]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix big-endian aggregate assignment in Ada
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 155 const struct block *);
aeb5907d 156
a121b7c1 157static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 158 int, int);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
b4ba55a1
JB
162static struct type *ada_find_parallel_type_with_name (struct type *,
163 const char *);
164
d2e4a39e 165static int is_dynamic_field (struct type *, int);
14f9c5c9 166
10a2c479 167static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 168 const gdb_byte *,
4c4b4cd2
PH
169 CORE_ADDR, struct value *);
170
171static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 172
28c85d6c 173static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 174
d2e4a39e 175static struct type *to_static_fixed_type (struct type *);
f192137b 176static struct type *static_unwrap_type (struct type *type);
14f9c5c9 177
d2e4a39e 178static struct value *unwrap_value (struct value *);
14f9c5c9 179
ad82864c 180static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 181
ad82864c 182static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 183
ad82864c
JB
184static long decode_packed_array_bitsize (struct type *);
185
186static struct value *decode_constrained_packed_array (struct value *);
187
188static int ada_is_packed_array_type (struct type *);
189
190static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 193 struct value **);
14f9c5c9 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 229 struct value **, int, const char *,
2a612529 230 struct type *, int);
4c4b4cd2 231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
e2b7af72
JB
568/* la_watch_location_expression for Ada. */
569
570gdb::unique_xmalloc_ptr<char>
571ada_watch_location_expression (struct type *type, CORE_ADDR addr)
572{
573 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
574 std::string name = type_to_string (type);
575 return gdb::unique_xmalloc_ptr<char>
576 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
577}
578
f27cf670 579/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 581 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 582
f27cf670
AS
583void *
584grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 585{
d2e4a39e
AS
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
4c4b4cd2 590 *size = min_size;
f27cf670 591 vect = xrealloc (vect, *size * element_size);
d2e4a39e 592 }
f27cf670 593 return vect;
14f9c5c9
AS
594}
595
596/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 597 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
598
599static int
ebf56fd3 600field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
601{
602 int len = strlen (target);
5b4ee69b 603
d2e4a39e 604 return
4c4b4cd2
PH
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
61012eef 607 || (startswith (field_name + len, "___")
76a01679
JB
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
14f9c5c9
AS
610}
611
612
872c8b51
JB
613/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
620
621int
622ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624{
625 int fieldno;
872c8b51
JB
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
630 return fieldno;
631
632 if (!maybe_missing)
323e0a4a 633 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 634 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
635
636 return -1;
637}
638
639/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
640
641int
d2e4a39e 642ada_name_prefix_len (const char *name)
14f9c5c9
AS
643{
644 if (name == NULL)
645 return 0;
d2e4a39e 646 else
14f9c5c9 647 {
d2e4a39e 648 const char *p = strstr (name, "___");
5b4ee69b 649
14f9c5c9 650 if (p == NULL)
4c4b4cd2 651 return strlen (name);
14f9c5c9 652 else
4c4b4cd2 653 return p - name;
14f9c5c9
AS
654 }
655}
656
4c4b4cd2
PH
657/* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
14f9c5c9 660static int
d2e4a39e 661is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
662{
663 int len1, len2;
5b4ee69b 664
14f9c5c9
AS
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
4c4b4cd2 669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
670}
671
4c4b4cd2
PH
672/* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
14f9c5c9 674
d2e4a39e 675static struct value *
4c4b4cd2 676coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 677{
61ee279c 678 type = ada_check_typedef (type);
df407dfe 679 if (value_type (val) == type)
4c4b4cd2 680 return val;
d2e4a39e 681 else
14f9c5c9 682 {
4c4b4cd2
PH
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
c1b5a1a6 687 ada_ensure_varsize_limit (type);
4c4b4cd2 688
41e8491f
JK
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
9a0dc9e3 695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 696 }
74bcbdf3 697 set_value_component_location (result, val);
9bbda503
AC
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
42ae5230 700 set_value_address (result, value_address (val));
14f9c5c9
AS
701 return result;
702 }
703}
704
fc1a4b47
AC
705static const gdb_byte *
706cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
707{
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712}
713
714static CORE_ADDR
ebf56fd3 715cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
716{
717 if (address == 0)
718 return 0;
d2e4a39e 719 else
14f9c5c9
AS
720 return address + offset;
721}
722
4c4b4cd2
PH
723/* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
a2249542 727
77109804
AC
728/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
a0b31db1 730static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 731
14f9c5c9 732static void
a2249542 733lim_warning (const char *format, ...)
14f9c5c9 734{
a2249542 735 va_list args;
a2249542 736
5b4ee69b 737 va_start (args, format);
4c4b4cd2
PH
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
a2249542
MK
740 vwarning (format, args);
741
742 va_end (args);
4c4b4cd2
PH
743}
744
714e53ab
PH
745/* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
c1b5a1a6
JB
749void
750ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
751{
752 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 753 error (_("object size is larger than varsize-limit"));
714e53ab
PH
754}
755
0963b4bd 756/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 757static LONGEST
c3e5cd34 758max_of_size (int size)
4c4b4cd2 759{
76a01679 760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 761
76a01679 762 return top_bit | (top_bit - 1);
4c4b4cd2
PH
763}
764
0963b4bd 765/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 766static LONGEST
c3e5cd34 767min_of_size (int size)
4c4b4cd2 768{
c3e5cd34 769 return -max_of_size (size) - 1;
4c4b4cd2
PH
770}
771
0963b4bd 772/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 773static ULONGEST
c3e5cd34 774umax_of_size (int size)
4c4b4cd2 775{
76a01679 776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 777
76a01679 778 return top_bit | (top_bit - 1);
4c4b4cd2
PH
779}
780
0963b4bd 781/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
782static LONGEST
783max_of_type (struct type *t)
4c4b4cd2 784{
c3e5cd34
PH
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789}
790
0963b4bd 791/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
792static LONGEST
793min_of_type (struct type *t)
794{
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
799}
800
801/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
802LONGEST
803ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 804{
c3345124 805 type = resolve_dynamic_type (type, NULL, 0);
76a01679 806 switch (TYPE_CODE (type))
4c4b4cd2
PH
807 {
808 case TYPE_CODE_RANGE:
690cc4eb 809 return TYPE_HIGH_BOUND (type);
4c4b4cd2 810 case TYPE_CODE_ENUM:
14e75d8e 811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
76a01679 815 case TYPE_CODE_INT:
690cc4eb 816 return max_of_type (type);
4c4b4cd2 817 default:
43bbcdc2 818 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
819 }
820}
821
14e75d8e 822/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
823LONGEST
824ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 825{
c3345124 826 type = resolve_dynamic_type (type, NULL, 0);
76a01679 827 switch (TYPE_CODE (type))
4c4b4cd2
PH
828 {
829 case TYPE_CODE_RANGE:
690cc4eb 830 return TYPE_LOW_BOUND (type);
4c4b4cd2 831 case TYPE_CODE_ENUM:
14e75d8e 832 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
76a01679 836 case TYPE_CODE_INT:
690cc4eb 837 return min_of_type (type);
4c4b4cd2 838 default:
43bbcdc2 839 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
840 }
841}
842
843/* The identity on non-range types. For range types, the underlying
76a01679 844 non-range scalar type. */
4c4b4cd2
PH
845
846static struct type *
18af8284 847get_base_type (struct type *type)
4c4b4cd2
PH
848{
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
76a01679
JB
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
4c4b4cd2
PH
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
14f9c5c9 856}
41246937
JB
857
858/* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863struct value *
864ada_get_decoded_value (struct value *value)
865{
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881}
882
883/* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888struct type *
889ada_get_decoded_type (struct type *type)
890{
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895}
896
4c4b4cd2 897\f
76a01679 898
4c4b4cd2 899 /* Language Selection */
14f9c5c9
AS
900
901/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 902 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 903
14f9c5c9 904enum language
ccefe4c4 905ada_update_initial_language (enum language lang)
14f9c5c9 906{
d2e4a39e 907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 908 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 909 return language_ada;
14f9c5c9
AS
910
911 return lang;
912}
96d887e8
PH
913
914/* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918char *
919ada_main_name (void)
920{
3b7344d5 921 struct bound_minimal_symbol msym;
e83e4e24 922 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 923
96d887e8
PH
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
3b7344d5 931 if (msym.minsym != NULL)
96d887e8 932 {
f9bc20b9
JB
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
77e371c0 936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 937 if (main_program_name_addr == 0)
323e0a4a 938 error (_("Invalid address for Ada main program name."));
96d887e8 939
f9bc20b9
JB
940 target_read_string (main_program_name_addr, &main_program_name,
941 1024, &err_code);
942
943 if (err_code != 0)
944 return NULL;
e83e4e24 945 return main_program_name.get ();
96d887e8
PH
946 }
947
948 /* The main procedure doesn't seem to be in Ada. */
949 return NULL;
950}
14f9c5c9 951\f
4c4b4cd2 952 /* Symbols */
d2e4a39e 953
4c4b4cd2
PH
954/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
955 of NULLs. */
14f9c5c9 956
d2e4a39e
AS
957const struct ada_opname_map ada_opname_table[] = {
958 {"Oadd", "\"+\"", BINOP_ADD},
959 {"Osubtract", "\"-\"", BINOP_SUB},
960 {"Omultiply", "\"*\"", BINOP_MUL},
961 {"Odivide", "\"/\"", BINOP_DIV},
962 {"Omod", "\"mod\"", BINOP_MOD},
963 {"Orem", "\"rem\"", BINOP_REM},
964 {"Oexpon", "\"**\"", BINOP_EXP},
965 {"Olt", "\"<\"", BINOP_LESS},
966 {"Ole", "\"<=\"", BINOP_LEQ},
967 {"Ogt", "\">\"", BINOP_GTR},
968 {"Oge", "\">=\"", BINOP_GEQ},
969 {"Oeq", "\"=\"", BINOP_EQUAL},
970 {"One", "\"/=\"", BINOP_NOTEQUAL},
971 {"Oand", "\"and\"", BINOP_BITWISE_AND},
972 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
973 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
974 {"Oconcat", "\"&\"", BINOP_CONCAT},
975 {"Oabs", "\"abs\"", UNOP_ABS},
976 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
977 {"Oadd", "\"+\"", UNOP_PLUS},
978 {"Osubtract", "\"-\"", UNOP_NEG},
979 {NULL, NULL}
14f9c5c9
AS
980};
981
b5ec771e
PA
982/* The "encoded" form of DECODED, according to GNAT conventions. The
983 result is valid until the next call to ada_encode. If
984 THROW_ERRORS, throw an error if invalid operator name is found.
985 Otherwise, return NULL in that case. */
4c4b4cd2 986
b5ec771e
PA
987static char *
988ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 989{
4c4b4cd2
PH
990 static char *encoding_buffer = NULL;
991 static size_t encoding_buffer_size = 0;
d2e4a39e 992 const char *p;
14f9c5c9 993 int k;
d2e4a39e 994
4c4b4cd2 995 if (decoded == NULL)
14f9c5c9
AS
996 return NULL;
997
4c4b4cd2
PH
998 GROW_VECT (encoding_buffer, encoding_buffer_size,
999 2 * strlen (decoded) + 10);
14f9c5c9
AS
1000
1001 k = 0;
4c4b4cd2 1002 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1003 {
cdc7bb92 1004 if (*p == '.')
4c4b4cd2
PH
1005 {
1006 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1007 k += 2;
1008 }
14f9c5c9 1009 else if (*p == '"')
4c4b4cd2
PH
1010 {
1011 const struct ada_opname_map *mapping;
1012
1013 for (mapping = ada_opname_table;
1265e4aa 1014 mapping->encoded != NULL
61012eef 1015 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1016 ;
1017 if (mapping->encoded == NULL)
b5ec771e
PA
1018 {
1019 if (throw_errors)
1020 error (_("invalid Ada operator name: %s"), p);
1021 else
1022 return NULL;
1023 }
4c4b4cd2
PH
1024 strcpy (encoding_buffer + k, mapping->encoded);
1025 k += strlen (mapping->encoded);
1026 break;
1027 }
d2e4a39e 1028 else
4c4b4cd2
PH
1029 {
1030 encoding_buffer[k] = *p;
1031 k += 1;
1032 }
14f9c5c9
AS
1033 }
1034
4c4b4cd2
PH
1035 encoding_buffer[k] = '\0';
1036 return encoding_buffer;
14f9c5c9
AS
1037}
1038
b5ec771e
PA
1039/* The "encoded" form of DECODED, according to GNAT conventions.
1040 The result is valid until the next call to ada_encode. */
1041
1042char *
1043ada_encode (const char *decoded)
1044{
1045 return ada_encode_1 (decoded, true);
1046}
1047
14f9c5c9 1048/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1049 quotes, unfolded, but with the quotes stripped away. Result good
1050 to next call. */
1051
d2e4a39e
AS
1052char *
1053ada_fold_name (const char *name)
14f9c5c9 1054{
d2e4a39e 1055 static char *fold_buffer = NULL;
14f9c5c9
AS
1056 static size_t fold_buffer_size = 0;
1057
1058 int len = strlen (name);
d2e4a39e 1059 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1060
1061 if (name[0] == '\'')
1062 {
d2e4a39e
AS
1063 strncpy (fold_buffer, name + 1, len - 2);
1064 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1065 }
1066 else
1067 {
1068 int i;
5b4ee69b 1069
14f9c5c9 1070 for (i = 0; i <= len; i += 1)
4c4b4cd2 1071 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1072 }
1073
1074 return fold_buffer;
1075}
1076
529cad9c
PH
1077/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1078
1079static int
1080is_lower_alphanum (const char c)
1081{
1082 return (isdigit (c) || (isalpha (c) && islower (c)));
1083}
1084
c90092fe
JB
1085/* ENCODED is the linkage name of a symbol and LEN contains its length.
1086 This function saves in LEN the length of that same symbol name but
1087 without either of these suffixes:
29480c32
JB
1088 . .{DIGIT}+
1089 . ${DIGIT}+
1090 . ___{DIGIT}+
1091 . __{DIGIT}+.
c90092fe 1092
29480c32
JB
1093 These are suffixes introduced by the compiler for entities such as
1094 nested subprogram for instance, in order to avoid name clashes.
1095 They do not serve any purpose for the debugger. */
1096
1097static void
1098ada_remove_trailing_digits (const char *encoded, int *len)
1099{
1100 if (*len > 1 && isdigit (encoded[*len - 1]))
1101 {
1102 int i = *len - 2;
5b4ee69b 1103
29480c32
JB
1104 while (i > 0 && isdigit (encoded[i]))
1105 i--;
1106 if (i >= 0 && encoded[i] == '.')
1107 *len = i;
1108 else if (i >= 0 && encoded[i] == '$')
1109 *len = i;
61012eef 1110 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1111 *len = i - 2;
61012eef 1112 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1113 *len = i - 1;
1114 }
1115}
1116
1117/* Remove the suffix introduced by the compiler for protected object
1118 subprograms. */
1119
1120static void
1121ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1122{
1123 /* Remove trailing N. */
1124
1125 /* Protected entry subprograms are broken into two
1126 separate subprograms: The first one is unprotected, and has
1127 a 'N' suffix; the second is the protected version, and has
0963b4bd 1128 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1129 the protection. Since the P subprograms are internally generated,
1130 we leave these names undecoded, giving the user a clue that this
1131 entity is internal. */
1132
1133 if (*len > 1
1134 && encoded[*len - 1] == 'N'
1135 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1136 *len = *len - 1;
1137}
1138
69fadcdf
JB
1139/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1140
1141static void
1142ada_remove_Xbn_suffix (const char *encoded, int *len)
1143{
1144 int i = *len - 1;
1145
1146 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1147 i--;
1148
1149 if (encoded[i] != 'X')
1150 return;
1151
1152 if (i == 0)
1153 return;
1154
1155 if (isalnum (encoded[i-1]))
1156 *len = i;
1157}
1158
29480c32
JB
1159/* If ENCODED follows the GNAT entity encoding conventions, then return
1160 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1161 replaced by ENCODED.
14f9c5c9 1162
4c4b4cd2 1163 The resulting string is valid until the next call of ada_decode.
29480c32 1164 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1165 is returned. */
1166
1167const char *
1168ada_decode (const char *encoded)
14f9c5c9
AS
1169{
1170 int i, j;
1171 int len0;
d2e4a39e 1172 const char *p;
4c4b4cd2 1173 char *decoded;
14f9c5c9 1174 int at_start_name;
4c4b4cd2
PH
1175 static char *decoding_buffer = NULL;
1176 static size_t decoding_buffer_size = 0;
d2e4a39e 1177
0d81f350
JG
1178 /* With function descriptors on PPC64, the value of a symbol named
1179 ".FN", if it exists, is the entry point of the function "FN". */
1180 if (encoded[0] == '.')
1181 encoded += 1;
1182
29480c32
JB
1183 /* The name of the Ada main procedure starts with "_ada_".
1184 This prefix is not part of the decoded name, so skip this part
1185 if we see this prefix. */
61012eef 1186 if (startswith (encoded, "_ada_"))
4c4b4cd2 1187 encoded += 5;
14f9c5c9 1188
29480c32
JB
1189 /* If the name starts with '_', then it is not a properly encoded
1190 name, so do not attempt to decode it. Similarly, if the name
1191 starts with '<', the name should not be decoded. */
4c4b4cd2 1192 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1193 goto Suppress;
1194
4c4b4cd2 1195 len0 = strlen (encoded);
4c4b4cd2 1196
29480c32
JB
1197 ada_remove_trailing_digits (encoded, &len0);
1198 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1199
4c4b4cd2
PH
1200 /* Remove the ___X.* suffix if present. Do not forget to verify that
1201 the suffix is located before the current "end" of ENCODED. We want
1202 to avoid re-matching parts of ENCODED that have previously been
1203 marked as discarded (by decrementing LEN0). */
1204 p = strstr (encoded, "___");
1205 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1206 {
1207 if (p[3] == 'X')
4c4b4cd2 1208 len0 = p - encoded;
14f9c5c9 1209 else
4c4b4cd2 1210 goto Suppress;
14f9c5c9 1211 }
4c4b4cd2 1212
29480c32
JB
1213 /* Remove any trailing TKB suffix. It tells us that this symbol
1214 is for the body of a task, but that information does not actually
1215 appear in the decoded name. */
1216
61012eef 1217 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1218 len0 -= 3;
76a01679 1219
a10967fa
JB
1220 /* Remove any trailing TB suffix. The TB suffix is slightly different
1221 from the TKB suffix because it is used for non-anonymous task
1222 bodies. */
1223
61012eef 1224 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1225 len0 -= 2;
1226
29480c32
JB
1227 /* Remove trailing "B" suffixes. */
1228 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1229
61012eef 1230 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1231 len0 -= 1;
1232
4c4b4cd2 1233 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1234
4c4b4cd2
PH
1235 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1236 decoded = decoding_buffer;
14f9c5c9 1237
29480c32
JB
1238 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1239
4c4b4cd2 1240 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1241 {
4c4b4cd2
PH
1242 i = len0 - 2;
1243 while ((i >= 0 && isdigit (encoded[i]))
1244 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1245 i -= 1;
1246 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1247 len0 = i - 1;
1248 else if (encoded[i] == '$')
1249 len0 = i;
d2e4a39e 1250 }
14f9c5c9 1251
29480c32
JB
1252 /* The first few characters that are not alphabetic are not part
1253 of any encoding we use, so we can copy them over verbatim. */
1254
4c4b4cd2
PH
1255 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1256 decoded[j] = encoded[i];
14f9c5c9
AS
1257
1258 at_start_name = 1;
1259 while (i < len0)
1260 {
29480c32 1261 /* Is this a symbol function? */
4c4b4cd2
PH
1262 if (at_start_name && encoded[i] == 'O')
1263 {
1264 int k;
5b4ee69b 1265
4c4b4cd2
PH
1266 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1267 {
1268 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1269 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1270 op_len - 1) == 0)
1271 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1272 {
1273 strcpy (decoded + j, ada_opname_table[k].decoded);
1274 at_start_name = 0;
1275 i += op_len;
1276 j += strlen (ada_opname_table[k].decoded);
1277 break;
1278 }
1279 }
1280 if (ada_opname_table[k].encoded != NULL)
1281 continue;
1282 }
14f9c5c9
AS
1283 at_start_name = 0;
1284
529cad9c
PH
1285 /* Replace "TK__" with "__", which will eventually be translated
1286 into "." (just below). */
1287
61012eef 1288 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1289 i += 2;
529cad9c 1290
29480c32
JB
1291 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1292 be translated into "." (just below). These are internal names
1293 generated for anonymous blocks inside which our symbol is nested. */
1294
1295 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1296 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1297 && isdigit (encoded [i+4]))
1298 {
1299 int k = i + 5;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++; /* Skip any extra digit. */
1303
1304 /* Double-check that the "__B_{DIGITS}+" sequence we found
1305 is indeed followed by "__". */
1306 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1307 i = k;
1308 }
1309
529cad9c
PH
1310 /* Remove _E{DIGITS}+[sb] */
1311
1312 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1313 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1314 one implements the actual entry code, and has a suffix following
1315 the convention above; the second one implements the barrier and
1316 uses the same convention as above, except that the 'E' is replaced
1317 by a 'B'.
1318
1319 Just as above, we do not decode the name of barrier functions
1320 to give the user a clue that the code he is debugging has been
1321 internally generated. */
1322
1323 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1324 && isdigit (encoded[i+2]))
1325 {
1326 int k = i + 3;
1327
1328 while (k < len0 && isdigit (encoded[k]))
1329 k++;
1330
1331 if (k < len0
1332 && (encoded[k] == 'b' || encoded[k] == 's'))
1333 {
1334 k++;
1335 /* Just as an extra precaution, make sure that if this
1336 suffix is followed by anything else, it is a '_'.
1337 Otherwise, we matched this sequence by accident. */
1338 if (k == len0
1339 || (k < len0 && encoded[k] == '_'))
1340 i = k;
1341 }
1342 }
1343
1344 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1345 the GNAT front-end in protected object subprograms. */
1346
1347 if (i < len0 + 3
1348 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1349 {
1350 /* Backtrack a bit up until we reach either the begining of
1351 the encoded name, or "__". Make sure that we only find
1352 digits or lowercase characters. */
1353 const char *ptr = encoded + i - 1;
1354
1355 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1356 ptr--;
1357 if (ptr < encoded
1358 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1359 i++;
1360 }
1361
4c4b4cd2
PH
1362 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1363 {
29480c32
JB
1364 /* This is a X[bn]* sequence not separated from the previous
1365 part of the name with a non-alpha-numeric character (in other
1366 words, immediately following an alpha-numeric character), then
1367 verify that it is placed at the end of the encoded name. If
1368 not, then the encoding is not valid and we should abort the
1369 decoding. Otherwise, just skip it, it is used in body-nested
1370 package names. */
4c4b4cd2
PH
1371 do
1372 i += 1;
1373 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1374 if (i < len0)
1375 goto Suppress;
1376 }
cdc7bb92 1377 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1378 {
29480c32 1379 /* Replace '__' by '.'. */
4c4b4cd2
PH
1380 decoded[j] = '.';
1381 at_start_name = 1;
1382 i += 2;
1383 j += 1;
1384 }
14f9c5c9 1385 else
4c4b4cd2 1386 {
29480c32
JB
1387 /* It's a character part of the decoded name, so just copy it
1388 over. */
4c4b4cd2
PH
1389 decoded[j] = encoded[i];
1390 i += 1;
1391 j += 1;
1392 }
14f9c5c9 1393 }
4c4b4cd2 1394 decoded[j] = '\000';
14f9c5c9 1395
29480c32
JB
1396 /* Decoded names should never contain any uppercase character.
1397 Double-check this, and abort the decoding if we find one. */
1398
4c4b4cd2
PH
1399 for (i = 0; decoded[i] != '\0'; i += 1)
1400 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1401 goto Suppress;
1402
4c4b4cd2
PH
1403 if (strcmp (decoded, encoded) == 0)
1404 return encoded;
1405 else
1406 return decoded;
14f9c5c9
AS
1407
1408Suppress:
4c4b4cd2
PH
1409 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1410 decoded = decoding_buffer;
1411 if (encoded[0] == '<')
1412 strcpy (decoded, encoded);
14f9c5c9 1413 else
88c15c34 1414 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1415 return decoded;
1416
1417}
1418
1419/* Table for keeping permanent unique copies of decoded names. Once
1420 allocated, names in this table are never released. While this is a
1421 storage leak, it should not be significant unless there are massive
1422 changes in the set of decoded names in successive versions of a
1423 symbol table loaded during a single session. */
1424static struct htab *decoded_names_store;
1425
1426/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1427 in the language-specific part of GSYMBOL, if it has not been
1428 previously computed. Tries to save the decoded name in the same
1429 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1430 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1431 GSYMBOL).
4c4b4cd2
PH
1432 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1433 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1434 when a decoded name is cached in it. */
4c4b4cd2 1435
45e6c716 1436const char *
f85f34ed 1437ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1438{
f85f34ed
TT
1439 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1440 const char **resultp =
615b3f62 1441 &gsymbol->language_specific.demangled_name;
5b4ee69b 1442
f85f34ed 1443 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1444 {
1445 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1446 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1447
f85f34ed 1448 gsymbol->ada_mangled = 1;
5b4ee69b 1449
f85f34ed 1450 if (obstack != NULL)
224c3ddb
SM
1451 *resultp
1452 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1453 else
76a01679 1454 {
f85f34ed
TT
1455 /* Sometimes, we can't find a corresponding objfile, in
1456 which case, we put the result on the heap. Since we only
1457 decode when needed, we hope this usually does not cause a
1458 significant memory leak (FIXME). */
1459
76a01679
JB
1460 char **slot = (char **) htab_find_slot (decoded_names_store,
1461 decoded, INSERT);
5b4ee69b 1462
76a01679
JB
1463 if (*slot == NULL)
1464 *slot = xstrdup (decoded);
1465 *resultp = *slot;
1466 }
4c4b4cd2 1467 }
14f9c5c9 1468
4c4b4cd2
PH
1469 return *resultp;
1470}
76a01679 1471
2c0b251b 1472static char *
76a01679 1473ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1474{
1475 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1476}
1477
8b302db8
TT
1478/* Implement la_sniff_from_mangled_name for Ada. */
1479
1480static int
1481ada_sniff_from_mangled_name (const char *mangled, char **out)
1482{
1483 const char *demangled = ada_decode (mangled);
1484
1485 *out = NULL;
1486
1487 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1488 {
1489 /* Set the gsymbol language to Ada, but still return 0.
1490 Two reasons for that:
1491
1492 1. For Ada, we prefer computing the symbol's decoded name
1493 on the fly rather than pre-compute it, in order to save
1494 memory (Ada projects are typically very large).
1495
1496 2. There are some areas in the definition of the GNAT
1497 encoding where, with a bit of bad luck, we might be able
1498 to decode a non-Ada symbol, generating an incorrect
1499 demangled name (Eg: names ending with "TB" for instance
1500 are identified as task bodies and so stripped from
1501 the decoded name returned).
1502
1503 Returning 1, here, but not setting *DEMANGLED, helps us get a
1504 little bit of the best of both worlds. Because we're last,
1505 we should not affect any of the other languages that were
1506 able to demangle the symbol before us; we get to correctly
1507 tag Ada symbols as such; and even if we incorrectly tagged a
1508 non-Ada symbol, which should be rare, any routing through the
1509 Ada language should be transparent (Ada tries to behave much
1510 like C/C++ with non-Ada symbols). */
1511 return 1;
1512 }
1513
1514 return 0;
1515}
1516
14f9c5c9 1517\f
d2e4a39e 1518
4c4b4cd2 1519 /* Arrays */
14f9c5c9 1520
28c85d6c
JB
1521/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1527
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1537
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1542 index subtype). */
1543
1544void
1545ada_fixup_array_indexes_type (struct type *index_desc_type)
1546{
1547 int i;
1548
1549 if (index_desc_type == NULL)
1550 return;
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1552
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1555 now.
1556
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 return;
1564
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1567 {
0d5cff50 1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570
1571 if (raw_type)
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1573 }
1574}
1575
4c4b4cd2 1576/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1577
a121b7c1 1578static const char *bound_name[] = {
d2e4a39e 1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581};
1582
1583/* Maximum number of array dimensions we are prepared to handle. */
1584
4c4b4cd2 1585#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1586
14f9c5c9 1587
4c4b4cd2
PH
1588/* The desc_* routines return primitive portions of array descriptors
1589 (fat pointers). */
14f9c5c9
AS
1590
1591/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1592 level of indirection, if needed. */
1593
d2e4a39e
AS
1594static struct type *
1595desc_base_type (struct type *type)
14f9c5c9
AS
1596{
1597 if (type == NULL)
1598 return NULL;
61ee279c 1599 type = ada_check_typedef (type);
720d1a40
JB
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1602
1265e4aa
JB
1603 if (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1607 else
1608 return type;
1609}
1610
4c4b4cd2
PH
1611/* True iff TYPE indicates a "thin" array pointer type. */
1612
14f9c5c9 1613static int
d2e4a39e 1614is_thin_pntr (struct type *type)
14f9c5c9 1615{
d2e4a39e 1616 return
14f9c5c9
AS
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619}
1620
4c4b4cd2
PH
1621/* The descriptor type for thin pointer type TYPE. */
1622
d2e4a39e
AS
1623static struct type *
1624thin_descriptor_type (struct type *type)
14f9c5c9 1625{
d2e4a39e 1626 struct type *base_type = desc_base_type (type);
5b4ee69b 1627
14f9c5c9
AS
1628 if (base_type == NULL)
1629 return NULL;
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1631 return base_type;
d2e4a39e 1632 else
14f9c5c9 1633 {
d2e4a39e 1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1635
14f9c5c9 1636 if (alt_type == NULL)
4c4b4cd2 1637 return base_type;
14f9c5c9 1638 else
4c4b4cd2 1639 return alt_type;
14f9c5c9
AS
1640 }
1641}
1642
4c4b4cd2
PH
1643/* A pointer to the array data for thin-pointer value VAL. */
1644
d2e4a39e
AS
1645static struct value *
1646thin_data_pntr (struct value *val)
14f9c5c9 1647{
828292f2 1648 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1650
556bdfd4
UW
1651 data_type = lookup_pointer_type (data_type);
1652
14f9c5c9 1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1654 return value_cast (data_type, value_copy (val));
d2e4a39e 1655 else
42ae5230 1656 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1657}
1658
4c4b4cd2
PH
1659/* True iff TYPE indicates a "thick" array pointer type. */
1660
14f9c5c9 1661static int
d2e4a39e 1662is_thick_pntr (struct type *type)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1667}
1668
4c4b4cd2
PH
1669/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1671
d2e4a39e
AS
1672static struct type *
1673desc_bounds_type (struct type *type)
14f9c5c9 1674{
d2e4a39e 1675 struct type *r;
14f9c5c9
AS
1676
1677 type = desc_base_type (type);
1678
1679 if (type == NULL)
1680 return NULL;
1681 else if (is_thin_pntr (type))
1682 {
1683 type = thin_descriptor_type (type);
1684 if (type == NULL)
4c4b4cd2 1685 return NULL;
14f9c5c9
AS
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1687 if (r != NULL)
61ee279c 1688 return ada_check_typedef (r);
14f9c5c9
AS
1689 }
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1691 {
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1693 if (r != NULL)
61ee279c 1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1695 }
1696 return NULL;
1697}
1698
1699/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1700 one, a pointer to its bounds data. Otherwise NULL. */
1701
d2e4a39e
AS
1702static struct value *
1703desc_bounds (struct value *arr)
14f9c5c9 1704{
df407dfe 1705 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1706
d2e4a39e 1707 if (is_thin_pntr (type))
14f9c5c9 1708 {
d2e4a39e 1709 struct type *bounds_type =
4c4b4cd2 1710 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1711 LONGEST addr;
1712
4cdfadb1 1713 if (bounds_type == NULL)
323e0a4a 1714 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1715
1716 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1717 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1718 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1720 addr = value_as_long (arr);
d2e4a39e 1721 else
42ae5230 1722 addr = value_address (arr);
14f9c5c9 1723
d2e4a39e 1724 return
4c4b4cd2
PH
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1727 }
1728
1729 else if (is_thick_pntr (type))
05e522ef
JB
1730 {
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1734
1735 if (p_bounds_type
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1737 {
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1739
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1743 p_bounds);
1744 }
1745 else
1746 error (_("Bad GNAT array descriptor"));
1747
1748 return p_bounds;
1749 }
14f9c5c9
AS
1750 else
1751 return NULL;
1752}
1753
4c4b4cd2
PH
1754/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1756
14f9c5c9 1757static int
d2e4a39e 1758fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1759{
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761}
1762
1763/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1764 size of the field containing the address of the bounds data. */
1765
14f9c5c9 1766static int
d2e4a39e 1767fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1768{
1769 type = desc_base_type (type);
1770
d2e4a39e 1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1772 return TYPE_FIELD_BITSIZE (type, 1);
1773 else
61ee279c 1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1775}
1776
4c4b4cd2 1777/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 data. */
4c4b4cd2 1781
d2e4a39e 1782static struct type *
556bdfd4 1783desc_data_target_type (struct type *type)
14f9c5c9
AS
1784{
1785 type = desc_base_type (type);
1786
4c4b4cd2 1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1788 if (is_thin_pntr (type))
556bdfd4 1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1790 else if (is_thick_pntr (type))
556bdfd4
UW
1791 {
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793
1794 if (data_type
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1797 }
1798
1799 return NULL;
14f9c5c9
AS
1800}
1801
1802/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 its array data. */
4c4b4cd2 1804
d2e4a39e
AS
1805static struct value *
1806desc_data (struct value *arr)
14f9c5c9 1807{
df407dfe 1808 struct type *type = value_type (arr);
5b4ee69b 1809
14f9c5c9
AS
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
d2e4a39e 1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1814 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1815 else
1816 return NULL;
1817}
1818
1819
1820/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1821 position of the field containing the address of the data. */
1822
14f9c5c9 1823static int
d2e4a39e 1824fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1825{
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827}
1828
1829/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1830 size of the field containing the address of the data. */
1831
14f9c5c9 1832static int
d2e4a39e 1833fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1834{
1835 type = desc_base_type (type);
1836
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1839 else
14f9c5c9
AS
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841}
1842
4c4b4cd2 1843/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
d2e4a39e
AS
1847static struct value *
1848desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1851 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1852}
1853
1854/* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1856 bound, if WHICH is 1. The first bound is I=1. */
1857
14f9c5c9 1858static int
d2e4a39e 1859desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1860{
d2e4a39e 1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1862}
1863
1864/* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1866 bound, if WHICH is 1. The first bound is I=1. */
1867
76a01679 1868static int
d2e4a39e 1869desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1870{
1871 type = desc_base_type (type);
1872
d2e4a39e
AS
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1875 else
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1877}
1878
1879/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1881
d2e4a39e
AS
1882static struct type *
1883desc_index_type (struct type *type, int i)
14f9c5c9
AS
1884{
1885 type = desc_base_type (type);
1886
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1889 else
14f9c5c9
AS
1890 return NULL;
1891}
1892
4c4b4cd2
PH
1893/* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1895
14f9c5c9 1896static int
d2e4a39e 1897desc_arity (struct type *type)
14f9c5c9
AS
1898{
1899 type = desc_base_type (type);
1900
1901 if (type != NULL)
1902 return TYPE_NFIELDS (type) / 2;
1903 return 0;
1904}
1905
4c4b4cd2
PH
1906/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1908 type). */
1909
76a01679
JB
1910static int
1911ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1912{
1913 if (type == NULL)
1914 return 0;
61ee279c 1915 type = ada_check_typedef (type);
4c4b4cd2 1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1917 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1918}
1919
52ce6436 1920/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1921 * to one. */
52ce6436 1922
2c0b251b 1923static int
52ce6436
PH
1924ada_is_array_type (struct type *type)
1925{
1926 while (type != NULL
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1931}
1932
4c4b4cd2 1933/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1934
14f9c5c9 1935int
4c4b4cd2 1936ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1937{
1938 if (type == NULL)
1939 return 0;
61ee279c 1940 type = ada_check_typedef (type);
14f9c5c9 1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1945}
1946
4c4b4cd2
PH
1947/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948
14f9c5c9 1949int
4c4b4cd2 1950ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1951{
556bdfd4 1952 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1953
1954 if (type == NULL)
1955 return 0;
61ee279c 1956 type = ada_check_typedef (type);
556bdfd4
UW
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1960}
1961
1962/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1963 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1964 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1965 is still needed. */
1966
14f9c5c9 1967int
ebf56fd3 1968ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1969{
d2e4a39e 1970 return
14f9c5c9
AS
1971 type != NULL
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1976}
1977
1978
4c4b4cd2 1979/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1980 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1982 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1985 a descriptor. */
d2e4a39e
AS
1986struct type *
1987ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1988{
ad82864c
JB
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1991
df407dfe
AC
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
d2e4a39e
AS
1994
1995 if (!bounds)
ad82864c
JB
1996 {
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
1999
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2003
2004 return array_type;
2005 }
14f9c5c9
AS
2006 else
2007 {
d2e4a39e 2008 struct type *elt_type;
14f9c5c9 2009 int arity;
d2e4a39e 2010 struct value *descriptor;
14f9c5c9 2011
df407dfe
AC
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
14f9c5c9 2014
d2e4a39e 2015 if (elt_type == NULL || arity == 0)
df407dfe 2016 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2017
2018 descriptor = desc_bounds (arr);
d2e4a39e 2019 if (value_as_long (descriptor) == 0)
4c4b4cd2 2020 return NULL;
d2e4a39e 2021 while (arity > 0)
4c4b4cd2 2022 {
e9bb382b
UW
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2027
5b4ee69b 2028 arity -= 1;
0c9c3474
SA
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
4c4b4cd2 2032 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2033
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2035 {
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2041
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2046 if (lo < hi)
2047 {
2048 int array_bitsize =
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2050
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2052 }
2053 }
4c4b4cd2 2054 }
14f9c5c9
AS
2055
2056 return lookup_pointer_type (elt_type);
2057 }
2058}
2059
2060/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2064
d2e4a39e
AS
2065struct value *
2066ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2067{
df407dfe 2068 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2069 {
d2e4a39e 2070 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2071
14f9c5c9 2072 if (arrType == NULL)
4c4b4cd2 2073 return NULL;
14f9c5c9
AS
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2075 }
ad82864c
JB
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2078 else
2079 return arr;
2080}
2081
2082/* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2084 be ARR itself if it already is in the proper form). */
2085
720d1a40 2086struct value *
d2e4a39e 2087ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2088{
df407dfe 2089 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2090 {
d2e4a39e 2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2092
14f9c5c9 2093 if (arrVal == NULL)
323e0a4a 2094 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2096 return value_ind (arrVal);
2097 }
ad82864c
JB
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
d2e4a39e 2100 else
14f9c5c9
AS
2101 return arr;
2102}
2103
2104/* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2106 packing). For other types, is the identity. */
2107
d2e4a39e
AS
2108struct type *
2109ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2110{
ad82864c
JB
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
17280b9f
UW
2113
2114 if (ada_is_array_descriptor_type (type))
556bdfd4 2115 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2116
2117 return type;
14f9c5c9
AS
2118}
2119
4c4b4cd2
PH
2120/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121
ad82864c
JB
2122static int
2123ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2124{
2125 if (type == NULL)
2126 return 0;
4c4b4cd2 2127 type = desc_base_type (type);
61ee279c 2128 type = ada_check_typedef (type);
d2e4a39e 2129 return
14f9c5c9
AS
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2132}
2133
ad82864c
JB
2134/* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2136
2137int
2138ada_is_constrained_packed_array_type (struct type *type)
2139{
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2142}
2143
2144/* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2146
2147static int
2148ada_is_unconstrained_packed_array_type (struct type *type)
2149{
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2152}
2153
2154/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2156
2157static long
2158decode_packed_array_bitsize (struct type *type)
2159{
0d5cff50
DE
2160 const char *raw_name;
2161 const char *tail;
ad82864c
JB
2162 long bits;
2163
720d1a40
JB
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2169
2170 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2171 if (!raw_name)
2172 raw_name = ada_type_name (desc_base_type (type));
2173
2174 if (!raw_name)
2175 return 0;
2176
2177 tail = strstr (raw_name, "___XP");
720d1a40 2178 gdb_assert (tail != NULL);
ad82864c
JB
2179
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 {
2182 lim_warning
2183 (_("could not understand bit size information on packed array"));
2184 return 0;
2185 }
2186
2187 return bits;
2188}
2189
14f9c5c9
AS
2190/* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2197 in bits.
2198
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
4c4b4cd2 2206
d2e4a39e 2207static struct type *
ad82864c 2208constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2209{
d2e4a39e
AS
2210 struct type *new_elt_type;
2211 struct type *new_type;
99b1c762
JB
2212 struct type *index_type_desc;
2213 struct type *index_type;
14f9c5c9
AS
2214 LONGEST low_bound, high_bound;
2215
61ee279c 2216 type = ada_check_typedef (type);
14f9c5c9
AS
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 return type;
2219
99b1c762
JB
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 NULL);
2224 else
2225 index_type = TYPE_INDEX_TYPE (type);
2226
e9bb382b 2227 new_type = alloc_type_copy (type);
ad82864c
JB
2228 new_elt_type =
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2230 elt_bits);
99b1c762 2231 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2234
4a46959e
JB
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2241 else
14f9c5c9
AS
2242 {
2243 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2244 TYPE_LENGTH (new_type) =
4c4b4cd2 2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2246 }
2247
876cecd0 2248 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2249 return new_type;
2250}
2251
ad82864c
JB
2252/* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2254
d2e4a39e 2255static struct type *
ad82864c 2256decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2257{
0d5cff50 2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2259 char *name;
0d5cff50 2260 const char *tail;
d2e4a39e 2261 struct type *shadow_type;
14f9c5c9 2262 long bits;
14f9c5c9 2263
727e3d2e
JB
2264 if (!raw_name)
2265 raw_name = ada_type_name (desc_base_type (type));
2266
2267 if (!raw_name)
2268 return NULL;
2269
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2272 type = desc_base_type (type);
2273
14f9c5c9
AS
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2276
b4ba55a1
JB
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2278
2279 if (shadow_type == NULL)
14f9c5c9 2280 {
323e0a4a 2281 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2282 return NULL;
2283 }
f168693b 2284 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2285
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2287 {
0963b4bd
MS
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
14f9c5c9
AS
2290 return NULL;
2291 }
d2e4a39e 2292
ad82864c
JB
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2295}
2296
ad82864c
JB
2297/* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
4c4b4cd2 2301 type length is set appropriately. */
14f9c5c9 2302
d2e4a39e 2303static struct value *
ad82864c 2304decode_constrained_packed_array (struct value *arr)
14f9c5c9 2305{
4c4b4cd2 2306 struct type *type;
14f9c5c9 2307
11aa919a
PMR
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
828292f2 2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2317 arr = value_ind (arr);
4c4b4cd2 2318
ad82864c 2319 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2320 if (type == NULL)
2321 {
323e0a4a 2322 error (_("can't unpack array"));
14f9c5c9
AS
2323 return NULL;
2324 }
61ee279c 2325
50810684 2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2327 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2328 {
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2334 ULONGEST mod;
2335
df407dfe 2336 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2337 bit_size = 0;
2338 while (mod > 0)
2339 {
2340 bit_size += 1;
2341 mod >>= 1;
2342 }
df407dfe 2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2347 bit_size,
2348 type);
2349 }
2350
4c4b4cd2 2351 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2352}
2353
2354
2355/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2356 given in IND. ARR must be a simple array. */
14f9c5c9 2357
d2e4a39e
AS
2358static struct value *
2359value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2360{
2361 int i;
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
d2e4a39e
AS
2364 struct type *elt_type;
2365 struct value *v;
14f9c5c9
AS
2366
2367 bits = 0;
2368 elt_total_bit_offset = 0;
df407dfe 2369 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2370 for (i = 0; i < arity; i += 1)
14f9c5c9 2371 {
d2e4a39e 2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2374 error
0963b4bd
MS
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
14f9c5c9 2377 else
4c4b4cd2
PH
2378 {
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2381 LONGEST idx;
2382
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2384 {
323e0a4a 2385 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2386 lowerbound = upperbound = 0;
2387 }
2388
3cb382c9 2389 idx = pos_atr (ind[i]);
4c4b4cd2 2390 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2391 lim_warning (_("packed array index %ld out of bounds"),
2392 (long) idx);
4c4b4cd2
PH
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2396 }
14f9c5c9
AS
2397 }
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2400
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2402 bits, elt_type);
14f9c5c9
AS
2403 return v;
2404}
2405
4c4b4cd2 2406/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2407
2408static int
d2e4a39e 2409has_negatives (struct type *type)
14f9c5c9 2410{
d2e4a39e
AS
2411 switch (TYPE_CODE (type))
2412 {
2413 default:
2414 return 0;
2415 case TYPE_CODE_INT:
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2419 }
14f9c5c9 2420}
d2e4a39e 2421
f93fca70 2422/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2424 the unpacked buffer.
14f9c5c9 2425
5b639dea
JB
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2428
f93fca70
JB
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 zero otherwise.
14f9c5c9 2431
f93fca70 2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2433
f93fca70
JB
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435
2436static void
2437ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2440 int is_scalar)
2441{
a1c95e6b
JB
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2448
a1c95e6b
JB
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2451
4c4b4cd2 2452 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2453 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2454 unsigned char sign;
a1c95e6b 2455
4c4b4cd2
PH
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
f93fca70 2458 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2459
5b639dea
JB
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2461 bits from SRC. .*/
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2465
14f9c5c9 2466 srcBitsLeft = bit_size;
086ca51f 2467 src_bytes_left = src_len;
f93fca70 2468 unpacked_bytes_left = unpacked_len;
14f9c5c9 2469 sign = 0;
f93fca70
JB
2470
2471 if (is_big_endian)
14f9c5c9 2472 {
086ca51f 2473 src_idx = src_len - 1;
f93fca70
JB
2474 if (is_signed_type
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2476 sign = ~0;
d2e4a39e
AS
2477
2478 unusedLS =
4c4b4cd2
PH
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2480 % HOST_CHAR_BIT;
14f9c5c9 2481
f93fca70
JB
2482 if (is_scalar)
2483 {
2484 accumSize = 0;
2485 unpacked_idx = unpacked_len - 1;
2486 }
2487 else
2488 {
4c4b4cd2
PH
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
086ca51f
JB
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2496 }
14f9c5c9 2497 }
d2e4a39e 2498 else
14f9c5c9
AS
2499 {
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2501
086ca51f 2502 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2503 unusedLS = bit_offset;
2504 accumSize = 0;
2505
f93fca70 2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2507 sign = ~0;
14f9c5c9 2508 }
d2e4a39e 2509
14f9c5c9 2510 accum = 0;
086ca51f 2511 while (src_bytes_left > 0)
14f9c5c9
AS
2512 {
2513 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2514 part of the value. */
d2e4a39e 2515 unsigned int unusedMSMask =
4c4b4cd2
PH
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2517 1;
2518 /* Sign-extend bits for this byte. */
14f9c5c9 2519 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2520
d2e4a39e 2521 accum |=
086ca51f 2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2523 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2524 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2525 {
db297a65 2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
4c4b4cd2 2531 }
14f9c5c9
AS
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2533 unusedLS = 0;
086ca51f
JB
2534 src_bytes_left -= 1;
2535 src_idx += delta;
14f9c5c9 2536 }
086ca51f 2537 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2538 {
2539 accum |= sign << accumSize;
db297a65 2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2541 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2542 if (accumSize < 0)
2543 accumSize = 0;
14f9c5c9 2544 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
14f9c5c9 2547 }
f93fca70
JB
2548}
2549
2550/* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558
2559struct value *
2560ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2562 struct type *type)
2563{
2564 struct value *v;
bfb1c796 2565 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2566 gdb_byte *unpacked;
220475ed 2567 const int is_scalar = is_scalar_type (type);
d0a9e810 2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2569 gdb::byte_vector staging;
f93fca70
JB
2570
2571 type = ada_check_typedef (type);
2572
d0a9e810 2573 if (obj == NULL)
bfb1c796 2574 src = valaddr + offset;
d0a9e810 2575 else
bfb1c796 2576 src = value_contents (obj) + offset;
d0a9e810
JB
2577
2578 if (is_dynamic_type (type))
2579 {
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
d0a9e810
JB
2589
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2591 staging.data (), staging.size (),
d0a9e810
JB
2592 is_big_endian, has_negatives (type),
2593 is_scalar);
d5722aa2 2594 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2596 {
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2603 of that stride. */
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2605 }
d0a9e810
JB
2606 }
2607
f93fca70
JB
2608 if (obj == NULL)
2609 {
2610 v = allocate_value (type);
bfb1c796 2611 src = valaddr + offset;
f93fca70
JB
2612 }
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2614 {
0cafa88c 2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2616 gdb_byte *buf;
0cafa88c 2617
f93fca70 2618 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2621 src = buf;
f93fca70
JB
2622 }
2623 else
2624 {
2625 v = allocate_value (type);
bfb1c796 2626 src = value_contents (obj) + offset;
f93fca70
JB
2627 }
2628
2629 if (obj != NULL)
2630 {
2631 long new_offset = offset;
2632
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 {
2638 ++new_offset;
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2640 }
2641 set_value_offset (v, new_offset);
2642
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2646 }
2647 else
2648 set_value_bitsize (v, bit_size);
bfb1c796 2649 unpacked = value_contents_writeable (v);
f93fca70
JB
2650
2651 if (bit_size == 0)
2652 {
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2654 return v;
2655 }
2656
d5722aa2 2657 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2658 {
d0a9e810
JB
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
d5722aa2 2662 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2663 }
d0a9e810
JB
2664 else
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2668
14f9c5c9
AS
2669 return v;
2670}
d2e4a39e 2671
14f9c5c9
AS
2672/* Store the contents of FROMVAL into the location of TOVAL.
2673 Return a new value with the location of TOVAL and contents of
2674 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2675 floating-point or non-scalar types. */
14f9c5c9 2676
d2e4a39e
AS
2677static struct value *
2678ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2679{
df407dfe
AC
2680 struct type *type = value_type (toval);
2681 int bits = value_bitsize (toval);
14f9c5c9 2682
52ce6436
PH
2683 toval = ada_coerce_ref (toval);
2684 fromval = ada_coerce_ref (fromval);
2685
2686 if (ada_is_direct_array_type (value_type (toval)))
2687 toval = ada_coerce_to_simple_array (toval);
2688 if (ada_is_direct_array_type (value_type (fromval)))
2689 fromval = ada_coerce_to_simple_array (fromval);
2690
88e3b34b 2691 if (!deprecated_value_modifiable (toval))
323e0a4a 2692 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2693
d2e4a39e 2694 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2695 && bits > 0
d2e4a39e 2696 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2697 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2698 {
df407dfe
AC
2699 int len = (value_bitpos (toval)
2700 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2701 int from_size;
224c3ddb 2702 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2703 struct value *val;
42ae5230 2704 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2705
2706 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2707 fromval = value_cast (type, fromval);
14f9c5c9 2708
52ce6436 2709 read_memory (to_addr, buffer, len);
aced2898
PH
2710 from_size = value_bitsize (fromval);
2711 if (from_size == 0)
2712 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2713
2714 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2715 ULONGEST from_offset = 0;
2716 if (is_big_endian && is_scalar_type (value_type (fromval)))
2717 from_offset = from_size - bits;
2718 copy_bitwise (buffer, value_bitpos (toval),
2719 value_contents (fromval), from_offset,
2720 bits, is_big_endian);
972daa01 2721 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2722
14f9c5c9 2723 val = value_copy (toval);
0fd88904 2724 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2725 TYPE_LENGTH (type));
04624583 2726 deprecated_set_value_type (val, type);
d2e4a39e 2727
14f9c5c9
AS
2728 return val;
2729 }
2730
2731 return value_assign (toval, fromval);
2732}
2733
2734
7c512744
JB
2735/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2736 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2737 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2738 COMPONENT, and not the inferior's memory. The current contents
2739 of COMPONENT are ignored.
