]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
LD: Remove a stale `ldlex_command' prototype
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
227
228static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
d12307c1 231static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
232 struct value **, int, const char *,
233 struct type *);
234
4c4b4cd2
PH
235static int ada_is_direct_array_type (struct type *);
236
72d5681a
PH
237static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
714e53ab 239
52ce6436
PH
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
244 struct expression *,
245 int *, enum noside);
52ce6436
PH
246
247static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
852dff6c
JB
271
272static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
273
274static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
4c4b4cd2
PH
277\f
278
ee01b665
JB
279/* The result of a symbol lookup to be stored in our symbol cache. */
280
281struct cache_entry
282{
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
fe978cb0 286 domain_enum domain;
ee01b665
JB
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295};
296
297/* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306#define HASH_SIZE 1009
307
308struct ada_symbol_cache
309{
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315};
316
317static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 318
4c4b4cd2 319/* Maximum-sized dynamic type. */
14f9c5c9
AS
320static unsigned int varsize_limit;
321
67cb5b2d 322static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
323#ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325#else
14f9c5c9 326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 327#endif
14f9c5c9 328
4c4b4cd2 329/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 330static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 331 = "__gnat_ada_main_program_name";
14f9c5c9 332
4c4b4cd2
PH
333/* Limit on the number of warnings to raise per expression evaluation. */
334static int warning_limit = 2;
335
336/* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338static int warnings_issued = 0;
339
340static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342};
343
344static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346};
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
981a3fb3 356maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
981a3fb3 365maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
29480c32
JB
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
61012eef 1179 if (startswith (encoded, "_ada_"))
4c4b4cd2 1180 encoded += 5;
14f9c5c9 1181
29480c32
JB
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
4c4b4cd2 1185 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1186 goto Suppress;
1187
4c4b4cd2 1188 len0 = strlen (encoded);
4c4b4cd2 1189
29480c32
JB
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1192
4c4b4cd2
PH
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1199 {
1200 if (p[3] == 'X')
4c4b4cd2 1201 len0 = p - encoded;
14f9c5c9 1202 else
4c4b4cd2 1203 goto Suppress;
14f9c5c9 1204 }
4c4b4cd2 1205
29480c32
JB
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
61012eef 1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1211 len0 -= 3;
76a01679 1212
a10967fa
JB
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
61012eef 1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1218 len0 -= 2;
1219
29480c32
JB
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
61012eef 1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1224 len0 -= 1;
1225
4c4b4cd2 1226 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1227
4c4b4cd2
PH
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
14f9c5c9 1230
29480c32
JB
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
4c4b4cd2 1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1234 {
4c4b4cd2
PH
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
d2e4a39e 1243 }
14f9c5c9 1244
29480c32
JB
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
4c4b4cd2
PH
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
14f9c5c9
AS
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
29480c32 1254 /* Is this a symbol function? */
4c4b4cd2
PH
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
5b4ee69b 1258
4c4b4cd2
PH
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
14f9c5c9
AS
1276 at_start_name = 0;
1277
529cad9c
PH
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
61012eef 1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1282 i += 2;
529cad9c 1283
29480c32
JB
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
529cad9c
PH
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1306 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
4c4b4cd2
PH
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
29480c32
JB
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
4c4b4cd2
PH
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
cdc7bb92 1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1371 {
29480c32 1372 /* Replace '__' by '.'. */
4c4b4cd2
PH
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
14f9c5c9 1378 else
4c4b4cd2 1379 {
29480c32
JB
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
4c4b4cd2
PH
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
14f9c5c9 1386 }
4c4b4cd2 1387 decoded[j] = '\000';
14f9c5c9 1388
29480c32
JB
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
4c4b4cd2
PH
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1394 goto Suppress;
1395
4c4b4cd2
PH
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
14f9c5c9
AS
1400
1401Suppress:
4c4b4cd2
PH
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
14f9c5c9 1406 else
88c15c34 1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1408 return decoded;
1409
1410}
1411
1412/* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417static struct htab *decoded_names_store;
1418
1419/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1424 GSYMBOL).
4c4b4cd2
PH
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1427 when a decoded name is cached in it. */
4c4b4cd2 1428
45e6c716 1429const char *
f85f34ed 1430ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1431{
f85f34ed
TT
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
615b3f62 1434 &gsymbol->language_specific.demangled_name;
5b4ee69b 1435
f85f34ed 1436 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1439 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1440
f85f34ed 1441 gsymbol->ada_mangled = 1;
5b4ee69b 1442
f85f34ed 1443 if (obstack != NULL)
224c3ddb
SM
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1446 else
76a01679 1447 {
f85f34ed
TT
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
76a01679
JB
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
5b4ee69b 1455
76a01679
JB
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
4c4b4cd2 1460 }
14f9c5c9 1461
4c4b4cd2
PH
1462 return *resultp;
1463}
76a01679 1464
2c0b251b 1465static char *
76a01679 1466ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1467{
1468 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1469}
1470
8b302db8
TT
1471/* Implement la_sniff_from_mangled_name for Ada. */
1472
1473static int
1474ada_sniff_from_mangled_name (const char *mangled, char **out)
1475{
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508}
1509
14f9c5c9 1510\f
d2e4a39e 1511
4c4b4cd2 1512 /* Arrays */
14f9c5c9 1513
28c85d6c
JB
1514/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537void
1538ada_fixup_array_indexes_type (struct type *index_desc_type)
1539{
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
0d5cff50 1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567}
1568
4c4b4cd2 1569/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1570
a121b7c1 1571static const char *bound_name[] = {
d2e4a39e 1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574};
1575
1576/* Maximum number of array dimensions we are prepared to handle. */
1577
4c4b4cd2 1578#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1579
14f9c5c9 1580
4c4b4cd2
PH
1581/* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
14f9c5c9
AS
1583
1584/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1585 level of indirection, if needed. */
1586
d2e4a39e
AS
1587static struct type *
1588desc_base_type (struct type *type)
14f9c5c9
AS
1589{
1590 if (type == NULL)
1591 return NULL;
61ee279c 1592 type = ada_check_typedef (type);
720d1a40
JB
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1265e4aa
JB
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1600 else
1601 return type;
1602}
1603
4c4b4cd2
PH
1604/* True iff TYPE indicates a "thin" array pointer type. */
1605
14f9c5c9 1606static int
d2e4a39e 1607is_thin_pntr (struct type *type)
14f9c5c9 1608{
d2e4a39e 1609 return
14f9c5c9
AS
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612}
1613
4c4b4cd2
PH
1614/* The descriptor type for thin pointer type TYPE. */
1615
d2e4a39e
AS
1616static struct type *
1617thin_descriptor_type (struct type *type)
14f9c5c9 1618{
d2e4a39e 1619 struct type *base_type = desc_base_type (type);
5b4ee69b 1620
14f9c5c9
AS
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
d2e4a39e 1625 else
14f9c5c9 1626 {
d2e4a39e 1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1628
14f9c5c9 1629 if (alt_type == NULL)
4c4b4cd2 1630 return base_type;
14f9c5c9 1631 else
4c4b4cd2 1632 return alt_type;
14f9c5c9
AS
1633 }
1634}
1635
4c4b4cd2
PH
1636/* A pointer to the array data for thin-pointer value VAL. */
1637
d2e4a39e
AS
1638static struct value *
1639thin_data_pntr (struct value *val)
14f9c5c9 1640{
828292f2 1641 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1643
556bdfd4
UW
1644 data_type = lookup_pointer_type (data_type);
1645
14f9c5c9 1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1647 return value_cast (data_type, value_copy (val));
d2e4a39e 1648 else
42ae5230 1649 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1650}
1651
4c4b4cd2
PH
1652/* True iff TYPE indicates a "thick" array pointer type. */
1653
14f9c5c9 1654static int
d2e4a39e 1655is_thick_pntr (struct type *type)
14f9c5c9
AS
1656{
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1660}
1661
4c4b4cd2
PH
1662/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1664
d2e4a39e
AS
1665static struct type *
1666desc_bounds_type (struct type *type)
14f9c5c9 1667{
d2e4a39e 1668 struct type *r;
14f9c5c9
AS
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
4c4b4cd2 1678 return NULL;
14f9c5c9
AS
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
61ee279c 1681 return ada_check_typedef (r);
14f9c5c9
AS
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
61ee279c 1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1688 }
1689 return NULL;
1690}
1691
1692/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_bounds (struct value *arr)
14f9c5c9 1697{
df407dfe 1698 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1699
d2e4a39e 1700 if (is_thin_pntr (type))
14f9c5c9 1701 {
d2e4a39e 1702 struct type *bounds_type =
4c4b4cd2 1703 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1704 LONGEST addr;
1705
4cdfadb1 1706 if (bounds_type == NULL)
323e0a4a 1707 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1708
1709 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1710 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1711 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1713 addr = value_as_long (arr);
d2e4a39e 1714 else
42ae5230 1715 addr = value_address (arr);
14f9c5c9 1716
d2e4a39e 1717 return
4c4b4cd2
PH
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1720 }
1721
1722 else if (is_thick_pntr (type))
05e522ef
JB
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
14f9c5c9
AS
1743 else
1744 return NULL;
1745}
1746
4c4b4cd2
PH
1747/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
14f9c5c9 1750static int
d2e4a39e 1751fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1752{
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754}
1755
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1757 size of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1761{
1762 type = desc_base_type (type);
1763
d2e4a39e 1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
61ee279c 1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1768}
1769
4c4b4cd2 1770/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
4c4b4cd2 1774
d2e4a39e 1775static struct type *
556bdfd4 1776desc_data_target_type (struct type *type)
14f9c5c9
AS
1777{
1778 type = desc_base_type (type);
1779
4c4b4cd2 1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1781 if (is_thin_pntr (type))
556bdfd4 1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1783 else if (is_thick_pntr (type))
556bdfd4
UW
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1790 }
1791
1792 return NULL;
14f9c5c9
AS
1793}
1794
1795/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
4c4b4cd2 1797
d2e4a39e
AS
1798static struct value *
1799desc_data (struct value *arr)
14f9c5c9 1800{
df407dfe 1801 struct type *type = value_type (arr);
5b4ee69b 1802
14f9c5c9
AS
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
d2e4a39e 1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1807 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1808 else
1809 return NULL;
1810}
1811
1812
1813/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1814 position of the field containing the address of the data. */
1815
14f9c5c9 1816static int
d2e4a39e 1817fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1818{
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820}
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 size of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1827{
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1832 else
14f9c5c9
AS
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834}
1835
4c4b4cd2 1836/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
d2e4a39e
AS
1840static struct value *
1841desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1842{
d2e4a39e 1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1844 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1845}
1846
1847/* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1853{
d2e4a39e 1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1855}
1856
1857/* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
76a01679 1861static int
d2e4a39e 1862desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1863{
1864 type = desc_base_type (type);
1865
d2e4a39e
AS
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1870}
1871
1872/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
d2e4a39e
AS
1875static struct type *
1876desc_index_type (struct type *type, int i)
14f9c5c9
AS
1877{
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
14f9c5c9
AS
1883 return NULL;
1884}
1885
4c4b4cd2
PH
1886/* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
14f9c5c9 1889static int
d2e4a39e 1890desc_arity (struct type *type)
14f9c5c9
AS
1891{
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897}
1898
4c4b4cd2
PH
1899/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
76a01679
JB
1903static int
1904ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1905{
1906 if (type == NULL)
1907 return 0;
61ee279c 1908 type = ada_check_typedef (type);
4c4b4cd2 1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1910 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1911}
1912
52ce6436 1913/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1914 * to one. */
52ce6436 1915
2c0b251b 1916static int
52ce6436
PH
1917ada_is_array_type (struct type *type)
1918{
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924}
1925
4c4b4cd2 1926/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1927
14f9c5c9 1928int
4c4b4cd2 1929ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1930{
1931 if (type == NULL)
1932 return 0;
61ee279c 1933 type = ada_check_typedef (type);
14f9c5c9 1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1938}
1939
4c4b4cd2
PH
1940/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
14f9c5c9 1942int
4c4b4cd2 1943ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1944{
556bdfd4 1945 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1946
1947 if (type == NULL)
1948 return 0;
61ee279c 1949 type = ada_check_typedef (type);
556bdfd4
UW
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1953}
1954
1955/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1956 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1957 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1958 is still needed. */
1959
14f9c5c9 1960int
ebf56fd3 1961ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1962{
d2e4a39e 1963 return
14f9c5c9
AS
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1969}
1970
1971
4c4b4cd2 1972/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1973 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1975 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1978 a descriptor. */
d2e4a39e
AS
1979struct type *
1980ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1984
df407dfe
AC
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
d2e4a39e
AS
1987
1988 if (!bounds)
ad82864c
JB
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
14f9c5c9
AS
1999 else
2000 {
d2e4a39e 2001 struct type *elt_type;
14f9c5c9 2002 int arity;
d2e4a39e 2003 struct value *descriptor;
14f9c5c9 2004
df407dfe
AC
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
14f9c5c9 2007
d2e4a39e 2008 if (elt_type == NULL || arity == 0)
df407dfe 2009 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2010
2011 descriptor = desc_bounds (arr);
d2e4a39e 2012 if (value_as_long (descriptor) == 0)
4c4b4cd2 2013 return NULL;
d2e4a39e 2014 while (arity > 0)
4c4b4cd2 2015 {
e9bb382b
UW
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2020
5b4ee69b 2021 arity -= 1;
0c9c3474
SA
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
4c4b4cd2 2025 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
4c4b4cd2 2047 }
14f9c5c9
AS
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051}
2052
2053/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
d2e4a39e
AS
2058struct value *
2059ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2060{
df407dfe 2061 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2062 {
d2e4a39e 2063 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2064
14f9c5c9 2065 if (arrType == NULL)
4c4b4cd2 2066 return NULL;
14f9c5c9
AS
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
ad82864c
JB
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2071 else
2072 return arr;
2073}
2074
2075/* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2077 be ARR itself if it already is in the proper form). */
2078
720d1a40 2079struct value *
d2e4a39e 2080ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2081{
df407dfe 2082 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2083 {
d2e4a39e 2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2085
14f9c5c9 2086 if (arrVal == NULL)
323e0a4a 2087 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2089 return value_ind (arrVal);
2090 }
ad82864c
JB
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
d2e4a39e 2093 else
14f9c5c9
AS
2094 return arr;
2095}
2096
2097/* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2099 packing). For other types, is the identity. */
2100
d2e4a39e
AS
2101struct type *
2102ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2103{
ad82864c
JB
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
17280b9f
UW
2106
2107 if (ada_is_array_descriptor_type (type))
556bdfd4 2108 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2109
2110 return type;
14f9c5c9
AS
2111}
2112
4c4b4cd2
PH
2113/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
ad82864c
JB
2115static int
2116ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2117{
2118 if (type == NULL)
2119 return 0;
4c4b4cd2 2120 type = desc_base_type (type);
61ee279c 2121 type = ada_check_typedef (type);
d2e4a39e 2122 return
14f9c5c9
AS
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125}
2126
ad82864c
JB
2127/* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130int
2131ada_is_constrained_packed_array_type (struct type *type)
2132{
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135}
2136
2137/* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140static int
2141ada_is_unconstrained_packed_array_type (struct type *type)
2142{
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145}
2146
2147/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150static long
2151decode_packed_array_bitsize (struct type *type)
2152{
0d5cff50
DE
2153 const char *raw_name;
2154 const char *tail;
ad82864c
JB
2155 long bits;
2156
720d1a40
JB
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
720d1a40 2171 gdb_assert (tail != NULL);
ad82864c
JB
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181}
2182
14f9c5c9
AS
2183/* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2202{
d2e4a39e
AS
2203 struct type *new_elt_type;
2204 struct type *new_type;
99b1c762
JB
2205 struct type *index_type_desc;
2206 struct type *index_type;
14f9c5c9
AS
2207 LONGEST low_bound, high_bound;
2208
61ee279c 2209 type = ada_check_typedef (type);
14f9c5c9
AS
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
99b1c762
JB
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
e9bb382b 2220 new_type = alloc_type_copy (type);
ad82864c
JB
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
99b1c762 2224 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
4a46959e
JB
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2234 else
14f9c5c9
AS
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2237 TYPE_LENGTH (new_type) =
4c4b4cd2 2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2239 }
2240
876cecd0 2241 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2242 return new_type;
2243}
2244
ad82864c
JB
2245/* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2247
d2e4a39e 2248static struct type *
ad82864c 2249decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2250{
0d5cff50 2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2252 char *name;
0d5cff50 2253 const char *tail;
d2e4a39e 2254 struct type *shadow_type;
14f9c5c9 2255 long bits;
14f9c5c9 2256
727e3d2e
JB
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2265 type = desc_base_type (type);
2266
14f9c5c9
AS
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
b4ba55a1
JB
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
14f9c5c9 2273 {
323e0a4a 2274 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2275 return NULL;
2276 }
f168693b 2277 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
0963b4bd
MS
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
14f9c5c9
AS
2283 return NULL;
2284 }
d2e4a39e 2285
ad82864c
JB
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2288}
2289
ad82864c
JB
2290/* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
4c4b4cd2 2294 type length is set appropriately. */
14f9c5c9 2295
d2e4a39e 2296static struct value *
ad82864c 2297decode_constrained_packed_array (struct value *arr)
14f9c5c9 2298{
4c4b4cd2 2299 struct type *type;
14f9c5c9 2300
11aa919a
PMR
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
828292f2 2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2310 arr = value_ind (arr);
4c4b4cd2 2311
ad82864c 2312 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2313 if (type == NULL)
2314 {
323e0a4a 2315 error (_("can't unpack array"));
14f9c5c9
AS
2316 return NULL;
2317 }
61ee279c 2318
50810684 2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2320 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
df407dfe 2329 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
df407dfe 2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
4c4b4cd2 2344 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2345}
2346
2347
2348/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2349 given in IND. ARR must be a simple array. */
14f9c5c9 2350
d2e4a39e
AS
2351static struct value *
2352value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2353{
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
d2e4a39e
AS
2357 struct type *elt_type;
2358 struct value *v;
14f9c5c9
AS
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
df407dfe 2362 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2363 for (i = 0; i < arity; i += 1)
14f9c5c9 2364 {
d2e4a39e 2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
0963b4bd
MS
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
14f9c5c9 2370 else
4c4b4cd2
PH
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
323e0a4a 2378 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2379 lowerbound = upperbound = 0;
2380 }
2381
3cb382c9 2382 idx = pos_atr (ind[i]);
4c4b4cd2 2383 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
4c4b4cd2
PH
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2389 }
14f9c5c9
AS
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2395 bits, elt_type);
14f9c5c9
AS
2396 return v;
2397}
2398
4c4b4cd2 2399/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2400
2401static int
d2e4a39e 2402has_negatives (struct type *type)
14f9c5c9 2403{
d2e4a39e
AS
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
14f9c5c9 2413}
d2e4a39e 2414
f93fca70 2415/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2417 the unpacked buffer.
14f9c5c9 2418
5b639dea
JB
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
f93fca70
JB
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
14f9c5c9 2424
f93fca70 2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2426
f93fca70
JB
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429static void
2430ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434{
a1c95e6b
JB
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
a1c95e6b
JB
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
4c4b4cd2 2445 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2446 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2447 unsigned char sign;
a1c95e6b 2448
4c4b4cd2
PH
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
f93fca70 2451 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2452
5b639dea
JB
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
14f9c5c9 2459 srcBitsLeft = bit_size;
086ca51f 2460 src_bytes_left = src_len;
f93fca70 2461 unpacked_bytes_left = unpacked_len;
14f9c5c9 2462 sign = 0;
f93fca70
JB
2463
2464 if (is_big_endian)
14f9c5c9 2465 {
086ca51f 2466 src_idx = src_len - 1;
f93fca70
JB
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2469 sign = ~0;
d2e4a39e
AS
2470
2471 unusedLS =
4c4b4cd2
PH
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
14f9c5c9 2474
f93fca70
JB
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
4c4b4cd2
PH
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
086ca51f
JB
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2489 }
14f9c5c9 2490 }
d2e4a39e 2491 else
14f9c5c9
AS
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
086ca51f 2495 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
f93fca70 2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2500 sign = ~0;
14f9c5c9 2501 }
d2e4a39e 2502
14f9c5c9 2503 accum = 0;
086ca51f 2504 while (src_bytes_left > 0)
14f9c5c9
AS
2505 {
2506 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2507 part of the value. */
d2e4a39e 2508 unsigned int unusedMSMask =
4c4b4cd2
PH
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
14f9c5c9 2512 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2513
d2e4a39e 2514 accum |=
086ca51f 2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2516 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2517 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2518 {
db297a65 2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
4c4b4cd2 2524 }
14f9c5c9
AS
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
086ca51f
JB
2527 src_bytes_left -= 1;
2528 src_idx += delta;
14f9c5c9 2529 }
086ca51f 2530 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2531 {
2532 accum |= sign << accumSize;
db297a65 2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2534 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2535 if (accumSize < 0)
2536 accumSize = 0;
14f9c5c9 2537 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
14f9c5c9 2540 }
f93fca70
JB
2541}
2542
2543/* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552struct value *
2553ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556{
2557 struct value *v;
bfb1c796 2558 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2559 gdb_byte *unpacked;
220475ed 2560 const int is_scalar = is_scalar_type (type);
d0a9e810 2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2562 gdb::byte_vector staging;
f93fca70
JB
2563
2564 type = ada_check_typedef (type);
2565
d0a9e810 2566 if (obj == NULL)
bfb1c796 2567 src = valaddr + offset;
d0a9e810 2568 else
bfb1c796 2569 src = value_contents (obj) + offset;
d0a9e810
JB
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
d0a9e810
JB
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2584 staging.data (), staging.size (),
d0a9e810
JB
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
d5722aa2 2587 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
d0a9e810
JB
2599 }
2600
f93fca70
JB
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
bfb1c796 2604 src = valaddr + offset;
f93fca70
JB
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
0cafa88c 2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2609 gdb_byte *buf;
0cafa88c 2610
f93fca70 2611 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
f93fca70
JB
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
bfb1c796 2619 src = value_contents (obj) + offset;
f93fca70
JB
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
bfb1c796 2642 unpacked = value_contents_writeable (v);
f93fca70
JB
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
d5722aa2 2650 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2651 {
d0a9e810
JB
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
d5722aa2 2655 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2656 }
d0a9e810
JB
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2661
14f9c5c9
AS
2662 return v;
2663}
d2e4a39e 2664
14f9c5c9
AS
2665/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2667 not overlap. */
14f9c5c9 2668static void
fc1a4b47 2669move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2670 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2671{
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
50810684 2679 if (bits_big_endian_p)
14f9c5c9
AS
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
d2e4a39e 2685 while (n > 0)
4c4b4cd2
PH
2686 {
2687 int unused_right;
5b4ee69b 2688
4c4b4cd2
PH
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
14f9c5c9
AS
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
d2e4a39e 2712 while (n > 0)
4c4b4cd2
PH
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
14f9c5c9
AS
2728 }
2729}
2730
14f9c5c9
AS
2731/* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2734 floating-point or non-scalar types. */
14f9c5c9 2735
d2e4a39e
AS
2736static struct value *
2737ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2738{
df407dfe
AC
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
14f9c5c9 2741
52ce6436
PH
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
88e3b34b 2750 if (!deprecated_value_modifiable (toval))
323e0a4a 2751 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2752
d2e4a39e 2753 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2754 && bits > 0
d2e4a39e 2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2757 {
df407dfe
AC
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2760 int from_size;
224c3ddb 2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2762 struct value *val;
42ae5230 2763 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2766 fromval = value_cast (type, fromval);
14f9c5c9 2767
52ce6436 2768 read_memory (to_addr, buffer, len);
aced2898
PH
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2773 move_bits (buffer, value_bitpos (toval),
50810684 2774 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2775 else
50810684
UW
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
972daa01 2778 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2779
14f9c5c9 2780 val = value_copy (toval);
0fd88904 2781 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2782 TYPE_LENGTH (type));
04624583 2783 deprecated_set_value_type (val, type);
d2e4a39e 2784
14f9c5c9
AS
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789}
2790
2791
7c512744
JB
2792/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
52ce6436
PH
2803static void
2804value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806{
2807 LONGEST offset_in_container =
42ae5230 2808 (LONGEST) (value_address (component) - value_address (container));
7c512744 2809 int bit_offset_in_container =
52ce6436
PH
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
7c512744 2812
52ce6436
PH
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
50810684 2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2821 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2825 bits, 1);
52ce6436 2826 else
7c512744 2827 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2828 value_bitpos (container) + bit_offset_in_container,
50810684 2829 value_contents (val), 0, bits, 0);
7c512744
JB
2830}
2831
4c4b4cd2
PH
2832/* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2834 thereto. */
2835
d2e4a39e
AS
2836struct value *
2837ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2838{
2839 int k;
d2e4a39e
AS
2840 struct value *elt;
2841 struct type *elt_type;
14f9c5c9
AS
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
df407dfe 2845 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2853 error (_("too many subscripts (%d expected)"), k);
2497b498 2854 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2855 }
2856 return elt;
2857}
2858
deede10c
JB
2859/* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
14f9c5c9 2870
2c0b251b 2871static struct value *
deede10c 2872ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2873{
2874 int k;
919e6dbe 2875 struct value *array_ind = ada_value_ind (arr);
deede10c 2876 struct type *type
919e6dbe
PMR
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
aa715135 2886 struct value *lwb_value;
14f9c5c9
AS
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2889 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2891 value_copy (arr));
14f9c5c9 2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899}
2900
0b5d8877 2901/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
0b5d8877 2905static struct value *
f5938064
JG
2906ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
0b5d8877 2908{
b0dd7688 2909 struct type *type0 = ada_check_typedef (type);
aa715135 2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2911 struct type *index_type
aa715135 2912 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2913 struct type *slice_type = create_array_type_with_stride
2914 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2915 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2916 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2917 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2918 LONGEST base_low_pos, low_pos;
2919 CORE_ADDR base;
2920
2921 if (!discrete_position (base_index_type, low, &low_pos)
2922 || !discrete_position (base_index_type, base_low, &base_low_pos))
2923 {
2924 warning (_("unable to get positions in slice, use bounds instead"));
2925 low_pos = low;
2926 base_low_pos = base_low;
2927 }
5b4ee69b 2928
aa715135
JG
2929 base = value_as_address (array_ptr)
2930 + ((low_pos - base_low_pos)
2931 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2932 return value_at_lazy (slice_type, base);
0b5d8877
PH
2933}
2934
2935
2936static struct value *
2937ada_value_slice (struct value *array, int low, int high)
2938{
b0dd7688 2939 struct type *type = ada_check_typedef (value_type (array));
aa715135 2940 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2941 struct type *index_type
2942 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2943 struct type *slice_type = create_array_type_with_stride
2944 (NULL, TYPE_TARGET_TYPE (type), index_type,
2945 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2946 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2947 LONGEST low_pos, high_pos;
5b4ee69b 2948
aa715135
JG
2949 if (!discrete_position (base_index_type, low, &low_pos)
2950 || !discrete_position (base_index_type, high, &high_pos))
2951 {
2952 warning (_("unable to get positions in slice, use bounds instead"));
2953 low_pos = low;
2954 high_pos = high;
2955 }
2956
2957 return value_cast (slice_type,
2958 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2959}
2960
14f9c5c9
AS
2961/* If type is a record type in the form of a standard GNAT array
2962 descriptor, returns the number of dimensions for type. If arr is a
2963 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2964 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2965
2966int
d2e4a39e 2967ada_array_arity (struct type *type)
14f9c5c9
AS
2968{
2969 int arity;
2970
2971 if (type == NULL)
2972 return 0;
2973
2974 type = desc_base_type (type);
2975
2976 arity = 0;
d2e4a39e 2977 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2978 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2979 else
2980 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2981 {
4c4b4cd2 2982 arity += 1;
61ee279c 2983 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2984 }
d2e4a39e 2985
14f9c5c9
AS
2986 return arity;
2987}
2988
2989/* If TYPE is a record type in the form of a standard GNAT array
2990 descriptor or a simple array type, returns the element type for
2991 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2992 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2993
d2e4a39e
AS
2994struct type *
2995ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2996{
2997 type = desc_base_type (type);
2998
d2e4a39e 2999 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3000 {
3001 int k;
d2e4a39e 3002 struct type *p_array_type;
14f9c5c9 3003
556bdfd4 3004 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3005
3006 k = ada_array_arity (type);
3007 if (k == 0)
4c4b4cd2 3008 return NULL;
d2e4a39e 3009
4c4b4cd2 3010 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3011 if (nindices >= 0 && k > nindices)
4c4b4cd2 3012 k = nindices;
d2e4a39e 3013 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3014 {
61ee279c 3015 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3016 k -= 1;
3017 }
14f9c5c9
AS
3018 return p_array_type;
3019 }
3020 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3021 {
3022 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3023 {
3024 type = TYPE_TARGET_TYPE (type);
3025 nindices -= 1;
3026 }
14f9c5c9
AS
3027 return type;
3028 }
3029
3030 return NULL;
3031}
3032
4c4b4cd2 3033/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3034 Does not examine memory. Throws an error if N is invalid or TYPE
3035 is not an array type. NAME is the name of the Ada attribute being
3036 evaluated ('range, 'first, 'last, or 'length); it is used in building
3037 the error message. */
14f9c5c9 3038
1eea4ebd
UW
3039static struct type *
3040ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3041{
4c4b4cd2
PH
3042 struct type *result_type;
3043
14f9c5c9
AS
3044 type = desc_base_type (type);
3045
1eea4ebd
UW
3046 if (n < 0 || n > ada_array_arity (type))
3047 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3048
4c4b4cd2 3049 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3050 {
3051 int i;
3052
3053 for (i = 1; i < n; i += 1)
4c4b4cd2 3054 type = TYPE_TARGET_TYPE (type);
262452ec 3055 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3056 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3057 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3058 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3059 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = NULL;
14f9c5c9 3061 }
d2e4a39e 3062 else
1eea4ebd
UW
3063 {
3064 result_type = desc_index_type (desc_bounds_type (type), n);
3065 if (result_type == NULL)
3066 error (_("attempt to take bound of something that is not an array"));
3067 }
3068
3069 return result_type;
14f9c5c9
AS
3070}
3071
3072/* Given that arr is an array type, returns the lower bound of the
3073 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3074 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3075 array-descriptor type. It works for other arrays with bounds supplied
3076 by run-time quantities other than discriminants. */
14f9c5c9 3077
abb68b3e 3078static LONGEST
fb5e3d5c 3079ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3080{
8a48ac95 3081 struct type *type, *index_type_desc, *index_type;
1ce677a4 3082 int i;
262452ec
JK
3083
3084 gdb_assert (which == 0 || which == 1);
14f9c5c9 3085
ad82864c
JB
3086 if (ada_is_constrained_packed_array_type (arr_type))
3087 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3088
4c4b4cd2 3089 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3090 return (LONGEST) - which;
14f9c5c9
AS
3091
3092 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3093 type = TYPE_TARGET_TYPE (arr_type);
3094 else
3095 type = arr_type;
3096
bafffb51
JB
3097 if (TYPE_FIXED_INSTANCE (type))
3098 {
3099 /* The array has already been fixed, so we do not need to
3100 check the parallel ___XA type again. That encoding has
3101 already been applied, so ignore it now. */
3102 index_type_desc = NULL;
3103 }
3104 else
3105 {
3106 index_type_desc = ada_find_parallel_type (type, "___XA");
3107 ada_fixup_array_indexes_type (index_type_desc);
3108 }
3109
262452ec 3110 if (index_type_desc != NULL)
28c85d6c
JB
3111 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3112 NULL);
262452ec 3113 else
8a48ac95
JB
3114 {
3115 struct type *elt_type = check_typedef (type);
3116
3117 for (i = 1; i < n; i++)
3118 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3119
3120 index_type = TYPE_INDEX_TYPE (elt_type);
3121 }
262452ec 3122
43bbcdc2
PH
3123 return
3124 (LONGEST) (which == 0
3125 ? ada_discrete_type_low_bound (index_type)
3126 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3127}
3128
3129/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3130 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3131 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3132 supplied by run-time quantities other than discriminants. */
14f9c5c9 3133
1eea4ebd 3134static LONGEST
4dc81987 3135ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3136{
eb479039
JB
3137 struct type *arr_type;
3138
3139 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3140 arr = value_ind (arr);
3141 arr_type = value_enclosing_type (arr);
14f9c5c9 3142
ad82864c
JB
3143 if (ada_is_constrained_packed_array_type (arr_type))
3144 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3145 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3146 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3147 else
1eea4ebd 3148 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3149}
3150
3151/* Given that arr is an array value, returns the length of the
3152 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3153 supplied by run-time quantities other than discriminants.
3154 Does not work for arrays indexed by enumeration types with representation
3155 clauses at the moment. */
14f9c5c9 3156
1eea4ebd 3157static LONGEST
d2e4a39e 3158ada_array_length (struct value *arr, int n)
14f9c5c9 3159{
aa715135
JG
3160 struct type *arr_type, *index_type;
3161 int low, high;
eb479039
JB
3162
3163 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3164 arr = value_ind (arr);
3165 arr_type = value_enclosing_type (arr);
14f9c5c9 3166
ad82864c
JB
3167 if (ada_is_constrained_packed_array_type (arr_type))
3168 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3169
4c4b4cd2 3170 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3171 {
3172 low = ada_array_bound_from_type (arr_type, n, 0);
3173 high = ada_array_bound_from_type (arr_type, n, 1);
3174 }
14f9c5c9 3175 else
aa715135
JG
3176 {
3177 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3178 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3179 }
3180
f168693b 3181 arr_type = check_typedef (arr_type);
7150d33c 3182 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3183 if (index_type != NULL)
3184 {
3185 struct type *base_type;
3186 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3187 base_type = TYPE_TARGET_TYPE (index_type);
3188 else
3189 base_type = index_type;
3190
3191 low = pos_atr (value_from_longest (base_type, low));
3192 high = pos_atr (value_from_longest (base_type, high));
3193 }
3194 return high - low + 1;
4c4b4cd2
PH
3195}
3196
3197/* An empty array whose type is that of ARR_TYPE (an array type),
3198 with bounds LOW to LOW-1. */
3199
3200static struct value *
3201empty_array (struct type *arr_type, int low)
3202{
b0dd7688 3203 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3204 struct type *index_type
3205 = create_static_range_type
3206 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3207 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3208
0b5d8877 3209 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3210}
14f9c5c9 3211\f
d2e4a39e 3212
4c4b4cd2 3213 /* Name resolution */
14f9c5c9 3214
4c4b4cd2
PH
3215/* The "decoded" name for the user-definable Ada operator corresponding
3216 to OP. */
14f9c5c9 3217
d2e4a39e 3218static const char *
4c4b4cd2 3219ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3220{
3221 int i;
3222
4c4b4cd2 3223 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3224 {
3225 if (ada_opname_table[i].op == op)
4c4b4cd2 3226 return ada_opname_table[i].decoded;
14f9c5c9 3227 }
323e0a4a 3228 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3229}
3230
3231
4c4b4cd2
PH
3232/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3233 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3234 undefined namespace) and converts operators that are
3235 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3236 non-null, it provides a preferred result type [at the moment, only
3237 type void has any effect---causing procedures to be preferred over
3238 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3239 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3240
4c4b4cd2 3241static void
e9d9f57e 3242resolve (expression_up *expp, int void_context_p)
14f9c5c9 3243{
30b15541
UW
3244 struct type *context_type = NULL;
3245 int pc = 0;
3246
3247 if (void_context_p)
3248 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3249
3250 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3251}
3252
4c4b4cd2
PH
3253/* Resolve the operator of the subexpression beginning at
3254 position *POS of *EXPP. "Resolving" consists of replacing
3255 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3256 with their resolutions, replacing built-in operators with
3257 function calls to user-defined operators, where appropriate, and,
3258 when DEPROCEDURE_P is non-zero, converting function-valued variables
3259 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3260 are as in ada_resolve, above. */
14f9c5c9 3261
d2e4a39e 3262static struct value *
e9d9f57e 3263resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3264 struct type *context_type)
14f9c5c9
AS
3265{
3266 int pc = *pos;
3267 int i;
4c4b4cd2 3268 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3269 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3270 struct value **argvec; /* Vector of operand types (alloca'ed). */
3271 int nargs; /* Number of operands. */
52ce6436 3272 int oplen;
ec6a20c2 3273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
14f9c5c9
AS
3274
3275 argvec = NULL;
3276 nargs = 0;
e9d9f57e 3277 exp = expp->get ();
14f9c5c9 3278
52ce6436
PH
3279 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if needed. */
14f9c5c9
AS
3281 switch (op)
3282 {
4c4b4cd2
PH
3283 case OP_FUNCALL:
3284 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3285 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 *pos += 7;
4c4b4cd2
PH
3287 else
3288 {
3289 *pos += 3;
3290 resolve_subexp (expp, pos, 0, NULL);
3291 }
3292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3293 break;
3294
14f9c5c9 3295 case UNOP_ADDR:
4c4b4cd2
PH
3296 *pos += 1;
3297 resolve_subexp (expp, pos, 0, NULL);
3298 break;
3299
52ce6436
PH
3300 case UNOP_QUAL:
3301 *pos += 3;
17466c1a 3302 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3303 break;
3304
52ce6436 3305 case OP_ATR_MODULUS:
4c4b4cd2
PH
3306 case OP_ATR_SIZE:
3307 case OP_ATR_TAG:
4c4b4cd2
PH
3308 case OP_ATR_FIRST:
3309 case OP_ATR_LAST:
3310 case OP_ATR_LENGTH:
3311 case OP_ATR_POS:
3312 case OP_ATR_VAL:
4c4b4cd2
PH
3313 case OP_ATR_MIN:
3314 case OP_ATR_MAX:
52ce6436
PH
3315 case TERNOP_IN_RANGE:
3316 case BINOP_IN_BOUNDS:
3317 case UNOP_IN_RANGE:
3318 case OP_AGGREGATE:
3319 case OP_OTHERS:
3320 case OP_CHOICES:
3321 case OP_POSITIONAL:
3322 case OP_DISCRETE_RANGE:
3323 case OP_NAME:
3324 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3325 *pos += oplen;
14f9c5c9
AS
3326 break;
3327
3328 case BINOP_ASSIGN:
3329 {
4c4b4cd2
PH
3330 struct value *arg1;
3331
3332 *pos += 1;
3333 arg1 = resolve_subexp (expp, pos, 0, NULL);
3334 if (arg1 == NULL)
3335 resolve_subexp (expp, pos, 1, NULL);
3336 else
df407dfe 3337 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3338 break;
14f9c5c9
AS
3339 }
3340
4c4b4cd2 3341 case UNOP_CAST:
4c4b4cd2
PH
3342 *pos += 3;
3343 nargs = 1;
3344 break;
14f9c5c9 3345
4c4b4cd2
PH
3346 case BINOP_ADD:
3347 case BINOP_SUB:
3348 case BINOP_MUL:
3349 case BINOP_DIV:
3350 case BINOP_REM:
3351 case BINOP_MOD:
3352 case BINOP_EXP:
3353 case BINOP_CONCAT:
3354 case BINOP_LOGICAL_AND:
3355 case BINOP_LOGICAL_OR:
3356 case BINOP_BITWISE_AND:
3357 case BINOP_BITWISE_IOR:
3358 case BINOP_BITWISE_XOR:
14f9c5c9 3359
4c4b4cd2
PH
3360 case BINOP_EQUAL:
3361 case BINOP_NOTEQUAL:
3362 case BINOP_LESS:
3363 case BINOP_GTR:
3364 case BINOP_LEQ:
3365 case BINOP_GEQ:
14f9c5c9 3366
4c4b4cd2
PH
3367 case BINOP_REPEAT:
3368 case BINOP_SUBSCRIPT:
3369 case BINOP_COMMA:
40c8aaa9
JB
3370 *pos += 1;
3371 nargs = 2;
3372 break;
14f9c5c9 3373
4c4b4cd2
PH
3374 case UNOP_NEG:
3375 case UNOP_PLUS:
3376 case UNOP_LOGICAL_NOT:
3377 case UNOP_ABS:
3378 case UNOP_IND:
3379 *pos += 1;
3380 nargs = 1;
3381 break;
14f9c5c9 3382
4c4b4cd2 3383 case OP_LONG:
edd079d9 3384 case OP_FLOAT:
4c4b4cd2 3385 case OP_VAR_VALUE:
74ea4be4 3386 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3387 *pos += 4;
3388 break;
14f9c5c9 3389
4c4b4cd2
PH
3390 case OP_TYPE:
3391 case OP_BOOL:
3392 case OP_LAST:
4c4b4cd2
PH
3393 case OP_INTERNALVAR:
3394 *pos += 3;
3395 break;
14f9c5c9 3396
4c4b4cd2
PH
3397 case UNOP_MEMVAL:
3398 *pos += 3;
3399 nargs = 1;
3400 break;
3401
67f3407f
DJ
3402 case OP_REGISTER:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 break;
3405
4c4b4cd2
PH
3406 case STRUCTOP_STRUCT:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 nargs = 1;
3409 break;
3410
4c4b4cd2 3411 case TERNOP_SLICE:
4c4b4cd2
PH
3412 *pos += 1;
3413 nargs = 3;
3414 break;
3415
52ce6436 3416 case OP_STRING:
14f9c5c9 3417 break;
4c4b4cd2
PH
3418
3419 default:
323e0a4a 3420 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3421 }
3422
8d749320 3423 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3424 for (i = 0; i < nargs; i += 1)
3425 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3426 argvec[i] = NULL;
e9d9f57e 3427 exp = expp->get ();
4c4b4cd2
PH
3428
3429 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3430 switch (op)
3431 {
3432 default:
3433 break;
3434
14f9c5c9 3435 case OP_VAR_VALUE:
4c4b4cd2 3436 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3437 {
d12307c1 3438 struct block_symbol *candidates;
76a01679
JB
3439 int n_candidates;
3440
3441 n_candidates =
3442 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3443 (exp->elts[pc + 2].symbol),
3444 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3445 &candidates);
ec6a20c2 3446 make_cleanup (xfree, candidates);
76a01679
JB
3447
3448 if (n_candidates > 1)
3449 {
3450 /* Types tend to get re-introduced locally, so if there
3451 are any local symbols that are not types, first filter
3452 out all types. */
3453 int j;
3454 for (j = 0; j < n_candidates; j += 1)
d12307c1 3455 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3456 {
3457 case LOC_REGISTER:
3458 case LOC_ARG:
3459 case LOC_REF_ARG:
76a01679
JB
3460 case LOC_REGPARM_ADDR:
3461 case LOC_LOCAL:
76a01679 3462 case LOC_COMPUTED:
76a01679
JB
3463 goto FoundNonType;
3464 default:
3465 break;
3466 }
3467 FoundNonType:
3468 if (j < n_candidates)
3469 {
3470 j = 0;
3471 while (j < n_candidates)
3472 {
d12307c1 3473 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3474 {
3475 candidates[j] = candidates[n_candidates - 1];
3476 n_candidates -= 1;
3477 }
3478 else
3479 j += 1;
3480 }
3481 }
3482 }
3483
3484 if (n_candidates == 0)
323e0a4a 3485 error (_("No definition found for %s"),
76a01679
JB
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 else if (n_candidates == 1)
3488 i = 0;
3489 else if (deprocedure_p
3490 && !is_nonfunction (candidates, n_candidates))
3491 {
06d5cf63
JB
3492 i = ada_resolve_function
3493 (candidates, n_candidates, NULL, 0,
3494 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3495 context_type);
76a01679 3496 if (i < 0)
323e0a4a 3497 error (_("Could not find a match for %s"),
76a01679
JB
3498 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3499 }
3500 else
3501 {
323e0a4a 3502 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3503 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 user_select_syms (candidates, n_candidates, 1);
3505 i = 0;
3506 }
3507
3508 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3509 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3510 innermost_block.update (candidates[i]);
76a01679
JB
3511 }
3512
3513 if (deprocedure_p
3514 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3515 == TYPE_CODE_FUNC))
3516 {
3517 replace_operator_with_call (expp, pc, 0, 0,
3518 exp->elts[pc + 2].symbol,
3519 exp->elts[pc + 1].block);
e9d9f57e 3520 exp = expp->get ();
76a01679 3521 }
14f9c5c9
AS
3522 break;
3523
3524 case OP_FUNCALL:
3525 {
4c4b4cd2 3526 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3527 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3528 {
d12307c1 3529 struct block_symbol *candidates;
4c4b4cd2
PH
3530 int n_candidates;
3531
3532 n_candidates =
76a01679
JB
3533 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3534 (exp->elts[pc + 5].symbol),
3535 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3536 &candidates);
ec6a20c2
JB
3537 make_cleanup (xfree, candidates);
3538
4c4b4cd2
PH
3539 if (n_candidates == 1)
3540 i = 0;
3541 else
3542 {
06d5cf63
JB
3543 i = ada_resolve_function
3544 (candidates, n_candidates,
3545 argvec, nargs,
3546 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3547 context_type);
4c4b4cd2 3548 if (i < 0)
323e0a4a 3549 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3551 }
3552
3553 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3554 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3555 innermost_block.update (candidates[i]);
4c4b4cd2 3556 }
14f9c5c9
AS
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3581 {
d12307c1 3582 struct block_symbol *candidates;
4c4b4cd2
PH
3583 int n_candidates;
3584
3585 n_candidates =
b5ec771e 3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3587 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3588 &candidates);
ec6a20c2
JB
3589 make_cleanup (xfree, candidates);
3590
4c4b4cd2 3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3592 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3593 if (i < 0)
3594 break;
3595
d12307c1
PMR
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
e9d9f57e 3599 exp = expp->get ();
4c4b4cd2 3600 }
14f9c5c9 3601 break;
4c4b4cd2
PH
3602
3603 case OP_TYPE:
b3dbf008 3604 case OP_REGISTER:
ec6a20c2 3605 do_cleanups (old_chain);
4c4b4cd2 3606 return NULL;
14f9c5c9
AS
3607 }
3608
3609 *pos = pc;
ec6a20c2 3610 do_cleanups (old_chain);
ced9779b
JB
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3617}
3618
3619/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3621 a non-pointer. */
14f9c5c9 3622/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3623 liberal. */
14f9c5c9
AS
3624
3625static int
4dc81987 3626ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3627{
61ee279c
PH
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
14f9c5c9
AS
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
d2e4a39e 3636 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3637 {
3638 default:
5b3d5b7d 3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3644 else
1265e4aa
JB
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
14f9c5c9
AS
3659
3660 case TYPE_CODE_ARRAY:
d2e4a39e 3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3662 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3663
3664 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
14f9c5c9 3668 else
4c4b4cd2
PH
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676}
3677
3678/* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3681 argument function. */
14f9c5c9
AS
3682
3683static int
d2e4a39e 3684ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3685{
3686 int i;
d2e4a39e 3687 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3688
1265e4aa
JB
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
4c4b4cd2 3700 if (actuals[i] == NULL)
76a01679
JB
3701 return 0;
3702 else
3703 {
5b4ee69b
MS
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
df407dfe 3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3707
76a01679
JB
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
14f9c5c9
AS
3711 }
3712 return 1;
3713}
3714
3715/* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720static int
d2e4a39e 3721return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3722{
d2e4a39e 3723 struct type *return_type;
14f9c5c9
AS
3724
3725 if (func_type == NULL)
3726 return 1;
3727
4c4b4cd2 3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3730 else
18af8284 3731 return_type = get_base_type (func_type);
14f9c5c9
AS
3732 if (return_type == NULL)
3733 return 1;
3734
18af8284 3735 context_type = get_base_type (context_type);
14f9c5c9
AS
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743}
3744
3745
4c4b4cd2 3746/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3747 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
14f9c5c9
AS
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
14f9c5c9 3757
4c4b4cd2 3758static int
d12307c1 3759ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
14f9c5c9 3762{
30b15541 3763 int fallback;
14f9c5c9 3764 int k;
4c4b4cd2 3765 int m; /* Number of hits */
14f9c5c9 3766
d2e4a39e 3767 m = 0;
30b15541
UW
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3772 {
3773 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3774 {
d12307c1 3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3776
d12307c1 3777 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3778 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
14f9c5c9
AS
3784 }
3785
dc5c8746
PMR
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3790 if (m == 0)
3791 return -1;
dc5c8746 3792 else if (m > 1 && !parse_completion)
14f9c5c9 3793 {
323e0a4a 3794 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3795 user_select_syms (syms, m, 1);
14f9c5c9
AS
3796 return 0;
3797 }
3798 return 0;
3799}
3800
4c4b4cd2
PH
3801/* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
14f9c5c9 3807static int
0d5cff50 3808encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3809{
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
5b4ee69b 3817
d2e4a39e 3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3819 ;
d2e4a39e 3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3821 ;
d2e4a39e 3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
5b4ee69b 3826
4c4b4cd2
PH
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
14f9c5c9
AS
3836 return (strcmp (N0, N1) < 0);
3837 }
3838}
d2e4a39e 3839
4c4b4cd2
PH
3840/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
d2e4a39e 3843static void
d12307c1 3844sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3845{
4c4b4cd2 3846 int i;
5b4ee69b 3847
d2e4a39e 3848 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3849 {
d12307c1 3850 struct block_symbol sym = syms[i];
14f9c5c9
AS
3851 int j;
3852
d2e4a39e 3853 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3854 {
d12307c1
PMR
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
d2e4a39e 3860 syms[j + 1] = sym;
14f9c5c9
AS
3861 }
3862}
3863
d72413e6
PMR
3864/* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866static int print_signatures = 1;
3867
3868/* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873static void
3874ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876{
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905}
3906
4c4b4cd2
PH
3907/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
14f9c5c9
AS
3911
3912/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3913 to be re-integrated one of these days. */
14f9c5c9
AS
3914
3915int
d12307c1 3916user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3917{
3918 int i;
8d749320 3919 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3922 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3923
3924 if (max_results < 1)
323e0a4a 3925 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3926 if (nsyms <= 1)
3927 return nsyms;
3928
717d2f5a
JB
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931canceled because the command is ambiguous\n\
3932See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
323e0a4a 3940 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3941 if (max_results > 1)
323e0a4a 3942 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3943
4c4b4cd2 3944 sort_choices (syms, nsyms);
14f9c5c9
AS
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
d12307c1 3948 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3949 continue;
3950
d12307c1 3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3952 {
76a01679 3953 struct symtab_and_line sal =
d12307c1 3954 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3955
d72413e6
PMR
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
323e0a4a 3959 if (sal.symtab == NULL)
d72413e6 3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3961 sal.line);
3962 else
d72413e6 3963 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
4c4b4cd2
PH
3966 continue;
3967 }
d2e4a39e 3968 else
4c4b4cd2
PH
3969 {
3970 int is_enumeral =
d12307c1
PMR
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3974 struct symtab *symtab = NULL;
3975
d12307c1
PMR
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3978
d12307c1 3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
76a01679 3988 else if (is_enumeral
d12307c1 3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3990 {
a3f17187 3991 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3993 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3995 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3996 }
d72413e6
PMR
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4c4b4cd2 4013 }
14f9c5c9 4014 }
d2e4a39e 4015
14f9c5c9 4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4017 "overload-choice");
14f9c5c9
AS
4018
4019 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4020 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4021
4022 return n_chosen;
4023}
4024
4025/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4026 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4c4b4cd2 4032 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4c4b4cd2 4036 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4039 prompts (for use with the -f switch). */
14f9c5c9
AS
4040
4041int
d2e4a39e 4042get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4043 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4044{
d2e4a39e 4045 char *args;
a121b7c1 4046 const char *prompt;
14f9c5c9
AS
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4049
14f9c5c9
AS
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
0bcd0149 4052 prompt = "> ";
14f9c5c9 4053
0bcd0149 4054 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4055
14f9c5c9 4056 if (args == NULL)
323e0a4a 4057 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4058
4059 n_chosen = 0;
76a01679 4060
4c4b4cd2
PH
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
14f9c5c9
AS
4063 while (1)
4064 {
d2e4a39e 4065 char *args2;
14f9c5c9
AS
4066 int choice, j;
4067
0fcd72ba 4068 args = skip_spaces (args);
14f9c5c9 4069 if (*args == '\0' && n_chosen == 0)
323e0a4a 4070 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4071 else if (*args == '\0')
4c4b4cd2 4072 break;
14f9c5c9
AS
4073
4074 choice = strtol (args, &args2, 10);
d2e4a39e 4075 if (args == args2 || choice < 0
4c4b4cd2 4076 || choice > n_choices + first_choice - 1)
323e0a4a 4077 error (_("Argument must be choice number"));
14f9c5c9
AS
4078 args = args2;
4079
d2e4a39e 4080 if (choice == 0)
323e0a4a 4081 error (_("cancelled"));
14f9c5c9
AS
4082
4083 if (choice < first_choice)
4c4b4cd2
PH
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
14f9c5c9
AS
4090 choice -= first_choice;
4091
d2e4a39e 4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4093 {
4094 }
14f9c5c9
AS
4095
4096 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4097 {
4098 int k;
5b4ee69b 4099
4c4b4cd2
PH
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
14f9c5c9
AS
4105 }
4106
4107 if (n_chosen > max_results)
323e0a4a 4108 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4109
14f9c5c9
AS
4110 return n_chosen;
4111}
4112
4c4b4cd2
PH
4113/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4116
4117static void
e9d9f57e 4118replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4119 int oplen, struct symbol *sym,
270140bd 4120 const struct block *block)
14f9c5c9
AS
4121{
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4123 symbol, -oplen for operator being replaced). */
d2e4a39e 4124 struct expression *newexp = (struct expression *)
8c1a34e7 4125 xzalloc (sizeof (struct expression)
4c4b4cd2 4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4127 struct expression *exp = expp->get ();
14f9c5c9
AS
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
3489610d 4131 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
e9d9f57e 4143 expp->reset (newexp);
d2e4a39e 4144}
14f9c5c9
AS
4145
4146/* Type-class predicates */
4147
4c4b4cd2
PH
4148/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4149 or FLOAT). */
14f9c5c9
AS
4150
4151static int
d2e4a39e 4152numeric_type_p (struct type *type)
14f9c5c9
AS
4153{
4154 if (type == NULL)
4155 return 0;
d2e4a39e
AS
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4c4b4cd2
PH
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_FLT:
4162 return 1;
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4166 default:
4167 return 0;
4168 }
d2e4a39e 4169 }
14f9c5c9
AS
4170}
4171
4c4b4cd2 4172/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4173
4174static int
d2e4a39e 4175integer_type_p (struct type *type)
14f9c5c9
AS
4176{
4177 if (type == NULL)
4178 return 0;
d2e4a39e
AS
4179 else
4180 {
4181 switch (TYPE_CODE (type))
4c4b4cd2
PH
4182 {
4183 case TYPE_CODE_INT:
4184 return 1;
4185 case TYPE_CODE_RANGE:
4186 return (type == TYPE_TARGET_TYPE (type)
4187 || integer_type_p (TYPE_TARGET_TYPE (type)));
4188 default:
4189 return 0;
4190 }
d2e4a39e 4191 }
14f9c5c9
AS
4192}
4193
4c4b4cd2 4194/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4195
4196static int
d2e4a39e 4197scalar_type_p (struct type *type)
14f9c5c9
AS
4198{
4199 if (type == NULL)
4200 return 0;
d2e4a39e
AS
4201 else
4202 {
4203 switch (TYPE_CODE (type))
4c4b4cd2
PH
4204 {
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 return 1;
4210 default:
4211 return 0;
4212 }
d2e4a39e 4213 }
14f9c5c9
AS
4214}
4215
4c4b4cd2 4216/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4217
4218static int
d2e4a39e 4219discrete_type_p (struct type *type)
14f9c5c9
AS
4220{
4221 if (type == NULL)
4222 return 0;
d2e4a39e
AS
4223 else
4224 {
4225 switch (TYPE_CODE (type))
4c4b4cd2
PH
4226 {
4227 case TYPE_CODE_INT:
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_ENUM:
872f0337 4230 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4231 return 1;
4232 default:
4233 return 0;
4234 }
d2e4a39e 4235 }
14f9c5c9
AS
4236}
4237
4c4b4cd2
PH
4238/* Returns non-zero if OP with operands in the vector ARGS could be
4239 a user-defined function. Errs on the side of pre-defined operators
4240 (i.e., result 0). */
14f9c5c9
AS
4241
4242static int
d2e4a39e 4243possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4244{
76a01679 4245 struct type *type0 =
df407dfe 4246 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4247 struct type *type1 =
df407dfe 4248 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4249
4c4b4cd2
PH
4250 if (type0 == NULL)
4251 return 0;
4252
14f9c5c9
AS
4253 switch (op)
4254 {
4255 default:
4256 return 0;
4257
4258 case BINOP_ADD:
4259 case BINOP_SUB:
4260 case BINOP_MUL:
4261 case BINOP_DIV:
d2e4a39e 4262 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4263
4264 case BINOP_REM:
4265 case BINOP_MOD:
4266 case BINOP_BITWISE_AND:
4267 case BINOP_BITWISE_IOR:
4268 case BINOP_BITWISE_XOR:
d2e4a39e 4269 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4270
4271 case BINOP_EQUAL:
4272 case BINOP_NOTEQUAL:
4273 case BINOP_LESS:
4274 case BINOP_GTR:
4275 case BINOP_LEQ:
4276 case BINOP_GEQ:
d2e4a39e 4277 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4278
4279 case BINOP_CONCAT:
ee90b9ab 4280 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4281
4282 case BINOP_EXP:
d2e4a39e 4283 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4284
4285 case UNOP_NEG:
4286 case UNOP_PLUS:
4287 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4288 case UNOP_ABS:
4289 return (!numeric_type_p (type0));
14f9c5c9
AS
4290
4291 }
4292}
4293\f
4c4b4cd2 4294 /* Renaming */
14f9c5c9 4295
aeb5907d
JB
4296/* NOTES:
4297
4298 1. In the following, we assume that a renaming type's name may
4299 have an ___XD suffix. It would be nice if this went away at some
4300 point.
