {
ab816a27 13615 prev_len = result.size ();
778865d3
JB
13616 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13617 &result);
ab816a27 13618 if (result.size () > prev_len)
778865d3
JB
13619 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13620 }
13621
13622 /* Add all exceptions whose scope is global. */
13623
ab816a27 13624 prev_len = result.size ();
778865d3 13625 ada_add_global_exceptions (preg, &result);
ab816a27 13626 if (result.size () > prev_len)
778865d3
JB
13627 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13628
778865d3
JB
13629 return result;
13630}
13631
13632/* Return a vector of ada_exc_info.
13633
13634 If REGEXP is NULL, all exceptions are included in the result.
13635 Otherwise, it should contain a valid regular expression,
13636 and only the exceptions whose names match that regular expression
13637 are included in the result.
13638
13639 The exceptions are sorted in the following order:
13640 - Standard exceptions (defined by the Ada language), in
13641 alphabetical order;
13642 - Exceptions only visible from the current frame, in
13643 alphabetical order;
13644 - Exceptions whose scope is global, in alphabetical order. */
13645
ab816a27 13646std::vector<ada_exc_info>
778865d3
JB
13647ada_exceptions_list (const char *regexp)
13648{
2d7cc5c7
PA
13649 if (regexp == NULL)
13650 return ada_exceptions_list_1 (NULL);
778865d3 13651
2d7cc5c7
PA
13652 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13653 return ada_exceptions_list_1 (&reg);
778865d3
JB
13654}
13655
13656/* Implement the "info exceptions" command. */
13657
13658static void
1d12d88f 13659info_exceptions_command (const char *regexp, int from_tty)
778865d3 13660{
778865d3 13661 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13662
ab816a27 13663 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13664
13665 if (regexp != NULL)
13666 printf_filtered
13667 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13668 else
13669 printf_filtered (_("All defined Ada exceptions:\n"));
13670
ab816a27
TT
13671 for (const ada_exc_info &info : exceptions)
13672 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13673}
13674
4c4b4cd2
PH
13675 /* Operators */
13676/* Information about operators given special treatment in functions
13677 below. */
13678/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13679
13680#define ADA_OPERATORS \
13681 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13682 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13683 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13684 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13687 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13688 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13689 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13690 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13692 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13693 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13694 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13695 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13696 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13697 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13698 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13699 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13700
13701static void
554794dc
SDJ
13702ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13703 int *argsp)
4c4b4cd2
PH
13704{
13705 switch (exp->elts[pc - 1].opcode)
13706 {
76a01679 13707 default:
4c4b4cd2
PH
13708 operator_length_standard (exp, pc, oplenp, argsp);
13709 break;
13710
13711#define OP_DEFN(op, len, args, binop) \
13712 case op: *oplenp = len; *argsp = args; break;
13713 ADA_OPERATORS;
13714#undef OP_DEFN
52ce6436
PH
13715
13716 case OP_AGGREGATE:
13717 *oplenp = 3;
13718 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13719 break;
13720
13721 case OP_CHOICES:
13722 *oplenp = 3;
13723 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13724 break;
4c4b4cd2
PH
13725 }
13726}
13727
c0201579
JK
13728/* Implementation of the exp_descriptor method operator_check. */
13729
13730static int
13731ada_operator_check (struct expression *exp, int pos,
13732 int (*objfile_func) (struct objfile *objfile, void *data),
13733 void *data)
13734{
13735 const union exp_element *const elts = exp->elts;
13736 struct type *type = NULL;