2740
2741 Although not part of the initial design, this function also works
2742 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2743 had a null address, and COMPONENT had an address which is equal to
2744 its offset inside CONTAINER. */
2745
52ce6436
PH
2746static void
2747value_assign_to_component (struct value *container, struct value *component,
2748 struct value *val)
2749{
2750 LONGEST offset_in_container =
42ae5230 2751 (LONGEST) (value_address (component) - value_address (container));
7c512744 2752 int bit_offset_in_container =
52ce6436
PH
2753 value_bitpos (component) - value_bitpos (container);
2754 int bits;
7c512744 2755
52ce6436
PH
2756 val = value_cast (value_type (component), val);
2757
2758 if (value_bitsize (component) == 0)
2759 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2760 else
2761 bits = value_bitsize (component);
2762
50810684 2763 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2764 {
2765 int src_offset;
2766
2767 if (is_scalar_type (check_typedef (value_type (component))))
2768 src_offset
2769 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2770 else
2771 src_offset = 0;
a99bc3d2
JB
2772 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2773 value_bitpos (container) + bit_offset_in_container,
2774 value_contents (val), src_offset, bits, 1);
2a62dfa9 2775 }
52ce6436 2776 else
a99bc3d2
JB
2777 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2778 value_bitpos (container) + bit_offset_in_container,
2779 value_contents (val), 0, bits, 0);
7c512744
JB
2780}
2781
736ade86
XR
2782/* Determine if TYPE is an access to an unconstrained array. */
2783
d91e9ea8 2784bool
736ade86
XR
2785ada_is_access_to_unconstrained_array (struct type *type)
2786{
2787 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2788 && is_thick_pntr (ada_typedef_target_type (type)));
2789}
2790
4c4b4cd2
PH
2791/* The value of the element of array ARR at the ARITY indices given in IND.
2792 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2793 thereto. */
2794
d2e4a39e
AS
2795struct value *
2796ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2797{
2798 int k;
d2e4a39e
AS
2799 struct value *elt;
2800 struct type *elt_type;
14f9c5c9
AS
2801
2802 elt = ada_coerce_to_simple_array (arr);
2803
df407dfe 2804 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2805 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2806 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2807 return value_subscript_packed (elt, arity, ind);
2808
2809 for (k = 0; k < arity; k += 1)
2810 {
b9c50e9a
XR
2811 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2812
14f9c5c9 2813 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2814 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2815
2497b498 2816 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2817
2818 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2819 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2820 {
2821 /* The element is a typedef to an unconstrained array,
2822 except that the value_subscript call stripped the
2823 typedef layer. The typedef layer is GNAT's way to
2824 specify that the element is, at the source level, an
2825 access to the unconstrained array, rather than the
2826 unconstrained array. So, we need to restore that
2827 typedef layer, which we can do by forcing the element's
2828 type back to its original type. Otherwise, the returned
2829 value is going to be printed as the array, rather
2830 than as an access. Another symptom of the same issue
2831 would be that an expression trying to dereference the
2832 element would also be improperly rejected. */
2833 deprecated_set_value_type (elt, saved_elt_type);
2834 }
2835
2836 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2837 }
b9c50e9a 2838
14f9c5c9
AS
2839 return elt;
2840}
2841
deede10c
JB
2842/* Assuming ARR is a pointer to a GDB array, the value of the element
2843 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2844 Does not read the entire array into memory.
2845
2846 Note: Unlike what one would expect, this function is used instead of
2847 ada_value_subscript for basically all non-packed array types. The reason
2848 for this is that a side effect of doing our own pointer arithmetics instead
2849 of relying on value_subscript is that there is no implicit typedef peeling.
2850 This is important for arrays of array accesses, where it allows us to
2851 preserve the fact that the array's element is an array access, where the
2852 access part os encoded in a typedef layer. */
14f9c5c9 2853
2c0b251b 2854static struct value *
deede10c 2855ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2856{
2857 int k;
919e6dbe 2858 struct value *array_ind = ada_value_ind (arr);
deede10c 2859 struct type *type
919e6dbe
PMR
2860 = check_typedef (value_enclosing_type (array_ind));
2861
2862 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2863 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2864 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2865
2866 for (k = 0; k < arity; k += 1)
2867 {
2868 LONGEST lwb, upb;
aa715135 2869 struct value *lwb_value;
14f9c5c9
AS
2870
2871 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2872 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2873 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2874 value_copy (arr));
14f9c5c9 2875 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2876 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2877 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2878 type = TYPE_TARGET_TYPE (type);
2879 }
2880
2881 return value_ind (arr);
2882}
2883
0b5d8877 2884/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2885 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2886 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2887 this array is LOW, as per Ada rules. */
0b5d8877 2888static struct value *
f5938064
JG
2889ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2890 int low, int high)
0b5d8877 2891{
b0dd7688 2892 struct type *type0 = ada_check_typedef (type);
aa715135 2893 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2894 struct type *index_type
aa715135 2895 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2896 struct type *slice_type = create_array_type_with_stride
2897 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2898 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2899 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2900 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2901 LONGEST base_low_pos, low_pos;
2902 CORE_ADDR base;
2903
2904 if (!discrete_position (base_index_type, low, &low_pos)
2905 || !discrete_position (base_index_type, base_low, &base_low_pos))
2906 {
2907 warning (_("unable to get positions in slice, use bounds instead"));
2908 low_pos = low;
2909 base_low_pos = base_low;
2910 }
5b4ee69b 2911
aa715135
JG
2912 base = value_as_address (array_ptr)
2913 + ((low_pos - base_low_pos)
2914 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2915 return value_at_lazy (slice_type, base);
0b5d8877
PH
2916}
2917
2918
2919static struct value *
2920ada_value_slice (struct value *array, int low, int high)
2921{
b0dd7688 2922 struct type *type = ada_check_typedef (value_type (array));
aa715135 2923 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2924 struct type *index_type
2925 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2926 struct type *slice_type = create_array_type_with_stride
2927 (NULL, TYPE_TARGET_TYPE (type), index_type,
2928 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2929 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2930 LONGEST low_pos, high_pos;
5b4ee69b 2931
aa715135
JG
2932 if (!discrete_position (base_index_type, low, &low_pos)
2933 || !discrete_position (base_index_type, high, &high_pos))
2934 {
2935 warning (_("unable to get positions in slice, use bounds instead"));
2936 low_pos = low;
2937 high_pos = high;
2938 }
2939
2940 return value_cast (slice_type,
2941 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2942}
2943
14f9c5c9
AS
2944/* If type is a record type in the form of a standard GNAT array
2945 descriptor, returns the number of dimensions for type. If arr is a
2946 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2947 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2948
2949int
d2e4a39e 2950ada_array_arity (struct type *type)
14f9c5c9
AS
2951{
2952 int arity;
2953
2954 if (type == NULL)
2955 return 0;
2956
2957 type = desc_base_type (type);
2958
2959 arity = 0;
d2e4a39e 2960 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2961 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2962 else
2963 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2964 {
4c4b4cd2 2965 arity += 1;
61ee279c 2966 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2967 }
d2e4a39e 2968
14f9c5c9
AS
2969 return arity;
2970}
2971
2972/* If TYPE is a record type in the form of a standard GNAT array
2973 descriptor or a simple array type, returns the element type for
2974 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2975 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2976
d2e4a39e
AS
2977struct type *
2978ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2979{
2980 type = desc_base_type (type);
2981
d2e4a39e 2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2983 {
2984 int k;
d2e4a39e 2985 struct type *p_array_type;
14f9c5c9 2986
556bdfd4 2987 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2988
2989 k = ada_array_arity (type);
2990 if (k == 0)
4c4b4cd2 2991 return NULL;
d2e4a39e 2992
4c4b4cd2 2993 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2994 if (nindices >= 0 && k > nindices)
4c4b4cd2 2995 k = nindices;
d2e4a39e 2996 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2997 {
61ee279c 2998 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2999 k -= 1;
3000 }
14f9c5c9
AS
3001 return p_array_type;
3002 }
3003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3004 {
3005 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3006 {
3007 type = TYPE_TARGET_TYPE (type);
3008 nindices -= 1;
3009 }
14f9c5c9
AS
3010 return type;
3011 }
3012
3013 return NULL;
3014}
3015
4c4b4cd2 3016/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3017 Does not examine memory. Throws an error if N is invalid or TYPE
3018 is not an array type. NAME is the name of the Ada attribute being
3019 evaluated ('range, 'first, 'last, or 'length); it is used in building
3020 the error message. */
14f9c5c9 3021
1eea4ebd
UW
3022static struct type *
3023ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3024{
4c4b4cd2
PH
3025 struct type *result_type;
3026
14f9c5c9
AS
3027 type = desc_base_type (type);
3028
1eea4ebd
UW
3029 if (n < 0 || n > ada_array_arity (type))
3030 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3031
4c4b4cd2 3032 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3033 {
3034 int i;
3035
3036 for (i = 1; i < n; i += 1)
4c4b4cd2 3037 type = TYPE_TARGET_TYPE (type);
262452ec 3038 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3039 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3040 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3041 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3042 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3043 result_type = NULL;
14f9c5c9 3044 }
d2e4a39e 3045 else
1eea4ebd
UW
3046 {
3047 result_type = desc_index_type (desc_bounds_type (type), n);
3048 if (result_type == NULL)
3049 error (_("attempt to take bound of something that is not an array"));
3050 }
3051
3052 return result_type;
14f9c5c9
AS
3053}
3054
3055/* Given that arr is an array type, returns the lower bound of the
3056 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3057 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3058 array-descriptor type. It works for other arrays with bounds supplied
3059 by run-time quantities other than discriminants. */
14f9c5c9 3060
abb68b3e 3061static LONGEST
fb5e3d5c 3062ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3063{
8a48ac95 3064 struct type *type, *index_type_desc, *index_type;
1ce677a4 3065 int i;
262452ec
JK
3066
3067 gdb_assert (which == 0 || which == 1);
14f9c5c9 3068
ad82864c
JB
3069 if (ada_is_constrained_packed_array_type (arr_type))
3070 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3071
4c4b4cd2 3072 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3073 return (LONGEST) - which;
14f9c5c9
AS
3074
3075 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3076 type = TYPE_TARGET_TYPE (arr_type);
3077 else
3078 type = arr_type;
3079
bafffb51
JB
3080 if (TYPE_FIXED_INSTANCE (type))
3081 {
3082 /* The array has already been fixed, so we do not need to
3083 check the parallel ___XA type again. That encoding has
3084 already been applied, so ignore it now. */
3085 index_type_desc = NULL;
3086 }
3087 else
3088 {
3089 index_type_desc = ada_find_parallel_type (type, "___XA");
3090 ada_fixup_array_indexes_type (index_type_desc);
3091 }
3092
262452ec 3093 if (index_type_desc != NULL)
28c85d6c
JB
3094 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3095 NULL);
262452ec 3096 else
8a48ac95
JB
3097 {
3098 struct type *elt_type = check_typedef (type);
3099
3100 for (i = 1; i < n; i++)
3101 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3102
3103 index_type = TYPE_INDEX_TYPE (elt_type);
3104 }
262452ec 3105
43bbcdc2
PH
3106 return
3107 (LONGEST) (which == 0
3108 ? ada_discrete_type_low_bound (index_type)
3109 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3110}
3111
3112/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3113 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3114 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3115 supplied by run-time quantities other than discriminants. */
14f9c5c9 3116
1eea4ebd 3117static LONGEST
4dc81987 3118ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3119{
eb479039
JB
3120 struct type *arr_type;
3121
3122 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3123 arr = value_ind (arr);
3124 arr_type = value_enclosing_type (arr);
14f9c5c9 3125
ad82864c
JB
3126 if (ada_is_constrained_packed_array_type (arr_type))
3127 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3128 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3129 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3130 else
1eea4ebd 3131 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3132}
3133
3134/* Given that arr is an array value, returns the length of the
3135 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3136 supplied by run-time quantities other than discriminants.
3137 Does not work for arrays indexed by enumeration types with representation
3138 clauses at the moment. */
14f9c5c9 3139
1eea4ebd 3140static LONGEST
d2e4a39e 3141ada_array_length (struct value *arr, int n)
14f9c5c9 3142{
aa715135
JG
3143 struct type *arr_type, *index_type;
3144 int low, high;
eb479039
JB
3145
3146 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3147 arr = value_ind (arr);
3148 arr_type = value_enclosing_type (arr);
14f9c5c9 3149
ad82864c
JB
3150 if (ada_is_constrained_packed_array_type (arr_type))
3151 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3152
4c4b4cd2 3153 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3154 {
3155 low = ada_array_bound_from_type (arr_type, n, 0);
3156 high = ada_array_bound_from_type (arr_type, n, 1);
3157 }
14f9c5c9 3158 else
aa715135
JG
3159 {
3160 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3161 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3162 }
3163
f168693b 3164 arr_type = check_typedef (arr_type);
7150d33c 3165 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3166 if (index_type != NULL)
3167 {
3168 struct type *base_type;
3169 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3170 base_type = TYPE_TARGET_TYPE (index_type);
3171 else
3172 base_type = index_type;
3173
3174 low = pos_atr (value_from_longest (base_type, low));
3175 high = pos_atr (value_from_longest (base_type, high));
3176 }
3177 return high - low + 1;
4c4b4cd2
PH
3178}
3179
bff8c71f
TT
3180/* An array whose type is that of ARR_TYPE (an array type), with
3181 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3182 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3183
3184static struct value *
bff8c71f 3185empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3186{
b0dd7688 3187 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3188 struct type *index_type
3189 = create_static_range_type
bff8c71f
TT
3190 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3191 high < low ? low - 1 : high);
b0dd7688 3192 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3193
0b5d8877 3194 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3195}
14f9c5c9 3196\f
d2e4a39e 3197
4c4b4cd2 3198 /* Name resolution */
14f9c5c9 3199
4c4b4cd2
PH
3200/* The "decoded" name for the user-definable Ada operator corresponding
3201 to OP. */
14f9c5c9 3202
d2e4a39e 3203static const char *
4c4b4cd2 3204ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3205{
3206 int i;
3207
4c4b4cd2 3208 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3209 {
3210 if (ada_opname_table[i].op == op)
4c4b4cd2 3211 return ada_opname_table[i].decoded;
14f9c5c9 3212 }
323e0a4a 3213 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3214}
3215
3216
4c4b4cd2
PH
3217/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3218 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3219 undefined namespace) and converts operators that are
3220 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3221 non-null, it provides a preferred result type [at the moment, only
3222 type void has any effect---causing procedures to be preferred over
3223 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3224 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3225
4c4b4cd2 3226static void
699bd4cf
TT
3227resolve (expression_up *expp, int void_context_p, int parse_completion,
3228 innermost_block_tracker *tracker)
14f9c5c9 3229{
30b15541
UW
3230 struct type *context_type = NULL;
3231 int pc = 0;
3232
3233 if (void_context_p)
3234 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3235
699bd4cf 3236 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3237}
3238
4c4b4cd2
PH
3239/* Resolve the operator of the subexpression beginning at
3240 position *POS of *EXPP. "Resolving" consists of replacing
3241 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3242 with their resolutions, replacing built-in operators with
3243 function calls to user-defined operators, where appropriate, and,
3244 when DEPROCEDURE_P is non-zero, converting function-valued variables
3245 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3246 are as in ada_resolve, above. */
14f9c5c9 3247
d2e4a39e 3248static struct value *
e9d9f57e 3249resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3250 struct type *context_type, int parse_completion,
3251 innermost_block_tracker *tracker)
14f9c5c9
AS
3252{
3253 int pc = *pos;
3254 int i;
4c4b4cd2 3255 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3256 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3257 struct value **argvec; /* Vector of operand types (alloca'ed). */
3258 int nargs; /* Number of operands. */
52ce6436 3259 int oplen;
14f9c5c9
AS
3260
3261 argvec = NULL;
3262 nargs = 0;
e9d9f57e 3263 exp = expp->get ();
14f9c5c9 3264
52ce6436
PH
3265 /* Pass one: resolve operands, saving their types and updating *pos,
3266 if needed. */
14f9c5c9
AS
3267 switch (op)
3268 {
4c4b4cd2
PH
3269 case OP_FUNCALL:
3270 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3271 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3272 *pos += 7;
4c4b4cd2
PH
3273 else
3274 {
3275 *pos += 3;
699bd4cf 3276 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3277 }
3278 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3279 break;
3280
14f9c5c9 3281 case UNOP_ADDR:
4c4b4cd2 3282 *pos += 1;
699bd4cf 3283 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3284 break;
3285
52ce6436
PH
3286 case UNOP_QUAL:
3287 *pos += 3;
2a612529 3288 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3289 parse_completion, tracker);
4c4b4cd2
PH
3290 break;
3291
52ce6436 3292 case OP_ATR_MODULUS:
4c4b4cd2
PH
3293 case OP_ATR_SIZE:
3294 case OP_ATR_TAG:
4c4b4cd2
PH
3295 case OP_ATR_FIRST:
3296 case OP_ATR_LAST:
3297 case OP_ATR_LENGTH:
3298 case OP_ATR_POS:
3299 case OP_ATR_VAL:
4c4b4cd2
PH
3300 case OP_ATR_MIN:
3301 case OP_ATR_MAX:
52ce6436
PH
3302 case TERNOP_IN_RANGE:
3303 case BINOP_IN_BOUNDS:
3304 case UNOP_IN_RANGE:
3305 case OP_AGGREGATE:
3306 case OP_OTHERS:
3307 case OP_CHOICES:
3308 case OP_POSITIONAL:
3309 case OP_DISCRETE_RANGE:
3310 case OP_NAME:
3311 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3312 *pos += oplen;
14f9c5c9
AS
3313 break;
3314
3315 case BINOP_ASSIGN:
3316 {
4c4b4cd2
PH
3317 struct value *arg1;
3318
3319 *pos += 1;
699bd4cf 3320 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3321 if (arg1 == NULL)
699bd4cf 3322 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3323 else
699bd4cf
TT
3324 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3325 tracker);
4c4b4cd2 3326 break;
14f9c5c9
AS
3327 }
3328
4c4b4cd2 3329 case UNOP_CAST:
4c4b4cd2
PH
3330 *pos += 3;
3331 nargs = 1;
3332 break;
14f9c5c9 3333
4c4b4cd2
PH
3334 case BINOP_ADD:
3335 case BINOP_SUB:
3336 case BINOP_MUL:
3337 case BINOP_DIV:
3338 case BINOP_REM:
3339 case BINOP_MOD:
3340 case BINOP_EXP:
3341 case BINOP_CONCAT:
3342 case BINOP_LOGICAL_AND:
3343 case BINOP_LOGICAL_OR:
3344 case BINOP_BITWISE_AND:
3345 case BINOP_BITWISE_IOR:
3346 case BINOP_BITWISE_XOR:
14f9c5c9 3347
4c4b4cd2
PH
3348 case BINOP_EQUAL:
3349 case BINOP_NOTEQUAL:
3350 case BINOP_LESS:
3351 case BINOP_GTR:
3352 case BINOP_LEQ:
3353 case BINOP_GEQ:
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_REPEAT:
3356 case BINOP_SUBSCRIPT:
3357 case BINOP_COMMA:
40c8aaa9
JB
3358 *pos += 1;
3359 nargs = 2;
3360 break;
14f9c5c9 3361
4c4b4cd2
PH
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 case UNOP_IND:
3367 *pos += 1;
3368 nargs = 1;
3369 break;
14f9c5c9 3370
4c4b4cd2 3371 case OP_LONG:
edd079d9 3372 case OP_FLOAT:
4c4b4cd2 3373 case OP_VAR_VALUE:
74ea4be4 3374 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3375 *pos += 4;
3376 break;
14f9c5c9 3377
4c4b4cd2
PH
3378 case OP_TYPE:
3379 case OP_BOOL:
3380 case OP_LAST:
4c4b4cd2
PH
3381 case OP_INTERNALVAR:
3382 *pos += 3;
3383 break;
14f9c5c9 3384
4c4b4cd2
PH
3385 case UNOP_MEMVAL:
3386 *pos += 3;
3387 nargs = 1;
3388 break;
3389
67f3407f
DJ
3390 case OP_REGISTER:
3391 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3392 break;
3393
4c4b4cd2
PH
3394 case STRUCTOP_STRUCT:
3395 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3396 nargs = 1;
3397 break;
3398
4c4b4cd2 3399 case TERNOP_SLICE:
4c4b4cd2
PH
3400 *pos += 1;
3401 nargs = 3;
3402 break;
3403
52ce6436 3404 case OP_STRING:
14f9c5c9 3405 break;
4c4b4cd2
PH
3406
3407 default:
323e0a4a 3408 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3409 }
3410
8d749320 3411 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3412 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3413 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3414 tracker);
4c4b4cd2 3415 argvec[i] = NULL;
e9d9f57e 3416 exp = expp->get ();
4c4b4cd2
PH
3417
3418 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3419 switch (op)
3420 {
3421 default:
3422 break;
3423
14f9c5c9 3424 case OP_VAR_VALUE:
4c4b4cd2 3425 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3426 {
54d343a2 3427 std::vector<struct block_symbol> candidates;
76a01679
JB
3428 int n_candidates;
3429
3430 n_candidates =
3431 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3432 (exp->elts[pc + 2].symbol),
3433 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3434 &candidates);
76a01679
JB
3435
3436 if (n_candidates > 1)
3437 {
3438 /* Types tend to get re-introduced locally, so if there
3439 are any local symbols that are not types, first filter
3440 out all types. */
3441 int j;
3442 for (j = 0; j < n_candidates; j += 1)
d12307c1 3443 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3444 {
3445 case LOC_REGISTER:
3446 case LOC_ARG:
3447 case LOC_REF_ARG:
76a01679
JB
3448 case LOC_REGPARM_ADDR:
3449 case LOC_LOCAL:
76a01679 3450 case LOC_COMPUTED:
76a01679
JB
3451 goto FoundNonType;
3452 default:
3453 break;
3454 }
3455 FoundNonType:
3456 if (j < n_candidates)
3457 {
3458 j = 0;
3459 while (j < n_candidates)
3460 {
d12307c1 3461 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3462 {
3463 candidates[j] = candidates[n_candidates - 1];
3464 n_candidates -= 1;
3465 }
3466 else
3467 j += 1;
3468 }
3469 }
3470 }
3471
3472 if (n_candidates == 0)
323e0a4a 3473 error (_("No definition found for %s"),
76a01679
JB
3474 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3475 else if (n_candidates == 1)
3476 i = 0;
3477 else if (deprocedure_p
54d343a2 3478 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3479 {
06d5cf63 3480 i = ada_resolve_function
54d343a2 3481 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3482 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3483 context_type, parse_completion);
76a01679 3484 if (i < 0)
323e0a4a 3485 error (_("Could not find a match for %s"),
76a01679
JB
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 }
3488 else
3489 {
323e0a4a 3490 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3491 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3492 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3493 i = 0;
3494 }
3495
3496 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3497 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3498 tracker->update (candidates[i]);
76a01679
JB
3499 }
3500
3501 if (deprocedure_p
3502 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3503 == TYPE_CODE_FUNC))
3504 {
424da6cf 3505 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3506 exp->elts[pc + 2].symbol,
3507 exp->elts[pc + 1].block);
e9d9f57e 3508 exp = expp->get ();
76a01679 3509 }
14f9c5c9
AS
3510 break;
3511
3512 case OP_FUNCALL:
3513 {
4c4b4cd2 3514 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3515 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3516 {
54d343a2 3517 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3518 int n_candidates;
3519
3520 n_candidates =
76a01679
JB
3521 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3522 (exp->elts[pc + 5].symbol),
3523 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3524 &candidates);
ec6a20c2 3525
4c4b4cd2
PH
3526 if (n_candidates == 1)
3527 i = 0;
3528 else
3529 {
06d5cf63 3530 i = ada_resolve_function
54d343a2 3531 (candidates.data (), n_candidates,
06d5cf63
JB
3532 argvec, nargs,
3533 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3534 context_type, parse_completion);
4c4b4cd2 3535 if (i < 0)
323e0a4a 3536 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3537 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3538 }
3539
3540 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3541 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3542 tracker->update (candidates[i]);
4c4b4cd2 3543 }
14f9c5c9
AS
3544 }
3545 break;
3546 case BINOP_ADD:
3547 case BINOP_SUB:
3548 case BINOP_MUL:
3549 case BINOP_DIV:
3550 case BINOP_REM:
3551 case BINOP_MOD:
3552 case BINOP_CONCAT:
3553 case BINOP_BITWISE_AND:
3554 case BINOP_BITWISE_IOR:
3555 case BINOP_BITWISE_XOR:
3556 case BINOP_EQUAL:
3557 case BINOP_NOTEQUAL:
3558 case BINOP_LESS:
3559 case BINOP_GTR:
3560 case BINOP_LEQ:
3561 case BINOP_GEQ:
3562 case BINOP_EXP:
3563 case UNOP_NEG:
3564 case UNOP_PLUS:
3565 case UNOP_LOGICAL_NOT:
3566 case UNOP_ABS:
3567 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3568 {
54d343a2 3569 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3570 int n_candidates;
3571
3572 n_candidates =
b5ec771e 3573 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3574 NULL, VAR_DOMAIN,
4eeaa230 3575 &candidates);
ec6a20c2 3576
54d343a2 3577 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3578 nargs, ada_decoded_op_name (op), NULL,
3579 parse_completion);
4c4b4cd2
PH
3580 if (i < 0)
3581 break;
3582
d12307c1
PMR
3583 replace_operator_with_call (expp, pc, nargs, 1,
3584 candidates[i].symbol,
3585 candidates[i].block);
e9d9f57e 3586 exp = expp->get ();
4c4b4cd2 3587 }
14f9c5c9 3588 break;
4c4b4cd2
PH
3589
3590 case OP_TYPE:
b3dbf008 3591 case OP_REGISTER:
4c4b4cd2 3592 return NULL;
14f9c5c9
AS
3593 }
3594
3595 *pos = pc;
ced9779b
JB
3596 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3597 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3598 exp->elts[pc + 1].objfile,
3599 exp->elts[pc + 2].msymbol);
3600 else
3601 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3602}
3603
3604/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3605 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3606 a non-pointer. */
14f9c5c9 3607/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3608 liberal. */
14f9c5c9
AS
3609
3610static int
4dc81987 3611ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3612{
61ee279c
PH
3613 ftype = ada_check_typedef (ftype);
3614 atype = ada_check_typedef (atype);
14f9c5c9
AS
3615
3616 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3617 ftype = TYPE_TARGET_TYPE (ftype);
3618 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3619 atype = TYPE_TARGET_TYPE (atype);
3620
d2e4a39e 3621 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3622 {
3623 default:
5b3d5b7d 3624 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3625 case TYPE_CODE_PTR:
3626 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3627 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3628 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3629 else
1265e4aa
JB
3630 return (may_deref
3631 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3632 case TYPE_CODE_INT:
3633 case TYPE_CODE_ENUM:
3634 case TYPE_CODE_RANGE:
3635 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3636 {
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 return 1;
3641 default:
3642 return 0;
3643 }
14f9c5c9
AS
3644
3645 case TYPE_CODE_ARRAY:
d2e4a39e 3646 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3647 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3648
3649 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3650 if (ada_is_array_descriptor_type (ftype))
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
14f9c5c9 3653 else
4c4b4cd2
PH
3654 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3655 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3656
3657 case TYPE_CODE_UNION:
3658 case TYPE_CODE_FLT:
3659 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3660 }
3661}
3662
3663/* Return non-zero if the formals of FUNC "sufficiently match" the
3664 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3665 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3666 argument function. */
14f9c5c9
AS
3667
3668static int
d2e4a39e 3669ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3670{
3671 int i;
d2e4a39e 3672 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3673
1265e4aa
JB
3674 if (SYMBOL_CLASS (func) == LOC_CONST
3675 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3676 return (n_actuals == 0);
3677 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3678 return 0;
3679
3680 if (TYPE_NFIELDS (func_type) != n_actuals)
3681 return 0;
3682
3683 for (i = 0; i < n_actuals; i += 1)
3684 {
4c4b4cd2 3685 if (actuals[i] == NULL)
76a01679
JB
3686 return 0;
3687 else
3688 {
5b4ee69b
MS
3689 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3690 i));
df407dfe 3691 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3692
76a01679
JB
3693 if (!ada_type_match (ftype, atype, 1))
3694 return 0;
3695 }
14f9c5c9
AS
3696 }
3697 return 1;
3698}
3699
3700/* False iff function type FUNC_TYPE definitely does not produce a value
3701 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3702 FUNC_TYPE is not a valid function type with a non-null return type
3703 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3704
3705static int
d2e4a39e 3706return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3707{
d2e4a39e 3708 struct type *return_type;
14f9c5c9
AS
3709
3710 if (func_type == NULL)
3711 return 1;
3712
4c4b4cd2 3713 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3714 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3715 else
18af8284 3716 return_type = get_base_type (func_type);
14f9c5c9
AS
3717 if (return_type == NULL)
3718 return 1;
3719
18af8284 3720 context_type = get_base_type (context_type);
14f9c5c9
AS
3721
3722 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3723 return context_type == NULL || return_type == context_type;
3724 else if (context_type == NULL)
3725 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3726 else
3727 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3728}
3729
3730
4c4b4cd2 3731/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3732 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3733 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3734 that returns that type, then eliminate matches that don't. If
3735 CONTEXT_TYPE is void and there is at least one match that does not
3736 return void, eliminate all matches that do.
3737
14f9c5c9
AS
3738 Asks the user if there is more than one match remaining. Returns -1
3739 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3740 solely for messages. May re-arrange and modify SYMS in
3741 the process; the index returned is for the modified vector. */
14f9c5c9 3742
4c4b4cd2 3743static int
d12307c1 3744ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3745 int nsyms, struct value **args, int nargs,
2a612529
TT
3746 const char *name, struct type *context_type,
3747 int parse_completion)
14f9c5c9 3748{
30b15541 3749 int fallback;
14f9c5c9 3750 int k;
4c4b4cd2 3751 int m; /* Number of hits */
14f9c5c9 3752
d2e4a39e 3753 m = 0;
30b15541
UW
3754 /* In the first pass of the loop, we only accept functions matching
3755 context_type. If none are found, we add a second pass of the loop
3756 where every function is accepted. */
3757 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3758 {
3759 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3760 {
d12307c1 3761 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3762
d12307c1 3763 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3764 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3765 {
3766 syms[m] = syms[k];
3767 m += 1;
3768 }
3769 }
14f9c5c9
AS
3770 }
3771
dc5c8746
PMR
3772 /* If we got multiple matches, ask the user which one to use. Don't do this
3773 interactive thing during completion, though, as the purpose of the
3774 completion is providing a list of all possible matches. Prompting the
3775 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3776 if (m == 0)
3777 return -1;
dc5c8746 3778 else if (m > 1 && !parse_completion)
14f9c5c9 3779 {
323e0a4a 3780 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3781 user_select_syms (syms, m, 1);
14f9c5c9
AS
3782 return 0;
3783 }
3784 return 0;
3785}
3786
4c4b4cd2
PH
3787/* Returns true (non-zero) iff decoded name N0 should appear before N1
3788 in a listing of choices during disambiguation (see sort_choices, below).
3789 The idea is that overloadings of a subprogram name from the
3790 same package should sort in their source order. We settle for ordering
3791 such symbols by their trailing number (__N or $N). */
3792
14f9c5c9 3793static int
0d5cff50 3794encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3795{
3796 if (N1 == NULL)
3797 return 0;
3798 else if (N0 == NULL)
3799 return 1;
3800 else
3801 {
3802 int k0, k1;
5b4ee69b 3803
d2e4a39e 3804 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3805 ;
d2e4a39e 3806 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3807 ;
d2e4a39e 3808 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3809 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3810 {
3811 int n0, n1;
5b4ee69b 3812
4c4b4cd2
PH
3813 n0 = k0;
3814 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3815 n0 -= 1;
3816 n1 = k1;
3817 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3818 n1 -= 1;
3819 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3820 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3821 }
14f9c5c9
AS
3822 return (strcmp (N0, N1) < 0);
3823 }
3824}
d2e4a39e 3825
4c4b4cd2
PH
3826/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3827 encoded names. */
3828
d2e4a39e 3829static void
d12307c1 3830sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3831{
4c4b4cd2 3832 int i;
5b4ee69b 3833
d2e4a39e 3834 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3835 {
d12307c1 3836 struct block_symbol sym = syms[i];
14f9c5c9
AS
3837 int j;
3838
d2e4a39e 3839 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3840 {
d12307c1
PMR
3841 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3842 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3843 break;
3844 syms[j + 1] = syms[j];
3845 }
d2e4a39e 3846 syms[j + 1] = sym;
14f9c5c9
AS
3847 }
3848}
3849
d72413e6
PMR
3850/* Whether GDB should display formals and return types for functions in the
3851 overloads selection menu. */
3852static int print_signatures = 1;
3853
3854/* Print the signature for SYM on STREAM according to the FLAGS options. For
3855 all but functions, the signature is just the name of the symbol. For
3856 functions, this is the name of the function, the list of types for formals
3857 and the return type (if any). */
3858
3859static void
3860ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3861 const struct type_print_options *flags)
3862{
3863 struct type *type = SYMBOL_TYPE (sym);
3864
3865 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3866 if (!print_signatures
3867 || type == NULL
3868 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3869 return;
3870
3871 if (TYPE_NFIELDS (type) > 0)
3872 {
3873 int i;
3874
3875 fprintf_filtered (stream, " (");
3876 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3877 {
3878 if (i > 0)
3879 fprintf_filtered (stream, "; ");
3880 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3881 flags);
3882 }
3883 fprintf_filtered (stream, ")");
3884 }
3885 if (TYPE_TARGET_TYPE (type) != NULL
3886 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3887 {
3888 fprintf_filtered (stream, " return ");
3889 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3890 }
3891}
3892
4c4b4cd2
PH
3893/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3894 by asking the user (if necessary), returning the number selected,
3895 and setting the first elements of SYMS items. Error if no symbols
3896 selected. */
14f9c5c9
AS
3897
3898/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3899 to be re-integrated one of these days. */
14f9c5c9
AS
3900
3901int
d12307c1 3902user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3903{
3904 int i;
8d749320 3905 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3906 int n_chosen;
3907 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3908 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3909
3910 if (max_results < 1)
323e0a4a 3911 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3912 if (nsyms <= 1)
3913 return nsyms;
3914
717d2f5a
JB
3915 if (select_mode == multiple_symbols_cancel)
3916 error (_("\
3917canceled because the command is ambiguous\n\
3918See set/show multiple-symbol."));
a0087920 3919
717d2f5a
JB
3920 /* If select_mode is "all", then return all possible symbols.
3921 Only do that if more than one symbol can be selected, of course.
3922 Otherwise, display the menu as usual. */
3923 if (select_mode == multiple_symbols_all && max_results > 1)
3924 return nsyms;
3925
a0087920 3926 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3927 if (max_results > 1)
a0087920 3928 printf_filtered (_("[1] all\n"));
14f9c5c9 3929
4c4b4cd2 3930 sort_choices (syms, nsyms);
14f9c5c9
AS
3931
3932 for (i = 0; i < nsyms; i += 1)
3933 {
d12307c1 3934 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3935 continue;
3936
d12307c1 3937 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3938 {
76a01679 3939 struct symtab_and_line sal =
d12307c1 3940 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3941
a0087920 3942 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3943 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3944 &type_print_raw_options);
323e0a4a 3945 if (sal.symtab == NULL)
a0087920
TT
3946 printf_filtered (_(" at <no source file available>:%d\n"),
3947 sal.line);
323e0a4a 3948 else
a0087920
TT
3949 printf_filtered (_(" at %s:%d\n"),
3950 symtab_to_filename_for_display (sal.symtab),
3951 sal.line);
4c4b4cd2
PH
3952 continue;
3953 }
d2e4a39e 3954 else
4c4b4cd2
PH
3955 {
3956 int is_enumeral =
d12307c1
PMR
3957 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3958 && SYMBOL_TYPE (syms[i].symbol) != NULL
3959 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3960 struct symtab *symtab = NULL;
3961
d12307c1
PMR
3962 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3963 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3964
d12307c1 3965 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3966 {
a0087920 3967 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3968 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3969 &type_print_raw_options);
a0087920
TT
3970 printf_filtered (_(" at %s:%d\n"),
3971 symtab_to_filename_for_display (symtab),
3972 SYMBOL_LINE (syms[i].symbol));
d72413e6 3973 }
76a01679 3974 else if (is_enumeral
d12307c1 3975 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3976 {
a0087920 3977 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3978 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3979 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3980 printf_filtered (_("'(%s) (enumeral)\n"),
3981 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3982 }
d72413e6
PMR
3983 else
3984 {
a0087920 3985 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3986 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3987 &type_print_raw_options);
3988
3989 if (symtab != NULL)
a0087920
TT
3990 printf_filtered (is_enumeral
3991 ? _(" in %s (enumeral)\n")
3992 : _(" at %s:?\n"),
3993 symtab_to_filename_for_display (symtab));
d72413e6 3994 else
a0087920
TT
3995 printf_filtered (is_enumeral
3996 ? _(" (enumeral)\n")
3997 : _(" at ?\n"));
d72413e6 3998 }
4c4b4cd2 3999 }
14f9c5c9 4000 }
d2e4a39e 4001
14f9c5c9 4002 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4003 "overload-choice");
14f9c5c9
AS
4004
4005 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4006 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4007
4008 return n_chosen;
4009}
4010
4011/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4012 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4013 order in CHOICES[0 .. N-1], and return N.
4014
4015 The user types choices as a sequence of numbers on one line
4016 separated by blanks, encoding them as follows:
4017
4c4b4cd2 4018 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4019 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4020 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4021
4c4b4cd2 4022 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4023
4024 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4025 prompts (for use with the -f switch). */
14f9c5c9
AS
4026
4027int
d2e4a39e 4028get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4029 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4030{
d2e4a39e 4031 char *args;
a121b7c1 4032 const char *prompt;
14f9c5c9
AS
4033 int n_chosen;
4034 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4035
14f9c5c9
AS
4036 prompt = getenv ("PS2");
4037 if (prompt == NULL)
0bcd0149 4038 prompt = "> ";
14f9c5c9 4039
89fbedf3 4040 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4041
14f9c5c9 4042 if (args == NULL)
323e0a4a 4043 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4044
4045 n_chosen = 0;
76a01679 4046
4c4b4cd2
PH
4047 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4048 order, as given in args. Choices are validated. */
14f9c5c9
AS
4049 while (1)
4050 {
d2e4a39e 4051 char *args2;
14f9c5c9
AS
4052 int choice, j;
4053
0fcd72ba 4054 args = skip_spaces (args);
14f9c5c9 4055 if (*args == '\0' && n_chosen == 0)
323e0a4a 4056 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4057 else if (*args == '\0')
4c4b4cd2 4058 break;
14f9c5c9
AS
4059
4060 choice = strtol (args, &args2, 10);
d2e4a39e 4061 if (args == args2 || choice < 0
4c4b4cd2 4062 || choice > n_choices + first_choice - 1)
323e0a4a 4063 error (_("Argument must be choice number"));
14f9c5c9
AS
4064 args = args2;
4065
d2e4a39e 4066 if (choice == 0)
323e0a4a 4067 error (_("cancelled"));
14f9c5c9
AS
4068
4069 if (choice < first_choice)
4c4b4cd2
PH
4070 {
4071 n_chosen = n_choices;
4072 for (j = 0; j < n_choices; j += 1)
4073 choices[j] = j;
4074 break;
4075 }
14f9c5c9
AS
4076 choice -= first_choice;
4077
d2e4a39e 4078 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4079 {
4080 }
14f9c5c9
AS
4081
4082 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4083 {
4084 int k;
5b4ee69b 4085
4c4b4cd2
PH
4086 for (k = n_chosen - 1; k > j; k -= 1)
4087 choices[k + 1] = choices[k];
4088 choices[j + 1] = choice;
4089 n_chosen += 1;
4090 }
14f9c5c9
AS
4091 }
4092
4093 if (n_chosen > max_results)
323e0a4a 4094 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4095
14f9c5c9
AS
4096 return n_chosen;
4097}
4098
4c4b4cd2
PH
4099/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4100 on the function identified by SYM and BLOCK, and taking NARGS
4101 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4102
4103static void
e9d9f57e 4104replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4105 int oplen, struct symbol *sym,
270140bd 4106 const struct block *block)
14f9c5c9
AS
4107{
4108 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4109 symbol, -oplen for operator being replaced). */
d2e4a39e 4110 struct expression *newexp = (struct expression *)
8c1a34e7 4111 xzalloc (sizeof (struct expression)
4c4b4cd2 4112 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4113 struct expression *exp = expp->get ();
14f9c5c9
AS
4114
4115 newexp->nelts = exp->nelts + 7 - oplen;
4116 newexp->language_defn = exp->language_defn;
3489610d 4117 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4118 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4119 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4120 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4121
4122 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4123 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4124
4125 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4126 newexp->elts[pc + 4].block = block;
4127 newexp->elts[pc + 5].symbol = sym;
4128
e9d9f57e 4129 expp->reset (newexp);
d2e4a39e 4130}
14f9c5c9
AS
4131
4132/* Type-class predicates */
4133
4c4b4cd2
PH
4134/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4135 or FLOAT). */
14f9c5c9
AS
4136
4137static int
d2e4a39e 4138numeric_type_p (struct type *type)
14f9c5c9
AS
4139{
4140 if (type == NULL)
4141 return 0;
d2e4a39e
AS
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4c4b4cd2
PH
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_FLT:
4148 return 1;
4149 case TYPE_CODE_RANGE:
4150 return (type == TYPE_TARGET_TYPE (type)
4151 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4152 default:
4153 return 0;
4154 }
d2e4a39e 4155 }
14f9c5c9
AS
4156}
4157
4c4b4cd2 4158/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4159
4160static int
d2e4a39e 4161integer_type_p (struct type *type)
14f9c5c9
AS
4162{
4163 if (type == NULL)
4164 return 0;
d2e4a39e
AS
4165 else
4166 {
4167 switch (TYPE_CODE (type))
4c4b4cd2
PH
4168 {
4169 case TYPE_CODE_INT:
4170 return 1;
4171 case TYPE_CODE_RANGE:
4172 return (type == TYPE_TARGET_TYPE (type)
4173 || integer_type_p (TYPE_TARGET_TYPE (type)));
4174 default:
4175 return 0;
4176 }
d2e4a39e 4177 }
14f9c5c9
AS
4178}
4179
4c4b4cd2 4180/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4181
4182static int
d2e4a39e 4183scalar_type_p (struct type *type)
14f9c5c9
AS
4184{
4185 if (type == NULL)
4186 return 0;
d2e4a39e
AS
4187 else
4188 {
4189 switch (TYPE_CODE (type))
4c4b4cd2
PH
4190 {
4191 case TYPE_CODE_INT:
4192 case TYPE_CODE_RANGE:
4193 case TYPE_CODE_ENUM:
4194 case TYPE_CODE_FLT:
4195 return 1;
4196 default:
4197 return 0;
4198 }
d2e4a39e 4199 }
14f9c5c9
AS
4200}
4201
4c4b4cd2 4202/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4203
4204static int
d2e4a39e 4205discrete_type_p (struct type *type)
14f9c5c9
AS
4206{
4207 if (type == NULL)
4208 return 0;
d2e4a39e
AS
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4c4b4cd2
PH
4212 {
4213 case TYPE_CODE_INT:
4214 case TYPE_CODE_RANGE:
4215 case TYPE_CODE_ENUM:
872f0337 4216 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4217 return 1;
4218 default:
4219 return 0;
4220 }
d2e4a39e 4221 }
14f9c5c9
AS
4222}
4223
4c4b4cd2
PH
4224/* Returns non-zero if OP with operands in the vector ARGS could be
4225 a user-defined function. Errs on the side of pre-defined operators
4226 (i.e., result 0). */
14f9c5c9
AS
4227
4228static int
d2e4a39e 4229possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4230{
76a01679 4231 struct type *type0 =
df407dfe 4232 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4233 struct type *type1 =
df407dfe 4234 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4235
4c4b4cd2
PH
4236 if (type0 == NULL)
4237 return 0;
4238
14f9c5c9
AS
4239 switch (op)
4240 {
4241 default:
4242 return 0;
4243
4244 case BINOP_ADD:
4245 case BINOP_SUB:
4246 case BINOP_MUL:
4247 case BINOP_DIV:
d2e4a39e 4248 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4249
4250 case BINOP_REM:
4251 case BINOP_MOD:
4252 case BINOP_BITWISE_AND:
4253 case BINOP_BITWISE_IOR:
4254 case BINOP_BITWISE_XOR:
d2e4a39e 4255 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4256
4257 case BINOP_EQUAL:
4258 case BINOP_NOTEQUAL:
4259 case BINOP_LESS:
4260 case BINOP_GTR:
4261 case BINOP_LEQ:
4262 case BINOP_GEQ:
d2e4a39e 4263 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4264
4265 case BINOP_CONCAT:
ee90b9ab 4266 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4267
4268 case BINOP_EXP:
d2e4a39e 4269 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4270
4271 case UNOP_NEG:
4272 case UNOP_PLUS:
4273 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4274 case UNOP_ABS:
4275 return (!numeric_type_p (type0));
14f9c5c9
AS
4276
4277 }
4278}
4279\f
4c4b4cd2 4280 /* Renaming */
14f9c5c9 4281
aeb5907d
JB
4282/* NOTES:
4283
4284 1. In the following, we assume that a renaming type's name may
4285 have an ___XD suffix. It would be nice if this went away at some
4286 point.
4287 2. We handle both the (old) purely type-based representation of
4288 renamings and the (new) variable-based encoding. At some point,
4289 it is devoutly to be hoped that the former goes away
4290 (FIXME: hilfinger-2007-07-09).
4291 3. Subprogram renamings are not implemented, although the XRS
4292 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4293
4294/* If SYM encodes a renaming,
4295
4296 <renaming> renames <renamed entity>,
4297
4298 sets *LEN to the length of the renamed entity's name,
4299 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4300 the string describing the subcomponent selected from the renamed
0963b4bd 4301 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4302 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4303 are undefined). Otherwise, returns a value indicating the category
4304 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4305 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4306 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4307 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4308 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4309 may be NULL, in which case they are not assigned.
4310
4311 [Currently, however, GCC does not generate subprogram renamings.] */
4312
4313enum ada_renaming_category
4314ada_parse_renaming (struct symbol *sym,
4315 const char **renamed_entity, int *len,
4316 const char **renaming_expr)
4317{
4318 enum ada_renaming_category kind;
4319 const char *info;
4320 const char *suffix;
4321
4322 if (sym == NULL)
4323 return ADA_NOT_RENAMING;
4324 switch (SYMBOL_CLASS (sym))
14f9c5c9 4325 {
aeb5907d
JB
4326 default:
4327 return ADA_NOT_RENAMING;
4328 case LOC_TYPEDEF:
4329 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4330 renamed_entity, len, renaming_expr);
4331 case LOC_LOCAL:
4332 case LOC_STATIC:
4333 case LOC_COMPUTED:
4334 case LOC_OPTIMIZED_OUT:
4335 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4336 if (info == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (info[5])
4339 {
4340 case '_':
4341 kind = ADA_OBJECT_RENAMING;
4342 info += 6;
4343 break;
4344 case 'E':
4345 kind = ADA_EXCEPTION_RENAMING;
4346 info += 7;
4347 break;
4348 case 'P':
4349 kind = ADA_PACKAGE_RENAMING;
4350 info += 7;
4351 break;
4352 case 'S':
4353 kind = ADA_SUBPROGRAM_RENAMING;
4354 info += 7;
4355 break;
4356 default:
4357 return ADA_NOT_RENAMING;
4358 }
14f9c5c9 4359 }
4c4b4cd2 4360
aeb5907d
JB
4361 if (renamed_entity != NULL)
4362 *renamed_entity = info;
4363 suffix = strstr (info, "___XE");
4364 if (suffix == NULL || suffix == info)
4365 return ADA_NOT_RENAMING;
4366 if (len != NULL)
4367 *len = strlen (info) - strlen (suffix);
4368 suffix += 5;
4369 if (renaming_expr != NULL)
4370 *renaming_expr = suffix;
4371 return kind;
4372}
4373
4374/* Assuming TYPE encodes a renaming according to the old encoding in
4375 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4376 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4377 ADA_NOT_RENAMING otherwise. */
4378static enum ada_renaming_category
4379parse_old_style_renaming (struct type *type,
4380 const char **renamed_entity, int *len,
4381 const char **renaming_expr)
4382{
4383 enum ada_renaming_category kind;
4384 const char *name;
4385 const char *info;
4386 const char *suffix;
14f9c5c9 4387
aeb5907d
JB
4388 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4389 || TYPE_NFIELDS (type) != 1)
4390 return ADA_NOT_RENAMING;
14f9c5c9 4391
a737d952 4392 name = TYPE_NAME (type);
aeb5907d
JB
4393 if (name == NULL)
4394 return ADA_NOT_RENAMING;
4395
4396 name = strstr (name, "___XR");
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399 switch (name[5])
4400 {
4401 case '\0':
4402 case '_':
4403 kind = ADA_OBJECT_RENAMING;
4404 break;
4405 case 'E':
4406 kind = ADA_EXCEPTION_RENAMING;
4407 break;
4408 case 'P':
4409 kind = ADA_PACKAGE_RENAMING;
4410 break;
4411 case 'S':
4412 kind = ADA_SUBPROGRAM_RENAMING;
4413 break;
4414 default:
4415 return ADA_NOT_RENAMING;
4416 }
14f9c5c9 4417
aeb5907d
JB
4418 info = TYPE_FIELD_NAME (type, 0);
4419 if (info == NULL)
4420 return ADA_NOT_RENAMING;
4421 if (renamed_entity != NULL)
4422 *renamed_entity = info;
4423 suffix = strstr (info, "___XE");
4424 if (renaming_expr != NULL)
4425 *renaming_expr = suffix + 5;
4426 if (suffix == NULL || suffix == info)
4427 return ADA_NOT_RENAMING;
4428 if (len != NULL)
4429 *len = suffix - info;
4430 return kind;
a5ee536b
JB
4431}
4432
4433/* Compute the value of the given RENAMING_SYM, which is expected to
4434 be a symbol encoding a renaming expression. BLOCK is the block
4435 used to evaluate the renaming. */
52ce6436 4436
a5ee536b
JB
4437static struct value *
4438ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4439 const struct block *block)
a5ee536b 4440{
bbc13ae3 4441 const char *sym_name;
a5ee536b 4442
bbc13ae3 4443 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4444 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4445 return evaluate_expression (expr.get ());
a5ee536b 4446}
14f9c5c9 4447\f
d2e4a39e 4448
4c4b4cd2 4449 /* Evaluation: Function Calls */
14f9c5c9 4450
4c4b4cd2 4451/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4452 lvalues, and otherwise has the side-effect of allocating memory
4453 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4454
d2e4a39e 4455static struct value *
40bc484c 4456ensure_lval (struct value *val)
14f9c5c9 4457{
40bc484c
JB
4458 if (VALUE_LVAL (val) == not_lval
4459 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4460 {
df407dfe 4461 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4462 const CORE_ADDR addr =
4463 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4464
a84a8a0d 4465 VALUE_LVAL (val) = lval_memory;
1a088441 4466 set_value_address (val, addr);
40bc484c 4467 write_memory (addr, value_contents (val), len);
c3e5cd34 4468 }
14f9c5c9
AS
4469
4470 return val;
4471}
4472
4473/* Return the value ACTUAL, converted to be an appropriate value for a
4474 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4475 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4476 values not residing in memory, updating it as needed. */
14f9c5c9 4477
a93c0eb6 4478struct value *
40bc484c 4479ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4480{
df407dfe 4481 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4482 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4483 struct type *formal_target =
4484 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4485 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4486 struct type *actual_target =
4487 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4488 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4489
4c4b4cd2 4490 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4491 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4492 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4493 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4494 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4495 {
a84a8a0d 4496 struct value *result;
5b4ee69b 4497
14f9c5c9 4498 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4499 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4500 result = desc_data (actual);
cb923fcc 4501 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4502 {
4503 if (VALUE_LVAL (actual) != lval_memory)
4504 {
4505 struct value *val;
5b4ee69b 4506
df407dfe 4507 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4508 val = allocate_value (actual_type);
990a07ab 4509 memcpy ((char *) value_contents_raw (val),
0fd88904 4510 (char *) value_contents (actual),
4c4b4cd2 4511 TYPE_LENGTH (actual_type));
40bc484c 4512 actual = ensure_lval (val);
4c4b4cd2 4513 }
a84a8a0d 4514 result = value_addr (actual);
4c4b4cd2 4515 }
a84a8a0d
JB
4516 else
4517 return actual;
b1af9e97 4518 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4519 }
4520 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4521 return ada_value_ind (actual);
8344af1e
JB
4522 else if (ada_is_aligner_type (formal_type))
4523 {
4524 /* We need to turn this parameter into an aligner type
4525 as well. */
4526 struct value *aligner = allocate_value (formal_type);
4527 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4528
4529 value_assign_to_component (aligner, component, actual);
4530 return aligner;
4531 }
14f9c5c9
AS
4532
4533 return actual;
4534}
4535
438c98a1
JB
4536/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4537 type TYPE. This is usually an inefficient no-op except on some targets
4538 (such as AVR) where the representation of a pointer and an address
4539 differs. */
4540
4541static CORE_ADDR
4542value_pointer (struct value *value, struct type *type)
4543{
4544 struct gdbarch *gdbarch = get_type_arch (type);
4545 unsigned len = TYPE_LENGTH (type);
224c3ddb 4546 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4547 CORE_ADDR addr;
4548
4549 addr = value_address (value);
4550 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4551 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4552 return addr;
4553}
4554
14f9c5c9 4555
4c4b4cd2
PH
4556/* Push a descriptor of type TYPE for array value ARR on the stack at
4557 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4558 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4559 to-descriptor type rather than a descriptor type), a struct value *
4560 representing a pointer to this descriptor. */
14f9c5c9 4561
d2e4a39e 4562static struct value *
40bc484c 4563make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4564{
d2e4a39e
AS
4565 struct type *bounds_type = desc_bounds_type (type);
4566 struct type *desc_type = desc_base_type (type);
4567 struct value *descriptor = allocate_value (desc_type);
4568 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4569 int i;
d2e4a39e 4570
0963b4bd
MS
4571 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4572 i > 0; i -= 1)
14f9c5c9 4573 {
19f220c3
JK
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 0),
4576 desc_bound_bitpos (bounds_type, i, 0),
4577 desc_bound_bitsize (bounds_type, i, 0));
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 1),
4580 desc_bound_bitpos (bounds_type, i, 1),
4581 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4582 }
d2e4a39e 4583
40bc484c 4584 bounds = ensure_lval (bounds);
d2e4a39e 4585
19f220c3
JK
4586 modify_field (value_type (descriptor),
4587 value_contents_writeable (descriptor),
4588 value_pointer (ensure_lval (arr),
4589 TYPE_FIELD_TYPE (desc_type, 0)),
4590 fat_pntr_data_bitpos (desc_type),
4591 fat_pntr_data_bitsize (desc_type));
4592
4593 modify_field (value_type (descriptor),
4594 value_contents_writeable (descriptor),
4595 value_pointer (bounds,
4596 TYPE_FIELD_TYPE (desc_type, 1)),
4597 fat_pntr_bounds_bitpos (desc_type),
4598 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4599
40bc484c 4600 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4601
4602 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4603 return value_addr (descriptor);
4604 else
4605 return descriptor;
4606}
14f9c5c9 4607\f
3d9434b5
JB
4608 /* Symbol Cache Module */
4609
3d9434b5 4610/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4611 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4612 on the type of entity being printed, the cache can make it as much
4613 as an order of magnitude faster than without it.