4301 2. We handle both the (old) purely type-based representation of
4302 renamings and the (new) variable-based encoding. At some point,
4303 it is devoutly to be hoped that the former goes away
4304 (FIXME: hilfinger-2007-07-09).
4305 3. Subprogram renamings are not implemented, although the XRS
4306 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4307
4308/* If SYM encodes a renaming,
4309
4310 <renaming> renames <renamed entity>,
4311
4312 sets *LEN to the length of the renamed entity's name,
4313 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4314 the string describing the subcomponent selected from the renamed
0963b4bd 4315 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4316 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4317 are undefined). Otherwise, returns a value indicating the category
4318 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4319 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4320 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4321 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4322 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4323 may be NULL, in which case they are not assigned.
4324
4325 [Currently, however, GCC does not generate subprogram renamings.] */
4326
4327enum ada_renaming_category
4328ada_parse_renaming (struct symbol *sym,
4329 const char **renamed_entity, int *len,
4330 const char **renaming_expr)
4331{
4332 enum ada_renaming_category kind;
4333 const char *info;
4334 const char *suffix;
4335
4336 if (sym == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (SYMBOL_CLASS (sym))
14f9c5c9 4339 {
aeb5907d
JB
4340 default:
4341 return ADA_NOT_RENAMING;
4342 case LOC_TYPEDEF:
4343 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4344 renamed_entity, len, renaming_expr);
4345 case LOC_LOCAL:
4346 case LOC_STATIC:
4347 case LOC_COMPUTED:
4348 case LOC_OPTIMIZED_OUT:
4349 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4350 if (info == NULL)
4351 return ADA_NOT_RENAMING;
4352 switch (info[5])
4353 {
4354 case '_':
4355 kind = ADA_OBJECT_RENAMING;
4356 info += 6;
4357 break;
4358 case 'E':
4359 kind = ADA_EXCEPTION_RENAMING;
4360 info += 7;
4361 break;
4362 case 'P':
4363 kind = ADA_PACKAGE_RENAMING;
4364 info += 7;
4365 break;
4366 case 'S':
4367 kind = ADA_SUBPROGRAM_RENAMING;
4368 info += 7;
4369 break;
4370 default:
4371 return ADA_NOT_RENAMING;
4372 }
14f9c5c9 4373 }
4c4b4cd2 4374
aeb5907d
JB
4375 if (renamed_entity != NULL)
4376 *renamed_entity = info;
4377 suffix = strstr (info, "___XE");
4378 if (suffix == NULL || suffix == info)
4379 return ADA_NOT_RENAMING;
4380 if (len != NULL)
4381 *len = strlen (info) - strlen (suffix);
4382 suffix += 5;
4383 if (renaming_expr != NULL)
4384 *renaming_expr = suffix;
4385 return kind;
4386}
4387
4388/* Assuming TYPE encodes a renaming according to the old encoding in
4389 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4390 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4391 ADA_NOT_RENAMING otherwise. */
4392static enum ada_renaming_category
4393parse_old_style_renaming (struct type *type,
4394 const char **renamed_entity, int *len,
4395 const char **renaming_expr)
4396{
4397 enum ada_renaming_category kind;
4398 const char *name;
4399 const char *info;
4400 const char *suffix;
14f9c5c9 4401
aeb5907d
JB
4402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4403 || TYPE_NFIELDS (type) != 1)
4404 return ADA_NOT_RENAMING;
14f9c5c9 4405
aeb5907d
JB
4406 name = type_name_no_tag (type);
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409
4410 name = strstr (name, "___XR");
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413 switch (name[5])
4414 {
4415 case '\0':
4416 case '_':
4417 kind = ADA_OBJECT_RENAMING;
4418 break;
4419 case 'E':
4420 kind = ADA_EXCEPTION_RENAMING;
4421 break;
4422 case 'P':
4423 kind = ADA_PACKAGE_RENAMING;
4424 break;
4425 case 'S':
4426 kind = ADA_SUBPROGRAM_RENAMING;
4427 break;
4428 default:
4429 return ADA_NOT_RENAMING;
4430 }
14f9c5c9 4431
aeb5907d
JB
4432 info = TYPE_FIELD_NAME (type, 0);
4433 if (info == NULL)
4434 return ADA_NOT_RENAMING;
4435 if (renamed_entity != NULL)
4436 *renamed_entity = info;
4437 suffix = strstr (info, "___XE");
4438 if (renaming_expr != NULL)
4439 *renaming_expr = suffix + 5;
4440 if (suffix == NULL || suffix == info)
4441 return ADA_NOT_RENAMING;
4442 if (len != NULL)
4443 *len = suffix - info;
4444 return kind;
a5ee536b
JB
4445}
4446
4447/* Compute the value of the given RENAMING_SYM, which is expected to
4448 be a symbol encoding a renaming expression. BLOCK is the block
4449 used to evaluate the renaming. */
52ce6436 4450
a5ee536b
JB
4451static struct value *
4452ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4453 const struct block *block)
a5ee536b 4454{
bbc13ae3 4455 const char *sym_name;
a5ee536b 4456
bbc13ae3 4457 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4458 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4459 return evaluate_expression (expr.get ());
a5ee536b 4460}
14f9c5c9 4461\f
d2e4a39e 4462
4c4b4cd2 4463 /* Evaluation: Function Calls */
14f9c5c9 4464
4c4b4cd2 4465/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4466 lvalues, and otherwise has the side-effect of allocating memory
4467 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4468
d2e4a39e 4469static struct value *
40bc484c 4470ensure_lval (struct value *val)
14f9c5c9 4471{
40bc484c
JB
4472 if (VALUE_LVAL (val) == not_lval
4473 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4474 {
df407dfe 4475 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4476 const CORE_ADDR addr =
4477 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4478
a84a8a0d 4479 VALUE_LVAL (val) = lval_memory;
1a088441 4480 set_value_address (val, addr);
40bc484c 4481 write_memory (addr, value_contents (val), len);
c3e5cd34 4482 }
14f9c5c9
AS
4483
4484 return val;
4485}
4486
4487/* Return the value ACTUAL, converted to be an appropriate value for a
4488 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4489 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4490 values not residing in memory, updating it as needed. */
14f9c5c9 4491
a93c0eb6 4492struct value *
40bc484c 4493ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4494{
df407dfe 4495 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4496 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4497 struct type *formal_target =
4498 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4499 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4500 struct type *actual_target =
4501 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4502 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4503
4c4b4cd2 4504 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4505 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4506 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4507 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4508 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4509 {
a84a8a0d 4510 struct value *result;
5b4ee69b 4511
14f9c5c9 4512 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4513 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4514 result = desc_data (actual);
cb923fcc 4515 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4516 {
4517 if (VALUE_LVAL (actual) != lval_memory)
4518 {
4519 struct value *val;
5b4ee69b 4520
df407dfe 4521 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4522 val = allocate_value (actual_type);
990a07ab 4523 memcpy ((char *) value_contents_raw (val),
0fd88904 4524 (char *) value_contents (actual),
4c4b4cd2 4525 TYPE_LENGTH (actual_type));
40bc484c 4526 actual = ensure_lval (val);
4c4b4cd2 4527 }
a84a8a0d 4528 result = value_addr (actual);
4c4b4cd2 4529 }
a84a8a0d
JB
4530 else
4531 return actual;
b1af9e97 4532 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4533 }
4534 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4535 return ada_value_ind (actual);
8344af1e
JB
4536 else if (ada_is_aligner_type (formal_type))
4537 {
4538 /* We need to turn this parameter into an aligner type
4539 as well. */
4540 struct value *aligner = allocate_value (formal_type);
4541 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4542
4543 value_assign_to_component (aligner, component, actual);
4544 return aligner;
4545 }
14f9c5c9
AS
4546
4547 return actual;
4548}
4549
438c98a1
JB
4550/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4551 type TYPE. This is usually an inefficient no-op except on some targets
4552 (such as AVR) where the representation of a pointer and an address
4553 differs. */
4554
4555static CORE_ADDR
4556value_pointer (struct value *value, struct type *type)
4557{
4558 struct gdbarch *gdbarch = get_type_arch (type);
4559 unsigned len = TYPE_LENGTH (type);
224c3ddb 4560 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4561 CORE_ADDR addr;
4562
4563 addr = value_address (value);
4564 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4565 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 return addr;
4567}
4568
14f9c5c9 4569
4c4b4cd2
PH
4570/* Push a descriptor of type TYPE for array value ARR on the stack at
4571 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4572 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4573 to-descriptor type rather than a descriptor type), a struct value *
4574 representing a pointer to this descriptor. */
14f9c5c9 4575
d2e4a39e 4576static struct value *
40bc484c 4577make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4578{
d2e4a39e
AS
4579 struct type *bounds_type = desc_bounds_type (type);
4580 struct type *desc_type = desc_base_type (type);
4581 struct value *descriptor = allocate_value (desc_type);
4582 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4583 int i;
d2e4a39e 4584
0963b4bd
MS
4585 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4586 i > 0; i -= 1)
14f9c5c9 4587 {
19f220c3
JK
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 0),
4590 desc_bound_bitpos (bounds_type, i, 0),
4591 desc_bound_bitsize (bounds_type, i, 0));
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4596 }
d2e4a39e 4597
40bc484c 4598 bounds = ensure_lval (bounds);
d2e4a39e 4599
19f220c3
JK
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor),
4602 value_pointer (ensure_lval (arr),
4603 TYPE_FIELD_TYPE (desc_type, 0)),
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4606
4607 modify_field (value_type (descriptor),
4608 value_contents_writeable (descriptor),
4609 value_pointer (bounds,
4610 TYPE_FIELD_TYPE (desc_type, 1)),
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4613
40bc484c 4614 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4615
4616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4617 return value_addr (descriptor);
4618 else
4619 return descriptor;
4620}
14f9c5c9 4621\f
3d9434b5
JB
4622 /* Symbol Cache Module */
4623
3d9434b5 4624/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4625 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4628
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4633
ee01b665 4634/* Initialize the contents of SYM_CACHE. */
3d9434b5 4635
ee01b665
JB
4636static void
4637ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4638{
4639 obstack_init (&sym_cache->cache_space);
4640 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4641}
3d9434b5 4642
ee01b665
JB
4643/* Free the memory used by SYM_CACHE. */
4644
4645static void
4646ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4647{
ee01b665
JB
4648 obstack_free (&sym_cache->cache_space, NULL);
4649 xfree (sym_cache);
4650}
3d9434b5 4651
ee01b665
JB
4652/* Return the symbol cache associated to the given program space PSPACE.
4653 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4654
ee01b665
JB
4655static struct ada_symbol_cache *
4656ada_get_symbol_cache (struct program_space *pspace)
4657{
4658 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4659
66c168ae 4660 if (pspace_data->sym_cache == NULL)
ee01b665 4661 {
66c168ae
JB
4662 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4663 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4664 }
4665
66c168ae 4666 return pspace_data->sym_cache;
ee01b665 4667}
3d9434b5
JB
4668
4669/* Clear all entries from the symbol cache. */
4670
4671static void
4672ada_clear_symbol_cache (void)
4673{
ee01b665
JB
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
4676
4677 obstack_free (&sym_cache->cache_space, NULL);
4678 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4679}
4680
fe978cb0 4681/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4682 Return it if found, or NULL otherwise. */
4683
4684static struct cache_entry **
fe978cb0 4685find_entry (const char *name, domain_enum domain)
3d9434b5 4686{
ee01b665
JB
4687 struct ada_symbol_cache *sym_cache
4688 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4689 int h = msymbol_hash (name) % HASH_SIZE;
4690 struct cache_entry **e;
4691
ee01b665 4692 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4693 {
fe978cb0 4694 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4695 return e;
4696 }
4697 return NULL;
4698}
4699
fe978cb0 4700/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4701 Return 1 if found, 0 otherwise.
4702
4703 If an entry was found and SYM is not NULL, set *SYM to the entry's
4704 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4705
96d887e8 4706static int
fe978cb0 4707lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4708 struct symbol **sym, const struct block **block)
96d887e8 4709{
fe978cb0 4710 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4711
4712 if (e == NULL)
4713 return 0;
4714 if (sym != NULL)
4715 *sym = (*e)->sym;
4716 if (block != NULL)
4717 *block = (*e)->block;
4718 return 1;
96d887e8
PH
4719}
4720
3d9434b5 4721/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4722 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4723
96d887e8 4724static void
fe978cb0 4725cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4726 const struct block *block)
96d887e8 4727{
ee01b665
JB
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4730 int h;
4731 char *copy;
4732 struct cache_entry *e;
4733
1994afbf
DE
4734 /* Symbols for builtin types don't have a block.
4735 For now don't cache such symbols. */
4736 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4737 return;
4738
3d9434b5
JB
4739 /* If the symbol is a local symbol, then do not cache it, as a search
4740 for that symbol depends on the context. To determine whether
4741 the symbol is local or not, we check the block where we found it
4742 against the global and static blocks of its associated symtab. */
4743 if (sym
08be3fe3 4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4745 GLOBAL_BLOCK) != block
08be3fe3 4746 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4747 STATIC_BLOCK) != block)
3d9434b5
JB
4748 return;
4749
4750 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4751 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4752 sizeof (*e));
4753 e->next = sym_cache->root[h];
4754 sym_cache->root[h] = e;
224c3ddb
SM
4755 e->name = copy
4756 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4757 strcpy (copy, name);
4758 e->sym = sym;
fe978cb0 4759 e->domain = domain;
3d9434b5 4760 e->block = block;
96d887e8 4761}
4c4b4cd2
PH
4762\f
4763 /* Symbol Lookup */
4764
b5ec771e
PA
4765/* Return the symbol name match type that should be used used when
4766 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4767
4768 LOOKUP_NAME is expected to be a symbol name after transformation
4769 for Ada lookups (see ada_name_for_lookup). */
4770
b5ec771e
PA
4771static symbol_name_match_type
4772name_match_type_from_name (const char *lookup_name)
c0431670 4773{
b5ec771e
PA
4774 return (strstr (lookup_name, "__") == NULL
4775 ? symbol_name_match_type::WILD
4776 : symbol_name_match_type::FULL);
c0431670
JB
4777}
4778
4c4b4cd2
PH
4779/* Return the result of a standard (literal, C-like) lookup of NAME in
4780 given DOMAIN, visible from lexical block BLOCK. */
4781
4782static struct symbol *
4783standard_lookup (const char *name, const struct block *block,
4784 domain_enum domain)
4785{
acbd605d 4786 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4787 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4788
d12307c1
PMR
4789 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4790 return sym.symbol;
2570f2b7 4791 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4792 cache_symbol (name, domain, sym.symbol, sym.block);
4793 return sym.symbol;
4c4b4cd2
PH
4794}
4795
4796
4797/* Non-zero iff there is at least one non-function/non-enumeral symbol
4798 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4799 since they contend in overloading in the same way. */
4800static int
d12307c1 4801is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4802{
4803 int i;
4804
4805 for (i = 0; i < n; i += 1)
d12307c1
PMR
4806 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4807 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4808 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4809 return 1;
4810
4811 return 0;
4812}
4813
4814/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4815 struct types. Otherwise, they may not. */
14f9c5c9
AS
4816
4817static int
d2e4a39e 4818equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4819{
d2e4a39e 4820 if (type0 == type1)
14f9c5c9 4821 return 1;
d2e4a39e 4822 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4823 || TYPE_CODE (type0) != TYPE_CODE (type1))
4824 return 0;
d2e4a39e 4825 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4826 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4827 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4828 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4829 return 1;
d2e4a39e 4830
14f9c5c9
AS
4831 return 0;
4832}
4833
4834/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4835 no more defined than that of SYM1. */
14f9c5c9
AS
4836
4837static int
d2e4a39e 4838lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4839{
4840 if (sym0 == sym1)
4841 return 1;
176620f1 4842 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4843 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4844 return 0;
4845
d2e4a39e 4846 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4847 {
4848 case LOC_UNDEF:
4849 return 1;
4850 case LOC_TYPEDEF:
4851 {
4c4b4cd2
PH
4852 struct type *type0 = SYMBOL_TYPE (sym0);
4853 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4854 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4855 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4856 int len0 = strlen (name0);
5b4ee69b 4857
4c4b4cd2
PH
4858 return
4859 TYPE_CODE (type0) == TYPE_CODE (type1)
4860 && (equiv_types (type0, type1)
4861 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4862 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4863 }
4864 case LOC_CONST:
4865 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4866 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4867 default:
4868 return 0;
14f9c5c9
AS
4869 }
4870}
4871
d12307c1 4872/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4873 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4874
4875static void
76a01679
JB
4876add_defn_to_vec (struct obstack *obstackp,
4877 struct symbol *sym,
f0c5f9b2 4878 const struct block *block)
14f9c5c9
AS
4879{
4880 int i;
d12307c1 4881 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4882
529cad9c
PH
4883 /* Do not try to complete stub types, as the debugger is probably
4884 already scanning all symbols matching a certain name at the
4885 time when this function is called. Trying to replace the stub
4886 type by its associated full type will cause us to restart a scan
4887 which may lead to an infinite recursion. Instead, the client
4888 collecting the matching symbols will end up collecting several
4889 matches, with at least one of them complete. It can then filter
4890 out the stub ones if needed. */
4891
4c4b4cd2
PH
4892 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4893 {
d12307c1 4894 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4895 return;
d12307c1 4896 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4897 {
d12307c1 4898 prevDefns[i].symbol = sym;
4c4b4cd2 4899 prevDefns[i].block = block;
4c4b4cd2 4900 return;
76a01679 4901 }
4c4b4cd2
PH
4902 }
4903
4904 {
d12307c1 4905 struct block_symbol info;
4c4b4cd2 4906
d12307c1 4907 info.symbol = sym;
4c4b4cd2 4908 info.block = block;
d12307c1 4909 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4910 }
4911}
4912
d12307c1
PMR
4913/* Number of block_symbol structures currently collected in current vector in
4914 OBSTACKP. */
4c4b4cd2 4915
76a01679
JB
4916static int
4917num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4918{
d12307c1 4919 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4920}
4921
d12307c1
PMR
4922/* Vector of block_symbol structures currently collected in current vector in
4923 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4924
d12307c1 4925static struct block_symbol *
4c4b4cd2
PH
4926defns_collected (struct obstack *obstackp, int finish)
4927{
4928 if (finish)
224c3ddb 4929 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4930 else
d12307c1 4931 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4932}
4933
7c7b6655
TT
4934/* Return a bound minimal symbol matching NAME according to Ada
4935 decoding rules. Returns an invalid symbol if there is no such
4936 minimal symbol. Names prefixed with "standard__" are handled
4937 specially: "standard__" is first stripped off, and only static and
4938 global symbols are searched. */
4c4b4cd2 4939
7c7b6655 4940struct bound_minimal_symbol
96d887e8 4941ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4942{
7c7b6655 4943 struct bound_minimal_symbol result;
4c4b4cd2 4944 struct objfile *objfile;
96d887e8 4945 struct minimal_symbol *msymbol;
4c4b4cd2 4946
7c7b6655
TT
4947 memset (&result, 0, sizeof (result));
4948
b5ec771e
PA
4949 symbol_name_match_type match_type = name_match_type_from_name (name);
4950 lookup_name_info lookup_name (name, match_type);
4951
4952 symbol_name_matcher_ftype *match_name
4953 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4954
96d887e8
PH
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
b5ec771e 4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
96d887e8 4964 }
4c4b4cd2 4965
7c7b6655 4966 return result;
96d887e8 4967}
4c4b4cd2 4968
96d887e8
PH
4969/* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4c4b4cd2 4974
96d887e8
PH
4975static void
4976add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4977 const lookup_name_info &lookup_name,
4978 domain_enum domain)
96d887e8 4979{
96d887e8 4980}
14f9c5c9 4981
96d887e8
PH
4982/* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
14f9c5c9 4984
96d887e8
PH
4985static int
4986is_nondebugging_type (struct type *type)
4987{
0d5cff50 4988 const char *name = ada_type_name (type);
5b4ee69b 4989
96d887e8
PH
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991}
4c4b4cd2 4992
8f17729f
JB
4993/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000static int
5001ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002{
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
0d5cff50
DE
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034}
5035
5036/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056static int
d12307c1 5057symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5058{
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
d12307c1 5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
d12307c1 5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5090 return 0;
5091
5092 return 1;
5093}
5094
96d887e8
PH
5095/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
4c4b4cd2 5101
96d887e8 5102static int
d12307c1 5103remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5104{
5105 int i, j;
4c4b4cd2 5106
8f17729f
JB
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
96d887e8
PH
5113 i = 0;
5114 while (i < nsyms)
5115 {
a35ddb44 5116 int remove_p = 0;
339c13b6
JB
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
d12307c1
PMR
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
d12307c1
PMR
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5131 remove_p = 1;
339c13b6
JB
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
d12307c1
PMR
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
d12307c1
PMR
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5152 remove_p = 1;
4c4b4cd2 5153 }
4c4b4cd2 5154 }
339c13b6 5155
a35ddb44 5156 if (remove_p)
339c13b6
JB
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
96d887e8 5163 i += 1;
14f9c5c9 5164 }
8f17729f
JB
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
96d887e8 5181 return nsyms;
14f9c5c9
AS
5182}
5183
96d887e8
PH
5184/* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5188
96d887e8
PH
5189static char *
5190xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5191{
96d887e8 5192 /* The renaming types adhere to the following convention:
0963b4bd 5193 <scope>__<rename>___<XR extension>.
96d887e8
PH
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
76a01679 5196
96d887e8 5197 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
96d887e8
PH
5200 int scope_len;
5201 char *scope;
14f9c5c9 5202
96d887e8
PH
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5205
96d887e8
PH
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
76a01679 5209
96d887e8 5210 /* Make a copy of scope and return it. */
14f9c5c9 5211
96d887e8
PH
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5214
96d887e8
PH
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
4c4b4cd2 5217
96d887e8 5218 return scope;
4c4b4cd2
PH
5219}
5220
96d887e8 5221/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5222
96d887e8
PH
5223static int
5224is_package_name (const char *name)
4c4b4cd2 5225{
96d887e8
PH
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
4c4b4cd2 5231
96d887e8 5232 char *fun_name;
76a01679 5233
96d887e8
PH
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
14f9c5c9 5238
96d887e8
PH
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
14f9c5c9 5241
96d887e8 5242 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5243 functions names cannot contain "__" in them. */
96d887e8
PH
5244 if (strstr (name, "__") != NULL)
5245 return 0;
4c4b4cd2 5246
b435e160 5247 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5248
96d887e8
PH
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250}
14f9c5c9 5251
96d887e8 5252/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5253 not visible from FUNCTION_NAME. */
14f9c5c9 5254
96d887e8 5255static int
0d5cff50 5256old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5257{
aeb5907d 5258 char *scope;
1509e573 5259 struct cleanup *old_chain;
aeb5907d
JB
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5265 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5266
96d887e8
PH
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
1509e573
JB
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
14f9c5c9 5273
96d887e8
PH
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
76a01679 5276
96d887e8
PH
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
61012eef 5281 if (startswith (function_name, "_ada_"))
96d887e8 5282 function_name += 5;
f26caa11 5283
1509e573 5284 {
61012eef 5285 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
f26caa11
PH
5290}
5291
aeb5907d
JB
5292/* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
96d887e8
PH
5297
5298 Rationale:
aeb5907d
JB
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
f26caa11 5311
96d887e8
PH
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
4c4b4cd2 5328
14f9c5c9 5329static int
d12307c1 5330remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5331 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5332{
5333 struct symbol *current_function;
0d5cff50 5334 const char *current_function_name;
4c4b4cd2 5335 int i;
aeb5907d
JB
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
0963b4bd 5340 First, zero out such symbols, then compress. */
aeb5907d
JB
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
d12307c1 5344 struct symbol *sym = syms[i].symbol;
270140bd 5345 const struct block *block = syms[i].block;
aeb5907d
JB
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5b4ee69b 5358
aeb5907d
JB
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5363 name_len) == 0
5364 && block == syms[j].block)
d12307c1 5365 syms[j].symbol = NULL;
aeb5907d
JB
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5373 if (syms[j].symbol != NULL)
aeb5907d
JB
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
4c4b4cd2
PH
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
76a01679 5383
4c4b4cd2
PH
5384 if (current_block == NULL)
5385 return nsyms;
76a01679 5386
7f0df278 5387 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
d12307c1 5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5403 == ADA_OBJECT_RENAMING
d12307c1 5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5405 {
5406 int j;
5b4ee69b 5407
aeb5907d 5408 for (j = i + 1; j < nsyms; j += 1)
76a01679 5409 syms[j - 1] = syms[j];
4c4b4cd2
PH
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417}
5418
339c13b6
JB
5419/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429static void
b5ec771e
PA
5430ada_add_local_symbols (struct obstack *obstackp,
5431 const lookup_name_info &lookup_name,
5432 const struct block *block, domain_enum domain)
339c13b6
JB
5433{
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
b5ec771e 5439 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5452 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5453}
5454
ccefe4c4 5455/* An object of this type is used as the user_data argument when
40658b94 5456 calling the map_matching_symbols method. */
ccefe4c4 5457
40658b94 5458struct match_data
ccefe4c4 5459{
40658b94 5460 struct objfile *objfile;
ccefe4c4 5461 struct obstack *obstackp;
40658b94
PH
5462 struct symbol *arg_sym;
5463 int found_sym;
ccefe4c4
TT
5464};
5465
22cee43f 5466/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
ccefe4c4 5474
40658b94
PH
5475static int
5476aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5477{
40658b94
PH
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504}
5505
b5ec771e
PA
5506/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5507 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5508 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5509
5510static int
5511ada_add_block_renamings (struct obstack *obstackp,
5512 const struct block *block,
b5ec771e
PA
5513 const lookup_name_info &lookup_name,
5514 domain_enum domain)
22cee43f
PMR
5515{
5516 struct using_direct *renaming;
5517 int defns_mark = num_defns_collected (obstackp);
5518
b5ec771e
PA
5519 symbol_name_matcher_ftype *name_match
5520 = ada_get_symbol_name_matcher (lookup_name);
5521
22cee43f
PMR
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
22cee43f
PMR
5527
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5530
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5538 continue;
5539 renaming->searched = 1;
5540
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5549 ? renaming->alias
5550 : renaming->declaration);
b5ec771e
PA
5551 if (name_match (r_name, lookup_name, NULL))
5552 {
5553 lookup_name_info decl_lookup_name (renaming->declaration,
5554 lookup_name.match_type ());
5555 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5556 1, NULL);
5557 }
22cee43f
PMR
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561}
5562
db230ce3
JB
5563/* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5b4ee69b 5565
40658b94 5566static int
db230ce3
JB
5567compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
40658b94
PH
5569{
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
db230ce3
JB
5572 char c1, c2;
5573
40658b94
PH
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
40658b94 5588 break;
db230ce3 5589
40658b94
PH
5590 string1 += 1;
5591 string2 += 1;
5592 }
db230ce3 5593
40658b94
PH
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
052874e8 5601 if (is_name_suffix (string1))
40658b94
PH
5602 return 0;
5603 else
1a1d5513 5604 return 1;
40658b94 5605 }
dbb8534f 5606 /* FALLTHROUGH */
40658b94
PH
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
db230ce3
JB
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
40658b94 5617 }
ccefe4c4
TT
5618}
5619
db230ce3
JB
5620/* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631static int
5632compare_names (const char *string1, const char *string2)
5633{
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646}
5647
b5ec771e
PA
5648/* Convenience function to get at the Ada encoded lookup name for
5649 LOOKUP_NAME, as a C string. */
5650
5651static const char *
5652ada_lookup_name (const lookup_name_info &lookup_name)
5653{
5654 return lookup_name.ada ().lookup_name ().c_str ();
5655}
5656
339c13b6 5657/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5658 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5659 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5660 symbols otherwise. */
339c13b6
JB
5661
5662static void
b5ec771e
PA
5663add_nonlocal_symbols (struct obstack *obstackp,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, int global)
339c13b6
JB
5666{
5667 struct objfile *objfile;
22cee43f 5668 struct compunit_symtab *cu;
40658b94 5669 struct match_data data;
339c13b6 5670
6475f2fe 5671 memset (&data, 0, sizeof data);
ccefe4c4 5672 data.obstackp = obstackp;
339c13b6 5673
b5ec771e
PA
5674 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5675
ccefe4c4 5676 ALL_OBJFILES (objfile)
40658b94
PH
5677 {
5678 data.objfile = objfile;
5679
5680 if (is_wild_match)
b5ec771e
PA
5681 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5682 domain, global,
4186eb54 5683 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5684 symbol_name_match_type::WILD,
5685 NULL);
40658b94 5686 else
b5ec771e
PA
5687 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5688 domain, global,
4186eb54 5689 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5690 symbol_name_match_type::FULL,
5691 compare_names);
22cee43f
PMR
5692
5693 ALL_OBJFILE_COMPUNITS (objfile, cu)
5694 {
5695 const struct block *global_block
5696 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5697
b5ec771e
PA
5698 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5699 domain))
22cee43f
PMR
5700 data.found_sym = 1;
5701 }
40658b94
PH
5702 }
5703
5704 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5705 {
b5ec771e
PA
5706 const char *name = ada_lookup_name (lookup_name);
5707 std::string name1 = std::string ("<_ada_") + name + '>';
5708
40658b94
PH
5709 ALL_OBJFILES (objfile)
5710 {
40658b94 5711 data.objfile = objfile;
b5ec771e
PA
5712 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5713 domain, global,
0963b4bd
MS
5714 aux_add_nonlocal_symbols,
5715 &data,
b5ec771e
PA
5716 symbol_name_match_type::FULL,
5717 compare_names);
40658b94
PH
5718 }
5719 }
339c13b6
JB
5720}
5721
b5ec771e
PA
5722/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5723 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5724 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5725
22cee43f
PMR
5726 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5727 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5728 is the one match returned (no other matches in that or
d9680e73 5729 enclosing blocks is returned). If there are any matches in or
22cee43f 5730 surrounding BLOCK, then these alone are returned.
4eeaa230 5731
b5ec771e
PA
5732 Names prefixed with "standard__" are handled specially:
5733 "standard__" is first stripped off (by the lookup_name
5734 constructor), and only static and global symbols are searched.
14f9c5c9 5735
22cee43f
PMR
5736 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5737 to lookup global symbols. */
5738
5739static void
5740ada_add_all_symbols (struct obstack *obstackp,
5741 const struct block *block,
b5ec771e 5742 const lookup_name_info &lookup_name,
22cee43f
PMR
5743 domain_enum domain,
5744 int full_search,
5745 int *made_global_lookup_p)
14f9c5c9
AS
5746{
5747 struct symbol *sym;
14f9c5c9 5748
22cee43f
PMR
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 0;
339c13b6
JB
5751
5752 /* Special case: If the user specifies a symbol name inside package
5753 Standard, do a non-wild matching of the symbol name without
5754 the "standard__" prefix. This was primarily introduced in order
5755 to allow the user to specifically access the standard exceptions
5756 using, for instance, Standard.Constraint_Error when Constraint_Error
5757 is ambiguous (due to the user defining its own Constraint_Error
5758 entity inside its program). */
b5ec771e
PA
5759 if (lookup_name.ada ().standard_p ())
5760 block = NULL;
4c4b4cd2 5761
339c13b6 5762 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5763
4eeaa230
DE
5764 if (block != NULL)
5765 {
5766 if (full_search)
b5ec771e 5767 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5768 else
5769 {
5770 /* In the !full_search case we're are being called by
5771 ada_iterate_over_symbols, and we don't want to search
5772 superblocks. */
b5ec771e 5773 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5774 }
22cee43f
PMR
5775 if (num_defns_collected (obstackp) > 0 || !full_search)
5776 return;
4eeaa230 5777 }
d2e4a39e 5778
339c13b6
JB
5779 /* No non-global symbols found. Check our cache to see if we have
5780 already performed this search before. If we have, then return
5781 the same result. */
5782
b5ec771e
PA
5783 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5784 domain, &sym, &block))
4c4b4cd2
PH
5785 {
5786 if (sym != NULL)
b5ec771e 5787 add_defn_to_vec (obstackp, sym, block);
22cee43f 5788 return;
4c4b4cd2 5789 }
14f9c5c9 5790
22cee43f
PMR
5791 if (made_global_lookup_p)
5792 *made_global_lookup_p = 1;
b1eedac9 5793
339c13b6
JB
5794 /* Search symbols from all global blocks. */
5795
b5ec771e 5796 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5797
4c4b4cd2 5798 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5799 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5800
22cee43f 5801 if (num_defns_collected (obstackp) == 0)
b5ec771e 5802 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5803}
5804
b5ec771e
PA
5805/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5806 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5807 matches.
ec6a20c2 5808 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
22cee43f 5809 indicating the symbols found and the blocks and symbol tables (if
ec6a20c2
JB
5810 any) in which they were found. This vector should be freed when
5811 no longer useful.
22cee43f
PMR
5812
5813 When full_search is non-zero, any non-function/non-enumeral
5814 symbol match within the nest of blocks whose innermost member is BLOCK,
5815 is the one match returned (no other matches in that or
5816 enclosing blocks is returned). If there are any matches in or
5817 surrounding BLOCK, then these alone are returned.
5818
5819 Names prefixed with "standard__" are handled specially: "standard__"
5820 is first stripped off, and only static and global symbols are searched. */
5821
5822static int
b5ec771e
PA
5823ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5824 const struct block *block,
22cee43f
PMR
5825 domain_enum domain,
5826 struct block_symbol **results,
5827 int full_search)
5828{
22cee43f
PMR
5829 int syms_from_global_search;
5830 int ndefns;
ec6a20c2
JB
5831 int results_size;
5832 auto_obstack obstack;
22cee43f 5833
ec6a20c2 5834 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5835 domain, full_search, &syms_from_global_search);
14f9c5c9 5836
ec6a20c2
JB
5837 ndefns = num_defns_collected (&obstack);
5838
5839 results_size = obstack_object_size (&obstack);
5840 *results = (struct block_symbol *) malloc (results_size);
5841 memcpy (*results, defns_collected (&obstack, 1), results_size);
4c4b4cd2
PH
5842
5843 ndefns = remove_extra_symbols (*results, ndefns);
5844
b1eedac9 5845 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5846 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5847
b1eedac9 5848 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5849 cache_symbol (ada_lookup_name (lookup_name), domain,
5850 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5851
22cee43f 5852 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
ec6a20c2 5853
14f9c5c9
AS
5854 return ndefns;
5855}
5856
b5ec771e 5857/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
4eeaa230 5858 in global scopes, returning the number of matches, and setting *RESULTS
ec6a20c2
JB
5859 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5860 vector should be freed when no longer useful.
