]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
50810684 70static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4a399546
UW
104static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
14f9c5c9 106
d2e4a39e 107static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 108 struct gdbarch *, CORE_ADDR *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
76a01679 111 struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
4c4b4cd2 114static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 115
76a01679 116static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 117 struct block *);
14f9c5c9 118
4c4b4cd2
PH
119static int num_defns_collected (struct obstack *);
120
121static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 122
d2e4a39e 123static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
124 *, const char *, int,
125 domain_enum, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 131 struct symbol *, struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
ad82864c 176static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 177
ad82864c 178static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 179
ad82864c
JB
180static long decode_packed_array_bitsize (struct type *);
181
182static struct value *decode_constrained_packed_array (struct value *);
183
184static int ada_is_packed_array_type (struct type *);
185
186static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 187
d2e4a39e 188static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 189 struct value **);
14f9c5c9 190
50810684 191static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 192
4c4b4cd2
PH
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
14f9c5c9 195
d2e4a39e 196static struct value *get_var_value (char *, char *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
d2e4a39e 204static int wild_match (const char *, int, const char *);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
4c4b4cd2
PH
217static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
76a01679 223static int find_struct_field (char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
225
226static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 230
4c4b4cd2
PH
231static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235static struct value *ada_coerce_to_simple_array (struct value *);
236
237static int ada_is_direct_array_type (struct type *);
238
72d5681a
PH
239static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
714e53ab
PH
241
242static void check_size (const struct type *);
52ce6436
PH
243
244static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
41d27058
JB
313/* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317static const char *
318ada_unqualified_name (const char *decoded_name)
319{
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328}
329
330/* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333static char *
334add_angle_brackets (const char *str)
335{
336 static char *result = NULL;
337
338 xfree (result);
88c15c34 339 result = xstrprintf ("<%s>", str);
41d27058
JB
340 return result;
341}
96d887e8 342
4c4b4cd2
PH
343static char *
344ada_get_gdb_completer_word_break_characters (void)
345{
346 return ada_completer_word_break_characters;
347}
348
e79af960
JB
349/* Print an array element index using the Ada syntax. */
350
351static void
352ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 353 const struct value_print_options *options)
e79af960 354{
79a45b7d 355 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
356 fprintf_filtered (stream, " => ");
357}
358
4c4b4cd2
PH
359/* Read the string located at ADDR from the inferior and store the
360 result into BUF. */
361
362static void
14f9c5c9
AS
363extract_string (CORE_ADDR addr, char *buf)
364{
d2e4a39e 365 int char_index = 0;
14f9c5c9 366
4c4b4cd2
PH
367 /* Loop, reading one byte at a time, until we reach the '\000'
368 end-of-string marker. */
d2e4a39e
AS
369 do
370 {
371 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 372 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
373 char_index++;
374 }
375 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
376}
377
f27cf670 378/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 379 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 380 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 381
f27cf670
AS
382void *
383grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 384{
d2e4a39e
AS
385 if (*size < min_size)
386 {
387 *size *= 2;
388 if (*size < min_size)
4c4b4cd2 389 *size = min_size;
f27cf670 390 vect = xrealloc (vect, *size * element_size);
d2e4a39e 391 }
f27cf670 392 return vect;
14f9c5c9
AS
393}
394
395/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 396 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
397
398static int
ebf56fd3 399field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
400{
401 int len = strlen (target);
d2e4a39e 402 return
4c4b4cd2
PH
403 (strncmp (field_name, target, len) == 0
404 && (field_name[len] == '\0'
405 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
406 && strcmp (field_name + strlen (field_name) - 6,
407 "___XVN") != 0)));
14f9c5c9
AS
408}
409
410
872c8b51
JB
411/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
412 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
413 and return its index. This function also handles fields whose name
414 have ___ suffixes because the compiler sometimes alters their name
415 by adding such a suffix to represent fields with certain constraints.
416 If the field could not be found, return a negative number if
417 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
418
419int
420ada_get_field_index (const struct type *type, const char *field_name,
421 int maybe_missing)
422{
423 int fieldno;
872c8b51
JB
424 struct type *struct_type = check_typedef ((struct type *) type);
425
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
428 return fieldno;
429
430 if (!maybe_missing)
323e0a4a 431 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 432 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
433
434 return -1;
435}
436
437/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
438
439int
d2e4a39e 440ada_name_prefix_len (const char *name)
14f9c5c9
AS
441{
442 if (name == NULL)
443 return 0;
d2e4a39e 444 else
14f9c5c9 445 {
d2e4a39e 446 const char *p = strstr (name, "___");
14f9c5c9 447 if (p == NULL)
4c4b4cd2 448 return strlen (name);
14f9c5c9 449 else
4c4b4cd2 450 return p - name;
14f9c5c9
AS
451 }
452}
453
4c4b4cd2
PH
454/* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
14f9c5c9 457static int
d2e4a39e 458is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
459{
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
4c4b4cd2 465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
466}
467
4c4b4cd2
PH
468/* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
14f9c5c9 470
d2e4a39e 471static struct value *
4c4b4cd2 472coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 473{
61ee279c 474 type = ada_check_typedef (type);
df407dfe 475 if (value_type (val) == type)
4c4b4cd2 476 return val;
d2e4a39e 477 else
14f9c5c9 478 {
4c4b4cd2
PH
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
714e53ab 483 check_size (type);
4c4b4cd2
PH
484
485 result = allocate_value (type);
74bcbdf3 486 set_value_component_location (result, val);
9bbda503
AC
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
42ae5230 489 set_value_address (result, value_address (val));
d69fe07e 490 if (value_lazy (val)
df407dfe 491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 492 set_value_lazy (result, 1);
d2e4a39e 493 else
0fd88904 494 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 495 TYPE_LENGTH (type));
14f9c5c9
AS
496 return result;
497 }
498}
499
fc1a4b47
AC
500static const gdb_byte *
501cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
502{
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507}
508
509static CORE_ADDR
ebf56fd3 510cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
511{
512 if (address == 0)
513 return 0;
d2e4a39e 514 else
14f9c5c9
AS
515 return address + offset;
516}
517
4c4b4cd2
PH
518/* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
a2249542 522
77109804
AC
523/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
14f9c5c9 527static void
a2249542 528lim_warning (const char *format, ...)
14f9c5c9 529{
a2249542
MK
530 va_list args;
531 va_start (args, format);
532
4c4b4cd2
PH
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
a2249542
MK
535 vwarning (format, args);
536
537 va_end (args);
4c4b4cd2
PH
538}
539
714e53ab
PH
540/* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544static void
545check_size (const struct type *type)
546{
547 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 548 error (_("object size is larger than varsize-limit"));
714e53ab
PH
549}
550
551
c3e5cd34
PH
552/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 557static LONGEST
c3e5cd34 558max_of_size (int size)
4c4b4cd2 559{
76a01679
JB
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
4c4b4cd2
PH
562}
563
c3e5cd34 564/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 565static LONGEST
c3e5cd34 566min_of_size (int size)
4c4b4cd2 567{
c3e5cd34 568 return -max_of_size (size) - 1;
4c4b4cd2
PH
569}
570
c3e5cd34 571/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 572static ULONGEST
c3e5cd34 573umax_of_size (int size)
4c4b4cd2 574{
76a01679
JB
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
4c4b4cd2
PH
577}
578
c3e5cd34
PH
579/* Maximum value of integral type T, as a signed quantity. */
580static LONGEST
581max_of_type (struct type *t)
4c4b4cd2 582{
c3e5cd34
PH
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587}
588
589/* Minimum value of integral type T, as a signed quantity. */
590static LONGEST
591min_of_type (struct type *t)
592{
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
597}
598
599/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 600static LONGEST
4c4b4cd2
PH
601discrete_type_high_bound (struct type *type)
602{
76a01679 603 switch (TYPE_CODE (type))
4c4b4cd2
PH
604 {
605 case TYPE_CODE_RANGE:
690cc4eb 606 return TYPE_HIGH_BOUND (type);
4c4b4cd2 607 case TYPE_CODE_ENUM:
690cc4eb
PH
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
76a01679 612 case TYPE_CODE_INT:
690cc4eb 613 return max_of_type (type);
4c4b4cd2 614 default:
323e0a4a 615 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
616 }
617}
618
619/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 620static LONGEST
4c4b4cd2
PH
621discrete_type_low_bound (struct type *type)
622{
76a01679 623 switch (TYPE_CODE (type))
4c4b4cd2
PH
624 {
625 case TYPE_CODE_RANGE:
690cc4eb 626 return TYPE_LOW_BOUND (type);
4c4b4cd2 627 case TYPE_CODE_ENUM:
690cc4eb
PH
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
76a01679 632 case TYPE_CODE_INT:
690cc4eb 633 return min_of_type (type);
4c4b4cd2 634 default:
323e0a4a 635 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
636 }
637}
638
639/* The identity on non-range types. For range types, the underlying
76a01679 640 non-range scalar type. */
4c4b4cd2
PH
641
642static struct type *
643base_type (struct type *type)
644{
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
76a01679
JB
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
4c4b4cd2
PH
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
14f9c5c9 652}
4c4b4cd2 653\f
76a01679 654
4c4b4cd2 655 /* Language Selection */
14f9c5c9
AS
656
657/* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
4c4b4cd2 660 MAIN_PST is not used. */
d2e4a39e 661
14f9c5c9 662enum language
d2e4a39e 663ada_update_initial_language (enum language lang,
4c4b4cd2 664 struct partial_symtab *main_pst)
14f9c5c9 665{
d2e4a39e 666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
14f9c5c9
AS
669
670 return lang;
671}
96d887e8
PH
672
673/* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677char *
678ada_main_name (void)
679{
680 struct minimal_symbol *msym;
f9bc20b9 681 static char *main_program_name = NULL;
6c038f32 682
96d887e8
PH
683 /* For Ada, the name of the main procedure is stored in a specific
684 string constant, generated by the binder. Look for that symbol,
685 extract its address, and then read that string. If we didn't find
686 that string, then most probably the main procedure is not written
687 in Ada. */
688 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
689
690 if (msym != NULL)
691 {
f9bc20b9
JB
692 CORE_ADDR main_program_name_addr;
693 int err_code;
694
96d887e8
PH
695 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
696 if (main_program_name_addr == 0)
323e0a4a 697 error (_("Invalid address for Ada main program name."));
96d887e8 698
f9bc20b9
JB
699 xfree (main_program_name);
700 target_read_string (main_program_name_addr, &main_program_name,
701 1024, &err_code);
702
703 if (err_code != 0)
704 return NULL;
96d887e8
PH
705 return main_program_name;
706 }
707
708 /* The main procedure doesn't seem to be in Ada. */
709 return NULL;
710}
14f9c5c9 711\f
4c4b4cd2 712 /* Symbols */
d2e4a39e 713
4c4b4cd2
PH
714/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
715 of NULLs. */
14f9c5c9 716
d2e4a39e
AS
717const struct ada_opname_map ada_opname_table[] = {
718 {"Oadd", "\"+\"", BINOP_ADD},
719 {"Osubtract", "\"-\"", BINOP_SUB},
720 {"Omultiply", "\"*\"", BINOP_MUL},
721 {"Odivide", "\"/\"", BINOP_DIV},
722 {"Omod", "\"mod\"", BINOP_MOD},
723 {"Orem", "\"rem\"", BINOP_REM},
724 {"Oexpon", "\"**\"", BINOP_EXP},
725 {"Olt", "\"<\"", BINOP_LESS},
726 {"Ole", "\"<=\"", BINOP_LEQ},
727 {"Ogt", "\">\"", BINOP_GTR},
728 {"Oge", "\">=\"", BINOP_GEQ},
729 {"Oeq", "\"=\"", BINOP_EQUAL},
730 {"One", "\"/=\"", BINOP_NOTEQUAL},
731 {"Oand", "\"and\"", BINOP_BITWISE_AND},
732 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
733 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
734 {"Oconcat", "\"&\"", BINOP_CONCAT},
735 {"Oabs", "\"abs\"", UNOP_ABS},
736 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
737 {"Oadd", "\"+\"", UNOP_PLUS},
738 {"Osubtract", "\"-\"", UNOP_NEG},
739 {NULL, NULL}
14f9c5c9
AS
740};
741
4c4b4cd2
PH
742/* The "encoded" form of DECODED, according to GNAT conventions.
743 The result is valid until the next call to ada_encode. */
744
14f9c5c9 745char *
4c4b4cd2 746ada_encode (const char *decoded)
14f9c5c9 747{
4c4b4cd2
PH
748 static char *encoding_buffer = NULL;
749 static size_t encoding_buffer_size = 0;
d2e4a39e 750 const char *p;
14f9c5c9 751 int k;
d2e4a39e 752
4c4b4cd2 753 if (decoded == NULL)
14f9c5c9
AS
754 return NULL;
755
4c4b4cd2
PH
756 GROW_VECT (encoding_buffer, encoding_buffer_size,
757 2 * strlen (decoded) + 10);
14f9c5c9
AS
758
759 k = 0;
4c4b4cd2 760 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 761 {
cdc7bb92 762 if (*p == '.')
4c4b4cd2
PH
763 {
764 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
765 k += 2;
766 }
14f9c5c9 767 else if (*p == '"')
4c4b4cd2
PH
768 {
769 const struct ada_opname_map *mapping;
770
771 for (mapping = ada_opname_table;
1265e4aa
JB
772 mapping->encoded != NULL
773 && strncmp (mapping->decoded, p,
774 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
775 ;
776 if (mapping->encoded == NULL)
323e0a4a 777 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
778 strcpy (encoding_buffer + k, mapping->encoded);
779 k += strlen (mapping->encoded);
780 break;
781 }
d2e4a39e 782 else
4c4b4cd2
PH
783 {
784 encoding_buffer[k] = *p;
785 k += 1;
786 }
14f9c5c9
AS
787 }
788
4c4b4cd2
PH
789 encoding_buffer[k] = '\0';
790 return encoding_buffer;
14f9c5c9
AS
791}
792
793/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
794 quotes, unfolded, but with the quotes stripped away. Result good
795 to next call. */
796
d2e4a39e
AS
797char *
798ada_fold_name (const char *name)
14f9c5c9 799{
d2e4a39e 800 static char *fold_buffer = NULL;
14f9c5c9
AS
801 static size_t fold_buffer_size = 0;
802
803 int len = strlen (name);
d2e4a39e 804 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
805
806 if (name[0] == '\'')
807 {
d2e4a39e
AS
808 strncpy (fold_buffer, name + 1, len - 2);
809 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
810 }
811 else
812 {
813 int i;
814 for (i = 0; i <= len; i += 1)
4c4b4cd2 815 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
816 }
817
818 return fold_buffer;
819}
820
529cad9c
PH
821/* Return nonzero if C is either a digit or a lowercase alphabet character. */
822
823static int
824is_lower_alphanum (const char c)
825{
826 return (isdigit (c) || (isalpha (c) && islower (c)));
827}
828
29480c32
JB
829/* Remove either of these suffixes:
830 . .{DIGIT}+
831 . ${DIGIT}+
832 . ___{DIGIT}+
833 . __{DIGIT}+.
834 These are suffixes introduced by the compiler for entities such as
835 nested subprogram for instance, in order to avoid name clashes.
836 They do not serve any purpose for the debugger. */
837
838static void
839ada_remove_trailing_digits (const char *encoded, int *len)
840{
841 if (*len > 1 && isdigit (encoded[*len - 1]))
842 {
843 int i = *len - 2;
844 while (i > 0 && isdigit (encoded[i]))
845 i--;
846 if (i >= 0 && encoded[i] == '.')
847 *len = i;
848 else if (i >= 0 && encoded[i] == '$')
849 *len = i;
850 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
851 *len = i - 2;
852 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
853 *len = i - 1;
854 }
855}
856
857/* Remove the suffix introduced by the compiler for protected object
858 subprograms. */
859
860static void
861ada_remove_po_subprogram_suffix (const char *encoded, int *len)
862{
863 /* Remove trailing N. */
864
865 /* Protected entry subprograms are broken into two
866 separate subprograms: The first one is unprotected, and has
867 a 'N' suffix; the second is the protected version, and has
868 the 'P' suffix. The second calls the first one after handling
869 the protection. Since the P subprograms are internally generated,
870 we leave these names undecoded, giving the user a clue that this
871 entity is internal. */
872
873 if (*len > 1
874 && encoded[*len - 1] == 'N'
875 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
876 *len = *len - 1;
877}
878
69fadcdf
JB
879/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
880
881static void
882ada_remove_Xbn_suffix (const char *encoded, int *len)
883{
884 int i = *len - 1;
885
886 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
887 i--;
888
889 if (encoded[i] != 'X')
890 return;
891
892 if (i == 0)
893 return;
894
895 if (isalnum (encoded[i-1]))
896 *len = i;
897}
898
29480c32
JB
899/* If ENCODED follows the GNAT entity encoding conventions, then return
900 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
901 replaced by ENCODED.
14f9c5c9 902
4c4b4cd2 903 The resulting string is valid until the next call of ada_decode.
29480c32 904 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
905 is returned. */
906
907const char *
908ada_decode (const char *encoded)
14f9c5c9
AS
909{
910 int i, j;
911 int len0;
d2e4a39e 912 const char *p;
4c4b4cd2 913 char *decoded;
14f9c5c9 914 int at_start_name;
4c4b4cd2
PH
915 static char *decoding_buffer = NULL;
916 static size_t decoding_buffer_size = 0;
d2e4a39e 917
29480c32
JB
918 /* The name of the Ada main procedure starts with "_ada_".
919 This prefix is not part of the decoded name, so skip this part
920 if we see this prefix. */
4c4b4cd2
PH
921 if (strncmp (encoded, "_ada_", 5) == 0)
922 encoded += 5;
14f9c5c9 923
29480c32
JB
924 /* If the name starts with '_', then it is not a properly encoded
925 name, so do not attempt to decode it. Similarly, if the name
926 starts with '<', the name should not be decoded. */
4c4b4cd2 927 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
928 goto Suppress;
929
4c4b4cd2 930 len0 = strlen (encoded);
4c4b4cd2 931
29480c32
JB
932 ada_remove_trailing_digits (encoded, &len0);
933 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 934
4c4b4cd2
PH
935 /* Remove the ___X.* suffix if present. Do not forget to verify that
936 the suffix is located before the current "end" of ENCODED. We want
937 to avoid re-matching parts of ENCODED that have previously been
938 marked as discarded (by decrementing LEN0). */
939 p = strstr (encoded, "___");
940 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
941 {
942 if (p[3] == 'X')
4c4b4cd2 943 len0 = p - encoded;
14f9c5c9 944 else
4c4b4cd2 945 goto Suppress;
14f9c5c9 946 }
4c4b4cd2 947
29480c32
JB
948 /* Remove any trailing TKB suffix. It tells us that this symbol
949 is for the body of a task, but that information does not actually
950 appear in the decoded name. */
951
4c4b4cd2 952 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 953 len0 -= 3;
76a01679 954
a10967fa
JB
955 /* Remove any trailing TB suffix. The TB suffix is slightly different
956 from the TKB suffix because it is used for non-anonymous task
957 bodies. */
958
959 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
960 len0 -= 2;
961
29480c32
JB
962 /* Remove trailing "B" suffixes. */
963 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
964
4c4b4cd2 965 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
966 len0 -= 1;
967
4c4b4cd2 968 /* Make decoded big enough for possible expansion by operator name. */
29480c32 969
4c4b4cd2
PH
970 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
971 decoded = decoding_buffer;
14f9c5c9 972
29480c32
JB
973 /* Remove trailing __{digit}+ or trailing ${digit}+. */
974
4c4b4cd2 975 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 976 {
4c4b4cd2
PH
977 i = len0 - 2;
978 while ((i >= 0 && isdigit (encoded[i]))
979 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
980 i -= 1;
981 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
982 len0 = i - 1;
983 else if (encoded[i] == '$')
984 len0 = i;
d2e4a39e 985 }
14f9c5c9 986
29480c32
JB
987 /* The first few characters that are not alphabetic are not part
988 of any encoding we use, so we can copy them over verbatim. */
989
4c4b4cd2
PH
990 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
991 decoded[j] = encoded[i];
14f9c5c9
AS
992
993 at_start_name = 1;
994 while (i < len0)
995 {
29480c32 996 /* Is this a symbol function? */
4c4b4cd2
PH
997 if (at_start_name && encoded[i] == 'O')
998 {
999 int k;
1000 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1001 {
1002 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1003 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1004 op_len - 1) == 0)
1005 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1006 {
1007 strcpy (decoded + j, ada_opname_table[k].decoded);
1008 at_start_name = 0;
1009 i += op_len;
1010 j += strlen (ada_opname_table[k].decoded);
1011 break;
1012 }
1013 }
1014 if (ada_opname_table[k].encoded != NULL)
1015 continue;
1016 }
14f9c5c9
AS
1017 at_start_name = 0;
1018
529cad9c
PH
1019 /* Replace "TK__" with "__", which will eventually be translated
1020 into "." (just below). */
1021
4c4b4cd2
PH
1022 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1023 i += 2;
529cad9c 1024
29480c32
JB
1025 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1026 be translated into "." (just below). These are internal names
1027 generated for anonymous blocks inside which our symbol is nested. */
1028
1029 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1030 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1031 && isdigit (encoded [i+4]))
1032 {
1033 int k = i + 5;
1034
1035 while (k < len0 && isdigit (encoded[k]))
1036 k++; /* Skip any extra digit. */
1037
1038 /* Double-check that the "__B_{DIGITS}+" sequence we found
1039 is indeed followed by "__". */
1040 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1041 i = k;
1042 }
1043
529cad9c
PH
1044 /* Remove _E{DIGITS}+[sb] */
1045
1046 /* Just as for protected object subprograms, there are 2 categories
1047 of subprograms created by the compiler for each entry. The first
1048 one implements the actual entry code, and has a suffix following
1049 the convention above; the second one implements the barrier and
1050 uses the same convention as above, except that the 'E' is replaced
1051 by a 'B'.
1052
1053 Just as above, we do not decode the name of barrier functions
1054 to give the user a clue that the code he is debugging has been
1055 internally generated. */
1056
1057 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1058 && isdigit (encoded[i+2]))
1059 {
1060 int k = i + 3;
1061
1062 while (k < len0 && isdigit (encoded[k]))
1063 k++;
1064
1065 if (k < len0
1066 && (encoded[k] == 'b' || encoded[k] == 's'))
1067 {
1068 k++;
1069 /* Just as an extra precaution, make sure that if this
1070 suffix is followed by anything else, it is a '_'.
1071 Otherwise, we matched this sequence by accident. */
1072 if (k == len0
1073 || (k < len0 && encoded[k] == '_'))
1074 i = k;
1075 }
1076 }
1077
1078 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1079 the GNAT front-end in protected object subprograms. */
1080
1081 if (i < len0 + 3
1082 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1083 {
1084 /* Backtrack a bit up until we reach either the begining of
1085 the encoded name, or "__". Make sure that we only find
1086 digits or lowercase characters. */
1087 const char *ptr = encoded + i - 1;
1088
1089 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1090 ptr--;
1091 if (ptr < encoded
1092 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1093 i++;
1094 }
1095
4c4b4cd2
PH
1096 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1097 {
29480c32
JB
1098 /* This is a X[bn]* sequence not separated from the previous
1099 part of the name with a non-alpha-numeric character (in other
1100 words, immediately following an alpha-numeric character), then
1101 verify that it is placed at the end of the encoded name. If
1102 not, then the encoding is not valid and we should abort the
1103 decoding. Otherwise, just skip it, it is used in body-nested
1104 package names. */
4c4b4cd2
PH
1105 do
1106 i += 1;
1107 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1108 if (i < len0)
1109 goto Suppress;
1110 }
cdc7bb92 1111 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1112 {
29480c32 1113 /* Replace '__' by '.'. */
4c4b4cd2
PH
1114 decoded[j] = '.';
1115 at_start_name = 1;
1116 i += 2;
1117 j += 1;
1118 }
14f9c5c9 1119 else
4c4b4cd2 1120 {
29480c32
JB
1121 /* It's a character part of the decoded name, so just copy it
1122 over. */
4c4b4cd2
PH
1123 decoded[j] = encoded[i];
1124 i += 1;
1125 j += 1;
1126 }
14f9c5c9 1127 }
4c4b4cd2 1128 decoded[j] = '\000';
14f9c5c9 1129
29480c32
JB
1130 /* Decoded names should never contain any uppercase character.
1131 Double-check this, and abort the decoding if we find one. */
1132
4c4b4cd2
PH
1133 for (i = 0; decoded[i] != '\0'; i += 1)
1134 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1135 goto Suppress;
1136
4c4b4cd2
PH
1137 if (strcmp (decoded, encoded) == 0)
1138 return encoded;
1139 else
1140 return decoded;
14f9c5c9
AS
1141
1142Suppress:
4c4b4cd2
PH
1143 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1144 decoded = decoding_buffer;
1145 if (encoded[0] == '<')
1146 strcpy (decoded, encoded);
14f9c5c9 1147 else
88c15c34 1148 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1149 return decoded;
1150
1151}
1152
1153/* Table for keeping permanent unique copies of decoded names. Once
1154 allocated, names in this table are never released. While this is a
1155 storage leak, it should not be significant unless there are massive
1156 changes in the set of decoded names in successive versions of a
1157 symbol table loaded during a single session. */
1158static struct htab *decoded_names_store;
1159
1160/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1161 in the language-specific part of GSYMBOL, if it has not been
1162 previously computed. Tries to save the decoded name in the same
1163 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1164 in any case, the decoded symbol has a lifetime at least that of
1165 GSYMBOL).
1166 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1167 const, but nevertheless modified to a semantically equivalent form
1168 when a decoded name is cached in it.
76a01679 1169*/
4c4b4cd2 1170
76a01679
JB
1171char *
1172ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1173{
76a01679 1174 char **resultp =
4c4b4cd2
PH
1175 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1176 if (*resultp == NULL)
1177 {
1178 const char *decoded = ada_decode (gsymbol->name);
714835d5 1179 if (gsymbol->obj_section != NULL)
76a01679 1180 {
714835d5
UW
1181 struct objfile *objf = gsymbol->obj_section->objfile;
1182 *resultp = obsavestring (decoded, strlen (decoded),
1183 &objf->objfile_obstack);
76a01679 1184 }
4c4b4cd2 1185 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1186 case, we put the result on the heap. Since we only decode
1187 when needed, we hope this usually does not cause a
1188 significant memory leak (FIXME). */
4c4b4cd2 1189 if (*resultp == NULL)
76a01679
JB
1190 {
1191 char **slot = (char **) htab_find_slot (decoded_names_store,
1192 decoded, INSERT);
1193 if (*slot == NULL)
1194 *slot = xstrdup (decoded);
1195 *resultp = *slot;
1196 }
4c4b4cd2 1197 }
14f9c5c9 1198
4c4b4cd2
PH
1199 return *resultp;
1200}
76a01679 1201
2c0b251b 1202static char *
76a01679 1203ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1204{
1205 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1206}
1207
1208/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1209 suffixes that encode debugging information or leading _ada_ on
1210 SYM_NAME (see is_name_suffix commentary for the debugging
1211 information that is ignored). If WILD, then NAME need only match a
1212 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1213 either argument is NULL. */
14f9c5c9 1214
2c0b251b 1215static int
d2e4a39e 1216ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1217{
1218 if (sym_name == NULL || name == NULL)
1219 return 0;
1220 else if (wild)
1221 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1222 else
1223 {
1224 int len_name = strlen (name);
4c4b4cd2
PH
1225 return (strncmp (sym_name, name, len_name) == 0
1226 && is_name_suffix (sym_name + len_name))
1227 || (strncmp (sym_name, "_ada_", 5) == 0
1228 && strncmp (sym_name + 5, name, len_name) == 0
1229 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1230 }
14f9c5c9 1231}
14f9c5c9 1232\f
d2e4a39e 1233
4c4b4cd2 1234 /* Arrays */
14f9c5c9 1235
4c4b4cd2 1236/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1237
d2e4a39e
AS
1238static char *bound_name[] = {
1239 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1240 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1241};
1242
1243/* Maximum number of array dimensions we are prepared to handle. */
1244
4c4b4cd2 1245#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1246
4c4b4cd2 1247/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1248
1249static void
50810684
UW
1250modify_general_field (struct type *type, char *addr,
1251 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1252{
50810684 1253 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1254}
1255
1256
4c4b4cd2
PH
1257/* The desc_* routines return primitive portions of array descriptors
1258 (fat pointers). */
14f9c5c9
AS
1259
1260/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1261 level of indirection, if needed. */
1262
d2e4a39e
AS
1263static struct type *
1264desc_base_type (struct type *type)
14f9c5c9
AS
1265{
1266 if (type == NULL)
1267 return NULL;
61ee279c 1268 type = ada_check_typedef (type);
1265e4aa
JB
1269 if (type != NULL
1270 && (TYPE_CODE (type) == TYPE_CODE_PTR
1271 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1272 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1273 else
1274 return type;
1275}
1276
4c4b4cd2
PH
1277/* True iff TYPE indicates a "thin" array pointer type. */
1278
14f9c5c9 1279static int
d2e4a39e 1280is_thin_pntr (struct type *type)
14f9c5c9 1281{
d2e4a39e 1282 return
14f9c5c9
AS
1283 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1284 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1285}
1286
4c4b4cd2
PH
1287/* The descriptor type for thin pointer type TYPE. */
1288
d2e4a39e
AS
1289static struct type *
1290thin_descriptor_type (struct type *type)
14f9c5c9 1291{
d2e4a39e 1292 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1293 if (base_type == NULL)
1294 return NULL;
1295 if (is_suffix (ada_type_name (base_type), "___XVE"))
1296 return base_type;
d2e4a39e 1297 else
14f9c5c9 1298 {
d2e4a39e 1299 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1300 if (alt_type == NULL)
4c4b4cd2 1301 return base_type;
14f9c5c9 1302 else
4c4b4cd2 1303 return alt_type;
14f9c5c9
AS
1304 }
1305}
1306
4c4b4cd2
PH
1307/* A pointer to the array data for thin-pointer value VAL. */
1308
d2e4a39e
AS
1309static struct value *
1310thin_data_pntr (struct value *val)
14f9c5c9 1311{
df407dfe 1312 struct type *type = value_type (val);
556bdfd4
UW
1313 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1314 data_type = lookup_pointer_type (data_type);
1315
14f9c5c9 1316 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1317 return value_cast (data_type, value_copy (val));
d2e4a39e 1318 else
42ae5230 1319 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1320}
1321
4c4b4cd2
PH
1322/* True iff TYPE indicates a "thick" array pointer type. */
1323
14f9c5c9 1324static int
d2e4a39e 1325is_thick_pntr (struct type *type)
14f9c5c9
AS
1326{
1327 type = desc_base_type (type);
1328 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1329 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1330}
1331
4c4b4cd2
PH
1332/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1333 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1334
d2e4a39e
AS
1335static struct type *
1336desc_bounds_type (struct type *type)
14f9c5c9 1337{
d2e4a39e 1338 struct type *r;
14f9c5c9
AS
1339
1340 type = desc_base_type (type);
1341
1342 if (type == NULL)
1343 return NULL;
1344 else if (is_thin_pntr (type))
1345 {
1346 type = thin_descriptor_type (type);
1347 if (type == NULL)
4c4b4cd2 1348 return NULL;
14f9c5c9
AS
1349 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1350 if (r != NULL)
61ee279c 1351 return ada_check_typedef (r);
14f9c5c9
AS
1352 }
1353 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1354 {
1355 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1356 if (r != NULL)
61ee279c 1357 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1358 }
1359 return NULL;
1360}
1361
1362/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1363 one, a pointer to its bounds data. Otherwise NULL. */
1364
d2e4a39e
AS
1365static struct value *
1366desc_bounds (struct value *arr)
14f9c5c9 1367{
df407dfe 1368 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1369 if (is_thin_pntr (type))
14f9c5c9 1370 {
d2e4a39e 1371 struct type *bounds_type =
4c4b4cd2 1372 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1373 LONGEST addr;
1374
4cdfadb1 1375 if (bounds_type == NULL)
323e0a4a 1376 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1377
1378 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1379 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1380 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1381 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1382 addr = value_as_long (arr);
d2e4a39e 1383 else
42ae5230 1384 addr = value_address (arr);
14f9c5c9 1385
d2e4a39e 1386 return
4c4b4cd2
PH
1387 value_from_longest (lookup_pointer_type (bounds_type),
1388 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1389 }
1390
1391 else if (is_thick_pntr (type))
d2e4a39e 1392 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1393 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1394 else
1395 return NULL;
1396}
1397
4c4b4cd2
PH
1398/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1399 position of the field containing the address of the bounds data. */
1400
14f9c5c9 1401static int
d2e4a39e 1402fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1403{
1404 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1405}
1406
1407/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1408 size of the field containing the address of the bounds data. */
1409
14f9c5c9 1410static int
d2e4a39e 1411fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1412{
1413 type = desc_base_type (type);
1414
d2e4a39e 1415 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1416 return TYPE_FIELD_BITSIZE (type, 1);
1417 else
61ee279c 1418 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1419}
1420
4c4b4cd2 1421/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1422 pointer to one, the type of its array data (a array-with-no-bounds type);
1423 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1424 data. */
4c4b4cd2 1425
d2e4a39e 1426static struct type *
556bdfd4 1427desc_data_target_type (struct type *type)
14f9c5c9
AS
1428{
1429 type = desc_base_type (type);
1430
4c4b4cd2 1431 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1432 if (is_thin_pntr (type))
556bdfd4 1433 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1434 else if (is_thick_pntr (type))
556bdfd4
UW
1435 {
1436 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1437
1438 if (data_type
1439 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1440 return TYPE_TARGET_TYPE (data_type);
1441 }
1442
1443 return NULL;
14f9c5c9
AS
1444}
1445
1446/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1447 its array data. */
4c4b4cd2 1448
d2e4a39e
AS
1449static struct value *
1450desc_data (struct value *arr)
14f9c5c9 1451{
df407dfe 1452 struct type *type = value_type (arr);
14f9c5c9
AS
1453 if (is_thin_pntr (type))
1454 return thin_data_pntr (arr);
1455 else if (is_thick_pntr (type))
d2e4a39e 1456 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1457 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1458 else
1459 return NULL;
1460}
1461
1462
1463/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1464 position of the field containing the address of the data. */
1465
14f9c5c9 1466static int
d2e4a39e 1467fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1468{
1469 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1470}
1471
1472/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1473 size of the field containing the address of the data. */
1474
14f9c5c9 1475static int
d2e4a39e 1476fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1477{
1478 type = desc_base_type (type);
1479
1480 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1481 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1482 else
14f9c5c9
AS
1483 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1484}
1485
4c4b4cd2 1486/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1487 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1488 bound, if WHICH is 1. The first bound is I=1. */
1489
d2e4a39e
AS
1490static struct value *
1491desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1492{
d2e4a39e 1493 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1494 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1495}
1496
1497/* If BOUNDS is an array-bounds structure type, return the bit position
1498 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1499 bound, if WHICH is 1. The first bound is I=1. */
1500
14f9c5c9 1501static int
d2e4a39e 1502desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1503{
d2e4a39e 1504 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1505}
1506
1507/* If BOUNDS is an array-bounds structure type, return the bit field size
1508 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1509 bound, if WHICH is 1. The first bound is I=1. */
1510
76a01679 1511static int
d2e4a39e 1512desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1513{
1514 type = desc_base_type (type);
1515
d2e4a39e
AS
1516 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1517 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1518 else
1519 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1520}
1521
1522/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1523 Ith bound (numbering from 1). Otherwise, NULL. */
1524
d2e4a39e
AS
1525static struct type *
1526desc_index_type (struct type *type, int i)
14f9c5c9
AS
1527{
1528 type = desc_base_type (type);
1529
1530 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1531 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1532 else
14f9c5c9
AS
1533 return NULL;
1534}
1535
4c4b4cd2
PH
1536/* The number of index positions in the array-bounds type TYPE.