4614
4615 The descriptive type DWARF extension has significantly reduced
4616 the need for this cache, at least when DWARF is being used. However,
4617 even in this case, some expensive name-based symbol searches are still
4618 sometimes necessary - to find an XVZ variable, mostly. */
4619
ee01b665 4620/* Initialize the contents of SYM_CACHE. */
3d9434b5 4621
ee01b665
JB
4622static void
4623ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4624{
4625 obstack_init (&sym_cache->cache_space);
4626 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4627}
3d9434b5 4628
ee01b665
JB
4629/* Free the memory used by SYM_CACHE. */
4630
4631static void
4632ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4633{
ee01b665
JB
4634 obstack_free (&sym_cache->cache_space, NULL);
4635 xfree (sym_cache);
4636}
3d9434b5 4637
ee01b665
JB
4638/* Return the symbol cache associated to the given program space PSPACE.
4639 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4640
ee01b665
JB
4641static struct ada_symbol_cache *
4642ada_get_symbol_cache (struct program_space *pspace)
4643{
4644 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4645
66c168ae 4646 if (pspace_data->sym_cache == NULL)
ee01b665 4647 {
66c168ae
JB
4648 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4649 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4650 }
4651
66c168ae 4652 return pspace_data->sym_cache;
ee01b665 4653}
3d9434b5
JB
4654
4655/* Clear all entries from the symbol cache. */
4656
4657static void
4658ada_clear_symbol_cache (void)
4659{
ee01b665
JB
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662
4663 obstack_free (&sym_cache->cache_space, NULL);
4664 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4665}
4666
fe978cb0 4667/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4668 Return it if found, or NULL otherwise. */
4669
4670static struct cache_entry **
fe978cb0 4671find_entry (const char *name, domain_enum domain)
3d9434b5 4672{
ee01b665
JB
4673 struct ada_symbol_cache *sym_cache
4674 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4675 int h = msymbol_hash (name) % HASH_SIZE;
4676 struct cache_entry **e;
4677
ee01b665 4678 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4679 {
fe978cb0 4680 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4681 return e;
4682 }
4683 return NULL;
4684}
4685
fe978cb0 4686/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4687 Return 1 if found, 0 otherwise.
4688
4689 If an entry was found and SYM is not NULL, set *SYM to the entry's
4690 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4691
96d887e8 4692static int
fe978cb0 4693lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4694 struct symbol **sym, const struct block **block)
96d887e8 4695{
fe978cb0 4696 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4697
4698 if (e == NULL)
4699 return 0;
4700 if (sym != NULL)
4701 *sym = (*e)->sym;
4702 if (block != NULL)
4703 *block = (*e)->block;
4704 return 1;
96d887e8
PH
4705}
4706
3d9434b5 4707/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4708 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4709
96d887e8 4710static void
fe978cb0 4711cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4712 const struct block *block)
96d887e8 4713{
ee01b665
JB
4714 struct ada_symbol_cache *sym_cache
4715 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4716 int h;
4717 char *copy;
4718 struct cache_entry *e;
4719
1994afbf
DE
4720 /* Symbols for builtin types don't have a block.
4721 For now don't cache such symbols. */
4722 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4723 return;
4724
3d9434b5
JB
4725 /* If the symbol is a local symbol, then do not cache it, as a search
4726 for that symbol depends on the context. To determine whether
4727 the symbol is local or not, we check the block where we found it
4728 against the global and static blocks of its associated symtab. */
4729 if (sym
08be3fe3 4730 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4731 GLOBAL_BLOCK) != block
08be3fe3 4732 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4733 STATIC_BLOCK) != block)
3d9434b5
JB
4734 return;
4735
4736 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4737 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4738 e->next = sym_cache->root[h];
4739 sym_cache->root[h] = e;
224c3ddb
SM
4740 e->name = copy
4741 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4742 strcpy (copy, name);
4743 e->sym = sym;
fe978cb0 4744 e->domain = domain;
3d9434b5 4745 e->block = block;
96d887e8 4746}
4c4b4cd2
PH
4747\f
4748 /* Symbol Lookup */
4749
b5ec771e
PA
4750/* Return the symbol name match type that should be used used when
4751 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4752
4753 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4754 for Ada lookups. */
c0431670 4755
b5ec771e
PA
4756static symbol_name_match_type
4757name_match_type_from_name (const char *lookup_name)
c0431670 4758{
b5ec771e
PA
4759 return (strstr (lookup_name, "__") == NULL
4760 ? symbol_name_match_type::WILD
4761 : symbol_name_match_type::FULL);
c0431670
JB
4762}
4763
4c4b4cd2
PH
4764/* Return the result of a standard (literal, C-like) lookup of NAME in
4765 given DOMAIN, visible from lexical block BLOCK. */
4766
4767static struct symbol *
4768standard_lookup (const char *name, const struct block *block,
4769 domain_enum domain)
4770{
acbd605d 4771 /* Initialize it just to avoid a GCC false warning. */
6640a367 4772 struct block_symbol sym = {};
4c4b4cd2 4773
d12307c1
PMR
4774 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4775 return sym.symbol;
a2cd4f14 4776 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4777 cache_symbol (name, domain, sym.symbol, sym.block);
4778 return sym.symbol;
4c4b4cd2
PH
4779}
4780
4781
4782/* Non-zero iff there is at least one non-function/non-enumeral symbol
4783 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4784 since they contend in overloading in the same way. */
4785static int
d12307c1 4786is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4787{
4788 int i;
4789
4790 for (i = 0; i < n; i += 1)
d12307c1
PMR
4791 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4792 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4793 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4794 return 1;
4795
4796 return 0;
4797}
4798
4799/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4800 struct types. Otherwise, they may not. */
14f9c5c9
AS
4801
4802static int
d2e4a39e 4803equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4804{
d2e4a39e 4805 if (type0 == type1)
14f9c5c9 4806 return 1;
d2e4a39e 4807 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4808 || TYPE_CODE (type0) != TYPE_CODE (type1))
4809 return 0;
d2e4a39e 4810 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4811 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4812 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4813 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4814 return 1;
d2e4a39e 4815
14f9c5c9
AS
4816 return 0;
4817}
4818
4819/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4820 no more defined than that of SYM1. */
14f9c5c9
AS
4821
4822static int
d2e4a39e 4823lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4824{
4825 if (sym0 == sym1)
4826 return 1;
176620f1 4827 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4828 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4829 return 0;
4830
d2e4a39e 4831 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4832 {
4833 case LOC_UNDEF:
4834 return 1;
4835 case LOC_TYPEDEF:
4836 {
4c4b4cd2
PH
4837 struct type *type0 = SYMBOL_TYPE (sym0);
4838 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4839 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4840 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4841 int len0 = strlen (name0);
5b4ee69b 4842
4c4b4cd2
PH
4843 return
4844 TYPE_CODE (type0) == TYPE_CODE (type1)
4845 && (equiv_types (type0, type1)
4846 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4847 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4848 }
4849 case LOC_CONST:
4850 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4851 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4852 default:
4853 return 0;
14f9c5c9
AS
4854 }
4855}
4856
d12307c1 4857/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4858 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4859
4860static void
76a01679
JB
4861add_defn_to_vec (struct obstack *obstackp,
4862 struct symbol *sym,
f0c5f9b2 4863 const struct block *block)
14f9c5c9
AS
4864{
4865 int i;
d12307c1 4866 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4867
529cad9c
PH
4868 /* Do not try to complete stub types, as the debugger is probably
4869 already scanning all symbols matching a certain name at the
4870 time when this function is called. Trying to replace the stub
4871 type by its associated full type will cause us to restart a scan
4872 which may lead to an infinite recursion. Instead, the client
4873 collecting the matching symbols will end up collecting several
4874 matches, with at least one of them complete. It can then filter
4875 out the stub ones if needed. */
4876
4c4b4cd2
PH
4877 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4878 {
d12307c1 4879 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4880 return;
d12307c1 4881 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4882 {
d12307c1 4883 prevDefns[i].symbol = sym;
4c4b4cd2 4884 prevDefns[i].block = block;
4c4b4cd2 4885 return;
76a01679 4886 }
4c4b4cd2
PH
4887 }
4888
4889 {
d12307c1 4890 struct block_symbol info;
4c4b4cd2 4891
d12307c1 4892 info.symbol = sym;
4c4b4cd2 4893 info.block = block;
d12307c1 4894 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4895 }
4896}
4897
d12307c1
PMR
4898/* Number of block_symbol structures currently collected in current vector in
4899 OBSTACKP. */
4c4b4cd2 4900
76a01679
JB
4901static int
4902num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4903{
d12307c1 4904 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4905}
4906
d12307c1
PMR
4907/* Vector of block_symbol structures currently collected in current vector in
4908 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4909
d12307c1 4910static struct block_symbol *
4c4b4cd2
PH
4911defns_collected (struct obstack *obstackp, int finish)
4912{
4913 if (finish)
224c3ddb 4914 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4915 else
d12307c1 4916 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4917}
4918
7c7b6655
TT
4919/* Return a bound minimal symbol matching NAME according to Ada
4920 decoding rules. Returns an invalid symbol if there is no such
4921 minimal symbol. Names prefixed with "standard__" are handled
4922 specially: "standard__" is first stripped off, and only static and
4923 global symbols are searched. */
4c4b4cd2 4924
7c7b6655 4925struct bound_minimal_symbol
96d887e8 4926ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4927{
7c7b6655 4928 struct bound_minimal_symbol result;
4c4b4cd2 4929
7c7b6655
TT
4930 memset (&result, 0, sizeof (result));
4931
b5ec771e
PA
4932 symbol_name_match_type match_type = name_match_type_from_name (name);
4933 lookup_name_info lookup_name (name, match_type);
4934
4935 symbol_name_matcher_ftype *match_name
4936 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4937
2030c079 4938 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4939 {
7932255d 4940 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4941 {
4942 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4943 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4944 {
4945 result.minsym = msymbol;
4946 result.objfile = objfile;
4947 break;
4948 }
4949 }
4950 }
4c4b4cd2 4951
7c7b6655 4952 return result;
96d887e8 4953}
4c4b4cd2 4954
2ff0a947
TT
4955/* Return all the bound minimal symbols matching NAME according to Ada
4956 decoding rules. Returns an empty vector if there is no such
4957 minimal symbol. Names prefixed with "standard__" are handled
4958 specially: "standard__" is first stripped off, and only static and
4959 global symbols are searched. */
4960
4961static std::vector<struct bound_minimal_symbol>
4962ada_lookup_simple_minsyms (const char *name)
4963{
4964 std::vector<struct bound_minimal_symbol> result;
4965
4966 symbol_name_match_type match_type = name_match_type_from_name (name);
4967 lookup_name_info lookup_name (name, match_type);
4968
4969 symbol_name_matcher_ftype *match_name
4970 = ada_get_symbol_name_matcher (lookup_name);
4971
4972 for (objfile *objfile : current_program_space->objfiles ())
4973 {
4974 for (minimal_symbol *msymbol : objfile->msymbols ())
4975 {
4976 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4977 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4978 result.push_back ({msymbol, objfile});
4979 }
4980 }
4981
4982 return result;
4983}
4984
96d887e8
PH
4985/* For all subprograms that statically enclose the subprogram of the
4986 selected frame, add symbols matching identifier NAME in DOMAIN
4987 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4988 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4989 with a wildcard prefix. */
4c4b4cd2 4990
96d887e8
PH
4991static void
4992add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4993 const lookup_name_info &lookup_name,
4994 domain_enum domain)
96d887e8 4995{
96d887e8 4996}
14f9c5c9 4997
96d887e8
PH
4998/* True if TYPE is definitely an artificial type supplied to a symbol
4999 for which no debugging information was given in the symbol file. */
14f9c5c9 5000
96d887e8
PH
5001static int
5002is_nondebugging_type (struct type *type)
5003{
0d5cff50 5004 const char *name = ada_type_name (type);
5b4ee69b 5005
96d887e8
PH
5006 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5007}
4c4b4cd2 5008
8f17729f
JB
5009/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5010 that are deemed "identical" for practical purposes.
5011
5012 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5013 types and that their number of enumerals is identical (in other
5014 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5015
5016static int
5017ada_identical_enum_types_p (struct type *type1, struct type *type2)
5018{
5019 int i;
5020
5021 /* The heuristic we use here is fairly conservative. We consider
5022 that 2 enumerate types are identical if they have the same
5023 number of enumerals and that all enumerals have the same
5024 underlying value and name. */
5025
5026 /* All enums in the type should have an identical underlying value. */
5027 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5028 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5029 return 0;
5030
5031 /* All enumerals should also have the same name (modulo any numerical
5032 suffix). */
5033 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5034 {
0d5cff50
DE
5035 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5036 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5037 int len_1 = strlen (name_1);
5038 int len_2 = strlen (name_2);
5039
5040 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5041 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5042 if (len_1 != len_2
5043 || strncmp (TYPE_FIELD_NAME (type1, i),
5044 TYPE_FIELD_NAME (type2, i),
5045 len_1) != 0)
5046 return 0;
5047 }
5048
5049 return 1;
5050}
5051
5052/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5053 that are deemed "identical" for practical purposes. Sometimes,
5054 enumerals are not strictly identical, but their types are so similar
5055 that they can be considered identical.
5056
5057 For instance, consider the following code:
5058
5059 type Color is (Black, Red, Green, Blue, White);
5060 type RGB_Color is new Color range Red .. Blue;
5061
5062 Type RGB_Color is a subrange of an implicit type which is a copy
5063 of type Color. If we call that implicit type RGB_ColorB ("B" is
5064 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5065 As a result, when an expression references any of the enumeral
5066 by name (Eg. "print green"), the expression is technically
5067 ambiguous and the user should be asked to disambiguate. But
5068 doing so would only hinder the user, since it wouldn't matter
5069 what choice he makes, the outcome would always be the same.
5070 So, for practical purposes, we consider them as the same. */
5071
5072static int
54d343a2 5073symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5074{
5075 int i;
5076
5077 /* Before performing a thorough comparison check of each type,
5078 we perform a series of inexpensive checks. We expect that these
5079 checks will quickly fail in the vast majority of cases, and thus
5080 help prevent the unnecessary use of a more expensive comparison.
5081 Said comparison also expects us to make some of these checks
5082 (see ada_identical_enum_types_p). */
5083
5084 /* Quick check: All symbols should have an enum type. */
54d343a2 5085 for (i = 0; i < syms.size (); i++)
d12307c1 5086 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5087 return 0;
5088
5089 /* Quick check: They should all have the same value. */
54d343a2 5090 for (i = 1; i < syms.size (); i++)
d12307c1 5091 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5092 return 0;
5093
5094 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5095 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5096 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5097 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5098 return 0;
5099
5100 /* All the sanity checks passed, so we might have a set of
5101 identical enumeration types. Perform a more complete
5102 comparison of the type of each symbol. */
54d343a2 5103 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5104 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5105 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5106 return 0;
5107
5108 return 1;
5109}
5110
54d343a2 5111/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5112 duplicate other symbols in the list (The only case I know of where
5113 this happens is when object files containing stabs-in-ecoff are
5114 linked with files containing ordinary ecoff debugging symbols (or no
5115 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5116 Returns the number of items in the modified list. */
4c4b4cd2 5117
96d887e8 5118static int
54d343a2 5119remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5120{
5121 int i, j;
4c4b4cd2 5122
8f17729f
JB
5123 /* We should never be called with less than 2 symbols, as there
5124 cannot be any extra symbol in that case. But it's easy to
5125 handle, since we have nothing to do in that case. */
54d343a2
TT
5126 if (syms->size () < 2)
5127 return syms->size ();
8f17729f 5128
96d887e8 5129 i = 0;
54d343a2 5130 while (i < syms->size ())
96d887e8 5131 {
a35ddb44 5132 int remove_p = 0;
339c13b6
JB
5133
5134 /* If two symbols have the same name and one of them is a stub type,
5135 the get rid of the stub. */
5136
54d343a2
TT
5137 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5138 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5139 {
54d343a2 5140 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5141 {
5142 if (j != i
54d343a2
TT
5143 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5144 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5146 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5147 remove_p = 1;
339c13b6
JB
5148 }
5149 }
5150
5151 /* Two symbols with the same name, same class and same address
5152 should be identical. */
5153
54d343a2
TT
5154 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5155 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5156 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5157 {
54d343a2 5158 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5159 {
5160 if (i != j
54d343a2
TT
5161 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5162 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5163 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5164 && SYMBOL_CLASS ((*syms)[i].symbol)
5165 == SYMBOL_CLASS ((*syms)[j].symbol)
5166 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5167 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5168 remove_p = 1;
4c4b4cd2 5169 }
4c4b4cd2 5170 }
339c13b6 5171
a35ddb44 5172 if (remove_p)
54d343a2 5173 syms->erase (syms->begin () + i);
339c13b6 5174
96d887e8 5175 i += 1;
14f9c5c9 5176 }
8f17729f
JB
5177
5178 /* If all the remaining symbols are identical enumerals, then
5179 just keep the first one and discard the rest.
5180
5181 Unlike what we did previously, we do not discard any entry
5182 unless they are ALL identical. This is because the symbol
5183 comparison is not a strict comparison, but rather a practical
5184 comparison. If all symbols are considered identical, then
5185 we can just go ahead and use the first one and discard the rest.
5186 But if we cannot reduce the list to a single element, we have
5187 to ask the user to disambiguate anyways. And if we have to
5188 present a multiple-choice menu, it's less confusing if the list
5189 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5190 if (symbols_are_identical_enums (*syms))
5191 syms->resize (1);
8f17729f 5192
54d343a2 5193 return syms->size ();
14f9c5c9
AS
5194}
5195
96d887e8
PH
5196/* Given a type that corresponds to a renaming entity, use the type name
5197 to extract the scope (package name or function name, fully qualified,
5198 and following the GNAT encoding convention) where this renaming has been
49d83361 5199 defined. */
4c4b4cd2 5200
49d83361 5201static std::string
96d887e8 5202xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5203{
96d887e8 5204 /* The renaming types adhere to the following convention:
0963b4bd 5205 <scope>__<rename>___<XR extension>.
96d887e8
PH
5206 So, to extract the scope, we search for the "___XR" extension,
5207 and then backtrack until we find the first "__". */
76a01679 5208
a737d952 5209 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5210 const char *suffix = strstr (name, "___XR");
5211 const char *last;
14f9c5c9 5212
96d887e8
PH
5213 /* Now, backtrack a bit until we find the first "__". Start looking
5214 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5215
96d887e8
PH
5216 for (last = suffix - 3; last > name; last--)
5217 if (last[0] == '_' && last[1] == '_')
5218 break;
76a01679 5219
96d887e8 5220 /* Make a copy of scope and return it. */
49d83361 5221 return std::string (name, last);
4c4b4cd2
PH
5222}
5223
96d887e8 5224/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5225
96d887e8
PH
5226static int
5227is_package_name (const char *name)
4c4b4cd2 5228{
96d887e8
PH
5229 /* Here, We take advantage of the fact that no symbols are generated
5230 for packages, while symbols are generated for each function.
5231 So the condition for NAME represent a package becomes equivalent
5232 to NAME not existing in our list of symbols. There is only one
5233 small complication with library-level functions (see below). */
4c4b4cd2 5234
96d887e8
PH
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
14f9c5c9 5242
96d887e8 5243 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5244 functions names cannot contain "__" in them. */
96d887e8
PH
5245 if (strstr (name, "__") != NULL)
5246 return 0;
4c4b4cd2 5247
528e1572 5248 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5249
528e1572 5250 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5251}
14f9c5c9 5252
96d887e8 5253/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5254 not visible from FUNCTION_NAME. */
14f9c5c9 5255
96d887e8 5256static int
0d5cff50 5257old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5258{
aeb5907d
JB
5259 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5260 return 0;
5261
49d83361 5262 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5263
96d887e8 5264 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5265 if (is_package_name (scope.c_str ()))
5266 return 0;
14f9c5c9 5267
96d887e8
PH
5268 /* Check that the rename is in the current function scope by checking
5269 that its name starts with SCOPE. */
76a01679 5270
96d887e8
PH
5271 /* If the function name starts with "_ada_", it means that it is
5272 a library-level function. Strip this prefix before doing the
5273 comparison, as the encoding for the renaming does not contain
5274 this prefix. */
61012eef 5275 if (startswith (function_name, "_ada_"))
96d887e8 5276 function_name += 5;
f26caa11 5277
49d83361 5278 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5279}
5280
aeb5907d
JB
5281/* Remove entries from SYMS that corresponds to a renaming entity that
5282 is not visible from the function associated with CURRENT_BLOCK or
5283 that is superfluous due to the presence of more specific renaming
5284 information. Places surviving symbols in the initial entries of
5285 SYMS and returns the number of surviving symbols.
96d887e8
PH
5286
5287 Rationale:
aeb5907d
JB
5288 First, in cases where an object renaming is implemented as a
5289 reference variable, GNAT may produce both the actual reference
5290 variable and the renaming encoding. In this case, we discard the
5291 latter.
5292
5293 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5294 entity. Unfortunately, STABS currently does not support the definition
5295 of types that are local to a given lexical block, so all renamings types
5296 are emitted at library level. As a consequence, if an application
5297 contains two renaming entities using the same name, and a user tries to
5298 print the value of one of these entities, the result of the ada symbol
5299 lookup will also contain the wrong renaming type.
f26caa11 5300
96d887e8
PH
5301 This function partially covers for this limitation by attempting to
5302 remove from the SYMS list renaming symbols that should be visible
5303 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5304 method with the current information available. The implementation
5305 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5306
5307 - When the user tries to print a rename in a function while there
5308 is another rename entity defined in a package: Normally, the
5309 rename in the function has precedence over the rename in the
5310 package, so the latter should be removed from the list. This is
5311 currently not the case.
5312
5313 - This function will incorrectly remove valid renames if
5314 the CURRENT_BLOCK corresponds to a function which symbol name
5315 has been changed by an "Export" pragma. As a consequence,
5316 the user will be unable to print such rename entities. */
4c4b4cd2 5317
14f9c5c9 5318static int
54d343a2
TT
5319remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5320 const struct block *current_block)
4c4b4cd2
PH
5321{
5322 struct symbol *current_function;
0d5cff50 5323 const char *current_function_name;
4c4b4cd2 5324 int i;
aeb5907d
JB
5325 int is_new_style_renaming;
5326
5327 /* If there is both a renaming foo___XR... encoded as a variable and
5328 a simple variable foo in the same block, discard the latter.
0963b4bd 5329 First, zero out such symbols, then compress. */
aeb5907d 5330 is_new_style_renaming = 0;
54d343a2 5331 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5332 {
54d343a2
TT
5333 struct symbol *sym = (*syms)[i].symbol;
5334 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5335 const char *name;
5336 const char *suffix;
5337
5338 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5339 continue;
5340 name = SYMBOL_LINKAGE_NAME (sym);
5341 suffix = strstr (name, "___XR");
5342
5343 if (suffix != NULL)
5344 {
5345 int name_len = suffix - name;
5346 int j;
5b4ee69b 5347
aeb5907d 5348 is_new_style_renaming = 1;
54d343a2
TT
5349 for (j = 0; j < syms->size (); j += 1)
5350 if (i != j && (*syms)[j].symbol != NULL
5351 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5352 name_len) == 0
54d343a2
TT
5353 && block == (*syms)[j].block)
5354 (*syms)[j].symbol = NULL;
aeb5907d
JB
5355 }
5356 }
5357 if (is_new_style_renaming)
5358 {
5359 int j, k;
5360
54d343a2
TT
5361 for (j = k = 0; j < syms->size (); j += 1)
5362 if ((*syms)[j].symbol != NULL)
aeb5907d 5363 {
54d343a2 5364 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5365 k += 1;
5366 }
5367 return k;
5368 }
4c4b4cd2
PH
5369
5370 /* Extract the function name associated to CURRENT_BLOCK.
5371 Abort if unable to do so. */
76a01679 5372
4c4b4cd2 5373 if (current_block == NULL)
54d343a2 5374 return syms->size ();
76a01679 5375
7f0df278 5376 current_function = block_linkage_function (current_block);
4c4b4cd2 5377 if (current_function == NULL)
54d343a2 5378 return syms->size ();
4c4b4cd2
PH
5379
5380 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5381 if (current_function_name == NULL)
54d343a2 5382 return syms->size ();
4c4b4cd2
PH
5383
5384 /* Check each of the symbols, and remove it from the list if it is
5385 a type corresponding to a renaming that is out of the scope of
5386 the current block. */
5387
5388 i = 0;
54d343a2 5389 while (i < syms->size ())
4c4b4cd2 5390 {
54d343a2 5391 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5392 == ADA_OBJECT_RENAMING
54d343a2
TT
5393 && old_renaming_is_invisible ((*syms)[i].symbol,
5394 current_function_name))
5395 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5396 else
5397 i += 1;
5398 }
5399
54d343a2 5400 return syms->size ();
4c4b4cd2
PH
5401}
5402
339c13b6
JB
5403/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5404 whose name and domain match NAME and DOMAIN respectively.
5405 If no match was found, then extend the search to "enclosing"
5406 routines (in other words, if we're inside a nested function,
5407 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5408 If WILD_MATCH_P is nonzero, perform the naming matching in
5409 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5410
5411 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5412
5413static void
b5ec771e
PA
5414ada_add_local_symbols (struct obstack *obstackp,
5415 const lookup_name_info &lookup_name,
5416 const struct block *block, domain_enum domain)
339c13b6
JB
5417{
5418 int block_depth = 0;
5419
5420 while (block != NULL)
5421 {
5422 block_depth += 1;
b5ec771e 5423 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5424
5425 /* If we found a non-function match, assume that's the one. */
5426 if (is_nonfunction (defns_collected (obstackp, 0),
5427 num_defns_collected (obstackp)))
5428 return;
5429
5430 block = BLOCK_SUPERBLOCK (block);
5431 }
5432
5433 /* If no luck so far, try to find NAME as a local symbol in some lexically
5434 enclosing subprogram. */
5435 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5436 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5437}
5438
ccefe4c4 5439/* An object of this type is used as the user_data argument when
40658b94 5440 calling the map_matching_symbols method. */
ccefe4c4 5441
40658b94 5442struct match_data
ccefe4c4 5443{
40658b94 5444 struct objfile *objfile;
ccefe4c4 5445 struct obstack *obstackp;
40658b94
PH
5446 struct symbol *arg_sym;
5447 int found_sym;
ccefe4c4
TT
5448};
5449
22cee43f 5450/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5451 to a list of symbols. DATA0 is a pointer to a struct match_data *
5452 containing the obstack that collects the symbol list, the file that SYM
5453 must come from, a flag indicating whether a non-argument symbol has
5454 been found in the current block, and the last argument symbol
5455 passed in SYM within the current block (if any). When SYM is null,
5456 marking the end of a block, the argument symbol is added if no
5457 other has been found. */
ccefe4c4 5458
40658b94 5459static int
582942f4
TT
5460aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5461 void *data0)
ccefe4c4 5462{
40658b94
PH
5463 struct match_data *data = (struct match_data *) data0;
5464
5465 if (sym == NULL)
5466 {
5467 if (!data->found_sym && data->arg_sym != NULL)
5468 add_defn_to_vec (data->obstackp,
5469 fixup_symbol_section (data->arg_sym, data->objfile),
5470 block);
5471 data->found_sym = 0;
5472 data->arg_sym = NULL;
5473 }
5474 else
5475 {
5476 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5477 return 0;
5478 else if (SYMBOL_IS_ARGUMENT (sym))
5479 data->arg_sym = sym;
5480 else
5481 {
5482 data->found_sym = 1;
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (sym, data->objfile),
5485 block);
5486 }
5487 }
5488 return 0;
5489}
5490
b5ec771e
PA
5491/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5492 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5493 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5494
5495static int
5496ada_add_block_renamings (struct obstack *obstackp,
5497 const struct block *block,
b5ec771e
PA
5498 const lookup_name_info &lookup_name,
5499 domain_enum domain)
22cee43f
PMR
5500{
5501 struct using_direct *renaming;
5502 int defns_mark = num_defns_collected (obstackp);
5503
b5ec771e
PA
5504 symbol_name_matcher_ftype *name_match
5505 = ada_get_symbol_name_matcher (lookup_name);
5506
22cee43f
PMR
5507 for (renaming = block_using (block);
5508 renaming != NULL;
5509 renaming = renaming->next)
5510 {
5511 const char *r_name;
22cee43f
PMR
5512
5513 /* Avoid infinite recursions: skip this renaming if we are actually
5514 already traversing it.
5515
5516 Currently, symbol lookup in Ada don't use the namespace machinery from
5517 C++/Fortran support: skip namespace imports that use them. */
5518 if (renaming->searched
5519 || (renaming->import_src != NULL
5520 && renaming->import_src[0] != '\0')
5521 || (renaming->import_dest != NULL
5522 && renaming->import_dest[0] != '\0'))
5523 continue;
5524 renaming->searched = 1;
5525
5526 /* TODO: here, we perform another name-based symbol lookup, which can
5527 pull its own multiple overloads. In theory, we should be able to do
5528 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5529 not a simple name. But in order to do this, we would need to enhance
5530 the DWARF reader to associate a symbol to this renaming, instead of a
5531 name. So, for now, we do something simpler: re-use the C++/Fortran
5532 namespace machinery. */
5533 r_name = (renaming->alias != NULL
5534 ? renaming->alias
5535 : renaming->declaration);
b5ec771e
PA
5536 if (name_match (r_name, lookup_name, NULL))
5537 {
5538 lookup_name_info decl_lookup_name (renaming->declaration,
5539 lookup_name.match_type ());
5540 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5541 1, NULL);
5542 }
22cee43f
PMR
5543 renaming->searched = 0;
5544 }
5545 return num_defns_collected (obstackp) != defns_mark;
5546}
5547
db230ce3
JB
5548/* Implements compare_names, but only applying the comparision using
5549 the given CASING. */
5b4ee69b 5550
40658b94 5551static int
db230ce3
JB
5552compare_names_with_case (const char *string1, const char *string2,
5553 enum case_sensitivity casing)
40658b94
PH
5554{
5555 while (*string1 != '\0' && *string2 != '\0')
5556 {
db230ce3
JB
5557 char c1, c2;
5558
40658b94
PH
5559 if (isspace (*string1) || isspace (*string2))
5560 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5561
5562 if (casing == case_sensitive_off)
5563 {
5564 c1 = tolower (*string1);
5565 c2 = tolower (*string2);
5566 }
5567 else
5568 {
5569 c1 = *string1;
5570 c2 = *string2;
5571 }
5572 if (c1 != c2)
40658b94 5573 break;
db230ce3 5574
40658b94
PH
5575 string1 += 1;
5576 string2 += 1;
5577 }
db230ce3 5578
40658b94
PH
5579 switch (*string1)
5580 {
5581 case '(':
5582 return strcmp_iw_ordered (string1, string2);
5583 case '_':
5584 if (*string2 == '\0')
5585 {
052874e8 5586 if (is_name_suffix (string1))
40658b94
PH
5587 return 0;
5588 else
1a1d5513 5589 return 1;
40658b94 5590 }
dbb8534f 5591 /* FALLTHROUGH */
40658b94
PH
5592 default:
5593 if (*string2 == '(')
5594 return strcmp_iw_ordered (string1, string2);
5595 else
db230ce3
JB
5596 {
5597 if (casing == case_sensitive_off)
5598 return tolower (*string1) - tolower (*string2);
5599 else
5600 return *string1 - *string2;
5601 }
40658b94 5602 }
ccefe4c4
TT
5603}
5604
db230ce3
JB
5605/* Compare STRING1 to STRING2, with results as for strcmp.
5606 Compatible with strcmp_iw_ordered in that...
5607
5608 strcmp_iw_ordered (STRING1, STRING2) <= 0
5609
5610 ... implies...
5611
5612 compare_names (STRING1, STRING2) <= 0
5613
5614 (they may differ as to what symbols compare equal). */
5615
5616static int
5617compare_names (const char *string1, const char *string2)
5618{
5619 int result;
5620
5621 /* Similar to what strcmp_iw_ordered does, we need to perform
5622 a case-insensitive comparison first, and only resort to
5623 a second, case-sensitive, comparison if the first one was
5624 not sufficient to differentiate the two strings. */
5625
5626 result = compare_names_with_case (string1, string2, case_sensitive_off);
5627 if (result == 0)
5628 result = compare_names_with_case (string1, string2, case_sensitive_on);
5629
5630 return result;
5631}
5632
b5ec771e
PA
5633/* Convenience function to get at the Ada encoded lookup name for
5634 LOOKUP_NAME, as a C string. */
5635
5636static const char *
5637ada_lookup_name (const lookup_name_info &lookup_name)
5638{
5639 return lookup_name.ada ().lookup_name ().c_str ();
5640}
5641
339c13b6 5642/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5643 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5644 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5645 symbols otherwise. */
339c13b6
JB
5646
5647static void
b5ec771e
PA
5648add_nonlocal_symbols (struct obstack *obstackp,
5649 const lookup_name_info &lookup_name,
5650 domain_enum domain, int global)
339c13b6 5651{
40658b94 5652 struct match_data data;
339c13b6 5653
6475f2fe 5654 memset (&data, 0, sizeof data);
ccefe4c4 5655 data.obstackp = obstackp;
339c13b6 5656
b5ec771e
PA
5657 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5658
2030c079 5659 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5660 {
5661 data.objfile = objfile;
5662
5663 if (is_wild_match)
b5ec771e
PA
5664 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5665 domain, global,
4186eb54 5666 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5667 symbol_name_match_type::WILD,
5668 NULL);
40658b94 5669 else
b5ec771e
PA
5670 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5671 domain, global,
4186eb54 5672 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5673 symbol_name_match_type::FULL,
5674 compare_names);
22cee43f 5675
b669c953 5676 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
b5ec771e
PA
5681 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5682 domain))
22cee43f
PMR
5683 data.found_sym = 1;
5684 }
40658b94
PH
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
b5ec771e
PA
5689 const char *name = ada_lookup_name (lookup_name);
5690 std::string name1 = std::string ("<_ada_") + name + '>';
5691
2030c079 5692 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5693 {
40658b94 5694 data.objfile = objfile;
b5ec771e
PA
5695 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5696 domain, global,
0963b4bd
MS
5697 aux_add_nonlocal_symbols,
5698 &data,
b5ec771e
PA
5699 symbol_name_match_type::FULL,
5700 compare_names);
40658b94
PH
5701 }
5702 }
339c13b6
JB
5703}
5704
b5ec771e
PA
5705/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5706 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5707 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5708
22cee43f
PMR
5709 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5710 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5711 is the one match returned (no other matches in that or
d9680e73 5712 enclosing blocks is returned). If there are any matches in or
22cee43f 5713 surrounding BLOCK, then these alone are returned.
4eeaa230 5714
b5ec771e
PA
5715 Names prefixed with "standard__" are handled specially:
5716 "standard__" is first stripped off (by the lookup_name
5717 constructor), and only static and global symbols are searched.
14f9c5c9 5718
22cee43f
PMR
5719 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5720 to lookup global symbols. */
5721
5722static void
5723ada_add_all_symbols (struct obstack *obstackp,
5724 const struct block *block,
b5ec771e 5725 const lookup_name_info &lookup_name,
22cee43f
PMR
5726 domain_enum domain,
5727 int full_search,
5728 int *made_global_lookup_p)
14f9c5c9
AS
5729{
5730 struct symbol *sym;
14f9c5c9 5731
22cee43f
PMR
5732 if (made_global_lookup_p)
5733 *made_global_lookup_p = 0;
339c13b6
JB
5734
5735 /* Special case: If the user specifies a symbol name inside package
5736 Standard, do a non-wild matching of the symbol name without
5737 the "standard__" prefix. This was primarily introduced in order
5738 to allow the user to specifically access the standard exceptions
5739 using, for instance, Standard.Constraint_Error when Constraint_Error
5740 is ambiguous (due to the user defining its own Constraint_Error
5741 entity inside its program). */
b5ec771e
PA
5742 if (lookup_name.ada ().standard_p ())
5743 block = NULL;
4c4b4cd2 5744
339c13b6 5745 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5746
4eeaa230
DE
5747 if (block != NULL)
5748 {
5749 if (full_search)
b5ec771e 5750 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5751 else
5752 {
5753 /* In the !full_search case we're are being called by
5754 ada_iterate_over_symbols, and we don't want to search
5755 superblocks. */
b5ec771e 5756 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5757 }
22cee43f
PMR
5758 if (num_defns_collected (obstackp) > 0 || !full_search)
5759 return;
4eeaa230 5760 }
d2e4a39e 5761
339c13b6
JB
5762 /* No non-global symbols found. Check our cache to see if we have
5763 already performed this search before. If we have, then return
5764 the same result. */
5765
b5ec771e
PA
5766 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5767 domain, &sym, &block))
4c4b4cd2
PH
5768 {
5769 if (sym != NULL)
b5ec771e 5770 add_defn_to_vec (obstackp, sym, block);
22cee43f 5771 return;
4c4b4cd2 5772 }
14f9c5c9 5773
22cee43f
PMR
5774 if (made_global_lookup_p)
5775 *made_global_lookup_p = 1;
b1eedac9 5776
339c13b6
JB
5777 /* Search symbols from all global blocks. */
5778
b5ec771e 5779 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5780
4c4b4cd2 5781 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5782 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5783
22cee43f 5784 if (num_defns_collected (obstackp) == 0)
b5ec771e 5785 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5786}
5787
b5ec771e
PA
5788/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5789 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5790 matches.
54d343a2
TT
5791 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5792 found and the blocks and symbol tables (if any) in which they were
5793 found.
22cee43f
PMR
5794
5795 When full_search is non-zero, any non-function/non-enumeral
5796 symbol match within the nest of blocks whose innermost member is BLOCK,
5797 is the one match returned (no other matches in that or
5798 enclosing blocks is returned). If there are any matches in or
5799 surrounding BLOCK, then these alone are returned.
5800
5801 Names prefixed with "standard__" are handled specially: "standard__"
5802 is first stripped off, and only static and global symbols are searched. */
5803
5804static int
b5ec771e
PA
5805ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5806 const struct block *block,
22cee43f 5807 domain_enum domain,
54d343a2 5808 std::vector<struct block_symbol> *results,
22cee43f
PMR
5809 int full_search)
5810{
22cee43f
PMR
5811 int syms_from_global_search;
5812 int ndefns;
ec6a20c2 5813 auto_obstack obstack;
22cee43f 5814
ec6a20c2 5815 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5816 domain, full_search, &syms_from_global_search);
14f9c5c9 5817
ec6a20c2
JB
5818 ndefns = num_defns_collected (&obstack);
5819
54d343a2
TT
5820 struct block_symbol *base = defns_collected (&obstack, 1);
5821 for (int i = 0; i < ndefns; ++i)
5822 results->push_back (base[i]);
4c4b4cd2 5823
54d343a2 5824 ndefns = remove_extra_symbols (results);
4c4b4cd2 5825
b1eedac9 5826 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5827 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5828
b1eedac9 5829 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5830 cache_symbol (ada_lookup_name (lookup_name), domain,
5831 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5832
54d343a2 5833 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5834
14f9c5c9
AS
5835 return ndefns;
5836}
5837
b5ec771e 5838/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5839 in global scopes, returning the number of matches, and filling *RESULTS
5840 with (SYM,BLOCK) tuples.
ec6a20c2 5841
4eeaa230
DE
5842 See ada_lookup_symbol_list_worker for further details. */
5843
5844int
b5ec771e 5845ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5846 domain_enum domain,
5847 std::vector<struct block_symbol> *results)
4eeaa230 5848{
b5ec771e
PA
5849 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5850 lookup_name_info lookup_name (name, name_match_type);
5851
5852 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5853}
5854
5855/* Implementation of the la_iterate_over_symbols method. */
5856
5857static void
14bc53a8 5858ada_iterate_over_symbols
b5ec771e
PA
5859 (const struct block *block, const lookup_name_info &name,
5860 domain_enum domain,
14bc53a8 5861 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5862{
5863 int ndefs, i;
54d343a2 5864 std::vector<struct block_symbol> results;
4eeaa230
DE
5865
5866 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5867
4eeaa230
DE
5868 for (i = 0; i < ndefs; ++i)
5869 {
7e41c8db 5870 if (!callback (&results[i]))
4eeaa230
DE
5871 break;
5872 }
5873}
5874
4e5c77fe
JB
5875/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5876 to 1, but choosing the first symbol found if there are multiple
5877 choices.
5878
5e2336be
JB
5879 The result is stored in *INFO, which must be non-NULL.
5880 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5881
5882void
5883ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5884 domain_enum domain,
d12307c1 5885 struct block_symbol *info)
14f9c5c9 5886{
b5ec771e
PA
5887 /* Since we already have an encoded name, wrap it in '<>' to force a
5888 verbatim match. Otherwise, if the name happens to not look like
5889 an encoded name (because it doesn't include a "__"),
5890 ada_lookup_name_info would re-encode/fold it again, and that
5891 would e.g., incorrectly lowercase object renaming names like
5892 "R28b" -> "r28b". */
5893 std::string verbatim = std::string ("<") + name + '>';
5894
5e2336be 5895 gdb_assert (info != NULL);
f98fc17b 5896 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5897}
aeb5907d
JB
5898
5899/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5900 scope and in global scopes, or NULL if none. NAME is folded and
5901 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5902 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5903 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5904
d12307c1 5905struct block_symbol
aeb5907d 5906ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5907 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5908{
5909 if (is_a_field_of_this != NULL)
5910 *is_a_field_of_this = 0;
5911
54d343a2 5912 std::vector<struct block_symbol> candidates;
f98fc17b 5913 int n_candidates;
f98fc17b
PA
5914
5915 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5916
5917 if (n_candidates == 0)
54d343a2 5918 return {};
f98fc17b
PA
5919
5920 block_symbol info = candidates[0];
5921 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5922 return info;
4c4b4cd2 5923}
14f9c5c9 5924
d12307c1 5925static struct block_symbol
f606139a
DE
5926ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5927 const char *name,
76a01679 5928 const struct block *block,
21b556f4 5929 const domain_enum domain)
4c4b4cd2 5930{
d12307c1 5931 struct block_symbol sym;
04dccad0
JB
5932
5933 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5934 if (sym.symbol != NULL)
04dccad0
JB
5935 return sym;
5936
5937 /* If we haven't found a match at this point, try the primitive
5938 types. In other languages, this search is performed before
5939 searching for global symbols in order to short-circuit that
5940 global-symbol search if it happens that the name corresponds
5941 to a primitive type. But we cannot do the same in Ada, because
5942 it is perfectly legitimate for a program to declare a type which
5943 has the same name as a standard type. If looking up a type in
5944 that situation, we have traditionally ignored the primitive type
5945 in favor of user-defined types. This is why, unlike most other
5946 languages, we search the primitive types this late and only after
5947 having searched the global symbols without success. */
5948
5949 if (domain == VAR_DOMAIN)
5950 {
5951 struct gdbarch *gdbarch;
5952
5953 if (block == NULL)
5954 gdbarch = target_gdbarch ();
5955 else
5956 gdbarch = block_gdbarch (block);
d12307c1
PMR
5957 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5958 if (sym.symbol != NULL)
04dccad0
JB
5959 return sym;
5960 }
5961
6640a367 5962 return {};
14f9c5c9
AS
5963}
5964
5965
4c4b4cd2
PH
5966/* True iff STR is a possible encoded suffix of a normal Ada name
5967 that is to be ignored for matching purposes. Suffixes of parallel
5968 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5969 are given by any of the regular expressions:
4c4b4cd2 5970
babe1480
JB
5971 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5972 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5973 TKB [subprogram suffix for task bodies]
babe1480 5974 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5975 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5976
5977 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5978 match is performed. This sequence is used to differentiate homonyms,
5979 is an optional part of a valid name suffix. */
4c4b4cd2 5980
14f9c5c9 5981static int
d2e4a39e 5982is_name_suffix (const char *str)
14f9c5c9
AS
5983{
5984 int k;
4c4b4cd2
PH
5985 const char *matching;
5986 const int len = strlen (str);
5987
babe1480
JB
5988 /* Skip optional leading __[0-9]+. */
5989
4c4b4cd2
PH
5990 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5991 {
babe1480
JB
5992 str += 3;
5993 while (isdigit (str[0]))
5994 str += 1;
4c4b4cd2 5995 }
babe1480
JB
5996
5997 /* [.$][0-9]+ */
4c4b4cd2 5998
babe1480 5999 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6000 {
babe1480 6001 matching = str + 1;
4c4b4cd2
PH
6002 while (isdigit (matching[0]))
6003 matching += 1;
6004 if (matching[0] == '\0')
6005 return 1;
6006 }
6007
6008 /* ___[0-9]+ */
babe1480 6009
4c4b4cd2
PH
6010 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6011 {
6012 matching = str + 3;
6013 while (isdigit (matching[0]))
6014 matching += 1;
6015 if (matching[0] == '\0')
6016 return 1;
6017 }
6018
9ac7f98e
JB
6019 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6020
6021 if (strcmp (str, "TKB") == 0)
6022 return 1;
6023
529cad9c
PH
6024#if 0
6025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6026 with a N at the end. Unfortunately, the compiler uses the same
6027 convention for other internal types it creates. So treating
529cad9c 6028 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6029 some regressions. For instance, consider the case of an enumerated
6030 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6031 name ends with N.
6032 Having a single character like this as a suffix carrying some
0963b4bd 6033 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6034 to be something like "_N" instead. In the meantime, do not do
6035 the following check. */
6036 /* Protected Object Subprograms */
6037 if (len == 1 && str [0] == 'N')
6038 return 1;
6039#endif
6040
6041 /* _E[0-9]+[bs]$ */
6042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6043 {
6044 matching = str + 3;
6045 while (isdigit (matching[0]))
6046 matching += 1;
6047 if ((matching[0] == 'b' || matching[0] == 's')
6048 && matching [1] == '\0')
6049 return 1;
6050 }
6051
4c4b4cd2
PH
6052 /* ??? We should not modify STR directly, as we are doing below. This
6053 is fine in this case, but may become problematic later if we find
6054 that this alternative did not work, and want to try matching
6055 another one from the begining of STR. Since we modified it, we
6056 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6057 if (str[0] == 'X')
6058 {
6059 str += 1;
d2e4a39e 6060 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6061 {
6062 if (str[0] != 'n' && str[0] != 'b')
6063 return 0;
6064 str += 1;
6065 }
14f9c5c9 6066 }
babe1480 6067
14f9c5c9
AS
6068 if (str[0] == '\000')
6069 return 1;
babe1480 6070
d2e4a39e 6071 if (str[0] == '_')
14f9c5c9
AS
6072 {
6073 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6074 return 0;
d2e4a39e 6075 if (str[2] == '_')
4c4b4cd2 6076 {
61ee279c
PH
6077 if (strcmp (str + 3, "JM") == 0)
6078 return 1;
6079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6080 the LJM suffix in favor of the JM one. But we will
6081 still accept LJM as a valid suffix for a reasonable
6082 amount of time, just to allow ourselves to debug programs
6083 compiled using an older version of GNAT. */
4c4b4cd2
PH
6084 if (strcmp (str + 3, "LJM") == 0)
6085 return 1;
6086 if (str[3] != 'X')
6087 return 0;
1265e4aa
JB
6088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6089 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6090 return 1;
6091 if (str[4] == 'R' && str[5] != 'T')
6092 return 1;
6093 return 0;
6094 }
6095 if (!isdigit (str[2]))
6096 return 0;
6097 for (k = 3; str[k] != '\0'; k += 1)
6098 if (!isdigit (str[k]) && str[k] != '_')
6099 return 0;
14f9c5c9
AS
6100 return 1;
6101 }
4c4b4cd2 6102 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6103 {
4c4b4cd2
PH
6104 for (k = 2; str[k] != '\0'; k += 1)
6105 if (!isdigit (str[k]) && str[k] != '_')
6106 return 0;
14f9c5c9
AS
6107 return 1;
6108 }
6109 return 0;
6110}
d2e4a39e 6111
aeb5907d
JB
6112/* Return non-zero if the string starting at NAME and ending before
6113 NAME_END contains no capital letters. */
529cad9c
PH
6114
6115static int
6116is_valid_name_for_wild_match (const char *name0)
6117{
6118 const char *decoded_name = ada_decode (name0);
6119 int i;
6120
5823c3ef
JB
6121 /* If the decoded name starts with an angle bracket, it means that
6122 NAME0 does not follow the GNAT encoding format. It should then
6123 not be allowed as a possible wild match. */
6124 if (decoded_name[0] == '<')
6125 return 0;
6126
529cad9c
PH
6127 for (i=0; decoded_name[i] != '\0'; i++)
6128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6129 return 0;
6130
6131 return 1;
6132}
6133
73589123
PH
6134/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6135 that could start a simple name. Assumes that *NAMEP points into
6136 the string beginning at NAME0. */
4c4b4cd2 6137
14f9c5c9 6138static int
73589123 6139advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6140{
73589123 6141 const char *name = *namep;
5b4ee69b 6142
5823c3ef 6143 while (1)
14f9c5c9 6144 {
aa27d0b3 6145 int t0, t1;
73589123
PH
6146
6147 t0 = *name;
6148 if (t0 == '_')
6149 {
6150 t1 = name[1];
6151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6152 {
6153 name += 1;
61012eef 6154 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6155 break;
6156 else
6157 name += 1;
6158 }
aa27d0b3
JB
6159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6160 || name[2] == target0))
73589123
PH
6161 {
6162 name += 2;
6163 break;
6164 }
6165 else
6166 return 0;
6167 }
6168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6169 name += 1;
6170 else
5823c3ef 6171 return 0;
73589123
PH
6172 }
6173
6174 *namep = name;
6175 return 1;
6176}
6177
b5ec771e
PA
6178/* Return true iff NAME encodes a name of the form prefix.PATN.