5861
4eeaa230
DE
5862 See ada_lookup_symbol_list_worker for further details. */
5863
5864int
b5ec771e 5865ada_lookup_symbol_list (const char *name, const struct block *block,
d12307c1 5866 domain_enum domain, struct block_symbol **results)
4eeaa230 5867{
b5ec771e
PA
5868 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5869 lookup_name_info lookup_name (name, name_match_type);
5870
5871 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5872}
5873
5874/* Implementation of the la_iterate_over_symbols method. */
5875
5876static void
14bc53a8 5877ada_iterate_over_symbols
b5ec771e
PA
5878 (const struct block *block, const lookup_name_info &name,
5879 domain_enum domain,
14bc53a8 5880 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5881{
5882 int ndefs, i;
d12307c1 5883 struct block_symbol *results;
ec6a20c2 5884 struct cleanup *old_chain;
4eeaa230
DE
5885
5886 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2
JB
5887 old_chain = make_cleanup (xfree, results);
5888
4eeaa230
DE
5889 for (i = 0; i < ndefs; ++i)
5890 {
14bc53a8 5891 if (!callback (results[i].symbol))
4eeaa230
DE
5892 break;
5893 }
ec6a20c2
JB
5894
5895 do_cleanups (old_chain);
4eeaa230
DE
5896}
5897
4e5c77fe
JB
5898/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5e2336be
JB
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5904
5905void
5906ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5907 domain_enum domain,
d12307c1 5908 struct block_symbol *info)
14f9c5c9 5909{
b5ec771e
PA
5910 /* Since we already have an encoded name, wrap it in '<>' to force a
5911 verbatim match. Otherwise, if the name happens to not look like
5912 an encoded name (because it doesn't include a "__"),
5913 ada_lookup_name_info would re-encode/fold it again, and that
5914 would e.g., incorrectly lowercase object renaming names like
5915 "R28b" -> "r28b". */
5916 std::string verbatim = std::string ("<") + name + '>';
5917
5e2336be 5918 gdb_assert (info != NULL);
f98fc17b 5919 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5920}
aeb5907d
JB
5921
5922/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5923 scope and in global scopes, or NULL if none. NAME is folded and
5924 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5925 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5926 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5927
d12307c1 5928struct block_symbol
aeb5907d 5929ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5930 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5931{
5932 if (is_a_field_of_this != NULL)
5933 *is_a_field_of_this = 0;
5934
f98fc17b
PA
5935 struct block_symbol *candidates;
5936 int n_candidates;
5937 struct cleanup *old_chain;
5938
5939 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5940 old_chain = make_cleanup (xfree, candidates);
5941
5942 if (n_candidates == 0)
5943 {
5944 do_cleanups (old_chain);
5945 return {};
5946 }
5947
5948 block_symbol info = candidates[0];
5949 info.symbol = fixup_symbol_section (info.symbol, NULL);
5950
5951 do_cleanups (old_chain);
5952
d12307c1 5953 return info;
4c4b4cd2 5954}
14f9c5c9 5955
d12307c1 5956static struct block_symbol
f606139a
DE
5957ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5958 const char *name,
76a01679 5959 const struct block *block,
21b556f4 5960 const domain_enum domain)
4c4b4cd2 5961{
d12307c1 5962 struct block_symbol sym;
04dccad0
JB
5963
5964 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5965 if (sym.symbol != NULL)
04dccad0
JB
5966 return sym;
5967
5968 /* If we haven't found a match at this point, try the primitive
5969 types. In other languages, this search is performed before
5970 searching for global symbols in order to short-circuit that
5971 global-symbol search if it happens that the name corresponds
5972 to a primitive type. But we cannot do the same in Ada, because
5973 it is perfectly legitimate for a program to declare a type which
5974 has the same name as a standard type. If looking up a type in
5975 that situation, we have traditionally ignored the primitive type
5976 in favor of user-defined types. This is why, unlike most other
5977 languages, we search the primitive types this late and only after
5978 having searched the global symbols without success. */
5979
5980 if (domain == VAR_DOMAIN)
5981 {
5982 struct gdbarch *gdbarch;
5983
5984 if (block == NULL)
5985 gdbarch = target_gdbarch ();
5986 else
5987 gdbarch = block_gdbarch (block);
d12307c1
PMR
5988 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5989 if (sym.symbol != NULL)
04dccad0
JB
5990 return sym;
5991 }
5992
d12307c1 5993 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5994}
5995
5996
4c4b4cd2
PH
5997/* True iff STR is a possible encoded suffix of a normal Ada name
5998 that is to be ignored for matching purposes. Suffixes of parallel
5999 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 6000 are given by any of the regular expressions:
4c4b4cd2 6001
babe1480
JB
6002 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6003 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 6004 TKB [subprogram suffix for task bodies]
babe1480 6005 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 6006 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
6007
6008 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6009 match is performed. This sequence is used to differentiate homonyms,
6010 is an optional part of a valid name suffix. */
4c4b4cd2 6011
14f9c5c9 6012static int
d2e4a39e 6013is_name_suffix (const char *str)
14f9c5c9
AS
6014{
6015 int k;
4c4b4cd2
PH
6016 const char *matching;
6017 const int len = strlen (str);
6018
babe1480
JB
6019 /* Skip optional leading __[0-9]+. */
6020
4c4b4cd2
PH
6021 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6022 {
babe1480
JB
6023 str += 3;
6024 while (isdigit (str[0]))
6025 str += 1;
4c4b4cd2 6026 }
babe1480
JB
6027
6028 /* [.$][0-9]+ */
4c4b4cd2 6029
babe1480 6030 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6031 {
babe1480 6032 matching = str + 1;
4c4b4cd2
PH
6033 while (isdigit (matching[0]))
6034 matching += 1;
6035 if (matching[0] == '\0')
6036 return 1;
6037 }
6038
6039 /* ___[0-9]+ */
babe1480 6040
4c4b4cd2
PH
6041 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6042 {
6043 matching = str + 3;
6044 while (isdigit (matching[0]))
6045 matching += 1;
6046 if (matching[0] == '\0')
6047 return 1;
6048 }
6049
9ac7f98e
JB
6050 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6051
6052 if (strcmp (str, "TKB") == 0)
6053 return 1;
6054
529cad9c
PH
6055#if 0
6056 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6057 with a N at the end. Unfortunately, the compiler uses the same
6058 convention for other internal types it creates. So treating
529cad9c 6059 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6060 some regressions. For instance, consider the case of an enumerated
6061 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6062 name ends with N.
6063 Having a single character like this as a suffix carrying some
0963b4bd 6064 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6065 to be something like "_N" instead. In the meantime, do not do
6066 the following check. */
6067 /* Protected Object Subprograms */
6068 if (len == 1 && str [0] == 'N')
6069 return 1;
6070#endif
6071
6072 /* _E[0-9]+[bs]$ */
6073 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6074 {
6075 matching = str + 3;
6076 while (isdigit (matching[0]))
6077 matching += 1;
6078 if ((matching[0] == 'b' || matching[0] == 's')
6079 && matching [1] == '\0')
6080 return 1;
6081 }
6082
4c4b4cd2
PH
6083 /* ??? We should not modify STR directly, as we are doing below. This
6084 is fine in this case, but may become problematic later if we find
6085 that this alternative did not work, and want to try matching
6086 another one from the begining of STR. Since we modified it, we
6087 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6088 if (str[0] == 'X')
6089 {
6090 str += 1;
d2e4a39e 6091 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6092 {
6093 if (str[0] != 'n' && str[0] != 'b')
6094 return 0;
6095 str += 1;
6096 }
14f9c5c9 6097 }
babe1480 6098
14f9c5c9
AS
6099 if (str[0] == '\000')
6100 return 1;
babe1480 6101
d2e4a39e 6102 if (str[0] == '_')
14f9c5c9
AS
6103 {
6104 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6105 return 0;
d2e4a39e 6106 if (str[2] == '_')
4c4b4cd2 6107 {
61ee279c
PH
6108 if (strcmp (str + 3, "JM") == 0)
6109 return 1;
6110 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6111 the LJM suffix in favor of the JM one. But we will
6112 still accept LJM as a valid suffix for a reasonable
6113 amount of time, just to allow ourselves to debug programs
6114 compiled using an older version of GNAT. */
4c4b4cd2
PH
6115 if (strcmp (str + 3, "LJM") == 0)
6116 return 1;
6117 if (str[3] != 'X')
6118 return 0;
1265e4aa
JB
6119 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6120 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6121 return 1;
6122 if (str[4] == 'R' && str[5] != 'T')
6123 return 1;
6124 return 0;
6125 }
6126 if (!isdigit (str[2]))
6127 return 0;
6128 for (k = 3; str[k] != '\0'; k += 1)
6129 if (!isdigit (str[k]) && str[k] != '_')
6130 return 0;
14f9c5c9
AS
6131 return 1;
6132 }
4c4b4cd2 6133 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6134 {
4c4b4cd2
PH
6135 for (k = 2; str[k] != '\0'; k += 1)
6136 if (!isdigit (str[k]) && str[k] != '_')
6137 return 0;
14f9c5c9
AS
6138 return 1;
6139 }
6140 return 0;
6141}
d2e4a39e 6142
aeb5907d
JB
6143/* Return non-zero if the string starting at NAME and ending before
6144 NAME_END contains no capital letters. */
529cad9c
PH
6145
6146static int
6147is_valid_name_for_wild_match (const char *name0)
6148{
6149 const char *decoded_name = ada_decode (name0);
6150 int i;
6151
5823c3ef
JB
6152 /* If the decoded name starts with an angle bracket, it means that
6153 NAME0 does not follow the GNAT encoding format. It should then
6154 not be allowed as a possible wild match. */
6155 if (decoded_name[0] == '<')
6156 return 0;
6157
529cad9c
PH
6158 for (i=0; decoded_name[i] != '\0'; i++)
6159 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6160 return 0;
6161
6162 return 1;
6163}
6164
73589123
PH
6165/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6166 that could start a simple name. Assumes that *NAMEP points into
6167 the string beginning at NAME0. */
4c4b4cd2 6168
14f9c5c9 6169static int
73589123 6170advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6171{
73589123 6172 const char *name = *namep;
5b4ee69b 6173
5823c3ef 6174 while (1)
14f9c5c9 6175 {
aa27d0b3 6176 int t0, t1;
73589123
PH
6177
6178 t0 = *name;
6179 if (t0 == '_')
6180 {
6181 t1 = name[1];
6182 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6183 {
6184 name += 1;
61012eef 6185 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6186 break;
6187 else
6188 name += 1;
6189 }
aa27d0b3
JB
6190 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6191 || name[2] == target0))
73589123
PH
6192 {
6193 name += 2;
6194 break;
6195 }
6196 else
6197 return 0;
6198 }
6199 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6200 name += 1;
6201 else
5823c3ef 6202 return 0;
73589123
PH
6203 }
6204
6205 *namep = name;
6206 return 1;
6207}
6208
b5ec771e
PA
6209/* Return true iff NAME encodes a name of the form prefix.PATN.
6210 Ignores any informational suffixes of NAME (i.e., for which
6211 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6212 simple name. */
73589123 6213
b5ec771e 6214static bool
73589123
PH
6215wild_match (const char *name, const char *patn)
6216{
22e048c9 6217 const char *p;
73589123
PH
6218 const char *name0 = name;
6219
6220 while (1)
6221 {
6222 const char *match = name;
6223
6224 if (*name == *patn)
6225 {
6226 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6227 if (*p != *name)
6228 break;
6229 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6230 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6231
6232 if (name[-1] == '_')
6233 name -= 1;
6234 }
6235 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6236 return false;
96d887e8 6237 }
96d887e8
PH
6238}
6239
b5ec771e
PA
6240/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6241 any trailing suffixes that encode debugging information or leading
6242 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6243 information that is ignored). */
40658b94 6244
b5ec771e 6245static bool
c4d840bd
PH
6246full_match (const char *sym_name, const char *search_name)
6247{
b5ec771e
PA
6248 size_t search_name_len = strlen (search_name);
6249
6250 if (strncmp (sym_name, search_name, search_name_len) == 0
6251 && is_name_suffix (sym_name + search_name_len))
6252 return true;
6253
6254 if (startswith (sym_name, "_ada_")
6255 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6256 && is_name_suffix (sym_name + search_name_len + 5))
6257 return true;
c4d840bd 6258
b5ec771e
PA
6259 return false;
6260}
c4d840bd 6261
b5ec771e
PA
6262/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6263 *defn_symbols, updating the list of symbols in OBSTACKP (if
6264 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6265
6266static void
6267ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6268 const struct block *block,
6269 const lookup_name_info &lookup_name,
6270 domain_enum domain, struct objfile *objfile)
96d887e8 6271{
8157b174 6272 struct block_iterator iter;
96d887e8
PH
6273 /* A matching argument symbol, if any. */
6274 struct symbol *arg_sym;
6275 /* Set true when we find a matching non-argument symbol. */
6276 int found_sym;
6277 struct symbol *sym;
6278
6279 arg_sym = NULL;
6280 found_sym = 0;
b5ec771e
PA
6281 for (sym = block_iter_match_first (block, lookup_name, &iter);
6282 sym != NULL;
6283 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6284 {
b5ec771e
PA
6285 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6286 SYMBOL_DOMAIN (sym), domain))
6287 {
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6289 {
6290 if (SYMBOL_IS_ARGUMENT (sym))
6291 arg_sym = sym;
6292 else
6293 {
6294 found_sym = 1;
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6297 block);
6298 }
6299 }
6300 }
96d887e8
PH
6301 }
6302
22cee43f
PMR
6303 /* Handle renamings. */
6304
b5ec771e 6305 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6306 found_sym = 1;
6307
96d887e8
PH
6308 if (!found_sym && arg_sym != NULL)
6309 {
76a01679
JB
6310 add_defn_to_vec (obstackp,
6311 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6312 block);
96d887e8
PH
6313 }
6314
b5ec771e 6315 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6316 {
6317 arg_sym = NULL;
6318 found_sym = 0;
b5ec771e
PA
6319 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6320 const char *name = ada_lookup_name.c_str ();
6321 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6322
6323 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6324 {
4186eb54
KS
6325 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6326 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6327 {
6328 int cmp;
6329
6330 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6331 if (cmp == 0)
6332 {
61012eef 6333 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6334 if (cmp == 0)
6335 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6336 name_len);
6337 }
6338
6339 if (cmp == 0
6340 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6341 {
2a2d4dc3
AS
6342 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6343 {
6344 if (SYMBOL_IS_ARGUMENT (sym))
6345 arg_sym = sym;
6346 else
6347 {
6348 found_sym = 1;
6349 add_defn_to_vec (obstackp,
6350 fixup_symbol_section (sym, objfile),
6351 block);
6352 }
6353 }
76a01679
JB
6354 }
6355 }
76a01679 6356 }
96d887e8
PH
6357
6358 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6359 They aren't parameters, right? */
6360 if (!found_sym && arg_sym != NULL)
6361 {
6362 add_defn_to_vec (obstackp,
76a01679 6363 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6364 block);
96d887e8
PH
6365 }
6366 }
6367}
6368\f
41d27058
JB
6369
6370 /* Symbol Completion */
6371
b5ec771e 6372/* See symtab.h. */
41d27058 6373
b5ec771e
PA
6374bool
6375ada_lookup_name_info::matches
6376 (const char *sym_name,
6377 symbol_name_match_type match_type,
a207cff2 6378 completion_match_result *comp_match_res) const
41d27058 6379{
b5ec771e
PA
6380 bool match = false;
6381 const char *text = m_encoded_name.c_str ();
6382 size_t text_len = m_encoded_name.size ();
41d27058
JB
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6387 match = true;
41d27058 6388
b5ec771e 6389 if (match && !m_encoded_p)
41d27058
JB
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
b5ec771e 6396 bool has_angle_bracket;
41d27058
JB
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6400 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6401 sym_name = sym_name_copy;
6402 }
6403
b5ec771e 6404 if (match && !m_verbatim_p)
41d27058
JB
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
b5ec771e 6415 match = false;
41d27058
JB
6416 }
6417
6418 /* Second: Try wild matching... */
6419
b5ec771e 6420 if (!match && m_wild_match_p)
41d27058
JB
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6428 match = true;
41d27058
JB
6429 }
6430
b5ec771e 6431 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6432
6433 if (!match)
b5ec771e 6434 return false;
41d27058 6435
a207cff2 6436 if (comp_match_res != NULL)
b5ec771e 6437 {
a207cff2 6438 std::string &match_str = comp_match_res->match.storage ();
41d27058 6439
b5ec771e 6440 if (!m_encoded_p)
a207cff2 6441 match_str = ada_decode (sym_name);
b5ec771e
PA
6442 else
6443 {
6444 if (m_verbatim_p)
6445 match_str = add_angle_brackets (sym_name);
6446 else
6447 match_str = sym_name;
41d27058 6448
b5ec771e 6449 }
a207cff2
PA
6450
6451 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6452 }
6453
b5ec771e 6454 return true;
41d27058
JB
6455}
6456
b5ec771e 6457/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6458 WORD is the entire command on which completion is made. */
41d27058 6459
eb3ff9a5
PA
6460static void
6461ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6462 complete_symbol_mode mode,
b5ec771e
PA
6463 symbol_name_match_type name_match_type,
6464 const char *text, const char *word,
eb3ff9a5 6465 enum type_code code)
41d27058 6466{
41d27058 6467 struct symbol *sym;
43f3e411 6468 struct compunit_symtab *s;
41d27058
JB
6469 struct minimal_symbol *msymbol;
6470 struct objfile *objfile;
3977b71f 6471 const struct block *b, *surrounding_static_block = 0;
8157b174 6472 struct block_iterator iter;
b8fea896 6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6474
2f68a895
TT
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
1b026119 6477 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6478
6479 /* First, look at the partial symtab symbols. */
14bc53a8 6480 expand_symtabs_matching (NULL,
b5ec771e
PA
6481 lookup_name,
6482 NULL,
14bc53a8
PA
6483 NULL,
6484 ALL_DOMAIN);
41d27058
JB
6485
6486 /* At this point scan through the misc symbol vectors and add each
6487 symbol you find to the list. Eventually we want to ignore
6488 anything that isn't a text symbol (everything else will be
6489 handled by the psymtab code above). */
6490
6491 ALL_MSYMBOLS (objfile, msymbol)
6492 {
6493 QUIT;
b5ec771e 6494
f9d67a22
PA
6495 if (completion_skip_symbol (mode, msymbol))
6496 continue;
6497
d4c2a405
PA
6498 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6499
6500 /* Ada minimal symbols won't have their language set to Ada. If
6501 we let completion_list_add_name compare using the
6502 default/C-like matcher, then when completing e.g., symbols in a
6503 package named "pck", we'd match internal Ada symbols like
6504 "pckS", which are invalid in an Ada expression, unless you wrap
6505 them in '<' '>' to request a verbatim match.
6506
6507 Unfortunately, some Ada encoded names successfully demangle as
6508 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6509 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6510 with the wrong language set. Paper over that issue here. */
6511 if (symbol_language == language_auto
6512 || symbol_language == language_cplus)
6513 symbol_language = language_ada;
6514
b5ec771e 6515 completion_list_add_name (tracker,
d4c2a405 6516 symbol_language,
b5ec771e 6517 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6518 lookup_name, text, word);
41d27058
JB
6519 }
6520
6521 /* Search upwards from currently selected frame (so that we can
6522 complete on local vars. */
6523
6524 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6525 {
6526 if (!BLOCK_SUPERBLOCK (b))
6527 surrounding_static_block = b; /* For elmin of dups */
6528
6529 ALL_BLOCK_SYMBOLS (b, iter, sym)
6530 {
f9d67a22
PA
6531 if (completion_skip_symbol (mode, sym))
6532 continue;
6533
b5ec771e
PA
6534 completion_list_add_name (tracker,
6535 SYMBOL_LANGUAGE (sym),
6536 SYMBOL_LINKAGE_NAME (sym),
1b026119 6537 lookup_name, text, word);
41d27058
JB
6538 }
6539 }
6540
6541 /* Go through the symtabs and check the externs and statics for
43f3e411 6542 symbols which match. */
41d27058 6543
43f3e411 6544 ALL_COMPUNITS (objfile, s)
41d27058
JB
6545 {
6546 QUIT;
43f3e411 6547 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6548 ALL_BLOCK_SYMBOLS (b, iter, sym)
6549 {
f9d67a22
PA
6550 if (completion_skip_symbol (mode, sym))
6551 continue;
6552
b5ec771e
PA
6553 completion_list_add_name (tracker,
6554 SYMBOL_LANGUAGE (sym),
6555 SYMBOL_LINKAGE_NAME (sym),
1b026119 6556 lookup_name, text, word);
41d27058
JB
6557 }
6558 }
6559
43f3e411 6560 ALL_COMPUNITS (objfile, s)
41d27058
JB
6561 {
6562 QUIT;
43f3e411 6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
f9d67a22
PA
6569 if (completion_skip_symbol (mode, sym))
6570 continue;
6571
b5ec771e
PA
6572 completion_list_add_name (tracker,
6573 SYMBOL_LANGUAGE (sym),
6574 SYMBOL_LINKAGE_NAME (sym),
1b026119 6575 lookup_name, text, word);
41d27058
JB
6576 }
6577 }
6578
b8fea896 6579 do_cleanups (old_chain);
41d27058
JB
6580}
6581
963a6417 6582 /* Field Access */
96d887e8 6583
73fb9985
JB
6584/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6585 for tagged types. */
6586
6587static int
6588ada_is_dispatch_table_ptr_type (struct type *type)
6589{
0d5cff50 6590 const char *name;
73fb9985
JB
6591
6592 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6593 return 0;
6594
6595 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6596 if (name == NULL)
6597 return 0;
6598
6599 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6600}
6601
ac4a2da4
JG
6602/* Return non-zero if TYPE is an interface tag. */
6603
6604static int
6605ada_is_interface_tag (struct type *type)
6606{
6607 const char *name = TYPE_NAME (type);
6608
6609 if (name == NULL)
6610 return 0;
6611
6612 return (strcmp (name, "ada__tags__interface_tag") == 0);
6613}
6614
963a6417
PH
6615/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6616 to be invisible to users. */
96d887e8 6617
963a6417
PH
6618int
6619ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6620{
963a6417
PH
6621 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6622 return 1;
ffde82bf 6623
73fb9985
JB
6624 /* Check the name of that field. */
6625 {
6626 const char *name = TYPE_FIELD_NAME (type, field_num);
6627
6628 /* Anonymous field names should not be printed.
6629 brobecker/2007-02-20: I don't think this can actually happen
6630 but we don't want to print the value of annonymous fields anyway. */
6631 if (name == NULL)
6632 return 1;
6633
ffde82bf
JB
6634 /* Normally, fields whose name start with an underscore ("_")
6635 are fields that have been internally generated by the compiler,
6636 and thus should not be printed. The "_parent" field is special,
6637 however: This is a field internally generated by the compiler
6638 for tagged types, and it contains the components inherited from
6639 the parent type. This field should not be printed as is, but
6640 should not be ignored either. */
61012eef 6641 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6642 return 1;
6643 }
6644
ac4a2da4
JG
6645 /* If this is the dispatch table of a tagged type or an interface tag,
6646 then ignore. */
73fb9985 6647 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6648 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6649 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6650 return 1;
6651
6652 /* Not a special field, so it should not be ignored. */
6653 return 0;
963a6417 6654}
96d887e8 6655
963a6417 6656/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6657 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6658
963a6417
PH
6659int
6660ada_is_tagged_type (struct type *type, int refok)
6661{
988f6b3d 6662 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6663}
96d887e8 6664
963a6417 6665/* True iff TYPE represents the type of X'Tag */
96d887e8 6666
963a6417
PH
6667int
6668ada_is_tag_type (struct type *type)
6669{
460efde1
JB
6670 type = ada_check_typedef (type);
6671
963a6417
PH
6672 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6673 return 0;
6674 else
96d887e8 6675 {
963a6417 6676 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6677
963a6417
PH
6678 return (name != NULL
6679 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6680 }
96d887e8
PH
6681}
6682
963a6417 6683/* The type of the tag on VAL. */
76a01679 6684
963a6417
PH
6685struct type *
6686ada_tag_type (struct value *val)
96d887e8 6687{
988f6b3d 6688 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6689}
96d887e8 6690
b50d69b5
JG
6691/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6692 retired at Ada 05). */
6693
6694static int
6695is_ada95_tag (struct value *tag)
6696{
6697 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6698}
6699
963a6417 6700/* The value of the tag on VAL. */
96d887e8 6701
963a6417
PH
6702struct value *
6703ada_value_tag (struct value *val)
6704{
03ee6b2e 6705 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6706}
6707
963a6417
PH
6708/* The value of the tag on the object of type TYPE whose contents are
6709 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6710 ADDRESS. */
96d887e8 6711
963a6417 6712static struct value *
10a2c479 6713value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6714 const gdb_byte *valaddr,
963a6417 6715 CORE_ADDR address)
96d887e8 6716{
b5385fc0 6717 int tag_byte_offset;
963a6417 6718 struct type *tag_type;
5b4ee69b 6719
963a6417 6720 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6721 NULL, NULL, NULL))
96d887e8 6722 {
fc1a4b47 6723 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6724 ? NULL
6725 : valaddr + tag_byte_offset);
963a6417 6726 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6727
963a6417 6728 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6729 }
963a6417
PH
6730 return NULL;
6731}
96d887e8 6732
963a6417
PH
6733static struct type *
6734type_from_tag (struct value *tag)
6735{
6736 const char *type_name = ada_tag_name (tag);
5b4ee69b 6737
963a6417
PH
6738 if (type_name != NULL)
6739 return ada_find_any_type (ada_encode (type_name));
6740 return NULL;
6741}
96d887e8 6742
b50d69b5
JG
6743/* Given a value OBJ of a tagged type, return a value of this
6744 type at the base address of the object. The base address, as
6745 defined in Ada.Tags, it is the address of the primary tag of
6746 the object, and therefore where the field values of its full
6747 view can be fetched. */
6748
6749struct value *
6750ada_tag_value_at_base_address (struct value *obj)
6751{
b50d69b5
JG
6752 struct value *val;
6753 LONGEST offset_to_top = 0;
6754 struct type *ptr_type, *obj_type;
6755 struct value *tag;
6756 CORE_ADDR base_address;
6757
6758 obj_type = value_type (obj);
6759
6760 /* It is the responsability of the caller to deref pointers. */
6761
6762 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6763 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6764 return obj;
6765
6766 tag = ada_value_tag (obj);
6767 if (!tag)
6768 return obj;
6769
6770 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6771
6772 if (is_ada95_tag (tag))
6773 return obj;
6774
08f49010
XR
6775 ptr_type = language_lookup_primitive_type
6776 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6777 ptr_type = lookup_pointer_type (ptr_type);
6778 val = value_cast (ptr_type, tag);
6779 if (!val)
6780 return obj;
6781
6782 /* It is perfectly possible that an exception be raised while
6783 trying to determine the base address, just like for the tag;
6784 see ada_tag_name for more details. We do not print the error
6785 message for the same reason. */
6786
492d29ea 6787 TRY
b50d69b5
JG
6788 {
6789 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6790 }
6791
492d29ea
PA
6792 CATCH (e, RETURN_MASK_ERROR)
6793 {
6794 return obj;
6795 }
6796 END_CATCH
b50d69b5
JG
6797
6798 /* If offset is null, nothing to do. */
6799
6800 if (offset_to_top == 0)
6801 return obj;
6802
6803 /* -1 is a special case in Ada.Tags; however, what should be done
6804 is not quite clear from the documentation. So do nothing for
6805 now. */
6806
6807 if (offset_to_top == -1)
6808 return obj;
6809
08f49010
XR
6810 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6811 from the base address. This was however incompatible with
6812 C++ dispatch table: C++ uses a *negative* value to *add*
6813 to the base address. Ada's convention has therefore been
6814 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6815 use the same convention. Here, we support both cases by
6816 checking the sign of OFFSET_TO_TOP. */
6817
6818 if (offset_to_top > 0)
6819 offset_to_top = -offset_to_top;
6820
6821 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6822 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6823
6824 /* Make sure that we have a proper tag at the new address.
6825 Otherwise, offset_to_top is bogus (which can happen when
6826 the object is not initialized yet). */
6827
6828 if (!tag)
6829 return obj;
6830
6831 obj_type = type_from_tag (tag);
6832
6833 if (!obj_type)
6834 return obj;
6835
6836 return value_from_contents_and_address (obj_type, NULL, base_address);
6837}
6838
1b611343
JB
6839/* Return the "ada__tags__type_specific_data" type. */
6840
6841static struct type *
6842ada_get_tsd_type (struct inferior *inf)
963a6417 6843{
1b611343 6844 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6845
1b611343
JB
6846 if (data->tsd_type == 0)
6847 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6848 return data->tsd_type;
6849}
529cad9c 6850
1b611343
JB
6851/* Return the TSD (type-specific data) associated to the given TAG.
6852 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6853
1b611343 6854 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6855
1b611343
JB
6856static struct value *
6857ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6858{
4c4b4cd2 6859 struct value *val;
1b611343 6860 struct type *type;
5b4ee69b 6861
1b611343
JB
6862 /* First option: The TSD is simply stored as a field of our TAG.
6863 Only older versions of GNAT would use this format, but we have
6864 to test it first, because there are no visible markers for
6865 the current approach except the absence of that field. */
529cad9c 6866
1b611343
JB
6867 val = ada_value_struct_elt (tag, "tsd", 1);
6868 if (val)
6869 return val;
e802dbe0 6870
1b611343
JB
6871 /* Try the second representation for the dispatch table (in which
6872 there is no explicit 'tsd' field in the referent of the tag pointer,
6873 and instead the tsd pointer is stored just before the dispatch
6874 table. */
e802dbe0 6875
1b611343
JB
6876 type = ada_get_tsd_type (current_inferior());
6877 if (type == NULL)
6878 return NULL;
6879 type = lookup_pointer_type (lookup_pointer_type (type));
6880 val = value_cast (type, tag);
6881 if (val == NULL)
6882 return NULL;
6883 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6884}
6885
1b611343
JB
6886/* Given the TSD of a tag (type-specific data), return a string
6887 containing the name of the associated type.
6888
6889 The returned value is good until the next call. May return NULL
6890 if we are unable to determine the tag name. */
6891
6892static char *
6893ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6894{
529cad9c
PH
6895 static char name[1024];
6896 char *p;
1b611343 6897 struct value *val;
529cad9c 6898
1b611343 6899 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6900 if (val == NULL)
1b611343 6901 return NULL;
4c4b4cd2
PH
6902 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6903 for (p = name; *p != '\0'; p += 1)
6904 if (isalpha (*p))
6905 *p = tolower (*p);
1b611343 6906 return name;
4c4b4cd2
PH
6907}
6908
6909/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6910 a C string.
6911
6912 Return NULL if the TAG is not an Ada tag, or if we were unable to
6913 determine the name of that tag. The result is good until the next
6914 call. */
4c4b4cd2
PH
6915
6916const char *
6917ada_tag_name (struct value *tag)
6918{
1b611343 6919 char *name = NULL;
5b4ee69b 6920
df407dfe 6921 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6922 return NULL;
1b611343
JB
6923
6924 /* It is perfectly possible that an exception be raised while trying
6925 to determine the TAG's name, even under normal circumstances:
6926 The associated variable may be uninitialized or corrupted, for
6927 instance. We do not let any exception propagate past this point.
6928 instead we return NULL.
6929
6930 We also do not print the error message either (which often is very
6931 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6932 the caller print a more meaningful message if necessary. */
492d29ea 6933 TRY
1b611343
JB
6934 {
6935 struct value *tsd = ada_get_tsd_from_tag (tag);
6936
6937 if (tsd != NULL)
6938 name = ada_tag_name_from_tsd (tsd);
6939 }
492d29ea
PA
6940 CATCH (e, RETURN_MASK_ERROR)
6941 {
6942 }
6943 END_CATCH
1b611343
JB
6944
6945 return name;
4c4b4cd2
PH
6946}
6947
6948/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6949
d2e4a39e 6950struct type *
ebf56fd3 6951ada_parent_type (struct type *type)
14f9c5c9
AS
6952{
6953 int i;
6954
61ee279c 6955 type = ada_check_typedef (type);
14f9c5c9
AS
6956
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6958 return NULL;
6959
6960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6961 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6962 {
6963 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6964
6965 /* If the _parent field is a pointer, then dereference it. */
6966 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6967 parent_type = TYPE_TARGET_TYPE (parent_type);
6968 /* If there is a parallel XVS type, get the actual base type. */
6969 parent_type = ada_get_base_type (parent_type);
6970
6971 return ada_check_typedef (parent_type);
6972 }
14f9c5c9
AS
6973
6974 return NULL;
6975}
6976
4c4b4cd2
PH
6977/* True iff field number FIELD_NUM of structure type TYPE contains the
6978 parent-type (inherited) fields of a derived type. Assumes TYPE is
6979 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6980
6981int
ebf56fd3 6982ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6983{
61ee279c 6984 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6985
4c4b4cd2 6986 return (name != NULL
61012eef
GB
6987 && (startswith (name, "PARENT")
6988 || startswith (name, "_parent")));
14f9c5c9
AS
6989}
6990
4c4b4cd2 6991/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6992 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6993 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6994 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6995 structures. */
14f9c5c9
AS
6996
6997int
ebf56fd3 6998ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6999{
d2e4a39e 7000 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7001
dddc0e16
JB
7002 if (name != NULL && strcmp (name, "RETVAL") == 0)
7003 {
7004 /* This happens in functions with "out" or "in out" parameters
7005 which are passed by copy. For such functions, GNAT describes
7006 the function's return type as being a struct where the return
7007 value is in a field called RETVAL, and where the other "out"
7008 or "in out" parameters are fields of that struct. This is not
7009 a wrapper. */
7010 return 0;
7011 }
7012
d2e4a39e 7013 return (name != NULL
61012eef 7014 && (startswith (name, "PARENT")
4c4b4cd2 7015 || strcmp (name, "REP") == 0
61012eef 7016 || startswith (name, "_parent")
4c4b4cd2 7017 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7018}
7019
4c4b4cd2
PH
7020/* True iff field number FIELD_NUM of structure or union type TYPE
7021 is a variant wrapper. Assumes TYPE is a structure type with at least
7022 FIELD_NUM+1 fields. */
14f9c5c9
AS
7023
7024int
ebf56fd3 7025ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7026{
d2e4a39e 7027 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7028
14f9c5c9 7029 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7030 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7031 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7032 == TYPE_CODE_UNION)));
14f9c5c9
AS
7033}
7034
7035/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7036 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7037 returns the type of the controlling discriminant for the variant.
7038 May return NULL if the type could not be found. */
14f9c5c9 7039
d2e4a39e 7040struct type *
ebf56fd3 7041ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7042{
a121b7c1 7043 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7044
988f6b3d 7045 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7046}
7047
4c4b4cd2 7048/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7049 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7050 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7051
7052int
ebf56fd3 7053ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7054{
d2e4a39e 7055 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7056
14f9c5c9
AS
7057 return (name != NULL && name[0] == 'O');
7058}
7059
7060/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7061 returns the name of the discriminant controlling the variant.
7062 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7063
a121b7c1 7064const char *
ebf56fd3 7065ada_variant_discrim_name (struct type *type0)
14f9c5c9 7066{
d2e4a39e 7067 static char *result = NULL;
14f9c5c9 7068 static size_t result_len = 0;
d2e4a39e
AS
7069 struct type *type;
7070 const char *name;
7071 const char *discrim_end;
7072 const char *discrim_start;
14f9c5c9
AS
7073
7074 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7075 type = TYPE_TARGET_TYPE (type0);
7076 else
7077 type = type0;
7078
7079 name = ada_type_name (type);
7080
7081 if (name == NULL || name[0] == '\000')
7082 return "";
7083
7084 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7085 discrim_end -= 1)
7086 {
61012eef 7087 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7088 break;
14f9c5c9
AS
7089 }
7090 if (discrim_end == name)
7091 return "";
7092
d2e4a39e 7093 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7094 discrim_start -= 1)
7095 {
d2e4a39e 7096 if (discrim_start == name + 1)
4c4b4cd2 7097 return "";
76a01679 7098 if ((discrim_start > name + 3
61012eef 7099 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7100 || discrim_start[-1] == '.')
7101 break;
14f9c5c9
AS
7102 }
7103
7104 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7105 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7106 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7107 return result;
7108}
7109
4c4b4cd2
PH
7110/* Scan STR for a subtype-encoded number, beginning at position K.
7111 Put the position of the character just past the number scanned in
7112 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7113 Return 1 if there was a valid number at the given position, and 0
7114 otherwise. A "subtype-encoded" number consists of the absolute value
7115 in decimal, followed by the letter 'm' to indicate a negative number.
7116 Assumes 0m does not occur. */
14f9c5c9
AS
7117
7118int
d2e4a39e 7119ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7120{
7121 ULONGEST RU;
7122
d2e4a39e 7123 if (!isdigit (str[k]))
14f9c5c9
AS
7124 return 0;
7125
4c4b4cd2 7126 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7127 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7128 LONGEST. */
14f9c5c9
AS
7129 RU = 0;
7130 while (isdigit (str[k]))
7131 {
d2e4a39e 7132 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7133 k += 1;
7134 }
7135
d2e4a39e 7136 if (str[k] == 'm')
14f9c5c9
AS
7137 {
7138 if (R != NULL)
4c4b4cd2 7139 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7140 k += 1;
7141 }
7142 else if (R != NULL)
7143 *R = (LONGEST) RU;
7144
4c4b4cd2 7145 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7146 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7147 number representable as a LONGEST (although either would probably work
7148 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7149 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7150
7151 if (new_k != NULL)
7152 *new_k = k;
7153 return 1;
7154}
7155
4c4b4cd2
PH
7156/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7157 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7158 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7159
d2e4a39e 7160int
ebf56fd3 7161ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7162{
d2e4a39e 7163 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7164 int p;
7165
7166 p = 0;
7167 while (1)
7168 {
d2e4a39e 7169 switch (name[p])
4c4b4cd2
PH
7170 {
7171 case '\0':
7172 return 0;
7173 case 'S':
7174 {
7175 LONGEST W;
5b4ee69b 7176
4c4b4cd2
PH
7177 if (!ada_scan_number (name, p + 1, &W, &p))
7178 return 0;
7179 if (val == W)
7180 return 1;
7181 break;
7182 }
7183 case 'R':
7184 {
7185 LONGEST L, U;
5b4ee69b 7186
4c4b4cd2
PH
7187 if (!ada_scan_number (name, p + 1, &L, &p)
7188 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7189 return 0;
7190 if (val >= L && val <= U)
7191 return 1;
7192 break;
7193 }
7194 case 'O':
7195 return 1;
7196 default:
7197 return 0;
7198 }
7199 }
7200}
7201
0963b4bd 7202/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7203
7204/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7205 ARG_TYPE, extract and return the value of one of its (non-static)
7206 fields. FIELDNO says which field. Differs from value_primitive_field
7207 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7208
4c4b4cd2 7209static struct value *
d2e4a39e 7210ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7211 struct type *arg_type)
14f9c5c9 7212{
14f9c5c9
AS
7213 struct type *type;
7214
61ee279c 7215 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7216 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7217
4c4b4cd2 7218 /* Handle packed fields. */
14f9c5c9
AS
7219
7220 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7221 {
7222 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7223 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7224
0fd88904 7225 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7226 offset + bit_pos / 8,
7227 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7228 }
7229 else
7230 return value_primitive_field (arg1, offset, fieldno, arg_type);
7231}
7232
52ce6436
PH
7233/* Find field with name NAME in object of type TYPE. If found,
7234 set the following for each argument that is non-null:
7235 - *FIELD_TYPE_P to the field's type;
7236 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7237 an object of that type;
7238 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7239 - *BIT_SIZE_P to its size in bits if the field is packed, and
7240 0 otherwise;
7241 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7242 fields up to but not including the desired field, or by the total
7243 number of fields if not found. A NULL value of NAME never
7244 matches; the function just counts visible fields in this case.
7245
828d5846
XR
7246 Notice that we need to handle when a tagged record hierarchy
7247 has some components with the same name, like in this scenario:
7248
7249 type Top_T is tagged record
7250 N : Integer := 1;
7251 U : Integer := 974;
7252 A : Integer := 48;
7253 end record;
7254
7255 type Middle_T is new Top.Top_T with record
7256 N : Character := 'a';
7257 C : Integer := 3;
7258 end record;
7259
7260 type Bottom_T is new Middle.Middle_T with record
7261 N : Float := 4.0;
7262 C : Character := '5';
7263 X : Integer := 6;
7264 A : Character := 'J';
7265 end record;
7266
7267 Let's say we now have a variable declared and initialized as follow:
7268
7269 TC : Top_A := new Bottom_T;
7270
7271 And then we use this variable to call this function
7272
7273 procedure Assign (Obj: in out Top_T; TV : Integer);
7274
7275 as follow:
7276
7277 Assign (Top_T (B), 12);
7278
7279 Now, we're in the debugger, and we're inside that procedure
7280 then and we want to print the value of obj.c:
7281
7282 Usually, the tagged record or one of the parent type owns the
7283 component to print and there's no issue but in this particular
7284 case, what does it mean to ask for Obj.C? Since the actual
7285 type for object is type Bottom_T, it could mean two things: type
7286 component C from the Middle_T view, but also component C from
7287 Bottom_T. So in that "undefined" case, when the component is
7288 not found in the non-resolved type (which includes all the
7289 components of the parent type), then resolve it and see if we
7290 get better luck once expanded.
7291
7292 In the case of homonyms in the derived tagged type, we don't
7293 guaranty anything, and pick the one that's easiest for us
7294 to program.
7295
0963b4bd 7296 Returns 1 if found, 0 otherwise. */
52ce6436 7297
4c4b4cd2 7298static int
0d5cff50 7299find_struct_field (const char *name, struct type *type, int offset,
76a01679 7300 struct type **field_type_p,
52ce6436
PH
7301 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7302 int *index_p)
4c4b4cd2
PH
7303{
7304 int i;
828d5846 7305 int parent_offset = -1;
4c4b4cd2 7306
61ee279c 7307 type = ada_check_typedef (type);
76a01679 7308
52ce6436
PH
7309 if (field_type_p != NULL)
7310 *field_type_p = NULL;
7311 if (byte_offset_p != NULL)
d5d6fca5 7312 *byte_offset_p = 0;
52ce6436
PH
7313 if (bit_offset_p != NULL)
7314 *bit_offset_p = 0;
7315 if (bit_size_p != NULL)
7316 *bit_size_p = 0;
7317
7318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7319 {
7320 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7321 int fld_offset = offset + bit_pos / 8;
0d5cff50 7322 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7323
4c4b4cd2
PH
7324 if (t_field_name == NULL)
7325 continue;
7326
828d5846
XR
7327 else if (ada_is_parent_field (type, i))
7328 {
7329 /* This is a field pointing us to the parent type of a tagged
7330 type. As hinted in this function's documentation, we give
7331 preference to fields in the current record first, so what
7332 we do here is just record the index of this field before
7333 we skip it. If it turns out we couldn't find our field
7334 in the current record, then we'll get back to it and search
7335 inside it whether the field might exist in the parent. */
7336
7337 parent_offset = i;
7338 continue;
7339 }
7340
52ce6436 7341 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7342 {
7343 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7344
52ce6436
PH
7345 if (field_type_p != NULL)
7346 *field_type_p = TYPE_FIELD_TYPE (type, i);
7347 if (byte_offset_p != NULL)
7348 *byte_offset_p = fld_offset;
7349 if (bit_offset_p != NULL)
7350 *bit_offset_p = bit_pos % 8;
7351 if (bit_size_p != NULL)
7352 *bit_size_p = bit_size;
76a01679
JB
7353 return 1;
7354 }
4c4b4cd2
PH
7355 else if (ada_is_wrapper_field (type, i))
7356 {
52ce6436
PH
7357 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7358 field_type_p, byte_offset_p, bit_offset_p,
7359 bit_size_p, index_p))
76a01679
JB
7360 return 1;
7361 }
4c4b4cd2
PH
7362 else if (ada_is_variant_part (type, i))
7363 {
52ce6436
PH
7364 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7365 fixed type?? */
4c4b4cd2 7366 int j;
52ce6436
PH
7367 struct type *field_type
7368 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7369
52ce6436 7370 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7371 {
76a01679
JB
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7373 fld_offset
7374 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7375 field_type_p, byte_offset_p,
52ce6436 7376 bit_offset_p, bit_size_p, index_p))
76a01679 7377 return 1;
4c4b4cd2
PH
7378 }
7379 }
52ce6436
PH
7380 else if (index_p != NULL)
7381 *index_p += 1;
4c4b4cd2 7382 }
828d5846
XR
7383
7384 /* Field not found so far. If this is a tagged type which
7385 has a parent, try finding that field in the parent now. */
7386
7387 if (parent_offset != -1)
7388 {
7389 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7390 int fld_offset = offset + bit_pos / 8;
7391
7392 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7393 fld_offset, field_type_p, byte_offset_p,
7394 bit_offset_p, bit_size_p, index_p))
7395 return 1;
7396 }
7397
4c4b4cd2
PH
7398 return 0;
7399}
7400
0963b4bd 7401/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7402
52ce6436
PH
7403static int
7404num_visible_fields (struct type *type)
7405{
7406 int n;
5b4ee69b 7407
52ce6436
PH
7408 n = 0;
7409 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7410 return n;
7411}
14f9c5c9 7412
4c4b4cd2 7413/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7414 and search in it assuming it has (class) type TYPE.