13737
13738 switch (elts[pos].opcode)
13739 {
13740 case UNOP_IN_RANGE:
13741 case UNOP_QUAL:
13742 type = elts[pos + 1].type;
13743 break;
13744
13745 default:
13746 return operator_check_standard (exp, pos, objfile_func, data);
13747 }
13748
13749 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13750
13751 if (type && TYPE_OBJFILE (type)
13752 && (*objfile_func) (TYPE_OBJFILE (type), data))
13753 return 1;
13754
13755 return 0;
13756}
13757
a121b7c1 13758static const char *
4c4b4cd2
PH
13759ada_op_name (enum exp_opcode opcode)
13760{
13761 switch (opcode)
13762 {
76a01679 13763 default:
4c4b4cd2 13764 return op_name_standard (opcode);
52ce6436 13765
4c4b4cd2
PH
13766#define OP_DEFN(op, len, args, binop) case op: return #op;
13767 ADA_OPERATORS;
13768#undef OP_DEFN
52ce6436
PH
13769
13770 case OP_AGGREGATE:
13771 return "OP_AGGREGATE";
13772 case OP_CHOICES:
13773 return "OP_CHOICES";
13774 case OP_NAME:
13775 return "OP_NAME";
4c4b4cd2
PH
13776 }
13777}
13778
13779/* As for operator_length, but assumes PC is pointing at the first
13780 element of the operator, and gives meaningful results only for the
52ce6436 13781 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13782
13783static void
76a01679
JB
13784ada_forward_operator_length (struct expression *exp, int pc,
13785 int *oplenp, int *argsp)
4c4b4cd2 13786{
76a01679 13787 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13788 {
13789 default:
13790 *oplenp = *argsp = 0;
13791 break;
52ce6436 13792
4c4b4cd2
PH
13793#define OP_DEFN(op, len, args, binop) \
13794 case op: *oplenp = len; *argsp = args; break;
13795 ADA_OPERATORS;
13796#undef OP_DEFN
52ce6436
PH
13797
13798 case OP_AGGREGATE:
13799 *oplenp = 3;
13800 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13801 break;
13802
13803 case OP_CHOICES:
13804 *oplenp = 3;
13805 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13806 break;
13807
13808 case OP_STRING:
13809 case OP_NAME:
13810 {
13811 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13812
52ce6436
PH
13813 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13814 *argsp = 0;
13815 break;
13816 }
4c4b4cd2
PH
13817 }
13818}
13819
13820static int
13821ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13822{
13823 enum exp_opcode op = exp->elts[elt].opcode;
13824 int oplen, nargs;
13825 int pc = elt;
13826 int i;
76a01679 13827
4c4b4cd2
PH
13828 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13829
76a01679 13830 switch (op)
4c4b4cd2 13831 {
76a01679 13832 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13833 case OP_ATR_FIRST:
13834 case OP_ATR_LAST:
13835 case OP_ATR_LENGTH:
13836 case OP_ATR_IMAGE:
13837 case OP_ATR_MAX:
13838 case OP_ATR_MIN:
13839 case OP_ATR_MODULUS:
13840 case OP_ATR_POS:
13841 case OP_ATR_SIZE:
13842 case OP_ATR_TAG:
13843 case OP_ATR_VAL:
13844 break;
13845
13846 case UNOP_IN_RANGE:
13847 case UNOP_QUAL:
323e0a4a
AC
13848 /* XXX: gdb_sprint_host_address, type_sprint */
13849 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13850 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13851 fprintf_filtered (stream, " (");
13852 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13853 fprintf_filtered (stream, ")");
13854 break;
13855 case BINOP_IN_BOUNDS:
52ce6436
PH
13856 fprintf_filtered (stream, " (%d)",
13857 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13858 break;
13859 case TERNOP_IN_RANGE:
13860 break;
13861
52ce6436
PH
13862 case OP_AGGREGATE:
13863 case OP_OTHERS:
13864 case OP_DISCRETE_RANGE:
13865 case OP_POSITIONAL:
13866 case OP_CHOICES:
13867 break;
13868
13869 case OP_NAME:
13870 case OP_STRING:
13871 {
13872 char *name = &exp->elts[elt + 2].string;
13873 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13874
52ce6436
PH
13875 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13876 break;
13877 }
13878
4c4b4cd2
PH
13879 default:
13880 return dump_subexp_body_standard (exp, stream, elt);
13881 }
13882
13883 elt += oplen;
13884 for (i = 0; i < nargs; i += 1)
13885 elt = dump_subexp (exp, stream, elt);
13886
13887 return elt;
13888}
13889
13890/* The Ada extension of print_subexp (q.v.). */
13891
76a01679
JB
13892static void
13893ada_print_subexp (struct expression *exp, int *pos,
13894 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13895{
52ce6436 13896 int oplen, nargs, i;
4c4b4cd2
PH
13897 int pc = *pos;