6179 Ignores any informational suffixes of NAME (i.e., for which
6180 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6181 simple name. */
73589123 6182
b5ec771e 6183static bool
73589123
PH
6184wild_match (const char *name, const char *patn)
6185{
22e048c9 6186 const char *p;
73589123
PH
6187 const char *name0 = name;
6188
6189 while (1)
6190 {
6191 const char *match = name;
6192
6193 if (*name == *patn)
6194 {
6195 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6196 if (*p != *name)
6197 break;
6198 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6199 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6200
6201 if (name[-1] == '_')
6202 name -= 1;
6203 }
6204 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6205 return false;
96d887e8 6206 }
96d887e8
PH
6207}
6208
b5ec771e
PA
6209/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6210 any trailing suffixes that encode debugging information or leading
6211 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6212 information that is ignored). */
40658b94 6213
b5ec771e 6214static bool
c4d840bd
PH
6215full_match (const char *sym_name, const char *search_name)
6216{
b5ec771e
PA
6217 size_t search_name_len = strlen (search_name);
6218
6219 if (strncmp (sym_name, search_name, search_name_len) == 0
6220 && is_name_suffix (sym_name + search_name_len))
6221 return true;
6222
6223 if (startswith (sym_name, "_ada_")
6224 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6225 && is_name_suffix (sym_name + search_name_len + 5))
6226 return true;
c4d840bd 6227
b5ec771e
PA
6228 return false;
6229}
c4d840bd 6230
b5ec771e
PA
6231/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6232 *defn_symbols, updating the list of symbols in OBSTACKP (if
6233 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6234
6235static void
6236ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6237 const struct block *block,
6238 const lookup_name_info &lookup_name,
6239 domain_enum domain, struct objfile *objfile)
96d887e8 6240{
8157b174 6241 struct block_iterator iter;
96d887e8
PH
6242 /* A matching argument symbol, if any. */
6243 struct symbol *arg_sym;
6244 /* Set true when we find a matching non-argument symbol. */
6245 int found_sym;
6246 struct symbol *sym;
6247
6248 arg_sym = NULL;
6249 found_sym = 0;
b5ec771e
PA
6250 for (sym = block_iter_match_first (block, lookup_name, &iter);
6251 sym != NULL;
6252 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6253 {
b5ec771e
PA
6254 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6255 SYMBOL_DOMAIN (sym), domain))
6256 {
6257 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6258 {
6259 if (SYMBOL_IS_ARGUMENT (sym))
6260 arg_sym = sym;
6261 else
6262 {
6263 found_sym = 1;
6264 add_defn_to_vec (obstackp,
6265 fixup_symbol_section (sym, objfile),
6266 block);
6267 }
6268 }
6269 }
96d887e8
PH
6270 }
6271
22cee43f
PMR
6272 /* Handle renamings. */
6273
b5ec771e 6274 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6275 found_sym = 1;
6276
96d887e8
PH
6277 if (!found_sym && arg_sym != NULL)
6278 {
76a01679
JB
6279 add_defn_to_vec (obstackp,
6280 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6281 block);
96d887e8
PH
6282 }
6283
b5ec771e 6284 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6285 {
6286 arg_sym = NULL;
6287 found_sym = 0;
b5ec771e
PA
6288 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6289 const char *name = ada_lookup_name.c_str ();
6290 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6291
6292 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6293 {
4186eb54
KS
6294 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6295 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6296 {
6297 int cmp;
6298
6299 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6300 if (cmp == 0)
6301 {
61012eef 6302 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6303 if (cmp == 0)
6304 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6305 name_len);
6306 }
6307
6308 if (cmp == 0
6309 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6310 {
2a2d4dc3
AS
6311 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6312 {
6313 if (SYMBOL_IS_ARGUMENT (sym))
6314 arg_sym = sym;
6315 else
6316 {
6317 found_sym = 1;
6318 add_defn_to_vec (obstackp,
6319 fixup_symbol_section (sym, objfile),
6320 block);
6321 }
6322 }
76a01679
JB
6323 }
6324 }
76a01679 6325 }
96d887e8
PH
6326
6327 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6328 They aren't parameters, right? */
6329 if (!found_sym && arg_sym != NULL)
6330 {
6331 add_defn_to_vec (obstackp,
76a01679 6332 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6333 block);
96d887e8
PH
6334 }
6335 }
6336}
6337\f
41d27058
JB
6338
6339 /* Symbol Completion */
6340
b5ec771e 6341/* See symtab.h. */
41d27058 6342
b5ec771e
PA
6343bool
6344ada_lookup_name_info::matches
6345 (const char *sym_name,
6346 symbol_name_match_type match_type,
a207cff2 6347 completion_match_result *comp_match_res) const
41d27058 6348{
b5ec771e
PA
6349 bool match = false;
6350 const char *text = m_encoded_name.c_str ();
6351 size_t text_len = m_encoded_name.size ();
41d27058
JB
6352
6353 /* First, test against the fully qualified name of the symbol. */
6354
6355 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6356 match = true;
41d27058 6357
b5ec771e 6358 if (match && !m_encoded_p)
41d27058
JB
6359 {
6360 /* One needed check before declaring a positive match is to verify
6361 that iff we are doing a verbatim match, the decoded version
6362 of the symbol name starts with '<'. Otherwise, this symbol name
6363 is not a suitable completion. */
6364 const char *sym_name_copy = sym_name;
b5ec771e 6365 bool has_angle_bracket;
41d27058
JB
6366
6367 sym_name = ada_decode (sym_name);
6368 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6369 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6370 sym_name = sym_name_copy;
6371 }
6372
b5ec771e 6373 if (match && !m_verbatim_p)
41d27058
JB
6374 {
6375 /* When doing non-verbatim match, another check that needs to
6376 be done is to verify that the potentially matching symbol name
6377 does not include capital letters, because the ada-mode would
6378 not be able to understand these symbol names without the
6379 angle bracket notation. */
6380 const char *tmp;
6381
6382 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6383 if (*tmp != '\0')
b5ec771e 6384 match = false;
41d27058
JB
6385 }
6386
6387 /* Second: Try wild matching... */
6388
b5ec771e 6389 if (!match && m_wild_match_p)
41d27058
JB
6390 {
6391 /* Since we are doing wild matching, this means that TEXT
6392 may represent an unqualified symbol name. We therefore must
6393 also compare TEXT against the unqualified name of the symbol. */
6394 sym_name = ada_unqualified_name (ada_decode (sym_name));
6395
6396 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6397 match = true;
41d27058
JB
6398 }
6399
b5ec771e 6400 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6401
6402 if (!match)
b5ec771e 6403 return false;
41d27058 6404
a207cff2 6405 if (comp_match_res != NULL)
b5ec771e 6406 {
a207cff2 6407 std::string &match_str = comp_match_res->match.storage ();
41d27058 6408
b5ec771e 6409 if (!m_encoded_p)
a207cff2 6410 match_str = ada_decode (sym_name);
b5ec771e
PA
6411 else
6412 {
6413 if (m_verbatim_p)
6414 match_str = add_angle_brackets (sym_name);
6415 else
6416 match_str = sym_name;
41d27058 6417
b5ec771e 6418 }
a207cff2
PA
6419
6420 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6421 }
6422
b5ec771e 6423 return true;
41d27058
JB
6424}
6425
b5ec771e 6426/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6427 WORD is the entire command on which completion is made. */
41d27058 6428
eb3ff9a5
PA
6429static void
6430ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6431 complete_symbol_mode mode,
b5ec771e
PA
6432 symbol_name_match_type name_match_type,
6433 const char *text, const char *word,
eb3ff9a5 6434 enum type_code code)
41d27058 6435{
41d27058 6436 struct symbol *sym;
3977b71f 6437 const struct block *b, *surrounding_static_block = 0;
8157b174 6438 struct block_iterator iter;
41d27058 6439
2f68a895
TT
6440 gdb_assert (code == TYPE_CODE_UNDEF);
6441
1b026119 6442 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6443
6444 /* First, look at the partial symtab symbols. */
14bc53a8 6445 expand_symtabs_matching (NULL,
b5ec771e
PA
6446 lookup_name,
6447 NULL,
14bc53a8
PA
6448 NULL,
6449 ALL_DOMAIN);
41d27058
JB
6450
6451 /* At this point scan through the misc symbol vectors and add each
6452 symbol you find to the list. Eventually we want to ignore
6453 anything that isn't a text symbol (everything else will be
6454 handled by the psymtab code above). */
6455
2030c079 6456 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6457 {
7932255d 6458 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6459 {
6460 QUIT;
6461
6462 if (completion_skip_symbol (mode, msymbol))
6463 continue;
6464
6465 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6466
6467 /* Ada minimal symbols won't have their language set to Ada. If
6468 we let completion_list_add_name compare using the
6469 default/C-like matcher, then when completing e.g., symbols in a
6470 package named "pck", we'd match internal Ada symbols like
6471 "pckS", which are invalid in an Ada expression, unless you wrap
6472 them in '<' '>' to request a verbatim match.
6473
6474 Unfortunately, some Ada encoded names successfully demangle as
6475 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6476 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6477 with the wrong language set. Paper over that issue here. */
6478 if (symbol_language == language_auto
6479 || symbol_language == language_cplus)
6480 symbol_language = language_ada;
6481
6482 completion_list_add_name (tracker,
6483 symbol_language,
6484 MSYMBOL_LINKAGE_NAME (msymbol),
6485 lookup_name, text, word);
6486 }
6487 }
41d27058
JB
6488
6489 /* Search upwards from currently selected frame (so that we can
6490 complete on local vars. */
6491
6492 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6493 {
6494 if (!BLOCK_SUPERBLOCK (b))
6495 surrounding_static_block = b; /* For elmin of dups */
6496
6497 ALL_BLOCK_SYMBOLS (b, iter, sym)
6498 {
f9d67a22
PA
6499 if (completion_skip_symbol (mode, sym))
6500 continue;
6501
b5ec771e
PA
6502 completion_list_add_name (tracker,
6503 SYMBOL_LANGUAGE (sym),
6504 SYMBOL_LINKAGE_NAME (sym),
1b026119 6505 lookup_name, text, word);
41d27058
JB
6506 }
6507 }
6508
6509 /* Go through the symtabs and check the externs and statics for
43f3e411 6510 symbols which match. */
41d27058 6511
2030c079 6512 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6513 {
b669c953 6514 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6515 {
6516 QUIT;
6517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
f9d67a22 6522
d8aeb77f
TT
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
41d27058 6529 }
41d27058 6530
2030c079 6531 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6532 {
b669c953 6533 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6537 /* Don't do this block twice. */
6538 if (b == surrounding_static_block)
6539 continue;
6540 ALL_BLOCK_SYMBOLS (b, iter, sym)
6541 {
6542 if (completion_skip_symbol (mode, sym))
6543 continue;
f9d67a22 6544
d8aeb77f
TT
6545 completion_list_add_name (tracker,
6546 SYMBOL_LANGUAGE (sym),
6547 SYMBOL_LINKAGE_NAME (sym),
6548 lookup_name, text, word);
6549 }
6550 }
41d27058 6551 }
41d27058
JB
6552}
6553
963a6417 6554 /* Field Access */
96d887e8 6555
73fb9985
JB
6556/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6557 for tagged types. */
6558
6559static int
6560ada_is_dispatch_table_ptr_type (struct type *type)
6561{
0d5cff50 6562 const char *name;
73fb9985
JB
6563
6564 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6565 return 0;
6566
6567 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6568 if (name == NULL)
6569 return 0;
6570
6571 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6572}
6573
ac4a2da4
JG
6574/* Return non-zero if TYPE is an interface tag. */
6575
6576static int
6577ada_is_interface_tag (struct type *type)
6578{
6579 const char *name = TYPE_NAME (type);
6580
6581 if (name == NULL)
6582 return 0;
6583
6584 return (strcmp (name, "ada__tags__interface_tag") == 0);
6585}
6586
963a6417
PH
6587/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6588 to be invisible to users. */
96d887e8 6589
963a6417
PH
6590int
6591ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6592{
963a6417
PH
6593 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6594 return 1;
ffde82bf 6595
73fb9985
JB
6596 /* Check the name of that field. */
6597 {
6598 const char *name = TYPE_FIELD_NAME (type, field_num);
6599
6600 /* Anonymous field names should not be printed.
6601 brobecker/2007-02-20: I don't think this can actually happen
6602 but we don't want to print the value of annonymous fields anyway. */
6603 if (name == NULL)
6604 return 1;
6605
ffde82bf
JB
6606 /* Normally, fields whose name start with an underscore ("_")
6607 are fields that have been internally generated by the compiler,
6608 and thus should not be printed. The "_parent" field is special,
6609 however: This is a field internally generated by the compiler
6610 for tagged types, and it contains the components inherited from
6611 the parent type. This field should not be printed as is, but
6612 should not be ignored either. */
61012eef 6613 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6614 return 1;
6615 }
6616
ac4a2da4
JG
6617 /* If this is the dispatch table of a tagged type or an interface tag,
6618 then ignore. */
73fb9985 6619 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6620 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6621 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6622 return 1;
6623
6624 /* Not a special field, so it should not be ignored. */
6625 return 0;
963a6417 6626}
96d887e8 6627
963a6417 6628/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6629 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6630
963a6417
PH
6631int
6632ada_is_tagged_type (struct type *type, int refok)
6633{
988f6b3d 6634 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6635}
96d887e8 6636
963a6417 6637/* True iff TYPE represents the type of X'Tag */
96d887e8 6638
963a6417
PH
6639int
6640ada_is_tag_type (struct type *type)
6641{
460efde1
JB
6642 type = ada_check_typedef (type);
6643
963a6417
PH
6644 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6645 return 0;
6646 else
96d887e8 6647 {
963a6417 6648 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6649
963a6417
PH
6650 return (name != NULL
6651 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6652 }
96d887e8
PH
6653}
6654
963a6417 6655/* The type of the tag on VAL. */
76a01679 6656
963a6417
PH
6657struct type *
6658ada_tag_type (struct value *val)
96d887e8 6659{
988f6b3d 6660 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6661}
96d887e8 6662
b50d69b5
JG
6663/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6664 retired at Ada 05). */
6665
6666static int
6667is_ada95_tag (struct value *tag)
6668{
6669 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6670}
6671
963a6417 6672/* The value of the tag on VAL. */
96d887e8 6673
963a6417
PH
6674struct value *
6675ada_value_tag (struct value *val)
6676{
03ee6b2e 6677 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6678}
6679
963a6417
PH
6680/* The value of the tag on the object of type TYPE whose contents are
6681 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6682 ADDRESS. */
96d887e8 6683
963a6417 6684static struct value *
10a2c479 6685value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6686 const gdb_byte *valaddr,
963a6417 6687 CORE_ADDR address)
96d887e8 6688{
b5385fc0 6689 int tag_byte_offset;
963a6417 6690 struct type *tag_type;
5b4ee69b 6691
963a6417 6692 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6693 NULL, NULL, NULL))
96d887e8 6694 {
fc1a4b47 6695 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6696 ? NULL
6697 : valaddr + tag_byte_offset);
963a6417 6698 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6699
963a6417 6700 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6701 }
963a6417
PH
6702 return NULL;
6703}
96d887e8 6704
963a6417
PH
6705static struct type *
6706type_from_tag (struct value *tag)
6707{
6708 const char *type_name = ada_tag_name (tag);
5b4ee69b 6709
963a6417
PH
6710 if (type_name != NULL)
6711 return ada_find_any_type (ada_encode (type_name));
6712 return NULL;
6713}
96d887e8 6714
b50d69b5
JG
6715/* Given a value OBJ of a tagged type, return a value of this
6716 type at the base address of the object. The base address, as
6717 defined in Ada.Tags, it is the address of the primary tag of
6718 the object, and therefore where the field values of its full
6719 view can be fetched. */
6720
6721struct value *
6722ada_tag_value_at_base_address (struct value *obj)
6723{
b50d69b5
JG
6724 struct value *val;
6725 LONGEST offset_to_top = 0;
6726 struct type *ptr_type, *obj_type;
6727 struct value *tag;
6728 CORE_ADDR base_address;
6729
6730 obj_type = value_type (obj);
6731
6732 /* It is the responsability of the caller to deref pointers. */
6733
6734 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6735 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6736 return obj;
6737
6738 tag = ada_value_tag (obj);
6739 if (!tag)
6740 return obj;
6741
6742 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6743
6744 if (is_ada95_tag (tag))
6745 return obj;
6746
08f49010
XR
6747 ptr_type = language_lookup_primitive_type
6748 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6749 ptr_type = lookup_pointer_type (ptr_type);
6750 val = value_cast (ptr_type, tag);
6751 if (!val)
6752 return obj;
6753
6754 /* It is perfectly possible that an exception be raised while
6755 trying to determine the base address, just like for the tag;
6756 see ada_tag_name for more details. We do not print the error
6757 message for the same reason. */
6758
a70b8144 6759 try
b50d69b5
JG
6760 {
6761 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6762 }
6763
230d2906 6764 catch (const gdb_exception_error &e)
492d29ea
PA
6765 {
6766 return obj;
6767 }
b50d69b5
JG
6768
6769 /* If offset is null, nothing to do. */
6770
6771 if (offset_to_top == 0)
6772 return obj;
6773
6774 /* -1 is a special case in Ada.Tags; however, what should be done
6775 is not quite clear from the documentation. So do nothing for
6776 now. */
6777
6778 if (offset_to_top == -1)
6779 return obj;
6780
08f49010
XR
6781 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6782 from the base address. This was however incompatible with
6783 C++ dispatch table: C++ uses a *negative* value to *add*
6784 to the base address. Ada's convention has therefore been
6785 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6786 use the same convention. Here, we support both cases by
6787 checking the sign of OFFSET_TO_TOP. */
6788
6789 if (offset_to_top > 0)
6790 offset_to_top = -offset_to_top;
6791
6792 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6793 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6794
6795 /* Make sure that we have a proper tag at the new address.
6796 Otherwise, offset_to_top is bogus (which can happen when
6797 the object is not initialized yet). */
6798
6799 if (!tag)
6800 return obj;
6801
6802 obj_type = type_from_tag (tag);
6803
6804 if (!obj_type)
6805 return obj;
6806
6807 return value_from_contents_and_address (obj_type, NULL, base_address);
6808}
6809
1b611343
JB
6810/* Return the "ada__tags__type_specific_data" type. */
6811
6812static struct type *
6813ada_get_tsd_type (struct inferior *inf)
963a6417 6814{
1b611343 6815 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6816
1b611343
JB
6817 if (data->tsd_type == 0)
6818 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6819 return data->tsd_type;
6820}
529cad9c 6821
1b611343
JB
6822/* Return the TSD (type-specific data) associated to the given TAG.
6823 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6824
1b611343 6825 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6826
1b611343
JB
6827static struct value *
6828ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6829{
4c4b4cd2 6830 struct value *val;
1b611343 6831 struct type *type;
5b4ee69b 6832
1b611343
JB
6833 /* First option: The TSD is simply stored as a field of our TAG.
6834 Only older versions of GNAT would use this format, but we have
6835 to test it first, because there are no visible markers for
6836 the current approach except the absence of that field. */
529cad9c 6837
1b611343
JB
6838 val = ada_value_struct_elt (tag, "tsd", 1);
6839 if (val)
6840 return val;
e802dbe0 6841
1b611343
JB
6842 /* Try the second representation for the dispatch table (in which
6843 there is no explicit 'tsd' field in the referent of the tag pointer,
6844 and instead the tsd pointer is stored just before the dispatch
6845 table. */
e802dbe0 6846
1b611343
JB
6847 type = ada_get_tsd_type (current_inferior());
6848 if (type == NULL)
6849 return NULL;
6850 type = lookup_pointer_type (lookup_pointer_type (type));
6851 val = value_cast (type, tag);
6852 if (val == NULL)
6853 return NULL;
6854 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6855}
6856
1b611343
JB
6857/* Given the TSD of a tag (type-specific data), return a string
6858 containing the name of the associated type.
6859
6860 The returned value is good until the next call. May return NULL
6861 if we are unable to determine the tag name. */
6862
6863static char *
6864ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6865{
529cad9c
PH
6866 static char name[1024];
6867 char *p;
1b611343 6868 struct value *val;
529cad9c 6869
1b611343 6870 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6871 if (val == NULL)
1b611343 6872 return NULL;
4c4b4cd2
PH
6873 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6874 for (p = name; *p != '\0'; p += 1)
6875 if (isalpha (*p))
6876 *p = tolower (*p);
1b611343 6877 return name;
4c4b4cd2
PH
6878}
6879
6880/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6881 a C string.
6882
6883 Return NULL if the TAG is not an Ada tag, or if we were unable to
6884 determine the name of that tag. The result is good until the next
6885 call. */
4c4b4cd2
PH
6886
6887const char *
6888ada_tag_name (struct value *tag)
6889{
1b611343 6890 char *name = NULL;
5b4ee69b 6891
df407dfe 6892 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6893 return NULL;
1b611343
JB
6894
6895 /* It is perfectly possible that an exception be raised while trying
6896 to determine the TAG's name, even under normal circumstances:
6897 The associated variable may be uninitialized or corrupted, for
6898 instance. We do not let any exception propagate past this point.
6899 instead we return NULL.
6900
6901 We also do not print the error message either (which often is very
6902 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6903 the caller print a more meaningful message if necessary. */
a70b8144 6904 try
1b611343
JB
6905 {
6906 struct value *tsd = ada_get_tsd_from_tag (tag);
6907
6908 if (tsd != NULL)
6909 name = ada_tag_name_from_tsd (tsd);
6910 }
230d2906 6911 catch (const gdb_exception_error &e)
492d29ea
PA
6912 {
6913 }
1b611343
JB
6914
6915 return name;
4c4b4cd2
PH
6916}
6917
6918/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6919
d2e4a39e 6920struct type *
ebf56fd3 6921ada_parent_type (struct type *type)
14f9c5c9
AS
6922{
6923 int i;
6924
61ee279c 6925 type = ada_check_typedef (type);
14f9c5c9
AS
6926
6927 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6928 return NULL;
6929
6930 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6931 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6932 {
6933 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6934
6935 /* If the _parent field is a pointer, then dereference it. */
6936 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6937 parent_type = TYPE_TARGET_TYPE (parent_type);
6938 /* If there is a parallel XVS type, get the actual base type. */
6939 parent_type = ada_get_base_type (parent_type);
6940
6941 return ada_check_typedef (parent_type);
6942 }
14f9c5c9
AS
6943
6944 return NULL;
6945}
6946
4c4b4cd2
PH
6947/* True iff field number FIELD_NUM of structure type TYPE contains the
6948 parent-type (inherited) fields of a derived type. Assumes TYPE is
6949 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6950
6951int
ebf56fd3 6952ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6953{
61ee279c 6954 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6955
4c4b4cd2 6956 return (name != NULL
61012eef
GB
6957 && (startswith (name, "PARENT")
6958 || startswith (name, "_parent")));
14f9c5c9
AS
6959}
6960
4c4b4cd2 6961/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6962 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6963 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6964 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6965 structures. */
14f9c5c9
AS
6966
6967int
ebf56fd3 6968ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6969{
d2e4a39e 6970 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6971
dddc0e16
JB
6972 if (name != NULL && strcmp (name, "RETVAL") == 0)
6973 {
6974 /* This happens in functions with "out" or "in out" parameters
6975 which are passed by copy. For such functions, GNAT describes
6976 the function's return type as being a struct where the return
6977 value is in a field called RETVAL, and where the other "out"
6978 or "in out" parameters are fields of that struct. This is not
6979 a wrapper. */
6980 return 0;
6981 }
6982
d2e4a39e 6983 return (name != NULL
61012eef 6984 && (startswith (name, "PARENT")
4c4b4cd2 6985 || strcmp (name, "REP") == 0
61012eef 6986 || startswith (name, "_parent")
4c4b4cd2 6987 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6988}
6989
4c4b4cd2
PH
6990/* True iff field number FIELD_NUM of structure or union type TYPE
6991 is a variant wrapper. Assumes TYPE is a structure type with at least
6992 FIELD_NUM+1 fields. */
14f9c5c9
AS
6993
6994int
ebf56fd3 6995ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6996{
8ecb59f8
TT
6997 /* Only Ada types are eligible. */
6998 if (!ADA_TYPE_P (type))
6999 return 0;
7000
d2e4a39e 7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7002
14f9c5c9 7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7004 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
14f9c5c9
AS
7007}
7008
7009/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7010 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
14f9c5c9 7013
d2e4a39e 7014struct type *
ebf56fd3 7015ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7016{
a121b7c1 7017 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7018
988f6b3d 7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7020}
7021
4c4b4cd2 7022/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7024 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7025
7026int
ebf56fd3 7027ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7028{
d2e4a39e 7029 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7030
14f9c5c9
AS
7031 return (name != NULL && name[0] == 'O');
7032}
7033
7034/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7037
a121b7c1 7038const char *
ebf56fd3 7039ada_variant_discrim_name (struct type *type0)
14f9c5c9 7040{
d2e4a39e 7041 static char *result = NULL;
14f9c5c9 7042 static size_t result_len = 0;
d2e4a39e
AS
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
14f9c5c9
AS
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
61012eef 7061 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7062 break;
14f9c5c9
AS
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
d2e4a39e 7067 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7068 discrim_start -= 1)
7069 {
d2e4a39e 7070 if (discrim_start == name + 1)
4c4b4cd2 7071 return "";
76a01679 7072 if ((discrim_start > name + 3
61012eef 7073 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7074 || discrim_start[-1] == '.')
7075 break;
14f9c5c9
AS
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7080 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7081 return result;
7082}
7083
4c4b4cd2
PH
7084/* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
14f9c5c9
AS
7091
7092int
d2e4a39e 7093ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7094{
7095 ULONGEST RU;
7096
d2e4a39e 7097 if (!isdigit (str[k]))
14f9c5c9
AS
7098 return 0;
7099
4c4b4cd2 7100 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7101 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7102 LONGEST. */
14f9c5c9
AS
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
d2e4a39e 7106 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7107 k += 1;
7108 }
7109
d2e4a39e 7110 if (str[k] == 'm')
14f9c5c9
AS
7111 {
7112 if (R != NULL)
4c4b4cd2 7113 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
4c4b4cd2 7119 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7123 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128}
7129
4c4b4cd2
PH
7130/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7133
d2e4a39e 7134int
ebf56fd3 7135ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7136{
d2e4a39e 7137 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
d2e4a39e 7143 switch (name[p])
4c4b4cd2
PH
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
5b4ee69b 7150
4c4b4cd2
PH
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
5b4ee69b 7160
4c4b4cd2
PH
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174}
7175
0963b4bd 7176/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7177
7178/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7182
4c4b4cd2 7183static struct value *
d2e4a39e 7184ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7185 struct type *arg_type)
14f9c5c9 7186{
14f9c5c9
AS
7187 struct type *type;
7188
61ee279c 7189 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
4c4b4cd2 7192 /* Handle packed fields. */
14f9c5c9
AS
7193
7194 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7195 {
7196 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7197 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7198
0fd88904 7199 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7200 offset + bit_pos / 8,
7201 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7202 }
7203 else
7204 return value_primitive_field (arg1, offset, fieldno, arg_type);
7205}
7206
52ce6436
PH
7207/* Find field with name NAME in object of type TYPE. If found,
7208 set the following for each argument that is non-null:
7209 - *FIELD_TYPE_P to the field's type;
7210 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7211 an object of that type;
7212 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7213 - *BIT_SIZE_P to its size in bits if the field is packed, and
7214 0 otherwise;
7215 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7216 fields up to but not including the desired field, or by the total
7217 number of fields if not found. A NULL value of NAME never
7218 matches; the function just counts visible fields in this case.
7219
828d5846
XR
7220 Notice that we need to handle when a tagged record hierarchy
7221 has some components with the same name, like in this scenario:
7222
7223 type Top_T is tagged record
7224 N : Integer := 1;
7225 U : Integer := 974;
7226 A : Integer := 48;
7227 end record;
7228
7229 type Middle_T is new Top.Top_T with record
7230 N : Character := 'a';
7231 C : Integer := 3;
7232 end record;
7233
7234 type Bottom_T is new Middle.Middle_T with record
7235 N : Float := 4.0;
7236 C : Character := '5';
7237 X : Integer := 6;
7238 A : Character := 'J';
7239 end record;
7240
7241 Let's say we now have a variable declared and initialized as follow:
7242
7243 TC : Top_A := new Bottom_T;
7244
7245 And then we use this variable to call this function
7246
7247 procedure Assign (Obj: in out Top_T; TV : Integer);
7248
7249 as follow:
7250
7251 Assign (Top_T (B), 12);
7252
7253 Now, we're in the debugger, and we're inside that procedure
7254 then and we want to print the value of obj.c:
7255
7256 Usually, the tagged record or one of the parent type owns the
7257 component to print and there's no issue but in this particular
7258 case, what does it mean to ask for Obj.C? Since the actual
7259 type for object is type Bottom_T, it could mean two things: type
7260 component C from the Middle_T view, but also component C from
7261 Bottom_T. So in that "undefined" case, when the component is
7262 not found in the non-resolved type (which includes all the
7263 components of the parent type), then resolve it and see if we
7264 get better luck once expanded.
7265
7266 In the case of homonyms in the derived tagged type, we don't
7267 guaranty anything, and pick the one that's easiest for us
7268 to program.
7269
0963b4bd 7270 Returns 1 if found, 0 otherwise. */
52ce6436 7271
4c4b4cd2 7272static int
0d5cff50 7273find_struct_field (const char *name, struct type *type, int offset,
76a01679 7274 struct type **field_type_p,
52ce6436
PH
7275 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7276 int *index_p)
4c4b4cd2
PH
7277{
7278 int i;
828d5846 7279 int parent_offset = -1;
4c4b4cd2 7280
61ee279c 7281 type = ada_check_typedef (type);
76a01679 7282
52ce6436
PH
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
d5d6fca5 7286 *byte_offset_p = 0;
52ce6436
PH
7287 if (bit_offset_p != NULL)
7288 *bit_offset_p = 0;
7289 if (bit_size_p != NULL)
7290 *bit_size_p = 0;
7291
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7293 {
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
0d5cff50 7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7297
4c4b4cd2
PH
7298 if (t_field_name == NULL)
7299 continue;
7300
828d5846
XR
7301 else if (ada_is_parent_field (type, i))
7302 {
7303 /* This is a field pointing us to the parent type of a tagged
7304 type. As hinted in this function's documentation, we give
7305 preference to fields in the current record first, so what
7306 we do here is just record the index of this field before
7307 we skip it. If it turns out we couldn't find our field
7308 in the current record, then we'll get back to it and search
7309 inside it whether the field might exist in the parent. */
7310
7311 parent_offset = i;
7312 continue;
7313 }
7314
52ce6436 7315 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7316 {
7317 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7318
52ce6436
PH
7319 if (field_type_p != NULL)
7320 *field_type_p = TYPE_FIELD_TYPE (type, i);
7321 if (byte_offset_p != NULL)
7322 *byte_offset_p = fld_offset;
7323 if (bit_offset_p != NULL)
7324 *bit_offset_p = bit_pos % 8;
7325 if (bit_size_p != NULL)
7326 *bit_size_p = bit_size;
76a01679
JB
7327 return 1;
7328 }
4c4b4cd2
PH
7329 else if (ada_is_wrapper_field (type, i))
7330 {
52ce6436
PH
7331 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7332 field_type_p, byte_offset_p, bit_offset_p,
7333 bit_size_p, index_p))
76a01679
JB
7334 return 1;
7335 }
4c4b4cd2
PH
7336 else if (ada_is_variant_part (type, i))
7337 {
52ce6436
PH
7338 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7339 fixed type?? */
4c4b4cd2 7340 int j;
52ce6436
PH
7341 struct type *field_type
7342 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7343
52ce6436 7344 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7345 {
76a01679
JB
7346 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7347 fld_offset
7348 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7349 field_type_p, byte_offset_p,
52ce6436 7350 bit_offset_p, bit_size_p, index_p))
76a01679 7351 return 1;
4c4b4cd2
PH
7352 }
7353 }
52ce6436
PH
7354 else if (index_p != NULL)
7355 *index_p += 1;
4c4b4cd2 7356 }
828d5846
XR
7357
7358 /* Field not found so far. If this is a tagged type which
7359 has a parent, try finding that field in the parent now. */
7360
7361 if (parent_offset != -1)
7362 {
7363 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7364 int fld_offset = offset + bit_pos / 8;
7365
7366 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7367 fld_offset, field_type_p, byte_offset_p,
7368 bit_offset_p, bit_size_p, index_p))
7369 return 1;
7370 }
7371
4c4b4cd2
PH
7372 return 0;
7373}
7374
0963b4bd 7375/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7376
52ce6436
PH
7377static int
7378num_visible_fields (struct type *type)
7379{
7380 int n;
5b4ee69b 7381
52ce6436
PH
7382 n = 0;
7383 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7384 return n;
7385}
14f9c5c9 7386
4c4b4cd2 7387/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7388 and search in it assuming it has (class) type TYPE.
7389 If found, return value, else return NULL.
7390
828d5846
XR
7391 Searches recursively through wrapper fields (e.g., '_parent').
7392
7393 In the case of homonyms in the tagged types, please refer to the
7394 long explanation in find_struct_field's function documentation. */
14f9c5c9 7395
4c4b4cd2 7396static struct value *
108d56a4 7397ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7398 struct type *type)
14f9c5c9
AS
7399{
7400 int i;
828d5846 7401 int parent_offset = -1;
14f9c5c9 7402
5b4ee69b 7403 type = ada_check_typedef (type);
52ce6436 7404 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7405 {
0d5cff50 7406 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7407
7408 if (t_field_name == NULL)
4c4b4cd2 7409 continue;
14f9c5c9 7410
828d5846
XR
7411 else if (ada_is_parent_field (type, i))
7412 {
7413 /* This is a field pointing us to the parent type of a tagged
7414 type. As hinted in this function's documentation, we give
7415 preference to fields in the current record first, so what
7416 we do here is just record the index of this field before
7417 we skip it. If it turns out we couldn't find our field
7418 in the current record, then we'll get back to it and search
7419 inside it whether the field might exist in the parent. */
7420
7421 parent_offset = i;
7422 continue;
7423 }
7424
14f9c5c9 7425 else if (field_name_match (t_field_name, name))
4c4b4cd2 7426 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7427
7428 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7429 {
0963b4bd 7430 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7431 ada_search_struct_field (name, arg,
7432 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7433 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7434
4c4b4cd2
PH
7435 if (v != NULL)
7436 return v;
7437 }
14f9c5c9
AS
7438
7439 else if (ada_is_variant_part (type, i))
4c4b4cd2 7440 {
0963b4bd 7441 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7442 int j;
5b4ee69b
MS
7443 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7444 i));
4c4b4cd2
PH
7445 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7446
52ce6436 7447 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7448 {
0963b4bd
MS
7449 struct value *v = ada_search_struct_field /* Force line
7450 break. */
06d5cf63
JB
7451 (name, arg,
7452 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7453 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7454
4c4b4cd2
PH
7455 if (v != NULL)
7456 return v;
7457 }
7458 }
14f9c5c9 7459 }
828d5846
XR
7460
7461 /* Field not found so far. If this is a tagged type which
7462 has a parent, try finding that field in the parent now. */
7463
7464 if (parent_offset != -1)
7465 {
7466 struct value *v = ada_search_struct_field (
7467 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7468 TYPE_FIELD_TYPE (type, parent_offset));
7469
7470 if (v != NULL)
7471 return v;
7472 }
7473
14f9c5c9
AS
7474 return NULL;
7475}
d2e4a39e 7476
52ce6436
PH
7477static struct value *ada_index_struct_field_1 (int *, struct value *,
7478 int, struct type *);
7479
7480
7481/* Return field #INDEX in ARG, where the index is that returned by
7482 * find_struct_field through its INDEX_P argument. Adjust the address
7483 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7484 * If found, return value, else return NULL. */
52ce6436
PH
7485
7486static struct value *
7487ada_index_struct_field (int index, struct value *arg, int offset,
7488 struct type *type)
7489{
7490 return ada_index_struct_field_1 (&index, arg, offset, type);
7491}
7492
7493
7494/* Auxiliary function for ada_index_struct_field. Like
7495 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7496 * *INDEX_P. */
52ce6436
PH
7497
7498static struct value *
7499ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7500 struct type *type)
7501{
7502 int i;
7503 type = ada_check_typedef (type);
7504
7505 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7506 {
7507 if (TYPE_FIELD_NAME (type, i) == NULL)
7508 continue;
7509 else if (ada_is_wrapper_field (type, i))
7510 {
0963b4bd 7511 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7512 ada_index_struct_field_1 (index_p, arg,
7513 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7514 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7515
52ce6436
PH
7516 if (v != NULL)
7517 return v;
7518 }
7519
7520 else if (ada_is_variant_part (type, i))
7521 {
7522 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7523 find_struct_field. */
52ce6436
PH
7524 error (_("Cannot assign this kind of variant record"));
7525 }
7526 else if (*index_p == 0)
7527 return ada_value_primitive_field (arg, offset, i, type);
7528 else
7529 *index_p -= 1;
7530 }
7531 return NULL;
7532}
7533
4c4b4cd2
PH
7534/* Given ARG, a value of type (pointer or reference to a)*
7535 structure/union, extract the component named NAME from the ultimate
7536 target structure/union and return it as a value with its
f5938064 7537 appropriate type.
14f9c5c9 7538
4c4b4cd2
PH
7539 The routine searches for NAME among all members of the structure itself
7540 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7541 (e.g., '_parent').
7542
03ee6b2e
PH
7543 If NO_ERR, then simply return NULL in case of error, rather than
7544 calling error. */
14f9c5c9 7545
d2e4a39e 7546struct value *
a121b7c1 7547ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7548{
4c4b4cd2 7549 struct type *t, *t1;
d2e4a39e 7550 struct value *v;
1f5d1570 7551 int check_tag;
14f9c5c9 7552
4c4b4cd2 7553 v = NULL;
df407dfe 7554 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7555 if (TYPE_CODE (t) == TYPE_CODE_REF)
7556 {
7557 t1 = TYPE_TARGET_TYPE (t);
7558 if (t1 == NULL)
03ee6b2e 7559 goto BadValue;
61ee279c 7560 t1 = ada_check_typedef (t1);
4c4b4cd2 7561 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7562 {
994b9211 7563 arg = coerce_ref (arg);
76a01679
JB
7564 t = t1;
7565 }
4c4b4cd2 7566 }
14f9c5c9 7567
4c4b4cd2
PH
7568 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7569 {
7570 t1 = TYPE_TARGET_TYPE (t);
7571 if (t1 == NULL)
03ee6b2e 7572 goto BadValue;
61ee279c 7573 t1 = ada_check_typedef (t1);
4c4b4cd2 7574 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7575 {
7576 arg = value_ind (arg);
7577 t = t1;
7578 }
4c4b4cd2 7579 else
76a01679 7580 break;
4c4b4cd2 7581 }
14f9c5c9 7582
4c4b4cd2 7583 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7584 goto BadValue;
14f9c5c9 7585
4c4b4cd2
PH
7586 if (t1 == t)
7587 v = ada_search_struct_field (name, arg, 0, t);
7588 else
7589 {
7590 int bit_offset, bit_size, byte_offset;
7591 struct type *field_type;
7592 CORE_ADDR address;
7593
76a01679 7594 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7595 address = value_address (ada_value_ind (arg));
4c4b4cd2 7596 else
b50d69b5 7597 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7598
828d5846
XR
7599 /* Check to see if this is a tagged type. We also need to handle
7600 the case where the type is a reference to a tagged type, but
7601 we have to be careful to exclude pointers to tagged types.
7602 The latter should be shown as usual (as a pointer), whereas
7603 a reference should mostly be transparent to the user. */
7604
7605 if (ada_is_tagged_type (t1, 0)
7606 || (TYPE_CODE (t1) == TYPE_CODE_REF
7607 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7608 {
7609 /* We first try to find the searched field in the current type.
7610 If not found then let's look in the fixed type. */
7611
7612 if (!find_struct_field (name, t1, 0,
7613 &field_type, &byte_offset, &bit_offset,
7614 &bit_size, NULL))
1f5d1570
JG
7615 check_tag = 1;
7616 else
7617 check_tag = 0;
828d5846
XR
7618 }
7619 else
1f5d1570
JG
7620 check_tag = 0;
7621
7622 /* Convert to fixed type in all cases, so that we have proper
7623 offsets to each field in unconstrained record types. */
7624 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7625 address, NULL, check_tag);
828d5846 7626
76a01679
JB
7627 if (find_struct_field (name, t1, 0,
7628 &field_type, &byte_offset, &bit_offset,
52ce6436 7629 &bit_size, NULL))
76a01679
JB
7630 {
7631 if (bit_size != 0)
7632 {
714e53ab
PH
7633 if (TYPE_CODE (t) == TYPE_CODE_REF)
7634 arg = ada_coerce_ref (arg);
7635 else
7636 arg = ada_value_ind (arg);
76a01679
JB
7637 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7638 bit_offset, bit_size,
7639 field_type);
7640 }
7641 else
f5938064 7642 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7643 }
7644 }
7645
03ee6b2e
PH
7646 if (v != NULL || no_err)
7647 return v;
7648 else
323e0a4a 7649 error (_("There is no member named %s."), name);
14f9c5c9 7650
03ee6b2e
PH
7651 BadValue:
7652 if (no_err)
7653 return NULL;
7654 else
0963b4bd
MS
7655 error (_("Attempt to extract a component of "
7656 "a value that is not a record."));
14f9c5c9
AS
7657}
7658
3b4de39c 7659/* Return a string representation of type TYPE. */
99bbb428 7660
3b4de39c 7661static std::string
99bbb428
PA
7662type_as_string (struct type *type)
7663{
d7e74731 7664 string_file tmp_stream;
99bbb428 7665
d7e74731 7666 type_print (type, "", &tmp_stream, -1);
99bbb428 7667
d7e74731 7668 return std::move (tmp_stream.string ());
99bbb428
PA
7669}
7670
14f9c5c9 7671/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7672 If DISPP is non-null, add its byte displacement from the beginning of a
7673 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7674 work for packed fields).
7675
7676 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7677 followed by "___".
14f9c5c9 7678
0963b4bd 7679 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7680 be a (pointer or reference)+ to a struct or union, and the
7681 ultimate target type will be searched.
14f9c5c9
AS
7682
7683 Looks recursively into variant clauses and parent types.
7684
828d5846
XR
7685 In the case of homonyms in the tagged types, please refer to the
7686 long explanation in find_struct_field's function documentation.
7687
4c4b4cd2
PH
7688 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7689 TYPE is not a type of the right kind. */
14f9c5c9 7690
4c4b4cd2 7691static struct type *
a121b7c1 7692ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7693 int noerr)
14f9c5c9
AS
7694{
7695 int i;
828d5846 7696 int parent_offset = -1;
14f9c5c9
AS
7697
7698 if (name == NULL)
7699 goto BadName;
7700
76a01679 7701 if (refok && type != NULL)
4c4b4cd2
PH
7702 while (1)
7703 {
61ee279c 7704 type = ada_check_typedef (type);
76a01679
JB
7705 if (TYPE_CODE (type) != TYPE_CODE_PTR
7706 && TYPE_CODE (type) != TYPE_CODE_REF)
7707 break;
7708 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7709 }
14f9c5c9 7710
76a01679 7711 if (type == NULL
1265e4aa
JB
7712 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7713 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7714 {
4c4b4cd2 7715 if (noerr)
76a01679 7716 return NULL;
99bbb428 7717
3b4de39c
PA
7718 error (_("Type %s is not a structure or union type"),
7719 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7720 }
7721
7722 type = to_static_fixed_type (type);
7723
7724 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7725 {
0d5cff50 7726 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7727 struct type *t;
d2e4a39e 7728
14f9c5c9 7729 if (t_field_name == NULL)
4c4b4cd2 7730 continue;
14f9c5c9 7731
828d5846
XR
7732 else if (ada_is_parent_field (type, i))
7733 {
7734 /* This is a field pointing us to the parent type of a tagged
7735 type. As hinted in this function's documentation, we give
7736 preference to fields in the current record first, so what
7737 we do here is just record the index of this field before
7738 we skip it. If it turns out we couldn't find our field
7739 in the current record, then we'll get back to it and search
7740 inside it whether the field might exist in the parent. */
7741
7742 parent_offset = i;
7743 continue;
7744 }
7745
14f9c5c9 7746 else if (field_name_match (t_field_name, name))
988f6b3d 7747 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7748
7749 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7750 {
4c4b4cd2 7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7752 0, 1);
4c4b4cd2 7753 if (t != NULL)
988f6b3d 7754 return t;
4c4b4cd2 7755 }
14f9c5c9
AS
7756
7757 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7758 {
7759 int j;
5b4ee69b
MS
7760 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7761 i));
4c4b4cd2
PH
7762
7763 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7764 {
b1f33ddd
JB
7765 /* FIXME pnh 2008/01/26: We check for a field that is
7766 NOT wrapped in a struct, since the compiler sometimes
7767 generates these for unchecked variant types. Revisit
0963b4bd 7768 if the compiler changes this practice. */
0d5cff50 7769 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7770
b1f33ddd
JB
7771 if (v_field_name != NULL
7772 && field_name_match (v_field_name, name))
460efde1 7773 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7774 else
0963b4bd
MS
7775 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7776 j),
988f6b3d 7777 name, 0, 1);
b1f33ddd 7778
4c4b4cd2 7779 if (t != NULL)
988f6b3d 7780 return t;
4c4b4cd2
PH
7781 }
7782 }
14f9c5c9
AS
7783
7784 }
7785
828d5846
XR
7786 /* Field not found so far. If this is a tagged type which
7787 has a parent, try finding that field in the parent now. */
7788
7789 if (parent_offset != -1)
7790 {
7791 struct type *t;
7792
7793 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7794 name, 0, 1);
7795 if (t != NULL)
7796 return t;
7797 }
7798
14f9c5c9 7799BadName:
d2e4a39e 7800 if (!noerr)
14f9c5c9 7801 {
2b2798cc 7802 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7803
7804 error (_("Type %s has no component named %s"),
3b4de39c 7805 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7806 }
7807
7808 return NULL;
7809}
7810
b1f33ddd
JB
7811/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7812 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7813 represents an unchecked union (that is, the variant part of a
0963b4bd 7814 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7815
7816static int
7817is_unchecked_variant (struct type *var_type, struct type *outer_type)
7818{
a121b7c1 7819 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7820
988f6b3d 7821 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7822}
7823
7824
14f9c5c9
AS
7825/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7826 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7827 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7828 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7829
d2e4a39e 7830int
ebf56fd3 7831ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7832 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7833{
7834 int others_clause;
7835 int i;
a121b7c1 7836 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7837 struct value *outer;
7838 struct value *discrim;
14f9c5c9
AS
7839 LONGEST discrim_val;
7840
012370f6
TT
7841 /* Using plain value_from_contents_and_address here causes problems
7842 because we will end up trying to resolve a type that is currently
7843 being constructed. */
7844 outer = value_from_contents_and_address_unresolved (outer_type,
7845 outer_valaddr, 0);
0c281816
JB
7846 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7847 if (discrim == NULL)
14f9c5c9 7848 return -1;
0c281816 7849 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7850
7851 others_clause = -1;
7852 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7853 {
7854 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7855 others_clause = i;
14f9c5c9 7856 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7857 return i;
14f9c5c9
AS
7858 }
7859
7860 return others_clause;
7861}
d2e4a39e 7862\f
14f9c5c9
AS
7863
7864
4c4b4cd2 7865 /* Dynamic-Sized Records */
14f9c5c9
AS
7866
7867/* Strategy: The type ostensibly attached to a value with dynamic size
7868 (i.e., a size that is not statically recorded in the debugging
7869 data) does not accurately reflect the size or layout of the value.
7870 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7871 conventional types that are constructed on the fly. */
14f9c5c9
AS
7872
7873/* There is a subtle and tricky problem here. In general, we cannot
7874 determine the size of dynamic records without its data. However,
7875 the 'struct value' data structure, which GDB uses to represent
7876 quantities in the inferior process (the target), requires the size
7877 of the type at the time of its allocation in order to reserve space
7878 for GDB's internal copy of the data. That's why the
7879 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7880 rather than struct value*s.
14f9c5c9
AS
7881
7882 However, GDB's internal history variables ($1, $2, etc.) are
7883 struct value*s containing internal copies of the data that are not, in
7884 general, the same as the data at their corresponding addresses in
7885 the target. Fortunately, the types we give to these values are all
7886 conventional, fixed-size types (as per the strategy described
7887 above), so that we don't usually have to perform the
7888 'to_fixed_xxx_type' conversions to look at their values.
7889 Unfortunately, there is one exception: if one of the internal
7890 history variables is an array whose elements are unconstrained
7891 records, then we will need to create distinct fixed types for each
7892 element selected. */
7893
7894/* The upshot of all of this is that many routines take a (type, host
7895 address, target address) triple as arguments to represent a value.
7896 The host address, if non-null, is supposed to contain an internal
7897 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7898 target at the target address. */
14f9c5c9
AS
7899
7900/* Assuming that VAL0 represents a pointer value, the result of
7901 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7902 dynamic-sized types. */
14f9c5c9 7903
d2e4a39e
AS
7904struct value *
7905ada_value_ind (struct value *val0)
14f9c5c9 7906{
c48db5ca 7907 struct value *val = value_ind (val0);
5b4ee69b 7908
b50d69b5
JG
7909 if (ada_is_tagged_type (value_type (val), 0))
7910 val = ada_tag_value_at_base_address (val);
7911
4c4b4cd2 7912 return ada_to_fixed_value (val);
14f9c5c9
AS
7913}
7914
7915/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7916 qualifiers on VAL0. */
7917
d2e4a39e
AS
7918static struct value *
7919ada_coerce_ref (struct value *val0)
7920{
df407dfe 7921 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7922 {
7923 struct value *val = val0;
5b4ee69b 7924
994b9211 7925 val = coerce_ref (val);
b50d69b5
JG
7926
7927 if (ada_is_tagged_type (value_type (val), 0))
7928 val = ada_tag_value_at_base_address (val);
7929
4c4b4cd2 7930 return ada_to_fixed_value (val);
d2e4a39e
AS
7931 }
7932 else
14f9c5c9
AS
7933 return val0;
7934}
7935
7936/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7937 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7938
7939static unsigned int
ebf56fd3 7940align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7941{
7942 return (off + alignment - 1) & ~(alignment - 1);
7943}
7944
4c4b4cd2 7945/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7946
7947static unsigned int
ebf56fd3 7948field_alignment (struct type *type, int f)
14f9c5c9 7949{
d2e4a39e 7950 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7951 int len;
14f9c5c9
AS
7952 int align_offset;
7953
64a1bf19
JB
7954 /* The field name should never be null, unless the debugging information
7955 is somehow malformed. In this case, we assume the field does not
7956 require any alignment. */
7957 if (name == NULL)
7958 return 1;
7959
7960 len = strlen (name);
7961
4c4b4cd2
PH
7962 if (!isdigit (name[len - 1]))
7963 return 1;
14f9c5c9 7964
d2e4a39e 7965 if (isdigit (name[len - 2]))
14f9c5c9
AS
7966 align_offset = len - 2;
7967 else
7968 align_offset = len - 1;
7969
61012eef 7970 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7971 return TARGET_CHAR_BIT;
7972
4c4b4cd2
PH
7973 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7974}
7975
852dff6c 7976/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7977
852dff6c
JB
7978static struct symbol *
7979ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7980{
7981 struct symbol *sym;
7982
7983 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7984 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7985 return sym;
7986
4186eb54
KS
7987 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7988 return sym;
14f9c5c9
AS
7989}
7990
dddfab26
UW
7991/* Find a type named NAME. Ignores ambiguity. This routine will look
7992 solely for types defined by debug info, it will not search the GDB
7993 primitive types. */
4c4b4cd2 7994
852dff6c 7995static struct type *
ebf56fd3 7996ada_find_any_type (const char *name)
14f9c5c9 7997{
852dff6c 7998 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7999
14f9c5c9 8000 if (sym != NULL)
dddfab26 8001 return SYMBOL_TYPE (sym);
14f9c5c9 8002
dddfab26 8003 return NULL;
14f9c5c9
AS
8004}
8005
739593e0
JB
8006/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8007 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8008 symbol, in which case it is returned. Otherwise, this looks for
8009 symbols whose name is that of NAME_SYM suffixed with "___XR".