7415 If found, return value, else return NULL.
7416
828d5846
XR
7417 Searches recursively through wrapper fields (e.g., '_parent').
7418
7419 In the case of homonyms in the tagged types, please refer to the
7420 long explanation in find_struct_field's function documentation. */
14f9c5c9 7421
4c4b4cd2 7422static struct value *
108d56a4 7423ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7424 struct type *type)
14f9c5c9
AS
7425{
7426 int i;
828d5846 7427 int parent_offset = -1;
14f9c5c9 7428
5b4ee69b 7429 type = ada_check_typedef (type);
52ce6436 7430 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7431 {
0d5cff50 7432 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7433
7434 if (t_field_name == NULL)
4c4b4cd2 7435 continue;
14f9c5c9 7436
828d5846
XR
7437 else if (ada_is_parent_field (type, i))
7438 {
7439 /* This is a field pointing us to the parent type of a tagged
7440 type. As hinted in this function's documentation, we give
7441 preference to fields in the current record first, so what
7442 we do here is just record the index of this field before
7443 we skip it. If it turns out we couldn't find our field
7444 in the current record, then we'll get back to it and search
7445 inside it whether the field might exist in the parent. */
7446
7447 parent_offset = i;
7448 continue;
7449 }
7450
14f9c5c9 7451 else if (field_name_match (t_field_name, name))
4c4b4cd2 7452 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7453
7454 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7455 {
0963b4bd 7456 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7457 ada_search_struct_field (name, arg,
7458 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7459 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7460
4c4b4cd2
PH
7461 if (v != NULL)
7462 return v;
7463 }
14f9c5c9
AS
7464
7465 else if (ada_is_variant_part (type, i))
4c4b4cd2 7466 {
0963b4bd 7467 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7468 int j;
5b4ee69b
MS
7469 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7470 i));
4c4b4cd2
PH
7471 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7472
52ce6436 7473 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7474 {
0963b4bd
MS
7475 struct value *v = ada_search_struct_field /* Force line
7476 break. */
06d5cf63
JB
7477 (name, arg,
7478 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7479 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7480
4c4b4cd2
PH
7481 if (v != NULL)
7482 return v;
7483 }
7484 }
14f9c5c9 7485 }
828d5846
XR
7486
7487 /* Field not found so far. If this is a tagged type which
7488 has a parent, try finding that field in the parent now. */
7489
7490 if (parent_offset != -1)
7491 {
7492 struct value *v = ada_search_struct_field (
7493 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7494 TYPE_FIELD_TYPE (type, parent_offset));
7495
7496 if (v != NULL)
7497 return v;
7498 }
7499
14f9c5c9
AS
7500 return NULL;
7501}
d2e4a39e 7502
52ce6436
PH
7503static struct value *ada_index_struct_field_1 (int *, struct value *,
7504 int, struct type *);
7505
7506
7507/* Return field #INDEX in ARG, where the index is that returned by
7508 * find_struct_field through its INDEX_P argument. Adjust the address
7509 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7510 * If found, return value, else return NULL. */
52ce6436
PH
7511
7512static struct value *
7513ada_index_struct_field (int index, struct value *arg, int offset,
7514 struct type *type)
7515{
7516 return ada_index_struct_field_1 (&index, arg, offset, type);
7517}
7518
7519
7520/* Auxiliary function for ada_index_struct_field. Like
7521 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7522 * *INDEX_P. */
52ce6436
PH
7523
7524static struct value *
7525ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7526 struct type *type)
7527{
7528 int i;
7529 type = ada_check_typedef (type);
7530
7531 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7532 {
7533 if (TYPE_FIELD_NAME (type, i) == NULL)
7534 continue;
7535 else if (ada_is_wrapper_field (type, i))
7536 {
0963b4bd 7537 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7538 ada_index_struct_field_1 (index_p, arg,
7539 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7540 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7541
52ce6436
PH
7542 if (v != NULL)
7543 return v;
7544 }
7545
7546 else if (ada_is_variant_part (type, i))
7547 {
7548 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7549 find_struct_field. */
52ce6436
PH
7550 error (_("Cannot assign this kind of variant record"));
7551 }
7552 else if (*index_p == 0)
7553 return ada_value_primitive_field (arg, offset, i, type);
7554 else
7555 *index_p -= 1;
7556 }
7557 return NULL;
7558}
7559
4c4b4cd2
PH
7560/* Given ARG, a value of type (pointer or reference to a)*
7561 structure/union, extract the component named NAME from the ultimate
7562 target structure/union and return it as a value with its
f5938064 7563 appropriate type.
14f9c5c9 7564
4c4b4cd2
PH
7565 The routine searches for NAME among all members of the structure itself
7566 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7567 (e.g., '_parent').
7568
03ee6b2e
PH
7569 If NO_ERR, then simply return NULL in case of error, rather than
7570 calling error. */
14f9c5c9 7571
d2e4a39e 7572struct value *
a121b7c1 7573ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7574{
4c4b4cd2 7575 struct type *t, *t1;
d2e4a39e 7576 struct value *v;
14f9c5c9 7577
4c4b4cd2 7578 v = NULL;
df407dfe 7579 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7580 if (TYPE_CODE (t) == TYPE_CODE_REF)
7581 {
7582 t1 = TYPE_TARGET_TYPE (t);
7583 if (t1 == NULL)
03ee6b2e 7584 goto BadValue;
61ee279c 7585 t1 = ada_check_typedef (t1);
4c4b4cd2 7586 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7587 {
994b9211 7588 arg = coerce_ref (arg);
76a01679
JB
7589 t = t1;
7590 }
4c4b4cd2 7591 }
14f9c5c9 7592
4c4b4cd2
PH
7593 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7594 {
7595 t1 = TYPE_TARGET_TYPE (t);
7596 if (t1 == NULL)
03ee6b2e 7597 goto BadValue;
61ee279c 7598 t1 = ada_check_typedef (t1);
4c4b4cd2 7599 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7600 {
7601 arg = value_ind (arg);
7602 t = t1;
7603 }
4c4b4cd2 7604 else
76a01679 7605 break;
4c4b4cd2 7606 }
14f9c5c9 7607
4c4b4cd2 7608 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7609 goto BadValue;
14f9c5c9 7610
4c4b4cd2
PH
7611 if (t1 == t)
7612 v = ada_search_struct_field (name, arg, 0, t);
7613 else
7614 {
7615 int bit_offset, bit_size, byte_offset;
7616 struct type *field_type;
7617 CORE_ADDR address;
7618
76a01679 7619 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7620 address = value_address (ada_value_ind (arg));
4c4b4cd2 7621 else
b50d69b5 7622 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7623
828d5846
XR
7624 /* Check to see if this is a tagged type. We also need to handle
7625 the case where the type is a reference to a tagged type, but
7626 we have to be careful to exclude pointers to tagged types.
7627 The latter should be shown as usual (as a pointer), whereas
7628 a reference should mostly be transparent to the user. */
7629
7630 if (ada_is_tagged_type (t1, 0)
7631 || (TYPE_CODE (t1) == TYPE_CODE_REF
7632 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7633 {
7634 /* We first try to find the searched field in the current type.
7635 If not found then let's look in the fixed type. */
7636
7637 if (!find_struct_field (name, t1, 0,
7638 &field_type, &byte_offset, &bit_offset,
7639 &bit_size, NULL))
7640 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7641 address, NULL, 1);
7642 }
7643 else
7644 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7645 address, NULL, 1);
7646
76a01679
JB
7647 if (find_struct_field (name, t1, 0,
7648 &field_type, &byte_offset, &bit_offset,
52ce6436 7649 &bit_size, NULL))
76a01679
JB
7650 {
7651 if (bit_size != 0)
7652 {
714e53ab
PH
7653 if (TYPE_CODE (t) == TYPE_CODE_REF)
7654 arg = ada_coerce_ref (arg);
7655 else
7656 arg = ada_value_ind (arg);
76a01679
JB
7657 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7658 bit_offset, bit_size,
7659 field_type);
7660 }
7661 else
f5938064 7662 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7663 }
7664 }
7665
03ee6b2e
PH
7666 if (v != NULL || no_err)
7667 return v;
7668 else
323e0a4a 7669 error (_("There is no member named %s."), name);
14f9c5c9 7670
03ee6b2e
PH
7671 BadValue:
7672 if (no_err)
7673 return NULL;
7674 else
0963b4bd
MS
7675 error (_("Attempt to extract a component of "
7676 "a value that is not a record."));
14f9c5c9
AS
7677}
7678
3b4de39c 7679/* Return a string representation of type TYPE. */
99bbb428 7680
3b4de39c 7681static std::string
99bbb428
PA
7682type_as_string (struct type *type)
7683{
d7e74731 7684 string_file tmp_stream;
99bbb428 7685
d7e74731 7686 type_print (type, "", &tmp_stream, -1);
99bbb428 7687
d7e74731 7688 return std::move (tmp_stream.string ());
99bbb428
PA
7689}
7690
14f9c5c9 7691/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7692 If DISPP is non-null, add its byte displacement from the beginning of a
7693 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7694 work for packed fields).
7695
7696 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7697 followed by "___".
14f9c5c9 7698
0963b4bd 7699 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7700 be a (pointer or reference)+ to a struct or union, and the
7701 ultimate target type will be searched.
14f9c5c9
AS
7702
7703 Looks recursively into variant clauses and parent types.
7704
828d5846
XR
7705 In the case of homonyms in the tagged types, please refer to the
7706 long explanation in find_struct_field's function documentation.
7707
4c4b4cd2
PH
7708 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7709 TYPE is not a type of the right kind. */
14f9c5c9 7710
4c4b4cd2 7711static struct type *
a121b7c1 7712ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7713 int noerr)
14f9c5c9
AS
7714{
7715 int i;
828d5846 7716 int parent_offset = -1;
14f9c5c9
AS
7717
7718 if (name == NULL)
7719 goto BadName;
7720
76a01679 7721 if (refok && type != NULL)
4c4b4cd2
PH
7722 while (1)
7723 {
61ee279c 7724 type = ada_check_typedef (type);
76a01679
JB
7725 if (TYPE_CODE (type) != TYPE_CODE_PTR
7726 && TYPE_CODE (type) != TYPE_CODE_REF)
7727 break;
7728 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7729 }
14f9c5c9 7730
76a01679 7731 if (type == NULL
1265e4aa
JB
7732 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7733 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7734 {
4c4b4cd2 7735 if (noerr)
76a01679 7736 return NULL;
99bbb428 7737
3b4de39c
PA
7738 error (_("Type %s is not a structure or union type"),
7739 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7740 }
7741
7742 type = to_static_fixed_type (type);
7743
7744 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7745 {
0d5cff50 7746 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7747 struct type *t;
d2e4a39e 7748
14f9c5c9 7749 if (t_field_name == NULL)
4c4b4cd2 7750 continue;
14f9c5c9 7751
828d5846
XR
7752 else if (ada_is_parent_field (type, i))
7753 {
7754 /* This is a field pointing us to the parent type of a tagged
7755 type. As hinted in this function's documentation, we give
7756 preference to fields in the current record first, so what
7757 we do here is just record the index of this field before
7758 we skip it. If it turns out we couldn't find our field
7759 in the current record, then we'll get back to it and search
7760 inside it whether the field might exist in the parent. */
7761
7762 parent_offset = i;
7763 continue;
7764 }
7765
14f9c5c9 7766 else if (field_name_match (t_field_name, name))
988f6b3d 7767 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7768
7769 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7770 {
4c4b4cd2 7771 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7772 0, 1);
4c4b4cd2 7773 if (t != NULL)
988f6b3d 7774 return t;
4c4b4cd2 7775 }
14f9c5c9
AS
7776
7777 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7778 {
7779 int j;
5b4ee69b
MS
7780 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7781 i));
4c4b4cd2
PH
7782
7783 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7784 {
b1f33ddd
JB
7785 /* FIXME pnh 2008/01/26: We check for a field that is
7786 NOT wrapped in a struct, since the compiler sometimes
7787 generates these for unchecked variant types. Revisit
0963b4bd 7788 if the compiler changes this practice. */
0d5cff50 7789 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7790
b1f33ddd
JB
7791 if (v_field_name != NULL
7792 && field_name_match (v_field_name, name))
460efde1 7793 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7794 else
0963b4bd
MS
7795 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7796 j),
988f6b3d 7797 name, 0, 1);
b1f33ddd 7798
4c4b4cd2 7799 if (t != NULL)
988f6b3d 7800 return t;
4c4b4cd2
PH
7801 }
7802 }
14f9c5c9
AS
7803
7804 }
7805
828d5846
XR
7806 /* Field not found so far. If this is a tagged type which
7807 has a parent, try finding that field in the parent now. */
7808
7809 if (parent_offset != -1)
7810 {
7811 struct type *t;
7812
7813 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7814 name, 0, 1);
7815 if (t != NULL)
7816 return t;
7817 }
7818
14f9c5c9 7819BadName:
d2e4a39e 7820 if (!noerr)
14f9c5c9 7821 {
2b2798cc 7822 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7823
7824 error (_("Type %s has no component named %s"),
3b4de39c 7825 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7826 }
7827
7828 return NULL;
7829}
7830
b1f33ddd
JB
7831/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7832 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7833 represents an unchecked union (that is, the variant part of a
0963b4bd 7834 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7835
7836static int
7837is_unchecked_variant (struct type *var_type, struct type *outer_type)
7838{
a121b7c1 7839 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7840
988f6b3d 7841 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7842}
7843
7844
14f9c5c9
AS
7845/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7846 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7847 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7848 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7849
d2e4a39e 7850int
ebf56fd3 7851ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7852 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7853{
7854 int others_clause;
7855 int i;
a121b7c1 7856 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7857 struct value *outer;
7858 struct value *discrim;
14f9c5c9
AS
7859 LONGEST discrim_val;
7860
012370f6
TT
7861 /* Using plain value_from_contents_and_address here causes problems
7862 because we will end up trying to resolve a type that is currently
7863 being constructed. */
7864 outer = value_from_contents_and_address_unresolved (outer_type,
7865 outer_valaddr, 0);
0c281816
JB
7866 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7867 if (discrim == NULL)
14f9c5c9 7868 return -1;
0c281816 7869 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7870
7871 others_clause = -1;
7872 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7873 {
7874 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7875 others_clause = i;
14f9c5c9 7876 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7877 return i;
14f9c5c9
AS
7878 }
7879
7880 return others_clause;
7881}
d2e4a39e 7882\f
14f9c5c9
AS
7883
7884
4c4b4cd2 7885 /* Dynamic-Sized Records */
14f9c5c9
AS
7886
7887/* Strategy: The type ostensibly attached to a value with dynamic size
7888 (i.e., a size that is not statically recorded in the debugging
7889 data) does not accurately reflect the size or layout of the value.
7890 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7891 conventional types that are constructed on the fly. */
14f9c5c9
AS
7892
7893/* There is a subtle and tricky problem here. In general, we cannot
7894 determine the size of dynamic records without its data. However,
7895 the 'struct value' data structure, which GDB uses to represent
7896 quantities in the inferior process (the target), requires the size
7897 of the type at the time of its allocation in order to reserve space
7898 for GDB's internal copy of the data. That's why the
7899 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7900 rather than struct value*s.
14f9c5c9
AS
7901
7902 However, GDB's internal history variables ($1, $2, etc.) are
7903 struct value*s containing internal copies of the data that are not, in
7904 general, the same as the data at their corresponding addresses in
7905 the target. Fortunately, the types we give to these values are all
7906 conventional, fixed-size types (as per the strategy described
7907 above), so that we don't usually have to perform the
7908 'to_fixed_xxx_type' conversions to look at their values.
7909 Unfortunately, there is one exception: if one of the internal
7910 history variables is an array whose elements are unconstrained
7911 records, then we will need to create distinct fixed types for each
7912 element selected. */
7913
7914/* The upshot of all of this is that many routines take a (type, host
7915 address, target address) triple as arguments to represent a value.
7916 The host address, if non-null, is supposed to contain an internal
7917 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7918 target at the target address. */
14f9c5c9
AS
7919
7920/* Assuming that VAL0 represents a pointer value, the result of
7921 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7922 dynamic-sized types. */
14f9c5c9 7923
d2e4a39e
AS
7924struct value *
7925ada_value_ind (struct value *val0)
14f9c5c9 7926{
c48db5ca 7927 struct value *val = value_ind (val0);
5b4ee69b 7928
b50d69b5
JG
7929 if (ada_is_tagged_type (value_type (val), 0))
7930 val = ada_tag_value_at_base_address (val);
7931
4c4b4cd2 7932 return ada_to_fixed_value (val);
14f9c5c9
AS
7933}
7934
7935/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7936 qualifiers on VAL0. */
7937
d2e4a39e
AS
7938static struct value *
7939ada_coerce_ref (struct value *val0)
7940{
df407dfe 7941 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7942 {
7943 struct value *val = val0;
5b4ee69b 7944
994b9211 7945 val = coerce_ref (val);
b50d69b5
JG
7946
7947 if (ada_is_tagged_type (value_type (val), 0))
7948 val = ada_tag_value_at_base_address (val);
7949
4c4b4cd2 7950 return ada_to_fixed_value (val);
d2e4a39e
AS
7951 }
7952 else
14f9c5c9
AS
7953 return val0;
7954}
7955
7956/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7957 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7958
7959static unsigned int
ebf56fd3 7960align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7961{
7962 return (off + alignment - 1) & ~(alignment - 1);
7963}
7964
4c4b4cd2 7965/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7966
7967static unsigned int
ebf56fd3 7968field_alignment (struct type *type, int f)
14f9c5c9 7969{
d2e4a39e 7970 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7971 int len;
14f9c5c9
AS
7972 int align_offset;
7973
64a1bf19
JB
7974 /* The field name should never be null, unless the debugging information
7975 is somehow malformed. In this case, we assume the field does not
7976 require any alignment. */
7977 if (name == NULL)
7978 return 1;
7979
7980 len = strlen (name);
7981
4c4b4cd2
PH
7982 if (!isdigit (name[len - 1]))
7983 return 1;
14f9c5c9 7984
d2e4a39e 7985 if (isdigit (name[len - 2]))
14f9c5c9
AS
7986 align_offset = len - 2;
7987 else
7988 align_offset = len - 1;
7989
61012eef 7990 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7991 return TARGET_CHAR_BIT;
7992
4c4b4cd2
PH
7993 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7994}
7995
852dff6c 7996/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7997
852dff6c
JB
7998static struct symbol *
7999ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
8000{
8001 struct symbol *sym;
8002
8003 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 8004 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
8005 return sym;
8006
4186eb54
KS
8007 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8008 return sym;
14f9c5c9
AS
8009}
8010
dddfab26
UW
8011/* Find a type named NAME. Ignores ambiguity. This routine will look
8012 solely for types defined by debug info, it will not search the GDB
8013 primitive types. */
4c4b4cd2 8014
852dff6c 8015static struct type *
ebf56fd3 8016ada_find_any_type (const char *name)
14f9c5c9 8017{
852dff6c 8018 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 8019
14f9c5c9 8020 if (sym != NULL)
dddfab26 8021 return SYMBOL_TYPE (sym);
14f9c5c9 8022
dddfab26 8023 return NULL;
14f9c5c9
AS
8024}
8025
739593e0
JB
8026/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8027 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8028 symbol, in which case it is returned. Otherwise, this looks for
8029 symbols whose name is that of NAME_SYM suffixed with "___XR".
8030 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8031
8032struct symbol *
270140bd 8033ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8034{
739593e0 8035 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8036 struct symbol *sym;
8037
739593e0
JB
8038 if (strstr (name, "___XR") != NULL)
8039 return name_sym;
8040
aeb5907d
JB
8041 sym = find_old_style_renaming_symbol (name, block);
8042
8043 if (sym != NULL)
8044 return sym;
8045
0963b4bd 8046 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8047 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8048 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8049 return sym;
8050 else
8051 return NULL;
8052}
8053
8054static struct symbol *
270140bd 8055find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8056{
7f0df278 8057 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8058 char *rename;
8059
8060 if (function_sym != NULL)
8061 {
8062 /* If the symbol is defined inside a function, NAME is not fully
8063 qualified. This means we need to prepend the function name
8064 as well as adding the ``___XR'' suffix to build the name of
8065 the associated renaming symbol. */
0d5cff50 8066 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8067 /* Function names sometimes contain suffixes used
8068 for instance to qualify nested subprograms. When building
8069 the XR type name, we need to make sure that this suffix is
8070 not included. So do not include any suffix in the function
8071 name length below. */
69fadcdf 8072 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8073 const int rename_len = function_name_len + 2 /* "__" */
8074 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8075
529cad9c 8076 /* Strip the suffix if necessary. */
69fadcdf
JB
8077 ada_remove_trailing_digits (function_name, &function_name_len);
8078 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8079 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8080
4c4b4cd2
PH
8081 /* Library-level functions are a special case, as GNAT adds
8082 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8083 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8084 have this prefix, so we need to skip this prefix if present. */
8085 if (function_name_len > 5 /* "_ada_" */
8086 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8087 {
8088 function_name += 5;
8089 function_name_len -= 5;
8090 }
4c4b4cd2
PH
8091
8092 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8093 strncpy (rename, function_name, function_name_len);
8094 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8095 "__%s___XR", name);
4c4b4cd2
PH
8096 }
8097 else
8098 {
8099 const int rename_len = strlen (name) + 6;
5b4ee69b 8100
4c4b4cd2 8101 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8102 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8103 }
8104
852dff6c 8105 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8106}
8107
14f9c5c9 8108/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8109 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8110 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8111 otherwise return 0. */
8112
14f9c5c9 8113int
d2e4a39e 8114ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8115{
8116 if (type1 == NULL)
8117 return 1;
8118 else if (type0 == NULL)
8119 return 0;
8120 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8121 return 1;
8122 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8123 return 0;
4c4b4cd2
PH
8124 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8125 return 1;
ad82864c 8126 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8127 return 1;
4c4b4cd2
PH
8128 else if (ada_is_array_descriptor_type (type0)
8129 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8130 return 1;
aeb5907d
JB
8131 else
8132 {
8133 const char *type0_name = type_name_no_tag (type0);
8134 const char *type1_name = type_name_no_tag (type1);
8135
8136 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8137 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8138 return 1;
8139 }
14f9c5c9
AS
8140 return 0;
8141}
8142
8143/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8144 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8145
0d5cff50 8146const char *
d2e4a39e 8147ada_type_name (struct type *type)
14f9c5c9 8148{
d2e4a39e 8149 if (type == NULL)
14f9c5c9
AS
8150 return NULL;
8151 else if (TYPE_NAME (type) != NULL)
8152 return TYPE_NAME (type);
8153 else
8154 return TYPE_TAG_NAME (type);
8155}
8156
b4ba55a1
JB
8157/* Search the list of "descriptive" types associated to TYPE for a type
8158 whose name is NAME. */
8159
8160static struct type *
8161find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8162{
931e5bc3 8163 struct type *result, *tmp;
b4ba55a1 8164
c6044dd1
JB
8165 if (ada_ignore_descriptive_types_p)
8166 return NULL;
8167
b4ba55a1
JB
8168 /* If there no descriptive-type info, then there is no parallel type
8169 to be found. */
8170 if (!HAVE_GNAT_AUX_INFO (type))
8171 return NULL;
8172
8173 result = TYPE_DESCRIPTIVE_TYPE (type);
8174 while (result != NULL)
8175 {
0d5cff50 8176 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8177
8178 if (result_name == NULL)
8179 {
8180 warning (_("unexpected null name on descriptive type"));
8181 return NULL;
8182 }
8183
8184 /* If the names match, stop. */
8185 if (strcmp (result_name, name) == 0)
8186 break;
8187
8188 /* Otherwise, look at the next item on the list, if any. */
8189 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8190 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 tmp = NULL;
8193
8194 /* If not found either, try after having resolved the typedef. */
8195 if (tmp != NULL)
8196 result = tmp;
b4ba55a1 8197 else
931e5bc3 8198 {
f168693b 8199 result = check_typedef (result);
931e5bc3
JG
8200 if (HAVE_GNAT_AUX_INFO (result))
8201 result = TYPE_DESCRIPTIVE_TYPE (result);
8202 else
8203 result = NULL;
8204 }
b4ba55a1
JB
8205 }
8206
8207 /* If we didn't find a match, see whether this is a packed array. With
8208 older compilers, the descriptive type information is either absent or
8209 irrelevant when it comes to packed arrays so the above lookup fails.
8210 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8211 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8212 return ada_find_any_type (name);
8213
8214 return result;
8215}
8216
8217/* Find a parallel type to TYPE with the specified NAME, using the
8218 descriptive type taken from the debugging information, if available,
8219 and otherwise using the (slower) name-based method. */
8220
8221static struct type *
8222ada_find_parallel_type_with_name (struct type *type, const char *name)
8223{
8224 struct type *result = NULL;
8225
8226 if (HAVE_GNAT_AUX_INFO (type))
8227 result = find_parallel_type_by_descriptive_type (type, name);
8228 else
8229 result = ada_find_any_type (name);
8230
8231 return result;
8232}
8233
8234/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8235 SUFFIX to the name of TYPE. */
14f9c5c9 8236
d2e4a39e 8237struct type *
ebf56fd3 8238ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8239{
0d5cff50 8240 char *name;
fe978cb0 8241 const char *type_name = ada_type_name (type);
14f9c5c9 8242 int len;
d2e4a39e 8243
fe978cb0 8244 if (type_name == NULL)
14f9c5c9
AS
8245 return NULL;
8246
fe978cb0 8247 len = strlen (type_name);
14f9c5c9 8248
b4ba55a1 8249 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8250
fe978cb0 8251 strcpy (name, type_name);
14f9c5c9
AS
8252 strcpy (name + len, suffix);
8253
b4ba55a1 8254 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8255}
8256
14f9c5c9 8257/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8258 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8259
d2e4a39e
AS
8260static struct type *
8261dynamic_template_type (struct type *type)
14f9c5c9 8262{
61ee279c 8263 type = ada_check_typedef (type);
14f9c5c9
AS
8264
8265 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8266 || ada_type_name (type) == NULL)
14f9c5c9 8267 return NULL;
d2e4a39e 8268 else
14f9c5c9
AS
8269 {
8270 int len = strlen (ada_type_name (type));
5b4ee69b 8271
4c4b4cd2
PH
8272 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8273 return type;
14f9c5c9 8274 else
4c4b4cd2 8275 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8276 }
8277}
8278
8279/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8280 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8281
d2e4a39e
AS
8282static int
8283is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8284{
8285 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8286
d2e4a39e 8287 return name != NULL
14f9c5c9
AS
8288 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8289 && strstr (name, "___XVL") != NULL;
8290}
8291
4c4b4cd2
PH
8292/* The index of the variant field of TYPE, or -1 if TYPE does not
8293 represent a variant record type. */
14f9c5c9 8294
d2e4a39e 8295static int
4c4b4cd2 8296variant_field_index (struct type *type)
14f9c5c9
AS
8297{
8298 int f;
8299
4c4b4cd2
PH
8300 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8301 return -1;
8302
8303 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8304 {
8305 if (ada_is_variant_part (type, f))
8306 return f;
8307 }
8308 return -1;
14f9c5c9
AS
8309}
8310
4c4b4cd2
PH
8311/* A record type with no fields. */
8312
d2e4a39e 8313static struct type *
fe978cb0 8314empty_record (struct type *templ)
14f9c5c9 8315{
fe978cb0 8316 struct type *type = alloc_type_copy (templ);
5b4ee69b 8317
14f9c5c9
AS
8318 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8319 TYPE_NFIELDS (type) = 0;
8320 TYPE_FIELDS (type) = NULL;
b1f33ddd 8321 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8322 TYPE_NAME (type) = "<empty>";
8323 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8324 TYPE_LENGTH (type) = 0;
8325 return type;
8326}
8327
8328/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8329 the value of type TYPE at VALADDR or ADDRESS (see comments at
8330 the beginning of this section) VAL according to GNAT conventions.
8331 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8332 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8333 an outer-level type (i.e., as opposed to a branch of a variant.) A
8334 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8335 of the variant.
14f9c5c9 8336
4c4b4cd2
PH
8337 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8338 length are not statically known are discarded. As a consequence,
8339 VALADDR, ADDRESS and DVAL0 are ignored.
8340
8341 NOTE: Limitations: For now, we assume that dynamic fields and
8342 variants occupy whole numbers of bytes. However, they need not be
8343 byte-aligned. */
8344
8345struct type *
10a2c479 8346ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8347 const gdb_byte *valaddr,
4c4b4cd2
PH
8348 CORE_ADDR address, struct value *dval0,
8349 int keep_dynamic_fields)
14f9c5c9 8350{
d2e4a39e
AS
8351 struct value *mark = value_mark ();
8352 struct value *dval;
8353 struct type *rtype;
14f9c5c9 8354 int nfields, bit_len;
4c4b4cd2 8355 int variant_field;
14f9c5c9 8356 long off;
d94e4f4f 8357 int fld_bit_len;
14f9c5c9
AS
8358 int f;
8359
4c4b4cd2
PH
8360 /* Compute the number of fields in this record type that are going
8361 to be processed: unless keep_dynamic_fields, this includes only
8362 fields whose position and length are static will be processed. */
8363 if (keep_dynamic_fields)
8364 nfields = TYPE_NFIELDS (type);
8365 else
8366 {
8367 nfields = 0;
76a01679 8368 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8369 && !ada_is_variant_part (type, nfields)
8370 && !is_dynamic_field (type, nfields))
8371 nfields++;
8372 }
8373
e9bb382b 8374 rtype = alloc_type_copy (type);
14f9c5c9
AS
8375 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8376 INIT_CPLUS_SPECIFIC (rtype);
8377 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8378 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8379 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8380 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8381 TYPE_NAME (rtype) = ada_type_name (type);
8382 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8383 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8384
d2e4a39e
AS
8385 off = 0;
8386 bit_len = 0;
4c4b4cd2
PH
8387 variant_field = -1;
8388
14f9c5c9
AS
8389 for (f = 0; f < nfields; f += 1)
8390 {
6c038f32
PH
8391 off = align_value (off, field_alignment (type, f))
8392 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8393 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8394 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8395
d2e4a39e 8396 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8397 {
8398 variant_field = f;
d94e4f4f 8399 fld_bit_len = 0;
4c4b4cd2 8400 }
14f9c5c9 8401 else if (is_dynamic_field (type, f))
4c4b4cd2 8402 {
284614f0
JB
8403 const gdb_byte *field_valaddr = valaddr;
8404 CORE_ADDR field_address = address;
8405 struct type *field_type =
8406 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8407
4c4b4cd2 8408 if (dval0 == NULL)
b5304971
JG
8409 {
8410 /* rtype's length is computed based on the run-time
8411 value of discriminants. If the discriminants are not
8412 initialized, the type size may be completely bogus and
0963b4bd 8413 GDB may fail to allocate a value for it. So check the
b5304971 8414 size first before creating the value. */
c1b5a1a6 8415 ada_ensure_varsize_limit (rtype);
012370f6
TT
8416 /* Using plain value_from_contents_and_address here
8417 causes problems because we will end up trying to
8418 resolve a type that is currently being
8419 constructed. */
8420 dval = value_from_contents_and_address_unresolved (rtype,
8421 valaddr,
8422 address);
9f1f738a 8423 rtype = value_type (dval);
b5304971 8424 }
4c4b4cd2
PH
8425 else
8426 dval = dval0;
8427
284614f0
JB
8428 /* If the type referenced by this field is an aligner type, we need
8429 to unwrap that aligner type, because its size might not be set.
8430 Keeping the aligner type would cause us to compute the wrong
8431 size for this field, impacting the offset of the all the fields
8432 that follow this one. */
8433 if (ada_is_aligner_type (field_type))
8434 {
8435 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8436
8437 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8438 field_address = cond_offset_target (field_address, field_offset);
8439 field_type = ada_aligned_type (field_type);
8440 }
8441
8442 field_valaddr = cond_offset_host (field_valaddr,
8443 off / TARGET_CHAR_BIT);
8444 field_address = cond_offset_target (field_address,
8445 off / TARGET_CHAR_BIT);
8446
8447 /* Get the fixed type of the field. Note that, in this case,
8448 we do not want to get the real type out of the tag: if
8449 the current field is the parent part of a tagged record,
8450 we will get the tag of the object. Clearly wrong: the real
8451 type of the parent is not the real type of the child. We
8452 would end up in an infinite loop. */
8453 field_type = ada_get_base_type (field_type);
8454 field_type = ada_to_fixed_type (field_type, field_valaddr,
8455 field_address, dval, 0);
27f2a97b
JB
8456 /* If the field size is already larger than the maximum
8457 object size, then the record itself will necessarily
8458 be larger than the maximum object size. We need to make
8459 this check now, because the size might be so ridiculously
8460 large (due to an uninitialized variable in the inferior)
8461 that it would cause an overflow when adding it to the
8462 record size. */
c1b5a1a6 8463 ada_ensure_varsize_limit (field_type);
284614f0
JB
8464
8465 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8466 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8467 /* The multiplication can potentially overflow. But because
8468 the field length has been size-checked just above, and
8469 assuming that the maximum size is a reasonable value,
8470 an overflow should not happen in practice. So rather than
8471 adding overflow recovery code to this already complex code,
8472 we just assume that it's not going to happen. */
d94e4f4f 8473 fld_bit_len =
4c4b4cd2
PH
8474 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8475 }
14f9c5c9 8476 else
4c4b4cd2 8477 {
5ded5331
JB
8478 /* Note: If this field's type is a typedef, it is important
8479 to preserve the typedef layer.
8480
8481 Otherwise, we might be transforming a typedef to a fat
8482 pointer (encoding a pointer to an unconstrained array),
8483 into a basic fat pointer (encoding an unconstrained
8484 array). As both types are implemented using the same
8485 structure, the typedef is the only clue which allows us
8486 to distinguish between the two options. Stripping it
8487 would prevent us from printing this field appropriately. */
8488 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8489 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8490 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8491 fld_bit_len =
4c4b4cd2
PH
8492 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8493 else
5ded5331
JB
8494 {
8495 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8496
8497 /* We need to be careful of typedefs when computing
8498 the length of our field. If this is a typedef,
8499 get the length of the target type, not the length
8500 of the typedef. */
8501 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8502 field_type = ada_typedef_target_type (field_type);
8503
8504 fld_bit_len =
8505 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8506 }
4c4b4cd2 8507 }
14f9c5c9 8508 if (off + fld_bit_len > bit_len)
4c4b4cd2 8509 bit_len = off + fld_bit_len;
d94e4f4f 8510 off += fld_bit_len;
4c4b4cd2
PH
8511 TYPE_LENGTH (rtype) =
8512 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8513 }
4c4b4cd2
PH
8514
8515 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8516 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8517 the record. This can happen in the presence of representation
8518 clauses. */
8519 if (variant_field >= 0)
8520 {
8521 struct type *branch_type;
8522
8523 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8524
8525 if (dval0 == NULL)
9f1f738a 8526 {
012370f6
TT
8527 /* Using plain value_from_contents_and_address here causes
8528 problems because we will end up trying to resolve a type
8529 that is currently being constructed. */
8530 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8531 address);
9f1f738a
SA
8532 rtype = value_type (dval);
8533 }
4c4b4cd2
PH
8534 else
8535 dval = dval0;
8536
8537 branch_type =
8538 to_fixed_variant_branch_type
8539 (TYPE_FIELD_TYPE (type, variant_field),
8540 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8541 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8542 if (branch_type == NULL)
8543 {
8544 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8545 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8546 TYPE_NFIELDS (rtype) -= 1;
8547 }
8548 else
8549 {
8550 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8551 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8552 fld_bit_len =
8553 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8554 TARGET_CHAR_BIT;
8555 if (off + fld_bit_len > bit_len)
8556 bit_len = off + fld_bit_len;
8557 TYPE_LENGTH (rtype) =
8558 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8559 }
8560 }
8561
714e53ab
PH
8562 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8563 should contain the alignment of that record, which should be a strictly
8564 positive value. If null or negative, then something is wrong, most
8565 probably in the debug info. In that case, we don't round up the size
0963b4bd 8566 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8567 the current RTYPE length might be good enough for our purposes. */
8568 if (TYPE_LENGTH (type) <= 0)
8569 {
323e0a4a
AC
8570 if (TYPE_NAME (rtype))
8571 warning (_("Invalid type size for `%s' detected: %d."),
8572 TYPE_NAME (rtype), TYPE_LENGTH (type));
8573 else
8574 warning (_("Invalid type size for <unnamed> detected: %d."),
8575 TYPE_LENGTH (type));
714e53ab
PH
8576 }
8577 else
8578 {
8579 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8580 TYPE_LENGTH (type));
8581 }
14f9c5c9
AS
8582
8583 value_free_to_mark (mark);
d2e4a39e 8584 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8585 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8586 return rtype;
8587}
8588
4c4b4cd2
PH
8589/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8590 of 1. */
14f9c5c9 8591
d2e4a39e 8592static struct type *
fc1a4b47 8593template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8594 CORE_ADDR address, struct value *dval0)
8595{
8596 return ada_template_to_fixed_record_type_1 (type, valaddr,
8597 address, dval0, 1);
8598}
8599
8600/* An ordinary record type in which ___XVL-convention fields and
8601 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8602 static approximations, containing all possible fields. Uses
8603 no runtime values. Useless for use in values, but that's OK,
8604 since the results are used only for type determinations. Works on both
8605 structs and unions. Representation note: to save space, we memorize
8606 the result of this function in the TYPE_TARGET_TYPE of the
8607 template type. */
8608
8609static struct type *
8610template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8611{
8612 struct type *type;
8613 int nfields;
8614 int f;
8615
9e195661
PMR
8616 /* No need no do anything if the input type is already fixed. */
8617 if (TYPE_FIXED_INSTANCE (type0))
8618 return type0;
8619
8620 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8621 if (TYPE_TARGET_TYPE (type0) != NULL)
8622 return TYPE_TARGET_TYPE (type0);
8623
9e195661 8624 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8625 type = type0;
9e195661
PMR
8626 nfields = TYPE_NFIELDS (type0);
8627
8628 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8629 recompute all over next time. */
8630 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8631
8632 for (f = 0; f < nfields; f += 1)
8633 {
460efde1 8634 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8635 struct type *new_type;
14f9c5c9 8636
4c4b4cd2 8637 if (is_dynamic_field (type0, f))
460efde1
JB
8638 {
8639 field_type = ada_check_typedef (field_type);
8640 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8641 }
14f9c5c9 8642 else
f192137b 8643 new_type = static_unwrap_type (field_type);
9e195661
PMR
8644
8645 if (new_type != field_type)
8646 {
8647 /* Clone TYPE0 only the first time we get a new field type. */
8648 if (type == type0)
8649 {
8650 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8651 TYPE_CODE (type) = TYPE_CODE (type0);
8652 INIT_CPLUS_SPECIFIC (type);
8653 TYPE_NFIELDS (type) = nfields;
8654 TYPE_FIELDS (type) = (struct field *)
8655 TYPE_ALLOC (type, nfields * sizeof (struct field));
8656 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8657 sizeof (struct field) * nfields);
8658 TYPE_NAME (type) = ada_type_name (type0);
8659 TYPE_TAG_NAME (type) = NULL;
8660 TYPE_FIXED_INSTANCE (type) = 1;
8661 TYPE_LENGTH (type) = 0;
8662 }
8663 TYPE_FIELD_TYPE (type, f) = new_type;
8664 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8665 }
14f9c5c9 8666 }
9e195661 8667
14f9c5c9
AS
8668 return type;
8669}
8670
4c4b4cd2 8671/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8672 whose address in memory is ADDRESS, returns a revision of TYPE,
8673 which should be a non-dynamic-sized record, in which the variant
8674 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8675 for discriminant values in DVAL0, which can be NULL if the record
8676 contains the necessary discriminant values. */
8677
d2e4a39e 8678static struct type *
fc1a4b47 8679to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8680 CORE_ADDR address, struct value *dval0)
14f9c5c9 8681{
d2e4a39e 8682 struct value *mark = value_mark ();
4c4b4cd2 8683 struct value *dval;
d2e4a39e 8684 struct type *rtype;
14f9c5c9
AS
8685 struct type *branch_type;
8686 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8687 int variant_field = variant_field_index (type);
14f9c5c9 8688
4c4b4cd2 8689 if (variant_field == -1)
14f9c5c9
AS
8690 return type;
8691
4c4b4cd2 8692 if (dval0 == NULL)
9f1f738a
SA
8693 {
8694 dval = value_from_contents_and_address (type, valaddr, address);
8695 type = value_type (dval);
8696 }
4c4b4cd2
PH
8697 else
8698 dval = dval0;
8699
e9bb382b 8700 rtype = alloc_type_copy (type);
14f9c5c9 8701 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8702 INIT_CPLUS_SPECIFIC (rtype);
8703 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8704 TYPE_FIELDS (rtype) =
8705 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8706 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8707 sizeof (struct field) * nfields);
14f9c5c9
AS
8708 TYPE_NAME (rtype) = ada_type_name (type);
8709 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8710 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8711 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8712
4c4b4cd2
PH
8713 branch_type = to_fixed_variant_branch_type
8714 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8715 cond_offset_host (valaddr,
4c4b4cd2
PH
8716 TYPE_FIELD_BITPOS (type, variant_field)
8717 / TARGET_CHAR_BIT),
d2e4a39e 8718 cond_offset_target (address,
4c4b4cd2
PH
8719 TYPE_FIELD_BITPOS (type, variant_field)
8720 / TARGET_CHAR_BIT), dval);
d2e4a39e 8721 if (branch_type == NULL)
14f9c5c9 8722 {
4c4b4cd2 8723 int f;
5b4ee69b 8724
4c4b4cd2
PH
8725 for (f = variant_field + 1; f < nfields; f += 1)
8726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8727 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8728 }
8729 else
8730 {
4c4b4cd2
PH
8731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8733 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8734 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8735 }
4c4b4cd2 8736 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8737
4c4b4cd2 8738 value_free_to_mark (mark);
14f9c5c9
AS
8739 return rtype;
8740}
8741
8742/* An ordinary record type (with fixed-length fields) that describes
8743 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8744 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8745 should be in DVAL, a record value; it may be NULL if the object
8746 at ADDR itself contains any necessary discriminant values.
8747 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8748 values from the record are needed. Except in the case that DVAL,
8749 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8750 unchecked) is replaced by a particular branch of the variant.
8751
8752 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8753 is questionable and may be removed. It can arise during the
8754 processing of an unconstrained-array-of-record type where all the
8755 variant branches have exactly the same size. This is because in
8756 such cases, the compiler does not bother to use the XVS convention
8757 when encoding the record. I am currently dubious of this
8758 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8759
d2e4a39e 8760static struct type *
fc1a4b47 8761to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8762 CORE_ADDR address, struct value *dval)
14f9c5c9 8763{
d2e4a39e 8764 struct type *templ_type;
14f9c5c9 8765
876cecd0 8766 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8767 return type0;
8768
d2e4a39e 8769 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8770
8771 if (templ_type != NULL)
8772 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8773 else if (variant_field_index (type0) >= 0)
8774 {
8775 if (dval == NULL && valaddr == NULL && address == 0)
8776 return type0;
8777 return to_record_with_fixed_variant_part (type0, valaddr, address,
8778 dval);
8779 }
14f9c5c9
AS
8780 else
8781 {
876cecd0 8782 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8783 return type0;
8784 }
8785
8786}
8787
8788/* An ordinary record type (with fixed-length fields) that describes
8789 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8790 union type. Any necessary discriminants' values should be in DVAL,
8791 a record value. That is, this routine selects the appropriate
8792 branch of the union at ADDR according to the discriminant value
b1f33ddd 8793 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8794 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8795
d2e4a39e 8796static struct type *
fc1a4b47 8797to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8798 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8799{
8800 int which;
d2e4a39e
AS
8801 struct type *templ_type;
8802 struct type *var_type;
14f9c5c9
AS
8803
8804 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8805 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8806 else
14f9c5c9
AS
8807 var_type = var_type0;
8808
8809 templ_type = ada_find_parallel_type (var_type, "___XVU");
8810
8811 if (templ_type != NULL)
8812 var_type = templ_type;
8813
b1f33ddd
JB
8814 if (is_unchecked_variant (var_type, value_type (dval)))
8815 return var_type0;
d2e4a39e
AS
8816 which =
8817 ada_which_variant_applies (var_type,
0fd88904 8818 value_type (dval), value_contents (dval));
14f9c5c9
AS
8819
8820 if (which < 0)
e9bb382b 8821 return empty_record (var_type);
14f9c5c9 8822 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8823 return to_fixed_record_type
d2e4a39e
AS
8824 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8825 valaddr, address, dval);
4c4b4cd2 8826 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8827 return
8828 to_fixed_record_type
8829 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8830 else
8831 return TYPE_FIELD_TYPE (var_type, which);
8832}
8833
8908fca5
JB
8834/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8835 ENCODING_TYPE, a type following the GNAT conventions for discrete
8836 type encodings, only carries redundant information. */
8837
8838static int
8839ada_is_redundant_range_encoding (struct type *range_type,
8840 struct type *encoding_type)
8841{
108d56a4 8842 const char *bounds_str;
8908fca5
JB
8843 int n;
8844 LONGEST lo, hi;
8845
8846 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8847
005e2509
JB
8848 if (TYPE_CODE (get_base_type (range_type))
8849 != TYPE_CODE (get_base_type (encoding_type)))
8850 {
8851 /* The compiler probably used a simple base type to describe
8852 the range type instead of the range's actual base type,
8853 expecting us to get the real base type from the encoding
8854 anyway. In this situation, the encoding cannot be ignored
8855 as redundant. */
8856 return 0;
8857 }
8858
8908fca5
JB
8859 if (is_dynamic_type (range_type))
8860 return 0;
8861
8862 if (TYPE_NAME (encoding_type) == NULL)
8863 return 0;
8864
8865 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8866 if (bounds_str == NULL)
8867 return 0;
8868
8869 n = 8; /* Skip "___XDLU_". */
8870 if (!ada_scan_number (bounds_str, n, &lo, &n))
8871 return 0;
8872 if (TYPE_LOW_BOUND (range_type) != lo)
8873 return 0;
8874
8875 n += 2; /* Skip the "__" separator between the two bounds. */
8876 if (!ada_scan_number (bounds_str, n, &hi, &n))
8877 return 0;
8878 if (TYPE_HIGH_BOUND (range_type) != hi)
8879 return 0;
8880
8881 return 1;
8882}
8883
8884/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8885 a type following the GNAT encoding for describing array type
8886 indices, only carries redundant information. */
8887
8888static int
8889ada_is_redundant_index_type_desc (struct type *array_type,
8890 struct type *desc_type)
8891{
8892 struct type *this_layer = check_typedef (array_type);
8893 int i;
8894
8895 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8896 {
8897 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8898 TYPE_FIELD_TYPE (desc_type, i)))
8899 return 0;
8900 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8901 }
8902
8903 return 1;
8904}
8905
14f9c5c9
AS
8906/* Assuming that TYPE0 is an array type describing the type of a value
8907 at ADDR, and that DVAL describes a record containing any
8908 discriminants used in TYPE0, returns a type for the value that
8909 contains no dynamic components (that is, no components whose sizes
8910 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8911 true, gives an error message if the resulting type's size is over
4c4b4cd2 8912 varsize_limit. */
14f9c5c9 8913
d2e4a39e
AS
8914static struct type *
8915to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8916 int ignore_too_big)
14f9c5c9 8917{
d2e4a39e
AS
8918 struct type *index_type_desc;
8919 struct type *result;
ad82864c 8920 int constrained_packed_array_p;
931e5bc3 8921 static const char *xa_suffix = "___XA";
14f9c5c9 8922
b0dd7688 8923 type0 = ada_check_typedef (type0);
284614f0 8924 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8925 return type0;
14f9c5c9 8926
ad82864c
JB
8927 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8928 if (constrained_packed_array_p)
8929 type0 = decode_constrained_packed_array_type (type0);
284614f0 8930
931e5bc3
JG
8931 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8932
8933 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8934 encoding suffixed with 'P' may still be generated. If so,
8935 it should be used to find the XA type. */
8936
8937 if (index_type_desc == NULL)
8938 {
1da0522e 8939 const char *type_name = ada_type_name (type0);
931e5bc3 8940
1da0522e 8941 if (type_name != NULL)
931e5bc3 8942 {
1da0522e 8943 const int len = strlen (type_name);
931e5bc3
JG
8944 char *name = (char *) alloca (len + strlen (xa_suffix));
8945
1da0522e 8946 if (type_name[len - 1] == 'P')
931e5bc3 8947 {
1da0522e 8948 strcpy (name, type_name);
931e5bc3
JG
8949 strcpy (name + len - 1, xa_suffix);
8950 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8951 }
8952 }
8953 }
8954
28c85d6c 8955 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8956 if (index_type_desc != NULL
8957 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8958 {
8959 /* Ignore this ___XA parallel type, as it does not bring any
8960 useful information. This allows us to avoid creating fixed
8961 versions of the array's index types, which would be identical
8962 to the original ones. This, in turn, can also help avoid
8963 the creation of fixed versions of the array itself. */
8964 index_type_desc = NULL;
8965 }
8966
14f9c5c9
AS
8967 if (index_type_desc == NULL)
8968 {
61ee279c 8969 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8970
14f9c5c9 8971 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8972 depend on the contents of the array in properly constructed
8973 debugging data. */
529cad9c
PH
8974 /* Create a fixed version of the array element type.