1537 Return 0 if TYPE is NULL. */
1538
14f9c5c9 1539static int
d2e4a39e 1540desc_arity (struct type *type)
14f9c5c9
AS
1541{
1542 type = desc_base_type (type);
1543
1544 if (type != NULL)
1545 return TYPE_NFIELDS (type) / 2;
1546 return 0;
1547}
1548
4c4b4cd2
PH
1549/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1550 an array descriptor type (representing an unconstrained array
1551 type). */
1552
76a01679
JB
1553static int
1554ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1555{
1556 if (type == NULL)
1557 return 0;
61ee279c 1558 type = ada_check_typedef (type);
4c4b4cd2 1559 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1560 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1561}
1562
52ce6436
PH
1563/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1564 * to one. */
1565
2c0b251b 1566static int
52ce6436
PH
1567ada_is_array_type (struct type *type)
1568{
1569 while (type != NULL
1570 && (TYPE_CODE (type) == TYPE_CODE_PTR
1571 || TYPE_CODE (type) == TYPE_CODE_REF))
1572 type = TYPE_TARGET_TYPE (type);
1573 return ada_is_direct_array_type (type);
1574}
1575
4c4b4cd2 1576/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1577
14f9c5c9 1578int
4c4b4cd2 1579ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1580{
1581 if (type == NULL)
1582 return 0;
61ee279c 1583 type = ada_check_typedef (type);
14f9c5c9 1584 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1585 || (TYPE_CODE (type) == TYPE_CODE_PTR
1586 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1587}
1588
4c4b4cd2
PH
1589/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1590
14f9c5c9 1591int
4c4b4cd2 1592ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1593{
556bdfd4 1594 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1595
1596 if (type == NULL)
1597 return 0;
61ee279c 1598 type = ada_check_typedef (type);
556bdfd4
UW
1599 return (data_type != NULL
1600 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1601 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1602}
1603
1604/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1605 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1606 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1607 is still needed. */
1608
14f9c5c9 1609int
ebf56fd3 1610ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1611{
d2e4a39e 1612 return
14f9c5c9
AS
1613 type != NULL
1614 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1615 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1616 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1617 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1618}
1619
1620
4c4b4cd2 1621/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1622 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1623 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1624 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1625 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1626 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1627 a descriptor. */
d2e4a39e
AS
1628struct type *
1629ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1630{
ad82864c
JB
1631 if (ada_is_constrained_packed_array_type (value_type (arr)))
1632 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1633
df407dfe
AC
1634 if (!ada_is_array_descriptor_type (value_type (arr)))
1635 return value_type (arr);
d2e4a39e
AS
1636
1637 if (!bounds)
ad82864c
JB
1638 {
1639 struct type *array_type =
1640 ada_check_typedef (desc_data_target_type (value_type (arr)));
1641
1642 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1643 TYPE_FIELD_BITSIZE (array_type, 0) =
1644 decode_packed_array_bitsize (value_type (arr));
1645
1646 return array_type;
1647 }
14f9c5c9
AS
1648 else
1649 {
d2e4a39e 1650 struct type *elt_type;
14f9c5c9 1651 int arity;
d2e4a39e 1652 struct value *descriptor;
14f9c5c9 1653
df407dfe
AC
1654 elt_type = ada_array_element_type (value_type (arr), -1);
1655 arity = ada_array_arity (value_type (arr));
14f9c5c9 1656
d2e4a39e 1657 if (elt_type == NULL || arity == 0)
df407dfe 1658 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1659
1660 descriptor = desc_bounds (arr);
d2e4a39e 1661 if (value_as_long (descriptor) == 0)
4c4b4cd2 1662 return NULL;
d2e4a39e 1663 while (arity > 0)
4c4b4cd2 1664 {
e9bb382b
UW
1665 struct type *range_type = alloc_type_copy (value_type (arr));
1666 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1667 struct value *low = desc_one_bound (descriptor, arity, 0);
1668 struct value *high = desc_one_bound (descriptor, arity, 1);
1669 arity -= 1;
1670
df407dfe 1671 create_range_type (range_type, value_type (low),
529cad9c
PH
1672 longest_to_int (value_as_long (low)),
1673 longest_to_int (value_as_long (high)));
4c4b4cd2 1674 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1675
1676 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1677 TYPE_FIELD_BITSIZE (elt_type, 0) =
1678 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1679 }
14f9c5c9
AS
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683}
1684
1685/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
d2e4a39e
AS
1690struct value *
1691ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1692{
df407dfe 1693 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1694 {
d2e4a39e 1695 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1696 if (arrType == NULL)
4c4b4cd2 1697 return NULL;
14f9c5c9
AS
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
ad82864c
JB
1700 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1701 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1702 else
1703 return arr;
1704}
1705
1706/* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1708 be ARR itself if it already is in the proper form). */
1709
1710static struct value *
d2e4a39e 1711ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1712{
df407dfe 1713 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1714 {
d2e4a39e 1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1716 if (arrVal == NULL)
323e0a4a 1717 error (_("Bounds unavailable for null array pointer."));
529cad9c 1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1719 return value_ind (arrVal);
1720 }
ad82864c
JB
1721 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1722 return decode_constrained_packed_array (arr);
d2e4a39e 1723 else
14f9c5c9
AS
1724 return arr;
1725}
1726
1727/* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1729 packing). For other types, is the identity. */
1730
d2e4a39e
AS
1731struct type *
1732ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1733{
ad82864c
JB
1734 if (ada_is_constrained_packed_array_type (type))
1735 return decode_constrained_packed_array_type (type);
17280b9f
UW
1736
1737 if (ada_is_array_descriptor_type (type))
556bdfd4 1738 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1739
1740 return type;
14f9c5c9
AS
1741}
1742
4c4b4cd2
PH
1743/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
ad82864c
JB
1745static int
1746ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1747{
1748 if (type == NULL)
1749 return 0;
4c4b4cd2 1750 type = desc_base_type (type);
61ee279c 1751 type = ada_check_typedef (type);
d2e4a39e 1752 return
14f9c5c9
AS
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755}
1756
ad82864c
JB
1757/* Non-zero iff TYPE represents a standard GNAT constrained
1758 packed-array type. */
1759
1760int
1761ada_is_constrained_packed_array_type (struct type *type)
1762{
1763 return ada_is_packed_array_type (type)
1764 && !ada_is_array_descriptor_type (type);
1765}
1766
1767/* Non-zero iff TYPE represents an array descriptor for a
1768 unconstrained packed-array type. */
1769
1770static int
1771ada_is_unconstrained_packed_array_type (struct type *type)
1772{
1773 return ada_is_packed_array_type (type)
1774 && ada_is_array_descriptor_type (type);
1775}
1776
1777/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1778 return the size of its elements in bits. */
1779
1780static long
1781decode_packed_array_bitsize (struct type *type)
1782{
1783 char *raw_name = ada_type_name (ada_check_typedef (type));
1784 char *tail;
1785 long bits;
1786
1787 if (!raw_name)
1788 raw_name = ada_type_name (desc_base_type (type));
1789
1790 if (!raw_name)
1791 return 0;
1792
1793 tail = strstr (raw_name, "___XP");
1794
1795 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1796 {
1797 lim_warning
1798 (_("could not understand bit size information on packed array"));
1799 return 0;
1800 }
1801
1802 return bits;
1803}
1804
14f9c5c9
AS
1805/* Given that TYPE is a standard GDB array type with all bounds filled
1806 in, and that the element size of its ultimate scalar constituents
1807 (that is, either its elements, or, if it is an array of arrays, its
1808 elements' elements, etc.) is *ELT_BITS, return an identical type,
1809 but with the bit sizes of its elements (and those of any
1810 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1811 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1812 in bits. */
1813
d2e4a39e 1814static struct type *
ad82864c 1815constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1816{
d2e4a39e
AS
1817 struct type *new_elt_type;
1818 struct type *new_type;
14f9c5c9
AS
1819 LONGEST low_bound, high_bound;
1820
61ee279c 1821 type = ada_check_typedef (type);
14f9c5c9
AS
1822 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1823 return type;
1824
e9bb382b 1825 new_type = alloc_type_copy (type);
ad82864c
JB
1826 new_elt_type =
1827 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1828 elt_bits);
262452ec 1829 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1830 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1831 TYPE_NAME (new_type) = ada_type_name (type);
1832
262452ec 1833 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1834 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1835 low_bound = high_bound = 0;
1836 if (high_bound < low_bound)
1837 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1838 else
14f9c5c9
AS
1839 {
1840 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1841 TYPE_LENGTH (new_type) =
4c4b4cd2 1842 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1843 }
1844
876cecd0 1845 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1846 return new_type;
1847}
1848
ad82864c
JB
1849/* The array type encoded by TYPE, where
1850 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1851
d2e4a39e 1852static struct type *
ad82864c 1853decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1854{
4c4b4cd2 1855 struct symbol *sym;
d2e4a39e 1856 struct block **blocks;
727e3d2e
JB
1857 char *raw_name = ada_type_name (ada_check_typedef (type));
1858 char *name;
1859 char *tail;
d2e4a39e 1860 struct type *shadow_type;
14f9c5c9
AS
1861 long bits;
1862 int i, n;
1863
727e3d2e
JB
1864 if (!raw_name)
1865 raw_name = ada_type_name (desc_base_type (type));
1866
1867 if (!raw_name)
1868 return NULL;
1869
1870 name = (char *) alloca (strlen (raw_name) + 1);
1871 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1872 type = desc_base_type (type);
1873
14f9c5c9
AS
1874 memcpy (name, raw_name, tail - raw_name);
1875 name[tail - raw_name] = '\000';
1876
4c4b4cd2
PH
1877 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1878 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1879 {
323e0a4a 1880 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1881 return NULL;
1882 }
4c4b4cd2 1883 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1884 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1885
1886 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1887 {
323e0a4a 1888 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1889 return NULL;
1890 }
d2e4a39e 1891
ad82864c
JB
1892 bits = decode_packed_array_bitsize (type);
1893 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
1894}
1895
ad82864c
JB
1896/* Given that ARR is a struct value *indicating a GNAT constrained packed
1897 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
1898 standard GDB array type except that the BITSIZEs of the array
1899 target types are set to the number of bits in each element, and the
4c4b4cd2 1900 type length is set appropriately. */
14f9c5c9 1901
d2e4a39e 1902static struct value *
ad82864c 1903decode_constrained_packed_array (struct value *arr)
14f9c5c9 1904{
4c4b4cd2 1905 struct type *type;
14f9c5c9 1906
4c4b4cd2 1907 arr = ada_coerce_ref (arr);
284614f0
JB
1908
1909 /* If our value is a pointer, then dererence it. Make sure that
1910 this operation does not cause the target type to be fixed, as
1911 this would indirectly cause this array to be decoded. The rest
1912 of the routine assumes that the array hasn't been decoded yet,
1913 so we use the basic "value_ind" routine to perform the dereferencing,
1914 as opposed to using "ada_value_ind". */
df407dfe 1915 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1916 arr = value_ind (arr);
4c4b4cd2 1917
ad82864c 1918 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
1919 if (type == NULL)
1920 {
323e0a4a 1921 error (_("can't unpack array"));
14f9c5c9
AS
1922 return NULL;
1923 }
61ee279c 1924
50810684 1925 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1926 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1927 {
1928 /* This is a (right-justified) modular type representing a packed
1929 array with no wrapper. In order to interpret the value through
1930 the (left-justified) packed array type we just built, we must
1931 first left-justify it. */
1932 int bit_size, bit_pos;
1933 ULONGEST mod;
1934
df407dfe 1935 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1936 bit_size = 0;
1937 while (mod > 0)
1938 {
1939 bit_size += 1;
1940 mod >>= 1;
1941 }
df407dfe 1942 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1943 arr = ada_value_primitive_packed_val (arr, NULL,
1944 bit_pos / HOST_CHAR_BIT,
1945 bit_pos % HOST_CHAR_BIT,
1946 bit_size,
1947 type);
1948 }
1949
4c4b4cd2 1950 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1951}
1952
1953
1954/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1955 given in IND. ARR must be a simple array. */
14f9c5c9 1956
d2e4a39e
AS
1957static struct value *
1958value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1959{
1960 int i;
1961 int bits, elt_off, bit_off;
1962 long elt_total_bit_offset;
d2e4a39e
AS
1963 struct type *elt_type;
1964 struct value *v;
14f9c5c9
AS
1965
1966 bits = 0;
1967 elt_total_bit_offset = 0;
df407dfe 1968 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1969 for (i = 0; i < arity; i += 1)
14f9c5c9 1970 {
d2e4a39e 1971 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1972 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1973 error
323e0a4a 1974 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1975 else
4c4b4cd2
PH
1976 {
1977 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1978 LONGEST lowerbound, upperbound;
1979 LONGEST idx;
1980
1981 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1982 {
323e0a4a 1983 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1984 lowerbound = upperbound = 0;
1985 }
1986
3cb382c9 1987 idx = pos_atr (ind[i]);
4c4b4cd2 1988 if (idx < lowerbound || idx > upperbound)
323e0a4a 1989 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1990 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1991 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1992 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1993 }
14f9c5c9
AS
1994 }
1995 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1996 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1997
1998 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1999 bits, elt_type);
14f9c5c9
AS
2000 return v;
2001}
2002
4c4b4cd2 2003/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2004
2005static int
d2e4a39e 2006has_negatives (struct type *type)
14f9c5c9 2007{
d2e4a39e
AS
2008 switch (TYPE_CODE (type))
2009 {
2010 default:
2011 return 0;
2012 case TYPE_CODE_INT:
2013 return !TYPE_UNSIGNED (type);
2014 case TYPE_CODE_RANGE:
2015 return TYPE_LOW_BOUND (type) < 0;
2016 }
14f9c5c9 2017}
d2e4a39e 2018
14f9c5c9
AS
2019
2020/* Create a new value of type TYPE from the contents of OBJ starting
2021 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2022 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2023 assigning through the result will set the field fetched from.
2024 VALADDR is ignored unless OBJ is NULL, in which case,
2025 VALADDR+OFFSET must address the start of storage containing the
2026 packed value. The value returned in this case is never an lval.
2027 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2028
d2e4a39e 2029struct value *
fc1a4b47 2030ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2031 long offset, int bit_offset, int bit_size,
4c4b4cd2 2032 struct type *type)
14f9c5c9 2033{
d2e4a39e 2034 struct value *v;
4c4b4cd2
PH
2035 int src, /* Index into the source area */
2036 targ, /* Index into the target area */
2037 srcBitsLeft, /* Number of source bits left to move */
2038 nsrc, ntarg, /* Number of source and target bytes */
2039 unusedLS, /* Number of bits in next significant
2040 byte of source that are unused */
2041 accumSize; /* Number of meaningful bits in accum */
2042 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2043 unsigned char *unpacked;
4c4b4cd2 2044 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2045 unsigned char sign;
2046 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2047 /* Transmit bytes from least to most significant; delta is the direction
2048 the indices move. */
50810684 2049 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2050
61ee279c 2051 type = ada_check_typedef (type);
14f9c5c9
AS
2052
2053 if (obj == NULL)
2054 {
2055 v = allocate_value (type);
d2e4a39e 2056 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2057 }
9214ee5f 2058 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2059 {
2060 v = value_at (type,
42ae5230 2061 value_address (obj) + offset);
d2e4a39e 2062 bytes = (unsigned char *) alloca (len);
42ae5230 2063 read_memory (value_address (v), bytes, len);
14f9c5c9 2064 }
d2e4a39e 2065 else
14f9c5c9
AS
2066 {
2067 v = allocate_value (type);
0fd88904 2068 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2069 }
d2e4a39e
AS
2070
2071 if (obj != NULL)
14f9c5c9 2072 {
42ae5230 2073 CORE_ADDR new_addr;
74bcbdf3 2074 set_value_component_location (v, obj);
42ae5230 2075 new_addr = value_address (obj) + offset;
9bbda503
AC
2076 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2077 set_value_bitsize (v, bit_size);
df407dfe 2078 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2079 {
42ae5230 2080 ++new_addr;
9bbda503 2081 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2082 }
42ae5230 2083 set_value_address (v, new_addr);
14f9c5c9
AS
2084 }
2085 else
9bbda503 2086 set_value_bitsize (v, bit_size);
0fd88904 2087 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2088
2089 srcBitsLeft = bit_size;
2090 nsrc = len;
2091 ntarg = TYPE_LENGTH (type);
2092 sign = 0;
2093 if (bit_size == 0)
2094 {
2095 memset (unpacked, 0, TYPE_LENGTH (type));
2096 return v;
2097 }
50810684 2098 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2099 {
d2e4a39e 2100 src = len - 1;
1265e4aa
JB
2101 if (has_negatives (type)
2102 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2103 sign = ~0;
d2e4a39e
AS
2104
2105 unusedLS =
4c4b4cd2
PH
2106 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2107 % HOST_CHAR_BIT;
14f9c5c9
AS
2108
2109 switch (TYPE_CODE (type))
4c4b4cd2
PH
2110 {
2111 case TYPE_CODE_ARRAY:
2112 case TYPE_CODE_UNION:
2113 case TYPE_CODE_STRUCT:
2114 /* Non-scalar values must be aligned at a byte boundary... */
2115 accumSize =
2116 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2117 /* ... And are placed at the beginning (most-significant) bytes
2118 of the target. */
529cad9c 2119 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2120 ntarg = targ + 1;
4c4b4cd2
PH
2121 break;
2122 default:
2123 accumSize = 0;
2124 targ = TYPE_LENGTH (type) - 1;
2125 break;
2126 }
14f9c5c9 2127 }
d2e4a39e 2128 else
14f9c5c9
AS
2129 {
2130 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2131
2132 src = targ = 0;
2133 unusedLS = bit_offset;
2134 accumSize = 0;
2135
d2e4a39e 2136 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2137 sign = ~0;
14f9c5c9 2138 }
d2e4a39e 2139
14f9c5c9
AS
2140 accum = 0;
2141 while (nsrc > 0)
2142 {
2143 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2144 part of the value. */
d2e4a39e 2145 unsigned int unusedMSMask =
4c4b4cd2
PH
2146 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2147 1;
2148 /* Sign-extend bits for this byte. */
14f9c5c9 2149 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2150 accum |=
4c4b4cd2 2151 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2152 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2153 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2154 {
2155 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2156 accumSize -= HOST_CHAR_BIT;
2157 accum >>= HOST_CHAR_BIT;
2158 ntarg -= 1;
2159 targ += delta;
2160 }
14f9c5c9
AS
2161 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2162 unusedLS = 0;
2163 nsrc -= 1;
2164 src += delta;
2165 }
2166 while (ntarg > 0)
2167 {
2168 accum |= sign << accumSize;
2169 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2170 accumSize -= HOST_CHAR_BIT;
2171 accum >>= HOST_CHAR_BIT;
2172 ntarg -= 1;
2173 targ += delta;
2174 }
2175
2176 return v;
2177}
d2e4a39e 2178
14f9c5c9
AS
2179/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2180 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2181 not overlap. */
14f9c5c9 2182static void
fc1a4b47 2183move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2184 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2185{
2186 unsigned int accum, mask;
2187 int accum_bits, chunk_size;
2188
2189 target += targ_offset / HOST_CHAR_BIT;
2190 targ_offset %= HOST_CHAR_BIT;
2191 source += src_offset / HOST_CHAR_BIT;
2192 src_offset %= HOST_CHAR_BIT;
50810684 2193 if (bits_big_endian_p)
14f9c5c9
AS
2194 {
2195 accum = (unsigned char) *source;
2196 source += 1;
2197 accum_bits = HOST_CHAR_BIT - src_offset;
2198
d2e4a39e 2199 while (n > 0)
4c4b4cd2
PH
2200 {
2201 int unused_right;
2202 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2203 accum_bits += HOST_CHAR_BIT;
2204 source += 1;
2205 chunk_size = HOST_CHAR_BIT - targ_offset;
2206 if (chunk_size > n)
2207 chunk_size = n;
2208 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2209 mask = ((1 << chunk_size) - 1) << unused_right;
2210 *target =
2211 (*target & ~mask)
2212 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 target += 1;
2216 targ_offset = 0;
2217 }
14f9c5c9
AS
2218 }
2219 else
2220 {
2221 accum = (unsigned char) *source >> src_offset;
2222 source += 1;
2223 accum_bits = HOST_CHAR_BIT - src_offset;
2224
d2e4a39e 2225 while (n > 0)
4c4b4cd2
PH
2226 {
2227 accum = accum + ((unsigned char) *source << accum_bits);
2228 accum_bits += HOST_CHAR_BIT;
2229 source += 1;
2230 chunk_size = HOST_CHAR_BIT - targ_offset;
2231 if (chunk_size > n)
2232 chunk_size = n;
2233 mask = ((1 << chunk_size) - 1) << targ_offset;
2234 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2235 n -= chunk_size;
2236 accum_bits -= chunk_size;
2237 accum >>= chunk_size;
2238 target += 1;
2239 targ_offset = 0;
2240 }
14f9c5c9
AS
2241 }
2242}
2243
14f9c5c9
AS
2244/* Store the contents of FROMVAL into the location of TOVAL.
2245 Return a new value with the location of TOVAL and contents of
2246 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2247 floating-point or non-scalar types. */
14f9c5c9 2248
d2e4a39e
AS
2249static struct value *
2250ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2251{
df407dfe
AC
2252 struct type *type = value_type (toval);
2253 int bits = value_bitsize (toval);
14f9c5c9 2254
52ce6436
PH
2255 toval = ada_coerce_ref (toval);
2256 fromval = ada_coerce_ref (fromval);
2257
2258 if (ada_is_direct_array_type (value_type (toval)))
2259 toval = ada_coerce_to_simple_array (toval);
2260 if (ada_is_direct_array_type (value_type (fromval)))
2261 fromval = ada_coerce_to_simple_array (fromval);
2262
88e3b34b 2263 if (!deprecated_value_modifiable (toval))
323e0a4a 2264 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2265
d2e4a39e 2266 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2267 && bits > 0
d2e4a39e 2268 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2269 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2270 {
df407dfe
AC
2271 int len = (value_bitpos (toval)
2272 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2273 int from_size;
d2e4a39e
AS
2274 char *buffer = (char *) alloca (len);
2275 struct value *val;
42ae5230 2276 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2277
2278 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2279 fromval = value_cast (type, fromval);
14f9c5c9 2280
52ce6436 2281 read_memory (to_addr, buffer, len);
aced2898
PH
2282 from_size = value_bitsize (fromval);
2283 if (from_size == 0)
2284 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2285 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2286 move_bits (buffer, value_bitpos (toval),
50810684 2287 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2288 else
50810684
UW
2289 move_bits (buffer, value_bitpos (toval),
2290 value_contents (fromval), 0, bits, 0);
52ce6436 2291 write_memory (to_addr, buffer, len);
8cebebb9
PP
2292 observer_notify_memory_changed (to_addr, len, buffer);
2293
14f9c5c9 2294 val = value_copy (toval);
0fd88904 2295 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2296 TYPE_LENGTH (type));
04624583 2297 deprecated_set_value_type (val, type);
d2e4a39e 2298
14f9c5c9
AS
2299 return val;
2300 }
2301
2302 return value_assign (toval, fromval);
2303}
2304
2305
52ce6436
PH
2306/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2307 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2308 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2309 * COMPONENT, and not the inferior's memory. The current contents
2310 * of COMPONENT are ignored. */
2311static void
2312value_assign_to_component (struct value *container, struct value *component,
2313 struct value *val)
2314{
2315 LONGEST offset_in_container =
42ae5230 2316 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2317 int bit_offset_in_container =
2318 value_bitpos (component) - value_bitpos (container);
2319 int bits;
2320
2321 val = value_cast (value_type (component), val);
2322
2323 if (value_bitsize (component) == 0)
2324 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2325 else
2326 bits = value_bitsize (component);
2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2329 move_bits (value_contents_writeable (container) + offset_in_container,
2330 value_bitpos (container) + bit_offset_in_container,
2331 value_contents (val),
2332 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2333 bits, 1);
52ce6436
PH
2334 else
2335 move_bits (value_contents_writeable (container) + offset_in_container,
2336 value_bitpos (container) + bit_offset_in_container,
50810684 2337 value_contents (val), 0, bits, 0);
52ce6436
PH
2338}
2339
4c4b4cd2
PH
2340/* The value of the element of array ARR at the ARITY indices given in IND.
2341 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2342 thereto. */
2343
d2e4a39e
AS
2344struct value *
2345ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2346{
2347 int k;
d2e4a39e
AS
2348 struct value *elt;
2349 struct type *elt_type;
14f9c5c9
AS
2350
2351 elt = ada_coerce_to_simple_array (arr);
2352
df407dfe 2353 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2354 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2355 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2356 return value_subscript_packed (elt, arity, ind);
2357
2358 for (k = 0; k < arity; k += 1)
2359 {
2360 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2361 error (_("too many subscripts (%d expected)"), k);
2497b498 2362 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2363 }
2364 return elt;
2365}
2366
2367/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2368 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2369 IND. Does not read the entire array into memory. */
14f9c5c9 2370
2c0b251b 2371static struct value *
d2e4a39e 2372ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2373 struct value **ind)
14f9c5c9
AS
2374{
2375 int k;
2376
2377 for (k = 0; k < arity; k += 1)
2378 {
2379 LONGEST lwb, upb;
14f9c5c9
AS
2380
2381 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2382 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2383 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2384 value_copy (arr));
14f9c5c9 2385 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2386 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2387 type = TYPE_TARGET_TYPE (type);
2388 }
2389
2390 return value_ind (arr);
2391}
2392
0b5d8877 2393/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2394 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2395 elements starting at index LOW. The lower bound of this array is LOW, as
2396 per Ada rules. */
0b5d8877 2397static struct value *
f5938064
JG
2398ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2399 int low, int high)
0b5d8877 2400{
6c038f32 2401 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2402 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2403 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2404 struct type *index_type =
2405 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2406 low, high);
6c038f32 2407 struct type *slice_type =
0b5d8877 2408 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2409 return value_at_lazy (slice_type, base);
0b5d8877
PH
2410}
2411
2412
2413static struct value *
2414ada_value_slice (struct value *array, int low, int high)
2415{
df407dfe 2416 struct type *type = value_type (array);
6c038f32 2417 struct type *index_type =
0b5d8877 2418 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2419 struct type *slice_type =
0b5d8877 2420 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2421 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2422}
2423
14f9c5c9
AS
2424/* If type is a record type in the form of a standard GNAT array
2425 descriptor, returns the number of dimensions for type. If arr is a
2426 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2427 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2428
2429int
d2e4a39e 2430ada_array_arity (struct type *type)
14f9c5c9
AS
2431{
2432 int arity;
2433
2434 if (type == NULL)
2435 return 0;
2436
2437 type = desc_base_type (type);
2438
2439 arity = 0;
d2e4a39e 2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2441 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2442 else
2443 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2444 {
4c4b4cd2 2445 arity += 1;
61ee279c 2446 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2447 }
d2e4a39e 2448
14f9c5c9
AS
2449 return arity;
2450}
2451
2452/* If TYPE is a record type in the form of a standard GNAT array
2453 descriptor or a simple array type, returns the element type for
2454 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2455 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2456
d2e4a39e
AS
2457struct type *
2458ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2459{
2460 type = desc_base_type (type);
2461
d2e4a39e 2462 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2463 {
2464 int k;
d2e4a39e 2465 struct type *p_array_type;
14f9c5c9 2466
556bdfd4 2467 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2468
2469 k = ada_array_arity (type);
2470 if (k == 0)
4c4b4cd2 2471 return NULL;
d2e4a39e 2472
4c4b4cd2 2473 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2474 if (nindices >= 0 && k > nindices)
4c4b4cd2 2475 k = nindices;
d2e4a39e 2476 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2477 {
61ee279c 2478 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2479 k -= 1;
2480 }
14f9c5c9
AS
2481 return p_array_type;
2482 }
2483 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2484 {
2485 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2486 {
2487 type = TYPE_TARGET_TYPE (type);
2488 nindices -= 1;
2489 }
14f9c5c9
AS
2490 return type;
2491 }
2492
2493 return NULL;
2494}
2495
4c4b4cd2 2496/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2497 Does not examine memory. Throws an error if N is invalid or TYPE
2498 is not an array type. NAME is the name of the Ada attribute being
2499 evaluated ('range, 'first, 'last, or 'length); it is used in building
2500 the error message. */
14f9c5c9 2501
1eea4ebd
UW
2502static struct type *
2503ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2504{
4c4b4cd2
PH
2505 struct type *result_type;
2506
14f9c5c9
AS
2507 type = desc_base_type (type);
2508
1eea4ebd
UW
2509 if (n < 0 || n > ada_array_arity (type))
2510 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2511
4c4b4cd2 2512 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2513 {
2514 int i;
2515
2516 for (i = 1; i < n; i += 1)
4c4b4cd2 2517 type = TYPE_TARGET_TYPE (type);
262452ec 2518 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2519 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2520 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2521 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2522 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2523 result_type = NULL;
14f9c5c9 2524 }
d2e4a39e 2525 else
1eea4ebd
UW
2526 {
2527 result_type = desc_index_type (desc_bounds_type (type), n);
2528 if (result_type == NULL)
2529 error (_("attempt to take bound of something that is not an array"));
2530 }
2531
2532 return result_type;
14f9c5c9
AS
2533}
2534
2535/* Given that arr is an array type, returns the lower bound of the
2536 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2537 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2538 array-descriptor type. It works for other arrays with bounds supplied
2539 by run-time quantities other than discriminants. */
14f9c5c9 2540
abb68b3e 2541static LONGEST
1eea4ebd 2542ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2543{
1ce677a4 2544 struct type *type, *elt_type, *index_type_desc, *index_type;
262452ec 2545 LONGEST retval;
1ce677a4 2546 int i;
262452ec
JK
2547
2548 gdb_assert (which == 0 || which == 1);
14f9c5c9 2549
ad82864c
JB
2550 if (ada_is_constrained_packed_array_type (arr_type))
2551 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2552
4c4b4cd2 2553 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2554 return (LONGEST) - which;
14f9c5c9
AS
2555
2556 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2557 type = TYPE_TARGET_TYPE (arr_type);
2558 else
2559 type = arr_type;
2560
1ce677a4
UW
2561 elt_type = type;
2562 for (i = n; i > 1; i--)
2563 elt_type = TYPE_TARGET_TYPE (type);
2564
14f9c5c9 2565 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2566 if (index_type_desc != NULL)
2567 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2568 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2569 else
1ce677a4 2570 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec
JK
2571
2572 switch (TYPE_CODE (index_type))
14f9c5c9 2573 {
262452ec
JK
2574 case TYPE_CODE_RANGE:
2575 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2576 : TYPE_HIGH_BOUND (index_type);
2577 break;
2578 case TYPE_CODE_ENUM:
2579 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2580 : TYPE_FIELD_BITPOS (index_type,
2581 TYPE_NFIELDS (index_type) - 1);
2582 break;
2583 default:
2584 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2585 }
abb68b3e 2586
262452ec 2587 return retval;
14f9c5c9
AS
2588}
2589
2590/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2591 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2592 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2593 supplied by run-time quantities other than discriminants. */
14f9c5c9 2594
1eea4ebd 2595static LONGEST
4dc81987 2596ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2597{
df407dfe 2598 struct type *arr_type = value_type (arr);
14f9c5c9 2599
ad82864c
JB
2600 if (ada_is_constrained_packed_array_type (arr_type))
2601 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2602 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2603 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2604 else
1eea4ebd 2605 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2606}
2607
2608/* Given that arr is an array value, returns the length of the
2609 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2610 supplied by run-time quantities other than discriminants.
2611 Does not work for arrays indexed by enumeration types with representation
2612 clauses at the moment. */
14f9c5c9 2613
1eea4ebd 2614static LONGEST
d2e4a39e 2615ada_array_length (struct value *arr, int n)
14f9c5c9 2616{
df407dfe 2617 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2618
ad82864c
JB
2619 if (ada_is_constrained_packed_array_type (arr_type))
2620 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2621
4c4b4cd2 2622 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2623 return (ada_array_bound_from_type (arr_type, n, 1)
2624 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2625 else
1eea4ebd
UW
2626 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2627 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2628}
2629
2630/* An empty array whose type is that of ARR_TYPE (an array type),
2631 with bounds LOW to LOW-1. */
2632
2633static struct value *
2634empty_array (struct type *arr_type, int low)
2635{
6c038f32 2636 struct type *index_type =
0b5d8877
PH
2637 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2638 low, low - 1);
2639 struct type *elt_type = ada_array_element_type (arr_type, 1);
2640 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2641}
14f9c5c9 2642\f
d2e4a39e 2643
4c4b4cd2 2644 /* Name resolution */
14f9c5c9 2645
4c4b4cd2
PH
2646/* The "decoded" name for the user-definable Ada operator corresponding
2647 to OP. */
14f9c5c9 2648
d2e4a39e 2649static const char *
4c4b4cd2 2650ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2651{
2652 int i;
2653
4c4b4cd2 2654 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2655 {
2656 if (ada_opname_table[i].op == op)
4c4b4cd2 2657 return ada_opname_table[i].decoded;
14f9c5c9 2658 }
323e0a4a 2659 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2660}
2661
2662
4c4b4cd2
PH
2663/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2664 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2665 undefined namespace) and converts operators that are
2666 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2667 non-null, it provides a preferred result type [at the moment, only
2668 type void has any effect---causing procedures to be preferred over
2669 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2670 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2671
4c4b4cd2
PH
2672static void
2673resolve (struct expression **expp, int void_context_p)
14f9c5c9 2674{
30b15541
UW
2675 struct type *context_type = NULL;
2676 int pc = 0;
2677
2678 if (void_context_p)
2679 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2680
2681 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2682}
2683
4c4b4cd2
PH
2684/* Resolve the operator of the subexpression beginning at
2685 position *POS of *EXPP. "Resolving" consists of replacing
2686 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2687 with their resolutions, replacing built-in operators with
2688 function calls to user-defined operators, where appropriate, and,
2689 when DEPROCEDURE_P is non-zero, converting function-valued variables
2690 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2691 are as in ada_resolve, above. */
14f9c5c9 2692
d2e4a39e 2693static struct value *
4c4b4cd2 2694resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2695 struct type *context_type)
14f9c5c9
AS
2696{
2697 int pc = *pos;
2698 int i;
4c4b4cd2 2699 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2700 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2701 struct value **argvec; /* Vector of operand types (alloca'ed). */
2702 int nargs; /* Number of operands. */
52ce6436 2703 int oplen;
14f9c5c9
AS
2704
2705 argvec = NULL;
2706 nargs = 0;
2707 exp = *expp;
2708
52ce6436
PH
2709 /* Pass one: resolve operands, saving their types and updating *pos,
2710 if needed. */
14f9c5c9
AS
2711 switch (op)
2712 {
4c4b4cd2
PH
2713 case OP_FUNCALL:
2714 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2715 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2716 *pos += 7;
4c4b4cd2
PH
2717 else
2718 {
2719 *pos += 3;
2720 resolve_subexp (expp, pos, 0, NULL);
2721 }
2722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2723 break;
2724
14f9c5c9 2725 case UNOP_ADDR:
4c4b4cd2
PH
2726 *pos += 1;
2727 resolve_subexp (expp, pos, 0, NULL);
2728 break;
2729
52ce6436
PH
2730 case UNOP_QUAL:
2731 *pos += 3;
17466c1a 2732 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2733 break;
2734
52ce6436 2735 case OP_ATR_MODULUS:
4c4b4cd2
PH
2736 case OP_ATR_SIZE:
2737 case OP_ATR_TAG:
4c4b4cd2
PH
2738 case OP_ATR_FIRST:
2739 case OP_ATR_LAST:
2740 case OP_ATR_LENGTH:
2741 case OP_ATR_POS:
2742 case OP_ATR_VAL:
4c4b4cd2
PH
2743 case OP_ATR_MIN:
2744 case OP_ATR_MAX:
52ce6436
PH
2745 case TERNOP_IN_RANGE:
2746 case BINOP_IN_BOUNDS:
2747 case UNOP_IN_RANGE:
2748 case OP_AGGREGATE:
2749 case OP_OTHERS:
2750 case OP_CHOICES:
2751 case OP_POSITIONAL:
2752 case OP_DISCRETE_RANGE:
2753 case OP_NAME:
2754 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2755 *pos += oplen;
14f9c5c9
AS
2756 break;
2757
2758 case BINOP_ASSIGN:
2759 {
4c4b4cd2
PH
2760 struct value *arg1;
2761
2762 *pos += 1;
2763 arg1 = resolve_subexp (expp, pos, 0, NULL);
2764 if (arg1 == NULL)
2765 resolve_subexp (expp, pos, 1, NULL);
2766 else
df407dfe 2767 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2768 break;
14f9c5c9
AS
2769 }
2770
4c4b4cd2 2771 case UNOP_CAST:
4c4b4cd2
PH
2772 *pos += 3;
2773 nargs = 1;
2774 break;
14f9c5c9 2775
4c4b4cd2
PH
2776 case BINOP_ADD:
2777 case BINOP_SUB:
2778 case BINOP_MUL:
2779 case BINOP_DIV:
2780 case BINOP_REM:
2781 case BINOP_MOD:
2782 case BINOP_EXP:
2783 case BINOP_CONCAT:
2784 case BINOP_LOGICAL_AND:
2785 case BINOP_LOGICAL_OR:
2786 case BINOP_BITWISE_AND:
2787 case BINOP_BITWISE_IOR:
2788 case BINOP_BITWISE_XOR:
14f9c5c9 2789
4c4b4cd2
PH
2790 case BINOP_EQUAL:
2791 case BINOP_NOTEQUAL:
2792 case BINOP_LESS:
2793 case BINOP_GTR:
2794 case BINOP_LEQ:
2795 case BINOP_GEQ:
14f9c5c9 2796
4c4b4cd2
PH
2797 case BINOP_REPEAT:
2798 case BINOP_SUBSCRIPT:
2799 case BINOP_COMMA:
40c8aaa9
JB
2800 *pos += 1;
2801 nargs = 2;
2802 break;
14f9c5c9 2803
4c4b4cd2
PH
2804 case UNOP_NEG:
2805 case UNOP_PLUS:
2806 case UNOP_LOGICAL_NOT:
2807 case UNOP_ABS:
2808 case UNOP_IND:
2809 *pos += 1;
2810 nargs = 1;
2811 break;
14f9c5c9 2812
4c4b4cd2
PH
2813 case OP_LONG:
2814 case OP_DOUBLE:
2815 case OP_VAR_VALUE:
2816 *pos += 4;
2817 break;
14f9c5c9 2818
4c4b4cd2
PH
2819 case OP_TYPE:
2820 case OP_BOOL:
2821 case OP_LAST:
4c4b4cd2
PH
2822 case OP_INTERNALVAR:
2823 *pos += 3;
2824 break;
14f9c5c9 2825
4c4b4cd2
PH
2826 case UNOP_MEMVAL:
2827 *pos += 3;
2828 nargs = 1;
2829 break;
2830
67f3407f
DJ
2831 case OP_REGISTER:
2832 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2833 break;
2834
4c4b4cd2
PH
2835 case STRUCTOP_STRUCT:
2836 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2837 nargs = 1;
2838 break;
2839
4c4b4cd2 2840 case TERNOP_SLICE:
4c4b4cd2
PH
2841 *pos += 1;
2842 nargs = 3;
2843 break;
2844
52ce6436 2845 case OP_STRING:
14f9c5c9 2846 break;
4c4b4cd2
PH
2847
2848 default:
323e0a4a 2849 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2850 }
2851
76a01679 2852 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2853 for (i = 0; i < nargs; i += 1)
2854 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2855 argvec[i] = NULL;
2856 exp = *expp;
2857
2858 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2859 switch (op)
2860 {
2861 default:
2862 break;
2863
14f9c5c9 2864 case OP_VAR_VALUE:
4c4b4cd2 2865 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2866 {
2867 struct ada_symbol_info *candidates;
2868 int n_candidates;
2869
2870 n_candidates =
2871 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2872 (exp->elts[pc + 2].symbol),
2873 exp->elts[pc + 1].block, VAR_DOMAIN,
2874 &candidates);
2875
2876 if (n_candidates > 1)
2877 {
2878 /* Types tend to get re-introduced locally, so if there
2879 are any local symbols that are not types, first filter
2880 out all types. */
2881 int j;
2882 for (j = 0; j < n_candidates; j += 1)
2883 switch (SYMBOL_CLASS (candidates[j].sym))
2884 {
2885 case LOC_REGISTER:
2886 case LOC_ARG:
2887 case LOC_REF_ARG:
76a01679
JB
2888 case LOC_REGPARM_ADDR:
2889 case LOC_LOCAL:
76a01679 2890 case LOC_COMPUTED:
76a01679
JB
2891 goto FoundNonType;
2892 default:
2893 break;
2894 }
2895 FoundNonType:
2896 if (j < n_candidates)
2897 {
2898 j = 0;
2899 while (j < n_candidates)
2900 {
2901 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2902 {
2903 candidates[j] = candidates[n_candidates - 1];
2904 n_candidates -= 1;
2905 }
2906 else
2907 j += 1;
2908 }
2909 }
2910 }
2911
2912 if (n_candidates == 0)
323e0a4a 2913 error (_("No definition found for %s"),
76a01679
JB
2914 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2915 else if (n_candidates == 1)
2916 i = 0;
2917 else if (deprocedure_p
2918 && !is_nonfunction (candidates, n_candidates))
2919 {
06d5cf63
JB
2920 i = ada_resolve_function
2921 (candidates, n_candidates, NULL, 0,
2922 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2923 context_type);
76a01679 2924 if (i < 0)
323e0a4a 2925 error (_("Could not find a match for %s"),
76a01679
JB
2926 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2927 }
2928 else
2929 {
323e0a4a 2930 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2931 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2932 user_select_syms (candidates, n_candidates, 1);
2933 i = 0;
2934 }
2935
2936 exp->elts[pc + 1].block = candidates[i].block;
2937 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2938 if (innermost_block == NULL
2939 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2940 innermost_block = candidates[i].block;
2941 }
2942
2943 if (deprocedure_p
2944 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2945 == TYPE_CODE_FUNC))
2946 {
2947 replace_operator_with_call (expp, pc, 0, 0,
2948 exp->elts[pc + 2].symbol,
2949 exp->elts[pc + 1].block);
2950 exp = *expp;
2951 }
14f9c5c9
AS
2952 break;
2953
2954 case OP_FUNCALL:
2955 {
4c4b4cd2 2956 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2957 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2958 {
2959 struct ada_symbol_info *candidates;
2960 int n_candidates;
2961
2962 n_candidates =
76a01679
JB
2963 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2964 (exp->elts[pc + 5].symbol),
2965 exp->elts[pc + 4].block, VAR_DOMAIN,
2966 &candidates);
4c4b4cd2
PH
2967 if (n_candidates == 1)
2968 i = 0;
2969 else
2970 {
06d5cf63
JB
2971 i = ada_resolve_function
2972 (candidates, n_candidates,
2973 argvec, nargs,
2974 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2975 context_type);
4c4b4cd2 2976 if (i < 0)
323e0a4a 2977 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2978 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2979 }
2980
2981 exp->elts[pc + 4].block = candidates[i].block;
2982 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2983 if (innermost_block == NULL
2984 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2985 innermost_block = candidates[i].block;
2986 }
14f9c5c9
AS
2987 }
2988 break;
2989 case BINOP_ADD:
2990 case BINOP_SUB:
2991 case BINOP_MUL:
2992 case BINOP_DIV:
2993 case BINOP_REM:
2994 case BINOP_MOD:
2995 case BINOP_CONCAT:
2996 case BINOP_BITWISE_AND:
2997 case BINOP_BITWISE_IOR:
2998 case BINOP_BITWISE_XOR:
2999 case BINOP_EQUAL:
3000 case BINOP_NOTEQUAL:
3001 case BINOP_LESS:
3002 case BINOP_GTR:
3003 case BINOP_LEQ:
3004 case BINOP_GEQ:
3005 case BINOP_EXP:
3006 case UNOP_NEG:
3007 case UNOP_PLUS:
3008 case UNOP_LOGICAL_NOT:
3009 case UNOP_ABS:
3010 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3011 {
3012 struct ada_symbol_info *candidates;
3013 int n_candidates;
3014
3015 n_candidates =
3016 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3017 (struct block *) NULL, VAR_DOMAIN,
3018 &candidates);
3019 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3020 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3021 if (i < 0)
3022 break;
3023
76a01679
JB
3024 replace_operator_with_call (expp, pc, nargs, 1,
3025 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3026 exp = *expp;
3027 }
14f9c5c9 3028 break;
4c4b4cd2
PH
3029
3030 case OP_TYPE:
b3dbf008 3031 case OP_REGISTER:
4c4b4cd2 3032 return NULL;
14f9c5c9
AS
3033 }
3034
3035 *pos = pc;
3036 return evaluate_subexp_type (exp, pos);
3037}
3038
3039/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3040 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3041 a non-pointer. */
14f9c5c9 3042/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3043 liberal. */
14f9c5c9
AS
3044
3045static int
4dc81987 3046ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3047{
61ee279c
PH
3048 ftype = ada_check_typedef (ftype);
3049 atype = ada_check_typedef (atype);
14f9c5c9
AS
3050
3051 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3052 ftype = TYPE_TARGET_TYPE (ftype);
3053 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3054 atype = TYPE_TARGET_TYPE (atype);
3055
d2e4a39e 3056 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3057 {
3058 default:
5b3d5b7d 3059 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3060 case TYPE_CODE_PTR:
3061 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3062 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3063 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3064 else
1265e4aa
JB
3065 return (may_deref
3066 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3067 case TYPE_CODE_INT:
3068 case TYPE_CODE_ENUM:
3069 case TYPE_CODE_RANGE:
3070 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3071 {
3072 case TYPE_CODE_INT:
3073 case TYPE_CODE_ENUM:
3074 case TYPE_CODE_RANGE:
3075 return 1;
3076 default:
3077 return 0;
3078 }
14f9c5c9
AS
3079
3080 case TYPE_CODE_ARRAY:
d2e4a39e 3081 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3082 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3083
3084 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3085 if (ada_is_array_descriptor_type (ftype))
3086 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3087 || ada_is_array_descriptor_type (atype));
14f9c5c9 3088 else
4c4b4cd2
PH
3089 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3090 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3091
3092 case TYPE_CODE_UNION:
3093 case TYPE_CODE_FLT:
3094 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3095 }
3096}
3097
3098/* Return non-zero if the formals of FUNC "sufficiently match" the
3099 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3100 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3101 argument function. */
14f9c5c9
AS
3102
3103static int
d2e4a39e 3104ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3105{
3106 int i;
d2e4a39e 3107 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3108
1265e4aa
JB
3109 if (SYMBOL_CLASS (func) == LOC_CONST
3110 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3111 return (n_actuals == 0);
3112 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3113 return 0;
3114
3115 if (TYPE_NFIELDS (func_type) != n_actuals)
3116 return 0;
3117
3118 for (i = 0; i < n_actuals; i += 1)
3119 {
4c4b4cd2 3120 if (actuals[i] == NULL)
76a01679
JB
3121 return 0;
3122 else
3123 {
61ee279c 3124 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3125 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3126
76a01679
JB
3127 if (!ada_type_match (ftype, atype, 1))
3128 return 0;
3129 }
14f9c5c9
AS
3130 }
3131 return 1;
3132}
3133
3134/* False iff function type FUNC_TYPE definitely does not produce a value
3135 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3136 FUNC_TYPE is not a valid function type with a non-null return type
3137 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3138
3139static int
d2e4a39e 3140return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3141{
d2e4a39e 3142 struct type *return_type;
14f9c5c9
AS
3143
3144 if (func_type == NULL)
3145 return 1;
3146
4c4b4cd2
PH
3147 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3148 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3149 else
3150 return_type = base_type (func_type);
14f9c5c9
AS
3151 if (return_type == NULL)
3152 return 1;
3153
4c4b4cd2 3154 context_type = base_type (context_type);
14f9c5c9
AS
3155
3156 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3157 return context_type == NULL || return_type == context_type;
3158 else if (context_type == NULL)
3159 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3160 else
3161 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3162}
3163
3164
4c4b4cd2 3165/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3166 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3167 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3168 that returns that type, then eliminate matches that don't. If
3169 CONTEXT_TYPE is void and there is at least one match that does not
3170 return void, eliminate all matches that do.