8010 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8011
8012struct symbol *
270140bd 8013ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8014{
739593e0 8015 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8016 struct symbol *sym;
8017
739593e0
JB
8018 if (strstr (name, "___XR") != NULL)
8019 return name_sym;
8020
aeb5907d
JB
8021 sym = find_old_style_renaming_symbol (name, block);
8022
8023 if (sym != NULL)
8024 return sym;
8025
0963b4bd 8026 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8027 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8028 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8029 return sym;
8030 else
8031 return NULL;
8032}
8033
8034static struct symbol *
270140bd 8035find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8036{
7f0df278 8037 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8038 char *rename;
8039
8040 if (function_sym != NULL)
8041 {
8042 /* If the symbol is defined inside a function, NAME is not fully
8043 qualified. This means we need to prepend the function name
8044 as well as adding the ``___XR'' suffix to build the name of
8045 the associated renaming symbol. */
0d5cff50 8046 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8047 /* Function names sometimes contain suffixes used
8048 for instance to qualify nested subprograms. When building
8049 the XR type name, we need to make sure that this suffix is
8050 not included. So do not include any suffix in the function
8051 name length below. */
69fadcdf 8052 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8053 const int rename_len = function_name_len + 2 /* "__" */
8054 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8055
529cad9c 8056 /* Strip the suffix if necessary. */
69fadcdf
JB
8057 ada_remove_trailing_digits (function_name, &function_name_len);
8058 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8059 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8060
4c4b4cd2
PH
8061 /* Library-level functions are a special case, as GNAT adds
8062 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8063 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8064 have this prefix, so we need to skip this prefix if present. */
8065 if (function_name_len > 5 /* "_ada_" */
8066 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8067 {
8068 function_name += 5;
8069 function_name_len -= 5;
8070 }
4c4b4cd2
PH
8071
8072 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8073 strncpy (rename, function_name, function_name_len);
8074 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8075 "__%s___XR", name);
4c4b4cd2
PH
8076 }
8077 else
8078 {
8079 const int rename_len = strlen (name) + 6;
5b4ee69b 8080
4c4b4cd2 8081 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8082 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8083 }
8084
852dff6c 8085 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8086}
8087
14f9c5c9 8088/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8089 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8090 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8091 otherwise return 0. */
8092
14f9c5c9 8093int
d2e4a39e 8094ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8095{
8096 if (type1 == NULL)
8097 return 1;
8098 else if (type0 == NULL)
8099 return 0;
8100 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8101 return 1;
8102 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8103 return 0;
4c4b4cd2
PH
8104 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8105 return 1;
ad82864c 8106 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8107 return 1;
4c4b4cd2
PH
8108 else if (ada_is_array_descriptor_type (type0)
8109 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8110 return 1;
aeb5907d
JB
8111 else
8112 {
a737d952
TT
8113 const char *type0_name = TYPE_NAME (type0);
8114 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8115
8116 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8117 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8118 return 1;
8119 }
14f9c5c9
AS
8120 return 0;
8121}
8122
e86ca25f
TT
8123/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8124 null. */
4c4b4cd2 8125
0d5cff50 8126const char *
d2e4a39e 8127ada_type_name (struct type *type)
14f9c5c9 8128{
d2e4a39e 8129 if (type == NULL)
14f9c5c9 8130 return NULL;
e86ca25f 8131 return TYPE_NAME (type);
14f9c5c9
AS
8132}
8133
b4ba55a1
JB
8134/* Search the list of "descriptive" types associated to TYPE for a type
8135 whose name is NAME. */
8136
8137static struct type *
8138find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8139{
931e5bc3 8140 struct type *result, *tmp;
b4ba55a1 8141
c6044dd1
JB
8142 if (ada_ignore_descriptive_types_p)
8143 return NULL;
8144
b4ba55a1
JB
8145 /* If there no descriptive-type info, then there is no parallel type
8146 to be found. */
8147 if (!HAVE_GNAT_AUX_INFO (type))
8148 return NULL;
8149
8150 result = TYPE_DESCRIPTIVE_TYPE (type);
8151 while (result != NULL)
8152 {
0d5cff50 8153 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8154
8155 if (result_name == NULL)
8156 {
8157 warning (_("unexpected null name on descriptive type"));
8158 return NULL;
8159 }
8160
8161 /* If the names match, stop. */
8162 if (strcmp (result_name, name) == 0)
8163 break;
8164
8165 /* Otherwise, look at the next item on the list, if any. */
8166 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8167 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8168 else
8169 tmp = NULL;
8170
8171 /* If not found either, try after having resolved the typedef. */
8172 if (tmp != NULL)
8173 result = tmp;
b4ba55a1 8174 else
931e5bc3 8175 {
f168693b 8176 result = check_typedef (result);
931e5bc3
JG
8177 if (HAVE_GNAT_AUX_INFO (result))
8178 result = TYPE_DESCRIPTIVE_TYPE (result);
8179 else
8180 result = NULL;
8181 }
b4ba55a1
JB
8182 }
8183
8184 /* If we didn't find a match, see whether this is a packed array. With
8185 older compilers, the descriptive type information is either absent or
8186 irrelevant when it comes to packed arrays so the above lookup fails.
8187 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8188 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8189 return ada_find_any_type (name);
8190
8191 return result;
8192}
8193
8194/* Find a parallel type to TYPE with the specified NAME, using the
8195 descriptive type taken from the debugging information, if available,
8196 and otherwise using the (slower) name-based method. */
8197
8198static struct type *
8199ada_find_parallel_type_with_name (struct type *type, const char *name)
8200{
8201 struct type *result = NULL;
8202
8203 if (HAVE_GNAT_AUX_INFO (type))
8204 result = find_parallel_type_by_descriptive_type (type, name);
8205 else
8206 result = ada_find_any_type (name);
8207
8208 return result;
8209}
8210
8211/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8212 SUFFIX to the name of TYPE. */
14f9c5c9 8213
d2e4a39e 8214struct type *
ebf56fd3 8215ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8216{
0d5cff50 8217 char *name;
fe978cb0 8218 const char *type_name = ada_type_name (type);
14f9c5c9 8219 int len;
d2e4a39e 8220
fe978cb0 8221 if (type_name == NULL)
14f9c5c9
AS
8222 return NULL;
8223
fe978cb0 8224 len = strlen (type_name);
14f9c5c9 8225
b4ba55a1 8226 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8227
fe978cb0 8228 strcpy (name, type_name);
14f9c5c9
AS
8229 strcpy (name + len, suffix);
8230
b4ba55a1 8231 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8232}
8233
14f9c5c9 8234/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8235 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8236
d2e4a39e
AS
8237static struct type *
8238dynamic_template_type (struct type *type)
14f9c5c9 8239{
61ee279c 8240 type = ada_check_typedef (type);
14f9c5c9
AS
8241
8242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8243 || ada_type_name (type) == NULL)
14f9c5c9 8244 return NULL;
d2e4a39e 8245 else
14f9c5c9
AS
8246 {
8247 int len = strlen (ada_type_name (type));
5b4ee69b 8248
4c4b4cd2
PH
8249 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8250 return type;
14f9c5c9 8251 else
4c4b4cd2 8252 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8253 }
8254}
8255
8256/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8257 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8258
d2e4a39e
AS
8259static int
8260is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8261{
8262 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8263
d2e4a39e 8264 return name != NULL
14f9c5c9
AS
8265 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8266 && strstr (name, "___XVL") != NULL;
8267}
8268
4c4b4cd2
PH
8269/* The index of the variant field of TYPE, or -1 if TYPE does not
8270 represent a variant record type. */
14f9c5c9 8271
d2e4a39e 8272static int
4c4b4cd2 8273variant_field_index (struct type *type)
14f9c5c9
AS
8274{
8275 int f;
8276
4c4b4cd2
PH
8277 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8278 return -1;
8279
8280 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8281 {
8282 if (ada_is_variant_part (type, f))
8283 return f;
8284 }
8285 return -1;
14f9c5c9
AS
8286}
8287
4c4b4cd2
PH
8288/* A record type with no fields. */
8289
d2e4a39e 8290static struct type *
fe978cb0 8291empty_record (struct type *templ)
14f9c5c9 8292{
fe978cb0 8293 struct type *type = alloc_type_copy (templ);
5b4ee69b 8294
14f9c5c9
AS
8295 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8296 TYPE_NFIELDS (type) = 0;
8297 TYPE_FIELDS (type) = NULL;
8ecb59f8 8298 INIT_NONE_SPECIFIC (type);
14f9c5c9 8299 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8300 TYPE_LENGTH (type) = 0;
8301 return type;
8302}
8303
8304/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8305 the value of type TYPE at VALADDR or ADDRESS (see comments at
8306 the beginning of this section) VAL according to GNAT conventions.
8307 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8308 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8309 an outer-level type (i.e., as opposed to a branch of a variant.) A
8310 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8311 of the variant.
14f9c5c9 8312
4c4b4cd2
PH
8313 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8314 length are not statically known are discarded. As a consequence,
8315 VALADDR, ADDRESS and DVAL0 are ignored.
8316
8317 NOTE: Limitations: For now, we assume that dynamic fields and
8318 variants occupy whole numbers of bytes. However, they need not be
8319 byte-aligned. */
8320
8321struct type *
10a2c479 8322ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8323 const gdb_byte *valaddr,
4c4b4cd2
PH
8324 CORE_ADDR address, struct value *dval0,
8325 int keep_dynamic_fields)
14f9c5c9 8326{
d2e4a39e
AS
8327 struct value *mark = value_mark ();
8328 struct value *dval;
8329 struct type *rtype;
14f9c5c9 8330 int nfields, bit_len;
4c4b4cd2 8331 int variant_field;
14f9c5c9 8332 long off;
d94e4f4f 8333 int fld_bit_len;
14f9c5c9
AS
8334 int f;
8335
4c4b4cd2
PH
8336 /* Compute the number of fields in this record type that are going
8337 to be processed: unless keep_dynamic_fields, this includes only
8338 fields whose position and length are static will be processed. */
8339 if (keep_dynamic_fields)
8340 nfields = TYPE_NFIELDS (type);
8341 else
8342 {
8343 nfields = 0;
76a01679 8344 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8345 && !ada_is_variant_part (type, nfields)
8346 && !is_dynamic_field (type, nfields))
8347 nfields++;
8348 }
8349
e9bb382b 8350 rtype = alloc_type_copy (type);
14f9c5c9 8351 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8352 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8353 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8354 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8355 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8356 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8357 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8358 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8359
d2e4a39e
AS
8360 off = 0;
8361 bit_len = 0;
4c4b4cd2
PH
8362 variant_field = -1;
8363
14f9c5c9
AS
8364 for (f = 0; f < nfields; f += 1)
8365 {
6c038f32
PH
8366 off = align_value (off, field_alignment (type, f))
8367 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8368 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8369 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8370
d2e4a39e 8371 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8372 {
8373 variant_field = f;
d94e4f4f 8374 fld_bit_len = 0;
4c4b4cd2 8375 }
14f9c5c9 8376 else if (is_dynamic_field (type, f))
4c4b4cd2 8377 {
284614f0
JB
8378 const gdb_byte *field_valaddr = valaddr;
8379 CORE_ADDR field_address = address;
8380 struct type *field_type =
8381 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8382
4c4b4cd2 8383 if (dval0 == NULL)
b5304971
JG
8384 {
8385 /* rtype's length is computed based on the run-time
8386 value of discriminants. If the discriminants are not
8387 initialized, the type size may be completely bogus and
0963b4bd 8388 GDB may fail to allocate a value for it. So check the
b5304971 8389 size first before creating the value. */
c1b5a1a6 8390 ada_ensure_varsize_limit (rtype);
012370f6
TT
8391 /* Using plain value_from_contents_and_address here
8392 causes problems because we will end up trying to
8393 resolve a type that is currently being
8394 constructed. */
8395 dval = value_from_contents_and_address_unresolved (rtype,
8396 valaddr,
8397 address);
9f1f738a 8398 rtype = value_type (dval);
b5304971 8399 }
4c4b4cd2
PH
8400 else
8401 dval = dval0;
8402
284614f0
JB
8403 /* If the type referenced by this field is an aligner type, we need
8404 to unwrap that aligner type, because its size might not be set.
8405 Keeping the aligner type would cause us to compute the wrong
8406 size for this field, impacting the offset of the all the fields
8407 that follow this one. */
8408 if (ada_is_aligner_type (field_type))
8409 {
8410 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8411
8412 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8413 field_address = cond_offset_target (field_address, field_offset);
8414 field_type = ada_aligned_type (field_type);
8415 }
8416
8417 field_valaddr = cond_offset_host (field_valaddr,
8418 off / TARGET_CHAR_BIT);
8419 field_address = cond_offset_target (field_address,
8420 off / TARGET_CHAR_BIT);
8421
8422 /* Get the fixed type of the field. Note that, in this case,
8423 we do not want to get the real type out of the tag: if
8424 the current field is the parent part of a tagged record,
8425 we will get the tag of the object. Clearly wrong: the real
8426 type of the parent is not the real type of the child. We
8427 would end up in an infinite loop. */
8428 field_type = ada_get_base_type (field_type);
8429 field_type = ada_to_fixed_type (field_type, field_valaddr,
8430 field_address, dval, 0);
27f2a97b
JB
8431 /* If the field size is already larger than the maximum
8432 object size, then the record itself will necessarily
8433 be larger than the maximum object size. We need to make
8434 this check now, because the size might be so ridiculously
8435 large (due to an uninitialized variable in the inferior)
8436 that it would cause an overflow when adding it to the
8437 record size. */
c1b5a1a6 8438 ada_ensure_varsize_limit (field_type);
284614f0
JB
8439
8440 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8442 /* The multiplication can potentially overflow. But because
8443 the field length has been size-checked just above, and
8444 assuming that the maximum size is a reasonable value,
8445 an overflow should not happen in practice. So rather than
8446 adding overflow recovery code to this already complex code,
8447 we just assume that it's not going to happen. */
d94e4f4f 8448 fld_bit_len =
4c4b4cd2
PH
8449 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8450 }
14f9c5c9 8451 else
4c4b4cd2 8452 {
5ded5331
JB
8453 /* Note: If this field's type is a typedef, it is important
8454 to preserve the typedef layer.
8455
8456 Otherwise, we might be transforming a typedef to a fat
8457 pointer (encoding a pointer to an unconstrained array),
8458 into a basic fat pointer (encoding an unconstrained
8459 array). As both types are implemented using the same
8460 structure, the typedef is the only clue which allows us
8461 to distinguish between the two options. Stripping it
8462 would prevent us from printing this field appropriately. */
8463 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8464 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8465 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8466 fld_bit_len =
4c4b4cd2
PH
8467 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8468 else
5ded5331
JB
8469 {
8470 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8471
8472 /* We need to be careful of typedefs when computing
8473 the length of our field. If this is a typedef,
8474 get the length of the target type, not the length
8475 of the typedef. */
8476 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8477 field_type = ada_typedef_target_type (field_type);
8478
8479 fld_bit_len =
8480 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8481 }
4c4b4cd2 8482 }
14f9c5c9 8483 if (off + fld_bit_len > bit_len)
4c4b4cd2 8484 bit_len = off + fld_bit_len;
d94e4f4f 8485 off += fld_bit_len;
4c4b4cd2
PH
8486 TYPE_LENGTH (rtype) =
8487 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8488 }
4c4b4cd2
PH
8489
8490 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8491 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8492 the record. This can happen in the presence of representation
8493 clauses. */
8494 if (variant_field >= 0)
8495 {
8496 struct type *branch_type;
8497
8498 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8499
8500 if (dval0 == NULL)
9f1f738a 8501 {
012370f6
TT
8502 /* Using plain value_from_contents_and_address here causes
8503 problems because we will end up trying to resolve a type
8504 that is currently being constructed. */
8505 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8506 address);
9f1f738a
SA
8507 rtype = value_type (dval);
8508 }
4c4b4cd2
PH
8509 else
8510 dval = dval0;
8511
8512 branch_type =
8513 to_fixed_variant_branch_type
8514 (TYPE_FIELD_TYPE (type, variant_field),
8515 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8516 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8517 if (branch_type == NULL)
8518 {
8519 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8520 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8521 TYPE_NFIELDS (rtype) -= 1;
8522 }
8523 else
8524 {
8525 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8526 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8527 fld_bit_len =
8528 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8529 TARGET_CHAR_BIT;
8530 if (off + fld_bit_len > bit_len)
8531 bit_len = off + fld_bit_len;
8532 TYPE_LENGTH (rtype) =
8533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8534 }
8535 }
8536
714e53ab
PH
8537 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8538 should contain the alignment of that record, which should be a strictly
8539 positive value. If null or negative, then something is wrong, most
8540 probably in the debug info. In that case, we don't round up the size
0963b4bd 8541 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8542 the current RTYPE length might be good enough for our purposes. */
8543 if (TYPE_LENGTH (type) <= 0)
8544 {
323e0a4a 8545 if (TYPE_NAME (rtype))
cc1defb1
KS
8546 warning (_("Invalid type size for `%s' detected: %s."),
8547 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8548 else
cc1defb1
KS
8549 warning (_("Invalid type size for <unnamed> detected: %s."),
8550 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8551 }
8552 else
8553 {
8554 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8555 TYPE_LENGTH (type));
8556 }
14f9c5c9
AS
8557
8558 value_free_to_mark (mark);
d2e4a39e 8559 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8560 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8561 return rtype;
8562}
8563
4c4b4cd2
PH
8564/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8565 of 1. */
14f9c5c9 8566
d2e4a39e 8567static struct type *
fc1a4b47 8568template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8569 CORE_ADDR address, struct value *dval0)
8570{
8571 return ada_template_to_fixed_record_type_1 (type, valaddr,
8572 address, dval0, 1);
8573}
8574
8575/* An ordinary record type in which ___XVL-convention fields and
8576 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8577 static approximations, containing all possible fields. Uses
8578 no runtime values. Useless for use in values, but that's OK,
8579 since the results are used only for type determinations. Works on both
8580 structs and unions. Representation note: to save space, we memorize
8581 the result of this function in the TYPE_TARGET_TYPE of the
8582 template type. */
8583
8584static struct type *
8585template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8586{
8587 struct type *type;
8588 int nfields;
8589 int f;
8590
9e195661
PMR
8591 /* No need no do anything if the input type is already fixed. */
8592 if (TYPE_FIXED_INSTANCE (type0))
8593 return type0;
8594
8595 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8596 if (TYPE_TARGET_TYPE (type0) != NULL)
8597 return TYPE_TARGET_TYPE (type0);
8598
9e195661 8599 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8600 type = type0;
9e195661
PMR
8601 nfields = TYPE_NFIELDS (type0);
8602
8603 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8604 recompute all over next time. */
8605 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8606
8607 for (f = 0; f < nfields; f += 1)
8608 {
460efde1 8609 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8610 struct type *new_type;
14f9c5c9 8611
4c4b4cd2 8612 if (is_dynamic_field (type0, f))
460efde1
JB
8613 {
8614 field_type = ada_check_typedef (field_type);
8615 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8616 }
14f9c5c9 8617 else
f192137b 8618 new_type = static_unwrap_type (field_type);
9e195661
PMR
8619
8620 if (new_type != field_type)
8621 {
8622 /* Clone TYPE0 only the first time we get a new field type. */
8623 if (type == type0)
8624 {
8625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8626 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8627 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8628 TYPE_NFIELDS (type) = nfields;
8629 TYPE_FIELDS (type) = (struct field *)
8630 TYPE_ALLOC (type, nfields * sizeof (struct field));
8631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8632 sizeof (struct field) * nfields);
8633 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8634 TYPE_FIXED_INSTANCE (type) = 1;
8635 TYPE_LENGTH (type) = 0;
8636 }
8637 TYPE_FIELD_TYPE (type, f) = new_type;
8638 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8639 }
14f9c5c9 8640 }
9e195661 8641
14f9c5c9
AS
8642 return type;
8643}
8644
4c4b4cd2 8645/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8646 whose address in memory is ADDRESS, returns a revision of TYPE,
8647 which should be a non-dynamic-sized record, in which the variant
8648 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8649 for discriminant values in DVAL0, which can be NULL if the record
8650 contains the necessary discriminant values. */
8651
d2e4a39e 8652static struct type *
fc1a4b47 8653to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8654 CORE_ADDR address, struct value *dval0)
14f9c5c9 8655{
d2e4a39e 8656 struct value *mark = value_mark ();
4c4b4cd2 8657 struct value *dval;
d2e4a39e 8658 struct type *rtype;
14f9c5c9
AS
8659 struct type *branch_type;
8660 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8661 int variant_field = variant_field_index (type);
14f9c5c9 8662
4c4b4cd2 8663 if (variant_field == -1)
14f9c5c9
AS
8664 return type;
8665
4c4b4cd2 8666 if (dval0 == NULL)
9f1f738a
SA
8667 {
8668 dval = value_from_contents_and_address (type, valaddr, address);
8669 type = value_type (dval);
8670 }
4c4b4cd2
PH
8671 else
8672 dval = dval0;
8673
e9bb382b 8674 rtype = alloc_type_copy (type);
14f9c5c9 8675 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8676 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8677 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8678 TYPE_FIELDS (rtype) =
8679 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8680 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8681 sizeof (struct field) * nfields);
14f9c5c9 8682 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8683 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8684 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8685
4c4b4cd2
PH
8686 branch_type = to_fixed_variant_branch_type
8687 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8688 cond_offset_host (valaddr,
4c4b4cd2
PH
8689 TYPE_FIELD_BITPOS (type, variant_field)
8690 / TARGET_CHAR_BIT),
d2e4a39e 8691 cond_offset_target (address,
4c4b4cd2
PH
8692 TYPE_FIELD_BITPOS (type, variant_field)
8693 / TARGET_CHAR_BIT), dval);
d2e4a39e 8694 if (branch_type == NULL)
14f9c5c9 8695 {
4c4b4cd2 8696 int f;
5b4ee69b 8697
4c4b4cd2
PH
8698 for (f = variant_field + 1; f < nfields; f += 1)
8699 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8700 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8701 }
8702 else
8703 {
4c4b4cd2
PH
8704 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8705 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8706 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8707 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8708 }
4c4b4cd2 8709 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8710
4c4b4cd2 8711 value_free_to_mark (mark);
14f9c5c9
AS
8712 return rtype;
8713}
8714
8715/* An ordinary record type (with fixed-length fields) that describes
8716 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8717 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8718 should be in DVAL, a record value; it may be NULL if the object
8719 at ADDR itself contains any necessary discriminant values.
8720 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8721 values from the record are needed. Except in the case that DVAL,
8722 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8723 unchecked) is replaced by a particular branch of the variant.
8724
8725 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8726 is questionable and may be removed. It can arise during the
8727 processing of an unconstrained-array-of-record type where all the
8728 variant branches have exactly the same size. This is because in
8729 such cases, the compiler does not bother to use the XVS convention
8730 when encoding the record. I am currently dubious of this
8731 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8732
d2e4a39e 8733static struct type *
fc1a4b47 8734to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8735 CORE_ADDR address, struct value *dval)
14f9c5c9 8736{
d2e4a39e 8737 struct type *templ_type;
14f9c5c9 8738
876cecd0 8739 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8740 return type0;
8741
d2e4a39e 8742 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8743
8744 if (templ_type != NULL)
8745 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8746 else if (variant_field_index (type0) >= 0)
8747 {
8748 if (dval == NULL && valaddr == NULL && address == 0)
8749 return type0;
8750 return to_record_with_fixed_variant_part (type0, valaddr, address,
8751 dval);
8752 }
14f9c5c9
AS
8753 else
8754 {
876cecd0 8755 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8756 return type0;
8757 }
8758
8759}
8760
8761/* An ordinary record type (with fixed-length fields) that describes
8762 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8763 union type. Any necessary discriminants' values should be in DVAL,
8764 a record value. That is, this routine selects the appropriate
8765 branch of the union at ADDR according to the discriminant value
b1f33ddd 8766 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8767 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8768
d2e4a39e 8769static struct type *
fc1a4b47 8770to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8771 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8772{
8773 int which;
d2e4a39e
AS
8774 struct type *templ_type;
8775 struct type *var_type;
14f9c5c9
AS
8776
8777 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8778 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8779 else
14f9c5c9
AS
8780 var_type = var_type0;
8781
8782 templ_type = ada_find_parallel_type (var_type, "___XVU");
8783
8784 if (templ_type != NULL)
8785 var_type = templ_type;
8786
b1f33ddd
JB
8787 if (is_unchecked_variant (var_type, value_type (dval)))
8788 return var_type0;
d2e4a39e
AS
8789 which =
8790 ada_which_variant_applies (var_type,
0fd88904 8791 value_type (dval), value_contents (dval));
14f9c5c9
AS
8792
8793 if (which < 0)
e9bb382b 8794 return empty_record (var_type);
14f9c5c9 8795 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8796 return to_fixed_record_type
d2e4a39e
AS
8797 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8798 valaddr, address, dval);
4c4b4cd2 8799 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8800 return
8801 to_fixed_record_type
8802 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8803 else
8804 return TYPE_FIELD_TYPE (var_type, which);
8805}
8806
8908fca5
JB
8807/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8808 ENCODING_TYPE, a type following the GNAT conventions for discrete
8809 type encodings, only carries redundant information. */
8810
8811static int
8812ada_is_redundant_range_encoding (struct type *range_type,
8813 struct type *encoding_type)
8814{
108d56a4 8815 const char *bounds_str;
8908fca5
JB
8816 int n;
8817 LONGEST lo, hi;
8818
8819 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8820
005e2509
JB
8821 if (TYPE_CODE (get_base_type (range_type))
8822 != TYPE_CODE (get_base_type (encoding_type)))
8823 {
8824 /* The compiler probably used a simple base type to describe
8825 the range type instead of the range's actual base type,
8826 expecting us to get the real base type from the encoding
8827 anyway. In this situation, the encoding cannot be ignored
8828 as redundant. */
8829 return 0;
8830 }
8831
8908fca5
JB
8832 if (is_dynamic_type (range_type))
8833 return 0;
8834
8835 if (TYPE_NAME (encoding_type) == NULL)
8836 return 0;
8837
8838 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8839 if (bounds_str == NULL)
8840 return 0;
8841
8842 n = 8; /* Skip "___XDLU_". */
8843 if (!ada_scan_number (bounds_str, n, &lo, &n))
8844 return 0;
8845 if (TYPE_LOW_BOUND (range_type) != lo)
8846 return 0;
8847
8848 n += 2; /* Skip the "__" separator between the two bounds. */
8849 if (!ada_scan_number (bounds_str, n, &hi, &n))
8850 return 0;
8851 if (TYPE_HIGH_BOUND (range_type) != hi)
8852 return 0;
8853
8854 return 1;
8855}
8856
8857/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8858 a type following the GNAT encoding for describing array type
8859 indices, only carries redundant information. */
8860
8861static int
8862ada_is_redundant_index_type_desc (struct type *array_type,
8863 struct type *desc_type)
8864{
8865 struct type *this_layer = check_typedef (array_type);
8866 int i;
8867
8868 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8869 {
8870 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8871 TYPE_FIELD_TYPE (desc_type, i)))
8872 return 0;
8873 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8874 }
8875
8876 return 1;
8877}
8878
14f9c5c9
AS
8879/* Assuming that TYPE0 is an array type describing the type of a value
8880 at ADDR, and that DVAL describes a record containing any
8881 discriminants used in TYPE0, returns a type for the value that
8882 contains no dynamic components (that is, no components whose sizes
8883 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8884 true, gives an error message if the resulting type's size is over
4c4b4cd2 8885 varsize_limit. */
14f9c5c9 8886
d2e4a39e
AS
8887static struct type *
8888to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8889 int ignore_too_big)
14f9c5c9 8890{
d2e4a39e
AS
8891 struct type *index_type_desc;
8892 struct type *result;
ad82864c 8893 int constrained_packed_array_p;
931e5bc3 8894 static const char *xa_suffix = "___XA";
14f9c5c9 8895
b0dd7688 8896 type0 = ada_check_typedef (type0);
284614f0 8897 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8898 return type0;
14f9c5c9 8899
ad82864c
JB
8900 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8901 if (constrained_packed_array_p)
8902 type0 = decode_constrained_packed_array_type (type0);
284614f0 8903
931e5bc3
JG
8904 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8905
8906 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8907 encoding suffixed with 'P' may still be generated. If so,
8908 it should be used to find the XA type. */
8909
8910 if (index_type_desc == NULL)
8911 {
1da0522e 8912 const char *type_name = ada_type_name (type0);
931e5bc3 8913
1da0522e 8914 if (type_name != NULL)
931e5bc3 8915 {
1da0522e 8916 const int len = strlen (type_name);
931e5bc3
JG
8917 char *name = (char *) alloca (len + strlen (xa_suffix));
8918
1da0522e 8919 if (type_name[len - 1] == 'P')
931e5bc3 8920 {
1da0522e 8921 strcpy (name, type_name);
931e5bc3
JG
8922 strcpy (name + len - 1, xa_suffix);
8923 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8924 }
8925 }
8926 }
8927
28c85d6c 8928 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8929 if (index_type_desc != NULL
8930 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8931 {
8932 /* Ignore this ___XA parallel type, as it does not bring any
8933 useful information. This allows us to avoid creating fixed
8934 versions of the array's index types, which would be identical
8935 to the original ones. This, in turn, can also help avoid
8936 the creation of fixed versions of the array itself. */
8937 index_type_desc = NULL;
8938 }
8939
14f9c5c9
AS
8940 if (index_type_desc == NULL)
8941 {
61ee279c 8942 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8943
14f9c5c9 8944 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8945 depend on the contents of the array in properly constructed
8946 debugging data. */
529cad9c
PH
8947 /* Create a fixed version of the array element type.
8948 We're not providing the address of an element here,
e1d5a0d2 8949 and thus the actual object value cannot be inspected to do
529cad9c
PH
8950 the conversion. This should not be a problem, since arrays of
8951 unconstrained objects are not allowed. In particular, all
8952 the elements of an array of a tagged type should all be of
8953 the same type specified in the debugging info. No need to
8954 consult the object tag. */
1ed6ede0 8955 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8956
284614f0
JB
8957 /* Make sure we always create a new array type when dealing with
8958 packed array types, since we're going to fix-up the array
8959 type length and element bitsize a little further down. */
ad82864c 8960 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8961 result = type0;
14f9c5c9 8962 else
e9bb382b 8963 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8964 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8965 }
8966 else
8967 {
8968 int i;
8969 struct type *elt_type0;
8970
8971 elt_type0 = type0;
8972 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8974
8975 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8976 depend on the contents of the array in properly constructed
8977 debugging data. */
529cad9c
PH
8978 /* Create a fixed version of the array element type.
8979 We're not providing the address of an element here,
e1d5a0d2 8980 and thus the actual object value cannot be inspected to do
529cad9c
PH
8981 the conversion. This should not be a problem, since arrays of
8982 unconstrained objects are not allowed. In particular, all
8983 the elements of an array of a tagged type should all be of
8984 the same type specified in the debugging info. No need to
8985 consult the object tag. */
1ed6ede0
JB
8986 result =
8987 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8988
8989 elt_type0 = type0;
14f9c5c9 8990 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8991 {
8992 struct type *range_type =
28c85d6c 8993 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8994
e9bb382b 8995 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8996 result, range_type);
1ce677a4 8997 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8998 }
d2e4a39e 8999 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9000 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9001 }
9002
2e6fda7d
JB
9003 /* We want to preserve the type name. This can be useful when
9004 trying to get the type name of a value that has already been
9005 printed (for instance, if the user did "print VAR; whatis $". */
9006 TYPE_NAME (result) = TYPE_NAME (type0);
9007
ad82864c 9008 if (constrained_packed_array_p)
284614f0
JB
9009 {
9010 /* So far, the resulting type has been created as if the original
9011 type was a regular (non-packed) array type. As a result, the
9012 bitsize of the array elements needs to be set again, and the array
9013 length needs to be recomputed based on that bitsize. */
9014 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9015 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9016
9017 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9018 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9019 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9020 TYPE_LENGTH (result)++;
9021 }
9022
876cecd0 9023 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9024 return result;
d2e4a39e 9025}
14f9c5c9
AS
9026
9027
9028/* A standard type (containing no dynamically sized components)
9029 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9030 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9031 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9032 ADDRESS or in VALADDR contains these discriminants.
9033
1ed6ede0
JB
9034 If CHECK_TAG is not null, in the case of tagged types, this function
9035 attempts to locate the object's tag and use it to compute the actual
9036 type. However, when ADDRESS is null, we cannot use it to determine the
9037 location of the tag, and therefore compute the tagged type's actual type.
9038 So we return the tagged type without consulting the tag. */
529cad9c 9039
f192137b
JB
9040static struct type *
9041ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9042 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9043{
61ee279c 9044 type = ada_check_typedef (type);
8ecb59f8
TT
9045
9046 /* Only un-fixed types need to be handled here. */
9047 if (!HAVE_GNAT_AUX_INFO (type))
9048 return type;
9049
d2e4a39e
AS
9050 switch (TYPE_CODE (type))
9051 {
9052 default:
14f9c5c9 9053 return type;
d2e4a39e 9054 case TYPE_CODE_STRUCT:
4c4b4cd2 9055 {
76a01679 9056 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9057 struct type *fixed_record_type =
9058 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9059
529cad9c
PH
9060 /* If STATIC_TYPE is a tagged type and we know the object's address,
9061 then we can determine its tag, and compute the object's actual
0963b4bd 9062 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9063 type (the parent part of the record may have dynamic fields
9064 and the way the location of _tag is expressed may depend on
9065 them). */
529cad9c 9066
1ed6ede0 9067 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9068 {
b50d69b5
JG
9069 struct value *tag =
9070 value_tag_from_contents_and_address
9071 (fixed_record_type,
9072 valaddr,
9073 address);
9074 struct type *real_type = type_from_tag (tag);
9075 struct value *obj =
9076 value_from_contents_and_address (fixed_record_type,
9077 valaddr,
9078 address);
9f1f738a 9079 fixed_record_type = value_type (obj);
76a01679 9080 if (real_type != NULL)
b50d69b5
JG
9081 return to_fixed_record_type
9082 (real_type, NULL,
9083 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9084 }
4af88198
JB
9085
9086 /* Check to see if there is a parallel ___XVZ variable.
9087 If there is, then it provides the actual size of our type. */
9088 else if (ada_type_name (fixed_record_type) != NULL)
9089 {
0d5cff50 9090 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9091 char *xvz_name
9092 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9093 bool xvz_found = false;
4af88198
JB
9094 LONGEST size;
9095
88c15c34 9096 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 9097 try
eccab96d
JB
9098 {
9099 xvz_found = get_int_var_value (xvz_name, size);
9100 }
230d2906 9101 catch (const gdb_exception_error &except)
eccab96d
JB
9102 {
9103 /* We found the variable, but somehow failed to read
9104 its value. Rethrow the same error, but with a little
9105 bit more information, to help the user understand
9106 what went wrong (Eg: the variable might have been
9107 optimized out). */
9108 throw_error (except.error,
9109 _("unable to read value of %s (%s)"),
3d6e9d23 9110 xvz_name, except.what ());
eccab96d 9111 }
eccab96d
JB
9112
9113 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9114 {
9115 fixed_record_type = copy_type (fixed_record_type);
9116 TYPE_LENGTH (fixed_record_type) = size;
9117
9118 /* The FIXED_RECORD_TYPE may have be a stub. We have
9119 observed this when the debugging info is STABS, and
9120 apparently it is something that is hard to fix.
9121
9122 In practice, we don't need the actual type definition
9123 at all, because the presence of the XVZ variable allows us
9124 to assume that there must be a XVS type as well, which we
9125 should be able to use later, when we need the actual type
9126 definition.
9127
9128 In the meantime, pretend that the "fixed" type we are
9129 returning is NOT a stub, because this can cause trouble
9130 when using this type to create new types targeting it.
9131 Indeed, the associated creation routines often check
9132 whether the target type is a stub and will try to replace
0963b4bd 9133 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9134 might cause the new type to have the wrong size too.
9135 Consider the case of an array, for instance, where the size
9136 of the array is computed from the number of elements in
9137 our array multiplied by the size of its element. */
9138 TYPE_STUB (fixed_record_type) = 0;
9139 }
9140 }
1ed6ede0 9141 return fixed_record_type;
4c4b4cd2 9142 }
d2e4a39e 9143 case TYPE_CODE_ARRAY:
4c4b4cd2 9144 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9145 case TYPE_CODE_UNION:
9146 if (dval == NULL)
4c4b4cd2 9147 return type;
d2e4a39e 9148 else
4c4b4cd2 9149 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9150 }
14f9c5c9
AS
9151}
9152
f192137b
JB
9153/* The same as ada_to_fixed_type_1, except that it preserves the type
9154 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9155
9156 The typedef layer needs be preserved in order to differentiate between
9157 arrays and array pointers when both types are implemented using the same
9158 fat pointer. In the array pointer case, the pointer is encoded as
9159 a typedef of the pointer type. For instance, considering:
9160
9161 type String_Access is access String;
9162 S1 : String_Access := null;
9163
9164 To the debugger, S1 is defined as a typedef of type String. But
9165 to the user, it is a pointer. So if the user tries to print S1,
9166 we should not dereference the array, but print the array address
9167 instead.
9168
9169 If we didn't preserve the typedef layer, we would lose the fact that
9170 the type is to be presented as a pointer (needs de-reference before
9171 being printed). And we would also use the source-level type name. */
f192137b
JB
9172
9173struct type *
9174ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9175 CORE_ADDR address, struct value *dval, int check_tag)
9176
9177{
9178 struct type *fixed_type =
9179 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9180
96dbd2c1
JB
9181 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9182 then preserve the typedef layer.
9183
9184 Implementation note: We can only check the main-type portion of
9185 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9186 from TYPE now returns a type that has the same instance flags
9187 as TYPE. For instance, if TYPE is a "typedef const", and its
9188 target type is a "struct", then the typedef elimination will return
9189 a "const" version of the target type. See check_typedef for more
9190 details about how the typedef layer elimination is done.
9191
9192 brobecker/2010-11-19: It seems to me that the only case where it is
9193 useful to preserve the typedef layer is when dealing with fat pointers.
9194 Perhaps, we could add a check for that and preserve the typedef layer
9195 only in that situation. But this seems unecessary so far, probably
9196 because we call check_typedef/ada_check_typedef pretty much everywhere.
9197 */
f192137b 9198 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9199 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9200 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9201 return type;
9202
9203 return fixed_type;
9204}
9205
14f9c5c9 9206/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9207 TYPE0, but based on no runtime data. */
14f9c5c9 9208
d2e4a39e
AS
9209static struct type *
9210to_static_fixed_type (struct type *type0)
14f9c5c9 9211{
d2e4a39e 9212 struct type *type;
14f9c5c9
AS
9213
9214 if (type0 == NULL)
9215 return NULL;
9216
876cecd0 9217 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9218 return type0;
9219
61ee279c 9220 type0 = ada_check_typedef (type0);
d2e4a39e 9221
14f9c5c9
AS
9222 switch (TYPE_CODE (type0))
9223 {
9224 default:
9225 return type0;
9226 case TYPE_CODE_STRUCT:
9227 type = dynamic_template_type (type0);
d2e4a39e 9228 if (type != NULL)
4c4b4cd2
PH
9229 return template_to_static_fixed_type (type);
9230 else
9231 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9232 case TYPE_CODE_UNION:
9233 type = ada_find_parallel_type (type0, "___XVU");
9234 if (type != NULL)
4c4b4cd2
PH
9235 return template_to_static_fixed_type (type);
9236 else
9237 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9238 }
9239}
9240
4c4b4cd2
PH
9241/* A static approximation of TYPE with all type wrappers removed. */
9242
d2e4a39e
AS
9243static struct type *
9244static_unwrap_type (struct type *type)
14f9c5c9
AS
9245{
9246 if (ada_is_aligner_type (type))
9247 {
61ee279c 9248 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9249 if (ada_type_name (type1) == NULL)
4c4b4cd2 9250 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9251
9252 return static_unwrap_type (type1);
9253 }
d2e4a39e 9254 else
14f9c5c9 9255 {
d2e4a39e 9256 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9257
d2e4a39e 9258 if (raw_real_type == type)
4c4b4cd2 9259 return type;
14f9c5c9 9260 else
4c4b4cd2 9261 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9262 }
9263}
9264
9265/* In some cases, incomplete and private types require
4c4b4cd2 9266 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9267 type Foo;
9268 type FooP is access Foo;
9269 V: FooP;
9270 type Foo is array ...;
4c4b4cd2 9271 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9272 cross-references to such types, we instead substitute for FooP a
9273 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9274 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9275
9276/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9277 exists, otherwise TYPE. */
9278
d2e4a39e 9279struct type *
61ee279c 9280ada_check_typedef (struct type *type)
14f9c5c9 9281{
727e3d2e
JB
9282 if (type == NULL)
9283 return NULL;
9284
736ade86
XR
9285 /* If our type is an access to an unconstrained array, which is encoded
9286 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9287 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9288 what allows us to distinguish between fat pointers that represent
9289 array types, and fat pointers that represent array access types
9290 (in both cases, the compiler implements them as fat pointers). */
736ade86 9291 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9292 return type;
9293
f168693b 9294 type = check_typedef (type);
14f9c5c9 9295 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9296 || !TYPE_STUB (type)
e86ca25f 9297 || TYPE_NAME (type) == NULL)
14f9c5c9 9298 return type;
d2e4a39e 9299 else
14f9c5c9 9300 {
e86ca25f 9301 const char *name = TYPE_NAME (type);
d2e4a39e 9302 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9303
05e522ef
JB
9304 if (type1 == NULL)
9305 return type;
9306
9307 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9308 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9309 types, only for the typedef-to-array types). If that's the case,
9310 strip the typedef layer. */
9311 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9312 type1 = ada_check_typedef (type1);
9313
9314 return type1;
14f9c5c9
AS
9315 }
9316}
9317
9318/* A value representing the data at VALADDR/ADDRESS as described by
9319 type TYPE0, but with a standard (static-sized) type that correctly
9320 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9321 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9322 creation of struct values]. */
14f9c5c9 9323
4c4b4cd2
PH
9324static struct value *
9325ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9326 struct value *val0)
14f9c5c9 9327{
1ed6ede0 9328 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9329
14f9c5c9
AS
9330 if (type == type0 && val0 != NULL)
9331 return val0;
cc0e770c
JB
9332
9333 if (VALUE_LVAL (val0) != lval_memory)
9334 {
9335 /* Our value does not live in memory; it could be a convenience
9336 variable, for instance. Create a not_lval value using val0's
9337 contents. */
9338 return value_from_contents (type, value_contents (val0));
9339 }
9340
9341 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9342}
9343
9344/* A value representing VAL, but with a standard (static-sized) type
9345 that correctly describes it. Does not necessarily create a new
9346 value. */
9347
0c3acc09 9348struct value *
4c4b4cd2
PH
9349ada_to_fixed_value (struct value *val)
9350{
c48db5ca 9351 val = unwrap_value (val);
d8ce9127 9352 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9353 return val;
14f9c5c9 9354}
d2e4a39e 9355\f
14f9c5c9 9356
14f9c5c9
AS
9357/* Attributes */
9358
4c4b4cd2
PH
9359/* Table mapping attribute numbers to names.
9360 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9361
d2e4a39e 9362static const char *attribute_names[] = {
14f9c5c9
AS
9363 "<?>",
9364
d2e4a39e 9365 "first",
14f9c5c9
AS
9366 "last",
9367 "length",
9368 "image",
14f9c5c9
AS
9369 "max",
9370 "min",
4c4b4cd2
PH
9371 "modulus",
9372 "pos",
9373 "size",
9374 "tag",
14f9c5c9 9375 "val",
14f9c5c9
AS
9376 0
9377};
9378
d2e4a39e 9379const char *
4c4b4cd2 9380ada_attribute_name (enum exp_opcode n)
14f9c5c9 9381{
4c4b4cd2
PH
9382 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9383 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9384 else
9385 return attribute_names[0];
9386}
9387
4c4b4cd2 9388/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9389
4c4b4cd2
PH
9390static LONGEST
9391pos_atr (struct value *arg)
14f9c5c9 9392{
24209737
PH
9393 struct value *val = coerce_ref (arg);
9394 struct type *type = value_type (val);
aa715135 9395 LONGEST result;
14f9c5c9 9396
d2e4a39e 9397 if (!discrete_type_p (type))
323e0a4a 9398 error (_("'POS only defined on discrete types"));
14f9c5c9 9399
aa715135
JG
9400 if (!discrete_position (type, value_as_long (val), &result))
9401 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9402
aa715135 9403 return result;
4c4b4cd2
PH
9404}
9405
9406static struct value *
3cb382c9 9407value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9408{
3cb382c9 9409 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9410}
9411
4c4b4cd2 9412/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9413
d2e4a39e
AS
9414static struct value *
9415value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9416{
d2e4a39e 9417 if (!discrete_type_p (type))
323e0a4a 9418 error (_("'VAL only defined on discrete types"));
df407dfe 9419 if (!integer_type_p (value_type (arg)))
323e0a4a 9420 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9421
9422 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9423 {
9424 long pos = value_as_long (arg);
5b4ee69b 9425
14f9c5c9 9426 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9427 error (_("argument to 'VAL out of range"));
14e75d8e 9428 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9429 }
9430 else
9431 return value_from_longest (type, value_as_long (arg));
9432}
14f9c5c9 9433\f
d2e4a39e 9434
4c4b4cd2 9435 /* Evaluation */
14f9c5c9 9436
4c4b4cd2
PH
9437/* True if TYPE appears to be an Ada character type.
9438 [At the moment, this is true only for Character and Wide_Character;
9439 It is a heuristic test that could stand improvement]. */
14f9c5c9 9440
fc913e53 9441bool
d2e4a39e 9442ada_is_character_type (struct type *type)
14f9c5c9 9443{
7b9f71f2
JB
9444 const char *name;
9445
9446 /* If the type code says it's a character, then assume it really is,
9447 and don't check any further. */
9448 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9449 return true;
7b9f71f2
JB
9450
9451 /* Otherwise, assume it's a character type iff it is a discrete type
9452 with a known character type name. */
9453 name = ada_type_name (type);
9454 return (name != NULL
9455 && (TYPE_CODE (type) == TYPE_CODE_INT
9456 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9457 && (strcmp (name, "character") == 0
9458 || strcmp (name, "wide_character") == 0
5a517ebd 9459 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9460 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9461}
9462
4c4b4cd2 9463/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9464
fc913e53 9465bool
ebf56fd3 9466ada_is_string_type (struct type *type)
14f9c5c9 9467{
61ee279c 9468 type = ada_check_typedef (type);
d2e4a39e 9469 if (type != NULL
14f9c5c9 9470 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9471 && (ada_is_simple_array_type (type)
9472 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9473 && ada_array_arity (type) == 1)
9474 {
9475 struct type *elttype = ada_array_element_type (type, 1);
9476
9477 return ada_is_character_type (elttype);
9478 }
d2e4a39e 9479 else
fc913e53 9480 return false;
14f9c5c9
AS
9481}
9482
5bf03f13
JB
9483/* The compiler sometimes provides a parallel XVS type for a given
9484 PAD type. Normally, it is safe to follow the PAD type directly,
9485 but older versions of the compiler have a bug that causes the offset
9486 of its "F" field to be wrong. Following that field in that case
9487 would lead to incorrect results, but this can be worked around
9488 by ignoring the PAD type and using the associated XVS type instead.
9489
9490 Set to True if the debugger should trust the contents of PAD types.
9491 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9492static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9493
9494/* True if TYPE is a struct type introduced by the compiler to force the
9495 alignment of a value. Such types have a single field with a
4c4b4cd2 9496 distinctive name. */
14f9c5c9
AS
9497
9498int
ebf56fd3 9499ada_is_aligner_type (struct type *type)
14f9c5c9 9500{
61ee279c 9501 type = ada_check_typedef (type);
714e53ab 9502
5bf03f13 9503 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9504 return 0;
9505
14f9c5c9 9506 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9507 && TYPE_NFIELDS (type) == 1
9508 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9509}
9510
9511/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9512 the parallel type. */
14f9c5c9 9513
d2e4a39e
AS
9514struct type *
9515ada_get_base_type (struct type *raw_type)
14f9c5c9 9516{
d2e4a39e
AS
9517 struct type *real_type_namer;
9518 struct type *raw_real_type;
14f9c5c9
AS
9519
9520 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9521 return raw_type;
9522
284614f0
JB
9523 if (ada_is_aligner_type (raw_type))
9524 /* The encoding specifies that we should always use the aligner type.
9525 So, even if this aligner type has an associated XVS type, we should
9526 simply ignore it.
9527
9528 According to the compiler gurus, an XVS type parallel to an aligner
9529 type may exist because of a stabs limitation. In stabs, aligner
9530 types are empty because the field has a variable-sized type, and
9531 thus cannot actually be used as an aligner type. As a result,
9532 we need the associated parallel XVS type to decode the type.
9533 Since the policy in the compiler is to not change the internal
9534 representation based on the debugging info format, we sometimes
9535 end up having a redundant XVS type parallel to the aligner type. */
9536 return raw_type;
9537
14f9c5c9 9538 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9539 if (real_type_namer == NULL
14f9c5c9
AS
9540 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9541 || TYPE_NFIELDS (real_type_namer) != 1)
9542 return raw_type;
9543
f80d3ff2
JB
9544 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9545 {
9546 /* This is an older encoding form where the base type needs to be
9547 looked up by name. We prefer the newer enconding because it is
9548 more efficient. */
9549 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9550 if (raw_real_type == NULL)
9551 return raw_type;
9552 else
9553 return raw_real_type;
9554 }
9555
9556 /* The field in our XVS type is a reference to the base type. */
9557 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9558}
14f9c5c9 9559
4c4b4cd2 9560/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9561
d2e4a39e
AS
9562struct type *
9563ada_aligned_type (struct type *type)
14f9c5c9
AS
9564{
9565 if (ada_is_aligner_type (type))
9566 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9567 else
9568 return ada_get_base_type (type);
9569}
9570
9571
9572/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9573 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9574
fc1a4b47
AC
9575const gdb_byte *
9576ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9577{
d2e4a39e 9578 if (ada_is_aligner_type (type))
14f9c5c9 9579 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9580 valaddr +
9581 TYPE_FIELD_BITPOS (type,
9582 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9583 else
9584 return valaddr;
9585}
9586
4c4b4cd2
PH
9587
9588
14f9c5c9 9589/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9590 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9591const char *
9592ada_enum_name (const char *name)
14f9c5c9 9593{
4c4b4cd2
PH
9594 static char *result;
9595 static size_t result_len = 0;
e6a959d6 9596 const char *tmp;
14f9c5c9 9597
4c4b4cd2
PH
9598 /* First, unqualify the enumeration name:
9599 1. Search for the last '.' character. If we find one, then skip
177b42fe 9600 all the preceding characters, the unqualified name starts
76a01679 9601 right after that dot.