13898 enum exp_opcode op = exp->elts[pc].opcode;
13899
13900 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13901
52ce6436 13902 *pos += oplen;
4c4b4cd2
PH
13903 switch (op)
13904 {
13905 default:
52ce6436 13906 *pos -= oplen;
4c4b4cd2
PH
13907 print_subexp_standard (exp, pos, stream, prec);
13908 return;
13909
13910 case OP_VAR_VALUE:
4c4b4cd2
PH
13911 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13912 return;
13913
13914 case BINOP_IN_BOUNDS:
323e0a4a 13915 /* XXX: sprint_subexp */
4c4b4cd2 13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13917 fputs_filtered (" in ", stream);
4c4b4cd2 13918 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13919 fputs_filtered ("'range", stream);
4c4b4cd2 13920 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13921 fprintf_filtered (stream, "(%ld)",
13922 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13923 return;
13924
13925 case TERNOP_IN_RANGE:
4c4b4cd2 13926 if (prec >= PREC_EQUAL)
76a01679 13927 fputs_filtered ("(", stream);
323e0a4a 13928 /* XXX: sprint_subexp */
4c4b4cd2 13929 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13930 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13931 print_subexp (exp, pos, stream, PREC_EQUAL);
13932 fputs_filtered (" .. ", stream);
13933 print_subexp (exp, pos, stream, PREC_EQUAL);
13934 if (prec >= PREC_EQUAL)
76a01679
JB
13935 fputs_filtered (")", stream);
13936 return;
4c4b4cd2
PH
13937
13938 case OP_ATR_FIRST:
13939 case OP_ATR_LAST:
13940 case OP_ATR_LENGTH:
13941 case OP_ATR_IMAGE:
13942 case OP_ATR_MAX:
13943 case OP_ATR_MIN:
13944 case OP_ATR_MODULUS:
13945 case OP_ATR_POS:
13946 case OP_ATR_SIZE:
13947 case OP_ATR_TAG:
13948 case OP_ATR_VAL:
4c4b4cd2 13949 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13950 {
13951 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13952 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13953 &type_print_raw_options);
76a01679
JB
13954 *pos += 3;
13955 }
4c4b4cd2 13956 else
76a01679 13957 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13958 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13959 if (nargs > 1)
76a01679
JB
13960 {
13961 int tem;
5b4ee69b 13962
76a01679
JB
13963 for (tem = 1; tem < nargs; tem += 1)
13964 {
13965 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13966 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13967 }
13968 fputs_filtered (")", stream);
13969 }
4c4b4cd2 13970 return;
14f9c5c9 13971
4c4b4cd2 13972 case UNOP_QUAL:
4c4b4cd2
PH
13973 type_print (exp->elts[pc + 1].type, "", stream, 0);
13974 fputs_filtered ("'(", stream);
13975 print_subexp (exp, pos, stream, PREC_PREFIX);
13976 fputs_filtered (")", stream);
13977 return;
14f9c5c9 13978
4c4b4cd2 13979 case UNOP_IN_RANGE:
323e0a4a 13980 /* XXX: sprint_subexp */
4c4b4cd2 13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13982 fputs_filtered (" in ", stream);
79d43c61
TT
13983 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13984 &type_print_raw_options);
4c4b4cd2 13985 return;
52ce6436
PH
13986
13987 case OP_DISCRETE_RANGE:
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 fputs_filtered ("..", stream);
13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
13991 return;
13992
13993 case OP_OTHERS:
13994 fputs_filtered ("others => ", stream);
13995 print_subexp (exp, pos, stream, PREC_SUFFIX);
13996 return;
13997
13998 case OP_CHOICES:
13999 for (i = 0; i < nargs-1; i += 1)
14000 {
14001 if (i > 0)
14002 fputs_filtered ("|", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 }
14005 fputs_filtered (" => ", stream);
14006 print_subexp (exp, pos, stream, PREC_SUFFIX);
14007 return;
14008
14009 case OP_POSITIONAL:
14010 print_subexp (exp, pos, stream, PREC_SUFFIX);
14011 return;
14012
14013 case OP_AGGREGATE:
14014 fputs_filtered ("(", stream);
14015 for (i = 0; i < nargs; i += 1)
14016 {
14017 if (i > 0)
14018 fputs_filtered (", ", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 }
14021 fputs_filtered (")", stream);
14022 return;
4c4b4cd2
PH
14023 }
14024}
14f9c5c9
AS
14025
14026/* Table mapping opcodes into strings for printing operators
14027 and precedences of the operators. */
14028
d2e4a39e
AS
14029static const struct op_print ada_op_print_tab[] = {