3171
14f9c5c9
AS
3172 Asks the user if there is more than one match remaining. Returns -1
3173 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3174 solely for messages. May re-arrange and modify SYMS in
3175 the process; the index returned is for the modified vector. */
14f9c5c9 3176
4c4b4cd2
PH
3177static int
3178ada_resolve_function (struct ada_symbol_info syms[],
3179 int nsyms, struct value **args, int nargs,
3180 const char *name, struct type *context_type)
14f9c5c9 3181{
30b15541 3182 int fallback;
14f9c5c9 3183 int k;
4c4b4cd2 3184 int m; /* Number of hits */
14f9c5c9 3185
d2e4a39e 3186 m = 0;
30b15541
UW
3187 /* In the first pass of the loop, we only accept functions matching
3188 context_type. If none are found, we add a second pass of the loop
3189 where every function is accepted. */
3190 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3191 {
3192 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3193 {
61ee279c 3194 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3195
3196 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3197 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3198 {
3199 syms[m] = syms[k];
3200 m += 1;
3201 }
3202 }
14f9c5c9
AS
3203 }
3204
3205 if (m == 0)
3206 return -1;
3207 else if (m > 1)
3208 {
323e0a4a 3209 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3210 user_select_syms (syms, m, 1);
14f9c5c9
AS
3211 return 0;
3212 }
3213 return 0;
3214}
3215
4c4b4cd2
PH
3216/* Returns true (non-zero) iff decoded name N0 should appear before N1
3217 in a listing of choices during disambiguation (see sort_choices, below).
3218 The idea is that overloadings of a subprogram name from the
3219 same package should sort in their source order. We settle for ordering
3220 such symbols by their trailing number (__N or $N). */
3221
14f9c5c9 3222static int
4c4b4cd2 3223encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3224{
3225 if (N1 == NULL)
3226 return 0;
3227 else if (N0 == NULL)
3228 return 1;
3229 else
3230 {
3231 int k0, k1;
d2e4a39e 3232 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3233 ;
d2e4a39e 3234 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3235 ;
d2e4a39e 3236 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3237 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3238 {
3239 int n0, n1;
3240 n0 = k0;
3241 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3242 n0 -= 1;
3243 n1 = k1;
3244 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3245 n1 -= 1;
3246 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3247 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3248 }
14f9c5c9
AS
3249 return (strcmp (N0, N1) < 0);
3250 }
3251}
d2e4a39e 3252
4c4b4cd2
PH
3253/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3254 encoded names. */
3255
d2e4a39e 3256static void
4c4b4cd2 3257sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3258{
4c4b4cd2 3259 int i;
d2e4a39e 3260 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3261 {
4c4b4cd2 3262 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3263 int j;
3264
d2e4a39e 3265 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3266 {
3267 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3268 SYMBOL_LINKAGE_NAME (sym.sym)))
3269 break;
3270 syms[j + 1] = syms[j];
3271 }
d2e4a39e 3272 syms[j + 1] = sym;
14f9c5c9
AS
3273 }
3274}
3275
4c4b4cd2
PH
3276/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3277 by asking the user (if necessary), returning the number selected,
3278 and setting the first elements of SYMS items. Error if no symbols
3279 selected. */
14f9c5c9
AS
3280
3281/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3282 to be re-integrated one of these days. */
14f9c5c9
AS
3283
3284int
4c4b4cd2 3285user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3286{
3287 int i;
d2e4a39e 3288 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3289 int n_chosen;
3290 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3291 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3292
3293 if (max_results < 1)
323e0a4a 3294 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3295 if (nsyms <= 1)
3296 return nsyms;
3297
717d2f5a
JB
3298 if (select_mode == multiple_symbols_cancel)
3299 error (_("\
3300canceled because the command is ambiguous\n\
3301See set/show multiple-symbol."));
3302
3303 /* If select_mode is "all", then return all possible symbols.
3304 Only do that if more than one symbol can be selected, of course.
3305 Otherwise, display the menu as usual. */
3306 if (select_mode == multiple_symbols_all && max_results > 1)
3307 return nsyms;
3308
323e0a4a 3309 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3310 if (max_results > 1)
323e0a4a 3311 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3312
4c4b4cd2 3313 sort_choices (syms, nsyms);
14f9c5c9
AS
3314
3315 for (i = 0; i < nsyms; i += 1)
3316 {
4c4b4cd2
PH
3317 if (syms[i].sym == NULL)
3318 continue;
3319
3320 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3321 {
76a01679
JB
3322 struct symtab_and_line sal =
3323 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3324 if (sal.symtab == NULL)
3325 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 sal.line);
3329 else
3330 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3331 SYMBOL_PRINT_NAME (syms[i].sym),
3332 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3333 continue;
3334 }
d2e4a39e 3335 else
4c4b4cd2
PH
3336 {
3337 int is_enumeral =
3338 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3339 && SYMBOL_TYPE (syms[i].sym) != NULL
3340 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3341 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3342
3343 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3344 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3345 i + first_choice,
3346 SYMBOL_PRINT_NAME (syms[i].sym),
3347 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3348 else if (is_enumeral
3349 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3350 {
a3f17187 3351 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3352 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3353 gdb_stdout, -1, 0);
323e0a4a 3354 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3355 SYMBOL_PRINT_NAME (syms[i].sym));
3356 }
3357 else if (symtab != NULL)
3358 printf_unfiltered (is_enumeral
323e0a4a
AC
3359 ? _("[%d] %s in %s (enumeral)\n")
3360 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3361 i + first_choice,
3362 SYMBOL_PRINT_NAME (syms[i].sym),
3363 symtab->filename);
3364 else
3365 printf_unfiltered (is_enumeral
323e0a4a
AC
3366 ? _("[%d] %s (enumeral)\n")
3367 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3368 i + first_choice,
3369 SYMBOL_PRINT_NAME (syms[i].sym));
3370 }
14f9c5c9 3371 }
d2e4a39e 3372
14f9c5c9 3373 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3374 "overload-choice");
14f9c5c9
AS
3375
3376 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3377 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3378
3379 return n_chosen;
3380}
3381
3382/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3383 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3384 order in CHOICES[0 .. N-1], and return N.
3385
3386 The user types choices as a sequence of numbers on one line
3387 separated by blanks, encoding them as follows:
3388
4c4b4cd2 3389 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3390 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3391 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3392
4c4b4cd2 3393 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3394
3395 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3396 prompts (for use with the -f switch). */
14f9c5c9
AS
3397
3398int
d2e4a39e 3399get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3400 int is_all_choice, char *annotation_suffix)
14f9c5c9 3401{
d2e4a39e 3402 char *args;
0bcd0149 3403 char *prompt;
14f9c5c9
AS
3404 int n_chosen;
3405 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3406
14f9c5c9
AS
3407 prompt = getenv ("PS2");
3408 if (prompt == NULL)
0bcd0149 3409 prompt = "> ";
14f9c5c9 3410
0bcd0149 3411 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3412
14f9c5c9 3413 if (args == NULL)
323e0a4a 3414 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3415
3416 n_chosen = 0;
76a01679 3417
4c4b4cd2
PH
3418 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3419 order, as given in args. Choices are validated. */
14f9c5c9
AS
3420 while (1)
3421 {
d2e4a39e 3422 char *args2;
14f9c5c9
AS
3423 int choice, j;
3424
3425 while (isspace (*args))
4c4b4cd2 3426 args += 1;
14f9c5c9 3427 if (*args == '\0' && n_chosen == 0)
323e0a4a 3428 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3429 else if (*args == '\0')
4c4b4cd2 3430 break;
14f9c5c9
AS
3431
3432 choice = strtol (args, &args2, 10);
d2e4a39e 3433 if (args == args2 || choice < 0
4c4b4cd2 3434 || choice > n_choices + first_choice - 1)
323e0a4a 3435 error (_("Argument must be choice number"));
14f9c5c9
AS
3436 args = args2;
3437
d2e4a39e 3438 if (choice == 0)
323e0a4a 3439 error (_("cancelled"));
14f9c5c9
AS
3440
3441 if (choice < first_choice)
4c4b4cd2
PH
3442 {
3443 n_chosen = n_choices;
3444 for (j = 0; j < n_choices; j += 1)
3445 choices[j] = j;
3446 break;
3447 }
14f9c5c9
AS
3448 choice -= first_choice;
3449
d2e4a39e 3450 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3451 {
3452 }
14f9c5c9
AS
3453
3454 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3455 {
3456 int k;
3457 for (k = n_chosen - 1; k > j; k -= 1)
3458 choices[k + 1] = choices[k];
3459 choices[j + 1] = choice;
3460 n_chosen += 1;
3461 }
14f9c5c9
AS
3462 }
3463
3464 if (n_chosen > max_results)
323e0a4a 3465 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3466
14f9c5c9
AS
3467 return n_chosen;
3468}
3469
4c4b4cd2
PH
3470/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3471 on the function identified by SYM and BLOCK, and taking NARGS
3472 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3473
3474static void
d2e4a39e 3475replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3476 int oplen, struct symbol *sym,
3477 struct block *block)
14f9c5c9
AS
3478{
3479 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3480 symbol, -oplen for operator being replaced). */
d2e4a39e 3481 struct expression *newexp = (struct expression *)
14f9c5c9 3482 xmalloc (sizeof (struct expression)
4c4b4cd2 3483 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3484 struct expression *exp = *expp;
14f9c5c9
AS
3485
3486 newexp->nelts = exp->nelts + 7 - oplen;
3487 newexp->language_defn = exp->language_defn;
3488 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3489 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3490 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3491
3492 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3493 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3494
3495 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3496 newexp->elts[pc + 4].block = block;
3497 newexp->elts[pc + 5].symbol = sym;
3498
3499 *expp = newexp;
aacb1f0a 3500 xfree (exp);
d2e4a39e 3501}
14f9c5c9
AS
3502
3503/* Type-class predicates */
3504
4c4b4cd2
PH
3505/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3506 or FLOAT). */
14f9c5c9
AS
3507
3508static int
d2e4a39e 3509numeric_type_p (struct type *type)
14f9c5c9
AS
3510{
3511 if (type == NULL)
3512 return 0;
d2e4a39e
AS
3513 else
3514 {
3515 switch (TYPE_CODE (type))
4c4b4cd2
PH
3516 {
3517 case TYPE_CODE_INT:
3518 case TYPE_CODE_FLT:
3519 return 1;
3520 case TYPE_CODE_RANGE:
3521 return (type == TYPE_TARGET_TYPE (type)
3522 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3523 default:
3524 return 0;
3525 }
d2e4a39e 3526 }
14f9c5c9
AS
3527}
3528
4c4b4cd2 3529/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3530
3531static int
d2e4a39e 3532integer_type_p (struct type *type)
14f9c5c9
AS
3533{
3534 if (type == NULL)
3535 return 0;
d2e4a39e
AS
3536 else
3537 {
3538 switch (TYPE_CODE (type))
4c4b4cd2
PH
3539 {
3540 case TYPE_CODE_INT:
3541 return 1;
3542 case TYPE_CODE_RANGE:
3543 return (type == TYPE_TARGET_TYPE (type)
3544 || integer_type_p (TYPE_TARGET_TYPE (type)));
3545 default:
3546 return 0;
3547 }
d2e4a39e 3548 }
14f9c5c9
AS
3549}
3550
4c4b4cd2 3551/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3552
3553static int
d2e4a39e 3554scalar_type_p (struct type *type)
14f9c5c9
AS
3555{
3556 if (type == NULL)
3557 return 0;
d2e4a39e
AS
3558 else
3559 {
3560 switch (TYPE_CODE (type))
4c4b4cd2
PH
3561 {
3562 case TYPE_CODE_INT:
3563 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_ENUM:
3565 case TYPE_CODE_FLT:
3566 return 1;
3567 default:
3568 return 0;
3569 }
d2e4a39e 3570 }
14f9c5c9
AS
3571}
3572
4c4b4cd2 3573/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3574
3575static int
d2e4a39e 3576discrete_type_p (struct type *type)
14f9c5c9
AS
3577{
3578 if (type == NULL)
3579 return 0;
d2e4a39e
AS
3580 else
3581 {
3582 switch (TYPE_CODE (type))
4c4b4cd2
PH
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_RANGE:
3586 case TYPE_CODE_ENUM:
872f0337 3587 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3588 return 1;
3589 default:
3590 return 0;
3591 }
d2e4a39e 3592 }
14f9c5c9
AS
3593}
3594
4c4b4cd2
PH
3595/* Returns non-zero if OP with operands in the vector ARGS could be
3596 a user-defined function. Errs on the side of pre-defined operators
3597 (i.e., result 0). */
14f9c5c9
AS
3598
3599static int
d2e4a39e 3600possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3601{
76a01679 3602 struct type *type0 =
df407dfe 3603 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3604 struct type *type1 =
df407dfe 3605 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3606
4c4b4cd2
PH
3607 if (type0 == NULL)
3608 return 0;
3609
14f9c5c9
AS
3610 switch (op)
3611 {
3612 default:
3613 return 0;
3614
3615 case BINOP_ADD:
3616 case BINOP_SUB:
3617 case BINOP_MUL:
3618 case BINOP_DIV:
d2e4a39e 3619 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3620
3621 case BINOP_REM:
3622 case BINOP_MOD:
3623 case BINOP_BITWISE_AND:
3624 case BINOP_BITWISE_IOR:
3625 case BINOP_BITWISE_XOR:
d2e4a39e 3626 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3627
3628 case BINOP_EQUAL:
3629 case BINOP_NOTEQUAL:
3630 case BINOP_LESS:
3631 case BINOP_GTR:
3632 case BINOP_LEQ:
3633 case BINOP_GEQ:
d2e4a39e 3634 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3635
3636 case BINOP_CONCAT:
ee90b9ab 3637 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3638
3639 case BINOP_EXP:
d2e4a39e 3640 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3641
3642 case UNOP_NEG:
3643 case UNOP_PLUS:
3644 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3645 case UNOP_ABS:
3646 return (!numeric_type_p (type0));
14f9c5c9
AS
3647
3648 }
3649}
3650\f
4c4b4cd2 3651 /* Renaming */
14f9c5c9 3652
aeb5907d
JB
3653/* NOTES:
3654
3655 1. In the following, we assume that a renaming type's name may
3656 have an ___XD suffix. It would be nice if this went away at some
3657 point.
3658 2. We handle both the (old) purely type-based representation of
3659 renamings and the (new) variable-based encoding. At some point,
3660 it is devoutly to be hoped that the former goes away
3661 (FIXME: hilfinger-2007-07-09).
3662 3. Subprogram renamings are not implemented, although the XRS
3663 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3664
3665/* If SYM encodes a renaming,
3666
3667 <renaming> renames <renamed entity>,
3668
3669 sets *LEN to the length of the renamed entity's name,
3670 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3671 the string describing the subcomponent selected from the renamed
3672 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3673 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3674 are undefined). Otherwise, returns a value indicating the category
3675 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3676 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3677 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3678 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3679 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3680 may be NULL, in which case they are not assigned.
3681
3682 [Currently, however, GCC does not generate subprogram renamings.] */
3683
3684enum ada_renaming_category
3685ada_parse_renaming (struct symbol *sym,
3686 const char **renamed_entity, int *len,
3687 const char **renaming_expr)
3688{
3689 enum ada_renaming_category kind;
3690 const char *info;
3691 const char *suffix;
3692
3693 if (sym == NULL)
3694 return ADA_NOT_RENAMING;
3695 switch (SYMBOL_CLASS (sym))
14f9c5c9 3696 {
aeb5907d
JB
3697 default:
3698 return ADA_NOT_RENAMING;
3699 case LOC_TYPEDEF:
3700 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3701 renamed_entity, len, renaming_expr);
3702 case LOC_LOCAL:
3703 case LOC_STATIC:
3704 case LOC_COMPUTED:
3705 case LOC_OPTIMIZED_OUT:
3706 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3707 if (info == NULL)
3708 return ADA_NOT_RENAMING;
3709 switch (info[5])
3710 {
3711 case '_':
3712 kind = ADA_OBJECT_RENAMING;
3713 info += 6;
3714 break;
3715 case 'E':
3716 kind = ADA_EXCEPTION_RENAMING;
3717 info += 7;
3718 break;
3719 case 'P':
3720 kind = ADA_PACKAGE_RENAMING;
3721 info += 7;
3722 break;
3723 case 'S':
3724 kind = ADA_SUBPROGRAM_RENAMING;
3725 info += 7;
3726 break;
3727 default:
3728 return ADA_NOT_RENAMING;
3729 }
14f9c5c9 3730 }
4c4b4cd2 3731
aeb5907d
JB
3732 if (renamed_entity != NULL)
3733 *renamed_entity = info;
3734 suffix = strstr (info, "___XE");
3735 if (suffix == NULL || suffix == info)
3736 return ADA_NOT_RENAMING;
3737 if (len != NULL)
3738 *len = strlen (info) - strlen (suffix);
3739 suffix += 5;
3740 if (renaming_expr != NULL)
3741 *renaming_expr = suffix;
3742 return kind;
3743}
3744
3745/* Assuming TYPE encodes a renaming according to the old encoding in
3746 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3747 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3748 ADA_NOT_RENAMING otherwise. */
3749static enum ada_renaming_category
3750parse_old_style_renaming (struct type *type,
3751 const char **renamed_entity, int *len,
3752 const char **renaming_expr)
3753{
3754 enum ada_renaming_category kind;
3755 const char *name;
3756 const char *info;
3757 const char *suffix;
14f9c5c9 3758
aeb5907d
JB
3759 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3760 || TYPE_NFIELDS (type) != 1)
3761 return ADA_NOT_RENAMING;
14f9c5c9 3762
aeb5907d
JB
3763 name = type_name_no_tag (type);
3764 if (name == NULL)
3765 return ADA_NOT_RENAMING;
3766
3767 name = strstr (name, "___XR");
3768 if (name == NULL)
3769 return ADA_NOT_RENAMING;
3770 switch (name[5])
3771 {
3772 case '\0':
3773 case '_':
3774 kind = ADA_OBJECT_RENAMING;
3775 break;
3776 case 'E':
3777 kind = ADA_EXCEPTION_RENAMING;
3778 break;
3779 case 'P':
3780 kind = ADA_PACKAGE_RENAMING;
3781 break;
3782 case 'S':
3783 kind = ADA_SUBPROGRAM_RENAMING;
3784 break;
3785 default:
3786 return ADA_NOT_RENAMING;
3787 }
14f9c5c9 3788
aeb5907d
JB
3789 info = TYPE_FIELD_NAME (type, 0);
3790 if (info == NULL)
3791 return ADA_NOT_RENAMING;
3792 if (renamed_entity != NULL)
3793 *renamed_entity = info;
3794 suffix = strstr (info, "___XE");
3795 if (renaming_expr != NULL)
3796 *renaming_expr = suffix + 5;
3797 if (suffix == NULL || suffix == info)
3798 return ADA_NOT_RENAMING;
3799 if (len != NULL)
3800 *len = suffix - info;
3801 return kind;
3802}
52ce6436 3803
14f9c5c9 3804\f
d2e4a39e 3805
4c4b4cd2 3806 /* Evaluation: Function Calls */
14f9c5c9 3807
4c4b4cd2
PH
3808/* Return an lvalue containing the value VAL. This is the identity on
3809 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3810 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3811 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3812
d2e4a39e 3813static struct value *
4a399546 3814ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3815{
c3e5cd34
PH
3816 if (! VALUE_LVAL (val))
3817 {
df407dfe 3818 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3819
3820 /* The following is taken from the structure-return code in
3821 call_function_by_hand. FIXME: Therefore, some refactoring seems
3822 indicated. */
4a399546 3823 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3824 {
42ae5230 3825 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3826 reserving sufficient space. */
3827 *sp -= len;
4a399546
UW
3828 if (gdbarch_frame_align_p (gdbarch))
3829 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3830 set_value_address (val, *sp);
c3e5cd34
PH
3831 }
3832 else
3833 {
3834 /* Stack grows upward. Align the frame, allocate space, and
3835 then again, re-align the frame. */
4a399546
UW
3836 if (gdbarch_frame_align_p (gdbarch))
3837 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3838 set_value_address (val, *sp);
c3e5cd34 3839 *sp += len;
4a399546
UW
3840 if (gdbarch_frame_align_p (gdbarch))
3841 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3842 }
a84a8a0d 3843 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3844
42ae5230 3845 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3846 }
14f9c5c9
AS
3847
3848 return val;
3849}
3850
3851/* Return the value ACTUAL, converted to be an appropriate value for a
3852 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3853 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3854 values not residing in memory, updating it as needed. */
14f9c5c9 3855
a93c0eb6
JB
3856struct value *
3857ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3858 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3859{
df407dfe 3860 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3861 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3862 struct type *formal_target =
3863 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3864 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3865 struct type *actual_target =
3866 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3867 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3868
4c4b4cd2 3869 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3870 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3871 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3872 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3873 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3874 {
a84a8a0d 3875 struct value *result;
14f9c5c9 3876 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3877 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3878 result = desc_data (actual);
14f9c5c9 3879 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3880 {
3881 if (VALUE_LVAL (actual) != lval_memory)
3882 {
3883 struct value *val;
df407dfe 3884 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3885 val = allocate_value (actual_type);
990a07ab 3886 memcpy ((char *) value_contents_raw (val),
0fd88904 3887 (char *) value_contents (actual),
4c4b4cd2 3888 TYPE_LENGTH (actual_type));
4a399546 3889 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3890 }
a84a8a0d 3891 result = value_addr (actual);
4c4b4cd2 3892 }
a84a8a0d
JB
3893 else
3894 return actual;
3895 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3896 }
3897 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3898 return ada_value_ind (actual);
3899
3900 return actual;
3901}
3902
3903
4c4b4cd2
PH
3904/* Push a descriptor of type TYPE for array value ARR on the stack at
3905 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3906 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3907 to-descriptor type rather than a descriptor type), a struct value *
3908 representing a pointer to this descriptor. */
14f9c5c9 3909
d2e4a39e 3910static struct value *
4a399546
UW
3911make_array_descriptor (struct type *type, struct value *arr,
3912 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3913{
d2e4a39e
AS
3914 struct type *bounds_type = desc_bounds_type (type);
3915 struct type *desc_type = desc_base_type (type);
3916 struct value *descriptor = allocate_value (desc_type);
3917 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3918 int i;
d2e4a39e 3919
df407dfe 3920 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3921 {
50810684
UW
3922 modify_general_field (value_type (bounds),
3923 value_contents_writeable (bounds),
1eea4ebd 3924 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3925 desc_bound_bitpos (bounds_type, i, 0),
3926 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3927 modify_general_field (value_type (bounds),
3928 value_contents_writeable (bounds),
1eea4ebd 3929 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3930 desc_bound_bitpos (bounds_type, i, 1),
3931 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3932 }
d2e4a39e 3933
4a399546 3934 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3935
50810684
UW
3936 modify_general_field (value_type (descriptor),
3937 value_contents_writeable (descriptor),
4a399546 3938 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3939 fat_pntr_data_bitpos (desc_type),
3940 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3941
50810684
UW
3942 modify_general_field (value_type (descriptor),
3943 value_contents_writeable (descriptor),
42ae5230 3944 value_address (bounds),
4c4b4cd2
PH
3945 fat_pntr_bounds_bitpos (desc_type),
3946 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3947
4a399546 3948 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3949
3950 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3951 return value_addr (descriptor);
3952 else
3953 return descriptor;
3954}
14f9c5c9 3955\f
963a6417
PH
3956/* Dummy definitions for an experimental caching module that is not
3957 * used in the public sources. */
96d887e8 3958
96d887e8
PH
3959static int
3960lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3961 struct symbol **sym, struct block **block)
96d887e8
PH
3962{
3963 return 0;
3964}
3965
3966static void
3967cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3968 struct block *block)
96d887e8
PH
3969{
3970}
4c4b4cd2
PH
3971\f
3972 /* Symbol Lookup */
3973
3974/* Return the result of a standard (literal, C-like) lookup of NAME in
3975 given DOMAIN, visible from lexical block BLOCK. */
3976
3977static struct symbol *
3978standard_lookup (const char *name, const struct block *block,
3979 domain_enum domain)
3980{
3981 struct symbol *sym;
4c4b4cd2 3982
2570f2b7 3983 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3984 return sym;
2570f2b7
UW
3985 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3986 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3987 return sym;
3988}
3989
3990
3991/* Non-zero iff there is at least one non-function/non-enumeral symbol
3992 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3993 since they contend in overloading in the same way. */
3994static int
3995is_nonfunction (struct ada_symbol_info syms[], int n)
3996{
3997 int i;
3998
3999 for (i = 0; i < n; i += 1)
4000 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4001 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4002 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4003 return 1;
4004
4005 return 0;
4006}
4007
4008/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4009 struct types. Otherwise, they may not. */
14f9c5c9
AS
4010
4011static int
d2e4a39e 4012equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4013{
d2e4a39e 4014 if (type0 == type1)
14f9c5c9 4015 return 1;
d2e4a39e 4016 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4017 || TYPE_CODE (type0) != TYPE_CODE (type1))
4018 return 0;
d2e4a39e 4019 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4020 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4021 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4022 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4023 return 1;
d2e4a39e 4024
14f9c5c9
AS
4025 return 0;
4026}
4027
4028/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4029 no more defined than that of SYM1. */
14f9c5c9
AS
4030
4031static int
d2e4a39e 4032lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4033{
4034 if (sym0 == sym1)
4035 return 1;
176620f1 4036 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4037 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4038 return 0;
4039
d2e4a39e 4040 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4041 {
4042 case LOC_UNDEF:
4043 return 1;
4044 case LOC_TYPEDEF:
4045 {
4c4b4cd2
PH
4046 struct type *type0 = SYMBOL_TYPE (sym0);
4047 struct type *type1 = SYMBOL_TYPE (sym1);
4048 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4049 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4050 int len0 = strlen (name0);
4051 return
4052 TYPE_CODE (type0) == TYPE_CODE (type1)
4053 && (equiv_types (type0, type1)
4054 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4055 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4056 }
4057 case LOC_CONST:
4058 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4059 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4060 default:
4061 return 0;
14f9c5c9
AS
4062 }
4063}
4064
4c4b4cd2
PH
4065/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4066 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4067
4068static void
76a01679
JB
4069add_defn_to_vec (struct obstack *obstackp,
4070 struct symbol *sym,
2570f2b7 4071 struct block *block)
14f9c5c9
AS
4072{
4073 int i;
4074 size_t tmp;
4c4b4cd2 4075 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4076
529cad9c
PH
4077 /* Do not try to complete stub types, as the debugger is probably
4078 already scanning all symbols matching a certain name at the
4079 time when this function is called. Trying to replace the stub
4080 type by its associated full type will cause us to restart a scan
4081 which may lead to an infinite recursion. Instead, the client
4082 collecting the matching symbols will end up collecting several
4083 matches, with at least one of them complete. It can then filter
4084 out the stub ones if needed. */
4085
4c4b4cd2
PH
4086 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4087 {
4088 if (lesseq_defined_than (sym, prevDefns[i].sym))
4089 return;
4090 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4091 {
4092 prevDefns[i].sym = sym;
4093 prevDefns[i].block = block;
4c4b4cd2 4094 return;
76a01679 4095 }
4c4b4cd2
PH
4096 }
4097
4098 {
4099 struct ada_symbol_info info;
4100
4101 info.sym = sym;
4102 info.block = block;
4c4b4cd2
PH
4103 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4104 }
4105}
4106
4107/* Number of ada_symbol_info structures currently collected in
4108 current vector in *OBSTACKP. */
4109
76a01679
JB
4110static int
4111num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4112{
4113 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4114}
4115
4116/* Vector of ada_symbol_info structures currently collected in current
4117 vector in *OBSTACKP. If FINISH, close off the vector and return
4118 its final address. */
4119
76a01679 4120static struct ada_symbol_info *
4c4b4cd2
PH
4121defns_collected (struct obstack *obstackp, int finish)
4122{
4123 if (finish)
4124 return obstack_finish (obstackp);
4125 else
4126 return (struct ada_symbol_info *) obstack_base (obstackp);
4127}
4128
96d887e8
PH
4129/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4130 Check the global symbols if GLOBAL, the static symbols if not.
4131 Do wild-card match if WILD. */
4c4b4cd2 4132
96d887e8
PH
4133static struct partial_symbol *
4134ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4135 int global, domain_enum namespace, int wild)
4c4b4cd2 4136{
96d887e8
PH
4137 struct partial_symbol **start;
4138 int name_len = strlen (name);
4139 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4140 int i;
4c4b4cd2 4141
96d887e8 4142 if (length == 0)
4c4b4cd2 4143 {
96d887e8 4144 return (NULL);
4c4b4cd2
PH
4145 }
4146
96d887e8
PH
4147 start = (global ?
4148 pst->objfile->global_psymbols.list + pst->globals_offset :
4149 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4150
96d887e8 4151 if (wild)
4c4b4cd2 4152 {
96d887e8
PH
4153 for (i = 0; i < length; i += 1)
4154 {
4155 struct partial_symbol *psym = start[i];
4c4b4cd2 4156
5eeb2539
AR
4157 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4158 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4159 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4160 return psym;
4161 }
4162 return NULL;
4c4b4cd2 4163 }
96d887e8
PH
4164 else
4165 {
4166 if (global)
4167 {
4168 int U;
4169 i = 0;
4170 U = length - 1;
4171 while (U - i > 4)
4172 {
4173 int M = (U + i) >> 1;
4174 struct partial_symbol *psym = start[M];
4175 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4176 i = M + 1;
4177 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4178 U = M - 1;
4179 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4180 i = M + 1;
4181 else
4182 U = M;
4183 }
4184 }
4185 else
4186 i = 0;
4c4b4cd2 4187
96d887e8
PH
4188 while (i < length)
4189 {
4190 struct partial_symbol *psym = start[i];
4c4b4cd2 4191
5eeb2539
AR
4192 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4193 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4194 {
4195 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4196
96d887e8
PH
4197 if (cmp < 0)
4198 {
4199 if (global)
4200 break;
4201 }
4202 else if (cmp == 0
4203 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4204 + name_len))
96d887e8
PH
4205 return psym;
4206 }
4207 i += 1;
4208 }
4c4b4cd2 4209
96d887e8
PH
4210 if (global)
4211 {
4212 int U;
4213 i = 0;
4214 U = length - 1;
4215 while (U - i > 4)
4216 {
4217 int M = (U + i) >> 1;
4218 struct partial_symbol *psym = start[M];
4219 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4220 i = M + 1;
4221 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4222 U = M - 1;
4223 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4224 i = M + 1;
4225 else
4226 U = M;
4227 }
4228 }
4229 else
4230 i = 0;
4c4b4cd2 4231
96d887e8
PH
4232 while (i < length)
4233 {
4234 struct partial_symbol *psym = start[i];
4c4b4cd2 4235
5eeb2539
AR
4236 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4237 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4238 {
4239 int cmp;
4c4b4cd2 4240
96d887e8
PH
4241 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4242 if (cmp == 0)
4243 {
4244 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4245 if (cmp == 0)
4246 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4247 name_len);
96d887e8 4248 }
4c4b4cd2 4249
96d887e8
PH
4250 if (cmp < 0)
4251 {
4252 if (global)
4253 break;
4254 }
4255 else if (cmp == 0
4256 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4257 + name_len + 5))
96d887e8
PH
4258 return psym;
4259 }
4260 i += 1;
4261 }
4262 }
4263 return NULL;
4c4b4cd2
PH
4264}
4265
96d887e8
PH
4266/* Return a minimal symbol matching NAME according to Ada decoding
4267 rules. Returns NULL if there is no such minimal symbol. Names
4268 prefixed with "standard__" are handled specially: "standard__" is
4269 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4270
96d887e8
PH
4271struct minimal_symbol *
4272ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4273{
4c4b4cd2 4274 struct objfile *objfile;
96d887e8
PH
4275 struct minimal_symbol *msymbol;
4276 int wild_match;
4c4b4cd2 4277
96d887e8 4278 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4279 {
96d887e8 4280 name += sizeof ("standard__") - 1;
4c4b4cd2 4281 wild_match = 0;
4c4b4cd2
PH
4282 }
4283 else
96d887e8 4284 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4285
96d887e8
PH
4286 ALL_MSYMBOLS (objfile, msymbol)
4287 {
4288 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4289 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4290 return msymbol;
4291 }
4c4b4cd2 4292
96d887e8
PH
4293 return NULL;
4294}
4c4b4cd2 4295
96d887e8
PH
4296/* For all subprograms that statically enclose the subprogram of the
4297 selected frame, add symbols matching identifier NAME in DOMAIN
4298 and their blocks to the list of data in OBSTACKP, as for
4299 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4300 wildcard prefix. */
4c4b4cd2 4301
96d887e8
PH
4302static void
4303add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4304 const char *name, domain_enum namespace,
96d887e8
PH
4305 int wild_match)
4306{
96d887e8 4307}
14f9c5c9 4308
96d887e8
PH
4309/* True if TYPE is definitely an artificial type supplied to a symbol
4310 for which no debugging information was given in the symbol file. */
14f9c5c9 4311
96d887e8
PH
4312static int
4313is_nondebugging_type (struct type *type)
4314{
4315 char *name = ada_type_name (type);
4316 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4317}
4c4b4cd2 4318
96d887e8
PH
4319/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4320 duplicate other symbols in the list (The only case I know of where
4321 this happens is when object files containing stabs-in-ecoff are
4322 linked with files containing ordinary ecoff debugging symbols (or no
4323 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4324 Returns the number of items in the modified list. */
4c4b4cd2 4325
96d887e8
PH
4326static int
4327remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4328{
4329 int i, j;
4c4b4cd2 4330
96d887e8
PH
4331 i = 0;
4332 while (i < nsyms)
4333 {
339c13b6
JB
4334 int remove = 0;
4335
4336 /* If two symbols have the same name and one of them is a stub type,
4337 the get rid of the stub. */
4338
4339 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4340 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4341 {
4342 for (j = 0; j < nsyms; j++)
4343 {
4344 if (j != i
4345 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4346 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4347 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4348 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4349 remove = 1;
4350 }
4351 }
4352
4353 /* Two symbols with the same name, same class and same address
4354 should be identical. */
4355
4356 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4357 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4358 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4359 {
4360 for (j = 0; j < nsyms; j += 1)
4361 {
4362 if (i != j
4363 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4364 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4365 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4366 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4367 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4368 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4369 remove = 1;
4c4b4cd2 4370 }
4c4b4cd2 4371 }
339c13b6
JB
4372
4373 if (remove)
4374 {
4375 for (j = i + 1; j < nsyms; j += 1)
4376 syms[j - 1] = syms[j];
4377 nsyms -= 1;
4378 }
4379
96d887e8 4380 i += 1;
14f9c5c9 4381 }
96d887e8 4382 return nsyms;
14f9c5c9
AS
4383}
4384
96d887e8
PH
4385/* Given a type that corresponds to a renaming entity, use the type name
4386 to extract the scope (package name or function name, fully qualified,
4387 and following the GNAT encoding convention) where this renaming has been
4388 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4389
96d887e8
PH
4390static char *
4391xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4392{
96d887e8
PH
4393 /* The renaming types adhere to the following convention:
4394 <scope>__<rename>___<XR extension>.
4395 So, to extract the scope, we search for the "___XR" extension,
4396 and then backtrack until we find the first "__". */
76a01679 4397
96d887e8
PH
4398 const char *name = type_name_no_tag (renaming_type);
4399 char *suffix = strstr (name, "___XR");
4400 char *last;
4401 int scope_len;
4402 char *scope;
14f9c5c9 4403
96d887e8
PH
4404 /* Now, backtrack a bit until we find the first "__". Start looking
4405 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4406
96d887e8
PH
4407 for (last = suffix - 3; last > name; last--)
4408 if (last[0] == '_' && last[1] == '_')
4409 break;
76a01679 4410
96d887e8 4411 /* Make a copy of scope and return it. */
14f9c5c9 4412
96d887e8
PH
4413 scope_len = last - name;
4414 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4415
96d887e8
PH
4416 strncpy (scope, name, scope_len);
4417 scope[scope_len] = '\0';
4c4b4cd2 4418
96d887e8 4419 return scope;
4c4b4cd2
PH
4420}
4421
96d887e8 4422/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4423
96d887e8
PH
4424static int
4425is_package_name (const char *name)
4c4b4cd2 4426{
96d887e8
PH
4427 /* Here, We take advantage of the fact that no symbols are generated
4428 for packages, while symbols are generated for each function.
4429 So the condition for NAME represent a package becomes equivalent
4430 to NAME not existing in our list of symbols. There is only one
4431 small complication with library-level functions (see below). */
4c4b4cd2 4432
96d887e8 4433 char *fun_name;
76a01679 4434
96d887e8
PH
4435 /* If it is a function that has not been defined at library level,
4436 then we should be able to look it up in the symbols. */
4437 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4438 return 0;
14f9c5c9 4439
96d887e8
PH
4440 /* Library-level function names start with "_ada_". See if function
4441 "_ada_" followed by NAME can be found. */
14f9c5c9 4442
96d887e8 4443 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4444 functions names cannot contain "__" in them. */
96d887e8
PH
4445 if (strstr (name, "__") != NULL)
4446 return 0;
4c4b4cd2 4447
b435e160 4448 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4449
96d887e8
PH
4450 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4451}
14f9c5c9 4452
96d887e8 4453/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4454 not visible from FUNCTION_NAME. */
14f9c5c9 4455
96d887e8 4456static int
aeb5907d 4457old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4458{
aeb5907d
JB
4459 char *scope;
4460
4461 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4462 return 0;
4463
4464 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4465
96d887e8 4466 make_cleanup (xfree, scope);
14f9c5c9 4467
96d887e8
PH
4468 /* If the rename has been defined in a package, then it is visible. */
4469 if (is_package_name (scope))
aeb5907d 4470 return 0;
14f9c5c9 4471
96d887e8
PH
4472 /* Check that the rename is in the current function scope by checking
4473 that its name starts with SCOPE. */
76a01679 4474
96d887e8
PH
4475 /* If the function name starts with "_ada_", it means that it is
4476 a library-level function. Strip this prefix before doing the
4477 comparison, as the encoding for the renaming does not contain
4478 this prefix. */
4479 if (strncmp (function_name, "_ada_", 5) == 0)
4480 function_name += 5;
f26caa11 4481
aeb5907d 4482 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4483}
4484
aeb5907d
JB
4485/* Remove entries from SYMS that corresponds to a renaming entity that
4486 is not visible from the function associated with CURRENT_BLOCK or
4487 that is superfluous due to the presence of more specific renaming
4488 information. Places surviving symbols in the initial entries of
4489 SYMS and returns the number of surviving symbols.
96d887e8
PH
4490
4491 Rationale:
aeb5907d
JB
4492 First, in cases where an object renaming is implemented as a
4493 reference variable, GNAT may produce both the actual reference
4494 variable and the renaming encoding. In this case, we discard the
4495 latter.
4496
4497 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4498 entity. Unfortunately, STABS currently does not support the definition
4499 of types that are local to a given lexical block, so all renamings types
4500 are emitted at library level. As a consequence, if an application
4501 contains two renaming entities using the same name, and a user tries to
4502 print the value of one of these entities, the result of the ada symbol
4503 lookup will also contain the wrong renaming type.
f26caa11 4504
96d887e8
PH
4505 This function partially covers for this limitation by attempting to
4506 remove from the SYMS list renaming symbols that should be visible
4507 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4508 method with the current information available. The implementation
4509 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4510
4511 - When the user tries to print a rename in a function while there
4512 is another rename entity defined in a package: Normally, the
4513 rename in the function has precedence over the rename in the
4514 package, so the latter should be removed from the list. This is
4515 currently not the case.
4516
4517 - This function will incorrectly remove valid renames if
4518 the CURRENT_BLOCK corresponds to a function which symbol name
4519 has been changed by an "Export" pragma. As a consequence,
4520 the user will be unable to print such rename entities. */
4c4b4cd2 4521
14f9c5c9 4522static int
aeb5907d
JB
4523remove_irrelevant_renamings (struct ada_symbol_info *syms,
4524 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4525{
4526 struct symbol *current_function;
4527 char *current_function_name;
4528 int i;
aeb5907d
JB
4529 int is_new_style_renaming;
4530
4531 /* If there is both a renaming foo___XR... encoded as a variable and
4532 a simple variable foo in the same block, discard the latter.
4533 First, zero out such symbols, then compress. */
4534 is_new_style_renaming = 0;
4535 for (i = 0; i < nsyms; i += 1)
4536 {
4537 struct symbol *sym = syms[i].sym;
4538 struct block *block = syms[i].block;
4539 const char *name;
4540 const char *suffix;
4541
4542 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4543 continue;
4544 name = SYMBOL_LINKAGE_NAME (sym);
4545 suffix = strstr (name, "___XR");
4546
4547 if (suffix != NULL)
4548 {
4549 int name_len = suffix - name;
4550 int j;
4551 is_new_style_renaming = 1;
4552 for (j = 0; j < nsyms; j += 1)
4553 if (i != j && syms[j].sym != NULL
4554 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4555 name_len) == 0
4556 && block == syms[j].block)
4557 syms[j].sym = NULL;
4558 }
4559 }
4560 if (is_new_style_renaming)
4561 {
4562 int j, k;
4563
4564 for (j = k = 0; j < nsyms; j += 1)
4565 if (syms[j].sym != NULL)
4566 {
4567 syms[k] = syms[j];
4568 k += 1;
4569 }
4570 return k;
4571 }
4c4b4cd2
PH
4572
4573 /* Extract the function name associated to CURRENT_BLOCK.