4c4b4cd2 9602 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9603 translates dots into "__". Search forward for double underscores,
9604 but stop searching when we hit an overloading suffix, which is
9605 of the form "__" followed by digits. */
4c4b4cd2 9606
c3e5cd34
PH
9607 tmp = strrchr (name, '.');
9608 if (tmp != NULL)
4c4b4cd2
PH
9609 name = tmp + 1;
9610 else
14f9c5c9 9611 {
4c4b4cd2
PH
9612 while ((tmp = strstr (name, "__")) != NULL)
9613 {
9614 if (isdigit (tmp[2]))
9615 break;
9616 else
9617 name = tmp + 2;
9618 }
14f9c5c9
AS
9619 }
9620
9621 if (name[0] == 'Q')
9622 {
14f9c5c9 9623 int v;
5b4ee69b 9624
14f9c5c9 9625 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9626 {
9627 if (sscanf (name + 2, "%x", &v) != 1)
9628 return name;
9629 }
14f9c5c9 9630 else
4c4b4cd2 9631 return name;
14f9c5c9 9632
4c4b4cd2 9633 GROW_VECT (result, result_len, 16);
14f9c5c9 9634 if (isascii (v) && isprint (v))
88c15c34 9635 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9636 else if (name[1] == 'U')
88c15c34 9637 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9638 else
88c15c34 9639 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9640
9641 return result;
9642 }
d2e4a39e 9643 else
4c4b4cd2 9644 {
c3e5cd34
PH
9645 tmp = strstr (name, "__");
9646 if (tmp == NULL)
9647 tmp = strstr (name, "$");
9648 if (tmp != NULL)
4c4b4cd2
PH
9649 {
9650 GROW_VECT (result, result_len, tmp - name + 1);
9651 strncpy (result, name, tmp - name);
9652 result[tmp - name] = '\0';
9653 return result;
9654 }
9655
9656 return name;
9657 }
14f9c5c9
AS
9658}
9659
14f9c5c9
AS
9660/* Evaluate the subexpression of EXP starting at *POS as for
9661 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9662 expression. */
14f9c5c9 9663
d2e4a39e
AS
9664static struct value *
9665evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9666{
4b27a620 9667 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9668}
9669
9670/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9671 value it wraps. */
14f9c5c9 9672
d2e4a39e
AS
9673static struct value *
9674unwrap_value (struct value *val)
14f9c5c9 9675{
df407dfe 9676 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9677
14f9c5c9
AS
9678 if (ada_is_aligner_type (type))
9679 {
de4d072f 9680 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9681 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9682
14f9c5c9 9683 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9684 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9685
9686 return unwrap_value (v);
9687 }
d2e4a39e 9688 else
14f9c5c9 9689 {
d2e4a39e 9690 struct type *raw_real_type =
61ee279c 9691 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9692
5bf03f13
JB
9693 /* If there is no parallel XVS or XVE type, then the value is
9694 already unwrapped. Return it without further modification. */
9695 if ((type == raw_real_type)
9696 && ada_find_parallel_type (type, "___XVE") == NULL)
9697 return val;
14f9c5c9 9698
d2e4a39e 9699 return
4c4b4cd2
PH
9700 coerce_unspec_val_to_type
9701 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9702 value_address (val),
1ed6ede0 9703 NULL, 1));
14f9c5c9
AS
9704 }
9705}
d2e4a39e
AS
9706
9707static struct value *
50eff16b 9708cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9709{
50eff16b
UW
9710 struct value *scale = ada_scaling_factor (value_type (arg));
9711 arg = value_cast (value_type (scale), arg);
14f9c5c9 9712
50eff16b
UW
9713 arg = value_binop (arg, scale, BINOP_MUL);
9714 return value_cast (type, arg);
14f9c5c9
AS
9715}
9716
d2e4a39e 9717static struct value *
50eff16b 9718cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9719{
50eff16b
UW
9720 if (type == value_type (arg))
9721 return arg;
5b4ee69b 9722
50eff16b
UW
9723 struct value *scale = ada_scaling_factor (type);
9724 if (ada_is_fixed_point_type (value_type (arg)))
9725 arg = cast_from_fixed (value_type (scale), arg);
9726 else
9727 arg = value_cast (value_type (scale), arg);
9728
9729 arg = value_binop (arg, scale, BINOP_DIV);
9730 return value_cast (type, arg);
14f9c5c9
AS
9731}
9732
d99dcf51
JB
9733/* Given two array types T1 and T2, return nonzero iff both arrays
9734 contain the same number of elements. */
9735
9736static int
9737ada_same_array_size_p (struct type *t1, struct type *t2)
9738{
9739 LONGEST lo1, hi1, lo2, hi2;
9740
9741 /* Get the array bounds in order to verify that the size of
9742 the two arrays match. */
9743 if (!get_array_bounds (t1, &lo1, &hi1)
9744 || !get_array_bounds (t2, &lo2, &hi2))
9745 error (_("unable to determine array bounds"));
9746
9747 /* To make things easier for size comparison, normalize a bit
9748 the case of empty arrays by making sure that the difference
9749 between upper bound and lower bound is always -1. */
9750 if (lo1 > hi1)
9751 hi1 = lo1 - 1;
9752 if (lo2 > hi2)
9753 hi2 = lo2 - 1;
9754
9755 return (hi1 - lo1 == hi2 - lo2);
9756}
9757
9758/* Assuming that VAL is an array of integrals, and TYPE represents
9759 an array with the same number of elements, but with wider integral
9760 elements, return an array "casted" to TYPE. In practice, this
9761 means that the returned array is built by casting each element
9762 of the original array into TYPE's (wider) element type. */
9763
9764static struct value *
9765ada_promote_array_of_integrals (struct type *type, struct value *val)
9766{
9767 struct type *elt_type = TYPE_TARGET_TYPE (type);
9768 LONGEST lo, hi;
9769 struct value *res;
9770 LONGEST i;
9771
9772 /* Verify that both val and type are arrays of scalars, and
9773 that the size of val's elements is smaller than the size
9774 of type's element. */
9775 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9776 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9777 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9778 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9779 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9780 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9781
9782 if (!get_array_bounds (type, &lo, &hi))
9783 error (_("unable to determine array bounds"));
9784
9785 res = allocate_value (type);
9786
9787 /* Promote each array element. */
9788 for (i = 0; i < hi - lo + 1; i++)
9789 {
9790 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9791
9792 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9793 value_contents_all (elt), TYPE_LENGTH (elt_type));
9794 }
9795
9796 return res;
9797}
9798
4c4b4cd2
PH
9799/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9800 return the converted value. */
9801
d2e4a39e
AS
9802static struct value *
9803coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9804{
df407dfe 9805 struct type *type2 = value_type (val);
5b4ee69b 9806
14f9c5c9
AS
9807 if (type == type2)
9808 return val;
9809
61ee279c
PH
9810 type2 = ada_check_typedef (type2);
9811 type = ada_check_typedef (type);
14f9c5c9 9812
d2e4a39e
AS
9813 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9814 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9815 {
9816 val = ada_value_ind (val);
df407dfe 9817 type2 = value_type (val);
14f9c5c9
AS
9818 }
9819
d2e4a39e 9820 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9821 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9822 {
d99dcf51
JB
9823 if (!ada_same_array_size_p (type, type2))
9824 error (_("cannot assign arrays of different length"));
9825
9826 if (is_integral_type (TYPE_TARGET_TYPE (type))
9827 && is_integral_type (TYPE_TARGET_TYPE (type2))
9828 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9829 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9830 {
9831 /* Allow implicit promotion of the array elements to
9832 a wider type. */
9833 return ada_promote_array_of_integrals (type, val);
9834 }
9835
9836 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9837 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9838 error (_("Incompatible types in assignment"));
04624583 9839 deprecated_set_value_type (val, type);
14f9c5c9 9840 }
d2e4a39e 9841 return val;
14f9c5c9
AS
9842}
9843
4c4b4cd2
PH
9844static struct value *
9845ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9846{
9847 struct value *val;
9848 struct type *type1, *type2;
9849 LONGEST v, v1, v2;
9850
994b9211
AC
9851 arg1 = coerce_ref (arg1);
9852 arg2 = coerce_ref (arg2);
18af8284
JB
9853 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9854 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9855
76a01679
JB
9856 if (TYPE_CODE (type1) != TYPE_CODE_INT
9857 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9858 return value_binop (arg1, arg2, op);
9859
76a01679 9860 switch (op)
4c4b4cd2
PH
9861 {
9862 case BINOP_MOD:
9863 case BINOP_DIV:
9864 case BINOP_REM:
9865 break;
9866 default:
9867 return value_binop (arg1, arg2, op);
9868 }
9869
9870 v2 = value_as_long (arg2);
9871 if (v2 == 0)
323e0a4a 9872 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9873
9874 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9875 return value_binop (arg1, arg2, op);
9876
9877 v1 = value_as_long (arg1);
9878 switch (op)
9879 {
9880 case BINOP_DIV:
9881 v = v1 / v2;
76a01679
JB
9882 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9883 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9884 break;
9885 case BINOP_REM:
9886 v = v1 % v2;
76a01679
JB
9887 if (v * v1 < 0)
9888 v -= v2;
4c4b4cd2
PH
9889 break;
9890 default:
9891 /* Should not reach this point. */
9892 v = 0;
9893 }
9894
9895 val = allocate_value (type1);
990a07ab 9896 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9897 TYPE_LENGTH (value_type (val)),
9898 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9899 return val;
9900}
9901
9902static int
9903ada_value_equal (struct value *arg1, struct value *arg2)
9904{
df407dfe
AC
9905 if (ada_is_direct_array_type (value_type (arg1))
9906 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9907 {
79e8fcaa
JB
9908 struct type *arg1_type, *arg2_type;
9909
f58b38bf
JB
9910 /* Automatically dereference any array reference before
9911 we attempt to perform the comparison. */
9912 arg1 = ada_coerce_ref (arg1);
9913 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9914
4c4b4cd2
PH
9915 arg1 = ada_coerce_to_simple_array (arg1);
9916 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9917
9918 arg1_type = ada_check_typedef (value_type (arg1));
9919 arg2_type = ada_check_typedef (value_type (arg2));
9920
9921 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9922 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9923 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9924 /* FIXME: The following works only for types whose
76a01679
JB
9925 representations use all bits (no padding or undefined bits)
9926 and do not have user-defined equality. */
79e8fcaa
JB
9927 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9928 && memcmp (value_contents (arg1), value_contents (arg2),
9929 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9930 }
9931 return value_equal (arg1, arg2);
9932}
9933
52ce6436
PH
9934/* Total number of component associations in the aggregate starting at
9935 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9936 OP_AGGREGATE. */
52ce6436
PH
9937
9938static int
9939num_component_specs (struct expression *exp, int pc)
9940{
9941 int n, m, i;
5b4ee69b 9942
52ce6436
PH
9943 m = exp->elts[pc + 1].longconst;
9944 pc += 3;
9945 n = 0;
9946 for (i = 0; i < m; i += 1)
9947 {
9948 switch (exp->elts[pc].opcode)
9949 {
9950 default:
9951 n += 1;
9952 break;
9953 case OP_CHOICES:
9954 n += exp->elts[pc + 1].longconst;
9955 break;
9956 }
9957 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9958 }
9959 return n;
9960}
9961
9962/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9963 component of LHS (a simple array or a record), updating *POS past
9964 the expression, assuming that LHS is contained in CONTAINER. Does
9965 not modify the inferior's memory, nor does it modify LHS (unless
9966 LHS == CONTAINER). */
9967
9968static void
9969assign_component (struct value *container, struct value *lhs, LONGEST index,
9970 struct expression *exp, int *pos)
9971{
9972 struct value *mark = value_mark ();
9973 struct value *elt;
0e2da9f0 9974 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9975
0e2da9f0 9976 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9977 {
22601c15
UW
9978 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9979 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9980
52ce6436
PH
9981 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9982 }
9983 else
9984 {
9985 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9986 elt = ada_to_fixed_value (elt);
52ce6436
PH
9987 }
9988
9989 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9990 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9991 else
9992 value_assign_to_component (container, elt,
9993 ada_evaluate_subexp (NULL, exp, pos,
9994 EVAL_NORMAL));
9995
9996 value_free_to_mark (mark);
9997}
9998
9999/* Assuming that LHS represents an lvalue having a record or array
10000 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10001 of that aggregate's value to LHS, advancing *POS past the
10002 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10003 lvalue containing LHS (possibly LHS itself). Does not modify
10004 the inferior's memory, nor does it modify the contents of
0963b4bd 10005 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10006
10007static struct value *
10008assign_aggregate (struct value *container,
10009 struct value *lhs, struct expression *exp,
10010 int *pos, enum noside noside)
10011{
10012 struct type *lhs_type;
10013 int n = exp->elts[*pos+1].longconst;
10014 LONGEST low_index, high_index;
10015 int num_specs;
10016 LONGEST *indices;
10017 int max_indices, num_indices;
52ce6436 10018 int i;
52ce6436
PH
10019
10020 *pos += 3;
10021 if (noside != EVAL_NORMAL)
10022 {
52ce6436
PH
10023 for (i = 0; i < n; i += 1)
10024 ada_evaluate_subexp (NULL, exp, pos, noside);
10025 return container;
10026 }
10027
10028 container = ada_coerce_ref (container);
10029 if (ada_is_direct_array_type (value_type (container)))
10030 container = ada_coerce_to_simple_array (container);
10031 lhs = ada_coerce_ref (lhs);
10032 if (!deprecated_value_modifiable (lhs))
10033 error (_("Left operand of assignment is not a modifiable lvalue."));
10034
0e2da9f0 10035 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10036 if (ada_is_direct_array_type (lhs_type))
10037 {
10038 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10039 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10040 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10041 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10042 }
10043 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10044 {
10045 low_index = 0;
10046 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10047 }
10048 else
10049 error (_("Left-hand side must be array or record."));
10050
10051 num_specs = num_component_specs (exp, *pos - 3);
10052 max_indices = 4 * num_specs + 4;
8d749320 10053 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10054 indices[0] = indices[1] = low_index - 1;
10055 indices[2] = indices[3] = high_index + 1;
10056 num_indices = 4;
10057
10058 for (i = 0; i < n; i += 1)
10059 {
10060 switch (exp->elts[*pos].opcode)
10061 {
1fbf5ada
JB
10062 case OP_CHOICES:
10063 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10064 &num_indices, max_indices,
10065 low_index, high_index);
10066 break;
10067 case OP_POSITIONAL:
10068 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10069 &num_indices, max_indices,
10070 low_index, high_index);
1fbf5ada
JB
10071 break;
10072 case OP_OTHERS:
10073 if (i != n-1)
10074 error (_("Misplaced 'others' clause"));
10075 aggregate_assign_others (container, lhs, exp, pos, indices,
10076 num_indices, low_index, high_index);
10077 break;
10078 default:
10079 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10080 }
10081 }
10082
10083 return container;
10084}
10085
10086/* Assign into the component of LHS indexed by the OP_POSITIONAL
10087 construct at *POS, updating *POS past the construct, given that
10088 the positions are relative to lower bound LOW, where HIGH is the
10089 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10090 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10091 assign_aggregate. */
52ce6436
PH
10092static void
10093aggregate_assign_positional (struct value *container,
10094 struct value *lhs, struct expression *exp,
10095 int *pos, LONGEST *indices, int *num_indices,
10096 int max_indices, LONGEST low, LONGEST high)
10097{
10098 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10099
10100 if (ind - 1 == high)
e1d5a0d2 10101 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10102 if (ind <= high)
10103 {
10104 add_component_interval (ind, ind, indices, num_indices, max_indices);
10105 *pos += 3;
10106 assign_component (container, lhs, ind, exp, pos);
10107 }
10108 else
10109 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10110}
10111
10112/* Assign into the components of LHS indexed by the OP_CHOICES
10113 construct at *POS, updating *POS past the construct, given that
10114 the allowable indices are LOW..HIGH. Record the indices assigned
10115 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10116 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10117static void
10118aggregate_assign_from_choices (struct value *container,
10119 struct value *lhs, struct expression *exp,
10120 int *pos, LONGEST *indices, int *num_indices,
10121 int max_indices, LONGEST low, LONGEST high)
10122{
10123 int j;
10124 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10125 int choice_pos, expr_pc;
10126 int is_array = ada_is_direct_array_type (value_type (lhs));
10127
10128 choice_pos = *pos += 3;
10129
10130 for (j = 0; j < n_choices; j += 1)
10131 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10132 expr_pc = *pos;
10133 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10134
10135 for (j = 0; j < n_choices; j += 1)
10136 {
10137 LONGEST lower, upper;
10138 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10139
52ce6436
PH
10140 if (op == OP_DISCRETE_RANGE)
10141 {
10142 choice_pos += 1;
10143 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10144 EVAL_NORMAL));
10145 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10146 EVAL_NORMAL));
10147 }
10148 else if (is_array)
10149 {
10150 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10151 EVAL_NORMAL));
10152 upper = lower;
10153 }
10154 else
10155 {
10156 int ind;
0d5cff50 10157 const char *name;
5b4ee69b 10158
52ce6436
PH
10159 switch (op)
10160 {
10161 case OP_NAME:
10162 name = &exp->elts[choice_pos + 2].string;
10163 break;
10164 case OP_VAR_VALUE:
10165 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10166 break;
10167 default:
10168 error (_("Invalid record component association."));
10169 }
10170 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10171 ind = 0;
10172 if (! find_struct_field (name, value_type (lhs), 0,
10173 NULL, NULL, NULL, NULL, &ind))
10174 error (_("Unknown component name: %s."), name);
10175 lower = upper = ind;
10176 }
10177
10178 if (lower <= upper && (lower < low || upper > high))
10179 error (_("Index in component association out of bounds."));
10180
10181 add_component_interval (lower, upper, indices, num_indices,
10182 max_indices);
10183 while (lower <= upper)
10184 {
10185 int pos1;
5b4ee69b 10186
52ce6436
PH
10187 pos1 = expr_pc;
10188 assign_component (container, lhs, lower, exp, &pos1);
10189 lower += 1;
10190 }
10191 }
10192}
10193
10194/* Assign the value of the expression in the OP_OTHERS construct in
10195 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10196 have not been previously assigned. The index intervals already assigned
10197 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10198 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10199static void
10200aggregate_assign_others (struct value *container,
10201 struct value *lhs, struct expression *exp,
10202 int *pos, LONGEST *indices, int num_indices,
10203 LONGEST low, LONGEST high)
10204{
10205 int i;
5ce64950 10206 int expr_pc = *pos + 1;
52ce6436
PH
10207
10208 for (i = 0; i < num_indices - 2; i += 2)
10209 {
10210 LONGEST ind;
5b4ee69b 10211
52ce6436
PH
10212 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10213 {
5ce64950 10214 int localpos;
5b4ee69b 10215
5ce64950
MS
10216 localpos = expr_pc;
10217 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10218 }
10219 }
10220 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10221}
10222
10223/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10224 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10225 modifying *SIZE as needed. It is an error if *SIZE exceeds
10226 MAX_SIZE. The resulting intervals do not overlap. */
10227static void
10228add_component_interval (LONGEST low, LONGEST high,
10229 LONGEST* indices, int *size, int max_size)
10230{
10231 int i, j;
5b4ee69b 10232
52ce6436
PH
10233 for (i = 0; i < *size; i += 2) {
10234 if (high >= indices[i] && low <= indices[i + 1])
10235 {
10236 int kh;
5b4ee69b 10237
52ce6436
PH
10238 for (kh = i + 2; kh < *size; kh += 2)
10239 if (high < indices[kh])
10240 break;
10241 if (low < indices[i])
10242 indices[i] = low;
10243 indices[i + 1] = indices[kh - 1];
10244 if (high > indices[i + 1])
10245 indices[i + 1] = high;
10246 memcpy (indices + i + 2, indices + kh, *size - kh);
10247 *size -= kh - i - 2;
10248 return;
10249 }
10250 else if (high < indices[i])
10251 break;
10252 }
10253
10254 if (*size == max_size)
10255 error (_("Internal error: miscounted aggregate components."));
10256 *size += 2;
10257 for (j = *size-1; j >= i+2; j -= 1)
10258 indices[j] = indices[j - 2];
10259 indices[i] = low;
10260 indices[i + 1] = high;
10261}
10262
6e48bd2c
JB
10263/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10264 is different. */
10265
10266static struct value *
b7e22850 10267ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10268{
10269 if (type == ada_check_typedef (value_type (arg2)))
10270 return arg2;
10271
10272 if (ada_is_fixed_point_type (type))
95f39a5b 10273 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10274
10275 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10276 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10277
10278 return value_cast (type, arg2);
10279}
10280
284614f0
JB
10281/* Evaluating Ada expressions, and printing their result.
10282 ------------------------------------------------------
10283
21649b50
JB
10284 1. Introduction:
10285 ----------------
10286
284614f0
JB
10287 We usually evaluate an Ada expression in order to print its value.
10288 We also evaluate an expression in order to print its type, which
10289 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10290 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10291 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10292 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10293 similar.
10294
10295 Evaluating expressions is a little more complicated for Ada entities
10296 than it is for entities in languages such as C. The main reason for
10297 this is that Ada provides types whose definition might be dynamic.
10298 One example of such types is variant records. Or another example
10299 would be an array whose bounds can only be known at run time.
10300
10301 The following description is a general guide as to what should be
10302 done (and what should NOT be done) in order to evaluate an expression
10303 involving such types, and when. This does not cover how the semantic
10304 information is encoded by GNAT as this is covered separatly. For the
10305 document used as the reference for the GNAT encoding, see exp_dbug.ads
10306 in the GNAT sources.
10307
10308 Ideally, we should embed each part of this description next to its
10309 associated code. Unfortunately, the amount of code is so vast right
10310 now that it's hard to see whether the code handling a particular
10311 situation might be duplicated or not. One day, when the code is
10312 cleaned up, this guide might become redundant with the comments
10313 inserted in the code, and we might want to remove it.
10314
21649b50
JB
10315 2. ``Fixing'' an Entity, the Simple Case:
10316 -----------------------------------------
10317
284614f0
JB
10318 When evaluating Ada expressions, the tricky issue is that they may
10319 reference entities whose type contents and size are not statically
10320 known. Consider for instance a variant record:
10321
10322 type Rec (Empty : Boolean := True) is record
10323 case Empty is
10324 when True => null;
10325 when False => Value : Integer;
10326 end case;
10327 end record;
10328 Yes : Rec := (Empty => False, Value => 1);
10329 No : Rec := (empty => True);
10330
10331 The size and contents of that record depends on the value of the
10332 descriminant (Rec.Empty). At this point, neither the debugging
10333 information nor the associated type structure in GDB are able to
10334 express such dynamic types. So what the debugger does is to create
10335 "fixed" versions of the type that applies to the specific object.
10336 We also informally refer to this opperation as "fixing" an object,
10337 which means creating its associated fixed type.
10338
10339 Example: when printing the value of variable "Yes" above, its fixed
10340 type would look like this:
10341
10342 type Rec is record
10343 Empty : Boolean;
10344 Value : Integer;
10345 end record;
10346
10347 On the other hand, if we printed the value of "No", its fixed type
10348 would become:
10349
10350 type Rec is record
10351 Empty : Boolean;
10352 end record;
10353
10354 Things become a little more complicated when trying to fix an entity
10355 with a dynamic type that directly contains another dynamic type,
10356 such as an array of variant records, for instance. There are
10357 two possible cases: Arrays, and records.
10358
21649b50
JB
10359 3. ``Fixing'' Arrays:
10360 ---------------------
10361
10362 The type structure in GDB describes an array in terms of its bounds,
10363 and the type of its elements. By design, all elements in the array
10364 have the same type and we cannot represent an array of variant elements
10365 using the current type structure in GDB. When fixing an array,
10366 we cannot fix the array element, as we would potentially need one
10367 fixed type per element of the array. As a result, the best we can do
10368 when fixing an array is to produce an array whose bounds and size
10369 are correct (allowing us to read it from memory), but without having
10370 touched its element type. Fixing each element will be done later,
10371 when (if) necessary.
10372
10373 Arrays are a little simpler to handle than records, because the same
10374 amount of memory is allocated for each element of the array, even if
1b536f04 10375 the amount of space actually used by each element differs from element
21649b50 10376 to element. Consider for instance the following array of type Rec:
284614f0
JB
10377
10378 type Rec_Array is array (1 .. 2) of Rec;
10379
1b536f04
JB
10380 The actual amount of memory occupied by each element might be different
10381 from element to element, depending on the value of their discriminant.
21649b50 10382 But the amount of space reserved for each element in the array remains
1b536f04 10383 fixed regardless. So we simply need to compute that size using
21649b50
JB
10384 the debugging information available, from which we can then determine
10385 the array size (we multiply the number of elements of the array by
10386 the size of each element).
10387
10388 The simplest case is when we have an array of a constrained element
10389 type. For instance, consider the following type declarations:
10390
10391 type Bounded_String (Max_Size : Integer) is
10392 Length : Integer;
10393 Buffer : String (1 .. Max_Size);
10394 end record;
10395 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10396
10397 In this case, the compiler describes the array as an array of
10398 variable-size elements (identified by its XVS suffix) for which
10399 the size can be read in the parallel XVZ variable.
10400
10401 In the case of an array of an unconstrained element type, the compiler
10402 wraps the array element inside a private PAD type. This type should not
10403 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10404 that we also use the adjective "aligner" in our code to designate
10405 these wrapper types.
10406
1b536f04 10407 In some cases, the size allocated for each element is statically
21649b50
JB
10408 known. In that case, the PAD type already has the correct size,
10409 and the array element should remain unfixed.
10410
10411 But there are cases when this size is not statically known.
10412 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10413
10414 type Dynamic is array (1 .. Five) of Integer;
10415 type Wrapper (Has_Length : Boolean := False) is record
10416 Data : Dynamic;
10417 case Has_Length is
10418 when True => Length : Integer;
10419 when False => null;
10420 end case;
10421 end record;
10422 type Wrapper_Array is array (1 .. 2) of Wrapper;
10423
10424 Hello : Wrapper_Array := (others => (Has_Length => True,
10425 Data => (others => 17),
10426 Length => 1));
10427
10428
10429 The debugging info would describe variable Hello as being an
10430 array of a PAD type. The size of that PAD type is not statically
10431 known, but can be determined using a parallel XVZ variable.
10432 In that case, a copy of the PAD type with the correct size should
10433 be used for the fixed array.
10434
21649b50
JB
10435 3. ``Fixing'' record type objects:
10436 ----------------------------------
10437
10438 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10439 record types. In this case, in order to compute the associated
10440 fixed type, we need to determine the size and offset of each of
10441 its components. This, in turn, requires us to compute the fixed
10442 type of each of these components.
10443
10444 Consider for instance the example:
10445
10446 type Bounded_String (Max_Size : Natural) is record
10447 Str : String (1 .. Max_Size);
10448 Length : Natural;
10449 end record;
10450 My_String : Bounded_String (Max_Size => 10);
10451
10452 In that case, the position of field "Length" depends on the size
10453 of field Str, which itself depends on the value of the Max_Size
21649b50 10454 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10455 we need to fix the type of field Str. Therefore, fixing a variant
10456 record requires us to fix each of its components.
10457
10458 However, if a component does not have a dynamic size, the component
10459 should not be fixed. In particular, fields that use a PAD type
10460 should not fixed. Here is an example where this might happen
10461 (assuming type Rec above):
10462
10463 type Container (Big : Boolean) is record
10464 First : Rec;
10465 After : Integer;
10466 case Big is
10467 when True => Another : Integer;
10468 when False => null;
10469 end case;
10470 end record;
10471 My_Container : Container := (Big => False,
10472 First => (Empty => True),
10473 After => 42);
10474
10475 In that example, the compiler creates a PAD type for component First,
10476 whose size is constant, and then positions the component After just
10477 right after it. The offset of component After is therefore constant
10478 in this case.
10479
10480 The debugger computes the position of each field based on an algorithm
10481 that uses, among other things, the actual position and size of the field
21649b50
JB
10482 preceding it. Let's now imagine that the user is trying to print
10483 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10484 end up computing the offset of field After based on the size of the
10485 fixed version of field First. And since in our example First has
10486 only one actual field, the size of the fixed type is actually smaller
10487 than the amount of space allocated to that field, and thus we would
10488 compute the wrong offset of field After.
10489
21649b50
JB
10490 To make things more complicated, we need to watch out for dynamic
10491 components of variant records (identified by the ___XVL suffix in
10492 the component name). Even if the target type is a PAD type, the size
10493 of that type might not be statically known. So the PAD type needs
10494 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10495 we might end up with the wrong size for our component. This can be
10496 observed with the following type declarations:
284614f0
JB
10497
10498 type Octal is new Integer range 0 .. 7;
10499 type Octal_Array is array (Positive range <>) of Octal;
10500 pragma Pack (Octal_Array);
10501
10502 type Octal_Buffer (Size : Positive) is record
10503 Buffer : Octal_Array (1 .. Size);
10504 Length : Integer;
10505 end record;
10506
10507 In that case, Buffer is a PAD type whose size is unset and needs
10508 to be computed by fixing the unwrapped type.
10509
21649b50
JB
10510 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10511 ----------------------------------------------------------
10512
10513 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10514 thus far, be actually fixed?
10515
10516 The answer is: Only when referencing that element. For instance
10517 when selecting one component of a record, this specific component
10518 should be fixed at that point in time. Or when printing the value
10519 of a record, each component should be fixed before its value gets
10520 printed. Similarly for arrays, the element of the array should be
10521 fixed when printing each element of the array, or when extracting
10522 one element out of that array. On the other hand, fixing should
10523 not be performed on the elements when taking a slice of an array!
10524
31432a67 10525 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10526 size of each field is that we end up also miscomputing the size
10527 of the containing type. This can have adverse results when computing
10528 the value of an entity. GDB fetches the value of an entity based
10529 on the size of its type, and thus a wrong size causes GDB to fetch
10530 the wrong amount of memory. In the case where the computed size is
10531 too small, GDB fetches too little data to print the value of our
31432a67 10532 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10533 past the buffer containing the data =:-o. */
10534
ced9779b
JB
10535/* Evaluate a subexpression of EXP, at index *POS, and return a value
10536 for that subexpression cast to TO_TYPE. Advance *POS over the
10537 subexpression. */
10538
10539static value *
10540ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10541 enum noside noside, struct type *to_type)
10542{
10543 int pc = *pos;
10544
10545 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10546 || exp->elts[pc].opcode == OP_VAR_VALUE)
10547 {
10548 (*pos) += 4;
10549
10550 value *val;
10551 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10552 {
10553 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10554 return value_zero (to_type, not_lval);
10555
10556 val = evaluate_var_msym_value (noside,
10557 exp->elts[pc + 1].objfile,
10558 exp->elts[pc + 2].msymbol);
10559 }
10560 else
10561 val = evaluate_var_value (noside,
10562 exp->elts[pc + 1].block,
10563 exp->elts[pc + 2].symbol);
10564
10565 if (noside == EVAL_SKIP)
10566 return eval_skip_value (exp);
10567
10568 val = ada_value_cast (to_type, val);
10569
10570 /* Follow the Ada language semantics that do not allow taking
10571 an address of the result of a cast (view conversion in Ada). */
10572 if (VALUE_LVAL (val) == lval_memory)
10573 {
10574 if (value_lazy (val))
10575 value_fetch_lazy (val);
10576 VALUE_LVAL (val) = not_lval;
10577 }
10578 return val;
10579 }
10580
10581 value *val = evaluate_subexp (to_type, exp, pos, noside);
10582 if (noside == EVAL_SKIP)
10583 return eval_skip_value (exp);
10584 return ada_value_cast (to_type, val);
10585}
10586
284614f0
JB
10587/* Implement the evaluate_exp routine in the exp_descriptor structure
10588 for the Ada language. */
10589
52ce6436 10590static struct value *
ebf56fd3 10591ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10592 int *pos, enum noside noside)
14f9c5c9
AS
10593{
10594 enum exp_opcode op;
b5385fc0 10595 int tem;
14f9c5c9 10596 int pc;
5ec18f2b 10597 int preeval_pos;
14f9c5c9
AS
10598 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10599 struct type *type;
52ce6436 10600 int nargs, oplen;
d2e4a39e 10601 struct value **argvec;
14f9c5c9 10602
d2e4a39e
AS
10603 pc = *pos;
10604 *pos += 1;
14f9c5c9
AS
10605 op = exp->elts[pc].opcode;
10606
d2e4a39e 10607 switch (op)
14f9c5c9
AS
10608 {
10609 default:
10610 *pos -= 1;
6e48bd2c 10611 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10612
10613 if (noside == EVAL_NORMAL)
10614 arg1 = unwrap_value (arg1);
6e48bd2c 10615
edd079d9 10616 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10617 then we need to perform the conversion manually, because
10618 evaluate_subexp_standard doesn't do it. This conversion is
10619 necessary in Ada because the different kinds of float/fixed
10620 types in Ada have different representations.
10621
10622 Similarly, we need to perform the conversion from OP_LONG
10623 ourselves. */
edd079d9 10624 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10625 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10626
10627 return arg1;
4c4b4cd2
PH
10628
10629 case OP_STRING:
10630 {
76a01679 10631 struct value *result;
5b4ee69b 10632
76a01679
JB
10633 *pos -= 1;
10634 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10635 /* The result type will have code OP_STRING, bashed there from
10636 OP_ARRAY. Bash it back. */
df407dfe
AC
10637 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10638 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10639 return result;
4c4b4cd2 10640 }
14f9c5c9
AS
10641
10642 case UNOP_CAST:
10643 (*pos) += 2;
10644 type = exp->elts[pc + 1].type;
ced9779b 10645 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10646
4c4b4cd2
PH
10647 case UNOP_QUAL:
10648 (*pos) += 2;
10649 type = exp->elts[pc + 1].type;
10650 return ada_evaluate_subexp (type, exp, pos, noside);
10651
14f9c5c9
AS
10652 case BINOP_ASSIGN:
10653 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10654 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10655 {
10656 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10657 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10658 return arg1;
10659 return ada_value_assign (arg1, arg1);
10660 }
003f3813
JB
10661 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10662 except if the lhs of our assignment is a convenience variable.
10663 In the case of assigning to a convenience variable, the lhs
10664 should be exactly the result of the evaluation of the rhs. */
10665 type = value_type (arg1);
10666 if (VALUE_LVAL (arg1) == lval_internalvar)
10667 type = NULL;
10668 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10669 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10670 return arg1;
df407dfe
AC
10671 if (ada_is_fixed_point_type (value_type (arg1)))
10672 arg2 = cast_to_fixed (value_type (arg1), arg2);
10673 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10674 error
323e0a4a 10675 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10676 else
df407dfe 10677 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10678 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10679
10680 case BINOP_ADD:
10681 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10682 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10683 if (noside == EVAL_SKIP)
4c4b4cd2 10684 goto nosideret;
2ac8a782
JB
10685 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10686 return (value_from_longest
10687 (value_type (arg1),
10688 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10689 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10690 return (value_from_longest
10691 (value_type (arg2),
10692 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10693 if ((ada_is_fixed_point_type (value_type (arg1))
10694 || ada_is_fixed_point_type (value_type (arg2)))
10695 && value_type (arg1) != value_type (arg2))
323e0a4a 10696 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10697 /* Do the addition, and cast the result to the type of the first
10698 argument. We cannot cast the result to a reference type, so if
10699 ARG1 is a reference type, find its underlying type. */
10700 type = value_type (arg1);
10701 while (TYPE_CODE (type) == TYPE_CODE_REF)
10702 type = TYPE_TARGET_TYPE (type);
f44316fa 10703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10704 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10705
10706 case BINOP_SUB:
10707 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10709 if (noside == EVAL_SKIP)
4c4b4cd2 10710 goto nosideret;
2ac8a782
JB
10711 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10712 return (value_from_longest
10713 (value_type (arg1),
10714 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10715 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10716 return (value_from_longest
10717 (value_type (arg2),
10718 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10719 if ((ada_is_fixed_point_type (value_type (arg1))
10720 || ada_is_fixed_point_type (value_type (arg2)))
10721 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10722 error (_("Operands of fixed-point subtraction "
10723 "must have the same type"));
b7789565
JB
10724 /* Do the substraction, and cast the result to the type of the first
10725 argument. We cannot cast the result to a reference type, so if
10726 ARG1 is a reference type, find its underlying type. */
10727 type = value_type (arg1);
10728 while (TYPE_CODE (type) == TYPE_CODE_REF)
10729 type = TYPE_TARGET_TYPE (type);
f44316fa 10730 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10731 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10732
10733 case BINOP_MUL:
10734 case BINOP_DIV:
e1578042
JB
10735 case BINOP_REM:
10736 case BINOP_MOD:
14f9c5c9
AS
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10739 if (noside == EVAL_SKIP)
4c4b4cd2 10740 goto nosideret;
e1578042 10741 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10742 {
10743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10744 return value_zero (value_type (arg1), not_lval);
10745 }
14f9c5c9 10746 else
4c4b4cd2 10747 {
a53b7a21 10748 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10749 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10750 arg1 = cast_from_fixed (type, arg1);
df407dfe 10751 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10752 arg2 = cast_from_fixed (type, arg2);
f44316fa 10753 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10754 return ada_value_binop (arg1, arg2, op);
10755 }
10756
4c4b4cd2
PH
10757 case BINOP_EQUAL:
10758 case BINOP_NOTEQUAL:
14f9c5c9 10759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10760 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10761 if (noside == EVAL_SKIP)
76a01679 10762 goto nosideret;
4c4b4cd2 10763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10764 tem = 0;
4c4b4cd2 10765 else
f44316fa
UW
10766 {
10767 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10768 tem = ada_value_equal (arg1, arg2);
10769 }
4c4b4cd2 10770 if (op == BINOP_NOTEQUAL)
76a01679 10771 tem = !tem;
fbb06eb1
UW
10772 type = language_bool_type (exp->language_defn, exp->gdbarch);
10773 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10774
10775 case UNOP_NEG:
10776 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10777 if (noside == EVAL_SKIP)
10778 goto nosideret;
df407dfe
AC
10779 else if (ada_is_fixed_point_type (value_type (arg1)))
10780 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10781 else
f44316fa
UW
10782 {
10783 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10784 return value_neg (arg1);
10785 }
4c4b4cd2 10786
2330c6c6
JB
10787 case BINOP_LOGICAL_AND:
10788 case BINOP_LOGICAL_OR:
10789 case UNOP_LOGICAL_NOT:
000d5124
JB
10790 {
10791 struct value *val;
10792
10793 *pos -= 1;
10794 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10795 type = language_bool_type (exp->language_defn, exp->gdbarch);
10796 return value_cast (type, val);
000d5124 10797 }
2330c6c6
JB
10798
10799 case BINOP_BITWISE_AND:
10800 case BINOP_BITWISE_IOR:
10801 case BINOP_BITWISE_XOR:
000d5124
JB
10802 {
10803 struct value *val;
10804
10805 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10806 *pos = pc;
10807 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10808
10809 return value_cast (value_type (arg1), val);
10810 }
2330c6c6 10811
14f9c5c9
AS
10812 case OP_VAR_VALUE:
10813 *pos -= 1;
6799def4 10814
14f9c5c9 10815 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10816 {
10817 *pos += 4;
10818 goto nosideret;
10819 }
da5c522f
JB
10820
10821 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10822 /* Only encountered when an unresolved symbol occurs in a
10823 context other than a function call, in which case, it is
52ce6436 10824 invalid. */
323e0a4a 10825 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10827
10828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10829 {
0c1f74cf 10830 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10831 /* Check to see if this is a tagged type. We also need to handle
10832 the case where the type is a reference to a tagged type, but
10833 we have to be careful to exclude pointers to tagged types.
10834 The latter should be shown as usual (as a pointer), whereas
10835 a reference should mostly be transparent to the user. */
10836 if (ada_is_tagged_type (type, 0)
023db19c 10837 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10838 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10839 {
10840 /* Tagged types are a little special in the fact that the real
10841 type is dynamic and can only be determined by inspecting the
10842 object's tag. This means that we need to get the object's
10843 value first (EVAL_NORMAL) and then extract the actual object
10844 type from its tag.
10845
10846 Note that we cannot skip the final step where we extract
10847 the object type from its tag, because the EVAL_NORMAL phase
10848 results in dynamic components being resolved into fixed ones.
10849 This can cause problems when trying to print the type
10850 description of tagged types whose parent has a dynamic size:
10851 We use the type name of the "_parent" component in order
10852 to print the name of the ancestor type in the type description.
10853 If that component had a dynamic size, the resolution into
10854 a fixed type would result in the loss of that type name,
10855 thus preventing us from printing the name of the ancestor
10856 type in the type description. */
10857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10858
10859 if (TYPE_CODE (type) != TYPE_CODE_REF)
10860 {
10861 struct type *actual_type;
10862
10863 actual_type = type_from_tag (ada_value_tag (arg1));
10864 if (actual_type == NULL)
10865 /* If, for some reason, we were unable to determine
10866 the actual type from the tag, then use the static
10867 approximation that we just computed as a fallback.
10868 This can happen if the debugging information is
10869 incomplete, for instance. */
10870 actual_type = type;
10871 return value_zero (actual_type, not_lval);
10872 }
10873 else
10874 {
10875 /* In the case of a ref, ada_coerce_ref takes care
10876 of determining the actual type. But the evaluation
10877 should return a ref as it should be valid to ask
10878 for its address; so rebuild a ref after coerce. */
10879 arg1 = ada_coerce_ref (arg1);
a65cfae5 10880 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10881 }
10882 }
0c1f74cf 10883
84754697
JB
10884 /* Records and unions for which GNAT encodings have been
10885 generated need to be statically fixed as well.
10886 Otherwise, non-static fixing produces a type where
10887 all dynamic properties are removed, which prevents "ptype"
10888 from being able to completely describe the type.
10889 For instance, a case statement in a variant record would be
10890 replaced by the relevant components based on the actual
10891 value of the discriminants. */
10892 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10893 && dynamic_template_type (type) != NULL)
10894 || (TYPE_CODE (type) == TYPE_CODE_UNION
10895 && ada_find_parallel_type (type, "___XVU") != NULL))
10896 {
10897 *pos += 4;
10898 return value_zero (to_static_fixed_type (type), not_lval);
10899 }
4c4b4cd2 10900 }
da5c522f
JB
10901
10902 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10903 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10904
10905 case OP_FUNCALL:
10906 (*pos) += 2;
10907
10908 /* Allocate arg vector, including space for the function to be
10909 called in argvec[0] and a terminating NULL. */
10910 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10911 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10912
10913 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10914 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10915 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10916 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10917 else
10918 {
10919 for (tem = 0; tem <= nargs; tem += 1)
10920 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10921 argvec[tem] = 0;
10922
10923 if (noside == EVAL_SKIP)
10924 goto nosideret;
10925 }
10926
ad82864c
JB
10927 if (ada_is_constrained_packed_array_type
10928 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10929 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10930 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10931 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10932 /* This is a packed array that has already been fixed, and
10933 therefore already coerced to a simple array. Nothing further
10934 to do. */
10935 ;
e6c2c623
PMR
10936 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10937 {
10938 /* Make sure we dereference references so that all the code below
10939 feels like it's really handling the referenced value. Wrapping
10940 types (for alignment) may be there, so make sure we strip them as
10941 well. */
10942 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10943 }
10944 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10945 && VALUE_LVAL (argvec[0]) == lval_memory)
10946 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10947
df407dfe 10948 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10949
10950 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10951 them. So, if this is an array typedef (encoding use for array
10952 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10953 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10954 type = ada_typedef_target_type (type);
10955
4c4b4cd2
PH
10956 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10957 {
61ee279c 10958 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10959 {
10960 case TYPE_CODE_FUNC:
61ee279c 10961 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10962 break;
10963 case TYPE_CODE_ARRAY:
10964 break;
10965 case TYPE_CODE_STRUCT:
10966 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10967 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10968 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10969 break;
10970 default:
323e0a4a 10971 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10972 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10973 break;
10974 }
10975 }
10976
10977 switch (TYPE_CODE (type))
10978 {
10979 case TYPE_CODE_FUNC:
10980 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10981 {
7022349d
PA
10982 if (TYPE_TARGET_TYPE (type) == NULL)
10983 error_call_unknown_return_type (NULL);
10984 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10985 }
e71585ff
PA
10986 return call_function_by_hand (argvec[0], NULL,
10987 gdb::make_array_view (argvec + 1,
10988 nargs));
c8ea1972
PH
10989 case TYPE_CODE_INTERNAL_FUNCTION:
10990 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10991 /* We don't know anything about what the internal
10992 function might return, but we have to return
10993 something. */
10994 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10995 not_lval);
10996 else
10997 return call_internal_function (exp->gdbarch, exp->language_defn,
10998 argvec[0], nargs, argvec + 1);
10999
4c4b4cd2
PH
11000 case TYPE_CODE_STRUCT:
11001 {
11002 int arity;
11003
4c4b4cd2
PH
11004 arity = ada_array_arity (type);
11005 type = ada_array_element_type (type, nargs);
11006 if (type == NULL)
323e0a4a 11007 error (_("cannot subscript or call a record"));
4c4b4cd2 11008 if (arity != nargs)
323e0a4a 11009 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11010 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11011 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11012 return
11013 unwrap_value (ada_value_subscript
11014 (argvec[0], nargs, argvec + 1));
11015 }
11016 case TYPE_CODE_ARRAY:
11017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11018 {
11019 type = ada_array_element_type (type, nargs);
11020 if (type == NULL)
323e0a4a 11021 error (_("element type of array unknown"));
4c4b4cd2 11022 else
0a07e705 11023 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11024 }
11025 return
11026 unwrap_value (ada_value_subscript
11027 (ada_coerce_to_simple_array (argvec[0]),
11028 nargs, argvec + 1));
11029 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11031 {
deede10c 11032 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11033 type = ada_array_element_type (type, nargs);
11034 if (type == NULL)
323e0a4a 11035 error (_("element type of array unknown"));
4c4b4cd2 11036 else
0a07e705 11037 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11038 }
11039 return
deede10c
JB
11040 unwrap_value (ada_value_ptr_subscript (argvec[0],
11041 nargs, argvec + 1));
4c4b4cd2
PH
11042
11043 default:
e1d5a0d2
PH
11044 error (_("Attempt to index or call something other than an "
11045 "array or function"));
4c4b4cd2
PH
11046 }
11047
11048 case TERNOP_SLICE:
11049 {
11050 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11051 struct value *low_bound_val =
11052 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11053 struct value *high_bound_val =
11054 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11055 LONGEST low_bound;
11056 LONGEST high_bound;
5b4ee69b 11057
994b9211
AC
11058 low_bound_val = coerce_ref (low_bound_val);
11059 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11060 low_bound = value_as_long (low_bound_val);
11061 high_bound = value_as_long (high_bound_val);
963a6417 11062
4c4b4cd2
PH
11063 if (noside == EVAL_SKIP)
11064 goto nosideret;
11065
4c4b4cd2
PH
11066 /* If this is a reference to an aligner type, then remove all
11067 the aligners. */
df407dfe
AC
11068 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11069 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11070 TYPE_TARGET_TYPE (value_type (array)) =
11071 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11072
ad82864c 11073 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11074 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11075
11076 /* If this is a reference to an array or an array lvalue,
11077 convert to a pointer. */
df407dfe
AC
11078 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11079 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11080 && VALUE_LVAL (array) == lval_memory))
11081 array = value_addr (array);
11082
1265e4aa 11083 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11084 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11085 (value_type (array))))
bff8c71f
TT
11086 return empty_array (ada_type_of_array (array, 0), low_bound,
11087 high_bound);
4c4b4cd2
PH
11088
11089 array = ada_coerce_to_simple_array_ptr (array);
11090
714e53ab
PH
11091 /* If we have more than one level of pointer indirection,
11092 dereference the value until we get only one level. */
df407dfe
AC
11093 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11094 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11095 == TYPE_CODE_PTR))
11096 array = value_ind (array);
11097
11098 /* Make sure we really do have an array type before going further,
11099 to avoid a SEGV when trying to get the index type or the target
11100 type later down the road if the debug info generated by
11101 the compiler is incorrect or incomplete. */
df407dfe 11102 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11103 error (_("cannot take slice of non-array"));
714e53ab 11104
828292f2
JB
11105 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11106 == TYPE_CODE_PTR)
4c4b4cd2 11107 {
828292f2
JB
11108 struct type *type0 = ada_check_typedef (value_type (array));
11109
0b5d8877 11110 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 11111 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
11112 else
11113 {
11114 struct type *arr_type0 =
828292f2 11115 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11116
f5938064
JG
11117 return ada_value_slice_from_ptr (array, arr_type0,
11118 longest_to_int (low_bound),
11119 longest_to_int (high_bound));
4c4b4cd2
PH
11120 }
11121 }
11122 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11123 return array;
11124 else if (high_bound < low_bound)
bff8c71f 11125 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 11126 else
529cad9c
PH
11127 return ada_value_slice (array, longest_to_int (low_bound),
11128 longest_to_int (high_bound));
4c4b4cd2 11129 }
14f9c5c9 11130
4c4b4cd2
PH
11131 case UNOP_IN_RANGE:
11132 (*pos) += 2;
11133 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11134 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11135
14f9c5c9 11136 if (noside == EVAL_SKIP)
4c4b4cd2 11137 goto nosideret;
14f9c5c9 11138
4c4b4cd2
PH
11139 switch (TYPE_CODE (type))
11140 {
11141 default:
e1d5a0d2
PH
11142 lim_warning (_("Membership test incompletely implemented; "
11143 "always returns true"));
fbb06eb1
UW
11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
11145 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11146
11147 case TYPE_CODE_RANGE:
030b4912
UW
11148 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11149 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11152 type = language_bool_type (exp->language_defn, exp->gdbarch);
11153 return
11154 value_from_longest (type,
4c4b4cd2
PH
11155 (value_less (arg1, arg3)
11156 || value_equal (arg1, arg3))
11157 && (value_less (arg2, arg1)
11158 || value_equal (arg2, arg1)));
11159 }
11160
11161 case BINOP_IN_BOUNDS:
14f9c5c9 11162 (*pos) += 2;
4c4b4cd2
PH
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11165
4c4b4cd2
PH
11166 if (noside == EVAL_SKIP)
11167 goto nosideret;
14f9c5c9 11168
4c4b4cd2 11169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11170 {
11171 type = language_bool_type (exp->language_defn, exp->gdbarch);
11172 return value_zero (type, not_lval);
11173 }
14f9c5c9 11174
4c4b4cd2 11175 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11176
1eea4ebd
UW
11177 type = ada_index_type (value_type (arg2), tem, "range");
11178 if (!type)
11179 type = value_type (arg1);
14f9c5c9 11180
1eea4ebd
UW
11181 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11182 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11183
f44316fa
UW
11184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11186 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11187 return
fbb06eb1 11188 value_from_longest (type,
4c4b4cd2
PH
11189 (value_less (arg1, arg3)
11190 || value_equal (arg1, arg3))
11191 && (value_less (arg2, arg1)
11192 || value_equal (arg2, arg1)));
11193
11194 case TERNOP_IN_RANGE:
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11197 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11198
11199 if (noside == EVAL_SKIP)
11200 goto nosideret;
11201
f44316fa
UW
11202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11204 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11205 return
fbb06eb1 11206 value_from_longest (type,
4c4b4cd2
PH
11207 (value_less (arg1, arg3)
11208 || value_equal (arg1, arg3))
11209 && (value_less (arg2, arg1)
11210 || value_equal (arg2, arg1)));
11211
11212 case OP_ATR_FIRST:
11213 case OP_ATR_LAST:
11214 case OP_ATR_LENGTH:
11215 {
76a01679 11216 struct type *type_arg;
5b4ee69b 11217
76a01679
JB
11218 if (exp->elts[*pos].opcode == OP_TYPE)
11219 {
11220 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11221 arg1 = NULL;
5bc23cb3 11222 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11223 }
11224 else
11225 {
11226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11227 type_arg = NULL;
11228 }
11229
11230 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11231 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11232 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11233 *pos += 4;
11234
11235 if (noside == EVAL_SKIP)
11236 goto nosideret;
11237
11238 if (type_arg == NULL)
11239 {
11240 arg1 = ada_coerce_ref (arg1);
11241
ad82864c 11242 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11243 arg1 = ada_coerce_to_simple_array (arg1);
11244
aa4fb036 11245 if (op == OP_ATR_LENGTH)
1eea4ebd 11246 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11247 else
11248 {
11249 type = ada_index_type (value_type (arg1), tem,
11250 ada_attribute_name (op));
11251 if (type == NULL)
11252 type = builtin_type (exp->gdbarch)->builtin_int;
11253 }
76a01679
JB
11254
11255 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11256 return allocate_value (type);
76a01679
JB
11257
11258 switch (op)
11259 {
11260 default: /* Should never happen. */
323e0a4a 11261 error (_("unexpected attribute encountered"));
76a01679 11262 case OP_ATR_FIRST:
1eea4ebd
UW
11263 return value_from_longest
11264 (type, ada_array_bound (arg1, tem, 0));
76a01679 11265 case OP_ATR_LAST:
1eea4ebd
UW
11266 return value_from_longest
11267 (type, ada_array_bound (arg1, tem, 1));
76a01679 11268 case OP_ATR_LENGTH:
1eea4ebd
UW
11269 return value_from_longest
11270 (type, ada_array_length (arg1, tem));
76a01679
JB
11271 }
11272 }
11273 else if (discrete_type_p (type_arg))
11274 {
11275 struct type *range_type;
0d5cff50 11276 const char *name = ada_type_name (type_arg);
5b4ee69b 11277
76a01679
JB
11278 range_type = NULL;
11279 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11280 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11281 if (range_type == NULL)
11282 range_type = type_arg;
11283 switch (op)
11284 {
11285 default:
323e0a4a 11286 error (_("unexpected attribute encountered"));
76a01679 11287 case OP_ATR_FIRST:
690cc4eb 11288 return value_from_longest
43bbcdc2 11289 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11290 case OP_ATR_LAST:
690cc4eb 11291 return value_from_longest
43bbcdc2 11292 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11293 case OP_ATR_LENGTH:
323e0a4a 11294 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11295 }
11296 }
11297 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11298 error (_("unimplemented type attribute"));
76a01679
JB
11299 else
11300 {
11301 LONGEST low, high;
11302
ad82864c
JB
11303 if (ada_is_constrained_packed_array_type (type_arg))
11304 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11305
aa4fb036 11306 if (op == OP_ATR_LENGTH)
1eea4ebd 11307 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11308 else
11309 {
11310 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11311 if (type == NULL)
11312 type = builtin_type (exp->gdbarch)->builtin_int;
11313 }
1eea4ebd 11314
76a01679
JB
11315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11316 return allocate_value (type);
11317
11318 switch (op)
11319 {
11320 default:
323e0a4a 11321 error (_("unexpected attribute encountered"));
76a01679 11322 case OP_ATR_FIRST:
1eea4ebd 11323 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11324 return value_from_longest (type, low);
11325 case OP_ATR_LAST:
1eea4ebd 11326 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11327 return value_from_longest (type, high);
11328 case OP_ATR_LENGTH:
1eea4ebd
UW
11329 low = ada_array_bound_from_type (type_arg, tem, 0);
11330 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11331 return value_from_longest (type, high - low + 1);
11332 }
11333 }
14f9c5c9
AS
11334 }
11335
4c4b4cd2
PH
11336 case OP_ATR_TAG:
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
76a01679 11339 goto nosideret;
4c4b4cd2
PH
11340
11341 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11342 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11343
11344 return ada_value_tag (arg1);
11345
11346 case OP_ATR_MIN:
11347 case OP_ATR_MAX:
11348 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11351 if (noside == EVAL_SKIP)
76a01679 11352 goto nosideret;
d2e4a39e 11353 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11354 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11355 else
f44316fa
UW
11356 {
11357 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11358 return value_binop (arg1, arg2,
11359 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11360 }
14f9c5c9 11361
4c4b4cd2
PH
11362 case OP_ATR_MODULUS:
11363 {
31dedfee 11364 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11365
5b4ee69b 11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
4c4b4cd2 11369
76a01679 11370 if (!ada_is_modular_type (type_arg))
323e0a4a 11371 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11372
76a01679
JB
11373 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11374 ada_modulus (type_arg));
4c4b4cd2
PH
11375 }
11376
11377
11378 case OP_ATR_POS:
11379 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11380 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11381 if (noside == EVAL_SKIP)
76a01679 11382 goto nosideret;
3cb382c9
UW
11383 type = builtin_type (exp->gdbarch)->builtin_int;
11384 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11385 return value_zero (type, not_lval);
14f9c5c9 11386 else
3cb382c9 11387 return value_pos_atr (type, arg1);
14f9c5c9 11388
4c4b4cd2
PH
11389 case OP_ATR_SIZE:
11390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11391 type = value_type (arg1);
11392
11393 /* If the argument is a reference, then dereference its type, since
11394 the user is really asking for the size of the actual object,
11395 not the size of the pointer. */
11396 if (TYPE_CODE (type) == TYPE_CODE_REF)
11397 type = TYPE_TARGET_TYPE (type);
11398
4c4b4cd2 11399 if (noside == EVAL_SKIP)
76a01679 11400 goto nosideret;
4c4b4cd2 11401 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11402 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11403 else
22601c15 11404 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11405 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11406
11407 case OP_ATR_VAL:
11408 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11410 type = exp->elts[pc + 2].type;
14f9c5c9 11411 if (noside == EVAL_SKIP)
76a01679 11412 goto nosideret;
4c4b4cd2 11413 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11414 return value_zero (type, not_lval);
4c4b4cd2 11415 else
76a01679 11416 return value_val_atr (type, arg1);
4c4b4cd2
PH
11417
11418 case BINOP_EXP:
11419 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11420 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11421 if (noside == EVAL_SKIP)
11422 goto nosideret;
11423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11424 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11425 else
f44316fa
UW
11426 {
11427 /* For integer exponentiation operations,
11428 only promote the first argument. */
11429 if (is_integral_type (value_type (arg2)))
11430 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11431 else
11432 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11433
11434 return value_binop (arg1, arg2, op);
11435 }
4c4b4cd2
PH
11436
11437 case UNOP_PLUS:
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11439 if (noside == EVAL_SKIP)
11440 goto nosideret;
11441 else
11442 return arg1;
11443
11444 case UNOP_ABS:
11445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11446 if (noside == EVAL_SKIP)
11447 goto nosideret;
f44316fa 11448 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11449 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11450 return value_neg (arg1);
14f9c5c9 11451 else
4c4b4cd2 11452 return arg1;
14f9c5c9
AS
11453
11454 case UNOP_IND:
5ec18f2b 11455 preeval_pos = *pos;
6b0d7253 11456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11457 if (noside == EVAL_SKIP)
4c4b4cd2 11458 goto nosideret;
df407dfe 11459 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11460 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11461 {
11462 if (ada_is_array_descriptor_type (type))
11463 /* GDB allows dereferencing GNAT array descriptors. */
11464 {
11465 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11466
4c4b4cd2 11467 if (arrType == NULL)
323e0a4a 11468 error (_("Attempt to dereference null array pointer."));
00a4c844 11469 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11470 }
11471 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11472 || TYPE_CODE (type) == TYPE_CODE_REF
11473 /* In C you can dereference an array to get the 1st elt. */
11474 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11475 {
5ec18f2b
JG
11476 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11477 only be determined by inspecting the object's tag.