8975 We're not providing the address of an element here,
e1d5a0d2 8976 and thus the actual object value cannot be inspected to do
529cad9c
PH
8977 the conversion. This should not be a problem, since arrays of
8978 unconstrained objects are not allowed. In particular, all
8979 the elements of an array of a tagged type should all be of
8980 the same type specified in the debugging info. No need to
8981 consult the object tag. */
1ed6ede0 8982 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8983
284614f0
JB
8984 /* Make sure we always create a new array type when dealing with
8985 packed array types, since we're going to fix-up the array
8986 type length and element bitsize a little further down. */
ad82864c 8987 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8988 result = type0;
14f9c5c9 8989 else
e9bb382b 8990 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8991 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8992 }
8993 else
8994 {
8995 int i;
8996 struct type *elt_type0;
8997
8998 elt_type0 = type0;
8999 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 9000 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
9001
9002 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
9003 depend on the contents of the array in properly constructed
9004 debugging data. */
529cad9c
PH
9005 /* Create a fixed version of the array element type.
9006 We're not providing the address of an element here,
e1d5a0d2 9007 and thus the actual object value cannot be inspected to do
529cad9c
PH
9008 the conversion. This should not be a problem, since arrays of
9009 unconstrained objects are not allowed. In particular, all
9010 the elements of an array of a tagged type should all be of
9011 the same type specified in the debugging info. No need to
9012 consult the object tag. */
1ed6ede0
JB
9013 result =
9014 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
9015
9016 elt_type0 = type0;
14f9c5c9 9017 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
9018 {
9019 struct type *range_type =
28c85d6c 9020 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 9021
e9bb382b 9022 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 9023 result, range_type);
1ce677a4 9024 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 9025 }
d2e4a39e 9026 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9027 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9028 }
9029
2e6fda7d
JB
9030 /* We want to preserve the type name. This can be useful when
9031 trying to get the type name of a value that has already been
9032 printed (for instance, if the user did "print VAR; whatis $". */
9033 TYPE_NAME (result) = TYPE_NAME (type0);
9034
ad82864c 9035 if (constrained_packed_array_p)
284614f0
JB
9036 {
9037 /* So far, the resulting type has been created as if the original
9038 type was a regular (non-packed) array type. As a result, the
9039 bitsize of the array elements needs to be set again, and the array
9040 length needs to be recomputed based on that bitsize. */
9041 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9042 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9043
9044 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9045 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9046 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9047 TYPE_LENGTH (result)++;
9048 }
9049
876cecd0 9050 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9051 return result;
d2e4a39e 9052}
14f9c5c9
AS
9053
9054
9055/* A standard type (containing no dynamically sized components)
9056 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9057 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9058 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9059 ADDRESS or in VALADDR contains these discriminants.
9060
1ed6ede0
JB
9061 If CHECK_TAG is not null, in the case of tagged types, this function
9062 attempts to locate the object's tag and use it to compute the actual
9063 type. However, when ADDRESS is null, we cannot use it to determine the
9064 location of the tag, and therefore compute the tagged type's actual type.
9065 So we return the tagged type without consulting the tag. */
529cad9c 9066
f192137b
JB
9067static struct type *
9068ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9069 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9070{
61ee279c 9071 type = ada_check_typedef (type);
d2e4a39e
AS
9072 switch (TYPE_CODE (type))
9073 {
9074 default:
14f9c5c9 9075 return type;
d2e4a39e 9076 case TYPE_CODE_STRUCT:
4c4b4cd2 9077 {
76a01679 9078 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9079 struct type *fixed_record_type =
9080 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9081
529cad9c
PH
9082 /* If STATIC_TYPE is a tagged type and we know the object's address,
9083 then we can determine its tag, and compute the object's actual
0963b4bd 9084 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9085 type (the parent part of the record may have dynamic fields
9086 and the way the location of _tag is expressed may depend on
9087 them). */
529cad9c 9088
1ed6ede0 9089 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9090 {
b50d69b5
JG
9091 struct value *tag =
9092 value_tag_from_contents_and_address
9093 (fixed_record_type,
9094 valaddr,
9095 address);
9096 struct type *real_type = type_from_tag (tag);
9097 struct value *obj =
9098 value_from_contents_and_address (fixed_record_type,
9099 valaddr,
9100 address);
9f1f738a 9101 fixed_record_type = value_type (obj);
76a01679 9102 if (real_type != NULL)
b50d69b5
JG
9103 return to_fixed_record_type
9104 (real_type, NULL,
9105 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9106 }
4af88198
JB
9107
9108 /* Check to see if there is a parallel ___XVZ variable.
9109 If there is, then it provides the actual size of our type. */
9110 else if (ada_type_name (fixed_record_type) != NULL)
9111 {
0d5cff50 9112 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9113 char *xvz_name
9114 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9115 bool xvz_found = false;
4af88198
JB
9116 LONGEST size;
9117
88c15c34 9118 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9119 TRY
9120 {
9121 xvz_found = get_int_var_value (xvz_name, size);
9122 }
9123 CATCH (except, RETURN_MASK_ERROR)
9124 {
9125 /* We found the variable, but somehow failed to read
9126 its value. Rethrow the same error, but with a little
9127 bit more information, to help the user understand
9128 what went wrong (Eg: the variable might have been
9129 optimized out). */
9130 throw_error (except.error,
9131 _("unable to read value of %s (%s)"),
9132 xvz_name, except.message);
9133 }
9134 END_CATCH
9135
9136 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9137 {
9138 fixed_record_type = copy_type (fixed_record_type);
9139 TYPE_LENGTH (fixed_record_type) = size;
9140
9141 /* The FIXED_RECORD_TYPE may have be a stub. We have
9142 observed this when the debugging info is STABS, and
9143 apparently it is something that is hard to fix.
9144
9145 In practice, we don't need the actual type definition
9146 at all, because the presence of the XVZ variable allows us
9147 to assume that there must be a XVS type as well, which we
9148 should be able to use later, when we need the actual type
9149 definition.
9150
9151 In the meantime, pretend that the "fixed" type we are
9152 returning is NOT a stub, because this can cause trouble
9153 when using this type to create new types targeting it.
9154 Indeed, the associated creation routines often check
9155 whether the target type is a stub and will try to replace
0963b4bd 9156 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9157 might cause the new type to have the wrong size too.
9158 Consider the case of an array, for instance, where the size
9159 of the array is computed from the number of elements in
9160 our array multiplied by the size of its element. */
9161 TYPE_STUB (fixed_record_type) = 0;
9162 }
9163 }
1ed6ede0 9164 return fixed_record_type;
4c4b4cd2 9165 }
d2e4a39e 9166 case TYPE_CODE_ARRAY:
4c4b4cd2 9167 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9168 case TYPE_CODE_UNION:
9169 if (dval == NULL)
4c4b4cd2 9170 return type;
d2e4a39e 9171 else
4c4b4cd2 9172 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9173 }
14f9c5c9
AS
9174}
9175
f192137b
JB
9176/* The same as ada_to_fixed_type_1, except that it preserves the type
9177 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9178
9179 The typedef layer needs be preserved in order to differentiate between
9180 arrays and array pointers when both types are implemented using the same
9181 fat pointer. In the array pointer case, the pointer is encoded as
9182 a typedef of the pointer type. For instance, considering:
9183
9184 type String_Access is access String;
9185 S1 : String_Access := null;
9186
9187 To the debugger, S1 is defined as a typedef of type String. But
9188 to the user, it is a pointer. So if the user tries to print S1,
9189 we should not dereference the array, but print the array address
9190 instead.
9191
9192 If we didn't preserve the typedef layer, we would lose the fact that
9193 the type is to be presented as a pointer (needs de-reference before
9194 being printed). And we would also use the source-level type name. */
f192137b
JB
9195
9196struct type *
9197ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9198 CORE_ADDR address, struct value *dval, int check_tag)
9199
9200{
9201 struct type *fixed_type =
9202 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9203
96dbd2c1
JB
9204 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9205 then preserve the typedef layer.
9206
9207 Implementation note: We can only check the main-type portion of
9208 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9209 from TYPE now returns a type that has the same instance flags
9210 as TYPE. For instance, if TYPE is a "typedef const", and its
9211 target type is a "struct", then the typedef elimination will return
9212 a "const" version of the target type. See check_typedef for more
9213 details about how the typedef layer elimination is done.
9214
9215 brobecker/2010-11-19: It seems to me that the only case where it is
9216 useful to preserve the typedef layer is when dealing with fat pointers.
9217 Perhaps, we could add a check for that and preserve the typedef layer
9218 only in that situation. But this seems unecessary so far, probably
9219 because we call check_typedef/ada_check_typedef pretty much everywhere.
9220 */
f192137b 9221 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9222 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9223 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9224 return type;
9225
9226 return fixed_type;
9227}
9228
14f9c5c9 9229/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9230 TYPE0, but based on no runtime data. */
14f9c5c9 9231
d2e4a39e
AS
9232static struct type *
9233to_static_fixed_type (struct type *type0)
14f9c5c9 9234{
d2e4a39e 9235 struct type *type;
14f9c5c9
AS
9236
9237 if (type0 == NULL)
9238 return NULL;
9239
876cecd0 9240 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9241 return type0;
9242
61ee279c 9243 type0 = ada_check_typedef (type0);
d2e4a39e 9244
14f9c5c9
AS
9245 switch (TYPE_CODE (type0))
9246 {
9247 default:
9248 return type0;
9249 case TYPE_CODE_STRUCT:
9250 type = dynamic_template_type (type0);
d2e4a39e 9251 if (type != NULL)
4c4b4cd2
PH
9252 return template_to_static_fixed_type (type);
9253 else
9254 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9255 case TYPE_CODE_UNION:
9256 type = ada_find_parallel_type (type0, "___XVU");
9257 if (type != NULL)
4c4b4cd2
PH
9258 return template_to_static_fixed_type (type);
9259 else
9260 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9261 }
9262}
9263
4c4b4cd2
PH
9264/* A static approximation of TYPE with all type wrappers removed. */
9265
d2e4a39e
AS
9266static struct type *
9267static_unwrap_type (struct type *type)
14f9c5c9
AS
9268{
9269 if (ada_is_aligner_type (type))
9270 {
61ee279c 9271 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9272 if (ada_type_name (type1) == NULL)
4c4b4cd2 9273 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9274
9275 return static_unwrap_type (type1);
9276 }
d2e4a39e 9277 else
14f9c5c9 9278 {
d2e4a39e 9279 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9280
d2e4a39e 9281 if (raw_real_type == type)
4c4b4cd2 9282 return type;
14f9c5c9 9283 else
4c4b4cd2 9284 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9285 }
9286}
9287
9288/* In some cases, incomplete and private types require
4c4b4cd2 9289 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9290 type Foo;
9291 type FooP is access Foo;
9292 V: FooP;
9293 type Foo is array ...;
4c4b4cd2 9294 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9295 cross-references to such types, we instead substitute for FooP a
9296 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9297 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9298
9299/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9300 exists, otherwise TYPE. */
9301
d2e4a39e 9302struct type *
61ee279c 9303ada_check_typedef (struct type *type)
14f9c5c9 9304{
727e3d2e
JB
9305 if (type == NULL)
9306 return NULL;
9307
720d1a40
JB
9308 /* If our type is a typedef type of a fat pointer, then we're done.
9309 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9310 what allows us to distinguish between fat pointers that represent
9311 array types, and fat pointers that represent array access types
9312 (in both cases, the compiler implements them as fat pointers). */
9313 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9314 && is_thick_pntr (ada_typedef_target_type (type)))
9315 return type;
9316
f168693b 9317 type = check_typedef (type);
14f9c5c9 9318 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9319 || !TYPE_STUB (type)
14f9c5c9
AS
9320 || TYPE_TAG_NAME (type) == NULL)
9321 return type;
d2e4a39e 9322 else
14f9c5c9 9323 {
0d5cff50 9324 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9325 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9326
05e522ef
JB
9327 if (type1 == NULL)
9328 return type;
9329
9330 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9331 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9332 types, only for the typedef-to-array types). If that's the case,
9333 strip the typedef layer. */
9334 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9335 type1 = ada_check_typedef (type1);
9336
9337 return type1;
14f9c5c9
AS
9338 }
9339}
9340
9341/* A value representing the data at VALADDR/ADDRESS as described by
9342 type TYPE0, but with a standard (static-sized) type that correctly
9343 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9344 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9345 creation of struct values]. */
14f9c5c9 9346
4c4b4cd2
PH
9347static struct value *
9348ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9349 struct value *val0)
14f9c5c9 9350{
1ed6ede0 9351 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9352
14f9c5c9
AS
9353 if (type == type0 && val0 != NULL)
9354 return val0;
cc0e770c
JB
9355
9356 if (VALUE_LVAL (val0) != lval_memory)
9357 {
9358 /* Our value does not live in memory; it could be a convenience
9359 variable, for instance. Create a not_lval value using val0's
9360 contents. */
9361 return value_from_contents (type, value_contents (val0));
9362 }
9363
9364 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9365}
9366
9367/* A value representing VAL, but with a standard (static-sized) type
9368 that correctly describes it. Does not necessarily create a new
9369 value. */
9370
0c3acc09 9371struct value *
4c4b4cd2
PH
9372ada_to_fixed_value (struct value *val)
9373{
c48db5ca
JB
9374 val = unwrap_value (val);
9375 val = ada_to_fixed_value_create (value_type (val),
9376 value_address (val),
9377 val);
9378 return val;
14f9c5c9 9379}
d2e4a39e 9380\f
14f9c5c9 9381
14f9c5c9
AS
9382/* Attributes */
9383
4c4b4cd2
PH
9384/* Table mapping attribute numbers to names.
9385 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9386
d2e4a39e 9387static const char *attribute_names[] = {
14f9c5c9
AS
9388 "<?>",
9389
d2e4a39e 9390 "first",
14f9c5c9
AS
9391 "last",
9392 "length",
9393 "image",
14f9c5c9
AS
9394 "max",
9395 "min",
4c4b4cd2
PH
9396 "modulus",
9397 "pos",
9398 "size",
9399 "tag",
14f9c5c9 9400 "val",
14f9c5c9
AS
9401 0
9402};
9403
d2e4a39e 9404const char *
4c4b4cd2 9405ada_attribute_name (enum exp_opcode n)
14f9c5c9 9406{
4c4b4cd2
PH
9407 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9408 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9409 else
9410 return attribute_names[0];
9411}
9412
4c4b4cd2 9413/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9414
4c4b4cd2
PH
9415static LONGEST
9416pos_atr (struct value *arg)
14f9c5c9 9417{
24209737
PH
9418 struct value *val = coerce_ref (arg);
9419 struct type *type = value_type (val);
aa715135 9420 LONGEST result;
14f9c5c9 9421
d2e4a39e 9422 if (!discrete_type_p (type))
323e0a4a 9423 error (_("'POS only defined on discrete types"));
14f9c5c9 9424
aa715135
JG
9425 if (!discrete_position (type, value_as_long (val), &result))
9426 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9427
aa715135 9428 return result;
4c4b4cd2
PH
9429}
9430
9431static struct value *
3cb382c9 9432value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9433{
3cb382c9 9434 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9435}
9436
4c4b4cd2 9437/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9438
d2e4a39e
AS
9439static struct value *
9440value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9441{
d2e4a39e 9442 if (!discrete_type_p (type))
323e0a4a 9443 error (_("'VAL only defined on discrete types"));
df407dfe 9444 if (!integer_type_p (value_type (arg)))
323e0a4a 9445 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9446
9447 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9448 {
9449 long pos = value_as_long (arg);
5b4ee69b 9450
14f9c5c9 9451 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9452 error (_("argument to 'VAL out of range"));
14e75d8e 9453 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9454 }
9455 else
9456 return value_from_longest (type, value_as_long (arg));
9457}
14f9c5c9 9458\f
d2e4a39e 9459
4c4b4cd2 9460 /* Evaluation */
14f9c5c9 9461
4c4b4cd2
PH
9462/* True if TYPE appears to be an Ada character type.
9463 [At the moment, this is true only for Character and Wide_Character;
9464 It is a heuristic test that could stand improvement]. */
14f9c5c9 9465
d2e4a39e
AS
9466int
9467ada_is_character_type (struct type *type)
14f9c5c9 9468{
7b9f71f2
JB
9469 const char *name;
9470
9471 /* If the type code says it's a character, then assume it really is,
9472 and don't check any further. */
9473 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9474 return 1;
9475
9476 /* Otherwise, assume it's a character type iff it is a discrete type
9477 with a known character type name. */
9478 name = ada_type_name (type);
9479 return (name != NULL
9480 && (TYPE_CODE (type) == TYPE_CODE_INT
9481 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9482 && (strcmp (name, "character") == 0
9483 || strcmp (name, "wide_character") == 0
5a517ebd 9484 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9485 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9486}
9487
4c4b4cd2 9488/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9489
9490int
ebf56fd3 9491ada_is_string_type (struct type *type)
14f9c5c9 9492{
61ee279c 9493 type = ada_check_typedef (type);
d2e4a39e 9494 if (type != NULL
14f9c5c9 9495 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9496 && (ada_is_simple_array_type (type)
9497 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9498 && ada_array_arity (type) == 1)
9499 {
9500 struct type *elttype = ada_array_element_type (type, 1);
9501
9502 return ada_is_character_type (elttype);
9503 }
d2e4a39e 9504 else
14f9c5c9
AS
9505 return 0;
9506}
9507
5bf03f13
JB
9508/* The compiler sometimes provides a parallel XVS type for a given
9509 PAD type. Normally, it is safe to follow the PAD type directly,
9510 but older versions of the compiler have a bug that causes the offset
9511 of its "F" field to be wrong. Following that field in that case
9512 would lead to incorrect results, but this can be worked around
9513 by ignoring the PAD type and using the associated XVS type instead.
9514
9515 Set to True if the debugger should trust the contents of PAD types.
9516 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9517static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9518
9519/* True if TYPE is a struct type introduced by the compiler to force the
9520 alignment of a value. Such types have a single field with a
4c4b4cd2 9521 distinctive name. */
14f9c5c9
AS
9522
9523int
ebf56fd3 9524ada_is_aligner_type (struct type *type)
14f9c5c9 9525{
61ee279c 9526 type = ada_check_typedef (type);
714e53ab 9527
5bf03f13 9528 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9529 return 0;
9530
14f9c5c9 9531 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9532 && TYPE_NFIELDS (type) == 1
9533 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9534}
9535
9536/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9537 the parallel type. */
14f9c5c9 9538
d2e4a39e
AS
9539struct type *
9540ada_get_base_type (struct type *raw_type)
14f9c5c9 9541{
d2e4a39e
AS
9542 struct type *real_type_namer;
9543 struct type *raw_real_type;
14f9c5c9
AS
9544
9545 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9546 return raw_type;
9547
284614f0
JB
9548 if (ada_is_aligner_type (raw_type))
9549 /* The encoding specifies that we should always use the aligner type.
9550 So, even if this aligner type has an associated XVS type, we should
9551 simply ignore it.
9552
9553 According to the compiler gurus, an XVS type parallel to an aligner
9554 type may exist because of a stabs limitation. In stabs, aligner
9555 types are empty because the field has a variable-sized type, and
9556 thus cannot actually be used as an aligner type. As a result,
9557 we need the associated parallel XVS type to decode the type.
9558 Since the policy in the compiler is to not change the internal
9559 representation based on the debugging info format, we sometimes
9560 end up having a redundant XVS type parallel to the aligner type. */
9561 return raw_type;
9562
14f9c5c9 9563 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9564 if (real_type_namer == NULL
14f9c5c9
AS
9565 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9566 || TYPE_NFIELDS (real_type_namer) != 1)
9567 return raw_type;
9568
f80d3ff2
JB
9569 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9570 {
9571 /* This is an older encoding form where the base type needs to be
9572 looked up by name. We prefer the newer enconding because it is
9573 more efficient. */
9574 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9575 if (raw_real_type == NULL)
9576 return raw_type;
9577 else
9578 return raw_real_type;
9579 }
9580
9581 /* The field in our XVS type is a reference to the base type. */
9582 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9583}
14f9c5c9 9584
4c4b4cd2 9585/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9586
d2e4a39e
AS
9587struct type *
9588ada_aligned_type (struct type *type)
14f9c5c9
AS
9589{
9590 if (ada_is_aligner_type (type))
9591 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9592 else
9593 return ada_get_base_type (type);
9594}
9595
9596
9597/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9598 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9599
fc1a4b47
AC
9600const gdb_byte *
9601ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9602{
d2e4a39e 9603 if (ada_is_aligner_type (type))
14f9c5c9 9604 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9605 valaddr +
9606 TYPE_FIELD_BITPOS (type,
9607 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9608 else
9609 return valaddr;
9610}
9611
4c4b4cd2
PH
9612
9613
14f9c5c9 9614/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9615 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9616const char *
9617ada_enum_name (const char *name)
14f9c5c9 9618{
4c4b4cd2
PH
9619 static char *result;
9620 static size_t result_len = 0;
e6a959d6 9621 const char *tmp;
14f9c5c9 9622
4c4b4cd2
PH
9623 /* First, unqualify the enumeration name:
9624 1. Search for the last '.' character. If we find one, then skip
177b42fe 9625 all the preceding characters, the unqualified name starts
76a01679 9626 right after that dot.
4c4b4cd2 9627 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9628 translates dots into "__". Search forward for double underscores,
9629 but stop searching when we hit an overloading suffix, which is
9630 of the form "__" followed by digits. */
4c4b4cd2 9631
c3e5cd34
PH
9632 tmp = strrchr (name, '.');
9633 if (tmp != NULL)
4c4b4cd2
PH
9634 name = tmp + 1;
9635 else
14f9c5c9 9636 {
4c4b4cd2
PH
9637 while ((tmp = strstr (name, "__")) != NULL)
9638 {
9639 if (isdigit (tmp[2]))
9640 break;
9641 else
9642 name = tmp + 2;
9643 }
14f9c5c9
AS
9644 }
9645
9646 if (name[0] == 'Q')
9647 {
14f9c5c9 9648 int v;
5b4ee69b 9649
14f9c5c9 9650 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9651 {
9652 if (sscanf (name + 2, "%x", &v) != 1)
9653 return name;
9654 }
14f9c5c9 9655 else
4c4b4cd2 9656 return name;
14f9c5c9 9657
4c4b4cd2 9658 GROW_VECT (result, result_len, 16);
14f9c5c9 9659 if (isascii (v) && isprint (v))
88c15c34 9660 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9661 else if (name[1] == 'U')
88c15c34 9662 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9663 else
88c15c34 9664 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9665
9666 return result;
9667 }
d2e4a39e 9668 else
4c4b4cd2 9669 {
c3e5cd34
PH
9670 tmp = strstr (name, "__");
9671 if (tmp == NULL)
9672 tmp = strstr (name, "$");
9673 if (tmp != NULL)
4c4b4cd2
PH
9674 {
9675 GROW_VECT (result, result_len, tmp - name + 1);
9676 strncpy (result, name, tmp - name);
9677 result[tmp - name] = '\0';
9678 return result;
9679 }
9680
9681 return name;
9682 }
14f9c5c9
AS
9683}
9684
14f9c5c9
AS
9685/* Evaluate the subexpression of EXP starting at *POS as for
9686 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9687 expression. */
14f9c5c9 9688
d2e4a39e
AS
9689static struct value *
9690evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9691{
4b27a620 9692 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9693}
9694
9695/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9696 value it wraps. */
14f9c5c9 9697
d2e4a39e
AS
9698static struct value *
9699unwrap_value (struct value *val)
14f9c5c9 9700{
df407dfe 9701 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9702
14f9c5c9
AS
9703 if (ada_is_aligner_type (type))
9704 {
de4d072f 9705 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9706 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9707
14f9c5c9 9708 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9709 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9710
9711 return unwrap_value (v);
9712 }
d2e4a39e 9713 else
14f9c5c9 9714 {
d2e4a39e 9715 struct type *raw_real_type =
61ee279c 9716 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9717
5bf03f13
JB
9718 /* If there is no parallel XVS or XVE type, then the value is
9719 already unwrapped. Return it without further modification. */
9720 if ((type == raw_real_type)
9721 && ada_find_parallel_type (type, "___XVE") == NULL)
9722 return val;
14f9c5c9 9723
d2e4a39e 9724 return
4c4b4cd2
PH
9725 coerce_unspec_val_to_type
9726 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9727 value_address (val),
1ed6ede0 9728 NULL, 1));
14f9c5c9
AS
9729 }
9730}
d2e4a39e
AS
9731
9732static struct value *
50eff16b 9733cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9734{
50eff16b
UW
9735 struct value *scale = ada_scaling_factor (value_type (arg));
9736 arg = value_cast (value_type (scale), arg);
14f9c5c9 9737
50eff16b
UW
9738 arg = value_binop (arg, scale, BINOP_MUL);
9739 return value_cast (type, arg);
14f9c5c9
AS
9740}
9741
d2e4a39e 9742static struct value *
50eff16b 9743cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9744{
50eff16b
UW
9745 if (type == value_type (arg))
9746 return arg;
5b4ee69b 9747
50eff16b
UW
9748 struct value *scale = ada_scaling_factor (type);
9749 if (ada_is_fixed_point_type (value_type (arg)))
9750 arg = cast_from_fixed (value_type (scale), arg);
9751 else
9752 arg = value_cast (value_type (scale), arg);
9753
9754 arg = value_binop (arg, scale, BINOP_DIV);
9755 return value_cast (type, arg);
14f9c5c9
AS
9756}
9757
d99dcf51
JB
9758/* Given two array types T1 and T2, return nonzero iff both arrays
9759 contain the same number of elements. */
9760
9761static int
9762ada_same_array_size_p (struct type *t1, struct type *t2)
9763{
9764 LONGEST lo1, hi1, lo2, hi2;
9765
9766 /* Get the array bounds in order to verify that the size of
9767 the two arrays match. */
9768 if (!get_array_bounds (t1, &lo1, &hi1)
9769 || !get_array_bounds (t2, &lo2, &hi2))
9770 error (_("unable to determine array bounds"));
9771
9772 /* To make things easier for size comparison, normalize a bit
9773 the case of empty arrays by making sure that the difference
9774 between upper bound and lower bound is always -1. */
9775 if (lo1 > hi1)
9776 hi1 = lo1 - 1;
9777 if (lo2 > hi2)
9778 hi2 = lo2 - 1;
9779
9780 return (hi1 - lo1 == hi2 - lo2);
9781}
9782
9783/* Assuming that VAL is an array of integrals, and TYPE represents
9784 an array with the same number of elements, but with wider integral
9785 elements, return an array "casted" to TYPE. In practice, this
9786 means that the returned array is built by casting each element
9787 of the original array into TYPE's (wider) element type. */
9788
9789static struct value *
9790ada_promote_array_of_integrals (struct type *type, struct value *val)
9791{
9792 struct type *elt_type = TYPE_TARGET_TYPE (type);
9793 LONGEST lo, hi;
9794 struct value *res;
9795 LONGEST i;
9796
9797 /* Verify that both val and type are arrays of scalars, and
9798 that the size of val's elements is smaller than the size
9799 of type's element. */
9800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9801 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9802 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9803 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9804 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9805 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9806
9807 if (!get_array_bounds (type, &lo, &hi))
9808 error (_("unable to determine array bounds"));
9809
9810 res = allocate_value (type);
9811
9812 /* Promote each array element. */
9813 for (i = 0; i < hi - lo + 1; i++)
9814 {
9815 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9816
9817 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9818 value_contents_all (elt), TYPE_LENGTH (elt_type));
9819 }
9820
9821 return res;
9822}
9823
4c4b4cd2
PH
9824/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9825 return the converted value. */
9826
d2e4a39e
AS
9827static struct value *
9828coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9829{
df407dfe 9830 struct type *type2 = value_type (val);
5b4ee69b 9831
14f9c5c9
AS
9832 if (type == type2)
9833 return val;
9834
61ee279c
PH
9835 type2 = ada_check_typedef (type2);
9836 type = ada_check_typedef (type);
14f9c5c9 9837
d2e4a39e
AS
9838 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9839 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9840 {
9841 val = ada_value_ind (val);
df407dfe 9842 type2 = value_type (val);
14f9c5c9
AS
9843 }
9844
d2e4a39e 9845 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9846 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9847 {
d99dcf51
JB
9848 if (!ada_same_array_size_p (type, type2))
9849 error (_("cannot assign arrays of different length"));
9850
9851 if (is_integral_type (TYPE_TARGET_TYPE (type))
9852 && is_integral_type (TYPE_TARGET_TYPE (type2))
9853 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9854 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9855 {
9856 /* Allow implicit promotion of the array elements to
9857 a wider type. */
9858 return ada_promote_array_of_integrals (type, val);
9859 }
9860
9861 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9862 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9863 error (_("Incompatible types in assignment"));
04624583 9864 deprecated_set_value_type (val, type);
14f9c5c9 9865 }
d2e4a39e 9866 return val;
14f9c5c9
AS
9867}
9868
4c4b4cd2
PH
9869static struct value *
9870ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9871{
9872 struct value *val;
9873 struct type *type1, *type2;
9874 LONGEST v, v1, v2;
9875
994b9211
AC
9876 arg1 = coerce_ref (arg1);
9877 arg2 = coerce_ref (arg2);
18af8284
JB
9878 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9879 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9880
76a01679
JB
9881 if (TYPE_CODE (type1) != TYPE_CODE_INT
9882 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9883 return value_binop (arg1, arg2, op);
9884
76a01679 9885 switch (op)
4c4b4cd2
PH
9886 {
9887 case BINOP_MOD:
9888 case BINOP_DIV:
9889 case BINOP_REM:
9890 break;
9891 default:
9892 return value_binop (arg1, arg2, op);
9893 }
9894
9895 v2 = value_as_long (arg2);
9896 if (v2 == 0)
323e0a4a 9897 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9898
9899 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9900 return value_binop (arg1, arg2, op);
9901
9902 v1 = value_as_long (arg1);
9903 switch (op)
9904 {
9905 case BINOP_DIV:
9906 v = v1 / v2;
76a01679
JB
9907 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9908 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9909 break;
9910 case BINOP_REM:
9911 v = v1 % v2;
76a01679
JB
9912 if (v * v1 < 0)
9913 v -= v2;
4c4b4cd2
PH
9914 break;
9915 default:
9916 /* Should not reach this point. */
9917 v = 0;
9918 }
9919
9920 val = allocate_value (type1);
990a07ab 9921 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9922 TYPE_LENGTH (value_type (val)),
9923 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9924 return val;
9925}
9926
9927static int
9928ada_value_equal (struct value *arg1, struct value *arg2)
9929{
df407dfe
AC
9930 if (ada_is_direct_array_type (value_type (arg1))
9931 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9932 {
79e8fcaa
JB
9933 struct type *arg1_type, *arg2_type;
9934
f58b38bf
JB
9935 /* Automatically dereference any array reference before
9936 we attempt to perform the comparison. */
9937 arg1 = ada_coerce_ref (arg1);
9938 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9939
4c4b4cd2
PH
9940 arg1 = ada_coerce_to_simple_array (arg1);
9941 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9942
9943 arg1_type = ada_check_typedef (value_type (arg1));
9944 arg2_type = ada_check_typedef (value_type (arg2));
9945
9946 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9947 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9948 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9949 /* FIXME: The following works only for types whose
76a01679
JB
9950 representations use all bits (no padding or undefined bits)
9951 and do not have user-defined equality. */
79e8fcaa
JB
9952 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9953 && memcmp (value_contents (arg1), value_contents (arg2),
9954 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9955 }
9956 return value_equal (arg1, arg2);
9957}
9958
52ce6436
PH
9959/* Total number of component associations in the aggregate starting at
9960 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9961 OP_AGGREGATE. */
52ce6436
PH
9962
9963static int
9964num_component_specs (struct expression *exp, int pc)
9965{
9966 int n, m, i;
5b4ee69b 9967
52ce6436
PH
9968 m = exp->elts[pc + 1].longconst;
9969 pc += 3;
9970 n = 0;
9971 for (i = 0; i < m; i += 1)
9972 {
9973 switch (exp->elts[pc].opcode)
9974 {
9975 default:
9976 n += 1;
9977 break;
9978 case OP_CHOICES:
9979 n += exp->elts[pc + 1].longconst;
9980 break;
9981 }
9982 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9983 }
9984 return n;
9985}
9986
9987/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9988 component of LHS (a simple array or a record), updating *POS past
9989 the expression, assuming that LHS is contained in CONTAINER. Does
9990 not modify the inferior's memory, nor does it modify LHS (unless
9991 LHS == CONTAINER). */
9992
9993static void
9994assign_component (struct value *container, struct value *lhs, LONGEST index,
9995 struct expression *exp, int *pos)
9996{
9997 struct value *mark = value_mark ();
9998 struct value *elt;
0e2da9f0 9999 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 10000
0e2da9f0 10001 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 10002 {
22601c15
UW
10003 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
10004 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 10005
52ce6436
PH
10006 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
10007 }
10008 else
10009 {
10010 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 10011 elt = ada_to_fixed_value (elt);
52ce6436
PH
10012 }
10013
10014 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10015 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10016 else
10017 value_assign_to_component (container, elt,
10018 ada_evaluate_subexp (NULL, exp, pos,
10019 EVAL_NORMAL));
10020
10021 value_free_to_mark (mark);
10022}
10023
10024/* Assuming that LHS represents an lvalue having a record or array
10025 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10026 of that aggregate's value to LHS, advancing *POS past the
10027 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10028 lvalue containing LHS (possibly LHS itself). Does not modify
10029 the inferior's memory, nor does it modify the contents of
0963b4bd 10030 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10031
10032static struct value *
10033assign_aggregate (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, enum noside noside)
10036{
10037 struct type *lhs_type;
10038 int n = exp->elts[*pos+1].longconst;
10039 LONGEST low_index, high_index;
10040 int num_specs;
10041 LONGEST *indices;
10042 int max_indices, num_indices;
52ce6436 10043 int i;
52ce6436
PH
10044
10045 *pos += 3;
10046 if (noside != EVAL_NORMAL)
10047 {
52ce6436
PH
10048 for (i = 0; i < n; i += 1)
10049 ada_evaluate_subexp (NULL, exp, pos, noside);
10050 return container;
10051 }
10052
10053 container = ada_coerce_ref (container);
10054 if (ada_is_direct_array_type (value_type (container)))
10055 container = ada_coerce_to_simple_array (container);
10056 lhs = ada_coerce_ref (lhs);
10057 if (!deprecated_value_modifiable (lhs))
10058 error (_("Left operand of assignment is not a modifiable lvalue."));
10059
0e2da9f0 10060 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10061 if (ada_is_direct_array_type (lhs_type))
10062 {
10063 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10064 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10067 }
10068 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10069 {
10070 low_index = 0;
10071 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10072 }
10073 else
10074 error (_("Left-hand side must be array or record."));
10075
10076 num_specs = num_component_specs (exp, *pos - 3);
10077 max_indices = 4 * num_specs + 4;
8d749320 10078 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10079 indices[0] = indices[1] = low_index - 1;
10080 indices[2] = indices[3] = high_index + 1;
10081 num_indices = 4;
10082
10083 for (i = 0; i < n; i += 1)
10084 {
10085 switch (exp->elts[*pos].opcode)
10086 {
1fbf5ada
JB
10087 case OP_CHOICES:
10088 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10089 &num_indices, max_indices,
10090 low_index, high_index);
10091 break;
10092 case OP_POSITIONAL:
10093 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10094 &num_indices, max_indices,
10095 low_index, high_index);
1fbf5ada
JB
10096 break;
10097 case OP_OTHERS:
10098 if (i != n-1)
10099 error (_("Misplaced 'others' clause"));
10100 aggregate_assign_others (container, lhs, exp, pos, indices,
10101 num_indices, low_index, high_index);
10102 break;
10103 default:
10104 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10105 }
10106 }
10107
10108 return container;
10109}
10110
10111/* Assign into the component of LHS indexed by the OP_POSITIONAL
10112 construct at *POS, updating *POS past the construct, given that
10113 the positions are relative to lower bound LOW, where HIGH is the
10114 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10115 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10116 assign_aggregate. */
52ce6436
PH
10117static void
10118aggregate_assign_positional (struct value *container,
10119 struct value *lhs, struct expression *exp,
10120 int *pos, LONGEST *indices, int *num_indices,
10121 int max_indices, LONGEST low, LONGEST high)
10122{
10123 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10124
10125 if (ind - 1 == high)
e1d5a0d2 10126 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10127 if (ind <= high)
10128 {
10129 add_component_interval (ind, ind, indices, num_indices, max_indices);
10130 *pos += 3;
10131 assign_component (container, lhs, ind, exp, pos);
10132 }
10133 else
10134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10135}
10136
10137/* Assign into the components of LHS indexed by the OP_CHOICES
10138 construct at *POS, updating *POS past the construct, given that
10139 the allowable indices are LOW..HIGH. Record the indices assigned
10140 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10141 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10142static void
10143aggregate_assign_from_choices (struct value *container,
10144 struct value *lhs, struct expression *exp,
10145 int *pos, LONGEST *indices, int *num_indices,
10146 int max_indices, LONGEST low, LONGEST high)
10147{
10148 int j;
10149 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10150 int choice_pos, expr_pc;
10151 int is_array = ada_is_direct_array_type (value_type (lhs));
10152
10153 choice_pos = *pos += 3;
10154
10155 for (j = 0; j < n_choices; j += 1)
10156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10157 expr_pc = *pos;
10158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10159
10160 for (j = 0; j < n_choices; j += 1)
10161 {
10162 LONGEST lower, upper;
10163 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10164
52ce6436
PH
10165 if (op == OP_DISCRETE_RANGE)
10166 {
10167 choice_pos += 1;
10168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10169 EVAL_NORMAL));
10170 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10171 EVAL_NORMAL));
10172 }
10173 else if (is_array)
10174 {
10175 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10176 EVAL_NORMAL));
10177 upper = lower;
10178 }
10179 else
10180 {
10181 int ind;
0d5cff50 10182 const char *name;
5b4ee69b 10183
52ce6436
PH
10184 switch (op)
10185 {
10186 case OP_NAME:
10187 name = &exp->elts[choice_pos + 2].string;
10188 break;
10189 case OP_VAR_VALUE:
10190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10191 break;
10192 default:
10193 error (_("Invalid record component association."));
10194 }
10195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10196 ind = 0;
10197 if (! find_struct_field (name, value_type (lhs), 0,
10198 NULL, NULL, NULL, NULL, &ind))
10199 error (_("Unknown component name: %s."), name);
10200 lower = upper = ind;
10201 }
10202
10203 if (lower <= upper && (lower < low || upper > high))
10204 error (_("Index in component association out of bounds."));
10205
10206 add_component_interval (lower, upper, indices, num_indices,
10207 max_indices);
10208 while (lower <= upper)
10209 {
10210 int pos1;
5b4ee69b 10211
52ce6436
PH
10212 pos1 = expr_pc;
10213 assign_component (container, lhs, lower, exp, &pos1);
10214 lower += 1;
10215 }
10216 }
10217}
10218
10219/* Assign the value of the expression in the OP_OTHERS construct in
10220 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10221 have not been previously assigned. The index intervals already assigned
10222 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10223 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10224static void
10225aggregate_assign_others (struct value *container,
10226 struct value *lhs, struct expression *exp,
10227 int *pos, LONGEST *indices, int num_indices,
10228 LONGEST low, LONGEST high)
10229{
10230 int i;
5ce64950 10231 int expr_pc = *pos + 1;
52ce6436
PH
10232
10233 for (i = 0; i < num_indices - 2; i += 2)
10234 {
10235 LONGEST ind;
5b4ee69b 10236
52ce6436
PH
10237 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10238 {
5ce64950 10239 int localpos;
5b4ee69b 10240
5ce64950
MS
10241 localpos = expr_pc;
10242 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10243 }
10244 }
10245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10246}
10247
10248/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10249 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10250 modifying *SIZE as needed. It is an error if *SIZE exceeds
10251 MAX_SIZE. The resulting intervals do not overlap. */
10252static void
10253add_component_interval (LONGEST low, LONGEST high,
10254 LONGEST* indices, int *size, int max_size)
10255{
10256 int i, j;
5b4ee69b 10257
52ce6436
PH
10258 for (i = 0; i < *size; i += 2) {
10259 if (high >= indices[i] && low <= indices[i + 1])
10260 {
10261 int kh;
5b4ee69b 10262
52ce6436
PH
10263 for (kh = i + 2; kh < *size; kh += 2)
10264 if (high < indices[kh])
10265 break;
10266 if (low < indices[i])
10267 indices[i] = low;
10268 indices[i + 1] = indices[kh - 1];
10269 if (high > indices[i + 1])
10270 indices[i + 1] = high;
10271 memcpy (indices + i + 2, indices + kh, *size - kh);
10272 *size -= kh - i - 2;
10273 return;
10274 }
10275 else if (high < indices[i])
10276 break;
10277 }
10278
10279 if (*size == max_size)
10280 error (_("Internal error: miscounted aggregate components."));
10281 *size += 2;
10282 for (j = *size-1; j >= i+2; j -= 1)
10283 indices[j] = indices[j - 2];
10284 indices[i] = low;
10285 indices[i + 1] = high;
10286}
10287
6e48bd2c
JB
10288/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10289 is different. */
10290
10291static struct value *
b7e22850 10292ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10293{
10294 if (type == ada_check_typedef (value_type (arg2)))
10295 return arg2;
10296
10297 if (ada_is_fixed_point_type (type))
10298 return (cast_to_fixed (type, arg2));
10299
10300 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10301 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10302
10303 return value_cast (type, arg2);
10304}
10305
284614f0
JB
10306/* Evaluating Ada expressions, and printing their result.
10307 ------------------------------------------------------
10308
21649b50
JB
10309 1. Introduction:
10310 ----------------
10311
284614f0
JB
10312 We usually evaluate an Ada expression in order to print its value.
10313 We also evaluate an expression in order to print its type, which
10314 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10315 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10316 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10317 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10318 similar.
10319
10320 Evaluating expressions is a little more complicated for Ada entities
10321 than it is for entities in languages such as C. The main reason for
10322 this is that Ada provides types whose definition might be dynamic.
10323 One example of such types is variant records. Or another example
10324 would be an array whose bounds can only be known at run time.
10325
10326 The following description is a general guide as to what should be
10327 done (and what should NOT be done) in order to evaluate an expression
10328 involving such types, and when. This does not cover how the semantic
10329 information is encoded by GNAT as this is covered separatly. For the
10330 document used as the reference for the GNAT encoding, see exp_dbug.ads
10331 in the GNAT sources.