4574 Abort if unable to do so. */
76a01679 4575
4c4b4cd2
PH
4576 if (current_block == NULL)
4577 return nsyms;
76a01679 4578
7f0df278 4579 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4580 if (current_function == NULL)
4581 return nsyms;
4582
4583 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4584 if (current_function_name == NULL)
4585 return nsyms;
4586
4587 /* Check each of the symbols, and remove it from the list if it is
4588 a type corresponding to a renaming that is out of the scope of
4589 the current block. */
4590
4591 i = 0;
4592 while (i < nsyms)
4593 {
aeb5907d
JB
4594 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4595 == ADA_OBJECT_RENAMING
4596 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4597 {
4598 int j;
aeb5907d 4599 for (j = i + 1; j < nsyms; j += 1)
76a01679 4600 syms[j - 1] = syms[j];
4c4b4cd2
PH
4601 nsyms -= 1;
4602 }
4603 else
4604 i += 1;
4605 }
4606
4607 return nsyms;
4608}
4609
339c13b6
JB
4610/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4611 whose name and domain match NAME and DOMAIN respectively.
4612 If no match was found, then extend the search to "enclosing"
4613 routines (in other words, if we're inside a nested function,
4614 search the symbols defined inside the enclosing functions).
4615
4616 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4617
4618static void
4619ada_add_local_symbols (struct obstack *obstackp, const char *name,
4620 struct block *block, domain_enum domain,
4621 int wild_match)
4622{
4623 int block_depth = 0;
4624
4625 while (block != NULL)
4626 {
4627 block_depth += 1;
4628 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4629
4630 /* If we found a non-function match, assume that's the one. */
4631 if (is_nonfunction (defns_collected (obstackp, 0),
4632 num_defns_collected (obstackp)))
4633 return;
4634
4635 block = BLOCK_SUPERBLOCK (block);
4636 }
4637
4638 /* If no luck so far, try to find NAME as a local symbol in some lexically
4639 enclosing subprogram. */
4640 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4641 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4642}
4643
4644/* Add to OBSTACKP all non-local symbols whose name and domain match
4645 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4646 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4647
4648static void
4649ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4650 domain_enum domain, int global,
4651 int wild_match)
4652{
4653 struct objfile *objfile;
4654 struct partial_symtab *ps;
4655
4656 ALL_PSYMTABS (objfile, ps)
4657 {
4658 QUIT;
4659 if (ps->readin
4660 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4661 {
4662 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4663 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4664
4665 if (s == NULL || !s->primary)
4666 continue;
4667 ada_add_block_symbols (obstackp,
4668 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4669 name, domain, objfile, wild_match);
4670 }
4671 }
4672}
4673
4c4b4cd2
PH
4674/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4675 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4676 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4677 indicating the symbols found and the blocks and symbol tables (if
4678 any) in which they were found. This vector are transient---good only to
4679 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4680 symbol match within the nest of blocks whose innermost member is BLOCK0,
4681 is the one match returned (no other matches in that or
4682 enclosing blocks is returned). If there are any matches in or
4683 surrounding BLOCK0, then these alone are returned. Otherwise, the
4684 search extends to global and file-scope (static) symbol tables.
4685 Names prefixed with "standard__" are handled specially: "standard__"
4686 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4687
4688int
4c4b4cd2 4689ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4690 domain_enum namespace,
4691 struct ada_symbol_info **results)
14f9c5c9
AS
4692{
4693 struct symbol *sym;
14f9c5c9 4694 struct block *block;
4c4b4cd2 4695 const char *name;
4c4b4cd2 4696 int wild_match;
14f9c5c9 4697 int cacheIfUnique;
4c4b4cd2 4698 int ndefns;
14f9c5c9 4699
4c4b4cd2
PH
4700 obstack_free (&symbol_list_obstack, NULL);
4701 obstack_init (&symbol_list_obstack);
14f9c5c9 4702
14f9c5c9
AS
4703 cacheIfUnique = 0;
4704
4705 /* Search specified block and its superiors. */
4706
4c4b4cd2
PH
4707 wild_match = (strstr (name0, "__") == NULL);
4708 name = name0;
76a01679
JB
4709 block = (struct block *) block0; /* FIXME: No cast ought to be
4710 needed, but adding const will
4711 have a cascade effect. */
339c13b6
JB
4712
4713 /* Special case: If the user specifies a symbol name inside package
4714 Standard, do a non-wild matching of the symbol name without
4715 the "standard__" prefix. This was primarily introduced in order
4716 to allow the user to specifically access the standard exceptions
4717 using, for instance, Standard.Constraint_Error when Constraint_Error
4718 is ambiguous (due to the user defining its own Constraint_Error
4719 entity inside its program). */
4c4b4cd2
PH
4720 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4721 {
4722 wild_match = 0;
4723 block = NULL;
4724 name = name0 + sizeof ("standard__") - 1;
4725 }
4726
339c13b6 4727 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4728
339c13b6
JB
4729 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4730 wild_match);
4c4b4cd2 4731 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4732 goto done;
d2e4a39e 4733
339c13b6
JB
4734 /* No non-global symbols found. Check our cache to see if we have
4735 already performed this search before. If we have, then return
4736 the same result. */
4737
14f9c5c9 4738 cacheIfUnique = 1;
2570f2b7 4739 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4740 {
4741 if (sym != NULL)
2570f2b7 4742 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4743 goto done;
4744 }
14f9c5c9 4745
339c13b6
JB
4746 /* Search symbols from all global blocks. */
4747
4748 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4749 wild_match);
d2e4a39e 4750
4c4b4cd2 4751 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4752 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4753
4c4b4cd2 4754 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4755 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4756 wild_match);
14f9c5c9 4757
4c4b4cd2
PH
4758done:
4759 ndefns = num_defns_collected (&symbol_list_obstack);
4760 *results = defns_collected (&symbol_list_obstack, 1);
4761
4762 ndefns = remove_extra_symbols (*results, ndefns);
4763
d2e4a39e 4764 if (ndefns == 0)
2570f2b7 4765 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4766
4c4b4cd2 4767 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4768 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4769
aeb5907d 4770 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4771
14f9c5c9
AS
4772 return ndefns;
4773}
4774
d2e4a39e 4775struct symbol *
aeb5907d 4776ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4777 domain_enum namespace, struct block **block_found)
14f9c5c9 4778{
4c4b4cd2 4779 struct ada_symbol_info *candidates;
14f9c5c9
AS
4780 int n_candidates;
4781
aeb5907d 4782 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4783
4784 if (n_candidates == 0)
4785 return NULL;
4c4b4cd2 4786
aeb5907d
JB
4787 if (block_found != NULL)
4788 *block_found = candidates[0].block;
4c4b4cd2 4789
21b556f4 4790 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4791}
4792
4793/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4794 scope and in global scopes, or NULL if none. NAME is folded and
4795 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4796 choosing the first symbol if there are multiple choices.
4797 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4798 table in which the symbol was found (in both cases, these
4799 assignments occur only if the pointers are non-null). */
4800struct symbol *
4801ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4802 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4803{
4804 if (is_a_field_of_this != NULL)
4805 *is_a_field_of_this = 0;
4806
4807 return
4808 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4809 block0, namespace, NULL);
4c4b4cd2 4810}
14f9c5c9 4811
4c4b4cd2
PH
4812static struct symbol *
4813ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4814 const char *linkage_name,
4815 const struct block *block,
21b556f4 4816 const domain_enum domain)
4c4b4cd2
PH
4817{
4818 if (linkage_name == NULL)
4819 linkage_name = name;
76a01679 4820 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4821 NULL);
14f9c5c9
AS
4822}
4823
4824
4c4b4cd2
PH
4825/* True iff STR is a possible encoded suffix of a normal Ada name
4826 that is to be ignored for matching purposes. Suffixes of parallel
4827 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4828 are given by any of the regular expressions:
4c4b4cd2 4829
babe1480
JB
4830 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4831 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4832 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4833 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4834
4835 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4836 match is performed. This sequence is used to differentiate homonyms,
4837 is an optional part of a valid name suffix. */
4c4b4cd2 4838
14f9c5c9 4839static int
d2e4a39e 4840is_name_suffix (const char *str)
14f9c5c9
AS
4841{
4842 int k;
4c4b4cd2
PH
4843 const char *matching;
4844 const int len = strlen (str);
4845
babe1480
JB
4846 /* Skip optional leading __[0-9]+. */
4847
4c4b4cd2
PH
4848 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4849 {
babe1480
JB
4850 str += 3;
4851 while (isdigit (str[0]))
4852 str += 1;
4c4b4cd2 4853 }
babe1480
JB
4854
4855 /* [.$][0-9]+ */
4c4b4cd2 4856
babe1480 4857 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4858 {
babe1480 4859 matching = str + 1;
4c4b4cd2
PH
4860 while (isdigit (matching[0]))
4861 matching += 1;
4862 if (matching[0] == '\0')
4863 return 1;
4864 }
4865
4866 /* ___[0-9]+ */
babe1480 4867
4c4b4cd2
PH
4868 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4869 {
4870 matching = str + 3;
4871 while (isdigit (matching[0]))
4872 matching += 1;
4873 if (matching[0] == '\0')
4874 return 1;
4875 }
4876
529cad9c
PH
4877#if 0
4878 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4879 with a N at the end. Unfortunately, the compiler uses the same
4880 convention for other internal types it creates. So treating
4881 all entity names that end with an "N" as a name suffix causes
4882 some regressions. For instance, consider the case of an enumerated
4883 type. To support the 'Image attribute, it creates an array whose
4884 name ends with N.
4885 Having a single character like this as a suffix carrying some
4886 information is a bit risky. Perhaps we should change the encoding
4887 to be something like "_N" instead. In the meantime, do not do
4888 the following check. */
4889 /* Protected Object Subprograms */
4890 if (len == 1 && str [0] == 'N')
4891 return 1;
4892#endif
4893
4894 /* _E[0-9]+[bs]$ */
4895 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4896 {
4897 matching = str + 3;
4898 while (isdigit (matching[0]))
4899 matching += 1;
4900 if ((matching[0] == 'b' || matching[0] == 's')
4901 && matching [1] == '\0')
4902 return 1;
4903 }
4904
4c4b4cd2
PH
4905 /* ??? We should not modify STR directly, as we are doing below. This
4906 is fine in this case, but may become problematic later if we find
4907 that this alternative did not work, and want to try matching
4908 another one from the begining of STR. Since we modified it, we
4909 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4910 if (str[0] == 'X')
4911 {
4912 str += 1;
d2e4a39e 4913 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4914 {
4915 if (str[0] != 'n' && str[0] != 'b')
4916 return 0;
4917 str += 1;
4918 }
14f9c5c9 4919 }
babe1480 4920
14f9c5c9
AS
4921 if (str[0] == '\000')
4922 return 1;
babe1480 4923
d2e4a39e 4924 if (str[0] == '_')
14f9c5c9
AS
4925 {
4926 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4927 return 0;
d2e4a39e 4928 if (str[2] == '_')
4c4b4cd2 4929 {
61ee279c
PH
4930 if (strcmp (str + 3, "JM") == 0)
4931 return 1;
4932 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4933 the LJM suffix in favor of the JM one. But we will
4934 still accept LJM as a valid suffix for a reasonable
4935 amount of time, just to allow ourselves to debug programs
4936 compiled using an older version of GNAT. */
4c4b4cd2
PH
4937 if (strcmp (str + 3, "LJM") == 0)
4938 return 1;
4939 if (str[3] != 'X')
4940 return 0;
1265e4aa
JB
4941 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4942 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4943 return 1;
4944 if (str[4] == 'R' && str[5] != 'T')
4945 return 1;
4946 return 0;
4947 }
4948 if (!isdigit (str[2]))
4949 return 0;
4950 for (k = 3; str[k] != '\0'; k += 1)
4951 if (!isdigit (str[k]) && str[k] != '_')
4952 return 0;
14f9c5c9
AS
4953 return 1;
4954 }
4c4b4cd2 4955 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4956 {
4c4b4cd2
PH
4957 for (k = 2; str[k] != '\0'; k += 1)
4958 if (!isdigit (str[k]) && str[k] != '_')
4959 return 0;
14f9c5c9
AS
4960 return 1;
4961 }
4962 return 0;
4963}
d2e4a39e 4964
aeb5907d
JB
4965/* Return non-zero if the string starting at NAME and ending before
4966 NAME_END contains no capital letters. */
529cad9c
PH
4967
4968static int
4969is_valid_name_for_wild_match (const char *name0)
4970{
4971 const char *decoded_name = ada_decode (name0);
4972 int i;
4973
5823c3ef
JB
4974 /* If the decoded name starts with an angle bracket, it means that
4975 NAME0 does not follow the GNAT encoding format. It should then
4976 not be allowed as a possible wild match. */
4977 if (decoded_name[0] == '<')
4978 return 0;
4979
529cad9c
PH
4980 for (i=0; decoded_name[i] != '\0'; i++)
4981 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4982 return 0;
4983
4984 return 1;
4985}
4986
4c4b4cd2
PH
4987/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4988 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4989 informational suffixes of NAME (i.e., for which is_name_suffix is
4990 true). */
4991
14f9c5c9 4992static int
4c4b4cd2 4993wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4994{
5823c3ef
JB
4995 char* match;
4996 const char* start;
4997 start = name0;
4998 while (1)
14f9c5c9 4999 {
5823c3ef
JB
5000 match = strstr (start, patn0);
5001 if (match == NULL)
5002 return 0;
5003 if ((match == name0
5004 || match[-1] == '.'
5005 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5006 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5007 && is_name_suffix (match + patn_len))
5008 return (match == name0 || is_valid_name_for_wild_match (name0));
5009 start = match + 1;
96d887e8 5010 }
96d887e8
PH
5011}
5012
96d887e8
PH
5013/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5014 vector *defn_symbols, updating the list of symbols in OBSTACKP
5015 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5016 OBJFILE is the section containing BLOCK.
5017 SYMTAB is recorded with each symbol added. */
5018
5019static void
5020ada_add_block_symbols (struct obstack *obstackp,
76a01679 5021 struct block *block, const char *name,
96d887e8 5022 domain_enum domain, struct objfile *objfile,
2570f2b7 5023 int wild)
96d887e8
PH
5024{
5025 struct dict_iterator iter;
5026 int name_len = strlen (name);
5027 /* A matching argument symbol, if any. */
5028 struct symbol *arg_sym;
5029 /* Set true when we find a matching non-argument symbol. */
5030 int found_sym;
5031 struct symbol *sym;
5032
5033 arg_sym = NULL;
5034 found_sym = 0;
5035 if (wild)
5036 {
5037 struct symbol *sym;
5038 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5039 {
5eeb2539
AR
5040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5041 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5042 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5043 {
2a2d4dc3
AS
5044 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5045 continue;
5046 else if (SYMBOL_IS_ARGUMENT (sym))
5047 arg_sym = sym;
5048 else
5049 {
76a01679
JB
5050 found_sym = 1;
5051 add_defn_to_vec (obstackp,
5052 fixup_symbol_section (sym, objfile),
2570f2b7 5053 block);
76a01679
JB
5054 }
5055 }
5056 }
96d887e8
PH
5057 }
5058 else
5059 {
5060 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5061 {
5eeb2539
AR
5062 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5063 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5064 {
5065 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5066 if (cmp == 0
5067 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5068 {
2a2d4dc3
AS
5069 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5070 {
5071 if (SYMBOL_IS_ARGUMENT (sym))
5072 arg_sym = sym;
5073 else
5074 {
5075 found_sym = 1;
5076 add_defn_to_vec (obstackp,
5077 fixup_symbol_section (sym, objfile),
5078 block);
5079 }
5080 }
76a01679
JB
5081 }
5082 }
5083 }
96d887e8
PH
5084 }
5085
5086 if (!found_sym && arg_sym != NULL)
5087 {
76a01679
JB
5088 add_defn_to_vec (obstackp,
5089 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5090 block);
96d887e8
PH
5091 }
5092
5093 if (!wild)
5094 {
5095 arg_sym = NULL;
5096 found_sym = 0;
5097
5098 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5099 {
5eeb2539
AR
5100 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5101 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5102 {
5103 int cmp;
5104
5105 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5106 if (cmp == 0)
5107 {
5108 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5109 if (cmp == 0)
5110 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5111 name_len);
5112 }
5113
5114 if (cmp == 0
5115 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5116 {
2a2d4dc3
AS
5117 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5118 {
5119 if (SYMBOL_IS_ARGUMENT (sym))
5120 arg_sym = sym;
5121 else
5122 {
5123 found_sym = 1;
5124 add_defn_to_vec (obstackp,
5125 fixup_symbol_section (sym, objfile),
5126 block);
5127 }
5128 }
76a01679
JB
5129 }
5130 }
76a01679 5131 }
96d887e8
PH
5132
5133 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5134 They aren't parameters, right? */
5135 if (!found_sym && arg_sym != NULL)
5136 {
5137 add_defn_to_vec (obstackp,
76a01679 5138 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5139 block);
96d887e8
PH
5140 }
5141 }
5142}
5143\f
41d27058
JB
5144
5145 /* Symbol Completion */
5146
5147/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5148 name in a form that's appropriate for the completion. The result
5149 does not need to be deallocated, but is only good until the next call.
5150
5151 TEXT_LEN is equal to the length of TEXT.
5152 Perform a wild match if WILD_MATCH is set.
5153 ENCODED should be set if TEXT represents the start of a symbol name
5154 in its encoded form. */
5155
5156static const char *
5157symbol_completion_match (const char *sym_name,
5158 const char *text, int text_len,
5159 int wild_match, int encoded)
5160{
5161 char *result;
5162 const int verbatim_match = (text[0] == '<');
5163 int match = 0;
5164
5165 if (verbatim_match)
5166 {
5167 /* Strip the leading angle bracket. */
5168 text = text + 1;
5169 text_len--;
5170 }
5171
5172 /* First, test against the fully qualified name of the symbol. */
5173
5174 if (strncmp (sym_name, text, text_len) == 0)
5175 match = 1;
5176
5177 if (match && !encoded)
5178 {
5179 /* One needed check before declaring a positive match is to verify
5180 that iff we are doing a verbatim match, the decoded version
5181 of the symbol name starts with '<'. Otherwise, this symbol name
5182 is not a suitable completion. */
5183 const char *sym_name_copy = sym_name;
5184 int has_angle_bracket;
5185
5186 sym_name = ada_decode (sym_name);
5187 has_angle_bracket = (sym_name[0] == '<');
5188 match = (has_angle_bracket == verbatim_match);
5189 sym_name = sym_name_copy;
5190 }
5191
5192 if (match && !verbatim_match)
5193 {
5194 /* When doing non-verbatim match, another check that needs to
5195 be done is to verify that the potentially matching symbol name
5196 does not include capital letters, because the ada-mode would
5197 not be able to understand these symbol names without the
5198 angle bracket notation. */
5199 const char *tmp;
5200
5201 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5202 if (*tmp != '\0')
5203 match = 0;
5204 }
5205
5206 /* Second: Try wild matching... */
5207
5208 if (!match && wild_match)
5209 {
5210 /* Since we are doing wild matching, this means that TEXT
5211 may represent an unqualified symbol name. We therefore must
5212 also compare TEXT against the unqualified name of the symbol. */
5213 sym_name = ada_unqualified_name (ada_decode (sym_name));
5214
5215 if (strncmp (sym_name, text, text_len) == 0)
5216 match = 1;
5217 }
5218
5219 /* Finally: If we found a mach, prepare the result to return. */
5220
5221 if (!match)
5222 return NULL;
5223
5224 if (verbatim_match)
5225 sym_name = add_angle_brackets (sym_name);
5226
5227 if (!encoded)
5228 sym_name = ada_decode (sym_name);
5229
5230 return sym_name;
5231}
5232
2ba95b9b
JB
5233typedef char *char_ptr;
5234DEF_VEC_P (char_ptr);
5235
41d27058
JB
5236/* A companion function to ada_make_symbol_completion_list().
5237 Check if SYM_NAME represents a symbol which name would be suitable
5238 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5239 it is appended at the end of the given string vector SV.
5240
5241 ORIG_TEXT is the string original string from the user command
5242 that needs to be completed. WORD is the entire command on which
5243 completion should be performed. These two parameters are used to
5244 determine which part of the symbol name should be added to the
5245 completion vector.
5246 if WILD_MATCH is set, then wild matching is performed.
5247 ENCODED should be set if TEXT represents a symbol name in its
5248 encoded formed (in which case the completion should also be
5249 encoded). */
5250
5251static void
d6565258 5252symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5253 const char *sym_name,
5254 const char *text, int text_len,
5255 const char *orig_text, const char *word,
5256 int wild_match, int encoded)
5257{
5258 const char *match = symbol_completion_match (sym_name, text, text_len,
5259 wild_match, encoded);
5260 char *completion;
5261
5262 if (match == NULL)
5263 return;
5264
5265 /* We found a match, so add the appropriate completion to the given
5266 string vector. */
5267
5268 if (word == orig_text)
5269 {
5270 completion = xmalloc (strlen (match) + 5);
5271 strcpy (completion, match);
5272 }
5273 else if (word > orig_text)
5274 {
5275 /* Return some portion of sym_name. */
5276 completion = xmalloc (strlen (match) + 5);
5277 strcpy (completion, match + (word - orig_text));
5278 }
5279 else
5280 {
5281 /* Return some of ORIG_TEXT plus sym_name. */
5282 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5283 strncpy (completion, word, orig_text - word);
5284 completion[orig_text - word] = '\0';
5285 strcat (completion, match);
5286 }
5287
d6565258 5288 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5289}
5290
5291/* Return a list of possible symbol names completing TEXT0. The list
5292 is NULL terminated. WORD is the entire command on which completion
5293 is made. */
5294
5295static char **
5296ada_make_symbol_completion_list (char *text0, char *word)
5297{
5298 char *text;
5299 int text_len;
5300 int wild_match;
5301 int encoded;
2ba95b9b 5302 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5303 struct symbol *sym;
5304 struct symtab *s;
5305 struct partial_symtab *ps;
5306 struct minimal_symbol *msymbol;
5307 struct objfile *objfile;
5308 struct block *b, *surrounding_static_block = 0;
5309 int i;
5310 struct dict_iterator iter;
5311
5312 if (text0[0] == '<')
5313 {
5314 text = xstrdup (text0);
5315 make_cleanup (xfree, text);
5316 text_len = strlen (text);
5317 wild_match = 0;
5318 encoded = 1;
5319 }
5320 else
5321 {
5322 text = xstrdup (ada_encode (text0));
5323 make_cleanup (xfree, text);
5324 text_len = strlen (text);
5325 for (i = 0; i < text_len; i++)
5326 text[i] = tolower (text[i]);
5327
5328 encoded = (strstr (text0, "__") != NULL);
5329 /* If the name contains a ".", then the user is entering a fully
5330 qualified entity name, and the match must not be done in wild
5331 mode. Similarly, if the user wants to complete what looks like
5332 an encoded name, the match must not be done in wild mode. */
5333 wild_match = (strchr (text0, '.') == NULL && !encoded);
5334 }
5335
5336 /* First, look at the partial symtab symbols. */
5337 ALL_PSYMTABS (objfile, ps)
5338 {
5339 struct partial_symbol **psym;
5340
5341 /* If the psymtab's been read in we'll get it when we search
5342 through the blockvector. */
5343 if (ps->readin)
5344 continue;
5345
5346 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5347 psym < (objfile->global_psymbols.list + ps->globals_offset
5348 + ps->n_global_syms); psym++)
5349 {
5350 QUIT;
d6565258 5351 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5352 text, text_len, text0, word,
5353 wild_match, encoded);
5354 }
5355
5356 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5357 psym < (objfile->static_psymbols.list + ps->statics_offset
5358 + ps->n_static_syms); psym++)
5359 {
5360 QUIT;
d6565258 5361 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5362 text, text_len, text0, word,
5363 wild_match, encoded);
5364 }
5365 }
5366
5367 /* At this point scan through the misc symbol vectors and add each
5368 symbol you find to the list. Eventually we want to ignore
5369 anything that isn't a text symbol (everything else will be
5370 handled by the psymtab code above). */
5371
5372 ALL_MSYMBOLS (objfile, msymbol)
5373 {
5374 QUIT;
d6565258 5375 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5376 text, text_len, text0, word, wild_match, encoded);
5377 }
5378
5379 /* Search upwards from currently selected frame (so that we can
5380 complete on local vars. */
5381
5382 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5383 {
5384 if (!BLOCK_SUPERBLOCK (b))
5385 surrounding_static_block = b; /* For elmin of dups */
5386
5387 ALL_BLOCK_SYMBOLS (b, iter, sym)
5388 {
d6565258 5389 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5390 text, text_len, text0, word,
5391 wild_match, encoded);
5392 }
5393 }
5394
5395 /* Go through the symtabs and check the externs and statics for
5396 symbols which match. */
5397
5398 ALL_SYMTABS (objfile, s)
5399 {
5400 QUIT;
5401 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5402 ALL_BLOCK_SYMBOLS (b, iter, sym)
5403 {
d6565258 5404 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5405 text, text_len, text0, word,
5406 wild_match, encoded);
5407 }
5408 }
5409
5410 ALL_SYMTABS (objfile, s)
5411 {
5412 QUIT;
5413 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5414 /* Don't do this block twice. */
5415 if (b == surrounding_static_block)
5416 continue;
5417 ALL_BLOCK_SYMBOLS (b, iter, sym)
5418 {
d6565258 5419 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5420 text, text_len, text0, word,
5421 wild_match, encoded);
5422 }
5423 }
5424
5425 /* Append the closing NULL entry. */
2ba95b9b 5426 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5427
2ba95b9b
JB
5428 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5429 return the copy. It's unfortunate that we have to make a copy
5430 of an array that we're about to destroy, but there is nothing much
5431 we can do about it. Fortunately, it's typically not a very large
5432 array. */
5433 {
5434 const size_t completions_size =
5435 VEC_length (char_ptr, completions) * sizeof (char *);
5436 char **result = malloc (completions_size);
5437
5438 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5439
5440 VEC_free (char_ptr, completions);
5441 return result;
5442 }
41d27058
JB
5443}
5444
963a6417 5445 /* Field Access */
96d887e8 5446
73fb9985
JB
5447/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5448 for tagged types. */
5449
5450static int
5451ada_is_dispatch_table_ptr_type (struct type *type)
5452{
5453 char *name;
5454
5455 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5456 return 0;
5457
5458 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5459 if (name == NULL)
5460 return 0;
5461
5462 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5463}
5464
963a6417
PH
5465/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5466 to be invisible to users. */
96d887e8 5467
963a6417
PH
5468int
5469ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5470{
963a6417
PH
5471 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5472 return 1;
73fb9985
JB
5473
5474 /* Check the name of that field. */
5475 {
5476 const char *name = TYPE_FIELD_NAME (type, field_num);
5477
5478 /* Anonymous field names should not be printed.
5479 brobecker/2007-02-20: I don't think this can actually happen
5480 but we don't want to print the value of annonymous fields anyway. */
5481 if (name == NULL)
5482 return 1;
5483
5484 /* A field named "_parent" is internally generated by GNAT for
5485 tagged types, and should not be printed either. */
5486 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5487 return 1;
5488 }
5489
5490 /* If this is the dispatch table of a tagged type, then ignore. */
5491 if (ada_is_tagged_type (type, 1)
5492 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5493 return 1;
5494
5495 /* Not a special field, so it should not be ignored. */
5496 return 0;
963a6417 5497}
96d887e8 5498
963a6417
PH
5499/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5500 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5501
963a6417
PH
5502int
5503ada_is_tagged_type (struct type *type, int refok)
5504{
5505 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5506}
96d887e8 5507
963a6417 5508/* True iff TYPE represents the type of X'Tag */
96d887e8 5509
963a6417
PH
5510int
5511ada_is_tag_type (struct type *type)
5512{
5513 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5514 return 0;
5515 else
96d887e8 5516 {
963a6417
PH
5517 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5518 return (name != NULL
5519 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5520 }
96d887e8
PH
5521}
5522
963a6417 5523/* The type of the tag on VAL. */
76a01679 5524
963a6417
PH
5525struct type *
5526ada_tag_type (struct value *val)
96d887e8 5527{
df407dfe 5528 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5529}
96d887e8 5530
963a6417 5531/* The value of the tag on VAL. */
96d887e8 5532
963a6417
PH
5533struct value *
5534ada_value_tag (struct value *val)
5535{
03ee6b2e 5536 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5537}
5538
963a6417
PH
5539/* The value of the tag on the object of type TYPE whose contents are
5540 saved at VALADDR, if it is non-null, or is at memory address
5541 ADDRESS. */
96d887e8 5542
963a6417 5543static struct value *
10a2c479 5544value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5545 const gdb_byte *valaddr,
963a6417 5546 CORE_ADDR address)
96d887e8 5547{
963a6417
PH
5548 int tag_byte_offset, dummy1, dummy2;
5549 struct type *tag_type;
5550 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5551 NULL, NULL, NULL))
96d887e8 5552 {
fc1a4b47 5553 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5554 ? NULL
5555 : valaddr + tag_byte_offset);
963a6417 5556 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5557
963a6417 5558 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5559 }
963a6417
PH
5560 return NULL;
5561}
96d887e8 5562
963a6417
PH
5563static struct type *
5564type_from_tag (struct value *tag)
5565{
5566 const char *type_name = ada_tag_name (tag);
5567 if (type_name != NULL)
5568 return ada_find_any_type (ada_encode (type_name));
5569 return NULL;
5570}
96d887e8 5571
963a6417
PH
5572struct tag_args
5573{
5574 struct value *tag;
5575 char *name;
5576};
4c4b4cd2 5577
529cad9c
PH
5578
5579static int ada_tag_name_1 (void *);
5580static int ada_tag_name_2 (struct tag_args *);
5581
4c4b4cd2
PH
5582/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5583 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5584 The value stored in ARGS->name is valid until the next call to
5585 ada_tag_name_1. */
5586
5587static int
5588ada_tag_name_1 (void *args0)
5589{
5590 struct tag_args *args = (struct tag_args *) args0;
5591 static char name[1024];
76a01679 5592 char *p;
4c4b4cd2
PH
5593 struct value *val;
5594 args->name = NULL;
03ee6b2e 5595 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5596 if (val == NULL)
5597 return ada_tag_name_2 (args);
03ee6b2e 5598 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5599 if (val == NULL)
5600 return 0;
5601 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5602 for (p = name; *p != '\0'; p += 1)
5603 if (isalpha (*p))
5604 *p = tolower (*p);
5605 args->name = name;
5606 return 0;
5607}
5608
5609/* Utility function for ada_tag_name_1 that tries the second
5610 representation for the dispatch table (in which there is no
5611 explicit 'tsd' field in the referent of the tag pointer, and instead
5612 the tsd pointer is stored just before the dispatch table. */
5613
5614static int
5615ada_tag_name_2 (struct tag_args *args)
5616{
5617 struct type *info_type;
5618 static char name[1024];
5619 char *p;
5620 struct value *val, *valp;
5621
5622 args->name = NULL;
5623 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5624 if (info_type == NULL)
5625 return 0;
5626 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5627 valp = value_cast (info_type, args->tag);
5628 if (valp == NULL)
5629 return 0;
2497b498 5630 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5631 if (val == NULL)
5632 return 0;
03ee6b2e 5633 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5634 if (val == NULL)
5635 return 0;
5636 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5637 for (p = name; *p != '\0'; p += 1)
5638 if (isalpha (*p))
5639 *p = tolower (*p);
5640 args->name = name;
5641 return 0;
5642}
5643
5644/* The type name of the dynamic type denoted by the 'tag value TAG, as
5645 * a C string. */
5646
5647const char *
5648ada_tag_name (struct value *tag)
5649{
5650 struct tag_args args;
df407dfe 5651 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5652 return NULL;
76a01679 5653 args.tag = tag;
4c4b4cd2
PH
5654 args.name = NULL;
5655 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5656 return args.name;
5657}
5658
5659/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5660
d2e4a39e 5661struct type *
ebf56fd3 5662ada_parent_type (struct type *type)
14f9c5c9
AS
5663{
5664 int i;
5665
61ee279c 5666 type = ada_check_typedef (type);
14f9c5c9
AS
5667
5668 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5669 return NULL;
5670
5671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5672 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5673 {
5674 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5675
5676 /* If the _parent field is a pointer, then dereference it. */
5677 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5678 parent_type = TYPE_TARGET_TYPE (parent_type);
5679 /* If there is a parallel XVS type, get the actual base type. */
5680 parent_type = ada_get_base_type (parent_type);
5681
5682 return ada_check_typedef (parent_type);
5683 }
14f9c5c9
AS
5684
5685 return NULL;
5686}
5687
4c4b4cd2
PH
5688/* True iff field number FIELD_NUM of structure type TYPE contains the
5689 parent-type (inherited) fields of a derived type. Assumes TYPE is
5690 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5691
5692int
ebf56fd3 5693ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5694{
61ee279c 5695 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5696 return (name != NULL
5697 && (strncmp (name, "PARENT", 6) == 0
5698 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5699}
5700
4c4b4cd2 5701/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5702 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5703 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5704 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5705 structures. */
14f9c5c9
AS
5706
5707int
ebf56fd3 5708ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5709{
d2e4a39e
AS
5710 const char *name = TYPE_FIELD_NAME (type, field_num);
5711 return (name != NULL
4c4b4cd2
PH
5712 && (strncmp (name, "PARENT", 6) == 0
5713 || strcmp (name, "REP") == 0
5714 || strncmp (name, "_parent", 7) == 0
5715 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5716}
5717
4c4b4cd2
PH
5718/* True iff field number FIELD_NUM of structure or union type TYPE
5719 is a variant wrapper. Assumes TYPE is a structure type with at least
5720 FIELD_NUM+1 fields. */
14f9c5c9
AS
5721
5722int
ebf56fd3 5723ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5724{
d2e4a39e 5725 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5726 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5727 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5728 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5729 == TYPE_CODE_UNION)));
14f9c5c9
AS
5730}
5731
5732/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5733 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5734 returns the type of the controlling discriminant for the variant.
5735 May return NULL if the type could not be found. */
14f9c5c9 5736
d2e4a39e 5737struct type *
ebf56fd3 5738ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5739{
d2e4a39e 5740 char *name = ada_variant_discrim_name (var_type);
7c964f07 5741 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5742}
5743
4c4b4cd2 5744/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5745 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5746 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5747
5748int
ebf56fd3 5749ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5750{
d2e4a39e 5751 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5752 return (name != NULL && name[0] == 'O');
5753}
5754
5755/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5756 returns the name of the discriminant controlling the variant.
5757 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5758
d2e4a39e 5759char *
ebf56fd3 5760ada_variant_discrim_name (struct type *type0)
14f9c5c9 5761{
d2e4a39e 5762 static char *result = NULL;
14f9c5c9 5763 static size_t result_len = 0;
d2e4a39e
AS
5764 struct type *type;
5765 const char *name;
5766 const char *discrim_end;
5767 const char *discrim_start;
14f9c5c9
AS
5768
5769 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5770 type = TYPE_TARGET_TYPE (type0);
5771 else
5772 type = type0;
5773
5774 name = ada_type_name (type);
5775
5776 if (name == NULL || name[0] == '\000')
5777 return "";
5778
5779 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5780 discrim_end -= 1)
5781 {
4c4b4cd2
PH
5782 if (strncmp (discrim_end, "___XVN", 6) == 0)
5783 break;
14f9c5c9
AS
5784 }
5785 if (discrim_end == name)
5786 return "";
5787
d2e4a39e 5788 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5789 discrim_start -= 1)
5790 {
d2e4a39e 5791 if (discrim_start == name + 1)
4c4b4cd2 5792 return "";
76a01679 5793 if ((discrim_start > name + 3
4c4b4cd2
PH
5794 && strncmp (discrim_start - 3, "___", 3) == 0)
5795 || discrim_start[-1] == '.')
5796 break;
14f9c5c9
AS
5797 }
5798
5799 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5800 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5801 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5802 return result;
5803}
5804
4c4b4cd2
PH
5805/* Scan STR for a subtype-encoded number, beginning at position K.
5806 Put the position of the character just past the number scanned in
5807 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5808 Return 1 if there was a valid number at the given position, and 0
5809 otherwise. A "subtype-encoded" number consists of the absolute value
5810 in decimal, followed by the letter 'm' to indicate a negative number.
5811 Assumes 0m does not occur. */
14f9c5c9
AS
5812
5813int
d2e4a39e 5814ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5815{
5816 ULONGEST RU;
5817
d2e4a39e 5818 if (!isdigit (str[k]))
14f9c5c9
AS
5819 return 0;
5820
4c4b4cd2 5821 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5822 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5823 LONGEST. */
14f9c5c9
AS
5824 RU = 0;
5825 while (isdigit (str[k]))
5826 {
d2e4a39e 5827 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5828 k += 1;
5829 }
5830
d2e4a39e 5831 if (str[k] == 'm')
14f9c5c9
AS
5832 {
5833 if (R != NULL)
4c4b4cd2 5834 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5835 k += 1;
5836 }
5837 else if (R != NULL)
5838 *R = (LONGEST) RU;
5839
4c4b4cd2 5840 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5841 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5842 number representable as a LONGEST (although either would probably work
5843 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5844 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5845
5846 if (new_k != NULL)
5847 *new_k = k;
5848 return 1;
5849}
5850
4c4b4cd2
PH
5851/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5852 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5853 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5854
d2e4a39e 5855int
ebf56fd3 5856ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5857{
d2e4a39e 5858 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5859 int p;
5860
5861 p = 0;
5862 while (1)
5863 {
d2e4a39e 5864 switch (name[p])
4c4b4cd2
PH
5865 {
5866 case '\0':
5867 return 0;
5868 case 'S':
5869 {
5870 LONGEST W;
5871 if (!ada_scan_number (name, p + 1, &W, &p))
5872 return 0;
5873 if (val == W)
5874 return 1;
5875 break;
5876 }
5877 case 'R':
5878 {
5879 LONGEST L, U;
5880 if (!ada_scan_number (name, p + 1, &L, &p)
5881 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5882 return 0;
5883 if (val >= L && val <= U)
5884 return 1;
5885 break;
5886 }
5887 case 'O':
5888 return 1;
5889 default:
5890 return 0;
5891 }
5892 }
5893}
5894
5895/* FIXME: Lots of redundancy below. Try to consolidate. */
5896
5897/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5898 ARG_TYPE, extract and return the value of one of its (non-static)
5899 fields. FIELDNO says which field. Differs from value_primitive_field
5900 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5901
4c4b4cd2 5902static struct value *
d2e4a39e 5903ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5904 struct type *arg_type)
14f9c5c9 5905{
14f9c5c9
AS
5906 struct type *type;
5907
61ee279c 5908 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5909 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5910
4c4b4cd2 5911 /* Handle packed fields. */
14f9c5c9
AS
5912
5913 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5914 {
5915 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5916 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5917
0fd88904 5918 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5919 offset + bit_pos / 8,
5920 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5921 }
5922 else
5923 return value_primitive_field (arg1, offset, fieldno, arg_type);
5924}
5925
52ce6436
PH
5926/* Find field with name NAME in object of type TYPE. If found,
5927 set the following for each argument that is non-null:
5928 - *FIELD_TYPE_P to the field's type;
5929 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5930 an object of that type;
5931 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5932 - *BIT_SIZE_P to its size in bits if the field is packed, and
5933 0 otherwise;
5934 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5935 fields up to but not including the desired field, or by the total
5936 number of fields if not found. A NULL value of NAME never
5937 matches; the function just counts visible fields in this case.
5938
5939 Returns 1 if found, 0 otherwise. */
5940
4c4b4cd2 5941static int
76a01679
JB
5942find_struct_field (char *name, struct type *type, int offset,
5943 struct type **field_type_p,
52ce6436
PH
5944 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5945 int *index_p)
4c4b4cd2
PH
5946{
5947 int i;
5948
61ee279c 5949 type = ada_check_typedef (type);
76a01679 5950
52ce6436
PH
5951 if (field_type_p != NULL)
5952 *field_type_p = NULL;
5953 if (byte_offset_p != NULL)
d5d6fca5 5954 *byte_offset_p = 0;
52ce6436
PH
5955 if (bit_offset_p != NULL)
5956 *bit_offset_p = 0;
5957 if (bit_size_p != NULL)
5958 *bit_size_p = 0;
5959
5960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5961 {
5962 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5963 int fld_offset = offset + bit_pos / 8;
5964 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5965
4c4b4cd2
PH
5966 if (t_field_name == NULL)
5967 continue;
5968
52ce6436 5969 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5970 {
5971 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5972 if (field_type_p != NULL)
5973 *field_type_p = TYPE_FIELD_TYPE (type, i);
5974 if (byte_offset_p != NULL)
5975 *byte_offset_p = fld_offset;
5976 if (bit_offset_p != NULL)
5977 *bit_offset_p = bit_pos % 8;
5978 if (bit_size_p != NULL)
5979 *bit_size_p = bit_size;
76a01679
JB
5980 return 1;
5981 }
4c4b4cd2
PH
5982 else if (ada_is_wrapper_field (type, i))
5983 {
52ce6436
PH
5984 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5985 field_type_p, byte_offset_p, bit_offset_p,
5986 bit_size_p, index_p))
76a01679
JB
5987 return 1;
5988 }
4c4b4cd2
PH
5989 else if (ada_is_variant_part (type, i))
5990 {
52ce6436
PH
5991 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5992 fixed type?? */
4c4b4cd2 5993 int j;
52ce6436
PH
5994 struct type *field_type
5995 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5996
52ce6436 5997 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5998 {
76a01679
JB
5999 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6000 fld_offset
6001 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6002 field_type_p, byte_offset_p,
52ce6436 6003 bit_offset_p, bit_size_p, index_p))
76a01679 6004 return 1;
4c4b4cd2
PH
6005 }
6006 }
52ce6436
PH
6007 else if (index_p != NULL)
6008 *index_p += 1;
4c4b4cd2
PH
6009 }
6010 return 0;
6011}
6012
52ce6436 6013/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6014
52ce6436
PH
6015static int
6016num_visible_fields (struct type *type)
6017{
6018 int n;
6019 n = 0;
6020 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6021 return n;
6022}
14f9c5c9 6023
4c4b4cd2 6024/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6025 and search in it assuming it has (class) type TYPE.