14030 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14031 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14032 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14033 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14034 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14035 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14036 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14037 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14038 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14039 {">=", BINOP_GEQ, PREC_ORDER, 0},
14040 {">", BINOP_GTR, PREC_ORDER, 0},
14041 {"<", BINOP_LESS, PREC_ORDER, 0},
14042 {">>", BINOP_RSH, PREC_SHIFT, 0},
14043 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14044 {"+", BINOP_ADD, PREC_ADD, 0},
14045 {"-", BINOP_SUB, PREC_ADD, 0},
14046 {"&", BINOP_CONCAT, PREC_ADD, 0},
14047 {"*", BINOP_MUL, PREC_MUL, 0},
14048 {"/", BINOP_DIV, PREC_MUL, 0},
14049 {"rem", BINOP_REM, PREC_MUL, 0},
14050 {"mod", BINOP_MOD, PREC_MUL, 0},
14051 {"**", BINOP_EXP, PREC_REPEAT, 0},
14052 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14053 {"-", UNOP_NEG, PREC_PREFIX, 0},
14054 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14055 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14056 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14057 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14058 {".all", UNOP_IND, PREC_SUFFIX, 1},
14059 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14060 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14061 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14062};
14063\f
72d5681a
PH
14064enum ada_primitive_types {
14065 ada_primitive_type_int,
14066 ada_primitive_type_long,
14067 ada_primitive_type_short,
14068 ada_primitive_type_char,
14069 ada_primitive_type_float,
14070 ada_primitive_type_double,
14071 ada_primitive_type_void,
14072 ada_primitive_type_long_long,
14073 ada_primitive_type_long_double,
14074 ada_primitive_type_natural,
14075 ada_primitive_type_positive,
14076 ada_primitive_type_system_address,
08f49010 14077 ada_primitive_type_storage_offset,
72d5681a
PH
14078 nr_ada_primitive_types
14079};
6c038f32
PH
14080
14081static void
d4a9a881 14082ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14083 struct language_arch_info *lai)
14084{
d4a9a881 14085 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14086
72d5681a 14087 lai->primitive_type_vector
d4a9a881 14088 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14089 struct type *);
e9bb382b
UW
14090
14091 lai->primitive_type_vector [ada_primitive_type_int]
14092 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14093 0, "integer");
14094 lai->primitive_type_vector [ada_primitive_type_long]
14095 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14096 0, "long_integer");
14097 lai->primitive_type_vector [ada_primitive_type_short]
14098 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14099 0, "short_integer");
14100 lai->string_char_type
14101 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14102 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14103 lai->primitive_type_vector [ada_primitive_type_float]
14104 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14105 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14106 lai->primitive_type_vector [ada_primitive_type_double]
14107 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14108 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14109 lai->primitive_type_vector [ada_primitive_type_long_long]
14110 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14111 0, "long_long_integer");
14112 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14113 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14114 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14115 lai->primitive_type_vector [ada_primitive_type_natural]
14116 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14117 0, "natural");
14118 lai->primitive_type_vector [ada_primitive_type_positive]
14119 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14120 0, "positive");
14121 lai->primitive_type_vector [ada_primitive_type_void]
14122 = builtin->builtin_void;
14123
14124 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14125 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14126 "void"));
72d5681a
PH
14127 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14128 = "system__address";
fbb06eb1 14129
08f49010
XR