10332
10333 Ideally, we should embed each part of this description next to its
10334 associated code. Unfortunately, the amount of code is so vast right
10335 now that it's hard to see whether the code handling a particular
10336 situation might be duplicated or not. One day, when the code is
10337 cleaned up, this guide might become redundant with the comments
10338 inserted in the code, and we might want to remove it.
10339
21649b50
JB
10340 2. ``Fixing'' an Entity, the Simple Case:
10341 -----------------------------------------
10342
284614f0
JB
10343 When evaluating Ada expressions, the tricky issue is that they may
10344 reference entities whose type contents and size are not statically
10345 known. Consider for instance a variant record:
10346
10347 type Rec (Empty : Boolean := True) is record
10348 case Empty is
10349 when True => null;
10350 when False => Value : Integer;
10351 end case;
10352 end record;
10353 Yes : Rec := (Empty => False, Value => 1);
10354 No : Rec := (empty => True);
10355
10356 The size and contents of that record depends on the value of the
10357 descriminant (Rec.Empty). At this point, neither the debugging
10358 information nor the associated type structure in GDB are able to
10359 express such dynamic types. So what the debugger does is to create
10360 "fixed" versions of the type that applies to the specific object.
10361 We also informally refer to this opperation as "fixing" an object,
10362 which means creating its associated fixed type.
10363
10364 Example: when printing the value of variable "Yes" above, its fixed
10365 type would look like this:
10366
10367 type Rec is record
10368 Empty : Boolean;
10369 Value : Integer;
10370 end record;
10371
10372 On the other hand, if we printed the value of "No", its fixed type
10373 would become:
10374
10375 type Rec is record
10376 Empty : Boolean;
10377 end record;
10378
10379 Things become a little more complicated when trying to fix an entity
10380 with a dynamic type that directly contains another dynamic type,
10381 such as an array of variant records, for instance. There are
10382 two possible cases: Arrays, and records.
10383
21649b50
JB
10384 3. ``Fixing'' Arrays:
10385 ---------------------
10386
10387 The type structure in GDB describes an array in terms of its bounds,
10388 and the type of its elements. By design, all elements in the array
10389 have the same type and we cannot represent an array of variant elements
10390 using the current type structure in GDB. When fixing an array,
10391 we cannot fix the array element, as we would potentially need one
10392 fixed type per element of the array. As a result, the best we can do
10393 when fixing an array is to produce an array whose bounds and size
10394 are correct (allowing us to read it from memory), but without having
10395 touched its element type. Fixing each element will be done later,
10396 when (if) necessary.
10397
10398 Arrays are a little simpler to handle than records, because the same
10399 amount of memory is allocated for each element of the array, even if
1b536f04 10400 the amount of space actually used by each element differs from element
21649b50 10401 to element. Consider for instance the following array of type Rec:
284614f0
JB
10402
10403 type Rec_Array is array (1 .. 2) of Rec;
10404
1b536f04
JB
10405 The actual amount of memory occupied by each element might be different
10406 from element to element, depending on the value of their discriminant.
21649b50 10407 But the amount of space reserved for each element in the array remains
1b536f04 10408 fixed regardless. So we simply need to compute that size using
21649b50
JB
10409 the debugging information available, from which we can then determine
10410 the array size (we multiply the number of elements of the array by
10411 the size of each element).
10412
10413 The simplest case is when we have an array of a constrained element
10414 type. For instance, consider the following type declarations:
10415
10416 type Bounded_String (Max_Size : Integer) is
10417 Length : Integer;
10418 Buffer : String (1 .. Max_Size);
10419 end record;
10420 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10421
10422 In this case, the compiler describes the array as an array of
10423 variable-size elements (identified by its XVS suffix) for which
10424 the size can be read in the parallel XVZ variable.
10425
10426 In the case of an array of an unconstrained element type, the compiler
10427 wraps the array element inside a private PAD type. This type should not
10428 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10429 that we also use the adjective "aligner" in our code to designate
10430 these wrapper types.
10431
1b536f04 10432 In some cases, the size allocated for each element is statically
21649b50
JB
10433 known. In that case, the PAD type already has the correct size,
10434 and the array element should remain unfixed.
10435
10436 But there are cases when this size is not statically known.
10437 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10438
10439 type Dynamic is array (1 .. Five) of Integer;
10440 type Wrapper (Has_Length : Boolean := False) is record
10441 Data : Dynamic;
10442 case Has_Length is
10443 when True => Length : Integer;
10444 when False => null;
10445 end case;
10446 end record;
10447 type Wrapper_Array is array (1 .. 2) of Wrapper;
10448
10449 Hello : Wrapper_Array := (others => (Has_Length => True,
10450 Data => (others => 17),
10451 Length => 1));
10452
10453
10454 The debugging info would describe variable Hello as being an
10455 array of a PAD type. The size of that PAD type is not statically
10456 known, but can be determined using a parallel XVZ variable.
10457 In that case, a copy of the PAD type with the correct size should
10458 be used for the fixed array.
10459
21649b50
JB
10460 3. ``Fixing'' record type objects:
10461 ----------------------------------
10462
10463 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10464 record types. In this case, in order to compute the associated
10465 fixed type, we need to determine the size and offset of each of
10466 its components. This, in turn, requires us to compute the fixed
10467 type of each of these components.
10468
10469 Consider for instance the example:
10470
10471 type Bounded_String (Max_Size : Natural) is record
10472 Str : String (1 .. Max_Size);
10473 Length : Natural;
10474 end record;
10475 My_String : Bounded_String (Max_Size => 10);
10476
10477 In that case, the position of field "Length" depends on the size
10478 of field Str, which itself depends on the value of the Max_Size
21649b50 10479 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10480 we need to fix the type of field Str. Therefore, fixing a variant
10481 record requires us to fix each of its components.
10482
10483 However, if a component does not have a dynamic size, the component
10484 should not be fixed. In particular, fields that use a PAD type
10485 should not fixed. Here is an example where this might happen
10486 (assuming type Rec above):
10487
10488 type Container (Big : Boolean) is record
10489 First : Rec;
10490 After : Integer;
10491 case Big is
10492 when True => Another : Integer;
10493 when False => null;
10494 end case;
10495 end record;
10496 My_Container : Container := (Big => False,
10497 First => (Empty => True),
10498 After => 42);
10499
10500 In that example, the compiler creates a PAD type for component First,
10501 whose size is constant, and then positions the component After just
10502 right after it. The offset of component After is therefore constant
10503 in this case.
10504
10505 The debugger computes the position of each field based on an algorithm
10506 that uses, among other things, the actual position and size of the field
21649b50
JB
10507 preceding it. Let's now imagine that the user is trying to print
10508 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10509 end up computing the offset of field After based on the size of the
10510 fixed version of field First. And since in our example First has
10511 only one actual field, the size of the fixed type is actually smaller
10512 than the amount of space allocated to that field, and thus we would
10513 compute the wrong offset of field After.
10514
21649b50
JB
10515 To make things more complicated, we need to watch out for dynamic
10516 components of variant records (identified by the ___XVL suffix in
10517 the component name). Even if the target type is a PAD type, the size
10518 of that type might not be statically known. So the PAD type needs
10519 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10520 we might end up with the wrong size for our component. This can be
10521 observed with the following type declarations:
284614f0
JB
10522
10523 type Octal is new Integer range 0 .. 7;
10524 type Octal_Array is array (Positive range <>) of Octal;
10525 pragma Pack (Octal_Array);
10526
10527 type Octal_Buffer (Size : Positive) is record
10528 Buffer : Octal_Array (1 .. Size);
10529 Length : Integer;
10530 end record;
10531
10532 In that case, Buffer is a PAD type whose size is unset and needs
10533 to be computed by fixing the unwrapped type.
10534
21649b50
JB
10535 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10536 ----------------------------------------------------------
10537
10538 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10539 thus far, be actually fixed?
10540
10541 The answer is: Only when referencing that element. For instance
10542 when selecting one component of a record, this specific component
10543 should be fixed at that point in time. Or when printing the value
10544 of a record, each component should be fixed before its value gets
10545 printed. Similarly for arrays, the element of the array should be
10546 fixed when printing each element of the array, or when extracting
10547 one element out of that array. On the other hand, fixing should
10548 not be performed on the elements when taking a slice of an array!
10549
31432a67 10550 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10551 size of each field is that we end up also miscomputing the size
10552 of the containing type. This can have adverse results when computing
10553 the value of an entity. GDB fetches the value of an entity based
10554 on the size of its type, and thus a wrong size causes GDB to fetch
10555 the wrong amount of memory. In the case where the computed size is
10556 too small, GDB fetches too little data to print the value of our
31432a67 10557 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10558 past the buffer containing the data =:-o. */
10559
ced9779b
JB
10560/* Evaluate a subexpression of EXP, at index *POS, and return a value
10561 for that subexpression cast to TO_TYPE. Advance *POS over the
10562 subexpression. */
10563
10564static value *
10565ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10566 enum noside noside, struct type *to_type)
10567{
10568 int pc = *pos;
10569
10570 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10571 || exp->elts[pc].opcode == OP_VAR_VALUE)
10572 {
10573 (*pos) += 4;
10574
10575 value *val;
10576 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10577 {
10578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10579 return value_zero (to_type, not_lval);
10580
10581 val = evaluate_var_msym_value (noside,
10582 exp->elts[pc + 1].objfile,
10583 exp->elts[pc + 2].msymbol);
10584 }
10585 else
10586 val = evaluate_var_value (noside,
10587 exp->elts[pc + 1].block,
10588 exp->elts[pc + 2].symbol);
10589
10590 if (noside == EVAL_SKIP)
10591 return eval_skip_value (exp);
10592
10593 val = ada_value_cast (to_type, val);
10594
10595 /* Follow the Ada language semantics that do not allow taking
10596 an address of the result of a cast (view conversion in Ada). */
10597 if (VALUE_LVAL (val) == lval_memory)
10598 {
10599 if (value_lazy (val))
10600 value_fetch_lazy (val);
10601 VALUE_LVAL (val) = not_lval;
10602 }
10603 return val;
10604 }
10605
10606 value *val = evaluate_subexp (to_type, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 return eval_skip_value (exp);
10609 return ada_value_cast (to_type, val);
10610}
10611
284614f0
JB
10612/* Implement the evaluate_exp routine in the exp_descriptor structure
10613 for the Ada language. */
10614
52ce6436 10615static struct value *
ebf56fd3 10616ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10617 int *pos, enum noside noside)
14f9c5c9
AS
10618{
10619 enum exp_opcode op;
b5385fc0 10620 int tem;
14f9c5c9 10621 int pc;
5ec18f2b 10622 int preeval_pos;
14f9c5c9
AS
10623 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10624 struct type *type;
52ce6436 10625 int nargs, oplen;
d2e4a39e 10626 struct value **argvec;
14f9c5c9 10627
d2e4a39e
AS
10628 pc = *pos;
10629 *pos += 1;
14f9c5c9
AS
10630 op = exp->elts[pc].opcode;
10631
d2e4a39e 10632 switch (op)
14f9c5c9
AS
10633 {
10634 default:
10635 *pos -= 1;
6e48bd2c 10636 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10637
10638 if (noside == EVAL_NORMAL)
10639 arg1 = unwrap_value (arg1);
6e48bd2c 10640
edd079d9 10641 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10642 then we need to perform the conversion manually, because
10643 evaluate_subexp_standard doesn't do it. This conversion is
10644 necessary in Ada because the different kinds of float/fixed
10645 types in Ada have different representations.
10646
10647 Similarly, we need to perform the conversion from OP_LONG
10648 ourselves. */
edd079d9 10649 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10650 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10651
10652 return arg1;
4c4b4cd2
PH
10653
10654 case OP_STRING:
10655 {
76a01679 10656 struct value *result;
5b4ee69b 10657
76a01679
JB
10658 *pos -= 1;
10659 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10660 /* The result type will have code OP_STRING, bashed there from
10661 OP_ARRAY. Bash it back. */
df407dfe
AC
10662 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10663 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10664 return result;
4c4b4cd2 10665 }
14f9c5c9
AS
10666
10667 case UNOP_CAST:
10668 (*pos) += 2;
10669 type = exp->elts[pc + 1].type;
ced9779b 10670 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10671
4c4b4cd2
PH
10672 case UNOP_QUAL:
10673 (*pos) += 2;
10674 type = exp->elts[pc + 1].type;
10675 return ada_evaluate_subexp (type, exp, pos, noside);
10676
14f9c5c9
AS
10677 case BINOP_ASSIGN:
10678 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10679 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10680 {
10681 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10682 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10683 return arg1;
10684 return ada_value_assign (arg1, arg1);
10685 }
003f3813
JB
10686 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10687 except if the lhs of our assignment is a convenience variable.
10688 In the case of assigning to a convenience variable, the lhs
10689 should be exactly the result of the evaluation of the rhs. */
10690 type = value_type (arg1);
10691 if (VALUE_LVAL (arg1) == lval_internalvar)
10692 type = NULL;
10693 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10694 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10695 return arg1;
df407dfe
AC
10696 if (ada_is_fixed_point_type (value_type (arg1)))
10697 arg2 = cast_to_fixed (value_type (arg1), arg2);
10698 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10699 error
323e0a4a 10700 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10701 else
df407dfe 10702 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10703 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10704
10705 case BINOP_ADD:
10706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 if (noside == EVAL_SKIP)
4c4b4cd2 10709 goto nosideret;
2ac8a782
JB
10710 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg1),
10713 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10714 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10715 return (value_from_longest
10716 (value_type (arg2),
10717 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10718 if ((ada_is_fixed_point_type (value_type (arg1))
10719 || ada_is_fixed_point_type (value_type (arg2)))
10720 && value_type (arg1) != value_type (arg2))
323e0a4a 10721 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10722 /* Do the addition, and cast the result to the type of the first
10723 argument. We cannot cast the result to a reference type, so if
10724 ARG1 is a reference type, find its underlying type. */
10725 type = value_type (arg1);
10726 while (TYPE_CODE (type) == TYPE_CODE_REF)
10727 type = TYPE_TARGET_TYPE (type);
f44316fa 10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10729 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10730
10731 case BINOP_SUB:
10732 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10733 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10734 if (noside == EVAL_SKIP)
4c4b4cd2 10735 goto nosideret;
2ac8a782
JB
10736 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10737 return (value_from_longest
10738 (value_type (arg1),
10739 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10740 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10741 return (value_from_longest
10742 (value_type (arg2),
10743 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10744 if ((ada_is_fixed_point_type (value_type (arg1))
10745 || ada_is_fixed_point_type (value_type (arg2)))
10746 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10747 error (_("Operands of fixed-point subtraction "
10748 "must have the same type"));
b7789565
JB
10749 /* Do the substraction, and cast the result to the type of the first
10750 argument. We cannot cast the result to a reference type, so if
10751 ARG1 is a reference type, find its underlying type. */
10752 type = value_type (arg1);
10753 while (TYPE_CODE (type) == TYPE_CODE_REF)
10754 type = TYPE_TARGET_TYPE (type);
f44316fa 10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10756 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10757
10758 case BINOP_MUL:
10759 case BINOP_DIV:
e1578042
JB
10760 case BINOP_REM:
10761 case BINOP_MOD:
14f9c5c9
AS
10762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10763 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10764 if (noside == EVAL_SKIP)
4c4b4cd2 10765 goto nosideret;
e1578042 10766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10767 {
10768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10769 return value_zero (value_type (arg1), not_lval);
10770 }
14f9c5c9 10771 else
4c4b4cd2 10772 {
a53b7a21 10773 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10774 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10775 arg1 = cast_from_fixed (type, arg1);
df407dfe 10776 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10777 arg2 = cast_from_fixed (type, arg2);
f44316fa 10778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10779 return ada_value_binop (arg1, arg2, op);
10780 }
10781
4c4b4cd2
PH
10782 case BINOP_EQUAL:
10783 case BINOP_NOTEQUAL:
14f9c5c9 10784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10785 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10786 if (noside == EVAL_SKIP)
76a01679 10787 goto nosideret;
4c4b4cd2 10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10789 tem = 0;
4c4b4cd2 10790 else
f44316fa
UW
10791 {
10792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10793 tem = ada_value_equal (arg1, arg2);
10794 }
4c4b4cd2 10795 if (op == BINOP_NOTEQUAL)
76a01679 10796 tem = !tem;
fbb06eb1
UW
10797 type = language_bool_type (exp->language_defn, exp->gdbarch);
10798 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10799
10800 case UNOP_NEG:
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10802 if (noside == EVAL_SKIP)
10803 goto nosideret;
df407dfe
AC
10804 else if (ada_is_fixed_point_type (value_type (arg1)))
10805 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10806 else
f44316fa
UW
10807 {
10808 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10809 return value_neg (arg1);
10810 }
4c4b4cd2 10811
2330c6c6
JB
10812 case BINOP_LOGICAL_AND:
10813 case BINOP_LOGICAL_OR:
10814 case UNOP_LOGICAL_NOT:
000d5124
JB
10815 {
10816 struct value *val;
10817
10818 *pos -= 1;
10819 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10820 type = language_bool_type (exp->language_defn, exp->gdbarch);
10821 return value_cast (type, val);
000d5124 10822 }
2330c6c6
JB
10823
10824 case BINOP_BITWISE_AND:
10825 case BINOP_BITWISE_IOR:
10826 case BINOP_BITWISE_XOR:
000d5124
JB
10827 {
10828 struct value *val;
10829
10830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10831 *pos = pc;
10832 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10833
10834 return value_cast (value_type (arg1), val);
10835 }
2330c6c6 10836
14f9c5c9
AS
10837 case OP_VAR_VALUE:
10838 *pos -= 1;
6799def4 10839
14f9c5c9 10840 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10841 {
10842 *pos += 4;
10843 goto nosideret;
10844 }
da5c522f
JB
10845
10846 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10847 /* Only encountered when an unresolved symbol occurs in a
10848 context other than a function call, in which case, it is
52ce6436 10849 invalid. */
323e0a4a 10850 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10851 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10852
10853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10854 {
0c1f74cf 10855 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10856 /* Check to see if this is a tagged type. We also need to handle
10857 the case where the type is a reference to a tagged type, but
10858 we have to be careful to exclude pointers to tagged types.
10859 The latter should be shown as usual (as a pointer), whereas
10860 a reference should mostly be transparent to the user. */
10861 if (ada_is_tagged_type (type, 0)
023db19c 10862 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10863 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10864 {
10865 /* Tagged types are a little special in the fact that the real
10866 type is dynamic and can only be determined by inspecting the
10867 object's tag. This means that we need to get the object's
10868 value first (EVAL_NORMAL) and then extract the actual object
10869 type from its tag.
10870
10871 Note that we cannot skip the final step where we extract
10872 the object type from its tag, because the EVAL_NORMAL phase
10873 results in dynamic components being resolved into fixed ones.
10874 This can cause problems when trying to print the type
10875 description of tagged types whose parent has a dynamic size:
10876 We use the type name of the "_parent" component in order
10877 to print the name of the ancestor type in the type description.
10878 If that component had a dynamic size, the resolution into
10879 a fixed type would result in the loss of that type name,
10880 thus preventing us from printing the name of the ancestor
10881 type in the type description. */
10882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10883
10884 if (TYPE_CODE (type) != TYPE_CODE_REF)
10885 {
10886 struct type *actual_type;
10887
10888 actual_type = type_from_tag (ada_value_tag (arg1));
10889 if (actual_type == NULL)
10890 /* If, for some reason, we were unable to determine
10891 the actual type from the tag, then use the static
10892 approximation that we just computed as a fallback.
10893 This can happen if the debugging information is
10894 incomplete, for instance. */
10895 actual_type = type;
10896 return value_zero (actual_type, not_lval);
10897 }
10898 else
10899 {
10900 /* In the case of a ref, ada_coerce_ref takes care
10901 of determining the actual type. But the evaluation
10902 should return a ref as it should be valid to ask
10903 for its address; so rebuild a ref after coerce. */
10904 arg1 = ada_coerce_ref (arg1);
a65cfae5 10905 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10906 }
10907 }
0c1f74cf 10908
84754697
JB
10909 /* Records and unions for which GNAT encodings have been
10910 generated need to be statically fixed as well.
10911 Otherwise, non-static fixing produces a type where
10912 all dynamic properties are removed, which prevents "ptype"
10913 from being able to completely describe the type.
10914 For instance, a case statement in a variant record would be
10915 replaced by the relevant components based on the actual
10916 value of the discriminants. */
10917 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10918 && dynamic_template_type (type) != NULL)
10919 || (TYPE_CODE (type) == TYPE_CODE_UNION
10920 && ada_find_parallel_type (type, "___XVU") != NULL))
10921 {
10922 *pos += 4;
10923 return value_zero (to_static_fixed_type (type), not_lval);
10924 }
4c4b4cd2 10925 }
da5c522f
JB
10926
10927 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10928 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10929
10930 case OP_FUNCALL:
10931 (*pos) += 2;
10932
10933 /* Allocate arg vector, including space for the function to be
10934 called in argvec[0] and a terminating NULL. */
10935 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10936 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10937
10938 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10939 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10940 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10941 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10942 else
10943 {
10944 for (tem = 0; tem <= nargs; tem += 1)
10945 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946 argvec[tem] = 0;
10947
10948 if (noside == EVAL_SKIP)
10949 goto nosideret;
10950 }
10951
ad82864c
JB
10952 if (ada_is_constrained_packed_array_type
10953 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10954 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10955 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10956 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10957 /* This is a packed array that has already been fixed, and
10958 therefore already coerced to a simple array. Nothing further
10959 to do. */
10960 ;
e6c2c623
PMR
10961 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10962 {
10963 /* Make sure we dereference references so that all the code below
10964 feels like it's really handling the referenced value. Wrapping
10965 types (for alignment) may be there, so make sure we strip them as
10966 well. */
10967 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10968 }
10969 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10970 && VALUE_LVAL (argvec[0]) == lval_memory)
10971 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10972
df407dfe 10973 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10974
10975 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10976 them. So, if this is an array typedef (encoding use for array
10977 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10978 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10979 type = ada_typedef_target_type (type);
10980
4c4b4cd2
PH
10981 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10982 {
61ee279c 10983 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10984 {
10985 case TYPE_CODE_FUNC:
61ee279c 10986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10987 break;
10988 case TYPE_CODE_ARRAY:
10989 break;
10990 case TYPE_CODE_STRUCT:
10991 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10992 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10994 break;
10995 default:
323e0a4a 10996 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10997 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10998 break;
10999 }
11000 }
11001
11002 switch (TYPE_CODE (type))
11003 {
11004 case TYPE_CODE_FUNC:
11005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 11006 {
7022349d
PA
11007 if (TYPE_TARGET_TYPE (type) == NULL)
11008 error_call_unknown_return_type (NULL);
11009 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 11010 }
7022349d 11011 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
11012 case TYPE_CODE_INTERNAL_FUNCTION:
11013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11014 /* We don't know anything about what the internal
11015 function might return, but we have to return
11016 something. */
11017 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11018 not_lval);
11019 else
11020 return call_internal_function (exp->gdbarch, exp->language_defn,
11021 argvec[0], nargs, argvec + 1);
11022
4c4b4cd2
PH
11023 case TYPE_CODE_STRUCT:
11024 {
11025 int arity;
11026
4c4b4cd2
PH
11027 arity = ada_array_arity (type);
11028 type = ada_array_element_type (type, nargs);
11029 if (type == NULL)
323e0a4a 11030 error (_("cannot subscript or call a record"));
4c4b4cd2 11031 if (arity != nargs)
323e0a4a 11032 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11034 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11035 return
11036 unwrap_value (ada_value_subscript
11037 (argvec[0], nargs, argvec + 1));
11038 }
11039 case TYPE_CODE_ARRAY:
11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11041 {
11042 type = ada_array_element_type (type, nargs);
11043 if (type == NULL)
323e0a4a 11044 error (_("element type of array unknown"));
4c4b4cd2 11045 else
0a07e705 11046 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11047 }
11048 return
11049 unwrap_value (ada_value_subscript
11050 (ada_coerce_to_simple_array (argvec[0]),
11051 nargs, argvec + 1));
11052 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11054 {
deede10c 11055 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11056 type = ada_array_element_type (type, nargs);
11057 if (type == NULL)
323e0a4a 11058 error (_("element type of array unknown"));
4c4b4cd2 11059 else
0a07e705 11060 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11061 }
11062 return
deede10c
JB
11063 unwrap_value (ada_value_ptr_subscript (argvec[0],
11064 nargs, argvec + 1));
4c4b4cd2
PH
11065
11066 default:
e1d5a0d2
PH
11067 error (_("Attempt to index or call something other than an "
11068 "array or function"));
4c4b4cd2
PH
11069 }
11070
11071 case TERNOP_SLICE:
11072 {
11073 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 struct value *low_bound_val =
11075 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11076 struct value *high_bound_val =
11077 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11078 LONGEST low_bound;
11079 LONGEST high_bound;
5b4ee69b 11080
994b9211
AC
11081 low_bound_val = coerce_ref (low_bound_val);
11082 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11083 low_bound = value_as_long (low_bound_val);
11084 high_bound = value_as_long (high_bound_val);
963a6417 11085
4c4b4cd2
PH
11086 if (noside == EVAL_SKIP)
11087 goto nosideret;
11088
4c4b4cd2
PH
11089 /* If this is a reference to an aligner type, then remove all
11090 the aligners. */
df407dfe
AC
11091 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11092 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11093 TYPE_TARGET_TYPE (value_type (array)) =
11094 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11095
ad82864c 11096 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11097 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11098
11099 /* If this is a reference to an array or an array lvalue,
11100 convert to a pointer. */
df407dfe
AC
11101 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11102 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11103 && VALUE_LVAL (array) == lval_memory))
11104 array = value_addr (array);
11105
1265e4aa 11106 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11107 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11108 (value_type (array))))
0b5d8877 11109 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11110
11111 array = ada_coerce_to_simple_array_ptr (array);
11112
714e53ab
PH
11113 /* If we have more than one level of pointer indirection,
11114 dereference the value until we get only one level. */
df407dfe
AC
11115 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11116 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11117 == TYPE_CODE_PTR))
11118 array = value_ind (array);
11119
11120 /* Make sure we really do have an array type before going further,
11121 to avoid a SEGV when trying to get the index type or the target
11122 type later down the road if the debug info generated by
11123 the compiler is incorrect or incomplete. */
df407dfe 11124 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11125 error (_("cannot take slice of non-array"));
714e53ab 11126
828292f2
JB
11127 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11128 == TYPE_CODE_PTR)
4c4b4cd2 11129 {
828292f2
JB
11130 struct type *type0 = ada_check_typedef (value_type (array));
11131
0b5d8877 11132 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11133 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11134 else
11135 {
11136 struct type *arr_type0 =
828292f2 11137 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11138
f5938064
JG
11139 return ada_value_slice_from_ptr (array, arr_type0,
11140 longest_to_int (low_bound),
11141 longest_to_int (high_bound));
4c4b4cd2
PH
11142 }
11143 }
11144 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11145 return array;
11146 else if (high_bound < low_bound)
df407dfe 11147 return empty_array (value_type (array), low_bound);
4c4b4cd2 11148 else
529cad9c
PH
11149 return ada_value_slice (array, longest_to_int (low_bound),
11150 longest_to_int (high_bound));
4c4b4cd2 11151 }
14f9c5c9 11152
4c4b4cd2
PH
11153 case UNOP_IN_RANGE:
11154 (*pos) += 2;
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11156 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11157
14f9c5c9 11158 if (noside == EVAL_SKIP)
4c4b4cd2 11159 goto nosideret;
14f9c5c9 11160
4c4b4cd2
PH
11161 switch (TYPE_CODE (type))
11162 {
11163 default:
e1d5a0d2
PH
11164 lim_warning (_("Membership test incompletely implemented; "
11165 "always returns true"));
fbb06eb1
UW
11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
11167 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11168
11169 case TYPE_CODE_RANGE:
030b4912
UW
11170 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11171 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11174 type = language_bool_type (exp->language_defn, exp->gdbarch);
11175 return
11176 value_from_longest (type,
4c4b4cd2
PH
11177 (value_less (arg1, arg3)
11178 || value_equal (arg1, arg3))
11179 && (value_less (arg2, arg1)
11180 || value_equal (arg2, arg1)));
11181 }
11182
11183 case BINOP_IN_BOUNDS:
14f9c5c9 11184 (*pos) += 2;
4c4b4cd2
PH
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11187
4c4b4cd2
PH
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
14f9c5c9 11190
4c4b4cd2 11191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11192 {
11193 type = language_bool_type (exp->language_defn, exp->gdbarch);
11194 return value_zero (type, not_lval);
11195 }
14f9c5c9 11196
4c4b4cd2 11197 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11198
1eea4ebd
UW
11199 type = ada_index_type (value_type (arg2), tem, "range");
11200 if (!type)
11201 type = value_type (arg1);
14f9c5c9 11202
1eea4ebd
UW
11203 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11204 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11205
f44316fa
UW
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11208 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11209 return
fbb06eb1 11210 value_from_longest (type,
4c4b4cd2
PH
11211 (value_less (arg1, arg3)
11212 || value_equal (arg1, arg3))
11213 && (value_less (arg2, arg1)
11214 || value_equal (arg2, arg1)));
11215
11216 case TERNOP_IN_RANGE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223
f44316fa
UW
11224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11226 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11227 return
fbb06eb1 11228 value_from_longest (type,
4c4b4cd2
PH
11229 (value_less (arg1, arg3)
11230 || value_equal (arg1, arg3))
11231 && (value_less (arg2, arg1)
11232 || value_equal (arg2, arg1)));
11233
11234 case OP_ATR_FIRST:
11235 case OP_ATR_LAST:
11236 case OP_ATR_LENGTH:
11237 {
76a01679 11238 struct type *type_arg;
5b4ee69b 11239
76a01679
JB
11240 if (exp->elts[*pos].opcode == OP_TYPE)
11241 {
11242 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11243 arg1 = NULL;
5bc23cb3 11244 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11245 }
11246 else
11247 {
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 type_arg = NULL;
11250 }
11251
11252 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11253 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11254 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11255 *pos += 4;
11256
11257 if (noside == EVAL_SKIP)
11258 goto nosideret;
11259
11260 if (type_arg == NULL)
11261 {
11262 arg1 = ada_coerce_ref (arg1);
11263
ad82864c 11264 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11265 arg1 = ada_coerce_to_simple_array (arg1);
11266
aa4fb036 11267 if (op == OP_ATR_LENGTH)
1eea4ebd 11268 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11269 else
11270 {
11271 type = ada_index_type (value_type (arg1), tem,
11272 ada_attribute_name (op));
11273 if (type == NULL)
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11275 }
76a01679
JB
11276
11277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11278 return allocate_value (type);
76a01679
JB
11279
11280 switch (op)
11281 {
11282 default: /* Should never happen. */
323e0a4a 11283 error (_("unexpected attribute encountered"));
76a01679 11284 case OP_ATR_FIRST:
1eea4ebd
UW
11285 return value_from_longest
11286 (type, ada_array_bound (arg1, tem, 0));
76a01679 11287 case OP_ATR_LAST:
1eea4ebd
UW
11288 return value_from_longest
11289 (type, ada_array_bound (arg1, tem, 1));
76a01679 11290 case OP_ATR_LENGTH:
1eea4ebd
UW
11291 return value_from_longest
11292 (type, ada_array_length (arg1, tem));
76a01679
JB
11293 }
11294 }
11295 else if (discrete_type_p (type_arg))
11296 {
11297 struct type *range_type;
0d5cff50 11298 const char *name = ada_type_name (type_arg);
5b4ee69b 11299
76a01679
JB
11300 range_type = NULL;
11301 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11302 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11303 if (range_type == NULL)
11304 range_type = type_arg;
11305 switch (op)
11306 {
11307 default:
323e0a4a 11308 error (_("unexpected attribute encountered"));
76a01679 11309 case OP_ATR_FIRST:
690cc4eb 11310 return value_from_longest
43bbcdc2 11311 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11312 case OP_ATR_LAST:
690cc4eb 11313 return value_from_longest
43bbcdc2 11314 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11315 case OP_ATR_LENGTH:
323e0a4a 11316 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11317 }
11318 }
11319 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11320 error (_("unimplemented type attribute"));
76a01679
JB
11321 else
11322 {
11323 LONGEST low, high;
11324
ad82864c
JB
11325 if (ada_is_constrained_packed_array_type (type_arg))
11326 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11327
aa4fb036 11328 if (op == OP_ATR_LENGTH)
1eea4ebd 11329 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11330 else
11331 {
11332 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11333 if (type == NULL)
11334 type = builtin_type (exp->gdbarch)->builtin_int;
11335 }
1eea4ebd 11336
76a01679
JB
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return allocate_value (type);
11339
11340 switch (op)
11341 {
11342 default:
323e0a4a 11343 error (_("unexpected attribute encountered"));
76a01679 11344 case OP_ATR_FIRST:
1eea4ebd 11345 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11346 return value_from_longest (type, low);
11347 case OP_ATR_LAST:
1eea4ebd 11348 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11349 return value_from_longest (type, high);
11350 case OP_ATR_LENGTH:
1eea4ebd
UW
11351 low = ada_array_bound_from_type (type_arg, tem, 0);
11352 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11353 return value_from_longest (type, high - low + 1);
11354 }
11355 }
14f9c5c9
AS
11356 }
11357
4c4b4cd2
PH
11358 case OP_ATR_TAG:
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 if (noside == EVAL_SKIP)
76a01679 11361 goto nosideret;
4c4b4cd2
PH
11362
11363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11364 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11365
11366 return ada_value_tag (arg1);
11367
11368 case OP_ATR_MIN:
11369 case OP_ATR_MAX:
11370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11372 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 if (noside == EVAL_SKIP)
76a01679 11374 goto nosideret;
d2e4a39e 11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11376 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11377 else
f44316fa
UW
11378 {
11379 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11380 return value_binop (arg1, arg2,
11381 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11382 }
14f9c5c9 11383
4c4b4cd2
PH
11384 case OP_ATR_MODULUS:
11385 {
31dedfee 11386 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11387
5b4ee69b 11388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
4c4b4cd2 11391
76a01679 11392 if (!ada_is_modular_type (type_arg))
323e0a4a 11393 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11394
76a01679
JB
11395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11396 ada_modulus (type_arg));
4c4b4cd2
PH
11397 }
11398
11399
11400 case OP_ATR_POS:
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
76a01679 11404 goto nosideret;
3cb382c9
UW
11405 type = builtin_type (exp->gdbarch)->builtin_int;
11406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 return value_zero (type, not_lval);
14f9c5c9 11408 else
3cb382c9 11409 return value_pos_atr (type, arg1);
14f9c5c9 11410
4c4b4cd2
PH
11411 case OP_ATR_SIZE:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11413 type = value_type (arg1);
11414
11415 /* If the argument is a reference, then dereference its type, since
11416 the user is really asking for the size of the actual object,
11417 not the size of the pointer. */
11418 if (TYPE_CODE (type) == TYPE_CODE_REF)
11419 type = TYPE_TARGET_TYPE (type);
11420
4c4b4cd2 11421 if (noside == EVAL_SKIP)
76a01679 11422 goto nosideret;
4c4b4cd2 11423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11424 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11425 else
22601c15 11426 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11427 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11428
11429 case OP_ATR_VAL:
11430 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11432 type = exp->elts[pc + 2].type;
14f9c5c9 11433 if (noside == EVAL_SKIP)
76a01679 11434 goto nosideret;
4c4b4cd2 11435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11436 return value_zero (type, not_lval);
4c4b4cd2 11437 else
76a01679 11438 return value_val_atr (type, arg1);
4c4b4cd2
PH
11439
11440 case BINOP_EXP:
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11444 goto nosideret;
11445 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11446 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11447 else
f44316fa
UW
11448 {
11449 /* For integer exponentiation operations,
11450 only promote the first argument. */
11451 if (is_integral_type (value_type (arg2)))
11452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11453 else
11454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11455
11456 return value_binop (arg1, arg2, op);
11457 }
4c4b4cd2
PH
11458
11459 case UNOP_PLUS:
11460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11461 if (noside == EVAL_SKIP)
11462 goto nosideret;
11463 else
11464 return arg1;
11465
11466 case UNOP_ABS:
11467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11468 if (noside == EVAL_SKIP)
11469 goto nosideret;
f44316fa 11470 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11471 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11472 return value_neg (arg1);
14f9c5c9 11473 else
4c4b4cd2 11474 return arg1;
14f9c5c9
AS
11475
11476 case UNOP_IND:
5ec18f2b 11477 preeval_pos = *pos;
6b0d7253 11478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11479 if (noside == EVAL_SKIP)
4c4b4cd2 11480 goto nosideret;
df407dfe 11481 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11483 {
11484 if (ada_is_array_descriptor_type (type))
11485 /* GDB allows dereferencing GNAT array descriptors. */
11486 {
11487 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11488
4c4b4cd2 11489 if (arrType == NULL)
323e0a4a 11490 error (_("Attempt to dereference null array pointer."));
00a4c844 11491 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11492 }
11493 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11494 || TYPE_CODE (type) == TYPE_CODE_REF
11495 /* In C you can dereference an array to get the 1st elt. */
11496 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11497 {
5ec18f2b
JG
11498 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11499 only be determined by inspecting the object's tag.
11500 This means that we need to evaluate completely the
11501 expression in order to get its type. */
11502
023db19c
JB
11503 if ((TYPE_CODE (type) == TYPE_CODE_REF
11504 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11505 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11506 {
11507 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11508 EVAL_NORMAL);
11509 type = value_type (ada_value_ind (arg1));
11510 }
11511 else
11512 {
11513 type = to_static_fixed_type
11514 (ada_aligned_type
11515 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11516 }
c1b5a1a6 11517 ada_ensure_varsize_limit (type);
714e53ab
PH
11518 return value_zero (type, lval_memory);
11519 }
4c4b4cd2 11520 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11521 {
11522 /* GDB allows dereferencing an int. */
11523 if (expect_type == NULL)
11524 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11525 lval_memory);
11526 else
11527 {
11528 expect_type =
11529 to_static_fixed_type (ada_aligned_type (expect_type));
11530 return value_zero (expect_type, lval_memory);
11531 }
11532 }
4c4b4cd2 11533 else
323e0a4a 11534 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11535 }
0963b4bd 11536 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11537 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11538
96967637
JB
11539 if (TYPE_CODE (type) == TYPE_CODE_INT)
11540 /* GDB allows dereferencing an int. If we were given
11541 the expect_type, then use that as the target type.
11542 Otherwise, assume that the target type is an int. */
11543 {
11544 if (expect_type != NULL)
11545 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11546 arg1));
11547 else
11548 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11549 (CORE_ADDR) value_as_address (arg1));
11550 }
6b0d7253 11551
4c4b4cd2
PH
11552 if (ada_is_array_descriptor_type (type))
11553 /* GDB allows dereferencing GNAT array descriptors. */
11554 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11555 else
4c4b4cd2 11556 return ada_value_ind (arg1);
14f9c5c9
AS
11557
11558 case STRUCTOP_STRUCT:
11559 tem = longest_to_int (exp->elts[pc + 1].longconst);
11560 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11561 preeval_pos = *pos;
14f9c5c9
AS
11562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11563 if (noside == EVAL_SKIP)
4c4b4cd2 11564 goto nosideret;
14f9c5c9 11565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11566 {
df407dfe 11567 struct type *type1 = value_type (arg1);
5b4ee69b 11568
76a01679
JB
11569 if (ada_is_tagged_type (type1, 1))
11570 {
11571 type = ada_lookup_struct_elt_type (type1,
11572 &exp->elts[pc + 2].string,
988f6b3d 11573 1, 1);
5ec18f2b
JG
11574
11575 /* If the field is not found, check if it exists in the
11576 extension of this object's type. This means that we
11577 need to evaluate completely the expression. */
11578
76a01679 11579 if (type == NULL)
5ec18f2b
JG
11580 {
11581 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11582 EVAL_NORMAL);
11583 arg1 = ada_value_struct_elt (arg1,
11584 &exp->elts[pc + 2].string,
11585 0);
11586 arg1 = unwrap_value (arg1);
11587 type = value_type (ada_to_fixed_value (arg1));
11588 }
76a01679
JB
11589 }
11590 else
11591 type =
11592 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11593 0);
76a01679
JB
11594
11595 return value_zero (ada_aligned_type (type), lval_memory);
11596 }
14f9c5c9 11597 else
a579cd9a
MW
11598 {
11599 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11600 arg1 = unwrap_value (arg1);
11601 return ada_to_fixed_value (arg1);
11602 }
284614f0 11603
14f9c5c9 11604 case OP_TYPE:
4c4b4cd2
PH
11605 /* The value is not supposed to be used. This is here to make it
11606 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11607 (*pos) += 2;
11608 if (noside == EVAL_SKIP)
4c4b4cd2 11609 goto nosideret;
14f9c5c9 11610 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11611 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11612 else
323e0a4a 11613 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11614
11615 case OP_AGGREGATE:
11616 case OP_CHOICES:
11617 case OP_OTHERS:
11618 case OP_DISCRETE_RANGE:
11619 case OP_POSITIONAL:
11620 case OP_NAME:
11621 if (noside == EVAL_NORMAL)
11622 switch (op)
11623 {
11624 case OP_NAME:
11625 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11626 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11627 case OP_AGGREGATE:
11628 error (_("Aggregates only allowed on the right of an assignment"));
11629 default:
0963b4bd
MS
11630 internal_error (__FILE__, __LINE__,
11631 _("aggregate apparently mangled"));
52ce6436
PH
11632 }
11633
11634 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11635 *pos += oplen - 1;
11636 for (tem = 0; tem < nargs; tem += 1)
11637 ada_evaluate_subexp (NULL, exp, pos, noside);
11638 goto nosideret;
14f9c5c9
AS
11639 }
11640
11641nosideret:
ced9779b 11642 return eval_skip_value (exp);
14f9c5c9 11643}
14f9c5c9 11644\f
d2e4a39e 11645
4c4b4cd2 11646 /* Fixed point */
14f9c5c9
AS
11647
11648/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11649 type name that encodes the 'small and 'delta information.
4c4b4cd2 11650 Otherwise, return NULL. */
14f9c5c9 11651
d2e4a39e 11652static const char *
ebf56fd3 11653fixed_type_info (struct type *type)
14f9c5c9 11654{
d2e4a39e 11655 const char *name = ada_type_name (type);
14f9c5c9
AS
11656 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11657
d2e4a39e
AS
11658 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11659 {
14f9c5c9 11660 const char *tail = strstr (name, "___XF_");
5b4ee69b 11661
14f9c5c9 11662 if (tail == NULL)
4c4b4cd2 11663 return NULL;
d2e4a39e 11664 else
4c4b4cd2 11665 return tail + 5;
14f9c5c9
AS
11666 }
11667 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11668 return fixed_type_info (TYPE_TARGET_TYPE (type));
11669 else
11670 return NULL;
11671}
11672
4c4b4cd2 11673/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11674
11675int
ebf56fd3 11676ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11677{
11678 return fixed_type_info (type) != NULL;
11679}
11680
4c4b4cd2
PH
11681/* Return non-zero iff TYPE represents a System.Address type. */
11682
11683int
11684ada_is_system_address_type (struct type *type)
11685{
11686 return (TYPE_NAME (type)
11687 && strcmp (TYPE_NAME (type), "system__address") == 0);
11688}
11689
14f9c5c9 11690/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11691 type, return the target floating-point type to be used to represent
11692 of this type during internal computation. */
11693
11694static struct type *
11695ada_scaling_type (struct type *type)
11696{
11697 return builtin_type (get_type_arch (type))->builtin_long_double;
11698}
11699
11700/* Assuming that TYPE is the representation of an Ada fixed-point
11701 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11702 delta cannot be determined. */
14f9c5c9 11703
50eff16b 11704struct value *
ebf56fd3 11705ada_delta (struct type *type)
14f9c5c9
AS
11706{
11707 const char *encoding = fixed_type_info (type);
50eff16b
UW
11708 struct type *scale_type = ada_scaling_type (type);
11709
11710 long long num, den;
11711
11712 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11713 return nullptr;
d2e4a39e 11714 else
50eff16b
UW
11715 return value_binop (value_from_longest (scale_type, num),
11716 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11717}
11718
11719/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11720 factor ('SMALL value) associated with the type. */
14f9c5c9 11721
50eff16b
UW
11722struct value *
11723ada_scaling_factor (struct type *type)
14f9c5c9
AS
11724{
11725 const char *encoding = fixed_type_info (type);
50eff16b
UW
11726 struct type *scale_type = ada_scaling_type (type);
11727
11728 long long num0, den0, num1, den1;
14f9c5c9 11729 int n;
d2e4a39e 11730
50eff16b 11731 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11732 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11733
11734 if (n < 2)
50eff16b 11735 return value_from_longest (scale_type, 1);
14f9c5c9 11736 else if (n == 4)
50eff16b
UW
11737 return value_binop (value_from_longest (scale_type, num1),
11738 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11739 else
50eff16b
UW
11740 return value_binop (value_from_longest (scale_type, num0),
11741 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11742}
11743
14f9c5c9 11744\f
d2e4a39e 11745
4c4b4cd2 11746 /* Range types */
14f9c5c9
AS
11747
11748/* Scan STR beginning at position K for a discriminant name, and
11749 return the value of that discriminant field of DVAL in *PX. If
11750 PNEW_K is not null, put the position of the character beyond the
11751 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11752 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11753
11754static int
108d56a4 11755scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11756 int *pnew_k)
14f9c5c9
AS
11757{
11758 static char *bound_buffer = NULL;
11759 static size_t bound_buffer_len = 0;
5da1a4d3 11760 const char *pstart, *pend, *bound;
d2e4a39e 11761 struct value *bound_val;
14f9c5c9
AS
11762
11763 if (dval == NULL || str == NULL || str[k] == '\0')
11764 return 0;
11765
5da1a4d3
SM
11766 pstart = str + k;
11767 pend = strstr (pstart, "__");
14f9c5c9
AS
11768 if (pend == NULL)
11769 {
5da1a4d3 11770 bound = pstart;
14f9c5c9
AS
11771 k += strlen (bound);
11772 }
d2e4a39e 11773 else
14f9c5c9 11774 {
5da1a4d3
SM
11775 int len = pend - pstart;
11776
11777 /* Strip __ and beyond. */
11778 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11779 strncpy (bound_buffer, pstart, len);
11780 bound_buffer[len] = '\0';
11781
14f9c5c9 11782 bound = bound_buffer;
d2e4a39e 11783 k = pend - str;
14f9c5c9 11784 }
d2e4a39e 11785
df407dfe 11786 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11787 if (bound_val == NULL)
11788 return 0;
11789
11790 *px = value_as_long (bound_val);
11791 if (pnew_k != NULL)
11792 *pnew_k = k;
11793 return 1;
11794}
11795
11796/* Value of variable named NAME in the current environment. If
11797 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11798 otherwise causes an error with message ERR_MSG. */
11799
d2e4a39e 11800static struct value *
edb0c9cb 11801get_var_value (const char *name, const char *err_msg)
14f9c5c9 11802{
b5ec771e 11803 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11804
b5ec771e
PA
11805 struct block_symbol *syms;
11806 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11807 get_selected_block (0),
11808 VAR_DOMAIN, &syms, 1);
ec6a20c2 11809 struct cleanup *old_chain = make_cleanup (xfree, syms);
14f9c5c9
AS
11810
11811 if (nsyms != 1)
11812 {
ec6a20c2 11813 do_cleanups (old_chain);
14f9c5c9 11814 if (err_msg == NULL)
4c4b4cd2 11815 return 0;
14f9c5c9 11816 else
8a3fe4f8 11817 error (("%s"), err_msg);
14f9c5c9
AS
11818 }
11819
ec6a20c2
JB
11820 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11821 do_cleanups (old_chain);
11822 return result;
14f9c5c9 11823}
d2e4a39e 11824
edb0c9cb
PA
11825/* Value of integer variable named NAME in the current environment.