6026 If found, return value, else return NULL.
6027
4c4b4cd2 6028 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6029
4c4b4cd2 6030static struct value *
d2e4a39e 6031ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6032 struct type *type)
14f9c5c9
AS
6033{
6034 int i;
61ee279c 6035 type = ada_check_typedef (type);
14f9c5c9 6036
52ce6436 6037 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6038 {
6039 char *t_field_name = TYPE_FIELD_NAME (type, i);
6040
6041 if (t_field_name == NULL)
4c4b4cd2 6042 continue;
14f9c5c9
AS
6043
6044 else if (field_name_match (t_field_name, name))
4c4b4cd2 6045 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6046
6047 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6048 {
06d5cf63
JB
6049 struct value *v = /* Do not let indent join lines here. */
6050 ada_search_struct_field (name, arg,
6051 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6052 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6053 if (v != NULL)
6054 return v;
6055 }
14f9c5c9
AS
6056
6057 else if (ada_is_variant_part (type, i))
4c4b4cd2 6058 {
52ce6436 6059 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6060 int j;
61ee279c 6061 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6062 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6063
52ce6436 6064 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6065 {
06d5cf63
JB
6066 struct value *v = ada_search_struct_field /* Force line break. */
6067 (name, arg,
6068 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6069 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6070 if (v != NULL)
6071 return v;
6072 }
6073 }
14f9c5c9
AS
6074 }
6075 return NULL;
6076}
d2e4a39e 6077
52ce6436
PH
6078static struct value *ada_index_struct_field_1 (int *, struct value *,
6079 int, struct type *);
6080
6081
6082/* Return field #INDEX in ARG, where the index is that returned by
6083 * find_struct_field through its INDEX_P argument. Adjust the address
6084 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6085 * If found, return value, else return NULL. */
6086
6087static struct value *
6088ada_index_struct_field (int index, struct value *arg, int offset,
6089 struct type *type)
6090{
6091 return ada_index_struct_field_1 (&index, arg, offset, type);
6092}
6093
6094
6095/* Auxiliary function for ada_index_struct_field. Like
6096 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6097 * *INDEX_P. */
6098
6099static struct value *
6100ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6101 struct type *type)
6102{
6103 int i;
6104 type = ada_check_typedef (type);
6105
6106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6107 {
6108 if (TYPE_FIELD_NAME (type, i) == NULL)
6109 continue;
6110 else if (ada_is_wrapper_field (type, i))
6111 {
6112 struct value *v = /* Do not let indent join lines here. */
6113 ada_index_struct_field_1 (index_p, arg,
6114 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6115 TYPE_FIELD_TYPE (type, i));
6116 if (v != NULL)
6117 return v;
6118 }
6119
6120 else if (ada_is_variant_part (type, i))
6121 {
6122 /* PNH: Do we ever get here? See ada_search_struct_field,
6123 find_struct_field. */
6124 error (_("Cannot assign this kind of variant record"));
6125 }
6126 else if (*index_p == 0)
6127 return ada_value_primitive_field (arg, offset, i, type);
6128 else
6129 *index_p -= 1;
6130 }
6131 return NULL;
6132}
6133
4c4b4cd2
PH
6134/* Given ARG, a value of type (pointer or reference to a)*
6135 structure/union, extract the component named NAME from the ultimate
6136 target structure/union and return it as a value with its
f5938064 6137 appropriate type.
14f9c5c9 6138
4c4b4cd2
PH
6139 The routine searches for NAME among all members of the structure itself
6140 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6141 (e.g., '_parent').
6142
03ee6b2e
PH
6143 If NO_ERR, then simply return NULL in case of error, rather than
6144 calling error. */
14f9c5c9 6145
d2e4a39e 6146struct value *
03ee6b2e 6147ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6148{
4c4b4cd2 6149 struct type *t, *t1;
d2e4a39e 6150 struct value *v;
14f9c5c9 6151
4c4b4cd2 6152 v = NULL;
df407dfe 6153 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6154 if (TYPE_CODE (t) == TYPE_CODE_REF)
6155 {
6156 t1 = TYPE_TARGET_TYPE (t);
6157 if (t1 == NULL)
03ee6b2e 6158 goto BadValue;
61ee279c 6159 t1 = ada_check_typedef (t1);
4c4b4cd2 6160 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6161 {
994b9211 6162 arg = coerce_ref (arg);
76a01679
JB
6163 t = t1;
6164 }
4c4b4cd2 6165 }
14f9c5c9 6166
4c4b4cd2
PH
6167 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6168 {
6169 t1 = TYPE_TARGET_TYPE (t);
6170 if (t1 == NULL)
03ee6b2e 6171 goto BadValue;
61ee279c 6172 t1 = ada_check_typedef (t1);
4c4b4cd2 6173 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6174 {
6175 arg = value_ind (arg);
6176 t = t1;
6177 }
4c4b4cd2 6178 else
76a01679 6179 break;
4c4b4cd2 6180 }
14f9c5c9 6181
4c4b4cd2 6182 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6183 goto BadValue;
14f9c5c9 6184
4c4b4cd2
PH
6185 if (t1 == t)
6186 v = ada_search_struct_field (name, arg, 0, t);
6187 else
6188 {
6189 int bit_offset, bit_size, byte_offset;
6190 struct type *field_type;
6191 CORE_ADDR address;
6192
76a01679
JB
6193 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6194 address = value_as_address (arg);
4c4b4cd2 6195 else
0fd88904 6196 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6197
1ed6ede0 6198 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6199 if (find_struct_field (name, t1, 0,
6200 &field_type, &byte_offset, &bit_offset,
52ce6436 6201 &bit_size, NULL))
76a01679
JB
6202 {
6203 if (bit_size != 0)
6204 {
714e53ab
PH
6205 if (TYPE_CODE (t) == TYPE_CODE_REF)
6206 arg = ada_coerce_ref (arg);
6207 else
6208 arg = ada_value_ind (arg);
76a01679
JB
6209 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6210 bit_offset, bit_size,
6211 field_type);
6212 }
6213 else
f5938064 6214 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6215 }
6216 }
6217
03ee6b2e
PH
6218 if (v != NULL || no_err)
6219 return v;
6220 else
323e0a4a 6221 error (_("There is no member named %s."), name);
14f9c5c9 6222
03ee6b2e
PH
6223 BadValue:
6224 if (no_err)
6225 return NULL;
6226 else
6227 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6228}
6229
6230/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6231 If DISPP is non-null, add its byte displacement from the beginning of a
6232 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6233 work for packed fields).
6234
6235 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6236 followed by "___".
14f9c5c9 6237
4c4b4cd2
PH
6238 TYPE can be either a struct or union. If REFOK, TYPE may also
6239 be a (pointer or reference)+ to a struct or union, and the
6240 ultimate target type will be searched.
14f9c5c9
AS
6241
6242 Looks recursively into variant clauses and parent types.
6243
4c4b4cd2
PH
6244 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6245 TYPE is not a type of the right kind. */
14f9c5c9 6246
4c4b4cd2 6247static struct type *
76a01679
JB
6248ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6249 int noerr, int *dispp)
14f9c5c9
AS
6250{
6251 int i;
6252
6253 if (name == NULL)
6254 goto BadName;
6255
76a01679 6256 if (refok && type != NULL)
4c4b4cd2
PH
6257 while (1)
6258 {
61ee279c 6259 type = ada_check_typedef (type);
76a01679
JB
6260 if (TYPE_CODE (type) != TYPE_CODE_PTR
6261 && TYPE_CODE (type) != TYPE_CODE_REF)
6262 break;
6263 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6264 }
14f9c5c9 6265
76a01679 6266 if (type == NULL
1265e4aa
JB
6267 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6268 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6269 {
4c4b4cd2 6270 if (noerr)
76a01679 6271 return NULL;
4c4b4cd2 6272 else
76a01679
JB
6273 {
6274 target_terminal_ours ();
6275 gdb_flush (gdb_stdout);
323e0a4a
AC
6276 if (type == NULL)
6277 error (_("Type (null) is not a structure or union type"));
6278 else
6279 {
6280 /* XXX: type_sprint */
6281 fprintf_unfiltered (gdb_stderr, _("Type "));
6282 type_print (type, "", gdb_stderr, -1);
6283 error (_(" is not a structure or union type"));
6284 }
76a01679 6285 }
14f9c5c9
AS
6286 }
6287
6288 type = to_static_fixed_type (type);
6289
6290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6291 {
6292 char *t_field_name = TYPE_FIELD_NAME (type, i);
6293 struct type *t;
6294 int disp;
d2e4a39e 6295
14f9c5c9 6296 if (t_field_name == NULL)
4c4b4cd2 6297 continue;
14f9c5c9
AS
6298
6299 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6300 {
6301 if (dispp != NULL)
6302 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6303 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6304 }
14f9c5c9
AS
6305
6306 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6307 {
6308 disp = 0;
6309 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6310 0, 1, &disp);
6311 if (t != NULL)
6312 {
6313 if (dispp != NULL)
6314 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6315 return t;
6316 }
6317 }
14f9c5c9
AS
6318
6319 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6320 {
6321 int j;
61ee279c 6322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6323
6324 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6325 {
b1f33ddd
JB
6326 /* FIXME pnh 2008/01/26: We check for a field that is
6327 NOT wrapped in a struct, since the compiler sometimes
6328 generates these for unchecked variant types. Revisit
6329 if the compiler changes this practice. */
6330 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6331 disp = 0;
b1f33ddd
JB
6332 if (v_field_name != NULL
6333 && field_name_match (v_field_name, name))
6334 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6335 else
6336 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6337 name, 0, 1, &disp);
6338
4c4b4cd2
PH
6339 if (t != NULL)
6340 {
6341 if (dispp != NULL)
6342 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6343 return t;
6344 }
6345 }
6346 }
14f9c5c9
AS
6347
6348 }
6349
6350BadName:
d2e4a39e 6351 if (!noerr)
14f9c5c9
AS
6352 {
6353 target_terminal_ours ();
6354 gdb_flush (gdb_stdout);
323e0a4a
AC
6355 if (name == NULL)
6356 {
6357 /* XXX: type_sprint */
6358 fprintf_unfiltered (gdb_stderr, _("Type "));
6359 type_print (type, "", gdb_stderr, -1);
6360 error (_(" has no component named <null>"));
6361 }
6362 else
6363 {
6364 /* XXX: type_sprint */
6365 fprintf_unfiltered (gdb_stderr, _("Type "));
6366 type_print (type, "", gdb_stderr, -1);
6367 error (_(" has no component named %s"), name);
6368 }
14f9c5c9
AS
6369 }
6370
6371 return NULL;
6372}
6373
b1f33ddd
JB
6374/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6375 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6376 represents an unchecked union (that is, the variant part of a
6377 record that is named in an Unchecked_Union pragma). */
6378
6379static int
6380is_unchecked_variant (struct type *var_type, struct type *outer_type)
6381{
6382 char *discrim_name = ada_variant_discrim_name (var_type);
6383 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6384 == NULL);
6385}
6386
6387
14f9c5c9
AS
6388/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6389 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6390 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6391 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6392
d2e4a39e 6393int
ebf56fd3 6394ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6395 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6396{
6397 int others_clause;
6398 int i;
d2e4a39e 6399 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6400 struct value *outer;
6401 struct value *discrim;
14f9c5c9
AS
6402 LONGEST discrim_val;
6403
0c281816
JB
6404 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6405 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6406 if (discrim == NULL)
14f9c5c9 6407 return -1;
0c281816 6408 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6409
6410 others_clause = -1;
6411 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6412 {
6413 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6414 others_clause = i;
14f9c5c9 6415 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6416 return i;
14f9c5c9
AS
6417 }
6418
6419 return others_clause;
6420}
d2e4a39e 6421\f
14f9c5c9
AS
6422
6423
4c4b4cd2 6424 /* Dynamic-Sized Records */
14f9c5c9
AS
6425
6426/* Strategy: The type ostensibly attached to a value with dynamic size
6427 (i.e., a size that is not statically recorded in the debugging
6428 data) does not accurately reflect the size or layout of the value.
6429 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6430 conventional types that are constructed on the fly. */
14f9c5c9
AS
6431
6432/* There is a subtle and tricky problem here. In general, we cannot
6433 determine the size of dynamic records without its data. However,
6434 the 'struct value' data structure, which GDB uses to represent
6435 quantities in the inferior process (the target), requires the size
6436 of the type at the time of its allocation in order to reserve space
6437 for GDB's internal copy of the data. That's why the
6438 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6439 rather than struct value*s.
14f9c5c9
AS
6440
6441 However, GDB's internal history variables ($1, $2, etc.) are
6442 struct value*s containing internal copies of the data that are not, in
6443 general, the same as the data at their corresponding addresses in
6444 the target. Fortunately, the types we give to these values are all
6445 conventional, fixed-size types (as per the strategy described
6446 above), so that we don't usually have to perform the
6447 'to_fixed_xxx_type' conversions to look at their values.
6448 Unfortunately, there is one exception: if one of the internal
6449 history variables is an array whose elements are unconstrained
6450 records, then we will need to create distinct fixed types for each
6451 element selected. */
6452
6453/* The upshot of all of this is that many routines take a (type, host
6454 address, target address) triple as arguments to represent a value.
6455 The host address, if non-null, is supposed to contain an internal
6456 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6457 target at the target address. */
14f9c5c9
AS
6458
6459/* Assuming that VAL0 represents a pointer value, the result of
6460 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6461 dynamic-sized types. */
14f9c5c9 6462
d2e4a39e
AS
6463struct value *
6464ada_value_ind (struct value *val0)
14f9c5c9 6465{
d2e4a39e 6466 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6467 return ada_to_fixed_value (val);
14f9c5c9
AS
6468}
6469
6470/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6471 qualifiers on VAL0. */
6472
d2e4a39e
AS
6473static struct value *
6474ada_coerce_ref (struct value *val0)
6475{
df407dfe 6476 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6477 {
6478 struct value *val = val0;
994b9211 6479 val = coerce_ref (val);
d2e4a39e 6480 val = unwrap_value (val);
4c4b4cd2 6481 return ada_to_fixed_value (val);
d2e4a39e
AS
6482 }
6483 else
14f9c5c9
AS
6484 return val0;
6485}
6486
6487/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6488 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6489
6490static unsigned int
ebf56fd3 6491align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6492{
6493 return (off + alignment - 1) & ~(alignment - 1);
6494}
6495
4c4b4cd2 6496/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6497
6498static unsigned int
ebf56fd3 6499field_alignment (struct type *type, int f)
14f9c5c9 6500{
d2e4a39e 6501 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6502 int len;
14f9c5c9
AS
6503 int align_offset;
6504
64a1bf19
JB
6505 /* The field name should never be null, unless the debugging information
6506 is somehow malformed. In this case, we assume the field does not
6507 require any alignment. */
6508 if (name == NULL)
6509 return 1;
6510
6511 len = strlen (name);
6512
4c4b4cd2
PH
6513 if (!isdigit (name[len - 1]))
6514 return 1;
14f9c5c9 6515
d2e4a39e 6516 if (isdigit (name[len - 2]))
14f9c5c9
AS
6517 align_offset = len - 2;
6518 else
6519 align_offset = len - 1;
6520
4c4b4cd2 6521 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6522 return TARGET_CHAR_BIT;
6523
4c4b4cd2
PH
6524 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6525}
6526
6527/* Find a symbol named NAME. Ignores ambiguity. */
6528
6529struct symbol *
6530ada_find_any_symbol (const char *name)
6531{
6532 struct symbol *sym;
6533
6534 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6535 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6536 return sym;
6537
6538 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6539 return sym;
14f9c5c9
AS
6540}
6541
dddfab26
UW
6542/* Find a type named NAME. Ignores ambiguity. This routine will look
6543 solely for types defined by debug info, it will not search the GDB
6544 primitive types. */
4c4b4cd2 6545
d2e4a39e 6546struct type *
ebf56fd3 6547ada_find_any_type (const char *name)
14f9c5c9 6548{
4c4b4cd2 6549 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6550
14f9c5c9 6551 if (sym != NULL)
dddfab26 6552 return SYMBOL_TYPE (sym);
14f9c5c9 6553
dddfab26 6554 return NULL;
14f9c5c9
AS
6555}
6556
aeb5907d
JB
6557/* Given NAME and an associated BLOCK, search all symbols for
6558 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6559 associated to NAME. Return this symbol if found, return
6560 NULL otherwise. */
6561
6562struct symbol *
6563ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6564{
6565 struct symbol *sym;
6566
6567 sym = find_old_style_renaming_symbol (name, block);
6568
6569 if (sym != NULL)
6570 return sym;
6571
6572 /* Not right yet. FIXME pnh 7/20/2007. */
6573 sym = ada_find_any_symbol (name);
6574 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6575 return sym;
6576 else
6577 return NULL;
6578}
6579
6580static struct symbol *
6581find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6582{
7f0df278 6583 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6584 char *rename;
6585
6586 if (function_sym != NULL)
6587 {
6588 /* If the symbol is defined inside a function, NAME is not fully
6589 qualified. This means we need to prepend the function name
6590 as well as adding the ``___XR'' suffix to build the name of
6591 the associated renaming symbol. */
6592 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6593 /* Function names sometimes contain suffixes used
6594 for instance to qualify nested subprograms. When building
6595 the XR type name, we need to make sure that this suffix is
6596 not included. So do not include any suffix in the function
6597 name length below. */
69fadcdf 6598 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6599 const int rename_len = function_name_len + 2 /* "__" */
6600 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6601
529cad9c 6602 /* Strip the suffix if necessary. */
69fadcdf
JB
6603 ada_remove_trailing_digits (function_name, &function_name_len);
6604 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6605 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6606
4c4b4cd2
PH
6607 /* Library-level functions are a special case, as GNAT adds
6608 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6609 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6610 have this prefix, so we need to skip this prefix if present. */
6611 if (function_name_len > 5 /* "_ada_" */
6612 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6613 {
6614 function_name += 5;
6615 function_name_len -= 5;
6616 }
4c4b4cd2
PH
6617
6618 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6619 strncpy (rename, function_name, function_name_len);
6620 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6621 "__%s___XR", name);
4c4b4cd2
PH
6622 }
6623 else
6624 {
6625 const int rename_len = strlen (name) + 6;
6626 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6627 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6628 }
6629
6630 return ada_find_any_symbol (rename);
6631}
6632
14f9c5c9 6633/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6634 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6635 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6636 otherwise return 0. */
6637
14f9c5c9 6638int
d2e4a39e 6639ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6640{
6641 if (type1 == NULL)
6642 return 1;
6643 else if (type0 == NULL)
6644 return 0;
6645 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6646 return 1;
6647 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6648 return 0;
4c4b4cd2
PH
6649 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6650 return 1;
ad82864c 6651 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6652 return 1;
4c4b4cd2
PH
6653 else if (ada_is_array_descriptor_type (type0)
6654 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6655 return 1;
aeb5907d
JB
6656 else
6657 {
6658 const char *type0_name = type_name_no_tag (type0);
6659 const char *type1_name = type_name_no_tag (type1);
6660
6661 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6662 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6663 return 1;
6664 }
14f9c5c9
AS
6665 return 0;
6666}
6667
6668/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6669 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6670
d2e4a39e
AS
6671char *
6672ada_type_name (struct type *type)
14f9c5c9 6673{
d2e4a39e 6674 if (type == NULL)
14f9c5c9
AS
6675 return NULL;
6676 else if (TYPE_NAME (type) != NULL)
6677 return TYPE_NAME (type);
6678 else
6679 return TYPE_TAG_NAME (type);
6680}
6681
6682/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6683 SUFFIX to the name of TYPE. */
14f9c5c9 6684
d2e4a39e 6685struct type *
ebf56fd3 6686ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6687{
d2e4a39e 6688 static char *name;
14f9c5c9 6689 static size_t name_len = 0;
14f9c5c9 6690 int len;
d2e4a39e
AS
6691 char *typename = ada_type_name (type);
6692
14f9c5c9
AS
6693 if (typename == NULL)
6694 return NULL;
6695
6696 len = strlen (typename);
6697
d2e4a39e 6698 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6699
6700 strcpy (name, typename);
6701 strcpy (name + len, suffix);
6702
6703 return ada_find_any_type (name);
6704}
6705
6706
6707/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6708 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6709
d2e4a39e
AS
6710static struct type *
6711dynamic_template_type (struct type *type)
14f9c5c9 6712{
61ee279c 6713 type = ada_check_typedef (type);
14f9c5c9
AS
6714
6715 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6716 || ada_type_name (type) == NULL)
14f9c5c9 6717 return NULL;
d2e4a39e 6718 else
14f9c5c9
AS
6719 {
6720 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6721 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6722 return type;
14f9c5c9 6723 else
4c4b4cd2 6724 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6725 }
6726}
6727
6728/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6729 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6730
d2e4a39e
AS
6731static int
6732is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6733{
6734 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6735 return name != NULL
14f9c5c9
AS
6736 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6737 && strstr (name, "___XVL") != NULL;
6738}
6739
4c4b4cd2
PH
6740/* The index of the variant field of TYPE, or -1 if TYPE does not
6741 represent a variant record type. */
14f9c5c9 6742
d2e4a39e 6743static int
4c4b4cd2 6744variant_field_index (struct type *type)
14f9c5c9
AS
6745{
6746 int f;
6747
4c4b4cd2
PH
6748 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6749 return -1;
6750
6751 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6752 {
6753 if (ada_is_variant_part (type, f))
6754 return f;
6755 }
6756 return -1;
14f9c5c9
AS
6757}
6758
4c4b4cd2
PH
6759/* A record type with no fields. */
6760
d2e4a39e 6761static struct type *
e9bb382b 6762empty_record (struct type *template)
14f9c5c9 6763{
e9bb382b 6764 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6765 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6766 TYPE_NFIELDS (type) = 0;
6767 TYPE_FIELDS (type) = NULL;
b1f33ddd 6768 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6769 TYPE_NAME (type) = "<empty>";
6770 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6771 TYPE_LENGTH (type) = 0;
6772 return type;
6773}
6774
6775/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6776 the value of type TYPE at VALADDR or ADDRESS (see comments at
6777 the beginning of this section) VAL according to GNAT conventions.
6778 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6779 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6780 an outer-level type (i.e., as opposed to a branch of a variant.) A
6781 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6782 of the variant.
14f9c5c9 6783
4c4b4cd2
PH
6784 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6785 length are not statically known are discarded. As a consequence,
6786 VALADDR, ADDRESS and DVAL0 are ignored.
6787
6788 NOTE: Limitations: For now, we assume that dynamic fields and
6789 variants occupy whole numbers of bytes. However, they need not be
6790 byte-aligned. */
6791
6792struct type *
10a2c479 6793ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6794 const gdb_byte *valaddr,
4c4b4cd2
PH
6795 CORE_ADDR address, struct value *dval0,
6796 int keep_dynamic_fields)
14f9c5c9 6797{
d2e4a39e
AS
6798 struct value *mark = value_mark ();
6799 struct value *dval;
6800 struct type *rtype;
14f9c5c9 6801 int nfields, bit_len;
4c4b4cd2 6802 int variant_field;
14f9c5c9 6803 long off;
4c4b4cd2 6804 int fld_bit_len, bit_incr;
14f9c5c9
AS
6805 int f;
6806
4c4b4cd2
PH
6807 /* Compute the number of fields in this record type that are going
6808 to be processed: unless keep_dynamic_fields, this includes only
6809 fields whose position and length are static will be processed. */
6810 if (keep_dynamic_fields)
6811 nfields = TYPE_NFIELDS (type);
6812 else
6813 {
6814 nfields = 0;
76a01679 6815 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6816 && !ada_is_variant_part (type, nfields)
6817 && !is_dynamic_field (type, nfields))
6818 nfields++;
6819 }
6820
e9bb382b 6821 rtype = alloc_type_copy (type);
14f9c5c9
AS
6822 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6823 INIT_CPLUS_SPECIFIC (rtype);
6824 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6825 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6826 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6827 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6828 TYPE_NAME (rtype) = ada_type_name (type);
6829 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6830 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6831
d2e4a39e
AS
6832 off = 0;
6833 bit_len = 0;
4c4b4cd2
PH
6834 variant_field = -1;
6835
14f9c5c9
AS
6836 for (f = 0; f < nfields; f += 1)
6837 {
6c038f32
PH
6838 off = align_value (off, field_alignment (type, f))
6839 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6840 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6841 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6842
d2e4a39e 6843 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6844 {
6845 variant_field = f;
6846 fld_bit_len = bit_incr = 0;
6847 }
14f9c5c9 6848 else if (is_dynamic_field (type, f))
4c4b4cd2 6849 {
284614f0
JB
6850 const gdb_byte *field_valaddr = valaddr;
6851 CORE_ADDR field_address = address;
6852 struct type *field_type =
6853 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6854
4c4b4cd2 6855 if (dval0 == NULL)
b5304971
JG
6856 {
6857 /* rtype's length is computed based on the run-time
6858 value of discriminants. If the discriminants are not
6859 initialized, the type size may be completely bogus and
6860 GDB may fail to allocate a value for it. So check the
6861 size first before creating the value. */
6862 check_size (rtype);
6863 dval = value_from_contents_and_address (rtype, valaddr, address);
6864 }
4c4b4cd2
PH
6865 else
6866 dval = dval0;
6867
284614f0
JB
6868 /* If the type referenced by this field is an aligner type, we need
6869 to unwrap that aligner type, because its size might not be set.
6870 Keeping the aligner type would cause us to compute the wrong
6871 size for this field, impacting the offset of the all the fields
6872 that follow this one. */
6873 if (ada_is_aligner_type (field_type))
6874 {
6875 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6876
6877 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6878 field_address = cond_offset_target (field_address, field_offset);
6879 field_type = ada_aligned_type (field_type);
6880 }
6881
6882 field_valaddr = cond_offset_host (field_valaddr,
6883 off / TARGET_CHAR_BIT);
6884 field_address = cond_offset_target (field_address,
6885 off / TARGET_CHAR_BIT);
6886
6887 /* Get the fixed type of the field. Note that, in this case,
6888 we do not want to get the real type out of the tag: if
6889 the current field is the parent part of a tagged record,
6890 we will get the tag of the object. Clearly wrong: the real
6891 type of the parent is not the real type of the child. We
6892 would end up in an infinite loop. */
6893 field_type = ada_get_base_type (field_type);
6894 field_type = ada_to_fixed_type (field_type, field_valaddr,
6895 field_address, dval, 0);
6896
6897 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6898 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6899 bit_incr = fld_bit_len =
6900 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6901 }
14f9c5c9 6902 else
4c4b4cd2
PH
6903 {
6904 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6905 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6906 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6907 bit_incr = fld_bit_len =
6908 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6909 else
6910 bit_incr = fld_bit_len =
6911 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6912 }
14f9c5c9 6913 if (off + fld_bit_len > bit_len)
4c4b4cd2 6914 bit_len = off + fld_bit_len;
14f9c5c9 6915 off += bit_incr;
4c4b4cd2
PH
6916 TYPE_LENGTH (rtype) =
6917 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6918 }
4c4b4cd2
PH
6919
6920 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6921 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6922 the record. This can happen in the presence of representation
6923 clauses. */
6924 if (variant_field >= 0)
6925 {
6926 struct type *branch_type;
6927
6928 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6929
6930 if (dval0 == NULL)
6931 dval = value_from_contents_and_address (rtype, valaddr, address);
6932 else
6933 dval = dval0;
6934
6935 branch_type =
6936 to_fixed_variant_branch_type
6937 (TYPE_FIELD_TYPE (type, variant_field),
6938 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6939 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6940 if (branch_type == NULL)
6941 {
6942 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6943 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6944 TYPE_NFIELDS (rtype) -= 1;
6945 }
6946 else
6947 {
6948 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6949 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6950 fld_bit_len =
6951 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6952 TARGET_CHAR_BIT;
6953 if (off + fld_bit_len > bit_len)
6954 bit_len = off + fld_bit_len;
6955 TYPE_LENGTH (rtype) =
6956 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6957 }
6958 }
6959
714e53ab
PH
6960 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6961 should contain the alignment of that record, which should be a strictly
6962 positive value. If null or negative, then something is wrong, most
6963 probably in the debug info. In that case, we don't round up the size
6964 of the resulting type. If this record is not part of another structure,
6965 the current RTYPE length might be good enough for our purposes. */
6966 if (TYPE_LENGTH (type) <= 0)
6967 {
323e0a4a
AC
6968 if (TYPE_NAME (rtype))
6969 warning (_("Invalid type size for `%s' detected: %d."),
6970 TYPE_NAME (rtype), TYPE_LENGTH (type));
6971 else
6972 warning (_("Invalid type size for <unnamed> detected: %d."),
6973 TYPE_LENGTH (type));
714e53ab
PH
6974 }
6975 else
6976 {
6977 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6978 TYPE_LENGTH (type));
6979 }
14f9c5c9
AS
6980
6981 value_free_to_mark (mark);
d2e4a39e 6982 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6983 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6984 return rtype;
6985}
6986
4c4b4cd2
PH
6987/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6988 of 1. */
14f9c5c9 6989
d2e4a39e 6990static struct type *
fc1a4b47 6991template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6992 CORE_ADDR address, struct value *dval0)
6993{
6994 return ada_template_to_fixed_record_type_1 (type, valaddr,
6995 address, dval0, 1);
6996}
6997
6998/* An ordinary record type in which ___XVL-convention fields and
6999 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7000 static approximations, containing all possible fields. Uses
7001 no runtime values. Useless for use in values, but that's OK,
7002 since the results are used only for type determinations. Works on both
7003 structs and unions. Representation note: to save space, we memorize
7004 the result of this function in the TYPE_TARGET_TYPE of the
7005 template type. */
7006
7007static struct type *
7008template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7009{
7010 struct type *type;
7011 int nfields;
7012 int f;
7013
4c4b4cd2
PH
7014 if (TYPE_TARGET_TYPE (type0) != NULL)
7015 return TYPE_TARGET_TYPE (type0);
7016
7017 nfields = TYPE_NFIELDS (type0);
7018 type = type0;
14f9c5c9
AS
7019
7020 for (f = 0; f < nfields; f += 1)
7021 {
61ee279c 7022 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7023 struct type *new_type;
14f9c5c9 7024
4c4b4cd2
PH
7025 if (is_dynamic_field (type0, f))
7026 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7027 else
f192137b 7028 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7029 if (type == type0 && new_type != field_type)
7030 {
e9bb382b 7031 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7032 TYPE_CODE (type) = TYPE_CODE (type0);
7033 INIT_CPLUS_SPECIFIC (type);
7034 TYPE_NFIELDS (type) = nfields;
7035 TYPE_FIELDS (type) = (struct field *)
7036 TYPE_ALLOC (type, nfields * sizeof (struct field));
7037 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7038 sizeof (struct field) * nfields);
7039 TYPE_NAME (type) = ada_type_name (type0);
7040 TYPE_TAG_NAME (type) = NULL;
876cecd0 7041 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7042 TYPE_LENGTH (type) = 0;
7043 }
7044 TYPE_FIELD_TYPE (type, f) = new_type;
7045 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7046 }
14f9c5c9
AS
7047 return type;
7048}
7049
4c4b4cd2 7050/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7051 whose address in memory is ADDRESS, returns a revision of TYPE,
7052 which should be a non-dynamic-sized record, in which the variant
7053 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7054 for discriminant values in DVAL0, which can be NULL if the record
7055 contains the necessary discriminant values. */
7056
d2e4a39e 7057static struct type *
fc1a4b47 7058to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7059 CORE_ADDR address, struct value *dval0)
14f9c5c9 7060{
d2e4a39e 7061 struct value *mark = value_mark ();
4c4b4cd2 7062 struct value *dval;
d2e4a39e 7063 struct type *rtype;
14f9c5c9
AS
7064 struct type *branch_type;
7065 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7066 int variant_field = variant_field_index (type);
14f9c5c9 7067
4c4b4cd2 7068 if (variant_field == -1)
14f9c5c9
AS
7069 return type;
7070
4c4b4cd2
PH
7071 if (dval0 == NULL)
7072 dval = value_from_contents_and_address (type, valaddr, address);
7073 else
7074 dval = dval0;
7075
e9bb382b 7076 rtype = alloc_type_copy (type);
14f9c5c9 7077 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7078 INIT_CPLUS_SPECIFIC (rtype);
7079 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7080 TYPE_FIELDS (rtype) =
7081 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7082 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7083 sizeof (struct field) * nfields);
14f9c5c9
AS
7084 TYPE_NAME (rtype) = ada_type_name (type);
7085 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7086 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7087 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7088
4c4b4cd2
PH
7089 branch_type = to_fixed_variant_branch_type
7090 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7091 cond_offset_host (valaddr,
4c4b4cd2
PH
7092 TYPE_FIELD_BITPOS (type, variant_field)
7093 / TARGET_CHAR_BIT),
d2e4a39e 7094 cond_offset_target (address,
4c4b4cd2
PH
7095 TYPE_FIELD_BITPOS (type, variant_field)
7096 / TARGET_CHAR_BIT), dval);
d2e4a39e 7097 if (branch_type == NULL)
14f9c5c9 7098 {
4c4b4cd2
PH
7099 int f;
7100 for (f = variant_field + 1; f < nfields; f += 1)
7101 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7102 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7103 }
7104 else
7105 {
4c4b4cd2
PH
7106 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7107 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7108 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7109 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7110 }
4c4b4cd2 7111 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7112
4c4b4cd2 7113 value_free_to_mark (mark);
14f9c5c9
AS
7114 return rtype;
7115}
7116
7117/* An ordinary record type (with fixed-length fields) that describes
7118 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7119 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7120 should be in DVAL, a record value; it may be NULL if the object
7121 at ADDR itself contains any necessary discriminant values.
7122 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7123 values from the record are needed. Except in the case that DVAL,
7124 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7125 unchecked) is replaced by a particular branch of the variant.
7126
7127 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7128 is questionable and may be removed. It can arise during the
7129 processing of an unconstrained-array-of-record type where all the
7130 variant branches have exactly the same size. This is because in
7131 such cases, the compiler does not bother to use the XVS convention
7132 when encoding the record. I am currently dubious of this
7133 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7134
d2e4a39e 7135static struct type *
fc1a4b47 7136to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7137 CORE_ADDR address, struct value *dval)
14f9c5c9 7138{
d2e4a39e 7139 struct type *templ_type;
14f9c5c9 7140
876cecd0 7141 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7142 return type0;
7143
d2e4a39e 7144 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7145
7146 if (templ_type != NULL)
7147 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7148 else if (variant_field_index (type0) >= 0)
7149 {
7150 if (dval == NULL && valaddr == NULL && address == 0)
7151 return type0;
7152 return to_record_with_fixed_variant_part (type0, valaddr, address,
7153 dval);
7154 }
14f9c5c9
AS
7155 else
7156 {
876cecd0 7157 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7158 return type0;
7159 }
7160
7161}
7162
7163/* An ordinary record type (with fixed-length fields) that describes
7164 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7165 union type. Any necessary discriminants' values should be in DVAL,
7166 a record value. That is, this routine selects the appropriate
7167 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7168 indicated in the union's type name. Returns VAR_TYPE0 itself if
7169 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7170
d2e4a39e 7171static struct type *
fc1a4b47 7172to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7173 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7174{
7175 int which;
d2e4a39e
AS
7176 struct type *templ_type;
7177 struct type *var_type;
14f9c5c9
AS
7178
7179 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7180 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7181 else
14f9c5c9
AS
7182 var_type = var_type0;
7183
7184 templ_type = ada_find_parallel_type (var_type, "___XVU");
7185
7186 if (templ_type != NULL)
7187 var_type = templ_type;
7188
b1f33ddd
JB
7189 if (is_unchecked_variant (var_type, value_type (dval)))
7190 return var_type0;
d2e4a39e
AS
7191 which =
7192 ada_which_variant_applies (var_type,
0fd88904 7193 value_type (dval), value_contents (dval));
14f9c5c9
AS
7194
7195 if (which < 0)
e9bb382b 7196 return empty_record (var_type);
14f9c5c9 7197 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7198 return to_fixed_record_type
d2e4a39e
AS
7199 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7200 valaddr, address, dval);
4c4b4cd2 7201 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7202 return
7203 to_fixed_record_type
7204 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7205 else
7206 return TYPE_FIELD_TYPE (var_type, which);
7207}
7208
7209/* Assuming that TYPE0 is an array type describing the type of a value
7210 at ADDR, and that DVAL describes a record containing any
7211 discriminants used in TYPE0, returns a type for the value that
7212 contains no dynamic components (that is, no components whose sizes
7213 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7214 true, gives an error message if the resulting type's size is over
4c4b4cd2 7215 varsize_limit. */
14f9c5c9 7216
d2e4a39e
AS
7217static struct type *
7218to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7219 int ignore_too_big)
14f9c5c9 7220{
d2e4a39e
AS
7221 struct type *index_type_desc;
7222 struct type *result;
ad82864c 7223 int constrained_packed_array_p;
14f9c5c9 7224
284614f0 7225 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7226 return type0;
14f9c5c9 7227
ad82864c
JB
7228 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7229 if (constrained_packed_array_p)
7230 type0 = decode_constrained_packed_array_type (type0);
284614f0 7231
14f9c5c9
AS
7232 index_type_desc = ada_find_parallel_type (type0, "___XA");
7233 if (index_type_desc == NULL)
7234 {
61ee279c 7235 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7236 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7237 depend on the contents of the array in properly constructed
7238 debugging data. */
529cad9c
PH
7239 /* Create a fixed version of the array element type.
7240 We're not providing the address of an element here,
e1d5a0d2 7241 and thus the actual object value cannot be inspected to do
529cad9c
PH
7242 the conversion. This should not be a problem, since arrays of
7243 unconstrained objects are not allowed. In particular, all
7244 the elements of an array of a tagged type should all be of
7245 the same type specified in the debugging info. No need to
7246 consult the object tag. */
1ed6ede0 7247 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7248
284614f0
JB
7249 /* Make sure we always create a new array type when dealing with
7250 packed array types, since we're going to fix-up the array
7251 type length and element bitsize a little further down. */
ad82864c 7252 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7253 result = type0;
14f9c5c9 7254 else
e9bb382b 7255 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7256 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7257 }
7258 else
7259 {
7260 int i;
7261 struct type *elt_type0;
7262
7263 elt_type0 = type0;
7264 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7265 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7266
7267 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7268 depend on the contents of the array in properly constructed
7269 debugging data. */
529cad9c
PH
7270 /* Create a fixed version of the array element type.
7271 We're not providing the address of an element here,
e1d5a0d2 7272 and thus the actual object value cannot be inspected to do
529cad9c
PH
7273 the conversion. This should not be a problem, since arrays of
7274 unconstrained objects are not allowed. In particular, all
7275 the elements of an array of a tagged type should all be of
7276 the same type specified in the debugging info. No need to
7277 consult the object tag. */
1ed6ede0
JB
7278 result =
7279 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7280
7281 elt_type0 = type0;
14f9c5c9 7282 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7283 {
7284 struct type *range_type =
7285 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7286 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7287 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7288 result, range_type);
1ce677a4 7289 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7290 }
d2e4a39e 7291 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7292 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7293 }
7294
ad82864c 7295 if (constrained_packed_array_p)
284614f0
JB
7296 {
7297 /* So far, the resulting type has been created as if the original
7298 type was a regular (non-packed) array type. As a result, the
7299 bitsize of the array elements needs to be set again, and the array
7300 length needs to be recomputed based on that bitsize. */
7301 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7302 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7303
7304 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7305 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7306 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7307 TYPE_LENGTH (result)++;
7308 }
7309
876cecd0 7310 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7311 return result;
d2e4a39e 7312}
14f9c5c9
AS
7313
7314
7315/* A standard type (containing no dynamically sized components)
7316 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7317 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7318 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7319 ADDRESS or in VALADDR contains these discriminants.
7320
1ed6ede0
JB
7321 If CHECK_TAG is not null, in the case of tagged types, this function
7322 attempts to locate the object's tag and use it to compute the actual
7323 type. However, when ADDRESS is null, we cannot use it to determine the
7324 location of the tag, and therefore compute the tagged type's actual type.
7325 So we return the tagged type without consulting the tag. */
529cad9c 7326
f192137b
JB
7327static struct type *
7328ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7329 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7330{
61ee279c 7331 type = ada_check_typedef (type);
d2e4a39e
AS
7332 switch (TYPE_CODE (type))
7333 {
7334 default:
14f9c5c9 7335 return type;
d2e4a39e 7336 case TYPE_CODE_STRUCT:
4c4b4cd2 7337 {
76a01679 7338 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7339 struct type *fixed_record_type =
7340 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7341 /* If STATIC_TYPE is a tagged type and we know the object's address,
7342 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7343 type from there. Note that we have to use the fixed record
7344 type (the parent part of the record may have dynamic fields
7345 and the way the location of _tag is expressed may depend on
7346 them). */
529cad9c 7347
1ed6ede0 7348 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7349 {
7350 struct type *real_type =
1ed6ede0
JB
7351 type_from_tag (value_tag_from_contents_and_address
7352 (fixed_record_type,
7353 valaddr,
7354 address));
76a01679 7355 if (real_type != NULL)
1ed6ede0 7356 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7357 }
4af88198
JB
7358
7359 /* Check to see if there is a parallel ___XVZ variable.
7360 If there is, then it provides the actual size of our type. */
7361 else if (ada_type_name (fixed_record_type) != NULL)
7362 {
7363 char *name = ada_type_name (fixed_record_type);
7364 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7365 int xvz_found = 0;
7366 LONGEST size;
7367
88c15c34 7368 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7369 size = get_int_var_value (xvz_name, &xvz_found);
7370 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7371 {
7372 fixed_record_type = copy_type (fixed_record_type);
7373 TYPE_LENGTH (fixed_record_type) = size;
7374
7375 /* The FIXED_RECORD_TYPE may have be a stub. We have
7376 observed this when the debugging info is STABS, and
7377 apparently it is something that is hard to fix.