14130 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14131 type. This is a signed integral type whose size is the same as
14132 the size of addresses. */
14133 {
14134 unsigned int addr_length = TYPE_LENGTH
14135 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14136
14137 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14138 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14139 "storage_offset");
14140 }
14141
47e729a8 14142 lai->bool_type_symbol = NULL;
fbb06eb1 14143 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14144}
6c038f32
PH
14145\f
14146 /* Language vector */
14147
14148/* Not really used, but needed in the ada_language_defn. */
14149
14150static void
6c7a06a3 14151emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14152{
6c7a06a3 14153 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14154}
14155
14156static int
410a0ff2 14157parse (struct parser_state *ps)
6c038f32
PH
14158{
14159 warnings_issued = 0;
410a0ff2 14160 return ada_parse (ps);
6c038f32
PH
14161}
14162
14163static const struct exp_descriptor ada_exp_descriptor = {
14164 ada_print_subexp,
14165 ada_operator_length,
c0201579 14166 ada_operator_check,
6c038f32
PH
14167 ada_op_name,
14168 ada_dump_subexp_body,
14169 ada_evaluate_subexp
14170};
14171
b5ec771e
PA
14172/* symbol_name_matcher_ftype adapter for wild_match. */
14173
14174static bool
14175do_wild_match (const char *symbol_search_name,
14176 const lookup_name_info &lookup_name,
a207cff2 14177 completion_match_result *comp_match_res)
b5ec771e
PA
14178{
14179 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14180}
14181
14182/* symbol_name_matcher_ftype adapter for full_match. */
14183
14184static bool
14185do_full_match (const char *symbol_search_name,
14186 const lookup_name_info &lookup_name,
a207cff2 14187 completion_match_result *comp_match_res)
b5ec771e
PA
14188{
14189 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14190}
14191
a2cd4f14
JB
14192/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14193
14194static bool
14195do_exact_match (const char *symbol_search_name,
14196 const lookup_name_info &lookup_name,
14197 completion_match_result *comp_match_res)
14198{
14199 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14200}
14201
b5ec771e
PA
14202/* Build the Ada lookup name for LOOKUP_NAME. */
14203
14204ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14205{
14206 const std::string &user_name = lookup_name.name ();
14207
14208 if (user_name[0] == '<')
14209 {
14210 if (user_name.back () == '>')
14211 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14212 else
14213 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14214 m_encoded_p = true;
14215 m_verbatim_p = true;
14216 m_wild_match_p = false;
14217 m_standard_p = false;
14218 }
14219 else
14220 {
14221 m_verbatim_p = false;
14222
14223 m_encoded_p = user_name.find ("__") != std::string::npos;
14224
14225 if (!m_encoded_p)
14226 {
14227 const char *folded = ada_fold_name (user_name.c_str ());
14228 const char *encoded = ada_encode_1 (folded, false);
14229 if (encoded != NULL)
14230 m_encoded_name = encoded;
14231 else
14232 m_encoded_name = user_name;
14233 }
14234 else
14235 m_encoded_name = user_name;
14236
14237 /* Handle the 'package Standard' special case. See description
14238 of m_standard_p. */
14239 if (startswith (m_encoded_name.c_str (), "standard__"))
14240 {
14241 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14242 m_standard_p = true;
14243 }
14244 else
14245 m_standard_p = false;
74ccd7f5 14246
b5ec771e
PA
14247 /* If the name contains a ".", then the user is entering a fully
14248 qualified entity name, and the match must not be done in wild
14249 mode. Similarly, if the user wants to complete what looks
14250 like an encoded name, the match must not be done in wild
14251 mode. Also, in the standard__ special case always do
14252 non-wild matching. */
14253 m_wild_match_p
14254 = (lookup_name.match_type () != symbol_name_match_type::FULL
14255 && !m_encoded_p
14256 && !m_standard_p
14257 && user_name.find ('.') == std::string::npos);
14258 }
14259}
14260
14261/* symbol_name_matcher_ftype method for Ada. This only handles
14262 completion mode. */
14263
14264static bool
14265ada_symbol_name_matches (const char *symbol_search_name,
14266 const lookup_name_info &lookup_name,
a207cff2 14267 completion_match_result *comp_match_res)
74ccd7f5 14268{
b5ec771e
PA