11826 If no such variable is found, returns false. Otherwise, sets VALUE
11827 to the variable's value and returns true. */
4c4b4cd2 11828
edb0c9cb
PA
11829bool
11830get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11831{
4c4b4cd2 11832 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11833
14f9c5c9 11834 if (var_val == 0)
edb0c9cb
PA
11835 return false;
11836
11837 value = value_as_long (var_val);
11838 return true;
14f9c5c9 11839}
d2e4a39e 11840
14f9c5c9
AS
11841
11842/* Return a range type whose base type is that of the range type named
11843 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11844 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11845 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11846 corresponding range type from debug information; fall back to using it
11847 if symbol lookup fails. If a new type must be created, allocate it
11848 like ORIG_TYPE was. The bounds information, in general, is encoded
11849 in NAME, the base type given in the named range type. */
14f9c5c9 11850
d2e4a39e 11851static struct type *
28c85d6c 11852to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11853{
0d5cff50 11854 const char *name;
14f9c5c9 11855 struct type *base_type;
108d56a4 11856 const char *subtype_info;
14f9c5c9 11857
28c85d6c
JB
11858 gdb_assert (raw_type != NULL);
11859 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11860
1ce677a4 11861 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11862 base_type = TYPE_TARGET_TYPE (raw_type);
11863 else
11864 base_type = raw_type;
11865
28c85d6c 11866 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11867 subtype_info = strstr (name, "___XD");
11868 if (subtype_info == NULL)
690cc4eb 11869 {
43bbcdc2
PH
11870 LONGEST L = ada_discrete_type_low_bound (raw_type);
11871 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11872
690cc4eb
PH
11873 if (L < INT_MIN || U > INT_MAX)
11874 return raw_type;
11875 else
0c9c3474
SA
11876 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11877 L, U);
690cc4eb 11878 }
14f9c5c9
AS
11879 else
11880 {
11881 static char *name_buf = NULL;
11882 static size_t name_len = 0;
11883 int prefix_len = subtype_info - name;
11884 LONGEST L, U;
11885 struct type *type;
108d56a4 11886 const char *bounds_str;
14f9c5c9
AS
11887 int n;
11888
11889 GROW_VECT (name_buf, name_len, prefix_len + 5);
11890 strncpy (name_buf, name, prefix_len);
11891 name_buf[prefix_len] = '\0';
11892
11893 subtype_info += 5;
11894 bounds_str = strchr (subtype_info, '_');
11895 n = 1;
11896
d2e4a39e 11897 if (*subtype_info == 'L')
4c4b4cd2
PH
11898 {
11899 if (!ada_scan_number (bounds_str, n, &L, &n)
11900 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11901 return raw_type;
11902 if (bounds_str[n] == '_')
11903 n += 2;
0963b4bd 11904 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11905 n += 1;
11906 subtype_info += 1;
11907 }
d2e4a39e 11908 else
4c4b4cd2 11909 {
4c4b4cd2 11910 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11911 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11912 {
323e0a4a 11913 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11914 L = 1;
11915 }
11916 }
14f9c5c9 11917
d2e4a39e 11918 if (*subtype_info == 'U')
4c4b4cd2
PH
11919 {
11920 if (!ada_scan_number (bounds_str, n, &U, &n)
11921 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11922 return raw_type;
11923 }
d2e4a39e 11924 else
4c4b4cd2 11925 {
4c4b4cd2 11926 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11927 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11928 {
323e0a4a 11929 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11930 U = L;
11931 }
11932 }
14f9c5c9 11933
0c9c3474
SA
11934 type = create_static_range_type (alloc_type_copy (raw_type),
11935 base_type, L, U);
f5a91472
JB
11936 /* create_static_range_type alters the resulting type's length
11937 to match the size of the base_type, which is not what we want.
11938 Set it back to the original range type's length. */
11939 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11940 TYPE_NAME (type) = name;
14f9c5c9
AS
11941 return type;
11942 }
11943}
11944
4c4b4cd2
PH
11945/* True iff NAME is the name of a range type. */
11946
14f9c5c9 11947int
d2e4a39e 11948ada_is_range_type_name (const char *name)
14f9c5c9
AS
11949{
11950 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11951}
14f9c5c9 11952\f
d2e4a39e 11953
4c4b4cd2
PH
11954 /* Modular types */
11955
11956/* True iff TYPE is an Ada modular type. */
14f9c5c9 11957
14f9c5c9 11958int
d2e4a39e 11959ada_is_modular_type (struct type *type)
14f9c5c9 11960{
18af8284 11961 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11962
11963 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11964 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11965 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11966}
11967
4c4b4cd2
PH
11968/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11969
61ee279c 11970ULONGEST
0056e4d5 11971ada_modulus (struct type *type)
14f9c5c9 11972{
43bbcdc2 11973 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11974}
d2e4a39e 11975\f
f7f9143b
JB
11976
11977/* Ada exception catchpoint support:
11978 ---------------------------------
11979
11980 We support 3 kinds of exception catchpoints:
11981 . catchpoints on Ada exceptions
11982 . catchpoints on unhandled Ada exceptions
11983 . catchpoints on failed assertions
11984
11985 Exceptions raised during failed assertions, or unhandled exceptions
11986 could perfectly be caught with the general catchpoint on Ada exceptions.
11987 However, we can easily differentiate these two special cases, and having
11988 the option to distinguish these two cases from the rest can be useful
11989 to zero-in on certain situations.
11990
11991 Exception catchpoints are a specialized form of breakpoint,
11992 since they rely on inserting breakpoints inside known routines
11993 of the GNAT runtime. The implementation therefore uses a standard
11994 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11995 of breakpoint_ops.
11996
0259addd
JB
11997 Support in the runtime for exception catchpoints have been changed
11998 a few times already, and these changes affect the implementation
11999 of these catchpoints. In order to be able to support several
12000 variants of the runtime, we use a sniffer that will determine
28010a5d 12001 the runtime variant used by the program being debugged. */
f7f9143b 12002
82eacd52
JB
12003/* Ada's standard exceptions.
12004
12005 The Ada 83 standard also defined Numeric_Error. But there so many
12006 situations where it was unclear from the Ada 83 Reference Manual
12007 (RM) whether Constraint_Error or Numeric_Error should be raised,
12008 that the ARG (Ada Rapporteur Group) eventually issued a Binding
12009 Interpretation saying that anytime the RM says that Numeric_Error
12010 should be raised, the implementation may raise Constraint_Error.
12011 Ada 95 went one step further and pretty much removed Numeric_Error
12012 from the list of standard exceptions (it made it a renaming of
12013 Constraint_Error, to help preserve compatibility when compiling
12014 an Ada83 compiler). As such, we do not include Numeric_Error from
12015 this list of standard exceptions. */
3d0b0fa3 12016
a121b7c1 12017static const char *standard_exc[] = {
3d0b0fa3
JB
12018 "constraint_error",
12019 "program_error",
12020 "storage_error",
12021 "tasking_error"
12022};
12023
0259addd
JB
12024typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12025
12026/* A structure that describes how to support exception catchpoints
12027 for a given executable. */
12028
12029struct exception_support_info
12030{
12031 /* The name of the symbol to break on in order to insert
12032 a catchpoint on exceptions. */
12033 const char *catch_exception_sym;
12034
12035 /* The name of the symbol to break on in order to insert
12036 a catchpoint on unhandled exceptions. */
12037 const char *catch_exception_unhandled_sym;
12038
12039 /* The name of the symbol to break on in order to insert
12040 a catchpoint on failed assertions. */
12041 const char *catch_assert_sym;
12042
9f757bf7
XR
12043 /* The name of the symbol to break on in order to insert
12044 a catchpoint on exception handling. */
12045 const char *catch_handlers_sym;
12046
0259addd
JB
12047 /* Assuming that the inferior just triggered an unhandled exception
12048 catchpoint, this function is responsible for returning the address
12049 in inferior memory where the name of that exception is stored.
12050 Return zero if the address could not be computed. */
12051 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12052};
12053
12054static CORE_ADDR ada_unhandled_exception_name_addr (void);
12055static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12056
12057/* The following exception support info structure describes how to
12058 implement exception catchpoints with the latest version of the
12059 Ada runtime (as of 2007-03-06). */
12060
12061static const struct exception_support_info default_exception_support_info =
12062{
12063 "__gnat_debug_raise_exception", /* catch_exception_sym */
12064 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12065 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12066 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12067 ada_unhandled_exception_name_addr
12068};
12069
12070/* The following exception support info structure describes how to
12071 implement exception catchpoints with a slightly older version
12072 of the Ada runtime. */
12073
12074static const struct exception_support_info exception_support_info_fallback =
12075{
12076 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12077 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12078 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12079 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12080 ada_unhandled_exception_name_addr_from_raise
12081};
12082
f17011e0
JB
12083/* Return nonzero if we can detect the exception support routines
12084 described in EINFO.
12085
12086 This function errors out if an abnormal situation is detected
12087 (for instance, if we find the exception support routines, but
12088 that support is found to be incomplete). */
12089
12090static int
12091ada_has_this_exception_support (const struct exception_support_info *einfo)
12092{
12093 struct symbol *sym;
12094
12095 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12096 that should be compiled with debugging information. As a result, we
12097 expect to find that symbol in the symtabs. */
12098
12099 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12100 if (sym == NULL)
a6af7abe
JB
12101 {
12102 /* Perhaps we did not find our symbol because the Ada runtime was
12103 compiled without debugging info, or simply stripped of it.
12104 It happens on some GNU/Linux distributions for instance, where
12105 users have to install a separate debug package in order to get
12106 the runtime's debugging info. In that situation, let the user
12107 know why we cannot insert an Ada exception catchpoint.
12108
12109 Note: Just for the purpose of inserting our Ada exception
12110 catchpoint, we could rely purely on the associated minimal symbol.
12111 But we would be operating in degraded mode anyway, since we are
12112 still lacking the debugging info needed later on to extract
12113 the name of the exception being raised (this name is printed in
12114 the catchpoint message, and is also used when trying to catch
12115 a specific exception). We do not handle this case for now. */
3b7344d5 12116 struct bound_minimal_symbol msym
1c8e84b0
JB
12117 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12118
3b7344d5 12119 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12120 error (_("Your Ada runtime appears to be missing some debugging "
12121 "information.\nCannot insert Ada exception catchpoint "
12122 "in this configuration."));
12123
12124 return 0;
12125 }
f17011e0
JB
12126
12127 /* Make sure that the symbol we found corresponds to a function. */
12128
12129 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12130 error (_("Symbol \"%s\" is not a function (class = %d)"),
12131 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12132
12133 return 1;
12134}
12135
0259addd
JB
12136/* Inspect the Ada runtime and determine which exception info structure
12137 should be used to provide support for exception catchpoints.
12138
3eecfa55
JB
12139 This function will always set the per-inferior exception_info,
12140 or raise an error. */
0259addd
JB
12141
12142static void
12143ada_exception_support_info_sniffer (void)
12144{
3eecfa55 12145 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12146
12147 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12148 if (data->exception_info != NULL)
0259addd
JB
12149 return;
12150
12151 /* Check the latest (default) exception support info. */
f17011e0 12152 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12153 {
3eecfa55 12154 data->exception_info = &default_exception_support_info;
0259addd
JB
12155 return;
12156 }
12157
12158 /* Try our fallback exception suport info. */
f17011e0 12159 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12160 {
3eecfa55 12161 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12162 return;
12163 }
12164
12165 /* Sometimes, it is normal for us to not be able to find the routine
12166 we are looking for. This happens when the program is linked with
12167 the shared version of the GNAT runtime, and the program has not been
12168 started yet. Inform the user of these two possible causes if
12169 applicable. */
12170
ccefe4c4 12171 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12172 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12173
12174 /* If the symbol does not exist, then check that the program is
12175 already started, to make sure that shared libraries have been
12176 loaded. If it is not started, this may mean that the symbol is
12177 in a shared library. */
12178
12179 if (ptid_get_pid (inferior_ptid) == 0)
12180 error (_("Unable to insert catchpoint. Try to start the program first."));
12181
12182 /* At this point, we know that we are debugging an Ada program and
12183 that the inferior has been started, but we still are not able to
0963b4bd 12184 find the run-time symbols. That can mean that we are in
0259addd
JB
12185 configurable run time mode, or that a-except as been optimized
12186 out by the linker... In any case, at this point it is not worth
12187 supporting this feature. */
12188
7dda8cff 12189 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12190}
12191
f7f9143b
JB
12192/* True iff FRAME is very likely to be that of a function that is
12193 part of the runtime system. This is all very heuristic, but is
12194 intended to be used as advice as to what frames are uninteresting
12195 to most users. */
12196
12197static int
12198is_known_support_routine (struct frame_info *frame)
12199{
692465f1 12200 enum language func_lang;
f7f9143b 12201 int i;
f35a17b5 12202 const char *fullname;
f7f9143b 12203
4ed6b5be
JB
12204 /* If this code does not have any debugging information (no symtab),
12205 This cannot be any user code. */
f7f9143b 12206
51abb421 12207 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12208 if (sal.symtab == NULL)
12209 return 1;
12210
4ed6b5be
JB
12211 /* If there is a symtab, but the associated source file cannot be
12212 located, then assume this is not user code: Selecting a frame
12213 for which we cannot display the code would not be very helpful
12214 for the user. This should also take care of case such as VxWorks
12215 where the kernel has some debugging info provided for a few units. */
f7f9143b 12216
f35a17b5
JK
12217 fullname = symtab_to_fullname (sal.symtab);
12218 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12219 return 1;
12220
4ed6b5be
JB
12221 /* Check the unit filename againt the Ada runtime file naming.
12222 We also check the name of the objfile against the name of some
12223 known system libraries that sometimes come with debugging info
12224 too. */
12225
f7f9143b
JB
12226 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12227 {
12228 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12229 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12230 return 1;
eb822aa6
DE
12231 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12232 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12233 return 1;
f7f9143b
JB
12234 }
12235
4ed6b5be 12236 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12237
c6dc63a1
TT
12238 gdb::unique_xmalloc_ptr<char> func_name
12239 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12240 if (func_name == NULL)
12241 return 1;
12242
12243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12244 {
12245 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12246 if (re_exec (func_name.get ()))
12247 return 1;
f7f9143b
JB
12248 }
12249
12250 return 0;
12251}
12252
12253/* Find the first frame that contains debugging information and that is not
12254 part of the Ada run-time, starting from FI and moving upward. */
12255
0ef643c8 12256void
f7f9143b
JB
12257ada_find_printable_frame (struct frame_info *fi)
12258{
12259 for (; fi != NULL; fi = get_prev_frame (fi))
12260 {
12261 if (!is_known_support_routine (fi))
12262 {
12263 select_frame (fi);
12264 break;
12265 }
12266 }
12267
12268}
12269
12270/* Assuming that the inferior just triggered an unhandled exception
12271 catchpoint, return the address in inferior memory where the name
12272 of the exception is stored.
12273
12274 Return zero if the address could not be computed. */
12275
12276static CORE_ADDR
12277ada_unhandled_exception_name_addr (void)
0259addd
JB
12278{
12279 return parse_and_eval_address ("e.full_name");
12280}
12281
12282/* Same as ada_unhandled_exception_name_addr, except that this function
12283 should be used when the inferior uses an older version of the runtime,
12284 where the exception name needs to be extracted from a specific frame
12285 several frames up in the callstack. */
12286
12287static CORE_ADDR
12288ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12289{
12290 int frame_level;
12291 struct frame_info *fi;
3eecfa55 12292 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12293
12294 /* To determine the name of this exception, we need to select
12295 the frame corresponding to RAISE_SYM_NAME. This frame is
12296 at least 3 levels up, so we simply skip the first 3 frames
12297 without checking the name of their associated function. */
12298 fi = get_current_frame ();
12299 for (frame_level = 0; frame_level < 3; frame_level += 1)
12300 if (fi != NULL)
12301 fi = get_prev_frame (fi);
12302
12303 while (fi != NULL)
12304 {
692465f1
JB
12305 enum language func_lang;
12306
c6dc63a1
TT
12307 gdb::unique_xmalloc_ptr<char> func_name
12308 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12309 if (func_name != NULL)
12310 {
c6dc63a1 12311 if (strcmp (func_name.get (),
55b87a52
KS
12312 data->exception_info->catch_exception_sym) == 0)
12313 break; /* We found the frame we were looking for... */
12314 fi = get_prev_frame (fi);
12315 }
f7f9143b
JB
12316 }
12317
12318 if (fi == NULL)
12319 return 0;
12320
12321 select_frame (fi);
12322 return parse_and_eval_address ("id.full_name");
12323}
12324
12325/* Assuming the inferior just triggered an Ada exception catchpoint
12326 (of any type), return the address in inferior memory where the name
12327 of the exception is stored, if applicable.
12328
45db7c09
PA
12329 Assumes the selected frame is the current frame.
12330
f7f9143b
JB
12331 Return zero if the address could not be computed, or if not relevant. */
12332
12333static CORE_ADDR
761269c8 12334ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12335 struct breakpoint *b)
12336{
3eecfa55
JB
12337 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12338
f7f9143b
JB
12339 switch (ex)
12340 {
761269c8 12341 case ada_catch_exception:
f7f9143b
JB
12342 return (parse_and_eval_address ("e.full_name"));
12343 break;
12344
761269c8 12345 case ada_catch_exception_unhandled:
3eecfa55 12346 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12347 break;
9f757bf7
XR
12348
12349 case ada_catch_handlers:
12350 return 0; /* The runtimes does not provide access to the exception
12351 name. */
12352 break;
12353
761269c8 12354 case ada_catch_assert:
f7f9143b
JB
12355 return 0; /* Exception name is not relevant in this case. */
12356 break;
12357
12358 default:
12359 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12360 break;
12361 }
12362
12363 return 0; /* Should never be reached. */
12364}
12365
e547c119
JB
12366/* Assuming the inferior is stopped at an exception catchpoint,
12367 return the message which was associated to the exception, if
12368 available. Return NULL if the message could not be retrieved.
12369
12370 The caller must xfree the string after use.
12371
12372 Note: The exception message can be associated to an exception
12373 either through the use of the Raise_Exception function, or
12374 more simply (Ada 2005 and later), via:
12375
12376 raise Exception_Name with "exception message";
12377
12378 */
12379
12380static char *
12381ada_exception_message_1 (void)
12382{
12383 struct value *e_msg_val;
12384 char *e_msg = NULL;
12385 int e_msg_len;
12386 struct cleanup *cleanups;
12387
12388 /* For runtimes that support this feature, the exception message
12389 is passed as an unbounded string argument called "message". */
12390 e_msg_val = parse_and_eval ("message");
12391 if (e_msg_val == NULL)
12392 return NULL; /* Exception message not supported. */
12393
12394 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12395 gdb_assert (e_msg_val != NULL);
12396 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12397
12398 /* If the message string is empty, then treat it as if there was
12399 no exception message. */
12400 if (e_msg_len <= 0)
12401 return NULL;
12402
12403 e_msg = (char *) xmalloc (e_msg_len + 1);
12404 cleanups = make_cleanup (xfree, e_msg);
12405 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12406 e_msg[e_msg_len] = '\0';
12407
12408 discard_cleanups (cleanups);
12409 return e_msg;
12410}
12411
12412/* Same as ada_exception_message_1, except that all exceptions are
12413 contained here (returning NULL instead). */
12414
12415static char *
12416ada_exception_message (void)
12417{
12418 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12419
12420 TRY
12421 {
12422 e_msg = ada_exception_message_1 ();
12423 }
12424 CATCH (e, RETURN_MASK_ERROR)
12425 {
12426 e_msg = NULL;
12427 }
12428 END_CATCH
12429
12430 return e_msg;
12431}
12432
f7f9143b
JB
12433/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12434 any error that ada_exception_name_addr_1 might cause to be thrown.
12435 When an error is intercepted, a warning with the error message is printed,
12436 and zero is returned. */
12437
12438static CORE_ADDR
761269c8 12439ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12440 struct breakpoint *b)
12441{
f7f9143b
JB
12442 CORE_ADDR result = 0;
12443
492d29ea 12444 TRY
f7f9143b
JB
12445 {
12446 result = ada_exception_name_addr_1 (ex, b);
12447 }
12448
492d29ea 12449 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12450 {
12451 warning (_("failed to get exception name: %s"), e.message);
12452 return 0;
12453 }
492d29ea 12454 END_CATCH
f7f9143b
JB
12455
12456 return result;
12457}
12458
9f757bf7
XR
12459static char *ada_exception_catchpoint_cond_string
12460 (const char *excep_string,
12461 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12462
12463/* Ada catchpoints.
12464
12465 In the case of catchpoints on Ada exceptions, the catchpoint will
12466 stop the target on every exception the program throws. When a user
12467 specifies the name of a specific exception, we translate this
12468 request into a condition expression (in text form), and then parse
12469 it into an expression stored in each of the catchpoint's locations.
12470 We then use this condition to check whether the exception that was
12471 raised is the one the user is interested in. If not, then the
12472 target is resumed again. We store the name of the requested
12473 exception, in order to be able to re-set the condition expression
12474 when symbols change. */
12475
12476/* An instance of this type is used to represent an Ada catchpoint
5625a286 12477 breakpoint location. */
28010a5d 12478
5625a286 12479class ada_catchpoint_location : public bp_location
28010a5d 12480{
5625a286
PA
12481public:
12482 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12483 : bp_location (ops, owner)
12484 {}
28010a5d
PA
12485
12486 /* The condition that checks whether the exception that was raised
12487 is the specific exception the user specified on catchpoint
12488 creation. */
4d01a485 12489 expression_up excep_cond_expr;
28010a5d
PA
12490};
12491
12492/* Implement the DTOR method in the bp_location_ops structure for all
12493 Ada exception catchpoint kinds. */
12494
12495static void
12496ada_catchpoint_location_dtor (struct bp_location *bl)
12497{
12498 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12499
4d01a485 12500 al->excep_cond_expr.reset ();
28010a5d
PA
12501}
12502
12503/* The vtable to be used in Ada catchpoint locations. */
12504
12505static const struct bp_location_ops ada_catchpoint_location_ops =
12506{
12507 ada_catchpoint_location_dtor
12508};
12509
c1fc2657 12510/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12511
c1fc2657 12512struct ada_catchpoint : public breakpoint
28010a5d 12513{
c1fc2657 12514 ~ada_catchpoint () override;
28010a5d
PA
12515
12516 /* The name of the specific exception the user specified. */
12517 char *excep_string;
12518};
12519
12520/* Parse the exception condition string in the context of each of the
12521 catchpoint's locations, and store them for later evaluation. */
12522
12523static void
9f757bf7
XR
12524create_excep_cond_exprs (struct ada_catchpoint *c,
12525 enum ada_exception_catchpoint_kind ex)
28010a5d
PA
12526{
12527 struct cleanup *old_chain;
12528 struct bp_location *bl;
12529 char *cond_string;
12530
12531 /* Nothing to do if there's no specific exception to catch. */
12532 if (c->excep_string == NULL)
12533 return;
12534
12535 /* Same if there are no locations... */
c1fc2657 12536 if (c->loc == NULL)
28010a5d
PA
12537 return;
12538
12539 /* Compute the condition expression in text form, from the specific
12540 expection we want to catch. */
9f757bf7 12541 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
28010a5d
PA
12542 old_chain = make_cleanup (xfree, cond_string);
12543
12544 /* Iterate over all the catchpoint's locations, and parse an
12545 expression for each. */
c1fc2657 12546 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12547 {
12548 struct ada_catchpoint_location *ada_loc
12549 = (struct ada_catchpoint_location *) bl;
4d01a485 12550 expression_up exp;
28010a5d
PA
12551
12552 if (!bl->shlib_disabled)
12553 {
bbc13ae3 12554 const char *s;
28010a5d
PA
12555
12556 s = cond_string;
492d29ea 12557 TRY
28010a5d 12558 {
036e657b
JB
12559 exp = parse_exp_1 (&s, bl->address,
12560 block_for_pc (bl->address),
12561 0);
28010a5d 12562 }
492d29ea 12563 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12564 {
12565 warning (_("failed to reevaluate internal exception condition "
12566 "for catchpoint %d: %s"),
c1fc2657 12567 c->number, e.message);
849f2b52 12568 }
492d29ea 12569 END_CATCH
28010a5d
PA
12570 }
12571
b22e99fd 12572 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12573 }
12574
12575 do_cleanups (old_chain);
12576}
12577
c1fc2657 12578/* ada_catchpoint destructor. */
28010a5d 12579
c1fc2657 12580ada_catchpoint::~ada_catchpoint ()
28010a5d 12581{
c1fc2657 12582 xfree (this->excep_string);
28010a5d
PA
12583}
12584
12585/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12586 structure for all exception catchpoint kinds. */
12587
12588static struct bp_location *
761269c8 12589allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12590 struct breakpoint *self)
12591{
5625a286 12592 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12593}
12594
12595/* Implement the RE_SET method in the breakpoint_ops structure for all
12596 exception catchpoint kinds. */
12597
12598static void
761269c8 12599re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12600{
12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12602
12603 /* Call the base class's method. This updates the catchpoint's
12604 locations. */
2060206e 12605 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12606
12607 /* Reparse the exception conditional expressions. One for each
12608 location. */
9f757bf7 12609 create_excep_cond_exprs (c, ex);
28010a5d
PA
12610}
12611
12612/* Returns true if we should stop for this breakpoint hit. If the
12613 user specified a specific exception, we only want to cause a stop
12614 if the program thrown that exception. */
12615
12616static int
12617should_stop_exception (const struct bp_location *bl)
12618{
12619 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12620 const struct ada_catchpoint_location *ada_loc
12621 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12622 int stop;
12623
12624 /* With no specific exception, should always stop. */
12625 if (c->excep_string == NULL)
12626 return 1;
12627
12628 if (ada_loc->excep_cond_expr == NULL)
12629 {
12630 /* We will have a NULL expression if back when we were creating
12631 the expressions, this location's had failed to parse. */
12632 return 1;
12633 }
12634
12635 stop = 1;
492d29ea 12636 TRY
28010a5d
PA
12637 {
12638 struct value *mark;
12639
12640 mark = value_mark ();
4d01a485 12641 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12642 value_free_to_mark (mark);
12643 }
492d29ea
PA
12644 CATCH (ex, RETURN_MASK_ALL)
12645 {
12646 exception_fprintf (gdb_stderr, ex,
12647 _("Error in testing exception condition:\n"));
12648 }
12649 END_CATCH
12650
28010a5d
PA
12651 return stop;
12652}
12653
12654/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12655 for all exception catchpoint kinds. */
12656
12657static void
761269c8 12658check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12659{
12660 bs->stop = should_stop_exception (bs->bp_location_at);
12661}
12662
f7f9143b
JB
12663/* Implement the PRINT_IT method in the breakpoint_ops structure
12664 for all exception catchpoint kinds. */
12665
12666static enum print_stop_action
761269c8 12667print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12668{
79a45e25 12669 struct ui_out *uiout = current_uiout;
348d480f 12670 struct breakpoint *b = bs->breakpoint_at;
e547c119 12671 char *exception_message;
348d480f 12672
956a9fb9 12673 annotate_catchpoint (b->number);
f7f9143b 12674
112e8700 12675 if (uiout->is_mi_like_p ())
f7f9143b 12676 {
112e8700 12677 uiout->field_string ("reason",
956a9fb9 12678 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12679 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12680 }
12681
112e8700
SM
12682 uiout->text (b->disposition == disp_del
12683 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12684 uiout->field_int ("bkptno", b->number);
12685 uiout->text (", ");
f7f9143b 12686
45db7c09
PA
12687 /* ada_exception_name_addr relies on the selected frame being the
12688 current frame. Need to do this here because this function may be
12689 called more than once when printing a stop, and below, we'll
12690 select the first frame past the Ada run-time (see
12691 ada_find_printable_frame). */
12692 select_frame (get_current_frame ());
12693
f7f9143b
JB
12694 switch (ex)
12695 {
761269c8
JB
12696 case ada_catch_exception:
12697 case ada_catch_exception_unhandled:
9f757bf7 12698 case ada_catch_handlers:
956a9fb9
JB
12699 {
12700 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12701 char exception_name[256];
12702
12703 if (addr != 0)
12704 {
c714b426
PA
12705 read_memory (addr, (gdb_byte *) exception_name,
12706 sizeof (exception_name) - 1);
956a9fb9
JB
12707 exception_name [sizeof (exception_name) - 1] = '\0';
12708 }
12709 else
12710 {
12711 /* For some reason, we were unable to read the exception
12712 name. This could happen if the Runtime was compiled
12713 without debugging info, for instance. In that case,
12714 just replace the exception name by the generic string
12715 "exception" - it will read as "an exception" in the
12716 notification we are about to print. */
967cff16 12717 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12718 }
12719 /* In the case of unhandled exception breakpoints, we print
12720 the exception name as "unhandled EXCEPTION_NAME", to make
12721 it clearer to the user which kind of catchpoint just got
12722 hit. We used ui_out_text to make sure that this extra
12723 info does not pollute the exception name in the MI case. */
761269c8 12724 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12725 uiout->text ("unhandled ");
12726 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12727 }
12728 break;
761269c8 12729 case ada_catch_assert:
956a9fb9
JB
12730 /* In this case, the name of the exception is not really
12731 important. Just print "failed assertion" to make it clearer
12732 that his program just hit an assertion-failure catchpoint.
12733 We used ui_out_text because this info does not belong in
12734 the MI output. */
112e8700 12735 uiout->text ("failed assertion");
956a9fb9 12736 break;
f7f9143b 12737 }
e547c119
JB
12738
12739 exception_message = ada_exception_message ();
12740 if (exception_message != NULL)
12741 {
12742 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12743
12744 uiout->text (" (");
12745 uiout->field_string ("exception-message", exception_message);
12746 uiout->text (")");
12747
12748 do_cleanups (cleanups);
12749 }
12750
112e8700 12751 uiout->text (" at ");
956a9fb9 12752 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12753
12754 return PRINT_SRC_AND_LOC;
12755}
12756
12757/* Implement the PRINT_ONE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760static void
761269c8 12761print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12762 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12763{
79a45e25 12764 struct ui_out *uiout = current_uiout;
28010a5d 12765 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12766 struct value_print_options opts;
12767
12768 get_user_print_options (&opts);
12769 if (opts.addressprint)
f7f9143b
JB
12770 {
12771 annotate_field (4);
112e8700 12772 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12773 }
12774
12775 annotate_field (5);
a6d9a66e 12776 *last_loc = b->loc;
f7f9143b
JB
12777 switch (ex)
12778 {
761269c8 12779 case ada_catch_exception:
28010a5d 12780 if (c->excep_string != NULL)
f7f9143b 12781 {
28010a5d
PA
12782 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12783
112e8700 12784 uiout->field_string ("what", msg);
f7f9143b
JB
12785 xfree (msg);
12786 }
12787 else
112e8700 12788 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12789
12790 break;
12791
761269c8 12792 case ada_catch_exception_unhandled:
112e8700 12793 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12794 break;
12795
9f757bf7
XR
12796 case ada_catch_handlers:
12797 if (c->excep_string != NULL)
12798 {
12799 uiout->field_fmt ("what",
12800 _("`%s' Ada exception handlers"),
12801 c->excep_string);
12802 }
12803 else
12804 uiout->field_string ("what", "all Ada exceptions handlers");
12805 break;
12806
761269c8 12807 case ada_catch_assert:
112e8700 12808 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12809 break;
12810
12811 default:
12812 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12813 break;
12814 }
12815}
12816
12817/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12818 for all exception catchpoint kinds. */
12819
12820static void
761269c8 12821print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12822 struct breakpoint *b)
12823{
28010a5d 12824 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12825 struct ui_out *uiout = current_uiout;
28010a5d 12826
112e8700 12827 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12828 : _("Catchpoint "));
112e8700
SM
12829 uiout->field_int ("bkptno", b->number);
12830 uiout->text (": ");
00eb2c4a 12831
f7f9143b
JB
12832 switch (ex)
12833 {
761269c8 12834 case ada_catch_exception:
28010a5d 12835 if (c->excep_string != NULL)
00eb2c4a
JB
12836 {
12837 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12838 struct cleanup *old_chain = make_cleanup (xfree, info);
12839
112e8700 12840 uiout->text (info);
00eb2c4a
JB
12841 do_cleanups (old_chain);
12842 }
f7f9143b 12843 else
112e8700 12844 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12845 break;
12846
761269c8 12847 case ada_catch_exception_unhandled:
112e8700 12848 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12849 break;
9f757bf7
XR
12850
12851 case ada_catch_handlers:
12852 if (c->excep_string != NULL)
12853 {
12854 std::string info
12855 = string_printf (_("`%s' Ada exception handlers"),
12856 c->excep_string);
12857 uiout->text (info.c_str ());
12858 }
12859 else
12860 uiout->text (_("all Ada exceptions handlers"));
12861 break;
12862
761269c8 12863 case ada_catch_assert:
112e8700 12864 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12865 break;
12866
12867 default:
12868 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12869 break;
12870 }
12871}
12872
6149aea9
PA
12873/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12874 for all exception catchpoint kinds. */
12875
12876static void
761269c8 12877print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12878 struct breakpoint *b, struct ui_file *fp)
12879{
28010a5d
PA
12880 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12881
6149aea9
PA
12882 switch (ex)
12883 {
761269c8 12884 case ada_catch_exception:
6149aea9 12885 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12886 if (c->excep_string != NULL)
12887 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12888 break;
12889
761269c8 12890 case ada_catch_exception_unhandled:
78076abc 12891 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12892 break;
12893
9f757bf7
XR
12894 case ada_catch_handlers:
12895 fprintf_filtered (fp, "catch handlers");
12896 break;
12897
761269c8 12898 case ada_catch_assert:
6149aea9
PA
12899 fprintf_filtered (fp, "catch assert");
12900 break;
12901
12902 default:
12903 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12904 }
d9b3f62e 12905 print_recreate_thread (b, fp);
6149aea9
PA
12906}
12907
f7f9143b
JB
12908/* Virtual table for "catch exception" breakpoints. */
12909
28010a5d
PA
12910static struct bp_location *
12911allocate_location_catch_exception (struct breakpoint *self)
12912{
761269c8 12913 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12914}
12915
12916static void
12917re_set_catch_exception (struct breakpoint *b)
12918{
761269c8 12919 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12920}
12921
12922static void
12923check_status_catch_exception (bpstat bs)
12924{
761269c8 12925 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12926}
12927
f7f9143b 12928static enum print_stop_action
348d480f 12929print_it_catch_exception (bpstat bs)
f7f9143b 12930{
761269c8 12931 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12932}
12933
12934static void
a6d9a66e 12935print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12936{
761269c8 12937 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12938}
12939
12940static void
12941print_mention_catch_exception (struct breakpoint *b)
12942{
761269c8 12943 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12944}
12945
6149aea9
PA
12946static void
12947print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12948{
761269c8 12949 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12950}
12951
2060206e 12952static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12953
12954/* Virtual table for "catch exception unhandled" breakpoints. */
12955
28010a5d
PA
12956static struct bp_location *
12957allocate_location_catch_exception_unhandled (struct breakpoint *self)
12958{
761269c8 12959 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12960}
12961
12962static void
12963re_set_catch_exception_unhandled (struct breakpoint *b)
12964{
761269c8 12965 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12966}
12967
12968static void
12969check_status_catch_exception_unhandled (bpstat bs)
12970{
761269c8 12971 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12972}
12973
f7f9143b 12974static enum print_stop_action
348d480f 12975print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12976{
761269c8 12977 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12978}
12979
12980static void
a6d9a66e
UW
12981print_one_catch_exception_unhandled (struct breakpoint *b,
12982 struct bp_location **last_loc)
f7f9143b 12983{
761269c8 12984 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12985}
12986
12987static void
12988print_mention_catch_exception_unhandled (struct breakpoint *b)
12989{
761269c8 12990 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12991}
12992
6149aea9
PA
12993static void
12994print_recreate_catch_exception_unhandled (struct breakpoint *b,
12995 struct ui_file *fp)
12996{
761269c8 12997 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12998}
12999
2060206e 13000static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
13001
13002/* Virtual table for "catch assert" breakpoints. */
13003
28010a5d
PA
13004static struct bp_location *
13005allocate_location_catch_assert (struct breakpoint *self)
13006{
761269c8 13007 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
13008}
13009
13010static void
13011re_set_catch_assert (struct breakpoint *b)
13012{
761269c8 13013 re_set_exception (ada_catch_assert, b);
28010a5d
PA
13014}
13015
13016static void
13017check_status_catch_assert (bpstat bs)
13018{
761269c8 13019 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
13020}
13021
f7f9143b 13022static enum print_stop_action
348d480f 13023print_it_catch_assert (bpstat bs)
f7f9143b 13024{
761269c8 13025 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
13026}
13027
13028static void
a6d9a66e 13029print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 13030{
761269c8 13031 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
13032}
13033
13034static void
13035print_mention_catch_assert (struct breakpoint *b)
13036{
761269c8 13037 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
13038}
13039
6149aea9
PA
13040static void
13041print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13042{
761269c8 13043 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
13044}
13045
2060206e 13046static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 13047
9f757bf7
XR
13048/* Virtual table for "catch handlers" breakpoints. */
13049
13050static struct bp_location *
13051allocate_location_catch_handlers (struct breakpoint *self)
13052{
13053 return allocate_location_exception (ada_catch_handlers, self);
13054}
13055
13056static void
13057re_set_catch_handlers (struct breakpoint *b)
13058{
13059 re_set_exception (ada_catch_handlers, b);
13060}
13061
13062static void
13063check_status_catch_handlers (bpstat bs)
13064{
13065 check_status_exception (ada_catch_handlers, bs);
13066}
13067
13068static enum print_stop_action
13069print_it_catch_handlers (bpstat bs)
13070{
13071 return print_it_exception (ada_catch_handlers, bs);
13072}
13073
13074static void
13075print_one_catch_handlers (struct breakpoint *b,
13076 struct bp_location **last_loc)
13077{
13078 print_one_exception (ada_catch_handlers, b, last_loc);
13079}
13080
13081static void
13082print_mention_catch_handlers (struct breakpoint *b)
13083{
13084 print_mention_exception (ada_catch_handlers, b);
13085}
13086
13087static void
13088print_recreate_catch_handlers (struct breakpoint *b,
13089 struct ui_file *fp)
13090{
13091 print_recreate_exception (ada_catch_handlers, b, fp);
13092}
13093
13094static struct breakpoint_ops catch_handlers_breakpoint_ops;
13095
f7f9143b
JB
13096/* Return a newly allocated copy of the first space-separated token
13097 in ARGSP, and then adjust ARGSP to point immediately after that
13098 token.
13099
13100 Return NULL if ARGPS does not contain any more tokens. */
13101
13102static char *
a121b7c1 13103ada_get_next_arg (const char **argsp)
f7f9143b 13104{
a121b7c1
PA
13105 const char *args = *argsp;
13106 const char *end;
f7f9143b
JB
13107 char *result;
13108
f1735a53 13109 args = skip_spaces (args);
f7f9143b
JB
13110 if (args[0] == '\0')
13111 return NULL; /* No more arguments. */
13112
13113 /* Find the end of the current argument. */
13114
f1735a53 13115 end = skip_to_space (args);
f7f9143b
JB
13116
13117 /* Adjust ARGSP to point to the start of the next argument. */
13118
13119 *argsp = end;
13120
13121 /* Make a copy of the current argument and return it. */
13122
224c3ddb 13123 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
13124 strncpy (result, args, end - args);
13125 result[end - args] = '\0';
13126
13127 return result;
13128}
13129
13130/* Split the arguments specified in a "catch exception" command.
13131 Set EX to the appropriate catchpoint type.
28010a5d 13132 Set EXCEP_STRING to the name of the specific exception if
5845583d 13133 specified by the user.
9f757bf7
XR
13134 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13135 "catch handlers" command. False otherwise.
5845583d
JB
13136 If a condition is found at the end of the arguments, the condition
13137 expression is stored in COND_STRING (memory must be deallocated
13138 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13139
13140static void
a121b7c1 13141catch_ada_exception_command_split (const char *args,
9f757bf7 13142 bool is_catch_handlers_cmd,
761269c8 13143 enum ada_exception_catchpoint_kind *ex,
5845583d 13144 char **excep_string,
56ecd069 13145 std::string &cond_string)
f7f9143b
JB
13146{
13147 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13148 char *exception_name;
5845583d 13149 char *cond = NULL;
f7f9143b
JB
13150
13151 exception_name = ada_get_next_arg (&args);
5845583d
JB
13152 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13153 {
13154 /* This is not an exception name; this is the start of a condition
13155 expression for a catchpoint on all exceptions. So, "un-get"
13156 this token, and set exception_name to NULL. */
13157 xfree (exception_name);
13158 exception_name = NULL;
13159 args -= 2;
13160 }
f7f9143b
JB
13161 make_cleanup (xfree, exception_name);
13162
5845583d 13163 /* Check to see if we have a condition. */
f7f9143b 13164
f1735a53 13165 args = skip_spaces (args);
61012eef 13166 if (startswith (args, "if")
5845583d
JB
13167 && (isspace (args[2]) || args[2] == '\0'))
13168 {
13169 args += 2;
f1735a53 13170 args = skip_spaces (args);
5845583d
JB
13171
13172 if (args[0] == '\0')
13173 error (_("Condition missing after `if' keyword"));
13174 cond = xstrdup (args);
13175 make_cleanup (xfree, cond);
13176
13177 args += strlen (args);
13178 }
13179
13180 /* Check that we do not have any more arguments. Anything else
13181 is unexpected. */
f7f9143b
JB
13182
13183 if (args[0] != '\0')
13184 error (_("Junk at end of expression"));
13185
13186 discard_cleanups (old_chain);
13187
9f757bf7
XR
13188 if (is_catch_handlers_cmd)
13189 {
13190 /* Catch handling of exceptions. */
13191 *ex = ada_catch_handlers;
13192 *excep_string = exception_name;
13193 }
13194 else if (exception_name == NULL)
f7f9143b
JB
13195 {
13196 /* Catch all exceptions. */
761269c8 13197 *ex = ada_catch_exception;
28010a5d 13198 *excep_string = NULL;
f7f9143b
JB
13199 }
13200 else if (strcmp (exception_name, "unhandled") == 0)
13201 {
13202 /* Catch unhandled exceptions. */
761269c8 13203 *ex = ada_catch_exception_unhandled;
28010a5d 13204 *excep_string = NULL;
f7f9143b
JB
13205 }
13206 else
13207 {
13208 /* Catch a specific exception. */
761269c8 13209 *ex = ada_catch_exception;
28010a5d 13210 *excep_string = exception_name;
f7f9143b 13211 }
56ecd069
XR
13212 if (cond != NULL)
13213 cond_string.assign (cond);
f7f9143b
JB
13214}
13215
13216/* Return the name of the symbol on which we should break in order to
13217 implement a catchpoint of the EX kind. */
13218
13219static const char *
761269c8 13220ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13221{
3eecfa55
JB
13222 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13223
13224 gdb_assert (data->exception_info != NULL);
0259addd 13225
f7f9143b
JB
13226 switch (ex)
13227 {
761269c8 13228 case ada_catch_exception:
3eecfa55 13229 return (data->exception_info->catch_exception_sym);
f7f9143b 13230 break;
761269c8 13231 case ada_catch_exception_unhandled:
3eecfa55 13232 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13233 break;
761269c8 13234 case ada_catch_assert:
3eecfa55 13235 return (data->exception_info->catch_assert_sym);
f7f9143b 13236 break;
9f757bf7
XR
13237 case ada_catch_handlers:
13238 return (data->exception_info->catch_handlers_sym);
13239 break;
f7f9143b
JB
13240 default:
13241 internal_error (__FILE__, __LINE__,
13242 _("unexpected catchpoint kind (%d)"), ex);
13243 }
13244}
13245
13246/* Return the breakpoint ops "virtual table" used for catchpoints
13247 of the EX kind. */
13248
c0a91b2b 13249static const struct breakpoint_ops *
761269c8 13250ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13251{
13252 switch (ex)
13253 {
761269c8 13254 case ada_catch_exception:
f7f9143b
JB
13255 return (&catch_exception_breakpoint_ops);
13256 break;
761269c8 13257 case ada_catch_exception_unhandled:
f7f9143b
JB
13258 return (&catch_exception_unhandled_breakpoint_ops);
13259 break;
761269c8 13260 case ada_catch_assert:
f7f9143b
JB
13261 return (&catch_assert_breakpoint_ops);
13262 break;
9f757bf7
XR
13263 case ada_catch_handlers:
13264 return (&catch_handlers_breakpoint_ops);
13265 break;
f7f9143b
JB
13266 default:
13267 internal_error (__FILE__, __LINE__,
13268 _("unexpected catchpoint kind (%d)"), ex);
13269 }
13270}
13271
13272/* Return the condition that will be used to match the current exception
13273 being raised with the exception that the user wants to catch. This
13274 assumes that this condition is used when the inferior just triggered
13275 an exception catchpoint.