7378
7379 In practice, we don't need the actual type definition
7380 at all, because the presence of the XVZ variable allows us
7381 to assume that there must be a XVS type as well, which we
7382 should be able to use later, when we need the actual type
7383 definition.
7384
7385 In the meantime, pretend that the "fixed" type we are
7386 returning is NOT a stub, because this can cause trouble
7387 when using this type to create new types targeting it.
7388 Indeed, the associated creation routines often check
7389 whether the target type is a stub and will try to replace
7390 it, thus using a type with the wrong size. This, in turn,
7391 might cause the new type to have the wrong size too.
7392 Consider the case of an array, for instance, where the size
7393 of the array is computed from the number of elements in
7394 our array multiplied by the size of its element. */
7395 TYPE_STUB (fixed_record_type) = 0;
7396 }
7397 }
1ed6ede0 7398 return fixed_record_type;
4c4b4cd2 7399 }
d2e4a39e 7400 case TYPE_CODE_ARRAY:
4c4b4cd2 7401 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7402 case TYPE_CODE_UNION:
7403 if (dval == NULL)
4c4b4cd2 7404 return type;
d2e4a39e 7405 else
4c4b4cd2 7406 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7407 }
14f9c5c9
AS
7408}
7409
f192137b
JB
7410/* The same as ada_to_fixed_type_1, except that it preserves the type
7411 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7412 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7413
7414struct type *
7415ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7416 CORE_ADDR address, struct value *dval, int check_tag)
7417
7418{
7419 struct type *fixed_type =
7420 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7421
7422 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7423 && TYPE_TARGET_TYPE (type) == fixed_type)
7424 return type;
7425
7426 return fixed_type;
7427}
7428
14f9c5c9 7429/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7430 TYPE0, but based on no runtime data. */
14f9c5c9 7431
d2e4a39e
AS
7432static struct type *
7433to_static_fixed_type (struct type *type0)
14f9c5c9 7434{
d2e4a39e 7435 struct type *type;
14f9c5c9
AS
7436
7437 if (type0 == NULL)
7438 return NULL;
7439
876cecd0 7440 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7441 return type0;
7442
61ee279c 7443 type0 = ada_check_typedef (type0);
d2e4a39e 7444
14f9c5c9
AS
7445 switch (TYPE_CODE (type0))
7446 {
7447 default:
7448 return type0;
7449 case TYPE_CODE_STRUCT:
7450 type = dynamic_template_type (type0);
d2e4a39e 7451 if (type != NULL)
4c4b4cd2
PH
7452 return template_to_static_fixed_type (type);
7453 else
7454 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7455 case TYPE_CODE_UNION:
7456 type = ada_find_parallel_type (type0, "___XVU");
7457 if (type != NULL)
4c4b4cd2
PH
7458 return template_to_static_fixed_type (type);
7459 else
7460 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7461 }
7462}
7463
4c4b4cd2
PH
7464/* A static approximation of TYPE with all type wrappers removed. */
7465
d2e4a39e
AS
7466static struct type *
7467static_unwrap_type (struct type *type)
14f9c5c9
AS
7468{
7469 if (ada_is_aligner_type (type))
7470 {
61ee279c 7471 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7472 if (ada_type_name (type1) == NULL)
4c4b4cd2 7473 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7474
7475 return static_unwrap_type (type1);
7476 }
d2e4a39e 7477 else
14f9c5c9 7478 {
d2e4a39e
AS
7479 struct type *raw_real_type = ada_get_base_type (type);
7480 if (raw_real_type == type)
4c4b4cd2 7481 return type;
14f9c5c9 7482 else
4c4b4cd2 7483 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7484 }
7485}
7486
7487/* In some cases, incomplete and private types require
4c4b4cd2 7488 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7489 type Foo;
7490 type FooP is access Foo;
7491 V: FooP;
7492 type Foo is array ...;
4c4b4cd2 7493 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7494 cross-references to such types, we instead substitute for FooP a
7495 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7496 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7497
7498/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7499 exists, otherwise TYPE. */
7500
d2e4a39e 7501struct type *
61ee279c 7502ada_check_typedef (struct type *type)
14f9c5c9 7503{
727e3d2e
JB
7504 if (type == NULL)
7505 return NULL;
7506
14f9c5c9
AS
7507 CHECK_TYPEDEF (type);
7508 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7509 || !TYPE_STUB (type)
14f9c5c9
AS
7510 || TYPE_TAG_NAME (type) == NULL)
7511 return type;
d2e4a39e 7512 else
14f9c5c9 7513 {
d2e4a39e
AS
7514 char *name = TYPE_TAG_NAME (type);
7515 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7516 return (type1 == NULL) ? type : type1;
7517 }
7518}
7519
7520/* A value representing the data at VALADDR/ADDRESS as described by
7521 type TYPE0, but with a standard (static-sized) type that correctly
7522 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7523 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7524 creation of struct values]. */
14f9c5c9 7525
4c4b4cd2
PH
7526static struct value *
7527ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7528 struct value *val0)
14f9c5c9 7529{
1ed6ede0 7530 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7531 if (type == type0 && val0 != NULL)
7532 return val0;
d2e4a39e 7533 else
4c4b4cd2
PH
7534 return value_from_contents_and_address (type, 0, address);
7535}
7536
7537/* A value representing VAL, but with a standard (static-sized) type
7538 that correctly describes it. Does not necessarily create a new
7539 value. */
7540
7541static struct value *
7542ada_to_fixed_value (struct value *val)
7543{
df407dfe 7544 return ada_to_fixed_value_create (value_type (val),
42ae5230 7545 value_address (val),
4c4b4cd2 7546 val);
14f9c5c9
AS
7547}
7548
4c4b4cd2 7549/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7550 chosen to approximate the real type of VAL as well as possible, but
7551 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7552 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7553
2c0b251b 7554static struct value *
d2e4a39e 7555ada_to_static_fixed_value (struct value *val)
14f9c5c9 7556{
d2e4a39e 7557 struct type *type =
df407dfe
AC
7558 to_static_fixed_type (static_unwrap_type (value_type (val)));
7559 if (type == value_type (val))
14f9c5c9
AS
7560 return val;
7561 else
4c4b4cd2 7562 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7563}
d2e4a39e 7564\f
14f9c5c9 7565
14f9c5c9
AS
7566/* Attributes */
7567
4c4b4cd2
PH
7568/* Table mapping attribute numbers to names.
7569 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7570
d2e4a39e 7571static const char *attribute_names[] = {
14f9c5c9
AS
7572 "<?>",
7573
d2e4a39e 7574 "first",
14f9c5c9
AS
7575 "last",
7576 "length",
7577 "image",
14f9c5c9
AS
7578 "max",
7579 "min",
4c4b4cd2
PH
7580 "modulus",
7581 "pos",
7582 "size",
7583 "tag",
14f9c5c9 7584 "val",
14f9c5c9
AS
7585 0
7586};
7587
d2e4a39e 7588const char *
4c4b4cd2 7589ada_attribute_name (enum exp_opcode n)
14f9c5c9 7590{
4c4b4cd2
PH
7591 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7592 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7593 else
7594 return attribute_names[0];
7595}
7596
4c4b4cd2 7597/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7598
4c4b4cd2
PH
7599static LONGEST
7600pos_atr (struct value *arg)
14f9c5c9 7601{
24209737
PH
7602 struct value *val = coerce_ref (arg);
7603 struct type *type = value_type (val);
14f9c5c9 7604
d2e4a39e 7605 if (!discrete_type_p (type))
323e0a4a 7606 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7607
7608 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7609 {
7610 int i;
24209737 7611 LONGEST v = value_as_long (val);
14f9c5c9 7612
d2e4a39e 7613 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7614 {
7615 if (v == TYPE_FIELD_BITPOS (type, i))
7616 return i;
7617 }
323e0a4a 7618 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7619 }
7620 else
24209737 7621 return value_as_long (val);
4c4b4cd2
PH
7622}
7623
7624static struct value *
3cb382c9 7625value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7626{
3cb382c9 7627 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7628}
7629
4c4b4cd2 7630/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7631
d2e4a39e
AS
7632static struct value *
7633value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7634{
d2e4a39e 7635 if (!discrete_type_p (type))
323e0a4a 7636 error (_("'VAL only defined on discrete types"));
df407dfe 7637 if (!integer_type_p (value_type (arg)))
323e0a4a 7638 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7639
7640 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7641 {
7642 long pos = value_as_long (arg);
7643 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7644 error (_("argument to 'VAL out of range"));
d2e4a39e 7645 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7646 }
7647 else
7648 return value_from_longest (type, value_as_long (arg));
7649}
14f9c5c9 7650\f
d2e4a39e 7651
4c4b4cd2 7652 /* Evaluation */
14f9c5c9 7653
4c4b4cd2
PH
7654/* True if TYPE appears to be an Ada character type.
7655 [At the moment, this is true only for Character and Wide_Character;
7656 It is a heuristic test that could stand improvement]. */
14f9c5c9 7657
d2e4a39e
AS
7658int
7659ada_is_character_type (struct type *type)
14f9c5c9 7660{
7b9f71f2
JB
7661 const char *name;
7662
7663 /* If the type code says it's a character, then assume it really is,
7664 and don't check any further. */
7665 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7666 return 1;
7667
7668 /* Otherwise, assume it's a character type iff it is a discrete type
7669 with a known character type name. */
7670 name = ada_type_name (type);
7671 return (name != NULL
7672 && (TYPE_CODE (type) == TYPE_CODE_INT
7673 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7674 && (strcmp (name, "character") == 0
7675 || strcmp (name, "wide_character") == 0
5a517ebd 7676 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7677 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7678}
7679
4c4b4cd2 7680/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7681
7682int
ebf56fd3 7683ada_is_string_type (struct type *type)
14f9c5c9 7684{
61ee279c 7685 type = ada_check_typedef (type);
d2e4a39e 7686 if (type != NULL
14f9c5c9 7687 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7688 && (ada_is_simple_array_type (type)
7689 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7690 && ada_array_arity (type) == 1)
7691 {
7692 struct type *elttype = ada_array_element_type (type, 1);
7693
7694 return ada_is_character_type (elttype);
7695 }
d2e4a39e 7696 else
14f9c5c9
AS
7697 return 0;
7698}
7699
7700
7701/* True if TYPE is a struct type introduced by the compiler to force the
7702 alignment of a value. Such types have a single field with a
4c4b4cd2 7703 distinctive name. */
14f9c5c9
AS
7704
7705int
ebf56fd3 7706ada_is_aligner_type (struct type *type)
14f9c5c9 7707{
61ee279c 7708 type = ada_check_typedef (type);
714e53ab
PH
7709
7710 /* If we can find a parallel XVS type, then the XVS type should
7711 be used instead of this type. And hence, this is not an aligner
7712 type. */
7713 if (ada_find_parallel_type (type, "___XVS") != NULL)
7714 return 0;
7715
14f9c5c9 7716 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7717 && TYPE_NFIELDS (type) == 1
7718 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7719}
7720
7721/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7722 the parallel type. */
14f9c5c9 7723
d2e4a39e
AS
7724struct type *
7725ada_get_base_type (struct type *raw_type)
14f9c5c9 7726{
d2e4a39e
AS
7727 struct type *real_type_namer;
7728 struct type *raw_real_type;
14f9c5c9
AS
7729
7730 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7731 return raw_type;
7732
284614f0
JB
7733 if (ada_is_aligner_type (raw_type))
7734 /* The encoding specifies that we should always use the aligner type.
7735 So, even if this aligner type has an associated XVS type, we should
7736 simply ignore it.
7737
7738 According to the compiler gurus, an XVS type parallel to an aligner
7739 type may exist because of a stabs limitation. In stabs, aligner
7740 types are empty because the field has a variable-sized type, and
7741 thus cannot actually be used as an aligner type. As a result,
7742 we need the associated parallel XVS type to decode the type.
7743 Since the policy in the compiler is to not change the internal
7744 representation based on the debugging info format, we sometimes
7745 end up having a redundant XVS type parallel to the aligner type. */
7746 return raw_type;
7747
14f9c5c9 7748 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7749 if (real_type_namer == NULL
14f9c5c9
AS
7750 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7751 || TYPE_NFIELDS (real_type_namer) != 1)
7752 return raw_type;
7753
7754 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7755 if (raw_real_type == NULL)
14f9c5c9
AS
7756 return raw_type;
7757 else
7758 return raw_real_type;
d2e4a39e 7759}
14f9c5c9 7760
4c4b4cd2 7761/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7762
d2e4a39e
AS
7763struct type *
7764ada_aligned_type (struct type *type)
14f9c5c9
AS
7765{
7766 if (ada_is_aligner_type (type))
7767 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7768 else
7769 return ada_get_base_type (type);
7770}
7771
7772
7773/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7774 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7775
fc1a4b47
AC
7776const gdb_byte *
7777ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7778{
d2e4a39e 7779 if (ada_is_aligner_type (type))
14f9c5c9 7780 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7781 valaddr +
7782 TYPE_FIELD_BITPOS (type,
7783 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7784 else
7785 return valaddr;
7786}
7787
4c4b4cd2
PH
7788
7789
14f9c5c9 7790/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7791 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7792const char *
7793ada_enum_name (const char *name)
14f9c5c9 7794{
4c4b4cd2
PH
7795 static char *result;
7796 static size_t result_len = 0;
d2e4a39e 7797 char *tmp;
14f9c5c9 7798
4c4b4cd2
PH
7799 /* First, unqualify the enumeration name:
7800 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7801 all the preceeding characters, the unqualified name starts
7802 right after that dot.
4c4b4cd2 7803 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7804 translates dots into "__". Search forward for double underscores,
7805 but stop searching when we hit an overloading suffix, which is
7806 of the form "__" followed by digits. */
4c4b4cd2 7807
c3e5cd34
PH
7808 tmp = strrchr (name, '.');
7809 if (tmp != NULL)
4c4b4cd2
PH
7810 name = tmp + 1;
7811 else
14f9c5c9 7812 {
4c4b4cd2
PH
7813 while ((tmp = strstr (name, "__")) != NULL)
7814 {
7815 if (isdigit (tmp[2]))
7816 break;
7817 else
7818 name = tmp + 2;
7819 }
14f9c5c9
AS
7820 }
7821
7822 if (name[0] == 'Q')
7823 {
14f9c5c9
AS
7824 int v;
7825 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7826 {
7827 if (sscanf (name + 2, "%x", &v) != 1)
7828 return name;
7829 }
14f9c5c9 7830 else
4c4b4cd2 7831 return name;
14f9c5c9 7832
4c4b4cd2 7833 GROW_VECT (result, result_len, 16);
14f9c5c9 7834 if (isascii (v) && isprint (v))
88c15c34 7835 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7836 else if (name[1] == 'U')
88c15c34 7837 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7838 else
88c15c34 7839 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7840
7841 return result;
7842 }
d2e4a39e 7843 else
4c4b4cd2 7844 {
c3e5cd34
PH
7845 tmp = strstr (name, "__");
7846 if (tmp == NULL)
7847 tmp = strstr (name, "$");
7848 if (tmp != NULL)
4c4b4cd2
PH
7849 {
7850 GROW_VECT (result, result_len, tmp - name + 1);
7851 strncpy (result, name, tmp - name);
7852 result[tmp - name] = '\0';
7853 return result;
7854 }
7855
7856 return name;
7857 }
14f9c5c9
AS
7858}
7859
14f9c5c9
AS
7860/* Evaluate the subexpression of EXP starting at *POS as for
7861 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7862 expression. */
14f9c5c9 7863
d2e4a39e
AS
7864static struct value *
7865evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7866{
4b27a620 7867 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7868}
7869
7870/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7871 value it wraps. */
14f9c5c9 7872
d2e4a39e
AS
7873static struct value *
7874unwrap_value (struct value *val)
14f9c5c9 7875{
df407dfe 7876 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7877 if (ada_is_aligner_type (type))
7878 {
de4d072f 7879 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7880 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7881 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7882 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7883
7884 return unwrap_value (v);
7885 }
d2e4a39e 7886 else
14f9c5c9 7887 {
d2e4a39e 7888 struct type *raw_real_type =
61ee279c 7889 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7890
14f9c5c9 7891 if (type == raw_real_type)
4c4b4cd2 7892 return val;
14f9c5c9 7893
d2e4a39e 7894 return
4c4b4cd2
PH
7895 coerce_unspec_val_to_type
7896 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7897 value_address (val),
1ed6ede0 7898 NULL, 1));
14f9c5c9
AS
7899 }
7900}
d2e4a39e
AS
7901
7902static struct value *
7903cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7904{
7905 LONGEST val;
7906
df407dfe 7907 if (type == value_type (arg))
14f9c5c9 7908 return arg;
df407dfe 7909 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7910 val = ada_float_to_fixed (type,
df407dfe 7911 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7912 value_as_long (arg)));
d2e4a39e 7913 else
14f9c5c9 7914 {
a53b7a21 7915 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7916 val = ada_float_to_fixed (type, argd);
7917 }
7918
7919 return value_from_longest (type, val);
7920}
7921
d2e4a39e 7922static struct value *
a53b7a21 7923cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7924{
df407dfe 7925 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7926 value_as_long (arg));
a53b7a21 7927 return value_from_double (type, val);
14f9c5c9
AS
7928}
7929
4c4b4cd2
PH
7930/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7931 return the converted value. */
7932
d2e4a39e
AS
7933static struct value *
7934coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7935{
df407dfe 7936 struct type *type2 = value_type (val);
14f9c5c9
AS
7937 if (type == type2)
7938 return val;
7939
61ee279c
PH
7940 type2 = ada_check_typedef (type2);
7941 type = ada_check_typedef (type);
14f9c5c9 7942
d2e4a39e
AS
7943 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7944 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7945 {
7946 val = ada_value_ind (val);
df407dfe 7947 type2 = value_type (val);
14f9c5c9
AS
7948 }
7949
d2e4a39e 7950 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7951 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7952 {
7953 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7954 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7955 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7956 error (_("Incompatible types in assignment"));
04624583 7957 deprecated_set_value_type (val, type);
14f9c5c9 7958 }
d2e4a39e 7959 return val;
14f9c5c9
AS
7960}
7961
4c4b4cd2
PH
7962static struct value *
7963ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7964{
7965 struct value *val;
7966 struct type *type1, *type2;
7967 LONGEST v, v1, v2;
7968
994b9211
AC
7969 arg1 = coerce_ref (arg1);
7970 arg2 = coerce_ref (arg2);
df407dfe
AC
7971 type1 = base_type (ada_check_typedef (value_type (arg1)));
7972 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7973
76a01679
JB
7974 if (TYPE_CODE (type1) != TYPE_CODE_INT
7975 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7976 return value_binop (arg1, arg2, op);
7977
76a01679 7978 switch (op)
4c4b4cd2
PH
7979 {
7980 case BINOP_MOD:
7981 case BINOP_DIV:
7982 case BINOP_REM:
7983 break;
7984 default:
7985 return value_binop (arg1, arg2, op);
7986 }
7987
7988 v2 = value_as_long (arg2);
7989 if (v2 == 0)
323e0a4a 7990 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7991
7992 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7993 return value_binop (arg1, arg2, op);
7994
7995 v1 = value_as_long (arg1);
7996 switch (op)
7997 {
7998 case BINOP_DIV:
7999 v = v1 / v2;
76a01679
JB
8000 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8001 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8002 break;
8003 case BINOP_REM:
8004 v = v1 % v2;
76a01679
JB
8005 if (v * v1 < 0)
8006 v -= v2;
4c4b4cd2
PH
8007 break;
8008 default:
8009 /* Should not reach this point. */
8010 v = 0;
8011 }
8012
8013 val = allocate_value (type1);
990a07ab 8014 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8015 TYPE_LENGTH (value_type (val)),
8016 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8017 return val;
8018}
8019
8020static int
8021ada_value_equal (struct value *arg1, struct value *arg2)
8022{
df407dfe
AC
8023 if (ada_is_direct_array_type (value_type (arg1))
8024 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8025 {
f58b38bf
JB
8026 /* Automatically dereference any array reference before
8027 we attempt to perform the comparison. */
8028 arg1 = ada_coerce_ref (arg1);
8029 arg2 = ada_coerce_ref (arg2);
8030
4c4b4cd2
PH
8031 arg1 = ada_coerce_to_simple_array (arg1);
8032 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8033 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8034 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8035 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8036 /* FIXME: The following works only for types whose
76a01679
JB
8037 representations use all bits (no padding or undefined bits)
8038 and do not have user-defined equality. */
8039 return
df407dfe 8040 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8041 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8042 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8043 }
8044 return value_equal (arg1, arg2);
8045}
8046
52ce6436
PH
8047/* Total number of component associations in the aggregate starting at
8048 index PC in EXP. Assumes that index PC is the start of an
8049 OP_AGGREGATE. */
8050
8051static int
8052num_component_specs (struct expression *exp, int pc)
8053{
8054 int n, m, i;
8055 m = exp->elts[pc + 1].longconst;
8056 pc += 3;
8057 n = 0;
8058 for (i = 0; i < m; i += 1)
8059 {
8060 switch (exp->elts[pc].opcode)
8061 {
8062 default:
8063 n += 1;
8064 break;
8065 case OP_CHOICES:
8066 n += exp->elts[pc + 1].longconst;
8067 break;
8068 }
8069 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8070 }
8071 return n;
8072}
8073
8074/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8075 component of LHS (a simple array or a record), updating *POS past
8076 the expression, assuming that LHS is contained in CONTAINER. Does
8077 not modify the inferior's memory, nor does it modify LHS (unless
8078 LHS == CONTAINER). */
8079
8080static void
8081assign_component (struct value *container, struct value *lhs, LONGEST index,
8082 struct expression *exp, int *pos)
8083{
8084 struct value *mark = value_mark ();
8085 struct value *elt;
8086 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8087 {
22601c15
UW
8088 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8089 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
8090 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8091 }
8092 else
8093 {
8094 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8095 elt = ada_to_fixed_value (unwrap_value (elt));
8096 }
8097
8098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8099 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8100 else
8101 value_assign_to_component (container, elt,
8102 ada_evaluate_subexp (NULL, exp, pos,
8103 EVAL_NORMAL));
8104
8105 value_free_to_mark (mark);
8106}
8107
8108/* Assuming that LHS represents an lvalue having a record or array
8109 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8110 of that aggregate's value to LHS, advancing *POS past the
8111 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8112 lvalue containing LHS (possibly LHS itself). Does not modify
8113 the inferior's memory, nor does it modify the contents of
8114 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8115
8116static struct value *
8117assign_aggregate (struct value *container,
8118 struct value *lhs, struct expression *exp,
8119 int *pos, enum noside noside)
8120{
8121 struct type *lhs_type;
8122 int n = exp->elts[*pos+1].longconst;
8123 LONGEST low_index, high_index;
8124 int num_specs;
8125 LONGEST *indices;
8126 int max_indices, num_indices;
8127 int is_array_aggregate;
8128 int i;
8129 struct value *mark = value_mark ();
8130
8131 *pos += 3;
8132 if (noside != EVAL_NORMAL)
8133 {
8134 int i;
8135 for (i = 0; i < n; i += 1)
8136 ada_evaluate_subexp (NULL, exp, pos, noside);
8137 return container;
8138 }
8139
8140 container = ada_coerce_ref (container);
8141 if (ada_is_direct_array_type (value_type (container)))
8142 container = ada_coerce_to_simple_array (container);
8143 lhs = ada_coerce_ref (lhs);
8144 if (!deprecated_value_modifiable (lhs))
8145 error (_("Left operand of assignment is not a modifiable lvalue."));
8146
8147 lhs_type = value_type (lhs);
8148 if (ada_is_direct_array_type (lhs_type))
8149 {
8150 lhs = ada_coerce_to_simple_array (lhs);
8151 lhs_type = value_type (lhs);
8152 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8153 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8154 is_array_aggregate = 1;
8155 }
8156 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8157 {
8158 low_index = 0;
8159 high_index = num_visible_fields (lhs_type) - 1;
8160 is_array_aggregate = 0;
8161 }
8162 else
8163 error (_("Left-hand side must be array or record."));
8164
8165 num_specs = num_component_specs (exp, *pos - 3);
8166 max_indices = 4 * num_specs + 4;
8167 indices = alloca (max_indices * sizeof (indices[0]));
8168 indices[0] = indices[1] = low_index - 1;
8169 indices[2] = indices[3] = high_index + 1;
8170 num_indices = 4;
8171
8172 for (i = 0; i < n; i += 1)
8173 {
8174 switch (exp->elts[*pos].opcode)
8175 {
8176 case OP_CHOICES:
8177 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8178 &num_indices, max_indices,
8179 low_index, high_index);
8180 break;
8181 case OP_POSITIONAL:
8182 aggregate_assign_positional (container, lhs, exp, pos, indices,
8183 &num_indices, max_indices,
8184 low_index, high_index);
8185 break;
8186 case OP_OTHERS:
8187 if (i != n-1)
8188 error (_("Misplaced 'others' clause"));
8189 aggregate_assign_others (container, lhs, exp, pos, indices,
8190 num_indices, low_index, high_index);
8191 break;
8192 default:
8193 error (_("Internal error: bad aggregate clause"));
8194 }
8195 }
8196
8197 return container;
8198}
8199
8200/* Assign into the component of LHS indexed by the OP_POSITIONAL
8201 construct at *POS, updating *POS past the construct, given that
8202 the positions are relative to lower bound LOW, where HIGH is the
8203 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8204 updating *NUM_INDICES as needed. CONTAINER is as for
8205 assign_aggregate. */
8206static void
8207aggregate_assign_positional (struct value *container,
8208 struct value *lhs, struct expression *exp,
8209 int *pos, LONGEST *indices, int *num_indices,
8210 int max_indices, LONGEST low, LONGEST high)
8211{
8212 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8213
8214 if (ind - 1 == high)
e1d5a0d2 8215 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8216 if (ind <= high)
8217 {
8218 add_component_interval (ind, ind, indices, num_indices, max_indices);
8219 *pos += 3;
8220 assign_component (container, lhs, ind, exp, pos);
8221 }
8222 else
8223 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8224}
8225
8226/* Assign into the components of LHS indexed by the OP_CHOICES
8227 construct at *POS, updating *POS past the construct, given that
8228 the allowable indices are LOW..HIGH. Record the indices assigned
8229 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8230 needed. CONTAINER is as for assign_aggregate. */
8231static void
8232aggregate_assign_from_choices (struct value *container,
8233 struct value *lhs, struct expression *exp,
8234 int *pos, LONGEST *indices, int *num_indices,
8235 int max_indices, LONGEST low, LONGEST high)
8236{
8237 int j;
8238 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8239 int choice_pos, expr_pc;
8240 int is_array = ada_is_direct_array_type (value_type (lhs));
8241
8242 choice_pos = *pos += 3;
8243
8244 for (j = 0; j < n_choices; j += 1)
8245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8246 expr_pc = *pos;
8247 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8248
8249 for (j = 0; j < n_choices; j += 1)
8250 {
8251 LONGEST lower, upper;
8252 enum exp_opcode op = exp->elts[choice_pos].opcode;
8253 if (op == OP_DISCRETE_RANGE)
8254 {
8255 choice_pos += 1;
8256 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8257 EVAL_NORMAL));
8258 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8259 EVAL_NORMAL));
8260 }
8261 else if (is_array)
8262 {
8263 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8264 EVAL_NORMAL));
8265 upper = lower;
8266 }
8267 else
8268 {
8269 int ind;
8270 char *name;
8271 switch (op)
8272 {
8273 case OP_NAME:
8274 name = &exp->elts[choice_pos + 2].string;
8275 break;
8276 case OP_VAR_VALUE:
8277 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8278 break;
8279 default:
8280 error (_("Invalid record component association."));
8281 }
8282 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8283 ind = 0;
8284 if (! find_struct_field (name, value_type (lhs), 0,
8285 NULL, NULL, NULL, NULL, &ind))
8286 error (_("Unknown component name: %s."), name);
8287 lower = upper = ind;
8288 }
8289
8290 if (lower <= upper && (lower < low || upper > high))
8291 error (_("Index in component association out of bounds."));
8292
8293 add_component_interval (lower, upper, indices, num_indices,
8294 max_indices);
8295 while (lower <= upper)
8296 {
8297 int pos1;
8298 pos1 = expr_pc;
8299 assign_component (container, lhs, lower, exp, &pos1);
8300 lower += 1;
8301 }
8302 }
8303}
8304
8305/* Assign the value of the expression in the OP_OTHERS construct in
8306 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8307 have not been previously assigned. The index intervals already assigned
8308 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8309 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8310static void
8311aggregate_assign_others (struct value *container,
8312 struct value *lhs, struct expression *exp,
8313 int *pos, LONGEST *indices, int num_indices,
8314 LONGEST low, LONGEST high)
8315{
8316 int i;
8317 int expr_pc = *pos+1;
8318
8319 for (i = 0; i < num_indices - 2; i += 2)
8320 {
8321 LONGEST ind;
8322 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8323 {
8324 int pos;
8325 pos = expr_pc;
8326 assign_component (container, lhs, ind, exp, &pos);
8327 }
8328 }
8329 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8330}
8331
8332/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8333 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8334 modifying *SIZE as needed. It is an error if *SIZE exceeds
8335 MAX_SIZE. The resulting intervals do not overlap. */
8336static void
8337add_component_interval (LONGEST low, LONGEST high,
8338 LONGEST* indices, int *size, int max_size)
8339{
8340 int i, j;
8341 for (i = 0; i < *size; i += 2) {
8342 if (high >= indices[i] && low <= indices[i + 1])
8343 {
8344 int kh;
8345 for (kh = i + 2; kh < *size; kh += 2)
8346 if (high < indices[kh])
8347 break;
8348 if (low < indices[i])
8349 indices[i] = low;
8350 indices[i + 1] = indices[kh - 1];
8351 if (high > indices[i + 1])
8352 indices[i + 1] = high;
8353 memcpy (indices + i + 2, indices + kh, *size - kh);
8354 *size -= kh - i - 2;
8355 return;
8356 }
8357 else if (high < indices[i])
8358 break;
8359 }
8360
8361 if (*size == max_size)
8362 error (_("Internal error: miscounted aggregate components."));
8363 *size += 2;
8364 for (j = *size-1; j >= i+2; j -= 1)
8365 indices[j] = indices[j - 2];
8366 indices[i] = low;
8367 indices[i + 1] = high;
8368}
8369
6e48bd2c
JB
8370/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8371 is different. */
8372
8373static struct value *
8374ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8375{
8376 if (type == ada_check_typedef (value_type (arg2)))
8377 return arg2;
8378
8379 if (ada_is_fixed_point_type (type))
8380 return (cast_to_fixed (type, arg2));
8381
8382 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8383 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8384
8385 return value_cast (type, arg2);
8386}
8387
284614f0
JB
8388/* Evaluating Ada expressions, and printing their result.
8389 ------------------------------------------------------
8390
21649b50
JB
8391 1. Introduction:
8392 ----------------
8393
284614f0
JB
8394 We usually evaluate an Ada expression in order to print its value.
8395 We also evaluate an expression in order to print its type, which
8396 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8397 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8398 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8399 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8400 similar.
8401
8402 Evaluating expressions is a little more complicated for Ada entities
8403 than it is for entities in languages such as C. The main reason for
8404 this is that Ada provides types whose definition might be dynamic.
8405 One example of such types is variant records. Or another example
8406 would be an array whose bounds can only be known at run time.
8407
8408 The following description is a general guide as to what should be
8409 done (and what should NOT be done) in order to evaluate an expression
8410 involving such types, and when. This does not cover how the semantic
8411 information is encoded by GNAT as this is covered separatly. For the
8412 document used as the reference for the GNAT encoding, see exp_dbug.ads
8413 in the GNAT sources.
8414
8415 Ideally, we should embed each part of this description next to its
8416 associated code. Unfortunately, the amount of code is so vast right
8417 now that it's hard to see whether the code handling a particular
8418 situation might be duplicated or not. One day, when the code is
8419 cleaned up, this guide might become redundant with the comments
8420 inserted in the code, and we might want to remove it.
8421
21649b50
JB
8422 2. ``Fixing'' an Entity, the Simple Case:
8423 -----------------------------------------
8424
284614f0
JB
8425 When evaluating Ada expressions, the tricky issue is that they may
8426 reference entities whose type contents and size are not statically
8427 known. Consider for instance a variant record:
8428
8429 type Rec (Empty : Boolean := True) is record
8430 case Empty is
8431 when True => null;
8432 when False => Value : Integer;
8433 end case;
8434 end record;
8435 Yes : Rec := (Empty => False, Value => 1);
8436 No : Rec := (empty => True);
8437
8438 The size and contents of that record depends on the value of the
8439 descriminant (Rec.Empty). At this point, neither the debugging
8440 information nor the associated type structure in GDB are able to
8441 express such dynamic types. So what the debugger does is to create
8442 "fixed" versions of the type that applies to the specific object.
8443 We also informally refer to this opperation as "fixing" an object,
8444 which means creating its associated fixed type.
8445
8446 Example: when printing the value of variable "Yes" above, its fixed
8447 type would look like this:
8448
8449 type Rec is record
8450 Empty : Boolean;
8451 Value : Integer;
8452 end record;
8453
8454 On the other hand, if we printed the value of "No", its fixed type
8455 would become:
8456
8457 type Rec is record
8458 Empty : Boolean;
8459 end record;
8460
8461 Things become a little more complicated when trying to fix an entity
8462 with a dynamic type that directly contains another dynamic type,
8463 such as an array of variant records, for instance. There are
8464 two possible cases: Arrays, and records.
8465
21649b50
JB
8466 3. ``Fixing'' Arrays:
8467 ---------------------
8468
8469 The type structure in GDB describes an array in terms of its bounds,
8470 and the type of its elements. By design, all elements in the array
8471 have the same type and we cannot represent an array of variant elements
8472 using the current type structure in GDB. When fixing an array,
8473 we cannot fix the array element, as we would potentially need one
8474 fixed type per element of the array. As a result, the best we can do
8475 when fixing an array is to produce an array whose bounds and size
8476 are correct (allowing us to read it from memory), but without having
8477 touched its element type. Fixing each element will be done later,
8478 when (if) necessary.
8479
8480 Arrays are a little simpler to handle than records, because the same
8481 amount of memory is allocated for each element of the array, even if
1b536f04 8482 the amount of space actually used by each element differs from element
21649b50 8483 to element. Consider for instance the following array of type Rec:
284614f0
JB
8484
8485 type Rec_Array is array (1 .. 2) of Rec;
8486
1b536f04
JB
8487 The actual amount of memory occupied by each element might be different
8488 from element to element, depending on the value of their discriminant.
21649b50 8489 But the amount of space reserved for each element in the array remains
1b536f04 8490 fixed regardless. So we simply need to compute that size using
21649b50
JB
8491 the debugging information available, from which we can then determine
8492 the array size (we multiply the number of elements of the array by
8493 the size of each element).
8494
8495 The simplest case is when we have an array of a constrained element
8496 type. For instance, consider the following type declarations:
8497
8498 type Bounded_String (Max_Size : Integer) is
8499 Length : Integer;
8500 Buffer : String (1 .. Max_Size);
8501 end record;
8502 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8503
8504 In this case, the compiler describes the array as an array of
8505 variable-size elements (identified by its XVS suffix) for which
8506 the size can be read in the parallel XVZ variable.
8507
8508 In the case of an array of an unconstrained element type, the compiler
8509 wraps the array element inside a private PAD type. This type should not
8510 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8511 that we also use the adjective "aligner" in our code to designate
8512 these wrapper types.
8513
1b536f04 8514 In some cases, the size allocated for each element is statically
21649b50
JB
8515 known. In that case, the PAD type already has the correct size,
8516 and the array element should remain unfixed.
8517
8518 But there are cases when this size is not statically known.
8519 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8520
8521 type Dynamic is array (1 .. Five) of Integer;
8522 type Wrapper (Has_Length : Boolean := False) is record
8523 Data : Dynamic;
8524 case Has_Length is
8525 when True => Length : Integer;
8526 when False => null;
8527 end case;
8528 end record;
8529 type Wrapper_Array is array (1 .. 2) of Wrapper;
8530
8531 Hello : Wrapper_Array := (others => (Has_Length => True,
8532 Data => (others => 17),
8533 Length => 1));
8534
8535
8536 The debugging info would describe variable Hello as being an
8537 array of a PAD type. The size of that PAD type is not statically
8538 known, but can be determined using a parallel XVZ variable.
8539 In that case, a copy of the PAD type with the correct size should
8540 be used for the fixed array.
8541
21649b50
JB
8542 3. ``Fixing'' record type objects:
8543 ----------------------------------
8544
8545 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8546 record types. In this case, in order to compute the associated
8547 fixed type, we need to determine the size and offset of each of
8548 its components. This, in turn, requires us to compute the fixed
8549 type of each of these components.
8550
8551 Consider for instance the example:
8552
8553 type Bounded_String (Max_Size : Natural) is record
8554 Str : String (1 .. Max_Size);
8555 Length : Natural;
8556 end record;
8557 My_String : Bounded_String (Max_Size => 10);
8558
8559 In that case, the position of field "Length" depends on the size
8560 of field Str, which itself depends on the value of the Max_Size
21649b50 8561 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8562 we need to fix the type of field Str. Therefore, fixing a variant
8563 record requires us to fix each of its components.
8564
8565 However, if a component does not have a dynamic size, the component
8566 should not be fixed. In particular, fields that use a PAD type
8567 should not fixed. Here is an example where this might happen
8568 (assuming type Rec above):
8569
8570 type Container (Big : Boolean) is record
8571 First : Rec;
8572 After : Integer;
8573 case Big is
8574 when True => Another : Integer;
8575 when False => null;
8576 end case;
8577 end record;
8578 My_Container : Container := (Big => False,
8579 First => (Empty => True),
8580 After => 42);
8581
8582 In that example, the compiler creates a PAD type for component First,
8583 whose size is constant, and then positions the component After just
8584 right after it. The offset of component After is therefore constant
8585 in this case.
8586
8587 The debugger computes the position of each field based on an algorithm
8588 that uses, among other things, the actual position and size of the field
21649b50
JB
8589 preceding it. Let's now imagine that the user is trying to print
8590 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8591 end up computing the offset of field After based on the size of the
8592 fixed version of field First. And since in our example First has
8593 only one actual field, the size of the fixed type is actually smaller
8594 than the amount of space allocated to that field, and thus we would
8595 compute the wrong offset of field After.
8596
21649b50
JB
8597 To make things more complicated, we need to watch out for dynamic
8598 components of variant records (identified by the ___XVL suffix in
8599 the component name). Even if the target type is a PAD type, the size
8600 of that type might not be statically known. So the PAD type needs
8601 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8602 we might end up with the wrong size for our component. This can be
8603 observed with the following type declarations:
284614f0
JB
8604
8605 type Octal is new Integer range 0 .. 7;
8606 type Octal_Array is array (Positive range <>) of Octal;
8607 pragma Pack (Octal_Array);
8608
8609 type Octal_Buffer (Size : Positive) is record
8610 Buffer : Octal_Array (1 .. Size);
8611 Length : Integer;
8612 end record;
8613
8614 In that case, Buffer is a PAD type whose size is unset and needs
8615 to be computed by fixing the unwrapped type.
8616
21649b50
JB
8617 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8618 ----------------------------------------------------------
8619
8620 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8621 thus far, be actually fixed?
8622
8623 The answer is: Only when referencing that element. For instance
8624 when selecting one component of a record, this specific component
8625 should be fixed at that point in time. Or when printing the value
8626 of a record, each component should be fixed before its value gets
8627 printed. Similarly for arrays, the element of the array should be
8628 fixed when printing each element of the array, or when extracting
8629 one element out of that array. On the other hand, fixing should
8630 not be performed on the elements when taking a slice of an array!
8631
8632 Note that one of the side-effects of miscomputing the offset and
8633 size of each field is that we end up also miscomputing the size
8634 of the containing type. This can have adverse results when computing
8635 the value of an entity. GDB fetches the value of an entity based
8636 on the size of its type, and thus a wrong size causes GDB to fetch
8637 the wrong amount of memory. In the case where the computed size is
8638 too small, GDB fetches too little data to print the value of our
8639 entiry. Results in this case as unpredicatble, as we usually read
8640 past the buffer containing the data =:-o. */
8641
8642/* Implement the evaluate_exp routine in the exp_descriptor structure
8643 for the Ada language. */
8644
52ce6436 8645static struct value *
ebf56fd3 8646ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8647 int *pos, enum noside noside)
14f9c5c9
AS
8648{
8649 enum exp_opcode op;
14f9c5c9
AS
8650 int tem, tem2, tem3;
8651 int pc;
8652 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8653 struct type *type;
52ce6436 8654 int nargs, oplen;
d2e4a39e 8655 struct value **argvec;
14f9c5c9 8656
d2e4a39e
AS
8657 pc = *pos;
8658 *pos += 1;
14f9c5c9
AS
8659 op = exp->elts[pc].opcode;
8660
d2e4a39e 8661 switch (op)
14f9c5c9
AS
8662 {
8663 default:
8664 *pos -= 1;
6e48bd2c
JB
8665 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8666 arg1 = unwrap_value (arg1);
8667
8668 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8669 then we need to perform the conversion manually, because
8670 evaluate_subexp_standard doesn't do it. This conversion is
8671 necessary in Ada because the different kinds of float/fixed
8672 types in Ada have different representations.
8673
8674 Similarly, we need to perform the conversion from OP_LONG
8675 ourselves. */
8676 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8677 arg1 = ada_value_cast (expect_type, arg1, noside);
8678
8679 return arg1;
4c4b4cd2
PH
8680
8681 case OP_STRING:
8682 {
76a01679
JB
8683 struct value *result;
8684 *pos -= 1;
8685 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8686 /* The result type will have code OP_STRING, bashed there from
8687 OP_ARRAY. Bash it back. */
df407dfe
AC
8688 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8689 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8690 return result;
4c4b4cd2 8691 }
14f9c5c9
AS
8692
8693 case UNOP_CAST:
8694 (*pos) += 2;
8695 type = exp->elts[pc + 1].type;
8696 arg1 = evaluate_subexp (type, exp, pos, noside);
8697 if (noside == EVAL_SKIP)
4c4b4cd2 8698 goto nosideret;
6e48bd2c 8699 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8700 return arg1;
8701
4c4b4cd2
PH
8702 case UNOP_QUAL:
8703 (*pos) += 2;
8704 type = exp->elts[pc + 1].type;
8705 return ada_evaluate_subexp (type, exp, pos, noside);
8706
14f9c5c9
AS
8707 case BINOP_ASSIGN:
8708 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8709 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8710 {
8711 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8712 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8713 return arg1;
8714 return ada_value_assign (arg1, arg1);
8715 }
003f3813
JB
8716 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8717 except if the lhs of our assignment is a convenience variable.