14269 return lookup_name.ada ().matches (symbol_search_name,
14270 lookup_name.match_type (),
a207cff2 14271 comp_match_res);
b5ec771e
PA
14272}
14273
de63c46b
PA
14274/* A name matcher that matches the symbol name exactly, with
14275 strcmp. */
14276
14277static bool
14278literal_symbol_name_matcher (const char *symbol_search_name,
14279 const lookup_name_info &lookup_name,
14280 completion_match_result *comp_match_res)
14281{
14282 const std::string &name = lookup_name.name ();
14283
14284 int cmp = (lookup_name.completion_mode ()
14285 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14286 : strcmp (symbol_search_name, name.c_str ()));
14287 if (cmp == 0)
14288 {
14289 if (comp_match_res != NULL)
14290 comp_match_res->set_match (symbol_search_name);
14291 return true;
14292 }
14293 else
14294 return false;
14295}
14296
b5ec771e
PA
14297/* Implement the "la_get_symbol_name_matcher" language_defn method for
14298 Ada. */
14299
14300static symbol_name_matcher_ftype *
14301ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14302{
de63c46b
PA
14303 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14304 return literal_symbol_name_matcher;
14305
b5ec771e
PA
14306 if (lookup_name.completion_mode ())
14307 return ada_symbol_name_matches;
74ccd7f5 14308 else
b5ec771e
PA
14309 {
14310 if (lookup_name.ada ().wild_match_p ())
14311 return do_wild_match;
a2cd4f14
JB
14312 else if (lookup_name.ada ().verbatim_p ())
14313 return do_exact_match;
b5ec771e
PA
14314 else
14315 return do_full_match;
14316 }
74ccd7f5
JB
14317}
14318
a5ee536b
JB
14319/* Implement the "la_read_var_value" language_defn method for Ada. */
14320
14321static struct value *
63e43d3a
PMR
14322ada_read_var_value (struct symbol *var, const struct block *var_block,
14323 struct frame_info *frame)
a5ee536b 14324{
3977b71f 14325 const struct block *frame_block = NULL;
a5ee536b
JB
14326 struct symbol *renaming_sym = NULL;
14327
14328 /* The only case where default_read_var_value is not sufficient
14329 is when VAR is a renaming... */
14330 if (frame)
14331 frame_block = get_frame_block (frame, NULL);
14332 if (frame_block)
14333 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14334 if (renaming_sym != NULL)
14335 return ada_read_renaming_var_value (renaming_sym, frame_block);
14336
14337 /* This is a typical case where we expect the default_read_var_value
14338 function to work. */
63e43d3a 14339 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14340}
14341
56618e20
TT
14342static const char *ada_extensions[] =
14343{
14344 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14345};
14346
47e77640 14347extern const struct language_defn ada_language_defn = {
6c038f32 14348 "ada", /* Language name */
6abde28f 14349 "Ada",
6c038f32 14350 language_ada,
6c038f32 14351 range_check_off,
6c038f32
PH
14352 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14353 that's not quite what this means. */
6c038f32 14354 array_row_major,
9a044a89 14355 macro_expansion_no,
56618e20 14356 ada_extensions,
6c038f32
PH
14357 &ada_exp_descriptor,
14358 parse,
6c038f32
PH
14359 resolve,
14360 ada_printchar, /* Print a character constant */
14361 ada_printstr, /* Function to print string constant */
14362 emit_char, /* Function to print single char (not used) */
6c038f32 14363 ada_print_type, /* Print a type using appropriate syntax */
be942545 14364 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14365 ada_val_print, /* Print a value using appropriate syntax */
14366 ada_value_print, /* Print a top-level value */
a5ee536b 14367 ada_read_var_value, /* la_read_var_value */
6c038f32 14368 NULL, /* Language specific skip_trampoline */
2b2d9e11 14369 NULL, /* name_of_this */
59cc4834 14370 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14371 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14372 basic_lookup_transparent_type, /* lookup_transparent_type */
14373 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14374 ada_sniff_from_mangled_name,
0963b4bd
MS
14375 NULL, /* Language specific
14376 class_name_from_physname */
6c038f32
PH
14377 ada_op_print_tab, /* expression operators for printing */
14378 0, /* c-style arrays */
14379 1, /* String lower bound */
6c038f32 14380 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14381 ada_collect_symbol_completion_matches,
72d5681a 14382 ada_language_arch_info,
e79af960 14383 ada_print_array_index,