11478 This means that we need to evaluate completely the
11479 expression in order to get its type. */
11480
023db19c
JB
11481 if ((TYPE_CODE (type) == TYPE_CODE_REF
11482 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11483 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11484 {
11485 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11486 EVAL_NORMAL);
11487 type = value_type (ada_value_ind (arg1));
11488 }
11489 else
11490 {
11491 type = to_static_fixed_type
11492 (ada_aligned_type
11493 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11494 }
c1b5a1a6 11495 ada_ensure_varsize_limit (type);
714e53ab
PH
11496 return value_zero (type, lval_memory);
11497 }
4c4b4cd2 11498 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11499 {
11500 /* GDB allows dereferencing an int. */
11501 if (expect_type == NULL)
11502 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11503 lval_memory);
11504 else
11505 {
11506 expect_type =
11507 to_static_fixed_type (ada_aligned_type (expect_type));
11508 return value_zero (expect_type, lval_memory);
11509 }
11510 }
4c4b4cd2 11511 else
323e0a4a 11512 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11513 }
0963b4bd 11514 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11515 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11516
96967637
JB
11517 if (TYPE_CODE (type) == TYPE_CODE_INT)
11518 /* GDB allows dereferencing an int. If we were given
11519 the expect_type, then use that as the target type.
11520 Otherwise, assume that the target type is an int. */
11521 {
11522 if (expect_type != NULL)
11523 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11524 arg1));
11525 else
11526 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11527 (CORE_ADDR) value_as_address (arg1));
11528 }
6b0d7253 11529
4c4b4cd2
PH
11530 if (ada_is_array_descriptor_type (type))
11531 /* GDB allows dereferencing GNAT array descriptors. */
11532 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11533 else
4c4b4cd2 11534 return ada_value_ind (arg1);
14f9c5c9
AS
11535
11536 case STRUCTOP_STRUCT:
11537 tem = longest_to_int (exp->elts[pc + 1].longconst);
11538 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11539 preeval_pos = *pos;
14f9c5c9
AS
11540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11541 if (noside == EVAL_SKIP)
4c4b4cd2 11542 goto nosideret;
14f9c5c9 11543 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11544 {
df407dfe 11545 struct type *type1 = value_type (arg1);
5b4ee69b 11546
76a01679
JB
11547 if (ada_is_tagged_type (type1, 1))
11548 {
11549 type = ada_lookup_struct_elt_type (type1,
11550 &exp->elts[pc + 2].string,
988f6b3d 11551 1, 1);
5ec18f2b
JG
11552
11553 /* If the field is not found, check if it exists in the
11554 extension of this object's type. This means that we
11555 need to evaluate completely the expression. */
11556
76a01679 11557 if (type == NULL)
5ec18f2b
JG
11558 {
11559 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11560 EVAL_NORMAL);
11561 arg1 = ada_value_struct_elt (arg1,
11562 &exp->elts[pc + 2].string,
11563 0);
11564 arg1 = unwrap_value (arg1);
11565 type = value_type (ada_to_fixed_value (arg1));
11566 }
76a01679
JB
11567 }
11568 else
11569 type =
11570 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11571 0);
76a01679
JB
11572
11573 return value_zero (ada_aligned_type (type), lval_memory);
11574 }
14f9c5c9 11575 else
a579cd9a
MW
11576 {
11577 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11578 arg1 = unwrap_value (arg1);
11579 return ada_to_fixed_value (arg1);
11580 }
284614f0 11581
14f9c5c9 11582 case OP_TYPE:
4c4b4cd2
PH
11583 /* The value is not supposed to be used. This is here to make it
11584 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11585 (*pos) += 2;
11586 if (noside == EVAL_SKIP)
4c4b4cd2 11587 goto nosideret;
14f9c5c9 11588 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11589 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11590 else
323e0a4a 11591 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11592
11593 case OP_AGGREGATE:
11594 case OP_CHOICES:
11595 case OP_OTHERS:
11596 case OP_DISCRETE_RANGE:
11597 case OP_POSITIONAL:
11598 case OP_NAME:
11599 if (noside == EVAL_NORMAL)
11600 switch (op)
11601 {
11602 case OP_NAME:
11603 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11604 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11605 case OP_AGGREGATE:
11606 error (_("Aggregates only allowed on the right of an assignment"));
11607 default:
0963b4bd
MS
11608 internal_error (__FILE__, __LINE__,
11609 _("aggregate apparently mangled"));
52ce6436
PH
11610 }
11611
11612 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11613 *pos += oplen - 1;
11614 for (tem = 0; tem < nargs; tem += 1)
11615 ada_evaluate_subexp (NULL, exp, pos, noside);
11616 goto nosideret;
14f9c5c9
AS
11617 }
11618
11619nosideret:
ced9779b 11620 return eval_skip_value (exp);
14f9c5c9 11621}
14f9c5c9 11622\f
d2e4a39e 11623
4c4b4cd2 11624 /* Fixed point */
14f9c5c9
AS
11625
11626/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11627 type name that encodes the 'small and 'delta information.
4c4b4cd2 11628 Otherwise, return NULL. */
14f9c5c9 11629
d2e4a39e 11630static const char *
ebf56fd3 11631fixed_type_info (struct type *type)
14f9c5c9 11632{
d2e4a39e 11633 const char *name = ada_type_name (type);
14f9c5c9
AS
11634 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11635
d2e4a39e
AS
11636 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11637 {
14f9c5c9 11638 const char *tail = strstr (name, "___XF_");
5b4ee69b 11639
14f9c5c9 11640 if (tail == NULL)
4c4b4cd2 11641 return NULL;
d2e4a39e 11642 else
4c4b4cd2 11643 return tail + 5;
14f9c5c9
AS
11644 }
11645 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11646 return fixed_type_info (TYPE_TARGET_TYPE (type));
11647 else
11648 return NULL;
11649}
11650
4c4b4cd2 11651/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11652
11653int
ebf56fd3 11654ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11655{
11656 return fixed_type_info (type) != NULL;
11657}
11658
4c4b4cd2
PH
11659/* Return non-zero iff TYPE represents a System.Address type. */
11660
11661int
11662ada_is_system_address_type (struct type *type)
11663{
11664 return (TYPE_NAME (type)
11665 && strcmp (TYPE_NAME (type), "system__address") == 0);
11666}
11667
14f9c5c9 11668/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11669 type, return the target floating-point type to be used to represent
11670 of this type during internal computation. */
11671
11672static struct type *
11673ada_scaling_type (struct type *type)
11674{
11675 return builtin_type (get_type_arch (type))->builtin_long_double;
11676}
11677
11678/* Assuming that TYPE is the representation of an Ada fixed-point
11679 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11680 delta cannot be determined. */
14f9c5c9 11681
50eff16b 11682struct value *
ebf56fd3 11683ada_delta (struct type *type)
14f9c5c9
AS
11684{
11685 const char *encoding = fixed_type_info (type);
50eff16b
UW
11686 struct type *scale_type = ada_scaling_type (type);
11687
11688 long long num, den;
11689
11690 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11691 return nullptr;
d2e4a39e 11692 else
50eff16b
UW
11693 return value_binop (value_from_longest (scale_type, num),
11694 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11695}
11696
11697/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11698 factor ('SMALL value) associated with the type. */
14f9c5c9 11699
50eff16b
UW
11700struct value *
11701ada_scaling_factor (struct type *type)
14f9c5c9
AS
11702{
11703 const char *encoding = fixed_type_info (type);
50eff16b
UW
11704 struct type *scale_type = ada_scaling_type (type);
11705
11706 long long num0, den0, num1, den1;
14f9c5c9 11707 int n;
d2e4a39e 11708
50eff16b 11709 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11710 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11711
11712 if (n < 2)
50eff16b 11713 return value_from_longest (scale_type, 1);
14f9c5c9 11714 else if (n == 4)
50eff16b
UW
11715 return value_binop (value_from_longest (scale_type, num1),
11716 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11717 else
50eff16b
UW
11718 return value_binop (value_from_longest (scale_type, num0),
11719 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11720}
11721
14f9c5c9 11722\f
d2e4a39e 11723
4c4b4cd2 11724 /* Range types */
14f9c5c9
AS
11725
11726/* Scan STR beginning at position K for a discriminant name, and
11727 return the value of that discriminant field of DVAL in *PX. If
11728 PNEW_K is not null, put the position of the character beyond the
11729 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11730 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11731
11732static int
108d56a4 11733scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11734 int *pnew_k)
14f9c5c9
AS
11735{
11736 static char *bound_buffer = NULL;
11737 static size_t bound_buffer_len = 0;
5da1a4d3 11738 const char *pstart, *pend, *bound;
d2e4a39e 11739 struct value *bound_val;
14f9c5c9
AS
11740
11741 if (dval == NULL || str == NULL || str[k] == '\0')
11742 return 0;
11743
5da1a4d3
SM
11744 pstart = str + k;
11745 pend = strstr (pstart, "__");
14f9c5c9
AS
11746 if (pend == NULL)
11747 {
5da1a4d3 11748 bound = pstart;
14f9c5c9
AS
11749 k += strlen (bound);
11750 }
d2e4a39e 11751 else
14f9c5c9 11752 {
5da1a4d3
SM
11753 int len = pend - pstart;
11754
11755 /* Strip __ and beyond. */
11756 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11757 strncpy (bound_buffer, pstart, len);
11758 bound_buffer[len] = '\0';
11759
14f9c5c9 11760 bound = bound_buffer;
d2e4a39e 11761 k = pend - str;
14f9c5c9 11762 }
d2e4a39e 11763
df407dfe 11764 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11765 if (bound_val == NULL)
11766 return 0;
11767
11768 *px = value_as_long (bound_val);
11769 if (pnew_k != NULL)
11770 *pnew_k = k;
11771 return 1;
11772}
11773
11774/* Value of variable named NAME in the current environment. If
11775 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11776 otherwise causes an error with message ERR_MSG. */
11777
d2e4a39e 11778static struct value *
edb0c9cb 11779get_var_value (const char *name, const char *err_msg)
14f9c5c9 11780{
b5ec771e 11781 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11782
54d343a2 11783 std::vector<struct block_symbol> syms;
b5ec771e
PA
11784 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11785 get_selected_block (0),
11786 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11787
11788 if (nsyms != 1)
11789 {
11790 if (err_msg == NULL)
4c4b4cd2 11791 return 0;
14f9c5c9 11792 else
8a3fe4f8 11793 error (("%s"), err_msg);
14f9c5c9
AS
11794 }
11795
54d343a2 11796 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11797}
d2e4a39e 11798
edb0c9cb
PA
11799/* Value of integer variable named NAME in the current environment.
11800 If no such variable is found, returns false. Otherwise, sets VALUE
11801 to the variable's value and returns true. */
4c4b4cd2 11802
edb0c9cb
PA
11803bool
11804get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11805{
4c4b4cd2 11806 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11807
14f9c5c9 11808 if (var_val == 0)
edb0c9cb
PA
11809 return false;
11810
11811 value = value_as_long (var_val);
11812 return true;
14f9c5c9 11813}
d2e4a39e 11814
14f9c5c9
AS
11815
11816/* Return a range type whose base type is that of the range type named
11817 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11818 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11819 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11820 corresponding range type from debug information; fall back to using it
11821 if symbol lookup fails. If a new type must be created, allocate it
11822 like ORIG_TYPE was. The bounds information, in general, is encoded
11823 in NAME, the base type given in the named range type. */
14f9c5c9 11824
d2e4a39e 11825static struct type *
28c85d6c 11826to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11827{
0d5cff50 11828 const char *name;
14f9c5c9 11829 struct type *base_type;
108d56a4 11830 const char *subtype_info;
14f9c5c9 11831
28c85d6c
JB
11832 gdb_assert (raw_type != NULL);
11833 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11834
1ce677a4 11835 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11836 base_type = TYPE_TARGET_TYPE (raw_type);
11837 else
11838 base_type = raw_type;
11839
28c85d6c 11840 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11841 subtype_info = strstr (name, "___XD");
11842 if (subtype_info == NULL)
690cc4eb 11843 {
43bbcdc2
PH
11844 LONGEST L = ada_discrete_type_low_bound (raw_type);
11845 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11846
690cc4eb
PH
11847 if (L < INT_MIN || U > INT_MAX)
11848 return raw_type;
11849 else
0c9c3474
SA
11850 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11851 L, U);
690cc4eb 11852 }
14f9c5c9
AS
11853 else
11854 {
11855 static char *name_buf = NULL;
11856 static size_t name_len = 0;
11857 int prefix_len = subtype_info - name;
11858 LONGEST L, U;
11859 struct type *type;
108d56a4 11860 const char *bounds_str;
14f9c5c9
AS
11861 int n;
11862
11863 GROW_VECT (name_buf, name_len, prefix_len + 5);
11864 strncpy (name_buf, name, prefix_len);
11865 name_buf[prefix_len] = '\0';
11866
11867 subtype_info += 5;
11868 bounds_str = strchr (subtype_info, '_');
11869 n = 1;
11870
d2e4a39e 11871 if (*subtype_info == 'L')
4c4b4cd2
PH
11872 {
11873 if (!ada_scan_number (bounds_str, n, &L, &n)
11874 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11875 return raw_type;
11876 if (bounds_str[n] == '_')
11877 n += 2;
0963b4bd 11878 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11879 n += 1;
11880 subtype_info += 1;
11881 }
d2e4a39e 11882 else
4c4b4cd2 11883 {
4c4b4cd2 11884 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11885 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11886 {
323e0a4a 11887 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11888 L = 1;
11889 }
11890 }
14f9c5c9 11891
d2e4a39e 11892 if (*subtype_info == 'U')
4c4b4cd2
PH
11893 {
11894 if (!ada_scan_number (bounds_str, n, &U, &n)
11895 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11896 return raw_type;
11897 }
d2e4a39e 11898 else
4c4b4cd2 11899 {
4c4b4cd2 11900 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11901 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11902 {
323e0a4a 11903 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11904 U = L;
11905 }
11906 }
14f9c5c9 11907
0c9c3474
SA
11908 type = create_static_range_type (alloc_type_copy (raw_type),
11909 base_type, L, U);
f5a91472
JB
11910 /* create_static_range_type alters the resulting type's length
11911 to match the size of the base_type, which is not what we want.
11912 Set it back to the original range type's length. */
11913 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11914 TYPE_NAME (type) = name;
14f9c5c9
AS
11915 return type;
11916 }
11917}
11918
4c4b4cd2
PH
11919/* True iff NAME is the name of a range type. */
11920
14f9c5c9 11921int
d2e4a39e 11922ada_is_range_type_name (const char *name)
14f9c5c9
AS
11923{
11924 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11925}
14f9c5c9 11926\f
d2e4a39e 11927
4c4b4cd2
PH
11928 /* Modular types */
11929
11930/* True iff TYPE is an Ada modular type. */
14f9c5c9 11931
14f9c5c9 11932int
d2e4a39e 11933ada_is_modular_type (struct type *type)
14f9c5c9 11934{
18af8284 11935 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11936
11937 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11938 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11939 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11940}
11941
4c4b4cd2
PH
11942/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11943
61ee279c 11944ULONGEST
0056e4d5 11945ada_modulus (struct type *type)
14f9c5c9 11946{
43bbcdc2 11947 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11948}
d2e4a39e 11949\f
f7f9143b
JB
11950
11951/* Ada exception catchpoint support:
11952 ---------------------------------
11953
11954 We support 3 kinds of exception catchpoints:
11955 . catchpoints on Ada exceptions
11956 . catchpoints on unhandled Ada exceptions
11957 . catchpoints on failed assertions
11958
11959 Exceptions raised during failed assertions, or unhandled exceptions
11960 could perfectly be caught with the general catchpoint on Ada exceptions.
11961 However, we can easily differentiate these two special cases, and having
11962 the option to distinguish these two cases from the rest can be useful
11963 to zero-in on certain situations.
11964
11965 Exception catchpoints are a specialized form of breakpoint,
11966 since they rely on inserting breakpoints inside known routines
11967 of the GNAT runtime. The implementation therefore uses a standard
11968 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11969 of breakpoint_ops.
11970
0259addd
JB
11971 Support in the runtime for exception catchpoints have been changed
11972 a few times already, and these changes affect the implementation
11973 of these catchpoints. In order to be able to support several
11974 variants of the runtime, we use a sniffer that will determine
28010a5d 11975 the runtime variant used by the program being debugged. */
f7f9143b 11976
82eacd52
JB
11977/* Ada's standard exceptions.
11978
11979 The Ada 83 standard also defined Numeric_Error. But there so many
11980 situations where it was unclear from the Ada 83 Reference Manual
11981 (RM) whether Constraint_Error or Numeric_Error should be raised,
11982 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11983 Interpretation saying that anytime the RM says that Numeric_Error
11984 should be raised, the implementation may raise Constraint_Error.
11985 Ada 95 went one step further and pretty much removed Numeric_Error
11986 from the list of standard exceptions (it made it a renaming of
11987 Constraint_Error, to help preserve compatibility when compiling
11988 an Ada83 compiler). As such, we do not include Numeric_Error from
11989 this list of standard exceptions. */
3d0b0fa3 11990
a121b7c1 11991static const char *standard_exc[] = {
3d0b0fa3
JB
11992 "constraint_error",
11993 "program_error",
11994 "storage_error",
11995 "tasking_error"
11996};
11997
0259addd
JB
11998typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11999
12000/* A structure that describes how to support exception catchpoints
12001 for a given executable. */
12002
12003struct exception_support_info
12004{
12005 /* The name of the symbol to break on in order to insert
12006 a catchpoint on exceptions. */
12007 const char *catch_exception_sym;
12008
12009 /* The name of the symbol to break on in order to insert
12010 a catchpoint on unhandled exceptions. */
12011 const char *catch_exception_unhandled_sym;
12012
12013 /* The name of the symbol to break on in order to insert
12014 a catchpoint on failed assertions. */
12015 const char *catch_assert_sym;
12016
9f757bf7
XR
12017 /* The name of the symbol to break on in order to insert
12018 a catchpoint on exception handling. */
12019 const char *catch_handlers_sym;
12020
0259addd
JB
12021 /* Assuming that the inferior just triggered an unhandled exception
12022 catchpoint, this function is responsible for returning the address
12023 in inferior memory where the name of that exception is stored.
12024 Return zero if the address could not be computed. */
12025 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12026};
12027
12028static CORE_ADDR ada_unhandled_exception_name_addr (void);
12029static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12030
12031/* The following exception support info structure describes how to
12032 implement exception catchpoints with the latest version of the
12033 Ada runtime (as of 2007-03-06). */
12034
12035static const struct exception_support_info default_exception_support_info =
12036{
12037 "__gnat_debug_raise_exception", /* catch_exception_sym */
12038 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12039 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12040 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12041 ada_unhandled_exception_name_addr
12042};
12043
12044/* The following exception support info structure describes how to
12045 implement exception catchpoints with a slightly older version
12046 of the Ada runtime. */
12047
12048static const struct exception_support_info exception_support_info_fallback =
12049{
12050 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12051 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12052 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12053 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12054 ada_unhandled_exception_name_addr_from_raise
12055};
12056
f17011e0
JB
12057/* Return nonzero if we can detect the exception support routines
12058 described in EINFO.
12059
12060 This function errors out if an abnormal situation is detected
12061 (for instance, if we find the exception support routines, but
12062 that support is found to be incomplete). */
12063
12064static int
12065ada_has_this_exception_support (const struct exception_support_info *einfo)
12066{
12067 struct symbol *sym;
12068
12069 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12070 that should be compiled with debugging information. As a result, we
12071 expect to find that symbol in the symtabs. */
12072
12073 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12074 if (sym == NULL)
a6af7abe
JB
12075 {
12076 /* Perhaps we did not find our symbol because the Ada runtime was
12077 compiled without debugging info, or simply stripped of it.
12078 It happens on some GNU/Linux distributions for instance, where
12079 users have to install a separate debug package in order to get
12080 the runtime's debugging info. In that situation, let the user
12081 know why we cannot insert an Ada exception catchpoint.
12082
12083 Note: Just for the purpose of inserting our Ada exception
12084 catchpoint, we could rely purely on the associated minimal symbol.
12085 But we would be operating in degraded mode anyway, since we are
12086 still lacking the debugging info needed later on to extract
12087 the name of the exception being raised (this name is printed in
12088 the catchpoint message, and is also used when trying to catch
12089 a specific exception). We do not handle this case for now. */
3b7344d5 12090 struct bound_minimal_symbol msym
1c8e84b0
JB
12091 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12092
3b7344d5 12093 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12094 error (_("Your Ada runtime appears to be missing some debugging "
12095 "information.\nCannot insert Ada exception catchpoint "
12096 "in this configuration."));
12097
12098 return 0;
12099 }
f17011e0
JB
12100
12101 /* Make sure that the symbol we found corresponds to a function. */
12102
12103 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12104 error (_("Symbol \"%s\" is not a function (class = %d)"),
12105 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12106
12107 return 1;
12108}
12109
0259addd
JB
12110/* Inspect the Ada runtime and determine which exception info structure
12111 should be used to provide support for exception catchpoints.
12112
3eecfa55
JB
12113 This function will always set the per-inferior exception_info,
12114 or raise an error. */
0259addd
JB
12115
12116static void
12117ada_exception_support_info_sniffer (void)
12118{
3eecfa55 12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12120
12121 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12122 if (data->exception_info != NULL)
0259addd
JB
12123 return;
12124
12125 /* Check the latest (default) exception support info. */
f17011e0 12126 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12127 {
3eecfa55 12128 data->exception_info = &default_exception_support_info;
0259addd
JB
12129 return;
12130 }
12131
12132 /* Try our fallback exception suport info. */
f17011e0 12133 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12134 {
3eecfa55 12135 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12136 return;
12137 }
12138
12139 /* Sometimes, it is normal for us to not be able to find the routine
12140 we are looking for. This happens when the program is linked with
12141 the shared version of the GNAT runtime, and the program has not been
12142 started yet. Inform the user of these two possible causes if
12143 applicable. */
12144
ccefe4c4 12145 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12146 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12147
12148 /* If the symbol does not exist, then check that the program is
12149 already started, to make sure that shared libraries have been
12150 loaded. If it is not started, this may mean that the symbol is
12151 in a shared library. */
12152
e99b03dc 12153 if (inferior_ptid.pid () == 0)
0259addd
JB
12154 error (_("Unable to insert catchpoint. Try to start the program first."));
12155
12156 /* At this point, we know that we are debugging an Ada program and
12157 that the inferior has been started, but we still are not able to
0963b4bd 12158 find the run-time symbols. That can mean that we are in
0259addd
JB
12159 configurable run time mode, or that a-except as been optimized
12160 out by the linker... In any case, at this point it is not worth
12161 supporting this feature. */
12162
7dda8cff 12163 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12164}
12165
f7f9143b
JB
12166/* True iff FRAME is very likely to be that of a function that is
12167 part of the runtime system. This is all very heuristic, but is
12168 intended to be used as advice as to what frames are uninteresting
12169 to most users. */
12170
12171static int
12172is_known_support_routine (struct frame_info *frame)
12173{
692465f1 12174 enum language func_lang;
f7f9143b 12175 int i;
f35a17b5 12176 const char *fullname;
f7f9143b 12177
4ed6b5be
JB
12178 /* If this code does not have any debugging information (no symtab),
12179 This cannot be any user code. */
f7f9143b 12180
51abb421 12181 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12182 if (sal.symtab == NULL)
12183 return 1;
12184
4ed6b5be
JB
12185 /* If there is a symtab, but the associated source file cannot be
12186 located, then assume this is not user code: Selecting a frame
12187 for which we cannot display the code would not be very helpful
12188 for the user. This should also take care of case such as VxWorks
12189 where the kernel has some debugging info provided for a few units. */
f7f9143b 12190
f35a17b5
JK
12191 fullname = symtab_to_fullname (sal.symtab);
12192 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12193 return 1;
12194
4ed6b5be
JB
12195 /* Check the unit filename againt the Ada runtime file naming.
12196 We also check the name of the objfile against the name of some
12197 known system libraries that sometimes come with debugging info
12198 too. */
12199
f7f9143b
JB
12200 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12201 {
12202 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12203 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12204 return 1;
eb822aa6
DE
12205 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12206 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12207 return 1;
f7f9143b
JB
12208 }
12209
4ed6b5be 12210 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12211
c6dc63a1
TT
12212 gdb::unique_xmalloc_ptr<char> func_name
12213 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12214 if (func_name == NULL)
12215 return 1;
12216
12217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12218 {
12219 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12220 if (re_exec (func_name.get ()))
12221 return 1;
f7f9143b
JB
12222 }
12223
12224 return 0;
12225}
12226
12227/* Find the first frame that contains debugging information and that is not
12228 part of the Ada run-time, starting from FI and moving upward. */
12229
0ef643c8 12230void
f7f9143b
JB
12231ada_find_printable_frame (struct frame_info *fi)
12232{
12233 for (; fi != NULL; fi = get_prev_frame (fi))
12234 {
12235 if (!is_known_support_routine (fi))
12236 {
12237 select_frame (fi);
12238 break;
12239 }
12240 }
12241
12242}
12243
12244/* Assuming that the inferior just triggered an unhandled exception
12245 catchpoint, return the address in inferior memory where the name
12246 of the exception is stored.
12247
12248 Return zero if the address could not be computed. */
12249
12250static CORE_ADDR
12251ada_unhandled_exception_name_addr (void)
0259addd
JB
12252{
12253 return parse_and_eval_address ("e.full_name");
12254}
12255
12256/* Same as ada_unhandled_exception_name_addr, except that this function
12257 should be used when the inferior uses an older version of the runtime,
12258 where the exception name needs to be extracted from a specific frame
12259 several frames up in the callstack. */
12260
12261static CORE_ADDR
12262ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12263{
12264 int frame_level;
12265 struct frame_info *fi;
3eecfa55 12266 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12267
12268 /* To determine the name of this exception, we need to select
12269 the frame corresponding to RAISE_SYM_NAME. This frame is
12270 at least 3 levels up, so we simply skip the first 3 frames
12271 without checking the name of their associated function. */
12272 fi = get_current_frame ();
12273 for (frame_level = 0; frame_level < 3; frame_level += 1)
12274 if (fi != NULL)
12275 fi = get_prev_frame (fi);
12276
12277 while (fi != NULL)
12278 {
692465f1
JB
12279 enum language func_lang;
12280
c6dc63a1
TT
12281 gdb::unique_xmalloc_ptr<char> func_name
12282 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12283 if (func_name != NULL)
12284 {
c6dc63a1 12285 if (strcmp (func_name.get (),
55b87a52
KS
12286 data->exception_info->catch_exception_sym) == 0)
12287 break; /* We found the frame we were looking for... */
55b87a52 12288 }
fb44b1a7 12289 fi = get_prev_frame (fi);
f7f9143b
JB
12290 }
12291
12292 if (fi == NULL)
12293 return 0;
12294
12295 select_frame (fi);
12296 return parse_and_eval_address ("id.full_name");
12297}
12298
12299/* Assuming the inferior just triggered an Ada exception catchpoint
12300 (of any type), return the address in inferior memory where the name
12301 of the exception is stored, if applicable.
12302
45db7c09
PA
12303 Assumes the selected frame is the current frame.
12304
f7f9143b
JB
12305 Return zero if the address could not be computed, or if not relevant. */
12306
12307static CORE_ADDR
761269c8 12308ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12309 struct breakpoint *b)
12310{
3eecfa55
JB
12311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12312
f7f9143b
JB
12313 switch (ex)
12314 {
761269c8 12315 case ada_catch_exception:
f7f9143b
JB
12316 return (parse_and_eval_address ("e.full_name"));
12317 break;
12318
761269c8 12319 case ada_catch_exception_unhandled:
3eecfa55 12320 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12321 break;
9f757bf7
XR
12322
12323 case ada_catch_handlers:
12324 return 0; /* The runtimes does not provide access to the exception
12325 name. */
12326 break;
12327
761269c8 12328 case ada_catch_assert:
f7f9143b
JB
12329 return 0; /* Exception name is not relevant in this case. */
12330 break;
12331
12332 default:
12333 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12334 break;
12335 }
12336
12337 return 0; /* Should never be reached. */
12338}
12339
e547c119
JB
12340/* Assuming the inferior is stopped at an exception catchpoint,
12341 return the message which was associated to the exception, if
12342 available. Return NULL if the message could not be retrieved.
12343
e547c119
JB
12344 Note: The exception message can be associated to an exception
12345 either through the use of the Raise_Exception function, or
12346 more simply (Ada 2005 and later), via:
12347
12348 raise Exception_Name with "exception message";
12349
12350 */
12351
6f46ac85 12352static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12353ada_exception_message_1 (void)
12354{
12355 struct value *e_msg_val;
e547c119 12356 int e_msg_len;
e547c119
JB
12357
12358 /* For runtimes that support this feature, the exception message
12359 is passed as an unbounded string argument called "message". */
12360 e_msg_val = parse_and_eval ("message");
12361 if (e_msg_val == NULL)
12362 return NULL; /* Exception message not supported. */
12363
12364 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12365 gdb_assert (e_msg_val != NULL);
12366 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12367
12368 /* If the message string is empty, then treat it as if there was
12369 no exception message. */
12370 if (e_msg_len <= 0)
12371 return NULL;
12372
6f46ac85
TT
12373 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12374 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12375 e_msg.get ()[e_msg_len] = '\0';
e547c119 12376
e547c119
JB
12377 return e_msg;
12378}
12379
12380/* Same as ada_exception_message_1, except that all exceptions are
12381 contained here (returning NULL instead). */
12382
6f46ac85 12383static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12384ada_exception_message (void)
12385{
6f46ac85 12386 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12387
a70b8144 12388 try
e547c119
JB
12389 {
12390 e_msg = ada_exception_message_1 ();
12391 }
230d2906 12392 catch (const gdb_exception_error &e)
e547c119 12393 {
6f46ac85 12394 e_msg.reset (nullptr);
e547c119 12395 }
e547c119
JB
12396
12397 return e_msg;
12398}
12399
f7f9143b
JB
12400/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12401 any error that ada_exception_name_addr_1 might cause to be thrown.
12402 When an error is intercepted, a warning with the error message is printed,
12403 and zero is returned. */
12404
12405static CORE_ADDR
761269c8 12406ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12407 struct breakpoint *b)
12408{
f7f9143b
JB
12409 CORE_ADDR result = 0;
12410
a70b8144 12411 try
f7f9143b
JB
12412 {
12413 result = ada_exception_name_addr_1 (ex, b);
12414 }
12415
230d2906 12416 catch (const gdb_exception_error &e)
f7f9143b 12417 {
3d6e9d23 12418 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12419 return 0;
12420 }
12421
12422 return result;
12423}
12424
cb7de75e 12425static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12426 (const char *excep_string,
12427 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12428
12429/* Ada catchpoints.
12430
12431 In the case of catchpoints on Ada exceptions, the catchpoint will
12432 stop the target on every exception the program throws. When a user
12433 specifies the name of a specific exception, we translate this
12434 request into a condition expression (in text form), and then parse
12435 it into an expression stored in each of the catchpoint's locations.
12436 We then use this condition to check whether the exception that was
12437 raised is the one the user is interested in. If not, then the
12438 target is resumed again. We store the name of the requested
12439 exception, in order to be able to re-set the condition expression
12440 when symbols change. */
12441
12442/* An instance of this type is used to represent an Ada catchpoint
5625a286 12443 breakpoint location. */
28010a5d 12444
5625a286 12445class ada_catchpoint_location : public bp_location
28010a5d 12446{
5625a286 12447public:
5f486660
TT
12448 ada_catchpoint_location (breakpoint *owner)
12449 : bp_location (owner)
5625a286 12450 {}
28010a5d
PA
12451
12452 /* The condition that checks whether the exception that was raised
12453 is the specific exception the user specified on catchpoint
12454 creation. */
4d01a485 12455 expression_up excep_cond_expr;
28010a5d
PA
12456};
12457
c1fc2657 12458/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12459
c1fc2657 12460struct ada_catchpoint : public breakpoint
28010a5d 12461{
28010a5d 12462 /* The name of the specific exception the user specified. */
bc18fbb5 12463 std::string excep_string;
28010a5d
PA
12464};
12465
12466/* Parse the exception condition string in the context of each of the
12467 catchpoint's locations, and store them for later evaluation. */
12468
12469static void
9f757bf7
XR
12470create_excep_cond_exprs (struct ada_catchpoint *c,
12471 enum ada_exception_catchpoint_kind ex)
28010a5d 12472{
28010a5d 12473 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12474 if (c->excep_string.empty ())
28010a5d
PA
12475 return;
12476
12477 /* Same if there are no locations... */
c1fc2657 12478 if (c->loc == NULL)
28010a5d
PA
12479 return;
12480
2ff0a947
TT
12481 /* We have to compute the expression once for each program space,
12482 because the expression may hold the addresses of multiple symbols
12483 in some cases. */
12484 std::multimap<program_space *, struct bp_location *> loc_map;
12485 for (struct bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12486 loc_map.emplace (bl->pspace, bl);
28010a5d 12487
2ff0a947
TT
12488 scoped_restore_current_program_space save_pspace;
12489
12490 std::string cond_string;
12491 program_space *last_ps = nullptr;
12492 for (auto iter : loc_map)
28010a5d
PA
12493 {
12494 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12495 = (struct ada_catchpoint_location *) iter.second;
12496
12497 if (ada_loc->pspace != last_ps)
12498 {
12499 last_ps = ada_loc->pspace;
12500 set_current_program_space (last_ps);
12501
12502 /* Compute the condition expression in text form, from the
12503 specific expection we want to catch. */
12504 cond_string
12505 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12506 ex);
12507 }
12508
4d01a485 12509 expression_up exp;
28010a5d 12510
2ff0a947 12511 if (!ada_loc->shlib_disabled)
28010a5d 12512 {
bbc13ae3 12513 const char *s;
28010a5d 12514
cb7de75e 12515 s = cond_string.c_str ();
a70b8144 12516 try
28010a5d 12517 {
2ff0a947
TT
12518 exp = parse_exp_1 (&s, ada_loc->address,
12519 block_for_pc (ada_loc->address),
036e657b 12520 0);
28010a5d 12521 }
230d2906 12522 catch (const gdb_exception_error &e)
849f2b52
JB
12523 {
12524 warning (_("failed to reevaluate internal exception condition "
12525 "for catchpoint %d: %s"),
3d6e9d23 12526 c->number, e.what ());
849f2b52 12527 }
28010a5d
PA
12528 }
12529
b22e99fd 12530 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12531 }
28010a5d
PA
12532}
12533
28010a5d
PA
12534/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12535 structure for all exception catchpoint kinds. */
12536
12537static struct bp_location *
761269c8 12538allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12539 struct breakpoint *self)
12540{
5f486660 12541 return new ada_catchpoint_location (self);
28010a5d
PA
12542}
12543
12544/* Implement the RE_SET method in the breakpoint_ops structure for all
12545 exception catchpoint kinds. */
12546
12547static void
761269c8 12548re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12549{
12550 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12551
12552 /* Call the base class's method. This updates the catchpoint's
12553 locations. */
2060206e 12554 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12555
12556 /* Reparse the exception conditional expressions. One for each
12557 location. */
9f757bf7 12558 create_excep_cond_exprs (c, ex);
28010a5d
PA
12559}
12560
12561/* Returns true if we should stop for this breakpoint hit. If the
12562 user specified a specific exception, we only want to cause a stop
12563 if the program thrown that exception. */
12564
12565static int
12566should_stop_exception (const struct bp_location *bl)
12567{
12568 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12569 const struct ada_catchpoint_location *ada_loc
12570 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12571 int stop;
12572
12573 /* With no specific exception, should always stop. */
bc18fbb5 12574 if (c->excep_string.empty ())
28010a5d
PA
12575 return 1;
12576
12577 if (ada_loc->excep_cond_expr == NULL)
12578 {
12579 /* We will have a NULL expression if back when we were creating
12580 the expressions, this location's had failed to parse. */
12581 return 1;
12582 }
12583
12584 stop = 1;
a70b8144 12585 try
28010a5d
PA
12586 {
12587 struct value *mark;
12588
12589 mark = value_mark ();
4d01a485 12590 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12591 value_free_to_mark (mark);
12592 }
230d2906 12593 catch (const gdb_exception &ex)
492d29ea
PA
12594 {
12595 exception_fprintf (gdb_stderr, ex,
12596 _("Error in testing exception condition:\n"));
12597 }
492d29ea 12598
28010a5d
PA
12599 return stop;
12600}
12601
12602/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12603 for all exception catchpoint kinds. */
12604
12605static void
761269c8 12606check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12607{
12608 bs->stop = should_stop_exception (bs->bp_location_at);
12609}
12610
f7f9143b
JB
12611/* Implement the PRINT_IT method in the breakpoint_ops structure
12612 for all exception catchpoint kinds. */
12613
12614static enum print_stop_action
761269c8 12615print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12616{
79a45e25 12617 struct ui_out *uiout = current_uiout;
348d480f
PA
12618 struct breakpoint *b = bs->breakpoint_at;
12619
956a9fb9 12620 annotate_catchpoint (b->number);
f7f9143b 12621
112e8700 12622 if (uiout->is_mi_like_p ())
f7f9143b 12623 {
112e8700 12624 uiout->field_string ("reason",
956a9fb9 12625 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12626 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12627 }
12628
112e8700
SM
12629 uiout->text (b->disposition == disp_del
12630 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12631 uiout->field_int ("bkptno", b->number);
12632 uiout->text (", ");
f7f9143b 12633
45db7c09
PA
12634 /* ada_exception_name_addr relies on the selected frame being the
12635 current frame. Need to do this here because this function may be
12636 called more than once when printing a stop, and below, we'll
12637 select the first frame past the Ada run-time (see
12638 ada_find_printable_frame). */
12639 select_frame (get_current_frame ());
12640
f7f9143b
JB
12641 switch (ex)
12642 {
761269c8
JB
12643 case ada_catch_exception:
12644 case ada_catch_exception_unhandled:
9f757bf7 12645 case ada_catch_handlers:
956a9fb9
JB
12646 {
12647 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12648 char exception_name[256];
12649
12650 if (addr != 0)
12651 {
c714b426
PA
12652 read_memory (addr, (gdb_byte *) exception_name,
12653 sizeof (exception_name) - 1);
956a9fb9
JB
12654 exception_name [sizeof (exception_name) - 1] = '\0';
12655 }
12656 else
12657 {
12658 /* For some reason, we were unable to read the exception
12659 name. This could happen if the Runtime was compiled
12660 without debugging info, for instance. In that case,
12661 just replace the exception name by the generic string
12662 "exception" - it will read as "an exception" in the
12663 notification we are about to print. */
967cff16 12664 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12665 }
12666 /* In the case of unhandled exception breakpoints, we print
12667 the exception name as "unhandled EXCEPTION_NAME", to make
12668 it clearer to the user which kind of catchpoint just got
12669 hit. We used ui_out_text to make sure that this extra
12670 info does not pollute the exception name in the MI case. */
761269c8 12671 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12672 uiout->text ("unhandled ");
12673 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12674 }
12675 break;
761269c8 12676 case ada_catch_assert:
956a9fb9
JB
12677 /* In this case, the name of the exception is not really
12678 important. Just print "failed assertion" to make it clearer
12679 that his program just hit an assertion-failure catchpoint.
12680 We used ui_out_text because this info does not belong in
12681 the MI output. */
112e8700 12682 uiout->text ("failed assertion");
956a9fb9 12683 break;
f7f9143b 12684 }
e547c119 12685
6f46ac85 12686 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12687 if (exception_message != NULL)
12688 {
e547c119 12689 uiout->text (" (");
6f46ac85 12690 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12691 uiout->text (")");
e547c119
JB
12692 }
12693
112e8700 12694 uiout->text (" at ");
956a9fb9 12695 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12696
12697 return PRINT_SRC_AND_LOC;
12698}
12699
12700/* Implement the PRINT_ONE method in the breakpoint_ops structure
12701 for all exception catchpoint kinds. */
12702
12703static void
761269c8 12704print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12705 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12706{
79a45e25 12707 struct ui_out *uiout = current_uiout;
28010a5d 12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12709 struct value_print_options opts;
12710
12711 get_user_print_options (&opts);
12712 if (opts.addressprint)
f7f9143b
JB
12713 {
12714 annotate_field (4);
112e8700 12715 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12716 }
12717
12718 annotate_field (5);
a6d9a66e 12719 *last_loc = b->loc;
f7f9143b
JB
12720 switch (ex)
12721 {
761269c8 12722 case ada_catch_exception:
bc18fbb5 12723 if (!c->excep_string.empty ())
f7f9143b 12724 {
bc18fbb5
TT
12725 std::string msg = string_printf (_("`%s' Ada exception"),
12726 c->excep_string.c_str ());
28010a5d 12727
112e8700 12728 uiout->field_string ("what", msg);
f7f9143b
JB
12729 }
12730 else
112e8700 12731 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12732
12733 break;
12734
761269c8 12735 case ada_catch_exception_unhandled:
112e8700 12736 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12737 break;
12738
9f757bf7 12739 case ada_catch_handlers:
bc18fbb5 12740 if (!c->excep_string.empty ())
9f757bf7
XR
12741 {
12742 uiout->field_fmt ("what",
12743 _("`%s' Ada exception handlers"),
bc18fbb5 12744 c->excep_string.c_str ());
9f757bf7
XR
12745 }
12746 else
12747 uiout->field_string ("what", "all Ada exceptions handlers");
12748 break;
12749
761269c8 12750 case ada_catch_assert:
112e8700 12751 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12752 break;
12753
12754 default:
12755 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12756 break;
12757 }
12758}
12759
12760/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12761 for all exception catchpoint kinds. */
12762
12763static void
761269c8 12764print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12765 struct breakpoint *b)
12766{
28010a5d 12767 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12768 struct ui_out *uiout = current_uiout;
28010a5d 12769
112e8700 12770 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12771 : _("Catchpoint "));
112e8700
SM
12772 uiout->field_int ("bkptno", b->number);
12773 uiout->text (": ");
00eb2c4a 12774
f7f9143b
JB
12775 switch (ex)
12776 {
761269c8 12777 case ada_catch_exception:
bc18fbb5 12778 if (!c->excep_string.empty ())
00eb2c4a 12779 {
862d101a 12780 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12781 c->excep_string.c_str ());
862d101a 12782 uiout->text (info.c_str ());
00eb2c4a 12783 }
f7f9143b 12784 else
112e8700 12785 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12786 break;
12787
761269c8 12788 case ada_catch_exception_unhandled:
112e8700 12789 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12790 break;
9f757bf7
XR
12791
12792 case ada_catch_handlers:
bc18fbb5 12793 if (!c->excep_string.empty ())
9f757bf7
XR
12794 {
12795 std::string info
12796 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12797 c->excep_string.c_str ());
9f757bf7
XR
12798 uiout->text (info.c_str ());
12799 }
12800 else
12801 uiout->text (_("all Ada exceptions handlers"));
12802 break;
12803
761269c8 12804 case ada_catch_assert:
112e8700 12805 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12806 break;
12807
12808 default:
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12810 break;
12811 }
12812}
12813
6149aea9
PA
12814/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12815 for all exception catchpoint kinds. */
12816
12817static void
761269c8 12818print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12819 struct breakpoint *b, struct ui_file *fp)
12820{
28010a5d
PA
12821 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12822
6149aea9
PA
12823 switch (ex)
12824 {
761269c8 12825 case ada_catch_exception:
6149aea9 12826 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12827 if (!c->excep_string.empty ())
12828 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12829 break;
12830
761269c8 12831 case ada_catch_exception_unhandled:
78076abc 12832 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12833 break;
12834
9f757bf7
XR
12835 case ada_catch_handlers:
12836 fprintf_filtered (fp, "catch handlers");
12837 break;
12838
761269c8 12839 case ada_catch_assert:
6149aea9
PA
12840 fprintf_filtered (fp, "catch assert");
12841 break;
12842
12843 default:
12844 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12845 }
d9b3f62e 12846 print_recreate_thread (b, fp);
6149aea9
PA
12847}
12848
f7f9143b
JB
12849/* Virtual table for "catch exception" breakpoints. */
12850
28010a5d
PA
12851static struct bp_location *
12852allocate_location_catch_exception (struct breakpoint *self)
12853{
761269c8 12854 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12855}
12856
12857static void
12858re_set_catch_exception (struct breakpoint *b)
12859{
761269c8 12860 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12861}
12862
12863static void
12864check_status_catch_exception (bpstat bs)
12865{
761269c8 12866 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12867}
12868
f7f9143b 12869static enum print_stop_action
348d480f 12870print_it_catch_exception (bpstat bs)
f7f9143b 12871{
761269c8 12872 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12873}
12874
12875static void
a6d9a66e 12876print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12877{
761269c8 12878 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12879}
12880
12881static void
12882print_mention_catch_exception (struct breakpoint *b)
12883{
761269c8 12884 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12885}
12886
6149aea9
PA
12887static void
12888print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12889{
761269c8 12890 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12891}
12892
2060206e 12893static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12894
12895/* Virtual table for "catch exception unhandled" breakpoints. */
12896
28010a5d
PA
12897static struct bp_location *
12898allocate_location_catch_exception_unhandled (struct breakpoint *self)
12899{
761269c8 12900 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12901}
12902
12903static void
12904re_set_catch_exception_unhandled (struct breakpoint *b)
12905{
761269c8 12906 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12907}
12908
12909static void
12910check_status_catch_exception_unhandled (bpstat bs)
12911{
761269c8 12912 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12913}
12914
f7f9143b 12915static enum print_stop_action
348d480f 12916print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12917{
761269c8 12918 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12919}
12920
12921static void
a6d9a66e
UW
12922print_one_catch_exception_unhandled (struct breakpoint *b,
12923 struct bp_location **last_loc)
f7f9143b 12924{
761269c8 12925 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12926}
12927
12928static void
12929print_mention_catch_exception_unhandled (struct breakpoint *b)
12930{
761269c8 12931 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12932}
12933
6149aea9
PA
12934static void
12935print_recreate_catch_exception_unhandled (struct breakpoint *b,
12936 struct ui_file *fp)
12937{
761269c8 12938 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12939}
12940
2060206e 12941static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12942
12943/* Virtual table for "catch assert" breakpoints. */
12944
28010a5d
PA
12945static struct bp_location *
12946allocate_location_catch_assert (struct breakpoint *self)
12947{
761269c8 12948 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12949}
12950
12951static void
12952re_set_catch_assert (struct breakpoint *b)
12953{
761269c8 12954 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12955}
12956
12957static void
12958check_status_catch_assert (bpstat bs)
12959{
761269c8 12960 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12961}
12962
f7f9143b 12963static enum print_stop_action
348d480f 12964print_it_catch_assert (bpstat bs)
f7f9143b 12965{
761269c8 12966 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12967}
12968
12969static void
a6d9a66e 12970print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12971{
761269c8 12972 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12973}
12974
12975static void
12976print_mention_catch_assert (struct breakpoint *b)
12977{
761269c8 12978 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12979}
12980
6149aea9
PA
12981static void
12982print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12983{
761269c8 12984 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12985}
12986
2060206e 12987static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12988
9f757bf7
XR
12989/* Virtual table for "catch handlers" breakpoints. */
12990
12991static struct bp_location *
12992allocate_location_catch_handlers (struct breakpoint *self)
12993{
12994 return allocate_location_exception (ada_catch_handlers, self);
12995}
12996
12997static void
12998re_set_catch_handlers (struct breakpoint *b)
12999{
13000 re_set_exception (ada_catch_handlers, b);
13001}
13002
13003static void
13004check_status_catch_handlers (bpstat bs)
13005{
13006 check_status_exception (ada_catch_handlers, bs);
13007}
13008
13009static enum print_stop_action
13010print_it_catch_handlers (bpstat bs)
13011{
13012 return print_it_exception (ada_catch_handlers, bs);
13013}
13014
13015static void
13016print_one_catch_handlers (struct breakpoint *b,
13017 struct bp_location **last_loc)
13018{
13019 print_one_exception (ada_catch_handlers, b, last_loc);
13020}
13021
13022static void
13023print_mention_catch_handlers (struct breakpoint *b)
13024{
13025 print_mention_exception (ada_catch_handlers, b);
13026}
13027
13028static void
13029print_recreate_catch_handlers (struct breakpoint *b,
13030 struct ui_file *fp)
13031{
13032 print_recreate_exception (ada_catch_handlers, b, fp);
13033}
13034
13035static struct breakpoint_ops catch_handlers_breakpoint_ops;
13036
f7f9143b
JB
13037/* Split the arguments specified in a "catch exception" command.
13038 Set EX to the appropriate catchpoint type.
28010a5d 13039 Set EXCEP_STRING to the name of the specific exception if
5845583d 13040 specified by the user.
9f757bf7
XR
13041 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13042 "catch handlers" command. False otherwise.