8718 In the case of assigning to a convenience variable, the lhs
8719 should be exactly the result of the evaluation of the rhs. */
8720 type = value_type (arg1);
8721 if (VALUE_LVAL (arg1) == lval_internalvar)
8722 type = NULL;
8723 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8724 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8725 return arg1;
df407dfe
AC
8726 if (ada_is_fixed_point_type (value_type (arg1)))
8727 arg2 = cast_to_fixed (value_type (arg1), arg2);
8728 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8729 error
323e0a4a 8730 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8731 else
df407dfe 8732 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8733 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8734
8735 case BINOP_ADD:
8736 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8737 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8738 if (noside == EVAL_SKIP)
4c4b4cd2 8739 goto nosideret;
2ac8a782
JB
8740 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8741 return (value_from_longest
8742 (value_type (arg1),
8743 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8744 if ((ada_is_fixed_point_type (value_type (arg1))
8745 || ada_is_fixed_point_type (value_type (arg2)))
8746 && value_type (arg1) != value_type (arg2))
323e0a4a 8747 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8748 /* Do the addition, and cast the result to the type of the first
8749 argument. We cannot cast the result to a reference type, so if
8750 ARG1 is a reference type, find its underlying type. */
8751 type = value_type (arg1);
8752 while (TYPE_CODE (type) == TYPE_CODE_REF)
8753 type = TYPE_TARGET_TYPE (type);
f44316fa 8754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8755 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8756
8757 case BINOP_SUB:
8758 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8759 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8760 if (noside == EVAL_SKIP)
4c4b4cd2 8761 goto nosideret;
2ac8a782
JB
8762 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8763 return (value_from_longest
8764 (value_type (arg1),
8765 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8766 if ((ada_is_fixed_point_type (value_type (arg1))
8767 || ada_is_fixed_point_type (value_type (arg2)))
8768 && value_type (arg1) != value_type (arg2))
323e0a4a 8769 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8770 /* Do the substraction, and cast the result to the type of the first
8771 argument. We cannot cast the result to a reference type, so if
8772 ARG1 is a reference type, find its underlying type. */
8773 type = value_type (arg1);
8774 while (TYPE_CODE (type) == TYPE_CODE_REF)
8775 type = TYPE_TARGET_TYPE (type);
f44316fa 8776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8777 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8778
8779 case BINOP_MUL:
8780 case BINOP_DIV:
e1578042
JB
8781 case BINOP_REM:
8782 case BINOP_MOD:
14f9c5c9
AS
8783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8784 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8785 if (noside == EVAL_SKIP)
4c4b4cd2 8786 goto nosideret;
e1578042 8787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8788 {
8789 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8790 return value_zero (value_type (arg1), not_lval);
8791 }
14f9c5c9 8792 else
4c4b4cd2 8793 {
a53b7a21 8794 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8795 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8796 arg1 = cast_from_fixed (type, arg1);
df407dfe 8797 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8798 arg2 = cast_from_fixed (type, arg2);
f44316fa 8799 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8800 return ada_value_binop (arg1, arg2, op);
8801 }
8802
4c4b4cd2
PH
8803 case BINOP_EQUAL:
8804 case BINOP_NOTEQUAL:
14f9c5c9 8805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8806 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8807 if (noside == EVAL_SKIP)
76a01679 8808 goto nosideret;
4c4b4cd2 8809 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8810 tem = 0;
4c4b4cd2 8811 else
f44316fa
UW
8812 {
8813 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8814 tem = ada_value_equal (arg1, arg2);
8815 }
4c4b4cd2 8816 if (op == BINOP_NOTEQUAL)
76a01679 8817 tem = !tem;
fbb06eb1
UW
8818 type = language_bool_type (exp->language_defn, exp->gdbarch);
8819 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8820
8821 case UNOP_NEG:
8822 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8823 if (noside == EVAL_SKIP)
8824 goto nosideret;
df407dfe
AC
8825 else if (ada_is_fixed_point_type (value_type (arg1)))
8826 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8827 else
f44316fa
UW
8828 {
8829 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8830 return value_neg (arg1);
8831 }
4c4b4cd2 8832
2330c6c6
JB
8833 case BINOP_LOGICAL_AND:
8834 case BINOP_LOGICAL_OR:
8835 case UNOP_LOGICAL_NOT:
000d5124
JB
8836 {
8837 struct value *val;
8838
8839 *pos -= 1;
8840 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8841 type = language_bool_type (exp->language_defn, exp->gdbarch);
8842 return value_cast (type, val);
000d5124 8843 }
2330c6c6
JB
8844
8845 case BINOP_BITWISE_AND:
8846 case BINOP_BITWISE_IOR:
8847 case BINOP_BITWISE_XOR:
000d5124
JB
8848 {
8849 struct value *val;
8850
8851 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8852 *pos = pc;
8853 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8854
8855 return value_cast (value_type (arg1), val);
8856 }
2330c6c6 8857
14f9c5c9
AS
8858 case OP_VAR_VALUE:
8859 *pos -= 1;
6799def4 8860
14f9c5c9 8861 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8862 {
8863 *pos += 4;
8864 goto nosideret;
8865 }
8866 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8867 /* Only encountered when an unresolved symbol occurs in a
8868 context other than a function call, in which case, it is
52ce6436 8869 invalid. */
323e0a4a 8870 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8871 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8872 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8873 {
0c1f74cf
JB
8874 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8875 if (ada_is_tagged_type (type, 0))
8876 {
8877 /* Tagged types are a little special in the fact that the real
8878 type is dynamic and can only be determined by inspecting the
8879 object's tag. This means that we need to get the object's
8880 value first (EVAL_NORMAL) and then extract the actual object
8881 type from its tag.
8882
8883 Note that we cannot skip the final step where we extract
8884 the object type from its tag, because the EVAL_NORMAL phase
8885 results in dynamic components being resolved into fixed ones.
8886 This can cause problems when trying to print the type
8887 description of tagged types whose parent has a dynamic size:
8888 We use the type name of the "_parent" component in order
8889 to print the name of the ancestor type in the type description.
8890 If that component had a dynamic size, the resolution into
8891 a fixed type would result in the loss of that type name,
8892 thus preventing us from printing the name of the ancestor
8893 type in the type description. */
b79819ba
JB
8894 struct type *actual_type;
8895
0c1f74cf 8896 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8897 actual_type = type_from_tag (ada_value_tag (arg1));
8898 if (actual_type == NULL)
8899 /* If, for some reason, we were unable to determine
8900 the actual type from the tag, then use the static
8901 approximation that we just computed as a fallback.
8902 This can happen if the debugging information is
8903 incomplete, for instance. */
8904 actual_type = type;
8905
8906 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8907 }
8908
4c4b4cd2
PH
8909 *pos += 4;
8910 return value_zero
8911 (to_static_fixed_type
8912 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8913 not_lval);
8914 }
d2e4a39e 8915 else
4c4b4cd2 8916 {
284614f0
JB
8917 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8918 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8919 return ada_to_fixed_value (arg1);
8920 }
8921
8922 case OP_FUNCALL:
8923 (*pos) += 2;
8924
8925 /* Allocate arg vector, including space for the function to be
8926 called in argvec[0] and a terminating NULL. */
8927 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8928 argvec =
8929 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8930
8931 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8932 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8933 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8934 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8935 else
8936 {
8937 for (tem = 0; tem <= nargs; tem += 1)
8938 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8939 argvec[tem] = 0;
8940
8941 if (noside == EVAL_SKIP)
8942 goto nosideret;
8943 }
8944
ad82864c
JB
8945 if (ada_is_constrained_packed_array_type
8946 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8947 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8948 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8949 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8950 /* This is a packed array that has already been fixed, and
8951 therefore already coerced to a simple array. Nothing further
8952 to do. */
8953 ;
df407dfe
AC
8954 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8955 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8956 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8957 argvec[0] = value_addr (argvec[0]);
8958
df407dfe 8959 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8960 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8961 {
61ee279c 8962 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8963 {
8964 case TYPE_CODE_FUNC:
61ee279c 8965 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8966 break;
8967 case TYPE_CODE_ARRAY:
8968 break;
8969 case TYPE_CODE_STRUCT:
8970 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8971 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8972 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8973 break;
8974 default:
323e0a4a 8975 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8976 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8977 break;
8978 }
8979 }
8980
8981 switch (TYPE_CODE (type))
8982 {
8983 case TYPE_CODE_FUNC:
8984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8985 return allocate_value (TYPE_TARGET_TYPE (type));
8986 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8987 case TYPE_CODE_STRUCT:
8988 {
8989 int arity;
8990
4c4b4cd2
PH
8991 arity = ada_array_arity (type);
8992 type = ada_array_element_type (type, nargs);
8993 if (type == NULL)
323e0a4a 8994 error (_("cannot subscript or call a record"));
4c4b4cd2 8995 if (arity != nargs)
323e0a4a 8996 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8998 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8999 return
9000 unwrap_value (ada_value_subscript
9001 (argvec[0], nargs, argvec + 1));
9002 }
9003 case TYPE_CODE_ARRAY:
9004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9005 {
9006 type = ada_array_element_type (type, nargs);
9007 if (type == NULL)
323e0a4a 9008 error (_("element type of array unknown"));
4c4b4cd2 9009 else
0a07e705 9010 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9011 }
9012 return
9013 unwrap_value (ada_value_subscript
9014 (ada_coerce_to_simple_array (argvec[0]),
9015 nargs, argvec + 1));
9016 case TYPE_CODE_PTR: /* Pointer to array */
9017 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9018 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9019 {
9020 type = ada_array_element_type (type, nargs);
9021 if (type == NULL)
323e0a4a 9022 error (_("element type of array unknown"));
4c4b4cd2 9023 else
0a07e705 9024 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9025 }
9026 return
9027 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9028 nargs, argvec + 1));
9029
9030 default:
e1d5a0d2
PH
9031 error (_("Attempt to index or call something other than an "
9032 "array or function"));
4c4b4cd2
PH
9033 }
9034
9035 case TERNOP_SLICE:
9036 {
9037 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 struct value *low_bound_val =
9039 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9040 struct value *high_bound_val =
9041 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9042 LONGEST low_bound;
9043 LONGEST high_bound;
994b9211
AC
9044 low_bound_val = coerce_ref (low_bound_val);
9045 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9046 low_bound = pos_atr (low_bound_val);
9047 high_bound = pos_atr (high_bound_val);
963a6417 9048
4c4b4cd2
PH
9049 if (noside == EVAL_SKIP)
9050 goto nosideret;
9051
4c4b4cd2
PH
9052 /* If this is a reference to an aligner type, then remove all
9053 the aligners. */
df407dfe
AC
9054 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9055 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9056 TYPE_TARGET_TYPE (value_type (array)) =
9057 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9058
ad82864c 9059 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9060 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9061
9062 /* If this is a reference to an array or an array lvalue,
9063 convert to a pointer. */
df407dfe
AC
9064 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9065 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9066 && VALUE_LVAL (array) == lval_memory))
9067 array = value_addr (array);
9068
1265e4aa 9069 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9070 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9071 (value_type (array))))
0b5d8877 9072 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9073
9074 array = ada_coerce_to_simple_array_ptr (array);
9075
714e53ab
PH
9076 /* If we have more than one level of pointer indirection,
9077 dereference the value until we get only one level. */
df407dfe
AC
9078 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9079 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9080 == TYPE_CODE_PTR))
9081 array = value_ind (array);
9082
9083 /* Make sure we really do have an array type before going further,
9084 to avoid a SEGV when trying to get the index type or the target
9085 type later down the road if the debug info generated by
9086 the compiler is incorrect or incomplete. */
df407dfe 9087 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9088 error (_("cannot take slice of non-array"));
714e53ab 9089
df407dfe 9090 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9091 {
0b5d8877 9092 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9093 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9094 low_bound);
9095 else
9096 {
9097 struct type *arr_type0 =
df407dfe 9098 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9099 NULL, 1);
f5938064
JG
9100 return ada_value_slice_from_ptr (array, arr_type0,
9101 longest_to_int (low_bound),
9102 longest_to_int (high_bound));
4c4b4cd2
PH
9103 }
9104 }
9105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9106 return array;
9107 else if (high_bound < low_bound)
df407dfe 9108 return empty_array (value_type (array), low_bound);
4c4b4cd2 9109 else
529cad9c
PH
9110 return ada_value_slice (array, longest_to_int (low_bound),
9111 longest_to_int (high_bound));
4c4b4cd2 9112 }
14f9c5c9 9113
4c4b4cd2
PH
9114 case UNOP_IN_RANGE:
9115 (*pos) += 2;
9116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9117 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9118
14f9c5c9 9119 if (noside == EVAL_SKIP)
4c4b4cd2 9120 goto nosideret;
14f9c5c9 9121
4c4b4cd2
PH
9122 switch (TYPE_CODE (type))
9123 {
9124 default:
e1d5a0d2
PH
9125 lim_warning (_("Membership test incompletely implemented; "
9126 "always returns true"));
fbb06eb1
UW
9127 type = language_bool_type (exp->language_defn, exp->gdbarch);
9128 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9129
9130 case TYPE_CODE_RANGE:
030b4912
UW
9131 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9132 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9133 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9135 type = language_bool_type (exp->language_defn, exp->gdbarch);
9136 return
9137 value_from_longest (type,
4c4b4cd2
PH
9138 (value_less (arg1, arg3)
9139 || value_equal (arg1, arg3))
9140 && (value_less (arg2, arg1)
9141 || value_equal (arg2, arg1)));
9142 }
9143
9144 case BINOP_IN_BOUNDS:
14f9c5c9 9145 (*pos) += 2;
4c4b4cd2
PH
9146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9148
4c4b4cd2
PH
9149 if (noside == EVAL_SKIP)
9150 goto nosideret;
14f9c5c9 9151
4c4b4cd2 9152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9153 {
9154 type = language_bool_type (exp->language_defn, exp->gdbarch);
9155 return value_zero (type, not_lval);
9156 }
14f9c5c9 9157
4c4b4cd2 9158 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9159
1eea4ebd
UW
9160 type = ada_index_type (value_type (arg2), tem, "range");
9161 if (!type)
9162 type = value_type (arg1);
14f9c5c9 9163
1eea4ebd
UW
9164 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9165 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9166
f44316fa
UW
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9169 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9170 return
fbb06eb1 9171 value_from_longest (type,
4c4b4cd2
PH
9172 (value_less (arg1, arg3)
9173 || value_equal (arg1, arg3))
9174 && (value_less (arg2, arg1)
9175 || value_equal (arg2, arg1)));
9176
9177 case TERNOP_IN_RANGE:
9178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9181
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
9184
f44316fa
UW
9185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9187 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9188 return
fbb06eb1 9189 value_from_longest (type,
4c4b4cd2
PH
9190 (value_less (arg1, arg3)
9191 || value_equal (arg1, arg3))
9192 && (value_less (arg2, arg1)
9193 || value_equal (arg2, arg1)));
9194
9195 case OP_ATR_FIRST:
9196 case OP_ATR_LAST:
9197 case OP_ATR_LENGTH:
9198 {
76a01679
JB
9199 struct type *type_arg;
9200 if (exp->elts[*pos].opcode == OP_TYPE)
9201 {
9202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9203 arg1 = NULL;
5bc23cb3 9204 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9205 }
9206 else
9207 {
9208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9209 type_arg = NULL;
9210 }
9211
9212 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9213 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9214 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9215 *pos += 4;
9216
9217 if (noside == EVAL_SKIP)
9218 goto nosideret;
9219
9220 if (type_arg == NULL)
9221 {
9222 arg1 = ada_coerce_ref (arg1);
9223
ad82864c 9224 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9225 arg1 = ada_coerce_to_simple_array (arg1);
9226
1eea4ebd
UW
9227 type = ada_index_type (value_type (arg1), tem,
9228 ada_attribute_name (op));
9229 if (type == NULL)
9230 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9231
9232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9233 return allocate_value (type);
76a01679
JB
9234
9235 switch (op)
9236 {
9237 default: /* Should never happen. */
323e0a4a 9238 error (_("unexpected attribute encountered"));
76a01679 9239 case OP_ATR_FIRST:
1eea4ebd
UW
9240 return value_from_longest
9241 (type, ada_array_bound (arg1, tem, 0));
76a01679 9242 case OP_ATR_LAST:
1eea4ebd
UW
9243 return value_from_longest
9244 (type, ada_array_bound (arg1, tem, 1));
76a01679 9245 case OP_ATR_LENGTH:
1eea4ebd
UW
9246 return value_from_longest
9247 (type, ada_array_length (arg1, tem));
76a01679
JB
9248 }
9249 }
9250 else if (discrete_type_p (type_arg))
9251 {
9252 struct type *range_type;
9253 char *name = ada_type_name (type_arg);
9254 range_type = NULL;
9255 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9256 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9257 if (range_type == NULL)
9258 range_type = type_arg;
9259 switch (op)
9260 {
9261 default:
323e0a4a 9262 error (_("unexpected attribute encountered"));
76a01679 9263 case OP_ATR_FIRST:
690cc4eb
PH
9264 return value_from_longest
9265 (range_type, discrete_type_low_bound (range_type));
76a01679 9266 case OP_ATR_LAST:
690cc4eb
PH
9267 return value_from_longest
9268 (range_type, discrete_type_high_bound (range_type));
76a01679 9269 case OP_ATR_LENGTH:
323e0a4a 9270 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9271 }
9272 }
9273 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9274 error (_("unimplemented type attribute"));
76a01679
JB
9275 else
9276 {
9277 LONGEST low, high;
9278
ad82864c
JB
9279 if (ada_is_constrained_packed_array_type (type_arg))
9280 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9281
1eea4ebd 9282 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9283 if (type == NULL)
1eea4ebd
UW
9284 type = builtin_type (exp->gdbarch)->builtin_int;
9285
76a01679
JB
9286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9287 return allocate_value (type);
9288
9289 switch (op)
9290 {
9291 default:
323e0a4a 9292 error (_("unexpected attribute encountered"));
76a01679 9293 case OP_ATR_FIRST:
1eea4ebd 9294 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9295 return value_from_longest (type, low);
9296 case OP_ATR_LAST:
1eea4ebd 9297 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9298 return value_from_longest (type, high);
9299 case OP_ATR_LENGTH:
1eea4ebd
UW
9300 low = ada_array_bound_from_type (type_arg, tem, 0);
9301 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9302 return value_from_longest (type, high - low + 1);
9303 }
9304 }
14f9c5c9
AS
9305 }
9306
4c4b4cd2
PH
9307 case OP_ATR_TAG:
9308 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9309 if (noside == EVAL_SKIP)
76a01679 9310 goto nosideret;
4c4b4cd2
PH
9311
9312 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9313 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9314
9315 return ada_value_tag (arg1);
9316
9317 case OP_ATR_MIN:
9318 case OP_ATR_MAX:
9319 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9321 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9322 if (noside == EVAL_SKIP)
76a01679 9323 goto nosideret;
d2e4a39e 9324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9325 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9326 else
f44316fa
UW
9327 {
9328 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9329 return value_binop (arg1, arg2,
9330 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9331 }
14f9c5c9 9332
4c4b4cd2
PH
9333 case OP_ATR_MODULUS:
9334 {
31dedfee 9335 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9337
76a01679
JB
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
4c4b4cd2 9340
76a01679 9341 if (!ada_is_modular_type (type_arg))
323e0a4a 9342 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9343
76a01679
JB
9344 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9345 ada_modulus (type_arg));
4c4b4cd2
PH
9346 }
9347
9348
9349 case OP_ATR_POS:
9350 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9351 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9352 if (noside == EVAL_SKIP)
76a01679 9353 goto nosideret;
3cb382c9
UW
9354 type = builtin_type (exp->gdbarch)->builtin_int;
9355 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9356 return value_zero (type, not_lval);
14f9c5c9 9357 else
3cb382c9 9358 return value_pos_atr (type, arg1);
14f9c5c9 9359
4c4b4cd2
PH
9360 case OP_ATR_SIZE:
9361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9362 type = value_type (arg1);
9363
9364 /* If the argument is a reference, then dereference its type, since
9365 the user is really asking for the size of the actual object,
9366 not the size of the pointer. */
9367 if (TYPE_CODE (type) == TYPE_CODE_REF)
9368 type = TYPE_TARGET_TYPE (type);
9369
4c4b4cd2 9370 if (noside == EVAL_SKIP)
76a01679 9371 goto nosideret;
4c4b4cd2 9372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9373 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9374 else
22601c15 9375 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9376 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9377
9378 case OP_ATR_VAL:
9379 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9381 type = exp->elts[pc + 2].type;
14f9c5c9 9382 if (noside == EVAL_SKIP)
76a01679 9383 goto nosideret;
4c4b4cd2 9384 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9385 return value_zero (type, not_lval);
4c4b4cd2 9386 else
76a01679 9387 return value_val_atr (type, arg1);
4c4b4cd2
PH
9388
9389 case BINOP_EXP:
9390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9391 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9392 if (noside == EVAL_SKIP)
9393 goto nosideret;
9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9395 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9396 else
f44316fa
UW
9397 {
9398 /* For integer exponentiation operations,
9399 only promote the first argument. */
9400 if (is_integral_type (value_type (arg2)))
9401 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9402 else
9403 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9404
9405 return value_binop (arg1, arg2, op);
9406 }
4c4b4cd2
PH
9407
9408 case UNOP_PLUS:
9409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9410 if (noside == EVAL_SKIP)
9411 goto nosideret;
9412 else
9413 return arg1;
9414
9415 case UNOP_ABS:
9416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9417 if (noside == EVAL_SKIP)
9418 goto nosideret;
f44316fa 9419 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9420 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9421 return value_neg (arg1);
14f9c5c9 9422 else
4c4b4cd2 9423 return arg1;
14f9c5c9
AS
9424
9425 case UNOP_IND:
6b0d7253 9426 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9427 if (noside == EVAL_SKIP)
4c4b4cd2 9428 goto nosideret;
df407dfe 9429 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9430 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9431 {
9432 if (ada_is_array_descriptor_type (type))
9433 /* GDB allows dereferencing GNAT array descriptors. */
9434 {
9435 struct type *arrType = ada_type_of_array (arg1, 0);
9436 if (arrType == NULL)
323e0a4a 9437 error (_("Attempt to dereference null array pointer."));
00a4c844 9438 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9439 }
9440 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9441 || TYPE_CODE (type) == TYPE_CODE_REF
9442 /* In C you can dereference an array to get the 1st elt. */
9443 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9444 {
9445 type = to_static_fixed_type
9446 (ada_aligned_type
9447 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9448 check_size (type);
9449 return value_zero (type, lval_memory);
9450 }
4c4b4cd2 9451 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9452 {
9453 /* GDB allows dereferencing an int. */
9454 if (expect_type == NULL)
9455 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9456 lval_memory);
9457 else
9458 {
9459 expect_type =
9460 to_static_fixed_type (ada_aligned_type (expect_type));
9461 return value_zero (expect_type, lval_memory);
9462 }
9463 }
4c4b4cd2 9464 else
323e0a4a 9465 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9466 }
76a01679 9467 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9468 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9469
96967637
JB
9470 if (TYPE_CODE (type) == TYPE_CODE_INT)
9471 /* GDB allows dereferencing an int. If we were given
9472 the expect_type, then use that as the target type.
9473 Otherwise, assume that the target type is an int. */
9474 {
9475 if (expect_type != NULL)
9476 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9477 arg1));
9478 else
9479 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9480 (CORE_ADDR) value_as_address (arg1));
9481 }
6b0d7253 9482
4c4b4cd2
PH
9483 if (ada_is_array_descriptor_type (type))
9484 /* GDB allows dereferencing GNAT array descriptors. */
9485 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9486 else
4c4b4cd2 9487 return ada_value_ind (arg1);
14f9c5c9
AS
9488
9489 case STRUCTOP_STRUCT:
9490 tem = longest_to_int (exp->elts[pc + 1].longconst);
9491 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9493 if (noside == EVAL_SKIP)
4c4b4cd2 9494 goto nosideret;
14f9c5c9 9495 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9496 {
df407dfe 9497 struct type *type1 = value_type (arg1);
76a01679
JB
9498 if (ada_is_tagged_type (type1, 1))
9499 {
9500 type = ada_lookup_struct_elt_type (type1,
9501 &exp->elts[pc + 2].string,
9502 1, 1, NULL);
9503 if (type == NULL)
9504 /* In this case, we assume that the field COULD exist
9505 in some extension of the type. Return an object of
9506 "type" void, which will match any formal
9507 (see ada_type_match). */
30b15541
UW
9508 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9509 lval_memory);
76a01679
JB
9510 }
9511 else
9512 type =
9513 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9514 0, NULL);
9515
9516 return value_zero (ada_aligned_type (type), lval_memory);
9517 }
14f9c5c9 9518 else
284614f0
JB
9519 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9520 arg1 = unwrap_value (arg1);
9521 return ada_to_fixed_value (arg1);
9522
14f9c5c9 9523 case OP_TYPE:
4c4b4cd2
PH
9524 /* The value is not supposed to be used. This is here to make it
9525 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9526 (*pos) += 2;
9527 if (noside == EVAL_SKIP)
4c4b4cd2 9528 goto nosideret;
14f9c5c9 9529 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9530 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9531 else
323e0a4a 9532 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9533
9534 case OP_AGGREGATE:
9535 case OP_CHOICES:
9536 case OP_OTHERS:
9537 case OP_DISCRETE_RANGE:
9538 case OP_POSITIONAL:
9539 case OP_NAME:
9540 if (noside == EVAL_NORMAL)
9541 switch (op)
9542 {
9543 case OP_NAME:
9544 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9545 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9546 case OP_AGGREGATE:
9547 error (_("Aggregates only allowed on the right of an assignment"));
9548 default:
e1d5a0d2 9549 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9550 }
9551
9552 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9553 *pos += oplen - 1;
9554 for (tem = 0; tem < nargs; tem += 1)
9555 ada_evaluate_subexp (NULL, exp, pos, noside);
9556 goto nosideret;
14f9c5c9
AS
9557 }
9558
9559nosideret:
22601c15 9560 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9561}
14f9c5c9 9562\f
d2e4a39e 9563
4c4b4cd2 9564 /* Fixed point */
14f9c5c9
AS
9565
9566/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9567 type name that encodes the 'small and 'delta information.
4c4b4cd2 9568 Otherwise, return NULL. */
14f9c5c9 9569
d2e4a39e 9570static const char *
ebf56fd3 9571fixed_type_info (struct type *type)
14f9c5c9 9572{
d2e4a39e 9573 const char *name = ada_type_name (type);
14f9c5c9
AS
9574 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9575
d2e4a39e
AS
9576 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9577 {
14f9c5c9
AS
9578 const char *tail = strstr (name, "___XF_");
9579 if (tail == NULL)
4c4b4cd2 9580 return NULL;
d2e4a39e 9581 else
4c4b4cd2 9582 return tail + 5;
14f9c5c9
AS
9583 }
9584 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9585 return fixed_type_info (TYPE_TARGET_TYPE (type));
9586 else
9587 return NULL;
9588}
9589
4c4b4cd2 9590/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9591
9592int
ebf56fd3 9593ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9594{
9595 return fixed_type_info (type) != NULL;
9596}
9597
4c4b4cd2
PH
9598/* Return non-zero iff TYPE represents a System.Address type. */
9599
9600int
9601ada_is_system_address_type (struct type *type)
9602{
9603 return (TYPE_NAME (type)
9604 && strcmp (TYPE_NAME (type), "system__address") == 0);
9605}
9606
14f9c5c9
AS
9607/* Assuming that TYPE is the representation of an Ada fixed-point
9608 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9609 delta cannot be determined. */
14f9c5c9
AS
9610
9611DOUBLEST
ebf56fd3 9612ada_delta (struct type *type)
14f9c5c9
AS
9613{
9614 const char *encoding = fixed_type_info (type);
facc390f 9615 DOUBLEST num, den;
14f9c5c9 9616
facc390f
JB
9617 /* Strictly speaking, num and den are encoded as integer. However,
9618 they may not fit into a long, and they will have to be converted
9619 to DOUBLEST anyway. So scan them as DOUBLEST. */
9620 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9621 &num, &den) < 2)
14f9c5c9 9622 return -1.0;
d2e4a39e 9623 else
facc390f 9624 return num / den;
14f9c5c9
AS
9625}
9626
9627/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9628 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9629
9630static DOUBLEST
ebf56fd3 9631scaling_factor (struct type *type)
14f9c5c9
AS
9632{
9633 const char *encoding = fixed_type_info (type);
facc390f 9634 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9635 int n;
d2e4a39e 9636
facc390f
JB
9637 /* Strictly speaking, num's and den's are encoded as integer. However,
9638 they may not fit into a long, and they will have to be converted
9639 to DOUBLEST anyway. So scan them as DOUBLEST. */
9640 n = sscanf (encoding,
9641 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9642 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9643 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9644
9645 if (n < 2)
9646 return 1.0;
9647 else if (n == 4)
facc390f 9648 return num1 / den1;
d2e4a39e 9649 else
facc390f 9650 return num0 / den0;
14f9c5c9
AS
9651}
9652
9653
9654/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9655 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9656
9657DOUBLEST
ebf56fd3 9658ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9659{
d2e4a39e 9660 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9661}
9662
4c4b4cd2
PH
9663/* The representation of a fixed-point value of type TYPE
9664 corresponding to the value X. */
14f9c5c9
AS
9665
9666LONGEST
ebf56fd3 9667ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9668{
9669 return (LONGEST) (x / scaling_factor (type) + 0.5);
9670}
9671
9672
4c4b4cd2 9673 /* VAX floating formats */
14f9c5c9
AS
9674
9675/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9676 types. */
9677
14f9c5c9 9678int
d2e4a39e 9679ada_is_vax_floating_type (struct type *type)
14f9c5c9 9680{
d2e4a39e 9681 int name_len =
14f9c5c9 9682 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9683 return
14f9c5c9 9684 name_len > 6
d2e4a39e 9685 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9686 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9687 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9688}
9689
9690/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9691 ada_is_vax_floating_point. */
9692
14f9c5c9 9693int
d2e4a39e 9694ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9695{
d2e4a39e 9696 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9697}
9698
4c4b4cd2 9699/* A value representing the special debugging function that outputs
14f9c5c9 9700 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9701 ada_is_vax_floating_type (TYPE). */
9702
d2e4a39e
AS
9703struct value *
9704ada_vax_float_print_function (struct type *type)
9705{
9706 switch (ada_vax_float_type_suffix (type))
9707 {
9708 case 'F':
9709 return get_var_value ("DEBUG_STRING_F", 0);
9710 case 'D':
9711 return get_var_value ("DEBUG_STRING_D", 0);
9712 case 'G':
9713 return get_var_value ("DEBUG_STRING_G", 0);
9714 default:
323e0a4a 9715 error (_("invalid VAX floating-point type"));
d2e4a39e 9716 }
14f9c5c9 9717}
14f9c5c9 9718\f
d2e4a39e 9719
4c4b4cd2 9720 /* Range types */
14f9c5c9
AS
9721
9722/* Scan STR beginning at position K for a discriminant name, and
9723 return the value of that discriminant field of DVAL in *PX. If
9724 PNEW_K is not null, put the position of the character beyond the
9725 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9726 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9727
9728static int
07d8f827 9729scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9730 int *pnew_k)
14f9c5c9
AS
9731{
9732 static char *bound_buffer = NULL;
9733 static size_t bound_buffer_len = 0;
9734 char *bound;
9735 char *pend;
d2e4a39e 9736 struct value *bound_val;
14f9c5c9
AS
9737
9738 if (dval == NULL || str == NULL || str[k] == '\0')
9739 return 0;
9740
d2e4a39e 9741 pend = strstr (str + k, "__");
14f9c5c9
AS
9742 if (pend == NULL)
9743 {
d2e4a39e 9744 bound = str + k;
14f9c5c9
AS
9745 k += strlen (bound);
9746 }
d2e4a39e 9747 else
14f9c5c9 9748 {
d2e4a39e 9749 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9750 bound = bound_buffer;
d2e4a39e
AS
9751 strncpy (bound_buffer, str + k, pend - (str + k));
9752 bound[pend - (str + k)] = '\0';
9753 k = pend - str;
14f9c5c9 9754 }
d2e4a39e 9755
df407dfe 9756 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9757 if (bound_val == NULL)
9758 return 0;
9759
9760 *px = value_as_long (bound_val);
9761 if (pnew_k != NULL)
9762 *pnew_k = k;
9763 return 1;
9764}
9765
9766/* Value of variable named NAME in the current environment. If
9767 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9768 otherwise causes an error with message ERR_MSG. */
9769
d2e4a39e
AS
9770static struct value *
9771get_var_value (char *name, char *err_msg)
14f9c5c9 9772{
4c4b4cd2 9773 struct ada_symbol_info *syms;
14f9c5c9
AS
9774 int nsyms;
9775
4c4b4cd2
PH
9776 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9777 &syms);
14f9c5c9
AS
9778
9779 if (nsyms != 1)
9780 {
9781 if (err_msg == NULL)
4c4b4cd2 9782 return 0;
14f9c5c9 9783 else
8a3fe4f8 9784 error (("%s"), err_msg);
14f9c5c9
AS
9785 }
9786
4c4b4cd2 9787 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9788}
d2e4a39e 9789
14f9c5c9 9790/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9791 no such variable found, returns 0, and sets *FLAG to 0. If
9792 successful, sets *FLAG to 1. */
9793
14f9c5c9 9794LONGEST
4c4b4cd2 9795get_int_var_value (char *name, int *flag)
14f9c5c9 9796{
4c4b4cd2 9797 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9798
14f9c5c9
AS
9799 if (var_val == 0)
9800 {
9801 if (flag != NULL)
4c4b4cd2 9802 *flag = 0;
14f9c5c9
AS
9803 return 0;
9804 }
9805 else
9806 {
9807 if (flag != NULL)
4c4b4cd2 9808 *flag = 1;
14f9c5c9
AS
9809 return value_as_long (var_val);
9810 }
9811}
d2e4a39e 9812
14f9c5c9
AS
9813
9814/* Return a range type whose base type is that of the range type named
9815 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9816 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9817 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9818 corresponding range type from debug information; fall back to using it
9819 if symbol lookup fails. If a new type must be created, allocate it
9820 like ORIG_TYPE was. The bounds information, in general, is encoded
9821 in NAME, the base type given in the named range type. */
14f9c5c9 9822
d2e4a39e 9823static struct type *
1ce677a4 9824to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9825{
9826 struct type *raw_type = ada_find_any_type (name);
9827 struct type *base_type;
d2e4a39e 9828 char *subtype_info;
14f9c5c9 9829
1ce677a4 9830 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9831 if (raw_type == NULL)
1ce677a4 9832 raw_type = orig_type;
dddfab26 9833
1ce677a4 9834 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9835 base_type = TYPE_TARGET_TYPE (raw_type);
9836 else
9837 base_type = raw_type;
9838
9839 subtype_info = strstr (name, "___XD");
9840 if (subtype_info == NULL)
690cc4eb
PH
9841 {
9842 LONGEST L = discrete_type_low_bound (raw_type);
9843 LONGEST U = discrete_type_high_bound (raw_type);
9844 if (L < INT_MIN || U > INT_MAX)
9845 return raw_type;
9846 else
e9bb382b 9847 return create_range_type (alloc_type_copy (orig_type), raw_type,
690cc4eb
PH
9848 discrete_type_low_bound (raw_type),
9849 discrete_type_high_bound (raw_type));
9850 }
14f9c5c9
AS
9851 else
9852 {
9853 static char *name_buf = NULL;
9854 static size_t name_len = 0;
9855 int prefix_len = subtype_info - name;
9856 LONGEST L, U;
9857 struct type *type;
9858 char *bounds_str;
9859 int n;
9860
9861 GROW_VECT (name_buf, name_len, prefix_len + 5);
9862 strncpy (name_buf, name, prefix_len);
9863 name_buf[prefix_len] = '\0';
9864
9865 subtype_info += 5;
9866 bounds_str = strchr (subtype_info, '_');
9867 n = 1;
9868
d2e4a39e 9869 if (*subtype_info == 'L')
4c4b4cd2
PH
9870 {
9871 if (!ada_scan_number (bounds_str, n, &L, &n)
9872 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9873 return raw_type;
9874 if (bounds_str[n] == '_')
9875 n += 2;
9876 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9877 n += 1;
9878 subtype_info += 1;
9879 }
d2e4a39e 9880 else
4c4b4cd2
PH
9881 {
9882 int ok;
9883 strcpy (name_buf + prefix_len, "___L");
9884 L = get_int_var_value (name_buf, &ok);
9885 if (!ok)
9886 {
323e0a4a 9887 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9888 L = 1;
9889 }
9890 }
14f9c5c9 9891
d2e4a39e 9892 if (*subtype_info == 'U')
4c4b4cd2
PH
9893 {
9894 if (!ada_scan_number (bounds_str, n, &U, &n)
9895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9896 return raw_type;
9897 }
d2e4a39e 9898 else
4c4b4cd2
PH
9899 {
9900 int ok;
9901 strcpy (name_buf + prefix_len, "___U");
9902 U = get_int_var_value (name_buf, &ok);
9903 if (!ok)
9904 {
323e0a4a 9905 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9906 U = L;
9907 }
9908 }
14f9c5c9 9909
e9bb382b 9910 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9911 TYPE_NAME (type) = name;
14f9c5c9
AS
9912 return type;
9913 }
9914}
9915
4c4b4cd2
PH
9916/* True iff NAME is the name of a range type. */
9917
14f9c5c9 9918int
d2e4a39e 9919ada_is_range_type_name (const char *name)
14f9c5c9
AS
9920{
9921 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9922}
14f9c5c9 9923\f
d2e4a39e 9924
4c4b4cd2
PH
9925 /* Modular types */
9926
9927/* True iff TYPE is an Ada modular type. */
14f9c5c9 9928
14f9c5c9 9929int
d2e4a39e 9930ada_is_modular_type (struct type *type)
14f9c5c9 9931{
4c4b4cd2 9932 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9933
9934 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9935 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9936 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9937}
9938
0056e4d5
JB
9939/* Try to determine the lower and upper bounds of the given modular type
9940 using the type name only. Return non-zero and set L and U as the lower
9941 and upper bounds (respectively) if successful. */
9942
9943int
9944ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9945{
9946 char *name = ada_type_name (type);
9947 char *suffix;
9948 int k;
9949 LONGEST U;
9950
9951 if (name == NULL)
9952 return 0;
9953
9954 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9955 we are looking for static bounds, which means an __XDLU suffix.
9956 Moreover, we know that the lower bound of modular types is always
9957 zero, so the actual suffix should start with "__XDLU_0__", and
9958 then be followed by the upper bound value. */
9959 suffix = strstr (name, "__XDLU_0__");
9960 if (suffix == NULL)
9961 return 0;
9962 k = 10;
9963 if (!ada_scan_number (suffix, k, &U, NULL))
9964 return 0;
9965
9966 *modulus = (ULONGEST) U + 1;
9967 return 1;
9968}
9969
4c4b4cd2
PH
9970/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9971
61ee279c 9972ULONGEST
0056e4d5 9973ada_modulus (struct type *type)
14f9c5c9 9974{
0056e4d5
JB
9975 ULONGEST modulus;
9976
9977 /* Normally, the modulus of a modular type is equal to the value of
9978 its upper bound + 1. However, the upper bound is currently stored
9979 as an int, which is not always big enough to hold the actual bound
9980 value. To workaround this, try to take advantage of the encoding
9981 that GNAT uses with with discrete types. To avoid some unnecessary
9982 parsing, we do this only when the size of TYPE is greater than
9983 the size of the field holding the bound. */
9984 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9985 && ada_modulus_from_name (type, &modulus))
9986 return modulus;
9987
d37209fd 9988 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9989}
d2e4a39e 9990\f
f7f9143b
JB
9991
9992/* Ada exception catchpoint support:
9993 ---------------------------------
9994
9995 We support 3 kinds of exception catchpoints:
9996 . catchpoints on Ada exceptions
9997 . catchpoints on unhandled Ada exceptions
9998 . catchpoints on failed assertions
9999
10000 Exceptions raised during failed assertions, or unhandled exceptions
10001 could perfectly be caught with the general catchpoint on Ada exceptions.
10002 However, we can easily differentiate these two special cases, and having
10003 the option to distinguish these two cases from the rest can be useful
10004 to zero-in on certain situations.
10005
10006 Exception catchpoints are a specialized form of breakpoint,
10007 since they rely on inserting breakpoints inside known routines
10008 of the GNAT runtime. The implementation therefore uses a standard
10009 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10010 of breakpoint_ops.
10011
0259addd
JB
10012 Support in the runtime for exception catchpoints have been changed
10013 a few times already, and these changes affect the implementation
10014 of these catchpoints. In order to be able to support several
10015 variants of the runtime, we use a sniffer that will determine
10016 the runtime variant used by the program being debugged.
10017
f7f9143b
JB
10018 At this time, we do not support the use of conditions on Ada exception
10019 catchpoints. The COND and COND_STRING fields are therefore set
10020 to NULL (most of the time, see below).