41f1b697 14384 default_pass_by_reference,
ae6a3a4c 14385 c_get_string,
e2b7af72 14386 ada_watch_location_expression,
b5ec771e 14387 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14388 ada_iterate_over_symbols,
5ffa0793 14389 default_search_name_hash,
a53b64ea 14390 &ada_varobj_ops,
bb2ec1b3 14391 NULL,
62253a61 14392 NULL
6c038f32
PH
14393};
14394
5bf03f13
JB
14395/* Command-list for the "set/show ada" prefix command. */
14396static struct cmd_list_element *set_ada_list;
14397static struct cmd_list_element *show_ada_list;
14398
14399/* Implement the "set ada" prefix command. */
14400
14401static void
981a3fb3 14402set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14403{
14404 printf_unfiltered (_(\
14405"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14406 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14407}
14408
14409/* Implement the "show ada" prefix command. */
14410
14411static void
981a3fb3 14412show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14413{
14414 cmd_show_list (show_ada_list, from_tty, "");
14415}
14416
2060206e
PA
14417static void
14418initialize_ada_catchpoint_ops (void)
14419{
14420 struct breakpoint_ops *ops;
14421
14422 initialize_breakpoint_ops ();
14423
14424 ops = &catch_exception_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
2060206e
PA
14426 ops->allocate_location = allocate_location_catch_exception;
14427 ops->re_set = re_set_catch_exception;
14428 ops->check_status = check_status_catch_exception;
14429 ops->print_it = print_it_catch_exception;
14430 ops->print_one = print_one_catch_exception;
14431 ops->print_mention = print_mention_catch_exception;
14432 ops->print_recreate = print_recreate_catch_exception;
14433
14434 ops = &catch_exception_unhandled_breakpoint_ops;
14435 *ops = bkpt_breakpoint_ops;
2060206e
PA
14436 ops->allocate_location = allocate_location_catch_exception_unhandled;
14437 ops->re_set = re_set_catch_exception_unhandled;
14438 ops->check_status = check_status_catch_exception_unhandled;
14439 ops->print_it = print_it_catch_exception_unhandled;
14440 ops->print_one = print_one_catch_exception_unhandled;
14441 ops->print_mention = print_mention_catch_exception_unhandled;
14442 ops->print_recreate = print_recreate_catch_exception_unhandled;
14443
14444 ops = &catch_assert_breakpoint_ops;
14445 *ops = bkpt_breakpoint_ops;
2060206e
PA
14446 ops->allocate_location = allocate_location_catch_assert;
14447 ops->re_set = re_set_catch_assert;
14448 ops->check_status = check_status_catch_assert;
14449 ops->print_it = print_it_catch_assert;
14450 ops->print_one = print_one_catch_assert;
14451 ops->print_mention = print_mention_catch_assert;
14452 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14453
14454 ops = &catch_handlers_breakpoint_ops;
14455 *ops = bkpt_breakpoint_ops;
14456 ops->allocate_location = allocate_location_catch_handlers;
14457 ops->re_set = re_set_catch_handlers;
14458 ops->check_status = check_status_catch_handlers;
14459 ops->print_it = print_it_catch_handlers;
14460 ops->print_one = print_one_catch_handlers;
14461 ops->print_mention = print_mention_catch_handlers;
14462 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14463}
14464
3d9434b5
JB
14465/* This module's 'new_objfile' observer. */
14466
14467static void
14468ada_new_objfile_observer (struct objfile *objfile)
14469{
14470 ada_clear_symbol_cache ();
14471}
14472
14473/* This module's 'free_objfile' observer. */
14474
14475static void
14476ada_free_objfile_observer (struct objfile *objfile)
14477{
14478 ada_clear_symbol_cache ();
14479}
14480
d2e4a39e 14481void
6c038f32 14482_initialize_ada_language (void)
14f9c5c9 14483{
2060206e
PA
14484 initialize_ada_catchpoint_ops ();
14485
5bf03f13 14486 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14487 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14488 &set_ada_list, "set ada ", 0, &setlist);
14489
14490 add_prefix_cmd ("ada", no_class, show_ada_command,
14491 _("Generic command for showing Ada-specific settings."),
14492 &show_ada_list, "show ada ", 0, &showlist);
14493
14494 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14495 &trust_pad_over_xvs, _("\
14496Enable or disable an optimization trusting PAD types over XVS types"), _("\
14497Show whether an optimization trusting PAD types over XVS types is activated"),
14498 _("\