5845583d
JB
13043 If a condition is found at the end of the arguments, the condition
13044 expression is stored in COND_STRING (memory must be deallocated
13045 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13046
13047static void
a121b7c1 13048catch_ada_exception_command_split (const char *args,
9f757bf7 13049 bool is_catch_handlers_cmd,
761269c8 13050 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13051 std::string *excep_string,
13052 std::string *cond_string)
f7f9143b 13053{
bc18fbb5 13054 std::string exception_name;
f7f9143b 13055
bc18fbb5
TT
13056 exception_name = extract_arg (&args);
13057 if (exception_name == "if")
5845583d
JB
13058 {
13059 /* This is not an exception name; this is the start of a condition
13060 expression for a catchpoint on all exceptions. So, "un-get"
13061 this token, and set exception_name to NULL. */
bc18fbb5 13062 exception_name.clear ();
5845583d
JB
13063 args -= 2;
13064 }
f7f9143b 13065
5845583d 13066 /* Check to see if we have a condition. */
f7f9143b 13067
f1735a53 13068 args = skip_spaces (args);
61012eef 13069 if (startswith (args, "if")
5845583d
JB
13070 && (isspace (args[2]) || args[2] == '\0'))
13071 {
13072 args += 2;
f1735a53 13073 args = skip_spaces (args);
5845583d
JB
13074
13075 if (args[0] == '\0')
13076 error (_("Condition missing after `if' keyword"));
bc18fbb5 13077 *cond_string = args;
5845583d
JB
13078
13079 args += strlen (args);
13080 }
13081
13082 /* Check that we do not have any more arguments. Anything else
13083 is unexpected. */
f7f9143b
JB
13084
13085 if (args[0] != '\0')
13086 error (_("Junk at end of expression"));
13087
9f757bf7
XR
13088 if (is_catch_handlers_cmd)
13089 {
13090 /* Catch handling of exceptions. */
13091 *ex = ada_catch_handlers;
13092 *excep_string = exception_name;
13093 }
bc18fbb5 13094 else if (exception_name.empty ())
f7f9143b
JB
13095 {
13096 /* Catch all exceptions. */
761269c8 13097 *ex = ada_catch_exception;
bc18fbb5 13098 excep_string->clear ();
f7f9143b 13099 }
bc18fbb5 13100 else if (exception_name == "unhandled")
f7f9143b
JB
13101 {
13102 /* Catch unhandled exceptions. */
761269c8 13103 *ex = ada_catch_exception_unhandled;
bc18fbb5 13104 excep_string->clear ();
f7f9143b
JB
13105 }
13106 else
13107 {
13108 /* Catch a specific exception. */
761269c8 13109 *ex = ada_catch_exception;
28010a5d 13110 *excep_string = exception_name;
f7f9143b
JB
13111 }
13112}
13113
13114/* Return the name of the symbol on which we should break in order to
13115 implement a catchpoint of the EX kind. */
13116
13117static const char *
761269c8 13118ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13119{
3eecfa55
JB
13120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13121
13122 gdb_assert (data->exception_info != NULL);
0259addd 13123
f7f9143b
JB
13124 switch (ex)
13125 {
761269c8 13126 case ada_catch_exception:
3eecfa55 13127 return (data->exception_info->catch_exception_sym);
f7f9143b 13128 break;
761269c8 13129 case ada_catch_exception_unhandled:
3eecfa55 13130 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13131 break;
761269c8 13132 case ada_catch_assert:
3eecfa55 13133 return (data->exception_info->catch_assert_sym);
f7f9143b 13134 break;
9f757bf7
XR
13135 case ada_catch_handlers:
13136 return (data->exception_info->catch_handlers_sym);
13137 break;
f7f9143b
JB
13138 default:
13139 internal_error (__FILE__, __LINE__,
13140 _("unexpected catchpoint kind (%d)"), ex);
13141 }
13142}
13143
13144/* Return the breakpoint ops "virtual table" used for catchpoints
13145 of the EX kind. */
13146
c0a91b2b 13147static const struct breakpoint_ops *
761269c8 13148ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13149{
13150 switch (ex)
13151 {
761269c8 13152 case ada_catch_exception:
f7f9143b
JB
13153 return (&catch_exception_breakpoint_ops);
13154 break;
761269c8 13155 case ada_catch_exception_unhandled:
f7f9143b
JB
13156 return (&catch_exception_unhandled_breakpoint_ops);
13157 break;
761269c8 13158 case ada_catch_assert:
f7f9143b
JB
13159 return (&catch_assert_breakpoint_ops);
13160 break;
9f757bf7
XR
13161 case ada_catch_handlers:
13162 return (&catch_handlers_breakpoint_ops);
13163 break;
f7f9143b
JB
13164 default:
13165 internal_error (__FILE__, __LINE__,
13166 _("unexpected catchpoint kind (%d)"), ex);
13167 }
13168}
13169
13170/* Return the condition that will be used to match the current exception
13171 being raised with the exception that the user wants to catch. This
13172 assumes that this condition is used when the inferior just triggered
13173 an exception catchpoint.
cb7de75e 13174 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13175
cb7de75e 13176static std::string
9f757bf7
XR
13177ada_exception_catchpoint_cond_string (const char *excep_string,
13178 enum ada_exception_catchpoint_kind ex)
f7f9143b 13179{
3d0b0fa3 13180 int i;
cb7de75e 13181 std::string result;
2ff0a947 13182 const char *name;
9f757bf7
XR
13183
13184 if (ex == ada_catch_handlers)
13185 {
13186 /* For exception handlers catchpoints, the condition string does
13187 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13188 name = ("long_integer (GNAT_GCC_exception_Access"
13189 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13190 }
13191 else
2ff0a947 13192 name = "long_integer (e)";
3d0b0fa3 13193
0963b4bd 13194 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13195 runtime units that have been compiled without debugging info; if
28010a5d 13196 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13197 exception (e.g. "constraint_error") then, during the evaluation
13198 of the condition expression, the symbol lookup on this name would
0963b4bd 13199 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13200 may then be set only on user-defined exceptions which have the
13201 same not-fully-qualified name (e.g. my_package.constraint_error).
13202
13203 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13204 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13205 exception constraint_error" is rewritten into "catch exception
13206 standard.constraint_error".
13207
13208 If an exception named contraint_error is defined in another package of
13209 the inferior program, then the only way to specify this exception as a
13210 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13211 e.g. my_package.constraint_error.
13212
13213 Furthermore, in some situations a standard exception's symbol may
13214 be present in more than one objfile, because the compiler may
13215 choose to emit copy relocations for them. So, we have to compare
13216 against all the possible addresses. */
3d0b0fa3 13217
2ff0a947
TT
13218 /* Storage for a rewritten symbol name. */
13219 std::string std_name;
3d0b0fa3
JB
13220 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13221 {
28010a5d 13222 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13223 {
2ff0a947
TT
13224 std_name = std::string ("standard.") + excep_string;
13225 excep_string = std_name.c_str ();
9f757bf7 13226 break;
3d0b0fa3
JB
13227 }
13228 }
9f757bf7 13229
2ff0a947
TT
13230 excep_string = ada_encode (excep_string);
13231 std::vector<struct bound_minimal_symbol> symbols
13232 = ada_lookup_simple_minsyms (excep_string);
13233 for (const struct bound_minimal_symbol &msym : symbols)
13234 {
13235 if (!result.empty ())
13236 result += " or ";
13237 string_appendf (result, "%s = %s", name,
13238 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13239 }
9f757bf7 13240
9f757bf7 13241 return result;
f7f9143b
JB
13242}
13243
13244/* Return the symtab_and_line that should be used to insert an exception
13245 catchpoint of the TYPE kind.
13246
28010a5d
PA
13247 ADDR_STRING returns the name of the function where the real
13248 breakpoint that implements the catchpoints is set, depending on the
13249 type of catchpoint we need to create. */
f7f9143b
JB
13250
13251static struct symtab_and_line
bc18fbb5 13252ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13253 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13254{
13255 const char *sym_name;
13256 struct symbol *sym;
f7f9143b 13257
0259addd
JB
13258 /* First, find out which exception support info to use. */
13259 ada_exception_support_info_sniffer ();
13260
13261 /* Then lookup the function on which we will break in order to catch
f7f9143b 13262 the Ada exceptions requested by the user. */
f7f9143b
JB
13263 sym_name = ada_exception_sym_name (ex);
13264 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13265
57aff202
JB
13266 if (sym == NULL)
13267 error (_("Catchpoint symbol not found: %s"), sym_name);
13268
13269 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13270 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13271
13272 /* Set ADDR_STRING. */
cc12f4a8 13273 *addr_string = sym_name;
f7f9143b 13274
f7f9143b 13275 /* Set OPS. */
4b9eee8c 13276 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13277
f17011e0 13278 return find_function_start_sal (sym, 1);
f7f9143b
JB
13279}
13280
b4a5b78b 13281/* Create an Ada exception catchpoint.
f7f9143b 13282
b4a5b78b 13283 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13284
bc18fbb5 13285 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13286 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13287 of the exception to which this catchpoint applies.
2df4d1d5 13288
bc18fbb5 13289 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13290
b4a5b78b
JB
13291 TEMPFLAG, if nonzero, means that the underlying breakpoint
13292 should be temporary.
28010a5d 13293
b4a5b78b 13294 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13295
349774ef 13296void
28010a5d 13297create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13298 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13299 const std::string &excep_string,
56ecd069 13300 const std::string &cond_string,
28010a5d 13301 int tempflag,
349774ef 13302 int disabled,
28010a5d
PA
13303 int from_tty)
13304{
cc12f4a8 13305 std::string addr_string;
b4a5b78b 13306 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13307 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13308
b270e6f9 13309 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13310 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13311 ops, tempflag, disabled, from_tty);
28010a5d 13312 c->excep_string = excep_string;
9f757bf7 13313 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13314 if (!cond_string.empty ())
13315 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13316 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13317}
13318
9ac4176b
PA
13319/* Implement the "catch exception" command. */
13320
13321static void
eb4c3f4a 13322catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13323 struct cmd_list_element *command)
13324{
a121b7c1 13325 const char *arg = arg_entry;
9ac4176b
PA
13326 struct gdbarch *gdbarch = get_current_arch ();
13327 int tempflag;
761269c8 13328 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13329 std::string excep_string;
56ecd069 13330 std::string cond_string;
9ac4176b
PA
13331
13332 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13333
13334 if (!arg)
13335 arg = "";
9f757bf7 13336 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13337 &cond_string);
9f757bf7
XR
13338 create_ada_exception_catchpoint (gdbarch, ex_kind,
13339 excep_string, cond_string,
13340 tempflag, 1 /* enabled */,
13341 from_tty);
13342}
13343
13344/* Implement the "catch handlers" command. */
13345
13346static void
13347catch_ada_handlers_command (const char *arg_entry, int from_tty,
13348 struct cmd_list_element *command)
13349{
13350 const char *arg = arg_entry;
13351 struct gdbarch *gdbarch = get_current_arch ();
13352 int tempflag;
13353 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13354 std::string excep_string;
56ecd069 13355 std::string cond_string;
9f757bf7
XR
13356
13357 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13358
13359 if (!arg)
13360 arg = "";
13361 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13362 &cond_string);
b4a5b78b
JB
13363 create_ada_exception_catchpoint (gdbarch, ex_kind,
13364 excep_string, cond_string,
349774ef
JB
13365 tempflag, 1 /* enabled */,
13366 from_tty);
9ac4176b
PA
13367}
13368
b4a5b78b 13369/* Split the arguments specified in a "catch assert" command.
5845583d 13370
b4a5b78b
JB
13371 ARGS contains the command's arguments (or the empty string if
13372 no arguments were passed).
5845583d
JB
13373
13374 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13375 (the memory needs to be deallocated after use). */
5845583d 13376
b4a5b78b 13377static void
56ecd069 13378catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13379{
f1735a53 13380 args = skip_spaces (args);
f7f9143b 13381
5845583d 13382 /* Check whether a condition was provided. */
61012eef 13383 if (startswith (args, "if")
5845583d 13384 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13385 {
5845583d 13386 args += 2;
f1735a53 13387 args = skip_spaces (args);
5845583d
JB
13388 if (args[0] == '\0')
13389 error (_("condition missing after `if' keyword"));
56ecd069 13390 cond_string.assign (args);
f7f9143b
JB
13391 }
13392
5845583d
JB
13393 /* Otherwise, there should be no other argument at the end of
13394 the command. */
13395 else if (args[0] != '\0')
13396 error (_("Junk at end of arguments."));
f7f9143b
JB
13397}
13398
9ac4176b
PA
13399/* Implement the "catch assert" command. */
13400
13401static void
eb4c3f4a 13402catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13403 struct cmd_list_element *command)
13404{
a121b7c1 13405 const char *arg = arg_entry;
9ac4176b
PA
13406 struct gdbarch *gdbarch = get_current_arch ();
13407 int tempflag;
56ecd069 13408 std::string cond_string;
9ac4176b
PA
13409
13410 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13411
13412 if (!arg)
13413 arg = "";
56ecd069 13414 catch_ada_assert_command_split (arg, cond_string);
761269c8 13415 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13416 "", cond_string,
349774ef
JB
13417 tempflag, 1 /* enabled */,
13418 from_tty);
9ac4176b 13419}
778865d3
JB
13420
13421/* Return non-zero if the symbol SYM is an Ada exception object. */
13422
13423static int
13424ada_is_exception_sym (struct symbol *sym)
13425{
a737d952 13426 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13427
13428 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13429 && SYMBOL_CLASS (sym) != LOC_BLOCK
13430 && SYMBOL_CLASS (sym) != LOC_CONST
13431 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13432 && type_name != NULL && strcmp (type_name, "exception") == 0);
13433}
13434
13435/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13436 Ada exception object. This matches all exceptions except the ones
13437 defined by the Ada language. */
13438
13439static int
13440ada_is_non_standard_exception_sym (struct symbol *sym)
13441{
13442 int i;
13443
13444 if (!ada_is_exception_sym (sym))
13445 return 0;
13446
13447 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13448 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13449 return 0; /* A standard exception. */
13450
13451 /* Numeric_Error is also a standard exception, so exclude it.
13452 See the STANDARD_EXC description for more details as to why
13453 this exception is not listed in that array. */
13454 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13455 return 0;
13456
13457 return 1;
13458}
13459
ab816a27 13460/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13461 objects.
13462
13463 The comparison is determined first by exception name, and then
13464 by exception address. */
13465
ab816a27 13466bool
cc536b21 13467ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13468{
778865d3
JB
13469 int result;
13470
ab816a27
TT
13471 result = strcmp (name, other.name);
13472 if (result < 0)
13473 return true;
13474 if (result == 0 && addr < other.addr)
13475 return true;
13476 return false;
13477}
778865d3 13478
ab816a27 13479bool
cc536b21 13480ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13481{
13482 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13483}
13484
13485/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13486 routine, but keeping the first SKIP elements untouched.
13487
13488 All duplicates are also removed. */
13489
13490static void
ab816a27 13491sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13492 int skip)
13493{
ab816a27
TT
13494 std::sort (exceptions->begin () + skip, exceptions->end ());
13495 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13496 exceptions->end ());
778865d3
JB
13497}
13498
778865d3
JB
13499/* Add all exceptions defined by the Ada standard whose name match
13500 a regular expression.
13501
13502 If PREG is not NULL, then this regexp_t object is used to
13503 perform the symbol name matching. Otherwise, no name-based
13504 filtering is performed.
13505
13506 EXCEPTIONS is a vector of exceptions to which matching exceptions
13507 gets pushed. */
13508
13509static void
2d7cc5c7 13510ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13511 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13512{
13513 int i;
13514
13515 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13516 {
13517 if (preg == NULL
2d7cc5c7 13518 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13519 {
13520 struct bound_minimal_symbol msymbol
13521 = ada_lookup_simple_minsym (standard_exc[i]);
13522
13523 if (msymbol.minsym != NULL)
13524 {
13525 struct ada_exc_info info
77e371c0 13526 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13527
ab816a27 13528 exceptions->push_back (info);
778865d3
JB
13529 }
13530 }
13531 }
13532}
13533
13534/* Add all Ada exceptions defined locally and accessible from the given
13535 FRAME.
13536
13537 If PREG is not NULL, then this regexp_t object is used to
13538 perform the symbol name matching. Otherwise, no name-based
13539 filtering is performed.
13540
13541 EXCEPTIONS is a vector of exceptions to which matching exceptions
13542 gets pushed. */
13543
13544static void
2d7cc5c7
PA
13545ada_add_exceptions_from_frame (compiled_regex *preg,
13546 struct frame_info *frame,
ab816a27 13547 std::vector<ada_exc_info> *exceptions)
778865d3 13548{
3977b71f 13549 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13550
13551 while (block != 0)
13552 {
13553 struct block_iterator iter;
13554 struct symbol *sym;
13555
13556 ALL_BLOCK_SYMBOLS (block, iter, sym)
13557 {
13558 switch (SYMBOL_CLASS (sym))
13559 {
13560 case LOC_TYPEDEF:
13561 case LOC_BLOCK:
13562 case LOC_CONST:
13563 break;
13564 default:
13565 if (ada_is_exception_sym (sym))
13566 {
13567 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13568 SYMBOL_VALUE_ADDRESS (sym)};
13569
ab816a27 13570 exceptions->push_back (info);
778865d3
JB
13571 }
13572 }
13573 }
13574 if (BLOCK_FUNCTION (block) != NULL)
13575 break;
13576 block = BLOCK_SUPERBLOCK (block);
13577 }
13578}
13579
14bc53a8
PA
13580/* Return true if NAME matches PREG or if PREG is NULL. */
13581
13582static bool
2d7cc5c7 13583name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13584{
13585 return (preg == NULL
2d7cc5c7 13586 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13587}
13588
778865d3
JB
13589/* Add all exceptions defined globally whose name name match
13590 a regular expression, excluding standard exceptions.
13591
13592 The reason we exclude standard exceptions is that they need
13593 to be handled separately: Standard exceptions are defined inside
13594 a runtime unit which is normally not compiled with debugging info,
13595 and thus usually do not show up in our symbol search. However,
13596 if the unit was in fact built with debugging info, we need to
13597 exclude them because they would duplicate the entry we found
13598 during the special loop that specifically searches for those
13599 standard exceptions.
13600
13601 If PREG is not NULL, then this regexp_t object is used to
13602 perform the symbol name matching. Otherwise, no name-based
13603 filtering is performed.
13604
13605 EXCEPTIONS is a vector of exceptions to which matching exceptions
13606 gets pushed. */
13607
13608static void
2d7cc5c7 13609ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13610 std::vector<ada_exc_info> *exceptions)
778865d3 13611{
14bc53a8
PA
13612 /* In Ada, the symbol "search name" is a linkage name, whereas the
13613 regular expression used to do the matching refers to the natural
13614 name. So match against the decoded name. */
13615 expand_symtabs_matching (NULL,
b5ec771e 13616 lookup_name_info::match_any (),
14bc53a8
PA
13617 [&] (const char *search_name)
13618 {
13619 const char *decoded = ada_decode (search_name);
13620 return name_matches_regex (decoded, preg);
13621 },
13622 NULL,
13623 VARIABLES_DOMAIN);
778865d3 13624
2030c079 13625 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13626 {
b669c953 13627 for (compunit_symtab *s : objfile->compunits ())
778865d3 13628 {
d8aeb77f
TT
13629 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13630 int i;
778865d3 13631
d8aeb77f
TT
13632 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13633 {
582942f4 13634 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13635 struct block_iterator iter;
13636 struct symbol *sym;
778865d3 13637
d8aeb77f
TT
13638 ALL_BLOCK_SYMBOLS (b, iter, sym)
13639 if (ada_is_non_standard_exception_sym (sym)
13640 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13641 {
13642 struct ada_exc_info info
13643 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13644
13645 exceptions->push_back (info);
13646 }
13647 }
778865d3
JB
13648 }
13649 }
13650}
13651
13652/* Implements ada_exceptions_list with the regular expression passed
13653 as a regex_t, rather than a string.
13654
13655 If not NULL, PREG is used to filter out exceptions whose names
13656 do not match. Otherwise, all exceptions are listed. */
13657
ab816a27 13658static std::vector<ada_exc_info>
2d7cc5c7 13659ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13660{
ab816a27 13661 std::vector<ada_exc_info> result;
778865d3
JB
13662 int prev_len;
13663
13664 /* First, list the known standard exceptions. These exceptions
13665 need to be handled separately, as they are usually defined in
13666 runtime units that have been compiled without debugging info. */
13667
13668 ada_add_standard_exceptions (preg, &result);
13669
13670 /* Next, find all exceptions whose scope is local and accessible
13671 from the currently selected frame. */
13672
13673 if (has_stack_frames ())
13674 {
ab816a27 13675 prev_len = result.size ();
778865d3
JB
13676 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13677 &result);
ab816a27 13678 if (result.size () > prev_len)
778865d3
JB
13679 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13680 }
13681
13682 /* Add all exceptions whose scope is global. */
13683
ab816a27 13684 prev_len = result.size ();
778865d3 13685 ada_add_global_exceptions (preg, &result);
ab816a27 13686 if (result.size () > prev_len)
778865d3
JB
13687 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13688
778865d3
JB
13689 return result;
13690}
13691
13692/* Return a vector of ada_exc_info.
13693
13694 If REGEXP is NULL, all exceptions are included in the result.
13695 Otherwise, it should contain a valid regular expression,
13696 and only the exceptions whose names match that regular expression
13697 are included in the result.
13698
13699 The exceptions are sorted in the following order:
13700 - Standard exceptions (defined by the Ada language), in
13701 alphabetical order;
13702 - Exceptions only visible from the current frame, in
13703 alphabetical order;
13704 - Exceptions whose scope is global, in alphabetical order. */
13705
ab816a27 13706std::vector<ada_exc_info>
778865d3
JB
13707ada_exceptions_list (const char *regexp)
13708{
2d7cc5c7
PA
13709 if (regexp == NULL)
13710 return ada_exceptions_list_1 (NULL);
778865d3 13711
2d7cc5c7
PA
13712 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13713 return ada_exceptions_list_1 (&reg);
778865d3
JB
13714}
13715
13716/* Implement the "info exceptions" command. */
13717
13718static void
1d12d88f 13719info_exceptions_command (const char *regexp, int from_tty)
778865d3 13720{
778865d3 13721 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13722
ab816a27 13723 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13724
13725 if (regexp != NULL)
13726 printf_filtered
13727 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13728 else
13729 printf_filtered (_("All defined Ada exceptions:\n"));
13730
ab816a27
TT
13731 for (const ada_exc_info &info : exceptions)
13732 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13733}
13734
4c4b4cd2
PH
13735 /* Operators */
13736/* Information about operators given special treatment in functions
13737 below. */
13738/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13739
13740#define ADA_OPERATORS \
13741 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13742 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13743 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13744 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13745 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13746 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13747 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13748 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13749 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13750 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13751 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13752 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13753 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13754 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13755 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13756 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13757 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13758 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13759 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13760
13761static void
554794dc
SDJ
13762ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13763 int *argsp)
4c4b4cd2
PH
13764{
13765 switch (exp->elts[pc - 1].opcode)
13766 {
76a01679 13767 default:
4c4b4cd2
PH
13768 operator_length_standard (exp, pc, oplenp, argsp);
13769 break;
13770
13771#define OP_DEFN(op, len, args, binop) \
13772 case op: *oplenp = len; *argsp = args; break;
13773 ADA_OPERATORS;
13774#undef OP_DEFN
52ce6436
PH
13775
13776 case OP_AGGREGATE:
13777 *oplenp = 3;
13778 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13779 break;
13780
13781 case OP_CHOICES:
13782 *oplenp = 3;
13783 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13784 break;
4c4b4cd2
PH
13785 }
13786}
13787
c0201579
JK
13788/* Implementation of the exp_descriptor method operator_check. */
13789
13790static int
13791ada_operator_check (struct expression *exp, int pos,
13792 int (*objfile_func) (struct objfile *objfile, void *data),
13793 void *data)
13794{
13795 const union exp_element *const elts = exp->elts;
13796 struct type *type = NULL;
13797
13798 switch (elts[pos].opcode)
13799 {
13800 case UNOP_IN_RANGE:
13801 case UNOP_QUAL:
13802 type = elts[pos + 1].type;
13803 break;
13804
13805 default:
13806 return operator_check_standard (exp, pos, objfile_func, data);
13807 }
13808
13809 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13810
13811 if (type && TYPE_OBJFILE (type)
13812 && (*objfile_func) (TYPE_OBJFILE (type), data))
13813 return 1;
13814
13815 return 0;
13816}
13817
a121b7c1 13818static const char *
4c4b4cd2
PH
13819ada_op_name (enum exp_opcode opcode)
13820{
13821 switch (opcode)
13822 {
76a01679 13823 default:
4c4b4cd2 13824 return op_name_standard (opcode);
52ce6436 13825
4c4b4cd2
PH
13826#define OP_DEFN(op, len, args, binop) case op: return #op;
13827 ADA_OPERATORS;
13828#undef OP_DEFN
52ce6436
PH
13829
13830 case OP_AGGREGATE:
13831 return "OP_AGGREGATE";
13832 case OP_CHOICES:
13833 return "OP_CHOICES";
13834 case OP_NAME:
13835 return "OP_NAME";
4c4b4cd2
PH
13836 }
13837}
13838
13839/* As for operator_length, but assumes PC is pointing at the first
13840 element of the operator, and gives meaningful results only for the
52ce6436 13841 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13842
13843static void
76a01679
JB
13844ada_forward_operator_length (struct expression *exp, int pc,
13845 int *oplenp, int *argsp)
4c4b4cd2 13846{
76a01679 13847 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13848 {
13849 default:
13850 *oplenp = *argsp = 0;
13851 break;
52ce6436 13852
4c4b4cd2
PH
13853#define OP_DEFN(op, len, args, binop) \
13854 case op: *oplenp = len; *argsp = args; break;
13855 ADA_OPERATORS;
13856#undef OP_DEFN
52ce6436
PH
13857
13858 case OP_AGGREGATE:
13859 *oplenp = 3;
13860 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13861 break;
13862
13863 case OP_CHOICES:
13864 *oplenp = 3;
13865 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13866 break;
13867
13868 case OP_STRING:
13869 case OP_NAME:
13870 {
13871 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13872
52ce6436
PH
13873 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13874 *argsp = 0;
13875 break;
13876 }
4c4b4cd2
PH
13877 }
13878}
13879
13880static int
13881ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13882{
13883 enum exp_opcode op = exp->elts[elt].opcode;
13884 int oplen, nargs;
13885 int pc = elt;
13886 int i;
76a01679 13887
4c4b4cd2
PH
13888 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13889
76a01679 13890 switch (op)
4c4b4cd2 13891 {
76a01679 13892 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13893 case OP_ATR_FIRST:
13894 case OP_ATR_LAST:
13895 case OP_ATR_LENGTH:
13896 case OP_ATR_IMAGE:
13897 case OP_ATR_MAX:
13898 case OP_ATR_MIN:
13899 case OP_ATR_MODULUS:
13900 case OP_ATR_POS:
13901 case OP_ATR_SIZE:
13902 case OP_ATR_TAG:
13903 case OP_ATR_VAL:
13904 break;
13905
13906 case UNOP_IN_RANGE:
13907 case UNOP_QUAL:
323e0a4a
AC
13908 /* XXX: gdb_sprint_host_address, type_sprint */
13909 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13910 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13911 fprintf_filtered (stream, " (");
13912 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13913 fprintf_filtered (stream, ")");
13914 break;
13915 case BINOP_IN_BOUNDS:
52ce6436
PH
13916 fprintf_filtered (stream, " (%d)",
13917 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13918 break;
13919 case TERNOP_IN_RANGE:
13920 break;
13921
52ce6436
PH
13922 case OP_AGGREGATE:
13923 case OP_OTHERS:
13924 case OP_DISCRETE_RANGE:
13925 case OP_POSITIONAL:
13926 case OP_CHOICES:
13927 break;
13928
13929 case OP_NAME:
13930 case OP_STRING:
13931 {
13932 char *name = &exp->elts[elt + 2].string;
13933 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13934
52ce6436
PH
13935 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13936 break;
13937 }
13938
4c4b4cd2
PH
13939 default:
13940 return dump_subexp_body_standard (exp, stream, elt);
13941 }
13942
13943 elt += oplen;
13944 for (i = 0; i < nargs; i += 1)
13945 elt = dump_subexp (exp, stream, elt);
13946
13947 return elt;
13948}
13949
13950/* The Ada extension of print_subexp (q.v.). */
13951
76a01679
JB
13952static void
13953ada_print_subexp (struct expression *exp, int *pos,
13954 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13955{
52ce6436 13956 int oplen, nargs, i;
4c4b4cd2
PH
13957 int pc = *pos;
13958 enum exp_opcode op = exp->elts[pc].opcode;
13959
13960 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13961
52ce6436 13962 *pos += oplen;
4c4b4cd2
PH
13963 switch (op)
13964 {
13965 default:
52ce6436 13966 *pos -= oplen;
4c4b4cd2
PH
13967 print_subexp_standard (exp, pos, stream, prec);
13968 return;
13969
13970 case OP_VAR_VALUE:
4c4b4cd2
PH
13971 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13972 return;
13973
13974 case BINOP_IN_BOUNDS:
323e0a4a 13975 /* XXX: sprint_subexp */
4c4b4cd2 13976 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13977 fputs_filtered (" in ", stream);
4c4b4cd2 13978 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13979 fputs_filtered ("'range", stream);
4c4b4cd2 13980 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13981 fprintf_filtered (stream, "(%ld)",
13982 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13983 return;
13984
13985 case TERNOP_IN_RANGE:
4c4b4cd2 13986 if (prec >= PREC_EQUAL)
76a01679 13987 fputs_filtered ("(", stream);
323e0a4a 13988 /* XXX: sprint_subexp */
4c4b4cd2 13989 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13990 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13991 print_subexp (exp, pos, stream, PREC_EQUAL);
13992 fputs_filtered (" .. ", stream);
13993 print_subexp (exp, pos, stream, PREC_EQUAL);
13994 if (prec >= PREC_EQUAL)
76a01679
JB
13995 fputs_filtered (")", stream);
13996 return;
4c4b4cd2
PH
13997
13998 case OP_ATR_FIRST:
13999 case OP_ATR_LAST:
14000 case OP_ATR_LENGTH:
14001 case OP_ATR_IMAGE:
14002 case OP_ATR_MAX:
14003 case OP_ATR_MIN:
14004 case OP_ATR_MODULUS:
14005 case OP_ATR_POS:
14006 case OP_ATR_SIZE:
14007 case OP_ATR_TAG:
14008 case OP_ATR_VAL:
4c4b4cd2 14009 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14010 {
14011 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14012 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14013 &type_print_raw_options);
76a01679
JB
14014 *pos += 3;
14015 }
4c4b4cd2 14016 else
76a01679 14017 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14018 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14019 if (nargs > 1)
76a01679
JB
14020 {
14021 int tem;
5b4ee69b 14022
76a01679
JB
14023 for (tem = 1; tem < nargs; tem += 1)
14024 {
14025 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14026 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14027 }
14028 fputs_filtered (")", stream);
14029 }
4c4b4cd2 14030 return;
14f9c5c9 14031
4c4b4cd2 14032 case UNOP_QUAL:
4c4b4cd2
PH
14033 type_print (exp->elts[pc + 1].type, "", stream, 0);
14034 fputs_filtered ("'(", stream);
14035 print_subexp (exp, pos, stream, PREC_PREFIX);
14036 fputs_filtered (")", stream);
14037 return;
14f9c5c9 14038
4c4b4cd2 14039 case UNOP_IN_RANGE:
323e0a4a 14040 /* XXX: sprint_subexp */
4c4b4cd2 14041 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14042 fputs_filtered (" in ", stream);
79d43c61
TT
14043 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14044 &type_print_raw_options);
4c4b4cd2 14045 return;
52ce6436
PH
14046
14047 case OP_DISCRETE_RANGE:
14048 print_subexp (exp, pos, stream, PREC_SUFFIX);
14049 fputs_filtered ("..", stream);
14050 print_subexp (exp, pos, stream, PREC_SUFFIX);
14051 return;
14052
14053 case OP_OTHERS:
14054 fputs_filtered ("others => ", stream);
14055 print_subexp (exp, pos, stream, PREC_SUFFIX);
14056 return;
14057
14058 case OP_CHOICES:
14059 for (i = 0; i < nargs-1; i += 1)
14060 {
14061 if (i > 0)
14062 fputs_filtered ("|", stream);
14063 print_subexp (exp, pos, stream, PREC_SUFFIX);
14064 }
14065 fputs_filtered (" => ", stream);
14066 print_subexp (exp, pos, stream, PREC_SUFFIX);
14067 return;
14068
14069 case OP_POSITIONAL:
14070 print_subexp (exp, pos, stream, PREC_SUFFIX);
14071 return;
14072
14073 case OP_AGGREGATE:
14074 fputs_filtered ("(", stream);
14075 for (i = 0; i < nargs; i += 1)
14076 {
14077 if (i > 0)
14078 fputs_filtered (", ", stream);
14079 print_subexp (exp, pos, stream, PREC_SUFFIX);
14080 }
14081 fputs_filtered (")", stream);
14082 return;
4c4b4cd2
PH
14083 }
14084}
14f9c5c9
AS
14085
14086/* Table mapping opcodes into strings for printing operators
14087 and precedences of the operators. */
14088
d2e4a39e
AS
14089static const struct op_print ada_op_print_tab[] = {
14090 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14091 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14092 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14093 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14094 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14095 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14096 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14097 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14098 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14099 {">=", BINOP_GEQ, PREC_ORDER, 0},
14100 {">", BINOP_GTR, PREC_ORDER, 0},
14101 {"<", BINOP_LESS, PREC_ORDER, 0},
14102 {">>", BINOP_RSH, PREC_SHIFT, 0},
14103 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14104 {"+", BINOP_ADD, PREC_ADD, 0},
14105 {"-", BINOP_SUB, PREC_ADD, 0},
14106 {"&", BINOP_CONCAT, PREC_ADD, 0},
14107 {"*", BINOP_MUL, PREC_MUL, 0},
14108 {"/", BINOP_DIV, PREC_MUL, 0},
14109 {"rem", BINOP_REM, PREC_MUL, 0},
14110 {"mod", BINOP_MOD, PREC_MUL, 0},
14111 {"**", BINOP_EXP, PREC_REPEAT, 0},
14112 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14113 {"-", UNOP_NEG, PREC_PREFIX, 0},
14114 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14115 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14116 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14117 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14118 {".all", UNOP_IND, PREC_SUFFIX, 1},
14119 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14120 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14121 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14122};
14123\f
72d5681a
PH
14124enum ada_primitive_types {
14125 ada_primitive_type_int,
14126 ada_primitive_type_long,
14127 ada_primitive_type_short,
14128 ada_primitive_type_char,
14129 ada_primitive_type_float,
14130 ada_primitive_type_double,
14131 ada_primitive_type_void,
14132 ada_primitive_type_long_long,
14133 ada_primitive_type_long_double,
14134 ada_primitive_type_natural,
14135 ada_primitive_type_positive,
14136 ada_primitive_type_system_address,
08f49010 14137 ada_primitive_type_storage_offset,
72d5681a
PH
14138 nr_ada_primitive_types
14139};
6c038f32
PH
14140
14141static void
d4a9a881 14142ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14143 struct language_arch_info *lai)
14144{
d4a9a881 14145 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14146
72d5681a 14147 lai->primitive_type_vector
d4a9a881 14148 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14149 struct type *);
e9bb382b
UW
14150
14151 lai->primitive_type_vector [ada_primitive_type_int]
14152 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14153 0, "integer");
14154 lai->primitive_type_vector [ada_primitive_type_long]
14155 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14156 0, "long_integer");
14157 lai->primitive_type_vector [ada_primitive_type_short]
14158 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14159 0, "short_integer");
14160 lai->string_char_type
14161 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14162 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14163 lai->primitive_type_vector [ada_primitive_type_float]
14164 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14165 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14166 lai->primitive_type_vector [ada_primitive_type_double]
14167 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14168 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14169 lai->primitive_type_vector [ada_primitive_type_long_long]
14170 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14171 0, "long_long_integer");
14172 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14173 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14174 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14175 lai->primitive_type_vector [ada_primitive_type_natural]
14176 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14177 0, "natural");
14178 lai->primitive_type_vector [ada_primitive_type_positive]
14179 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14180 0, "positive");
14181 lai->primitive_type_vector [ada_primitive_type_void]
14182 = builtin->builtin_void;
14183
14184 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14185 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14186 "void"));
72d5681a
PH
14187 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14188 = "system__address";
fbb06eb1 14189
08f49010
XR
14190 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14191 type. This is a signed integral type whose size is the same as
14192 the size of addresses. */
14193 {
14194 unsigned int addr_length = TYPE_LENGTH
14195 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14196
14197 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14198 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14199 "storage_offset");
14200 }
14201
47e729a8 14202 lai->bool_type_symbol = NULL;
fbb06eb1 14203 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14204}
6c038f32
PH
14205\f
14206 /* Language vector */
14207
14208/* Not really used, but needed in the ada_language_defn. */
14209
14210static void
6c7a06a3 14211emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14212{
6c7a06a3 14213 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14214}
14215
14216static int
410a0ff2 14217parse (struct parser_state *ps)
6c038f32
PH
14218{
14219 warnings_issued = 0;
410a0ff2 14220 return ada_parse (ps);
6c038f32
PH
14221}
14222
14223static const struct exp_descriptor ada_exp_descriptor = {
14224 ada_print_subexp,
14225 ada_operator_length,
c0201579 14226 ada_operator_check,
6c038f32
PH
14227 ada_op_name,
14228 ada_dump_subexp_body,
14229 ada_evaluate_subexp
14230};
14231
b5ec771e
PA
14232/* symbol_name_matcher_ftype adapter for wild_match. */
14233
14234static bool
14235do_wild_match (const char *symbol_search_name,
14236 const lookup_name_info &lookup_name,
a207cff2 14237 completion_match_result *comp_match_res)
b5ec771e
PA
14238{
14239 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14240}
14241
14242/* symbol_name_matcher_ftype adapter for full_match. */
14243
14244static bool
14245do_full_match (const char *symbol_search_name,
14246 const lookup_name_info &lookup_name,
a207cff2 14247 completion_match_result *comp_match_res)
b5ec771e
PA
14248{
14249 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14250}
14251
a2cd4f14
JB
14252/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14253
14254static bool
14255do_exact_match (const char *symbol_search_name,
14256 const lookup_name_info &lookup_name,
14257 completion_match_result *comp_match_res)
14258{
14259 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14260}
14261
b5ec771e
PA
14262/* Build the Ada lookup name for LOOKUP_NAME. */
14263
14264ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14265{
14266 const std::string &user_name = lookup_name.name ();
14267
14268 if (user_name[0] == '<')
14269 {
14270 if (user_name.back () == '>')
14271 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14272 else
14273 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14274 m_encoded_p = true;
14275 m_verbatim_p = true;
14276 m_wild_match_p = false;
14277 m_standard_p = false;
14278 }
14279 else
14280 {
14281 m_verbatim_p = false;
14282
14283 m_encoded_p = user_name.find ("__") != std::string::npos;
14284
14285 if (!m_encoded_p)
14286 {
14287 const char *folded = ada_fold_name (user_name.c_str ());
14288 const char *encoded = ada_encode_1 (folded, false);
14289 if (encoded != NULL)
14290 m_encoded_name = encoded;
14291 else
14292 m_encoded_name = user_name;
14293 }
14294 else
14295 m_encoded_name = user_name;
14296
14297 /* Handle the 'package Standard' special case. See description
14298 of m_standard_p. */
14299 if (startswith (m_encoded_name.c_str (), "standard__"))
14300 {
14301 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14302 m_standard_p = true;
14303 }
14304 else
14305 m_standard_p = false;
74ccd7f5 14306
b5ec771e
PA
14307 /* If the name contains a ".", then the user is entering a fully
14308 qualified entity name, and the match must not be done in wild
14309 mode. Similarly, if the user wants to complete what looks
14310 like an encoded name, the match must not be done in wild
14311 mode. Also, in the standard__ special case always do
14312 non-wild matching. */
14313 m_wild_match_p
14314 = (lookup_name.match_type () != symbol_name_match_type::FULL
14315 && !m_encoded_p
14316 && !m_standard_p
14317 && user_name.find ('.') == std::string::npos);
14318 }
14319}
14320
14321/* symbol_name_matcher_ftype method for Ada. This only handles
14322 completion mode. */
14323
14324static bool
14325ada_symbol_name_matches (const char *symbol_search_name,
14326 const lookup_name_info &lookup_name,
a207cff2 14327 completion_match_result *comp_match_res)
74ccd7f5 14328{
b5ec771e
PA
14329 return lookup_name.ada ().matches (symbol_search_name,
14330 lookup_name.match_type (),
a207cff2 14331 comp_match_res);
b5ec771e
PA
14332}
14333
de63c46b
PA
14334/* A name matcher that matches the symbol name exactly, with
14335 strcmp. */
14336
14337static bool
14338literal_symbol_name_matcher (const char *symbol_search_name,
14339 const lookup_name_info &lookup_name,
14340 completion_match_result *comp_match_res)
14341{
14342 const std::string &name = lookup_name.name ();
14343
14344 int cmp = (lookup_name.completion_mode ()
14345 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14346 : strcmp (symbol_search_name, name.c_str ()));
14347 if (cmp == 0)
14348 {
14349 if (comp_match_res != NULL)
14350 comp_match_res->set_match (symbol_search_name);
14351 return true;
14352 }
14353 else
14354 return false;
14355}
14356
b5ec771e
PA
14357/* Implement the "la_get_symbol_name_matcher" language_defn method for
14358 Ada. */
14359
14360static symbol_name_matcher_ftype *
14361ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14362{
de63c46b
PA
14363 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14364 return literal_symbol_name_matcher;
14365
b5ec771e
PA
14366 if (lookup_name.completion_mode ())
14367 return ada_symbol_name_matches;
74ccd7f5 14368 else
b5ec771e
PA
14369 {
14370 if (lookup_name.ada ().wild_match_p ())
14371 return do_wild_match;
a2cd4f14
JB
14372 else if (lookup_name.ada ().verbatim_p ())
14373 return do_exact_match;
b5ec771e
PA
14374 else
14375 return do_full_match;
14376 }
74ccd7f5
JB
14377}
14378
a5ee536b
JB
14379/* Implement the "la_read_var_value" language_defn method for Ada. */
14380
14381static struct value *
63e43d3a
PMR
14382ada_read_var_value (struct symbol *var, const struct block *var_block,
14383 struct frame_info *frame)
a5ee536b 14384{
3977b71f 14385 const struct block *frame_block = NULL;
a5ee536b
JB
14386 struct symbol *renaming_sym = NULL;
14387
14388 /* The only case where default_read_var_value is not sufficient
14389 is when VAR is a renaming... */
14390 if (frame)
14391 frame_block = get_frame_block (frame, NULL);
14392 if (frame_block)
14393 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14394 if (renaming_sym != NULL)
14395 return ada_read_renaming_var_value (renaming_sym, frame_block);
14396
14397 /* This is a typical case where we expect the default_read_var_value
14398 function to work. */
63e43d3a 14399 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14400}
14401
56618e20
TT
14402static const char *ada_extensions[] =
14403{
14404 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14405};
14406
47e77640 14407extern const struct language_defn ada_language_defn = {
6c038f32 14408 "ada", /* Language name */
6abde28f 14409 "Ada",
6c038f32 14410 language_ada,
6c038f32 14411 range_check_off,
6c038f32
PH
14412 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14413 that's not quite what this means. */
6c038f32 14414 array_row_major,
9a044a89 14415 macro_expansion_no,
56618e20 14416 ada_extensions,
6c038f32
PH
14417 &ada_exp_descriptor,
14418 parse,
6c038f32
PH
14419 resolve,
14420 ada_printchar, /* Print a character constant */
14421 ada_printstr, /* Function to print string constant */
14422 emit_char, /* Function to print single char (not used) */
6c038f32 14423 ada_print_type, /* Print a type using appropriate syntax */
be942545 14424 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14425 ada_val_print, /* Print a value using appropriate syntax */
14426 ada_value_print, /* Print a top-level value */
a5ee536b 14427 ada_read_var_value, /* la_read_var_value */
6c038f32 14428 NULL, /* Language specific skip_trampoline */
2b2d9e11 14429 NULL, /* name_of_this */
59cc4834 14430 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14431 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14432 basic_lookup_transparent_type, /* lookup_transparent_type */
14433 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14434 ada_sniff_from_mangled_name,
0963b4bd
MS
14435 NULL, /* Language specific
14436 class_name_from_physname */
6c038f32
PH
14437 ada_op_print_tab, /* expression operators for printing */
14438 0, /* c-style arrays */
14439 1, /* String lower bound */
6c038f32 14440 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14441 ada_collect_symbol_completion_matches,
72d5681a 14442 ada_language_arch_info,
e79af960 14443 ada_print_array_index,
41f1b697 14444 default_pass_by_reference,
ae6a3a4c 14445 c_get_string,
e2b7af72 14446 ada_watch_location_expression,
b5ec771e 14447 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14448 ada_iterate_over_symbols,
5ffa0793 14449 default_search_name_hash,
a53b64ea 14450 &ada_varobj_ops,
bb2ec1b3 14451 NULL,
721b08c6 14452 NULL,
4be290b2 14453 ada_is_string_type,
721b08c6 14454 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14455};
14456
5bf03f13
JB
14457/* Command-list for the "set/show ada" prefix command. */
14458static struct cmd_list_element *set_ada_list;
14459static struct cmd_list_element *show_ada_list;
14460
14461/* Implement the "set ada" prefix command. */
14462
14463static void
981a3fb3 14464set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14465{
14466 printf_unfiltered (_(\
14467"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14468 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14469}
14470
14471/* Implement the "show ada" prefix command. */
14472
14473static void
981a3fb3 14474show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14475{
14476 cmd_show_list (show_ada_list, from_tty, "");
14477}
14478
2060206e
PA
14479static void
14480initialize_ada_catchpoint_ops (void)
14481{
14482 struct breakpoint_ops *ops;
14483
14484 initialize_breakpoint_ops ();
14485
14486 ops = &catch_exception_breakpoint_ops;
14487 *ops = bkpt_breakpoint_ops;
2060206e
PA
14488 ops->allocate_location = allocate_location_catch_exception;
14489 ops->re_set = re_set_catch_exception;
14490 ops->check_status = check_status_catch_exception;
14491 ops->print_it = print_it_catch_exception;
14492 ops->print_one = print_one_catch_exception;
14493 ops->print_mention = print_mention_catch_exception;
14494 ops->print_recreate = print_recreate_catch_exception;
14495
14496 ops = &catch_exception_unhandled_breakpoint_ops;
14497 *ops = bkpt_breakpoint_ops;
2060206e
PA
14498 ops->allocate_location = allocate_location_catch_exception_unhandled;
14499 ops->re_set = re_set_catch_exception_unhandled;
14500 ops->check_status = check_status_catch_exception_unhandled;
14501 ops->print_it = print_it_catch_exception_unhandled;
14502 ops->print_one = print_one_catch_exception_unhandled;
14503 ops->print_mention = print_mention_catch_exception_unhandled;
14504 ops->print_recreate = print_recreate_catch_exception_unhandled;
14505
14506 ops = &catch_assert_breakpoint_ops;
14507 *ops = bkpt_breakpoint_ops;
2060206e
PA
14508 ops->allocate_location = allocate_location_catch_assert;
14509 ops->re_set = re_set_catch_assert;
14510 ops->check_status = check_status_catch_assert;
14511 ops->print_it = print_it_catch_assert;
14512 ops->print_one = print_one_catch_assert;
14513 ops->print_mention = print_mention_catch_assert;
14514 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14515
14516 ops = &catch_handlers_breakpoint_ops;
14517 *ops = bkpt_breakpoint_ops;
14518 ops->allocate_location = allocate_location_catch_handlers;
14519 ops->re_set = re_set_catch_handlers;
14520 ops->check_status = check_status_catch_handlers;
14521 ops->print_it = print_it_catch_handlers;
14522 ops->print_one = print_one_catch_handlers;
14523 ops->print_mention = print_mention_catch_handlers;
14524 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14525}
14526
3d9434b5
JB
14527/* This module's 'new_objfile' observer. */
14528
14529static void
14530ada_new_objfile_observer (struct objfile *objfile)
14531{
14532 ada_clear_symbol_cache ();
14533}
14534
14535/* This module's 'free_objfile' observer. */
14536
14537static void
14538ada_free_objfile_observer (struct objfile *objfile)
14539{
14540 ada_clear_symbol_cache ();
14541}
14542
d2e4a39e 14543void
6c038f32 14544_initialize_ada_language (void)
14f9c5c9 14545{
2060206e
PA
14546 initialize_ada_catchpoint_ops ();
14547
5bf03f13 14548 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14549 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14550 &set_ada_list, "set ada ", 0, &setlist);
14551
14552 add_prefix_cmd ("ada", no_class, show_ada_command,
14553 _("Generic command for showing Ada-specific settings."),
14554 &show_ada_list, "show ada ", 0, &showlist);
14555
14556 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14557 &trust_pad_over_xvs, _("\
14558Enable or disable an optimization trusting PAD types over XVS types"), _("\
14559Show whether an optimization trusting PAD types over XVS types is activated"),
14560 _("\
14561This is related to the encoding used by the GNAT compiler. The debugger\n\
14562should normally trust the contents of PAD types, but certain older versions\n\
14563of GNAT have a bug that sometimes causes the information in the PAD type\n\
14564to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14565work around this bug. It is always safe to turn this option \"off\", but\n\
14566this incurs a slight performance penalty, so it is recommended to NOT change\n\
14567this option to \"off\" unless necessary."),
14568 NULL, NULL, &set_ada_list, &show_ada_list);
14569
d72413e6
PMR
14570 add_setshow_boolean_cmd ("print-signatures", class_vars,
14571 &print_signatures, _("\
14572Enable or disable the output of formal and return types for functions in the \
14573overloads selection menu"), _("\
14574Show whether the output of formal and return types for functions in the \
14575overloads selection menu is activated"),
14576 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14577
9ac4176b
PA
14578 add_catch_command ("exception", _("\
14579Catch Ada exceptions, when raised.\n\
60a90376
JB
14580Usage: catch exception [ ARG ]\n\
14581\n\
14582Without any argument, stop when any Ada exception is raised.\n\
14583If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14584being raised does not have a handler (and will therefore lead to the task's\n\
14585termination).\n\
14586Otherwise, the catchpoint only stops when the name of the exception being\n\
14587raised is the same as ARG."),
9ac4176b
PA
14588 catch_ada_exception_command,
14589 NULL,
14590 CATCH_PERMANENT,
14591 CATCH_TEMPORARY);
9f757bf7
XR
14592
14593 add_catch_command ("handlers", _("\
14594Catch Ada exceptions, when handled.\n\
14595With an argument, catch only exceptions with the given name."),
14596 catch_ada_handlers_command,
14597 NULL,
14598 CATCH_PERMANENT,
14599 CATCH_TEMPORARY);
9ac4176b
PA
14600 add_catch_command ("assert", _("\
14601Catch failed Ada assertions, when raised.\n\
14602With an argument, catch only exceptions with the given name."),
14603 catch_assert_command,
14604 NULL,
14605 CATCH_PERMANENT,
14606 CATCH_TEMPORARY);
14607
6c038f32 14608 varsize_limit = 65536;
3fcded8f
JB
14609 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14610 &varsize_limit, _("\
14611Set the maximum number of bytes allowed in a variable-size object."), _("\
14612Show the maximum number of bytes allowed in a variable-size object."), _("\
14613Attempts to access an object whose size is not a compile-time constant\n\
14614and exceeds this limit will cause an error."),
14615 NULL, NULL, &setlist, &showlist);
6c038f32 14616
778865d3
JB
14617 add_info ("exceptions", info_exceptions_command,
14618 _("\
14619List all Ada exception names.\n\
14620If a regular expression is passed as an argument, only those matching\n\
14621the regular expression are listed."));
14622
c6044dd1
JB
14623 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14624 _("Set Ada maintenance-related variables."),
14625 &maint_set_ada_cmdlist, "maintenance set ada ",
14626 0/*allow-unknown*/, &maintenance_set_cmdlist);
14627
14628 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14629 _("Show Ada maintenance-related variables"),
14630 &maint_show_ada_cmdlist, "maintenance show ada ",
14631 0/*allow-unknown*/, &maintenance_show_cmdlist);
14632
14633 add_setshow_boolean_cmd
14634 ("ignore-descriptive-types", class_maintenance,
14635 &ada_ignore_descriptive_types_p,
14636 _("Set whether descriptive types generated by GNAT should be ignored."),
14637 _("Show whether descriptive types generated by GNAT should be ignored."),
14638 _("\
14639When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14640DWARF attribute."),
14641 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14642
459a2e4c
TT
14643 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14644 NULL, xcalloc, xfree);
6b69afc4 14645
3d9434b5 14646 /* The ada-lang observers. */
76727919
TT
14647 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14648 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14649 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14650
14651 /* Setup various context-specific data. */
e802dbe0 14652 ada_inferior_data
8e260fc0 14653 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14654 ada_pspace_data_handle
14655 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14656}