10021
10022 Conditions where EXP_STRING, COND, and COND_STRING are used:
10023
10024 When a user specifies the name of a specific exception in the case
10025 of catchpoints on Ada exceptions, we store the name of that exception
10026 in the EXP_STRING. We then translate this request into an actual
10027 condition stored in COND_STRING, and then parse it into an expression
10028 stored in COND. */
10029
10030/* The different types of catchpoints that we introduced for catching
10031 Ada exceptions. */
10032
10033enum exception_catchpoint_kind
10034{
10035 ex_catch_exception,
10036 ex_catch_exception_unhandled,
10037 ex_catch_assert
10038};
10039
3d0b0fa3
JB
10040/* Ada's standard exceptions. */
10041
10042static char *standard_exc[] = {
10043 "constraint_error",
10044 "program_error",
10045 "storage_error",
10046 "tasking_error"
10047};
10048
0259addd
JB
10049typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10050
10051/* A structure that describes how to support exception catchpoints
10052 for a given executable. */
10053
10054struct exception_support_info
10055{
10056 /* The name of the symbol to break on in order to insert
10057 a catchpoint on exceptions. */
10058 const char *catch_exception_sym;
10059
10060 /* The name of the symbol to break on in order to insert
10061 a catchpoint on unhandled exceptions. */
10062 const char *catch_exception_unhandled_sym;
10063
10064 /* The name of the symbol to break on in order to insert
10065 a catchpoint on failed assertions. */
10066 const char *catch_assert_sym;
10067
10068 /* Assuming that the inferior just triggered an unhandled exception
10069 catchpoint, this function is responsible for returning the address
10070 in inferior memory where the name of that exception is stored.
10071 Return zero if the address could not be computed. */
10072 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10073};
10074
10075static CORE_ADDR ada_unhandled_exception_name_addr (void);
10076static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10077
10078/* The following exception support info structure describes how to
10079 implement exception catchpoints with the latest version of the
10080 Ada runtime (as of 2007-03-06). */
10081
10082static const struct exception_support_info default_exception_support_info =
10083{
10084 "__gnat_debug_raise_exception", /* catch_exception_sym */
10085 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10086 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10087 ada_unhandled_exception_name_addr
10088};
10089
10090/* The following exception support info structure describes how to
10091 implement exception catchpoints with a slightly older version
10092 of the Ada runtime. */
10093
10094static const struct exception_support_info exception_support_info_fallback =
10095{
10096 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10097 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10098 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10099 ada_unhandled_exception_name_addr_from_raise
10100};
10101
10102/* For each executable, we sniff which exception info structure to use
10103 and cache it in the following global variable. */
10104
10105static const struct exception_support_info *exception_info = NULL;
10106
10107/* Inspect the Ada runtime and determine which exception info structure
10108 should be used to provide support for exception catchpoints.
10109
10110 This function will always set exception_info, or raise an error. */
10111
10112static void
10113ada_exception_support_info_sniffer (void)
10114{
10115 struct symbol *sym;
10116
10117 /* If the exception info is already known, then no need to recompute it. */
10118 if (exception_info != NULL)
10119 return;
10120
10121 /* Check the latest (default) exception support info. */
10122 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10123 NULL, VAR_DOMAIN);
10124 if (sym != NULL)
10125 {
10126 exception_info = &default_exception_support_info;
10127 return;
10128 }
10129
10130 /* Try our fallback exception suport info. */
10131 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10132 NULL, VAR_DOMAIN);
10133 if (sym != NULL)
10134 {
10135 exception_info = &exception_support_info_fallback;
10136 return;
10137 }
10138
10139 /* Sometimes, it is normal for us to not be able to find the routine
10140 we are looking for. This happens when the program is linked with
10141 the shared version of the GNAT runtime, and the program has not been
10142 started yet. Inform the user of these two possible causes if
10143 applicable. */
10144
10145 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10147
10148 /* If the symbol does not exist, then check that the program is
10149 already started, to make sure that shared libraries have been
10150 loaded. If it is not started, this may mean that the symbol is
10151 in a shared library. */
10152
10153 if (ptid_get_pid (inferior_ptid) == 0)
10154 error (_("Unable to insert catchpoint. Try to start the program first."));
10155
10156 /* At this point, we know that we are debugging an Ada program and
10157 that the inferior has been started, but we still are not able to
10158 find the run-time symbols. That can mean that we are in
10159 configurable run time mode, or that a-except as been optimized
10160 out by the linker... In any case, at this point it is not worth
10161 supporting this feature. */
10162
10163 error (_("Cannot insert catchpoints in this configuration."));
10164}
10165
10166/* An observer of "executable_changed" events.
10167 Its role is to clear certain cached values that need to be recomputed
10168 each time a new executable is loaded by GDB. */
10169
10170static void
781b42b0 10171ada_executable_changed_observer (void)
0259addd
JB
10172{
10173 /* If the executable changed, then it is possible that the Ada runtime
10174 is different. So we need to invalidate the exception support info
10175 cache. */
10176 exception_info = NULL;
10177}
10178
f7f9143b
JB
10179/* Return the name of the function at PC, NULL if could not find it.
10180 This function only checks the debugging information, not the symbol
10181 table. */
10182
10183static char *
10184function_name_from_pc (CORE_ADDR pc)
10185{
10186 char *func_name;
10187
10188 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10189 return NULL;
10190
10191 return func_name;
10192}
10193
10194/* True iff FRAME is very likely to be that of a function that is
10195 part of the runtime system. This is all very heuristic, but is
10196 intended to be used as advice as to what frames are uninteresting
10197 to most users. */
10198
10199static int
10200is_known_support_routine (struct frame_info *frame)
10201{
4ed6b5be 10202 struct symtab_and_line sal;
f7f9143b
JB
10203 char *func_name;
10204 int i;
f7f9143b 10205
4ed6b5be
JB
10206 /* If this code does not have any debugging information (no symtab),
10207 This cannot be any user code. */
f7f9143b 10208
4ed6b5be 10209 find_frame_sal (frame, &sal);
f7f9143b
JB
10210 if (sal.symtab == NULL)
10211 return 1;
10212
4ed6b5be
JB
10213 /* If there is a symtab, but the associated source file cannot be
10214 located, then assume this is not user code: Selecting a frame
10215 for which we cannot display the code would not be very helpful
10216 for the user. This should also take care of case such as VxWorks
10217 where the kernel has some debugging info provided for a few units. */
f7f9143b 10218
9bbc9174 10219 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10220 return 1;
10221
4ed6b5be
JB
10222 /* Check the unit filename againt the Ada runtime file naming.
10223 We also check the name of the objfile against the name of some
10224 known system libraries that sometimes come with debugging info
10225 too. */
10226
f7f9143b
JB
10227 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10228 {
10229 re_comp (known_runtime_file_name_patterns[i]);
10230 if (re_exec (sal.symtab->filename))
10231 return 1;
4ed6b5be
JB
10232 if (sal.symtab->objfile != NULL
10233 && re_exec (sal.symtab->objfile->name))
10234 return 1;
f7f9143b
JB
10235 }
10236
4ed6b5be 10237 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10238
4ed6b5be 10239 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10240 if (func_name == NULL)
10241 return 1;
10242
10243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10244 {
10245 re_comp (known_auxiliary_function_name_patterns[i]);
10246 if (re_exec (func_name))
10247 return 1;
10248 }
10249
10250 return 0;
10251}
10252
10253/* Find the first frame that contains debugging information and that is not
10254 part of the Ada run-time, starting from FI and moving upward. */
10255
0ef643c8 10256void
f7f9143b
JB
10257ada_find_printable_frame (struct frame_info *fi)
10258{
10259 for (; fi != NULL; fi = get_prev_frame (fi))
10260 {
10261 if (!is_known_support_routine (fi))
10262 {
10263 select_frame (fi);
10264 break;
10265 }
10266 }
10267
10268}
10269
10270/* Assuming that the inferior just triggered an unhandled exception
10271 catchpoint, return the address in inferior memory where the name
10272 of the exception is stored.
10273
10274 Return zero if the address could not be computed. */
10275
10276static CORE_ADDR
10277ada_unhandled_exception_name_addr (void)
0259addd
JB
10278{
10279 return parse_and_eval_address ("e.full_name");
10280}
10281
10282/* Same as ada_unhandled_exception_name_addr, except that this function
10283 should be used when the inferior uses an older version of the runtime,
10284 where the exception name needs to be extracted from a specific frame
10285 several frames up in the callstack. */
10286
10287static CORE_ADDR
10288ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10289{
10290 int frame_level;
10291 struct frame_info *fi;
10292
10293 /* To determine the name of this exception, we need to select
10294 the frame corresponding to RAISE_SYM_NAME. This frame is
10295 at least 3 levels up, so we simply skip the first 3 frames
10296 without checking the name of their associated function. */
10297 fi = get_current_frame ();
10298 for (frame_level = 0; frame_level < 3; frame_level += 1)
10299 if (fi != NULL)
10300 fi = get_prev_frame (fi);
10301
10302 while (fi != NULL)
10303 {
10304 const char *func_name =
10305 function_name_from_pc (get_frame_address_in_block (fi));
10306 if (func_name != NULL
0259addd 10307 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10308 break; /* We found the frame we were looking for... */
10309 fi = get_prev_frame (fi);
10310 }
10311
10312 if (fi == NULL)
10313 return 0;
10314
10315 select_frame (fi);
10316 return parse_and_eval_address ("id.full_name");
10317}
10318
10319/* Assuming the inferior just triggered an Ada exception catchpoint
10320 (of any type), return the address in inferior memory where the name
10321 of the exception is stored, if applicable.
10322
10323 Return zero if the address could not be computed, or if not relevant. */
10324
10325static CORE_ADDR
10326ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10327 struct breakpoint *b)
10328{
10329 switch (ex)
10330 {
10331 case ex_catch_exception:
10332 return (parse_and_eval_address ("e.full_name"));
10333 break;
10334
10335 case ex_catch_exception_unhandled:
0259addd 10336 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10337 break;
10338
10339 case ex_catch_assert:
10340 return 0; /* Exception name is not relevant in this case. */
10341 break;
10342
10343 default:
10344 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10345 break;
10346 }
10347
10348 return 0; /* Should never be reached. */
10349}
10350
10351/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10352 any error that ada_exception_name_addr_1 might cause to be thrown.
10353 When an error is intercepted, a warning with the error message is printed,
10354 and zero is returned. */
10355
10356static CORE_ADDR
10357ada_exception_name_addr (enum exception_catchpoint_kind ex,
10358 struct breakpoint *b)
10359{
10360 struct gdb_exception e;
10361 CORE_ADDR result = 0;
10362
10363 TRY_CATCH (e, RETURN_MASK_ERROR)
10364 {
10365 result = ada_exception_name_addr_1 (ex, b);
10366 }
10367
10368 if (e.reason < 0)
10369 {
10370 warning (_("failed to get exception name: %s"), e.message);
10371 return 0;
10372 }
10373
10374 return result;
10375}
10376
10377/* Implement the PRINT_IT method in the breakpoint_ops structure
10378 for all exception catchpoint kinds. */
10379
10380static enum print_stop_action
10381print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10382{
10383 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10384 char exception_name[256];
10385
10386 if (addr != 0)
10387 {
10388 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10389 exception_name [sizeof (exception_name) - 1] = '\0';
10390 }
10391
10392 ada_find_printable_frame (get_current_frame ());
10393
10394 annotate_catchpoint (b->number);
10395 switch (ex)
10396 {
10397 case ex_catch_exception:
10398 if (addr != 0)
10399 printf_filtered (_("\nCatchpoint %d, %s at "),
10400 b->number, exception_name);
10401 else
10402 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10403 break;
10404 case ex_catch_exception_unhandled:
10405 if (addr != 0)
10406 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10407 b->number, exception_name);
10408 else
10409 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10410 b->number);
10411 break;
10412 case ex_catch_assert:
10413 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10414 b->number);
10415 break;
10416 }
10417
10418 return PRINT_SRC_AND_LOC;
10419}
10420
10421/* Implement the PRINT_ONE method in the breakpoint_ops structure
10422 for all exception catchpoint kinds. */
10423
10424static void
10425print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10426 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10427{
79a45b7d
TT
10428 struct value_print_options opts;
10429
10430 get_user_print_options (&opts);
10431 if (opts.addressprint)
f7f9143b
JB
10432 {
10433 annotate_field (4);
5af949e3 10434 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10435 }
10436
10437 annotate_field (5);
a6d9a66e 10438 *last_loc = b->loc;
f7f9143b
JB
10439 switch (ex)
10440 {
10441 case ex_catch_exception:
10442 if (b->exp_string != NULL)
10443 {
10444 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10445
10446 ui_out_field_string (uiout, "what", msg);
10447 xfree (msg);
10448 }
10449 else
10450 ui_out_field_string (uiout, "what", "all Ada exceptions");
10451
10452 break;
10453
10454 case ex_catch_exception_unhandled:
10455 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10456 break;
10457
10458 case ex_catch_assert:
10459 ui_out_field_string (uiout, "what", "failed Ada assertions");
10460 break;
10461
10462 default:
10463 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10464 break;
10465 }
10466}
10467
10468/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10469 for all exception catchpoint kinds. */
10470
10471static void
10472print_mention_exception (enum exception_catchpoint_kind ex,
10473 struct breakpoint *b)
10474{
10475 switch (ex)
10476 {
10477 case ex_catch_exception:
10478 if (b->exp_string != NULL)
10479 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10480 b->number, b->exp_string);
10481 else
10482 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10483
10484 break;
10485
10486 case ex_catch_exception_unhandled:
10487 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10488 b->number);
10489 break;
10490
10491 case ex_catch_assert:
10492 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10493 break;
10494
10495 default:
10496 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10497 break;
10498 }
10499}
10500
10501/* Virtual table for "catch exception" breakpoints. */
10502
10503static enum print_stop_action
10504print_it_catch_exception (struct breakpoint *b)
10505{
10506 return print_it_exception (ex_catch_exception, b);
10507}
10508
10509static void
a6d9a66e 10510print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10511{
a6d9a66e 10512 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10513}
10514
10515static void
10516print_mention_catch_exception (struct breakpoint *b)
10517{
10518 print_mention_exception (ex_catch_exception, b);
10519}
10520
10521static struct breakpoint_ops catch_exception_breakpoint_ops =
10522{
ce78b96d
JB
10523 NULL, /* insert */
10524 NULL, /* remove */
10525 NULL, /* breakpoint_hit */
f7f9143b
JB
10526 print_it_catch_exception,
10527 print_one_catch_exception,
10528 print_mention_catch_exception
10529};
10530
10531/* Virtual table for "catch exception unhandled" breakpoints. */
10532
10533static enum print_stop_action
10534print_it_catch_exception_unhandled (struct breakpoint *b)
10535{
10536 return print_it_exception (ex_catch_exception_unhandled, b);
10537}
10538
10539static void
a6d9a66e
UW
10540print_one_catch_exception_unhandled (struct breakpoint *b,
10541 struct bp_location **last_loc)
f7f9143b 10542{
a6d9a66e 10543 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10544}
10545
10546static void
10547print_mention_catch_exception_unhandled (struct breakpoint *b)
10548{
10549 print_mention_exception (ex_catch_exception_unhandled, b);
10550}
10551
10552static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10553 NULL, /* insert */
10554 NULL, /* remove */
10555 NULL, /* breakpoint_hit */
f7f9143b
JB
10556 print_it_catch_exception_unhandled,
10557 print_one_catch_exception_unhandled,
10558 print_mention_catch_exception_unhandled
10559};
10560
10561/* Virtual table for "catch assert" breakpoints. */
10562
10563static enum print_stop_action
10564print_it_catch_assert (struct breakpoint *b)
10565{
10566 return print_it_exception (ex_catch_assert, b);
10567}
10568
10569static void
a6d9a66e 10570print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10571{
a6d9a66e 10572 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10573}
10574
10575static void
10576print_mention_catch_assert (struct breakpoint *b)
10577{
10578 print_mention_exception (ex_catch_assert, b);
10579}
10580
10581static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10582 NULL, /* insert */
10583 NULL, /* remove */
10584 NULL, /* breakpoint_hit */
f7f9143b
JB
10585 print_it_catch_assert,
10586 print_one_catch_assert,
10587 print_mention_catch_assert
10588};
10589
10590/* Return non-zero if B is an Ada exception catchpoint. */
10591
10592int
10593ada_exception_catchpoint_p (struct breakpoint *b)
10594{
10595 return (b->ops == &catch_exception_breakpoint_ops
10596 || b->ops == &catch_exception_unhandled_breakpoint_ops
10597 || b->ops == &catch_assert_breakpoint_ops);
10598}
10599
f7f9143b
JB
10600/* Return a newly allocated copy of the first space-separated token
10601 in ARGSP, and then adjust ARGSP to point immediately after that
10602 token.
10603
10604 Return NULL if ARGPS does not contain any more tokens. */
10605
10606static char *
10607ada_get_next_arg (char **argsp)
10608{
10609 char *args = *argsp;
10610 char *end;
10611 char *result;
10612
10613 /* Skip any leading white space. */
10614
10615 while (isspace (*args))
10616 args++;
10617
10618 if (args[0] == '\0')
10619 return NULL; /* No more arguments. */
10620
10621 /* Find the end of the current argument. */
10622
10623 end = args;
10624 while (*end != '\0' && !isspace (*end))
10625 end++;
10626
10627 /* Adjust ARGSP to point to the start of the next argument. */
10628
10629 *argsp = end;
10630
10631 /* Make a copy of the current argument and return it. */
10632
10633 result = xmalloc (end - args + 1);
10634 strncpy (result, args, end - args);
10635 result[end - args] = '\0';
10636
10637 return result;
10638}
10639
10640/* Split the arguments specified in a "catch exception" command.
10641 Set EX to the appropriate catchpoint type.
10642 Set EXP_STRING to the name of the specific exception if
10643 specified by the user. */
10644
10645static void
10646catch_ada_exception_command_split (char *args,
10647 enum exception_catchpoint_kind *ex,
10648 char **exp_string)
10649{
10650 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10651 char *exception_name;
10652
10653 exception_name = ada_get_next_arg (&args);
10654 make_cleanup (xfree, exception_name);
10655
10656 /* Check that we do not have any more arguments. Anything else
10657 is unexpected. */
10658
10659 while (isspace (*args))
10660 args++;
10661
10662 if (args[0] != '\0')
10663 error (_("Junk at end of expression"));
10664
10665 discard_cleanups (old_chain);
10666
10667 if (exception_name == NULL)
10668 {
10669 /* Catch all exceptions. */
10670 *ex = ex_catch_exception;
10671 *exp_string = NULL;
10672 }
10673 else if (strcmp (exception_name, "unhandled") == 0)
10674 {
10675 /* Catch unhandled exceptions. */
10676 *ex = ex_catch_exception_unhandled;
10677 *exp_string = NULL;
10678 }
10679 else
10680 {
10681 /* Catch a specific exception. */
10682 *ex = ex_catch_exception;
10683 *exp_string = exception_name;
10684 }
10685}
10686
10687/* Return the name of the symbol on which we should break in order to
10688 implement a catchpoint of the EX kind. */
10689
10690static const char *
10691ada_exception_sym_name (enum exception_catchpoint_kind ex)
10692{
0259addd
JB
10693 gdb_assert (exception_info != NULL);
10694
f7f9143b
JB
10695 switch (ex)
10696 {
10697 case ex_catch_exception:
0259addd 10698 return (exception_info->catch_exception_sym);
f7f9143b
JB
10699 break;
10700 case ex_catch_exception_unhandled:
0259addd 10701 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10702 break;
10703 case ex_catch_assert:
0259addd 10704 return (exception_info->catch_assert_sym);
f7f9143b
JB
10705 break;
10706 default:
10707 internal_error (__FILE__, __LINE__,
10708 _("unexpected catchpoint kind (%d)"), ex);
10709 }
10710}
10711
10712/* Return the breakpoint ops "virtual table" used for catchpoints
10713 of the EX kind. */
10714
10715static struct breakpoint_ops *
4b9eee8c 10716ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10717{
10718 switch (ex)
10719 {
10720 case ex_catch_exception:
10721 return (&catch_exception_breakpoint_ops);
10722 break;
10723 case ex_catch_exception_unhandled:
10724 return (&catch_exception_unhandled_breakpoint_ops);
10725 break;
10726 case ex_catch_assert:
10727 return (&catch_assert_breakpoint_ops);
10728 break;
10729 default:
10730 internal_error (__FILE__, __LINE__,
10731 _("unexpected catchpoint kind (%d)"), ex);
10732 }
10733}
10734
10735/* Return the condition that will be used to match the current exception
10736 being raised with the exception that the user wants to catch. This
10737 assumes that this condition is used when the inferior just triggered
10738 an exception catchpoint.
10739
10740 The string returned is a newly allocated string that needs to be
10741 deallocated later. */
10742
10743static char *
10744ada_exception_catchpoint_cond_string (const char *exp_string)
10745{
3d0b0fa3
JB
10746 int i;
10747
10748 /* The standard exceptions are a special case. They are defined in
10749 runtime units that have been compiled without debugging info; if
10750 EXP_STRING is the not-fully-qualified name of a standard
10751 exception (e.g. "constraint_error") then, during the evaluation
10752 of the condition expression, the symbol lookup on this name would
10753 *not* return this standard exception. The catchpoint condition
10754 may then be set only on user-defined exceptions which have the
10755 same not-fully-qualified name (e.g. my_package.constraint_error).
10756
10757 To avoid this unexcepted behavior, these standard exceptions are
10758 systematically prefixed by "standard". This means that "catch
10759 exception constraint_error" is rewritten into "catch exception
10760 standard.constraint_error".
10761
10762 If an exception named contraint_error is defined in another package of
10763 the inferior program, then the only way to specify this exception as a
10764 breakpoint condition is to use its fully-qualified named:
10765 e.g. my_package.constraint_error. */
10766
10767 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10768 {
10769 if (strcmp (standard_exc [i], exp_string) == 0)
10770 {
10771 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10772 exp_string);
10773 }
10774 }
f7f9143b
JB
10775 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10776}
10777
10778/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10779
10780static struct expression *
10781ada_parse_catchpoint_condition (char *cond_string,
10782 struct symtab_and_line sal)
10783{
10784 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10785}
10786
10787/* Return the symtab_and_line that should be used to insert an exception
10788 catchpoint of the TYPE kind.
10789
10790 EX_STRING should contain the name of a specific exception
10791 that the catchpoint should catch, or NULL otherwise.
10792
10793 The idea behind all the remaining parameters is that their names match
10794 the name of certain fields in the breakpoint structure that are used to
10795 handle exception catchpoints. This function returns the value to which
10796 these fields should be set, depending on the type of catchpoint we need
10797 to create.
10798
10799 If COND and COND_STRING are both non-NULL, any value they might
10800 hold will be free'ed, and then replaced by newly allocated ones.
10801 These parameters are left untouched otherwise. */
10802
10803static struct symtab_and_line
10804ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10805 char **addr_string, char **cond_string,
10806 struct expression **cond, struct breakpoint_ops **ops)
10807{
10808 const char *sym_name;
10809 struct symbol *sym;
10810 struct symtab_and_line sal;
10811
0259addd
JB
10812 /* First, find out which exception support info to use. */
10813 ada_exception_support_info_sniffer ();
10814
10815 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10816 the Ada exceptions requested by the user. */
10817
10818 sym_name = ada_exception_sym_name (ex);
10819 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10820
10821 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10822 that should be compiled with debugging information. As a result, we
10823 expect to find that symbol in the symtabs. If we don't find it, then
10824 the target most likely does not support Ada exceptions, or we cannot
10825 insert exception breakpoints yet, because the GNAT runtime hasn't been
10826 loaded yet. */
10827
10828 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10829 in such a way that no debugging information is produced for the symbol
10830 we are looking for. In this case, we could search the minimal symbols
10831 as a fall-back mechanism. This would still be operating in degraded
10832 mode, however, as we would still be missing the debugging information
10833 that is needed in order to extract the name of the exception being
10834 raised (this name is printed in the catchpoint message, and is also
10835 used when trying to catch a specific exception). We do not handle
10836 this case for now. */
10837
10838 if (sym == NULL)
0259addd 10839 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10840
10841 /* Make sure that the symbol we found corresponds to a function. */
10842 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10843 error (_("Symbol \"%s\" is not a function (class = %d)"),
10844 sym_name, SYMBOL_CLASS (sym));
10845
10846 sal = find_function_start_sal (sym, 1);
10847
10848 /* Set ADDR_STRING. */
10849
10850 *addr_string = xstrdup (sym_name);
10851
10852 /* Set the COND and COND_STRING (if not NULL). */
10853
10854 if (cond_string != NULL && cond != NULL)
10855 {
10856 if (*cond_string != NULL)
10857 {
10858 xfree (*cond_string);
10859 *cond_string = NULL;
10860 }
10861 if (*cond != NULL)
10862 {
10863 xfree (*cond);
10864 *cond = NULL;
10865 }
10866 if (exp_string != NULL)
10867 {
10868 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10869 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10870 }
10871 }
10872
10873 /* Set OPS. */
4b9eee8c 10874 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10875
10876 return sal;
10877}
10878
10879/* Parse the arguments (ARGS) of the "catch exception" command.
10880
10881 Set TYPE to the appropriate exception catchpoint type.
10882 If the user asked the catchpoint to catch only a specific
10883 exception, then save the exception name in ADDR_STRING.
10884
10885 See ada_exception_sal for a description of all the remaining
10886 function arguments of this function. */
10887
10888struct symtab_and_line
10889ada_decode_exception_location (char *args, char **addr_string,
10890 char **exp_string, char **cond_string,
10891 struct expression **cond,
10892 struct breakpoint_ops **ops)
10893{
10894 enum exception_catchpoint_kind ex;
10895
10896 catch_ada_exception_command_split (args, &ex, exp_string);
10897 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10898 cond, ops);
10899}
10900
10901struct symtab_and_line
10902ada_decode_assert_location (char *args, char **addr_string,
10903 struct breakpoint_ops **ops)
10904{
10905 /* Check that no argument where provided at the end of the command. */
10906
10907 if (args != NULL)
10908 {
10909 while (isspace (*args))
10910 args++;
10911 if (*args != '\0')
10912 error (_("Junk at end of arguments."));
10913 }
10914
10915 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10916 ops);
10917}
10918
4c4b4cd2
PH
10919 /* Operators */
10920/* Information about operators given special treatment in functions
10921 below. */
10922/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10923
10924#define ADA_OPERATORS \
10925 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10926 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10927 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10928 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10929 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10930 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10931 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10932 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10933 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10934 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10935 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10936 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10937 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10938 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10939 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10940 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10941 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10942 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10943 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10944
10945static void
10946ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10947{
10948 switch (exp->elts[pc - 1].opcode)
10949 {
76a01679 10950 default:
4c4b4cd2
PH
10951 operator_length_standard (exp, pc, oplenp, argsp);
10952 break;
10953
10954#define OP_DEFN(op, len, args, binop) \
10955 case op: *oplenp = len; *argsp = args; break;
10956 ADA_OPERATORS;
10957#undef OP_DEFN
52ce6436
PH
10958
10959 case OP_AGGREGATE:
10960 *oplenp = 3;
10961 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10962 break;
10963
10964 case OP_CHOICES:
10965 *oplenp = 3;
10966 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10967 break;
4c4b4cd2
PH
10968 }
10969}
10970
10971static char *
10972ada_op_name (enum exp_opcode opcode)
10973{
10974 switch (opcode)
10975 {
76a01679 10976 default:
4c4b4cd2 10977 return op_name_standard (opcode);
52ce6436 10978
4c4b4cd2
PH
10979#define OP_DEFN(op, len, args, binop) case op: return #op;
10980 ADA_OPERATORS;
10981#undef OP_DEFN
52ce6436
PH
10982
10983 case OP_AGGREGATE:
10984 return "OP_AGGREGATE";
10985 case OP_CHOICES:
10986 return "OP_CHOICES";
10987 case OP_NAME:
10988 return "OP_NAME";
4c4b4cd2
PH
10989 }
10990}
10991
10992/* As for operator_length, but assumes PC is pointing at the first
10993 element of the operator, and gives meaningful results only for the
52ce6436 10994 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10995
10996static void
76a01679
JB
10997ada_forward_operator_length (struct expression *exp, int pc,
10998 int *oplenp, int *argsp)
4c4b4cd2 10999{
76a01679 11000 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11001 {
11002 default:
11003 *oplenp = *argsp = 0;
11004 break;
52ce6436 11005
4c4b4cd2
PH
11006#define OP_DEFN(op, len, args, binop) \
11007 case op: *oplenp = len; *argsp = args; break;
11008 ADA_OPERATORS;
11009#undef OP_DEFN
52ce6436
PH
11010
11011 case OP_AGGREGATE:
11012 *oplenp = 3;
11013 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11014 break;
11015
11016 case OP_CHOICES:
11017 *oplenp = 3;
11018 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11019 break;
11020
11021 case OP_STRING:
11022 case OP_NAME:
11023 {
11024 int len = longest_to_int (exp->elts[pc + 1].longconst);
11025 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11026 *argsp = 0;
11027 break;
11028 }
4c4b4cd2
PH
11029 }
11030}
11031
11032static int
11033ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11034{
11035 enum exp_opcode op = exp->elts[elt].opcode;
11036 int oplen, nargs;
11037 int pc = elt;
11038 int i;
76a01679 11039
4c4b4cd2
PH
11040 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11041
76a01679 11042 switch (op)
4c4b4cd2 11043 {
76a01679 11044 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11045 case OP_ATR_FIRST:
11046 case OP_ATR_LAST:
11047 case OP_ATR_LENGTH:
11048 case OP_ATR_IMAGE:
11049 case OP_ATR_MAX:
11050 case OP_ATR_MIN:
11051 case OP_ATR_MODULUS:
11052 case OP_ATR_POS:
11053 case OP_ATR_SIZE:
11054 case OP_ATR_TAG:
11055 case OP_ATR_VAL:
11056 break;
11057
11058 case UNOP_IN_RANGE:
11059 case UNOP_QUAL:
323e0a4a
AC
11060 /* XXX: gdb_sprint_host_address, type_sprint */
11061 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11062 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11063 fprintf_filtered (stream, " (");
11064 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11065 fprintf_filtered (stream, ")");
11066 break;
11067 case BINOP_IN_BOUNDS:
52ce6436
PH
11068 fprintf_filtered (stream, " (%d)",
11069 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11070 break;
11071 case TERNOP_IN_RANGE:
11072 break;
11073
52ce6436
PH
11074 case OP_AGGREGATE:
11075 case OP_OTHERS:
11076 case OP_DISCRETE_RANGE:
11077 case OP_POSITIONAL:
11078 case OP_CHOICES:
11079 break;
11080
11081 case OP_NAME:
11082 case OP_STRING:
11083 {
11084 char *name = &exp->elts[elt + 2].string;
11085 int len = longest_to_int (exp->elts[elt + 1].longconst);
11086 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11087 break;
11088 }
11089
4c4b4cd2
PH
11090 default:
11091 return dump_subexp_body_standard (exp, stream, elt);
11092 }
11093
11094 elt += oplen;
11095 for (i = 0; i < nargs; i += 1)
11096 elt = dump_subexp (exp, stream, elt);
11097
11098 return elt;
11099}
11100
11101/* The Ada extension of print_subexp (q.v.). */
11102
76a01679
JB
11103static void
11104ada_print_subexp (struct expression *exp, int *pos,
11105 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11106{
52ce6436 11107 int oplen, nargs, i;
4c4b4cd2
PH
11108 int pc = *pos;
11109 enum exp_opcode op = exp->elts[pc].opcode;
11110
11111 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11112
52ce6436 11113 *pos += oplen;
4c4b4cd2
PH
11114 switch (op)
11115 {
11116 default:
52ce6436 11117 *pos -= oplen;
4c4b4cd2
PH
11118 print_subexp_standard (exp, pos, stream, prec);
11119 return;
11120
11121 case OP_VAR_VALUE:
4c4b4cd2
PH
11122 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11123 return;
11124
11125 case BINOP_IN_BOUNDS:
323e0a4a 11126 /* XXX: sprint_subexp */
4c4b4cd2 11127 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11128 fputs_filtered (" in ", stream);
4c4b4cd2 11129 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11130 fputs_filtered ("'range", stream);
4c4b4cd2 11131 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11132 fprintf_filtered (stream, "(%ld)",
11133 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11134 return;
11135
11136 case TERNOP_IN_RANGE:
4c4b4cd2 11137 if (prec >= PREC_EQUAL)
76a01679 11138 fputs_filtered ("(", stream);
323e0a4a 11139 /* XXX: sprint_subexp */
4c4b4cd2 11140 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11141 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11142 print_subexp (exp, pos, stream, PREC_EQUAL);
11143 fputs_filtered (" .. ", stream);
11144 print_subexp (exp, pos, stream, PREC_EQUAL);
11145 if (prec >= PREC_EQUAL)
76a01679
JB
11146 fputs_filtered (")", stream);
11147 return;
4c4b4cd2
PH
11148
11149 case OP_ATR_FIRST:
11150 case OP_ATR_LAST:
11151 case OP_ATR_LENGTH:
11152 case OP_ATR_IMAGE:
11153 case OP_ATR_MAX:
11154 case OP_ATR_MIN:
11155 case OP_ATR_MODULUS:
11156 case OP_ATR_POS:
11157 case OP_ATR_SIZE:
11158 case OP_ATR_TAG:
11159 case OP_ATR_VAL:
4c4b4cd2 11160 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11161 {
11162 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11163 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11164 *pos += 3;
11165 }
4c4b4cd2 11166 else
76a01679 11167 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11168 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11169 if (nargs > 1)
76a01679
JB
11170 {
11171 int tem;
11172 for (tem = 1; tem < nargs; tem += 1)
11173 {
11174 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11175 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11176 }
11177 fputs_filtered (")", stream);
11178 }
4c4b4cd2 11179 return;
14f9c5c9 11180
4c4b4cd2 11181 case UNOP_QUAL:
4c4b4cd2
PH
11182 type_print (exp->elts[pc + 1].type, "", stream, 0);
11183 fputs_filtered ("'(", stream);
11184 print_subexp (exp, pos, stream, PREC_PREFIX);
11185 fputs_filtered (")", stream);
11186 return;
14f9c5c9 11187
4c4b4cd2 11188 case UNOP_IN_RANGE:
323e0a4a 11189 /* XXX: sprint_subexp */
4c4b4cd2 11190 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11191 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11192 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11193 return;
52ce6436
PH
11194
11195 case OP_DISCRETE_RANGE:
11196 print_subexp (exp, pos, stream, PREC_SUFFIX);
11197 fputs_filtered ("..", stream);
11198 print_subexp (exp, pos, stream, PREC_SUFFIX);
11199 return;
11200
11201 case OP_OTHERS:
11202 fputs_filtered ("others => ", stream);
11203 print_subexp (exp, pos, stream, PREC_SUFFIX);
11204 return;
11205
11206 case OP_CHOICES:
11207 for (i = 0; i < nargs-1; i += 1)
11208 {
11209 if (i > 0)
11210 fputs_filtered ("|", stream);
11211 print_subexp (exp, pos, stream, PREC_SUFFIX);
11212 }
11213 fputs_filtered (" => ", stream);
11214 print_subexp (exp, pos, stream, PREC_SUFFIX);
11215 return;
11216
11217 case OP_POSITIONAL:
11218 print_subexp (exp, pos, stream, PREC_SUFFIX);
11219 return;
11220
11221 case OP_AGGREGATE:
11222 fputs_filtered ("(", stream);
11223 for (i = 0; i < nargs; i += 1)
11224 {
11225 if (i > 0)
11226 fputs_filtered (", ", stream);
11227 print_subexp (exp, pos, stream, PREC_SUFFIX);
11228 }
11229 fputs_filtered (")", stream);
11230 return;
4c4b4cd2
PH
11231 }
11232}
14f9c5c9
AS
11233
11234/* Table mapping opcodes into strings for printing operators
11235 and precedences of the operators. */
11236
d2e4a39e
AS
11237static const struct op_print ada_op_print_tab[] = {
11238 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11239 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11240 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11241 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11242 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11243 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11244 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11245 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11246 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11247 {">=", BINOP_GEQ, PREC_ORDER, 0},
11248 {">", BINOP_GTR, PREC_ORDER, 0},
11249 {"<", BINOP_LESS, PREC_ORDER, 0},
11250 {">>", BINOP_RSH, PREC_SHIFT, 0},
11251 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11252 {"+", BINOP_ADD, PREC_ADD, 0},
11253 {"-", BINOP_SUB, PREC_ADD, 0},
11254 {"&", BINOP_CONCAT, PREC_ADD, 0},
11255 {"*", BINOP_MUL, PREC_MUL, 0},
11256 {"/", BINOP_DIV, PREC_MUL, 0},
11257 {"rem", BINOP_REM, PREC_MUL, 0},
11258 {"mod", BINOP_MOD, PREC_MUL, 0},
11259 {"**", BINOP_EXP, PREC_REPEAT, 0},
11260 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11261 {"-", UNOP_NEG, PREC_PREFIX, 0},
11262 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11263 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11264 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11265 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11266 {".all", UNOP_IND, PREC_SUFFIX, 1},
11267 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11268 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11269 {NULL, 0, 0, 0}
14f9c5c9
AS
11270};
11271\f
72d5681a
PH
11272enum ada_primitive_types {
11273 ada_primitive_type_int,
11274 ada_primitive_type_long,
11275 ada_primitive_type_short,
11276 ada_primitive_type_char,
11277 ada_primitive_type_float,
11278 ada_primitive_type_double,
11279 ada_primitive_type_void,
11280 ada_primitive_type_long_long,
11281 ada_primitive_type_long_double,
11282 ada_primitive_type_natural,
11283 ada_primitive_type_positive,
11284 ada_primitive_type_system_address,
11285 nr_ada_primitive_types
11286};
6c038f32
PH
11287
11288static void
d4a9a881 11289ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11290 struct language_arch_info *lai)
11291{
d4a9a881 11292 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11293 lai->primitive_type_vector
d4a9a881 11294 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11295 struct type *);
e9bb382b
UW
11296
11297 lai->primitive_type_vector [ada_primitive_type_int]
11298 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11299 0, "integer");
11300 lai->primitive_type_vector [ada_primitive_type_long]
11301 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11302 0, "long_integer");
11303 lai->primitive_type_vector [ada_primitive_type_short]
11304 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11305 0, "short_integer");
11306 lai->string_char_type
11307 = lai->primitive_type_vector [ada_primitive_type_char]
11308 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11309 lai->primitive_type_vector [ada_primitive_type_float]
11310 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11311 "float", NULL);
11312 lai->primitive_type_vector [ada_primitive_type_double]
11313 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11314 "long_float", NULL);
11315 lai->primitive_type_vector [ada_primitive_type_long_long]
11316 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11317 0, "long_long_integer");
11318 lai->primitive_type_vector [ada_primitive_type_long_double]
11319 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11320 "long_long_float", NULL);
11321 lai->primitive_type_vector [ada_primitive_type_natural]
11322 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11323 0, "natural");
11324 lai->primitive_type_vector [ada_primitive_type_positive]
11325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11326 0, "positive");
11327 lai->primitive_type_vector [ada_primitive_type_void]
11328 = builtin->builtin_void;
11329
11330 lai->primitive_type_vector [ada_primitive_type_system_address]
11331 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11332 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11333 = "system__address";
fbb06eb1 11334
47e729a8 11335 lai->bool_type_symbol = NULL;
fbb06eb1 11336 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11337}
6c038f32
PH
11338\f
11339 /* Language vector */
11340
11341/* Not really used, but needed in the ada_language_defn. */
11342
11343static void
6c7a06a3 11344emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11345{
6c7a06a3 11346 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11347}
11348
11349static int
11350parse (void)
11351{
11352 warnings_issued = 0;
11353 return ada_parse ();
11354}
11355
11356static const struct exp_descriptor ada_exp_descriptor = {
11357 ada_print_subexp,
11358 ada_operator_length,
11359 ada_op_name,
11360 ada_dump_subexp_body,
11361 ada_evaluate_subexp
11362};
11363
11364const struct language_defn ada_language_defn = {
11365 "ada", /* Language name */
11366 language_ada,
6c038f32
PH
11367 range_check_off,
11368 type_check_off,
11369 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11370 that's not quite what this means. */
6c038f32 11371 array_row_major,
9a044a89 11372 macro_expansion_no,
6c038f32
PH
11373 &ada_exp_descriptor,
11374 parse,
11375 ada_error,
11376 resolve,
11377 ada_printchar, /* Print a character constant */
11378 ada_printstr, /* Function to print string constant */
11379 emit_char, /* Function to print single char (not used) */
6c038f32 11380 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11381 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11382 ada_val_print, /* Print a value using appropriate syntax */
11383 ada_value_print, /* Print a top-level value */
11384 NULL, /* Language specific skip_trampoline */
2b2d9e11 11385 NULL, /* name_of_this */
6c038f32
PH
11386 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11387 basic_lookup_transparent_type, /* lookup_transparent_type */
11388 ada_la_decode, /* Language specific symbol demangler */
11389 NULL, /* Language specific class_name_from_physname */
11390 ada_op_print_tab, /* expression operators for printing */
11391 0, /* c-style arrays */
11392 1, /* String lower bound */
6c038f32 11393 ada_get_gdb_completer_word_break_characters,
41d27058 11394 ada_make_symbol_completion_list,
72d5681a 11395 ada_language_arch_info,
e79af960 11396 ada_print_array_index,
41f1b697 11397 default_pass_by_reference,
ae6a3a4c 11398 c_get_string,
6c038f32
PH
11399 LANG_MAGIC
11400};
11401
2c0b251b
PA
11402/* Provide a prototype to silence -Wmissing-prototypes. */
11403extern initialize_file_ftype _initialize_ada_language;
11404
d2e4a39e 11405void
6c038f32 11406_initialize_ada_language (void)
14f9c5c9 11407{
6c038f32
PH
11408 add_language (&ada_language_defn);
11409
11410 varsize_limit = 65536;
6c038f32
PH
11411
11412 obstack_init (&symbol_list_obstack);
11413
11414 decoded_names_store = htab_create_alloc
11415 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11416 NULL, xcalloc, xfree);
6b69afc4
JB
11417
11418 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11419}