14499This is related to the encoding used by the GNAT compiler. The debugger\n\
14500should normally trust the contents of PAD types, but certain older versions\n\
14501of GNAT have a bug that sometimes causes the information in the PAD type\n\
14502to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14503work around this bug. It is always safe to turn this option \"off\", but\n\
14504this incurs a slight performance penalty, so it is recommended to NOT change\n\
14505this option to \"off\" unless necessary."),
14506 NULL, NULL, &set_ada_list, &show_ada_list);
14507
d72413e6
PMR
14508 add_setshow_boolean_cmd ("print-signatures", class_vars,
14509 &print_signatures, _("\
14510Enable or disable the output of formal and return types for functions in the \
14511overloads selection menu"), _("\
14512Show whether the output of formal and return types for functions in the \
14513overloads selection menu is activated"),
14514 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14515
9ac4176b
PA
14516 add_catch_command ("exception", _("\
14517Catch Ada exceptions, when raised.\n\
60a90376
JB
14518Usage: catch exception [ ARG ]\n\
14519\n\
14520Without any argument, stop when any Ada exception is raised.\n\
14521If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14522being raised does not have a handler (and will therefore lead to the task's\n\
14523termination).\n\
14524Otherwise, the catchpoint only stops when the name of the exception being\n\
14525raised is the same as ARG."),
9ac4176b
PA
14526 catch_ada_exception_command,
14527 NULL,
14528 CATCH_PERMANENT,
14529 CATCH_TEMPORARY);
9f757bf7
XR
14530
14531 add_catch_command ("handlers", _("\
14532Catch Ada exceptions, when handled.\n\
14533With an argument, catch only exceptions with the given name."),
14534 catch_ada_handlers_command,
14535 NULL,
14536 CATCH_PERMANENT,
14537 CATCH_TEMPORARY);
9ac4176b
PA
14538 add_catch_command ("assert", _("\
14539Catch failed Ada assertions, when raised.\n\
14540With an argument, catch only exceptions with the given name."),
14541 catch_assert_command,
14542 NULL,
14543 CATCH_PERMANENT,
14544 CATCH_TEMPORARY);
14545
6c038f32 14546 varsize_limit = 65536;
3fcded8f
JB
14547 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14548 &varsize_limit, _("\
14549Set the maximum number of bytes allowed in a variable-size object."), _("\
14550Show the maximum number of bytes allowed in a variable-size object."), _("\
14551Attempts to access an object whose size is not a compile-time constant\n\
14552and exceeds this limit will cause an error."),
14553 NULL, NULL, &setlist, &showlist);
6c038f32 14554
778865d3
JB
14555 add_info ("exceptions", info_exceptions_command,
14556 _("\
14557List all Ada exception names.\n\
14558If a regular expression is passed as an argument, only those matching\n\
14559the regular expression are listed."));
14560
c6044dd1
JB
14561 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14562 _("Set Ada maintenance-related variables."),
14563 &maint_set_ada_cmdlist, "maintenance set ada ",
14564 0/*allow-unknown*/, &maintenance_set_cmdlist);
14565
14566 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14567 _("Show Ada maintenance-related variables"),
14568 &maint_show_ada_cmdlist, "maintenance show ada ",
14569 0/*allow-unknown*/, &maintenance_show_cmdlist);
14570
14571 add_setshow_boolean_cmd
14572 ("ignore-descriptive-types", class_maintenance,
14573 &ada_ignore_descriptive_types_p,
14574 _("Set whether descriptive types generated by GNAT should be ignored."),
14575 _("Show whether descriptive types generated by GNAT should be ignored."),
14576 _("\
14577When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14578DWARF attribute."),
14579 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14580
459a2e4c
TT
14581 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14582 NULL, xcalloc, xfree);
6b69afc4 14583
3d9434b5 14584 /* The ada-lang observers. */
76727919
TT
14585 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14586 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14587 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14588
14589 /* Setup various context-specific data. */
e802dbe0 14590 ada_inferior_data
8e260fc0 14591 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14592 ada_pspace_data_handle
14593 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14594}