9f757bf7 13276 EX: the type of catchpoints used for catching Ada exceptions.
f7f9143b
JB
13277
13278 The string returned is a newly allocated string that needs to be
13279 deallocated later. */
13280
13281static char *
9f757bf7
XR
13282ada_exception_catchpoint_cond_string (const char *excep_string,
13283 enum ada_exception_catchpoint_kind ex)
f7f9143b 13284{
3d0b0fa3 13285 int i;
9f757bf7
XR
13286 bool is_standard_exc = false;
13287 const char *actual_exc_expr;
13288 char *ref_exc_expr;
13289
13290 if (ex == ada_catch_handlers)
13291 {
13292 /* For exception handlers catchpoints, the condition string does
13293 not use the same parameter as for the other exceptions. */
13294 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13295 "(gcc_exception).all.occurrence.id)");
13296 }
13297 else
13298 actual_exc_expr = "long_integer (e)";
3d0b0fa3 13299
0963b4bd 13300 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13301 runtime units that have been compiled without debugging info; if
28010a5d 13302 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13303 exception (e.g. "constraint_error") then, during the evaluation
13304 of the condition expression, the symbol lookup on this name would
0963b4bd 13305 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13306 may then be set only on user-defined exceptions which have the
13307 same not-fully-qualified name (e.g. my_package.constraint_error).
13308
13309 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13310 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13311 exception constraint_error" is rewritten into "catch exception
13312 standard.constraint_error".
13313
13314 If an exception named contraint_error is defined in another package of
13315 the inferior program, then the only way to specify this exception as a
13316 breakpoint condition is to use its fully-qualified named:
13317 e.g. my_package.constraint_error. */
13318
13319 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13320 {
28010a5d 13321 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13322 {
9f757bf7
XR
13323 is_standard_exc = true;
13324 break;
3d0b0fa3
JB
13325 }
13326 }
9f757bf7
XR
13327
13328 if (is_standard_exc)
13329 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13330 else
13331 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13332
13333 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13334 xfree (ref_exc_expr);
13335 return result;
f7f9143b
JB
13336}
13337
13338/* Return the symtab_and_line that should be used to insert an exception
13339 catchpoint of the TYPE kind.
13340
28010a5d
PA
13341 EXCEP_STRING should contain the name of a specific exception that
13342 the catchpoint should catch, or NULL otherwise.
f7f9143b 13343
28010a5d
PA
13344 ADDR_STRING returns the name of the function where the real
13345 breakpoint that implements the catchpoints is set, depending on the
13346 type of catchpoint we need to create. */
f7f9143b
JB
13347
13348static struct symtab_and_line
761269c8 13349ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
f2fc3015 13350 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13351{
13352 const char *sym_name;
13353 struct symbol *sym;
f7f9143b 13354
0259addd
JB
13355 /* First, find out which exception support info to use. */
13356 ada_exception_support_info_sniffer ();
13357
13358 /* Then lookup the function on which we will break in order to catch
f7f9143b 13359 the Ada exceptions requested by the user. */
f7f9143b
JB
13360 sym_name = ada_exception_sym_name (ex);
13361 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13362
f17011e0
JB
13363 /* We can assume that SYM is not NULL at this stage. If the symbol
13364 did not exist, ada_exception_support_info_sniffer would have
13365 raised an exception.
f7f9143b 13366
f17011e0
JB
13367 Also, ada_exception_support_info_sniffer should have already
13368 verified that SYM is a function symbol. */
13369 gdb_assert (sym != NULL);
13370 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13371
13372 /* Set ADDR_STRING. */
f7f9143b
JB
13373 *addr_string = xstrdup (sym_name);
13374
f7f9143b 13375 /* Set OPS. */
4b9eee8c 13376 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13377
f17011e0 13378 return find_function_start_sal (sym, 1);
f7f9143b
JB
13379}
13380
b4a5b78b 13381/* Create an Ada exception catchpoint.
f7f9143b 13382
b4a5b78b 13383 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13384
2df4d1d5
JB
13385 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13386 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13387 of the exception to which this catchpoint applies. When not NULL,
13388 the string must be allocated on the heap, and its deallocation
13389 is no longer the responsibility of the caller.
13390
13391 COND_STRING, if not NULL, is the catchpoint condition. This string
13392 must be allocated on the heap, and its deallocation is no longer
13393 the responsibility of the caller.
f7f9143b 13394
b4a5b78b
JB
13395 TEMPFLAG, if nonzero, means that the underlying breakpoint
13396 should be temporary.
28010a5d 13397
b4a5b78b 13398 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13399
349774ef 13400void
28010a5d 13401create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13402 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13403 char *excep_string,
56ecd069 13404 const std::string &cond_string,
28010a5d 13405 int tempflag,
349774ef 13406 int disabled,
28010a5d
PA
13407 int from_tty)
13408{
f2fc3015 13409 const char *addr_string = NULL;
b4a5b78b
JB
13410 const struct breakpoint_ops *ops = NULL;
13411 struct symtab_and_line sal
13412 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13413
b270e6f9
TT
13414 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13415 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13416 ops, tempflag, disabled, from_tty);
28010a5d 13417 c->excep_string = excep_string;
9f757bf7 13418 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13419 if (!cond_string.empty ())
13420 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13421 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13422}
13423
9ac4176b
PA
13424/* Implement the "catch exception" command. */
13425
13426static void
eb4c3f4a 13427catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13428 struct cmd_list_element *command)
13429{
a121b7c1 13430 const char *arg = arg_entry;
9ac4176b
PA
13431 struct gdbarch *gdbarch = get_current_arch ();
13432 int tempflag;
761269c8 13433 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13434 char *excep_string = NULL;
56ecd069 13435 std::string cond_string;
9ac4176b
PA
13436
13437 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13438
13439 if (!arg)
13440 arg = "";
9f757bf7 13441 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
56ecd069 13442 cond_string);
9f757bf7
XR
13443 create_ada_exception_catchpoint (gdbarch, ex_kind,
13444 excep_string, cond_string,
13445 tempflag, 1 /* enabled */,
13446 from_tty);
13447}
13448
13449/* Implement the "catch handlers" command. */
13450
13451static void
13452catch_ada_handlers_command (const char *arg_entry, int from_tty,
13453 struct cmd_list_element *command)
13454{
13455 const char *arg = arg_entry;
13456 struct gdbarch *gdbarch = get_current_arch ();
13457 int tempflag;
13458 enum ada_exception_catchpoint_kind ex_kind;
13459 char *excep_string = NULL;
56ecd069 13460 std::string cond_string;
9f757bf7
XR
13461
13462 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13463
13464 if (!arg)
13465 arg = "";
13466 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
56ecd069 13467 cond_string);
b4a5b78b
JB
13468 create_ada_exception_catchpoint (gdbarch, ex_kind,
13469 excep_string, cond_string,
349774ef
JB
13470 tempflag, 1 /* enabled */,
13471 from_tty);
9ac4176b
PA
13472}
13473
b4a5b78b 13474/* Split the arguments specified in a "catch assert" command.
5845583d 13475
b4a5b78b
JB
13476 ARGS contains the command's arguments (or the empty string if
13477 no arguments were passed).
5845583d
JB
13478
13479 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13480 (the memory needs to be deallocated after use). */
5845583d 13481
b4a5b78b 13482static void
56ecd069 13483catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13484{
f1735a53 13485 args = skip_spaces (args);
f7f9143b 13486
5845583d 13487 /* Check whether a condition was provided. */
61012eef 13488 if (startswith (args, "if")
5845583d 13489 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13490 {
5845583d 13491 args += 2;
f1735a53 13492 args = skip_spaces (args);
5845583d
JB
13493 if (args[0] == '\0')
13494 error (_("condition missing after `if' keyword"));
56ecd069 13495 cond_string.assign (args);
f7f9143b
JB
13496 }
13497
5845583d
JB
13498 /* Otherwise, there should be no other argument at the end of
13499 the command. */
13500 else if (args[0] != '\0')
13501 error (_("Junk at end of arguments."));
f7f9143b
JB
13502}
13503
9ac4176b
PA
13504/* Implement the "catch assert" command. */
13505
13506static void
eb4c3f4a 13507catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13508 struct cmd_list_element *command)
13509{
a121b7c1 13510 const char *arg = arg_entry;
9ac4176b
PA
13511 struct gdbarch *gdbarch = get_current_arch ();
13512 int tempflag;
56ecd069 13513 std::string cond_string;
9ac4176b
PA
13514
13515 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13516
13517 if (!arg)
13518 arg = "";
56ecd069 13519 catch_ada_assert_command_split (arg, cond_string);
761269c8 13520 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13521 NULL, cond_string,
349774ef
JB
13522 tempflag, 1 /* enabled */,
13523 from_tty);
9ac4176b 13524}
778865d3
JB
13525
13526/* Return non-zero if the symbol SYM is an Ada exception object. */
13527
13528static int
13529ada_is_exception_sym (struct symbol *sym)
13530{
13531 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13532
13533 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13534 && SYMBOL_CLASS (sym) != LOC_BLOCK
13535 && SYMBOL_CLASS (sym) != LOC_CONST
13536 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13537 && type_name != NULL && strcmp (type_name, "exception") == 0);
13538}
13539
13540/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13541 Ada exception object. This matches all exceptions except the ones
13542 defined by the Ada language. */
13543
13544static int
13545ada_is_non_standard_exception_sym (struct symbol *sym)
13546{
13547 int i;
13548
13549 if (!ada_is_exception_sym (sym))
13550 return 0;
13551
13552 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13553 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13554 return 0; /* A standard exception. */
13555
13556 /* Numeric_Error is also a standard exception, so exclude it.
13557 See the STANDARD_EXC description for more details as to why
13558 this exception is not listed in that array. */
13559 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13560 return 0;
13561
13562 return 1;
13563}
13564
ab816a27 13565/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13566 objects.
13567
13568 The comparison is determined first by exception name, and then
13569 by exception address. */
13570
ab816a27 13571bool
cc536b21 13572ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13573{
778865d3
JB
13574 int result;
13575
ab816a27
TT
13576 result = strcmp (name, other.name);
13577 if (result < 0)
13578 return true;
13579 if (result == 0 && addr < other.addr)
13580 return true;
13581 return false;
13582}
778865d3 13583
ab816a27 13584bool
cc536b21 13585ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13586{
13587 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13588}
13589
13590/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13591 routine, but keeping the first SKIP elements untouched.
13592
13593 All duplicates are also removed. */
13594
13595static void
ab816a27 13596sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13597 int skip)
13598{
ab816a27
TT
13599 std::sort (exceptions->begin () + skip, exceptions->end ());
13600 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13601 exceptions->end ());
778865d3
JB
13602}
13603
778865d3
JB
13604/* Add all exceptions defined by the Ada standard whose name match
13605 a regular expression.
13606
13607 If PREG is not NULL, then this regexp_t object is used to
13608 perform the symbol name matching. Otherwise, no name-based
13609 filtering is performed.
13610
13611 EXCEPTIONS is a vector of exceptions to which matching exceptions
13612 gets pushed. */
13613
13614static void
2d7cc5c7 13615ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13616 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13617{
13618 int i;
13619
13620 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13621 {
13622 if (preg == NULL
2d7cc5c7 13623 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13624 {
13625 struct bound_minimal_symbol msymbol
13626 = ada_lookup_simple_minsym (standard_exc[i]);
13627
13628 if (msymbol.minsym != NULL)
13629 {
13630 struct ada_exc_info info
77e371c0 13631 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13632
ab816a27 13633 exceptions->push_back (info);
778865d3
JB
13634 }
13635 }
13636 }
13637}
13638
13639/* Add all Ada exceptions defined locally and accessible from the given
13640 FRAME.
13641
13642 If PREG is not NULL, then this regexp_t object is used to
13643 perform the symbol name matching. Otherwise, no name-based
13644 filtering is performed.
13645
13646 EXCEPTIONS is a vector of exceptions to which matching exceptions
13647 gets pushed. */
13648
13649static void
2d7cc5c7
PA
13650ada_add_exceptions_from_frame (compiled_regex *preg,
13651 struct frame_info *frame,
ab816a27 13652 std::vector<ada_exc_info> *exceptions)
778865d3 13653{
3977b71f 13654 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13655
13656 while (block != 0)
13657 {
13658 struct block_iterator iter;
13659 struct symbol *sym;
13660
13661 ALL_BLOCK_SYMBOLS (block, iter, sym)
13662 {
13663 switch (SYMBOL_CLASS (sym))
13664 {
13665 case LOC_TYPEDEF:
13666 case LOC_BLOCK:
13667 case LOC_CONST:
13668 break;
13669 default:
13670 if (ada_is_exception_sym (sym))
13671 {
13672 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13673 SYMBOL_VALUE_ADDRESS (sym)};
13674
ab816a27 13675 exceptions->push_back (info);
778865d3
JB
13676 }
13677 }
13678 }
13679 if (BLOCK_FUNCTION (block) != NULL)
13680 break;
13681 block = BLOCK_SUPERBLOCK (block);
13682 }
13683}
13684
14bc53a8
PA
13685/* Return true if NAME matches PREG or if PREG is NULL. */
13686
13687static bool
2d7cc5c7 13688name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13689{
13690 return (preg == NULL
2d7cc5c7 13691 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13692}
13693
778865d3
JB
13694/* Add all exceptions defined globally whose name name match
13695 a regular expression, excluding standard exceptions.
13696
13697 The reason we exclude standard exceptions is that they need
13698 to be handled separately: Standard exceptions are defined inside
13699 a runtime unit which is normally not compiled with debugging info,
13700 and thus usually do not show up in our symbol search. However,
13701 if the unit was in fact built with debugging info, we need to
13702 exclude them because they would duplicate the entry we found
13703 during the special loop that specifically searches for those
13704 standard exceptions.
13705
13706 If PREG is not NULL, then this regexp_t object is used to
13707 perform the symbol name matching. Otherwise, no name-based
13708 filtering is performed.
13709
13710 EXCEPTIONS is a vector of exceptions to which matching exceptions
13711 gets pushed. */
13712
13713static void
2d7cc5c7 13714ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13715 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13716{
13717 struct objfile *objfile;
43f3e411 13718 struct compunit_symtab *s;
778865d3 13719
14bc53a8
PA
13720 /* In Ada, the symbol "search name" is a linkage name, whereas the
13721 regular expression used to do the matching refers to the natural
13722 name. So match against the decoded name. */
13723 expand_symtabs_matching (NULL,
b5ec771e 13724 lookup_name_info::match_any (),
14bc53a8
PA
13725 [&] (const char *search_name)
13726 {
13727 const char *decoded = ada_decode (search_name);
13728 return name_matches_regex (decoded, preg);
13729 },
13730 NULL,
13731 VARIABLES_DOMAIN);
778865d3 13732
43f3e411 13733 ALL_COMPUNITS (objfile, s)
778865d3 13734 {
43f3e411 13735 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13736 int i;
13737
13738 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13739 {
13740 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13741 struct block_iterator iter;
13742 struct symbol *sym;
13743
13744 ALL_BLOCK_SYMBOLS (b, iter, sym)
13745 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13746 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13747 {
13748 struct ada_exc_info info
13749 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13750
ab816a27 13751 exceptions->push_back (info);
778865d3
JB
13752 }
13753 }
13754 }
13755}
13756
13757/* Implements ada_exceptions_list with the regular expression passed
13758 as a regex_t, rather than a string.
13759
13760 If not NULL, PREG is used to filter out exceptions whose names
13761 do not match. Otherwise, all exceptions are listed. */
13762
ab816a27 13763static std::vector<ada_exc_info>
2d7cc5c7 13764ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13765{
ab816a27 13766 std::vector<ada_exc_info> result;
778865d3
JB
13767 int prev_len;
13768
13769 /* First, list the known standard exceptions. These exceptions
13770 need to be handled separately, as they are usually defined in
13771 runtime units that have been compiled without debugging info. */
13772
13773 ada_add_standard_exceptions (preg, &result);
13774
13775 /* Next, find all exceptions whose scope is local and accessible
13776 from the currently selected frame. */
13777
13778 if (has_stack_frames ())
13779 {
ab816a27 13780 prev_len = result.size ();
778865d3
JB
13781 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13782 &result);
ab816a27 13783 if (result.size () > prev_len)
778865d3
JB
13784 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13785 }
13786
13787 /* Add all exceptions whose scope is global. */
13788
ab816a27 13789 prev_len = result.size ();
778865d3 13790 ada_add_global_exceptions (preg, &result);
ab816a27 13791 if (result.size () > prev_len)
778865d3
JB
13792 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13793
778865d3
JB
13794 return result;
13795}
13796
13797/* Return a vector of ada_exc_info.
13798
13799 If REGEXP is NULL, all exceptions are included in the result.
13800 Otherwise, it should contain a valid regular expression,
13801 and only the exceptions whose names match that regular expression
13802 are included in the result.
13803
13804 The exceptions are sorted in the following order:
13805 - Standard exceptions (defined by the Ada language), in
13806 alphabetical order;
13807 - Exceptions only visible from the current frame, in
13808 alphabetical order;
13809 - Exceptions whose scope is global, in alphabetical order. */
13810
ab816a27 13811std::vector<ada_exc_info>
778865d3
JB
13812ada_exceptions_list (const char *regexp)
13813{
2d7cc5c7
PA
13814 if (regexp == NULL)
13815 return ada_exceptions_list_1 (NULL);
778865d3 13816
2d7cc5c7
PA
13817 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13818 return ada_exceptions_list_1 (&reg);
778865d3
JB
13819}
13820
13821/* Implement the "info exceptions" command. */
13822
13823static void
1d12d88f 13824info_exceptions_command (const char *regexp, int from_tty)
778865d3 13825{
778865d3 13826 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13827
ab816a27 13828 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13829
13830 if (regexp != NULL)
13831 printf_filtered
13832 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13833 else
13834 printf_filtered (_("All defined Ada exceptions:\n"));
13835
ab816a27
TT
13836 for (const ada_exc_info &info : exceptions)
13837 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13838}
13839
4c4b4cd2
PH
13840 /* Operators */
13841/* Information about operators given special treatment in functions
13842 below. */
13843/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13844
13845#define ADA_OPERATORS \
13846 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13847 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13848 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13849 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13850 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13851 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13852 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13853 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13854 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13855 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13856 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13857 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13858 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13859 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13860 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13861 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13862 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13863 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13864 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13865
13866static void
554794dc
SDJ
13867ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13868 int *argsp)
4c4b4cd2
PH
13869{
13870 switch (exp->elts[pc - 1].opcode)
13871 {
76a01679 13872 default:
4c4b4cd2
PH
13873 operator_length_standard (exp, pc, oplenp, argsp);
13874 break;
13875
13876#define OP_DEFN(op, len, args, binop) \
13877 case op: *oplenp = len; *argsp = args; break;
13878 ADA_OPERATORS;
13879#undef OP_DEFN
52ce6436
PH
13880
13881 case OP_AGGREGATE:
13882 *oplenp = 3;
13883 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13884 break;
13885
13886 case OP_CHOICES:
13887 *oplenp = 3;
13888 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13889 break;
4c4b4cd2
PH
13890 }
13891}
13892
c0201579
JK
13893/* Implementation of the exp_descriptor method operator_check. */
13894
13895static int
13896ada_operator_check (struct expression *exp, int pos,
13897 int (*objfile_func) (struct objfile *objfile, void *data),
13898 void *data)
13899{
13900 const union exp_element *const elts = exp->elts;
13901 struct type *type = NULL;
13902
13903 switch (elts[pos].opcode)
13904 {
13905 case UNOP_IN_RANGE:
13906 case UNOP_QUAL:
13907 type = elts[pos + 1].type;
13908 break;
13909
13910 default:
13911 return operator_check_standard (exp, pos, objfile_func, data);
13912 }
13913
13914 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13915
13916 if (type && TYPE_OBJFILE (type)
13917 && (*objfile_func) (TYPE_OBJFILE (type), data))
13918 return 1;
13919
13920 return 0;
13921}
13922
a121b7c1 13923static const char *
4c4b4cd2
PH
13924ada_op_name (enum exp_opcode opcode)
13925{
13926 switch (opcode)
13927 {
76a01679 13928 default:
4c4b4cd2 13929 return op_name_standard (opcode);
52ce6436 13930
4c4b4cd2
PH
13931#define OP_DEFN(op, len, args, binop) case op: return #op;
13932 ADA_OPERATORS;
13933#undef OP_DEFN
52ce6436
PH
13934
13935 case OP_AGGREGATE:
13936 return "OP_AGGREGATE";
13937 case OP_CHOICES:
13938 return "OP_CHOICES";
13939 case OP_NAME:
13940 return "OP_NAME";
4c4b4cd2
PH
13941 }
13942}
13943
13944/* As for operator_length, but assumes PC is pointing at the first
13945 element of the operator, and gives meaningful results only for the
52ce6436 13946 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13947
13948static void
76a01679
JB
13949ada_forward_operator_length (struct expression *exp, int pc,
13950 int *oplenp, int *argsp)
4c4b4cd2 13951{
76a01679 13952 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13953 {
13954 default:
13955 *oplenp = *argsp = 0;
13956 break;
52ce6436 13957
4c4b4cd2
PH
13958#define OP_DEFN(op, len, args, binop) \
13959 case op: *oplenp = len; *argsp = args; break;
13960 ADA_OPERATORS;
13961#undef OP_DEFN
52ce6436
PH
13962
13963 case OP_AGGREGATE:
13964 *oplenp = 3;
13965 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13966 break;
13967
13968 case OP_CHOICES:
13969 *oplenp = 3;
13970 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13971 break;
13972
13973 case OP_STRING:
13974 case OP_NAME:
13975 {
13976 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13977
52ce6436
PH
13978 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13979 *argsp = 0;
13980 break;
13981 }
4c4b4cd2
PH
13982 }
13983}
13984
13985static int
13986ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13987{
13988 enum exp_opcode op = exp->elts[elt].opcode;
13989 int oplen, nargs;
13990 int pc = elt;
13991 int i;
76a01679 13992
4c4b4cd2
PH
13993 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13994
76a01679 13995 switch (op)
4c4b4cd2 13996 {
76a01679 13997 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13998 case OP_ATR_FIRST:
13999 case OP_ATR_LAST:
14000 case OP_ATR_LENGTH:
14001 case OP_ATR_IMAGE:
14002 case OP_ATR_MAX:
14003 case OP_ATR_MIN:
14004 case OP_ATR_MODULUS:
14005 case OP_ATR_POS:
14006 case OP_ATR_SIZE:
14007 case OP_ATR_TAG:
14008 case OP_ATR_VAL:
14009 break;
14010
14011 case UNOP_IN_RANGE:
14012 case UNOP_QUAL:
323e0a4a
AC
14013 /* XXX: gdb_sprint_host_address, type_sprint */
14014 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
14015 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14016 fprintf_filtered (stream, " (");
14017 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14018 fprintf_filtered (stream, ")");
14019 break;
14020 case BINOP_IN_BOUNDS:
52ce6436
PH
14021 fprintf_filtered (stream, " (%d)",
14022 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
14023 break;
14024 case TERNOP_IN_RANGE:
14025 break;
14026
52ce6436
PH
14027 case OP_AGGREGATE:
14028 case OP_OTHERS:
14029 case OP_DISCRETE_RANGE:
14030 case OP_POSITIONAL:
14031 case OP_CHOICES:
14032 break;
14033
14034 case OP_NAME:
14035 case OP_STRING:
14036 {
14037 char *name = &exp->elts[elt + 2].string;
14038 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 14039
52ce6436
PH
14040 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14041 break;
14042 }
14043
4c4b4cd2
PH
14044 default:
14045 return dump_subexp_body_standard (exp, stream, elt);
14046 }
14047
14048 elt += oplen;
14049 for (i = 0; i < nargs; i += 1)
14050 elt = dump_subexp (exp, stream, elt);
14051
14052 return elt;
14053}
14054
14055/* The Ada extension of print_subexp (q.v.). */
14056
76a01679
JB
14057static void
14058ada_print_subexp (struct expression *exp, int *pos,
14059 struct ui_file *stream, enum precedence prec)
4c4b4cd2 14060{
52ce6436 14061 int oplen, nargs, i;
4c4b4cd2
PH
14062 int pc = *pos;
14063 enum exp_opcode op = exp->elts[pc].opcode;
14064
14065 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14066
52ce6436 14067 *pos += oplen;
4c4b4cd2
PH
14068 switch (op)
14069 {
14070 default:
52ce6436 14071 *pos -= oplen;
4c4b4cd2
PH
14072 print_subexp_standard (exp, pos, stream, prec);
14073 return;
14074
14075 case OP_VAR_VALUE:
4c4b4cd2
PH
14076 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14077 return;
14078
14079 case BINOP_IN_BOUNDS:
323e0a4a 14080 /* XXX: sprint_subexp */
4c4b4cd2 14081 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14082 fputs_filtered (" in ", stream);
4c4b4cd2 14083 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14084 fputs_filtered ("'range", stream);
4c4b4cd2 14085 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
14086 fprintf_filtered (stream, "(%ld)",
14087 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
14088 return;
14089
14090 case TERNOP_IN_RANGE:
4c4b4cd2 14091 if (prec >= PREC_EQUAL)
76a01679 14092 fputs_filtered ("(", stream);
323e0a4a 14093 /* XXX: sprint_subexp */
4c4b4cd2 14094 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14095 fputs_filtered (" in ", stream);
4c4b4cd2
PH
14096 print_subexp (exp, pos, stream, PREC_EQUAL);
14097 fputs_filtered (" .. ", stream);
14098 print_subexp (exp, pos, stream, PREC_EQUAL);
14099 if (prec >= PREC_EQUAL)
76a01679
JB
14100 fputs_filtered (")", stream);
14101 return;
4c4b4cd2
PH
14102
14103 case OP_ATR_FIRST:
14104 case OP_ATR_LAST:
14105 case OP_ATR_LENGTH:
14106 case OP_ATR_IMAGE:
14107 case OP_ATR_MAX:
14108 case OP_ATR_MIN:
14109 case OP_ATR_MODULUS:
14110 case OP_ATR_POS:
14111 case OP_ATR_SIZE:
14112 case OP_ATR_TAG:
14113 case OP_ATR_VAL:
4c4b4cd2 14114 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
14115 {
14116 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14117 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14118 &type_print_raw_options);
76a01679
JB
14119 *pos += 3;
14120 }
4c4b4cd2 14121 else
76a01679 14122 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14123 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14124 if (nargs > 1)
76a01679
JB
14125 {
14126 int tem;
5b4ee69b 14127
76a01679
JB
14128 for (tem = 1; tem < nargs; tem += 1)
14129 {
14130 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14131 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14132 }
14133 fputs_filtered (")", stream);
14134 }
4c4b4cd2 14135 return;
14f9c5c9 14136
4c4b4cd2 14137 case UNOP_QUAL:
4c4b4cd2
PH
14138 type_print (exp->elts[pc + 1].type, "", stream, 0);
14139 fputs_filtered ("'(", stream);
14140 print_subexp (exp, pos, stream, PREC_PREFIX);
14141 fputs_filtered (")", stream);
14142 return;
14f9c5c9 14143
4c4b4cd2 14144 case UNOP_IN_RANGE:
323e0a4a 14145 /* XXX: sprint_subexp */
4c4b4cd2 14146 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14147 fputs_filtered (" in ", stream);
79d43c61
TT
14148 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14149 &type_print_raw_options);
4c4b4cd2 14150 return;
52ce6436
PH
14151
14152 case OP_DISCRETE_RANGE:
14153 print_subexp (exp, pos, stream, PREC_SUFFIX);
14154 fputs_filtered ("..", stream);
14155 print_subexp (exp, pos, stream, PREC_SUFFIX);
14156 return;
14157
14158 case OP_OTHERS:
14159 fputs_filtered ("others => ", stream);
14160 print_subexp (exp, pos, stream, PREC_SUFFIX);
14161 return;
14162
14163 case OP_CHOICES:
14164 for (i = 0; i < nargs-1; i += 1)
14165 {
14166 if (i > 0)
14167 fputs_filtered ("|", stream);
14168 print_subexp (exp, pos, stream, PREC_SUFFIX);
14169 }
14170 fputs_filtered (" => ", stream);
14171 print_subexp (exp, pos, stream, PREC_SUFFIX);
14172 return;
14173
14174 case OP_POSITIONAL:
14175 print_subexp (exp, pos, stream, PREC_SUFFIX);
14176 return;
14177
14178 case OP_AGGREGATE:
14179 fputs_filtered ("(", stream);
14180 for (i = 0; i < nargs; i += 1)
14181 {
14182 if (i > 0)
14183 fputs_filtered (", ", stream);
14184 print_subexp (exp, pos, stream, PREC_SUFFIX);
14185 }
14186 fputs_filtered (")", stream);
14187 return;
4c4b4cd2
PH
14188 }
14189}
14f9c5c9
AS
14190
14191/* Table mapping opcodes into strings for printing operators
14192 and precedences of the operators. */
14193
d2e4a39e
AS
14194static const struct op_print ada_op_print_tab[] = {
14195 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14196 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14197 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14198 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14199 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14200 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14201 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14202 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14203 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14204 {">=", BINOP_GEQ, PREC_ORDER, 0},
14205 {">", BINOP_GTR, PREC_ORDER, 0},
14206 {"<", BINOP_LESS, PREC_ORDER, 0},
14207 {">>", BINOP_RSH, PREC_SHIFT, 0},
14208 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14209 {"+", BINOP_ADD, PREC_ADD, 0},
14210 {"-", BINOP_SUB, PREC_ADD, 0},
14211 {"&", BINOP_CONCAT, PREC_ADD, 0},
14212 {"*", BINOP_MUL, PREC_MUL, 0},
14213 {"/", BINOP_DIV, PREC_MUL, 0},
14214 {"rem", BINOP_REM, PREC_MUL, 0},
14215 {"mod", BINOP_MOD, PREC_MUL, 0},
14216 {"**", BINOP_EXP, PREC_REPEAT, 0},
14217 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14218 {"-", UNOP_NEG, PREC_PREFIX, 0},
14219 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14220 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14221 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14222 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14223 {".all", UNOP_IND, PREC_SUFFIX, 1},
14224 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14225 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14226 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14227};
14228\f
72d5681a
PH
14229enum ada_primitive_types {
14230 ada_primitive_type_int,
14231 ada_primitive_type_long,
14232 ada_primitive_type_short,
14233 ada_primitive_type_char,
14234 ada_primitive_type_float,
14235 ada_primitive_type_double,
14236 ada_primitive_type_void,
14237 ada_primitive_type_long_long,
14238 ada_primitive_type_long_double,
14239 ada_primitive_type_natural,
14240 ada_primitive_type_positive,
14241 ada_primitive_type_system_address,
08f49010 14242 ada_primitive_type_storage_offset,
72d5681a
PH
14243 nr_ada_primitive_types
14244};
6c038f32
PH
14245
14246static void
d4a9a881 14247ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14248 struct language_arch_info *lai)
14249{
d4a9a881 14250 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14251
72d5681a 14252 lai->primitive_type_vector
d4a9a881 14253 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14254 struct type *);
e9bb382b
UW
14255
14256 lai->primitive_type_vector [ada_primitive_type_int]
14257 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14258 0, "integer");
14259 lai->primitive_type_vector [ada_primitive_type_long]
14260 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14261 0, "long_integer");
14262 lai->primitive_type_vector [ada_primitive_type_short]
14263 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14264 0, "short_integer");
14265 lai->string_char_type
14266 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14267 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14268 lai->primitive_type_vector [ada_primitive_type_float]
14269 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14270 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14271 lai->primitive_type_vector [ada_primitive_type_double]
14272 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14273 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14274 lai->primitive_type_vector [ada_primitive_type_long_long]
14275 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14276 0, "long_long_integer");
14277 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14278 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14279 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14280 lai->primitive_type_vector [ada_primitive_type_natural]
14281 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14282 0, "natural");
14283 lai->primitive_type_vector [ada_primitive_type_positive]
14284 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14285 0, "positive");
14286 lai->primitive_type_vector [ada_primitive_type_void]
14287 = builtin->builtin_void;
14288
14289 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14290 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14291 "void"));
72d5681a
PH
14292 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14293 = "system__address";
fbb06eb1 14294
08f49010
XR
14295 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14296 type. This is a signed integral type whose size is the same as
14297 the size of addresses. */
14298 {
14299 unsigned int addr_length = TYPE_LENGTH
14300 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14301
14302 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14303 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14304 "storage_offset");
14305 }
14306
47e729a8 14307 lai->bool_type_symbol = NULL;
fbb06eb1 14308 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14309}
6c038f32
PH
14310\f
14311 /* Language vector */
14312
14313/* Not really used, but needed in the ada_language_defn. */
14314
14315static void
6c7a06a3 14316emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14317{
6c7a06a3 14318 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14319}
14320
14321static int
410a0ff2 14322parse (struct parser_state *ps)
6c038f32
PH
14323{
14324 warnings_issued = 0;
410a0ff2 14325 return ada_parse (ps);
6c038f32
PH
14326}
14327
14328static const struct exp_descriptor ada_exp_descriptor = {
14329 ada_print_subexp,
14330 ada_operator_length,
c0201579 14331 ada_operator_check,
6c038f32
PH
14332 ada_op_name,
14333 ada_dump_subexp_body,
14334 ada_evaluate_subexp
14335};
14336
b5ec771e
PA
14337/* symbol_name_matcher_ftype adapter for wild_match. */
14338
14339static bool
14340do_wild_match (const char *symbol_search_name,
14341 const lookup_name_info &lookup_name,
a207cff2 14342 completion_match_result *comp_match_res)
b5ec771e
PA
14343{
14344 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14345}
14346
14347/* symbol_name_matcher_ftype adapter for full_match. */
14348
14349static bool
14350do_full_match (const char *symbol_search_name,
14351 const lookup_name_info &lookup_name,
a207cff2 14352 completion_match_result *comp_match_res)
b5ec771e
PA
14353{
14354 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14355}
14356
14357/* Build the Ada lookup name for LOOKUP_NAME. */
14358
14359ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14360{
14361 const std::string &user_name = lookup_name.name ();
14362
14363 if (user_name[0] == '<')
14364 {
14365 if (user_name.back () == '>')
14366 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14367 else
14368 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14369 m_encoded_p = true;
14370 m_verbatim_p = true;
14371 m_wild_match_p = false;
14372 m_standard_p = false;
14373 }
14374 else
14375 {
14376 m_verbatim_p = false;
14377
14378 m_encoded_p = user_name.find ("__") != std::string::npos;
14379
14380 if (!m_encoded_p)
14381 {
14382 const char *folded = ada_fold_name (user_name.c_str ());
14383 const char *encoded = ada_encode_1 (folded, false);
14384 if (encoded != NULL)
14385 m_encoded_name = encoded;
14386 else
14387 m_encoded_name = user_name;
14388 }
14389 else
14390 m_encoded_name = user_name;
14391
14392 /* Handle the 'package Standard' special case. See description
14393 of m_standard_p. */
14394 if (startswith (m_encoded_name.c_str (), "standard__"))
14395 {
14396 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14397 m_standard_p = true;
14398 }
14399 else
14400 m_standard_p = false;
74ccd7f5 14401
b5ec771e
PA
14402 /* If the name contains a ".", then the user is entering a fully
14403 qualified entity name, and the match must not be done in wild
14404 mode. Similarly, if the user wants to complete what looks
14405 like an encoded name, the match must not be done in wild
14406 mode. Also, in the standard__ special case always do
14407 non-wild matching. */
14408 m_wild_match_p
14409 = (lookup_name.match_type () != symbol_name_match_type::FULL
14410 && !m_encoded_p
14411 && !m_standard_p
14412 && user_name.find ('.') == std::string::npos);
14413 }
14414}
14415
14416/* symbol_name_matcher_ftype method for Ada. This only handles
14417 completion mode. */
14418
14419static bool
14420ada_symbol_name_matches (const char *symbol_search_name,
14421 const lookup_name_info &lookup_name,
a207cff2 14422 completion_match_result *comp_match_res)
74ccd7f5 14423{
b5ec771e
PA
14424 return lookup_name.ada ().matches (symbol_search_name,
14425 lookup_name.match_type (),
a207cff2 14426 comp_match_res);
b5ec771e
PA
14427}
14428
de63c46b
PA
14429/* A name matcher that matches the symbol name exactly, with
14430 strcmp. */
14431
14432static bool
14433literal_symbol_name_matcher (const char *symbol_search_name,
14434 const lookup_name_info &lookup_name,
14435 completion_match_result *comp_match_res)
14436{
14437 const std::string &name = lookup_name.name ();
14438
14439 int cmp = (lookup_name.completion_mode ()
14440 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14441 : strcmp (symbol_search_name, name.c_str ()));
14442 if (cmp == 0)
14443 {
14444 if (comp_match_res != NULL)
14445 comp_match_res->set_match (symbol_search_name);
14446 return true;
14447 }
14448 else
14449 return false;
14450}
14451
b5ec771e
PA
14452/* Implement the "la_get_symbol_name_matcher" language_defn method for
14453 Ada. */
14454
14455static symbol_name_matcher_ftype *
14456ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14457{
de63c46b
PA
14458 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14459 return literal_symbol_name_matcher;
14460
b5ec771e
PA
14461 if (lookup_name.completion_mode ())
14462 return ada_symbol_name_matches;
74ccd7f5 14463 else
b5ec771e
PA
14464 {
14465 if (lookup_name.ada ().wild_match_p ())
14466 return do_wild_match;
14467 else
14468 return do_full_match;
14469 }
74ccd7f5
JB
14470}
14471
a5ee536b
JB
14472/* Implement the "la_read_var_value" language_defn method for Ada. */
14473
14474static struct value *
63e43d3a
PMR
14475ada_read_var_value (struct symbol *var, const struct block *var_block,
14476 struct frame_info *frame)
a5ee536b 14477{
3977b71f 14478 const struct block *frame_block = NULL;
a5ee536b
JB
14479 struct symbol *renaming_sym = NULL;
14480
14481 /* The only case where default_read_var_value is not sufficient
14482 is when VAR is a renaming... */
14483 if (frame)
14484 frame_block = get_frame_block (frame, NULL);
14485 if (frame_block)
14486 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14487 if (renaming_sym != NULL)
14488 return ada_read_renaming_var_value (renaming_sym, frame_block);
14489
14490 /* This is a typical case where we expect the default_read_var_value
14491 function to work. */
63e43d3a 14492 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14493}
14494
56618e20
TT
14495static const char *ada_extensions[] =
14496{
14497 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14498};
14499
47e77640 14500extern const struct language_defn ada_language_defn = {
6c038f32 14501 "ada", /* Language name */
6abde28f 14502 "Ada",
6c038f32 14503 language_ada,
6c038f32 14504 range_check_off,
6c038f32
PH
14505 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14506 that's not quite what this means. */
6c038f32 14507 array_row_major,
9a044a89 14508 macro_expansion_no,
56618e20 14509 ada_extensions,
6c038f32
PH
14510 &ada_exp_descriptor,
14511 parse,
b3f11165 14512 ada_yyerror,
6c038f32
PH
14513 resolve,
14514 ada_printchar, /* Print a character constant */
14515 ada_printstr, /* Function to print string constant */
14516 emit_char, /* Function to print single char (not used) */
6c038f32 14517 ada_print_type, /* Print a type using appropriate syntax */
be942545 14518 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14519 ada_val_print, /* Print a value using appropriate syntax */
14520 ada_value_print, /* Print a top-level value */
a5ee536b 14521 ada_read_var_value, /* la_read_var_value */
6c038f32 14522 NULL, /* Language specific skip_trampoline */
2b2d9e11 14523 NULL, /* name_of_this */
6c038f32
PH
14524 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14525 basic_lookup_transparent_type, /* lookup_transparent_type */
14526 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14527 ada_sniff_from_mangled_name,
0963b4bd
MS
14528 NULL, /* Language specific
14529 class_name_from_physname */
6c038f32
PH
14530 ada_op_print_tab, /* expression operators for printing */
14531 0, /* c-style arrays */
14532 1, /* String lower bound */
6c038f32 14533 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14534 ada_collect_symbol_completion_matches,
72d5681a 14535 ada_language_arch_info,
e79af960 14536 ada_print_array_index,
41f1b697 14537 default_pass_by_reference,
ae6a3a4c 14538 c_get_string,
43cc5389 14539 c_watch_location_expression,
b5ec771e 14540 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14541 ada_iterate_over_symbols,
5ffa0793 14542 default_search_name_hash,
a53b64ea 14543 &ada_varobj_ops,
bb2ec1b3
TT
14544 NULL,
14545 NULL,
6c038f32
PH
14546 LANG_MAGIC
14547};
14548
5bf03f13
JB
14549/* Command-list for the "set/show ada" prefix command. */
14550static struct cmd_list_element *set_ada_list;
14551static struct cmd_list_element *show_ada_list;
14552
14553/* Implement the "set ada" prefix command. */
14554
14555static void
981a3fb3 14556set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14557{
14558 printf_unfiltered (_(\
14559"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14560 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14561}
14562
14563/* Implement the "show ada" prefix command. */
14564
14565static void
981a3fb3 14566show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14567{
14568 cmd_show_list (show_ada_list, from_tty, "");
14569}
14570
2060206e
PA
14571static void
14572initialize_ada_catchpoint_ops (void)
14573{
14574 struct breakpoint_ops *ops;
14575
14576 initialize_breakpoint_ops ();
14577
14578 ops = &catch_exception_breakpoint_ops;
14579 *ops = bkpt_breakpoint_ops;
2060206e
PA
14580 ops->allocate_location = allocate_location_catch_exception;
14581 ops->re_set = re_set_catch_exception;
14582 ops->check_status = check_status_catch_exception;
14583 ops->print_it = print_it_catch_exception;
14584 ops->print_one = print_one_catch_exception;
14585 ops->print_mention = print_mention_catch_exception;
14586 ops->print_recreate = print_recreate_catch_exception;
14587
14588 ops = &catch_exception_unhandled_breakpoint_ops;
14589 *ops = bkpt_breakpoint_ops;
2060206e
PA
14590 ops->allocate_location = allocate_location_catch_exception_unhandled;
14591 ops->re_set = re_set_catch_exception_unhandled;
14592 ops->check_status = check_status_catch_exception_unhandled;
14593 ops->print_it = print_it_catch_exception_unhandled;
14594 ops->print_one = print_one_catch_exception_unhandled;
14595 ops->print_mention = print_mention_catch_exception_unhandled;
14596 ops->print_recreate = print_recreate_catch_exception_unhandled;
14597
14598 ops = &catch_assert_breakpoint_ops;
14599 *ops = bkpt_breakpoint_ops;
2060206e
PA
14600 ops->allocate_location = allocate_location_catch_assert;
14601 ops->re_set = re_set_catch_assert;
14602 ops->check_status = check_status_catch_assert;
14603 ops->print_it = print_it_catch_assert;
14604 ops->print_one = print_one_catch_assert;
14605 ops->print_mention = print_mention_catch_assert;
14606 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14607
14608 ops = &catch_handlers_breakpoint_ops;
14609 *ops = bkpt_breakpoint_ops;
14610 ops->allocate_location = allocate_location_catch_handlers;
14611 ops->re_set = re_set_catch_handlers;
14612 ops->check_status = check_status_catch_handlers;
14613 ops->print_it = print_it_catch_handlers;
14614 ops->print_one = print_one_catch_handlers;
14615 ops->print_mention = print_mention_catch_handlers;
14616 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14617}
14618
3d9434b5
JB
14619/* This module's 'new_objfile' observer. */
14620
14621static void
14622ada_new_objfile_observer (struct objfile *objfile)
14623{
14624 ada_clear_symbol_cache ();
14625}
14626
14627/* This module's 'free_objfile' observer. */
14628
14629static void
14630ada_free_objfile_observer (struct objfile *objfile)
14631{
14632 ada_clear_symbol_cache ();
14633}
14634
d2e4a39e 14635void
6c038f32 14636_initialize_ada_language (void)
14f9c5c9 14637{
2060206e
PA
14638 initialize_ada_catchpoint_ops ();
14639
5bf03f13
JB
14640 add_prefix_cmd ("ada", no_class, set_ada_command,
14641 _("Prefix command for changing Ada-specfic settings"),
14642 &set_ada_list, "set ada ", 0, &setlist);
14643
14644 add_prefix_cmd ("ada", no_class, show_ada_command,
14645 _("Generic command for showing Ada-specific settings."),
14646 &show_ada_list, "show ada ", 0, &showlist);
14647
14648 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14649 &trust_pad_over_xvs, _("\
14650Enable or disable an optimization trusting PAD types over XVS types"), _("\
14651Show whether an optimization trusting PAD types over XVS types is activated"),
14652 _("\
14653This is related to the encoding used by the GNAT compiler. The debugger\n\
14654should normally trust the contents of PAD types, but certain older versions\n\
14655of GNAT have a bug that sometimes causes the information in the PAD type\n\
14656to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14657work around this bug. It is always safe to turn this option \"off\", but\n\
14658this incurs a slight performance penalty, so it is recommended to NOT change\n\
14659this option to \"off\" unless necessary."),
14660 NULL, NULL, &set_ada_list, &show_ada_list);
14661
d72413e6
PMR
14662 add_setshow_boolean_cmd ("print-signatures", class_vars,
14663 &print_signatures, _("\
14664Enable or disable the output of formal and return types for functions in the \
14665overloads selection menu"), _("\
14666Show whether the output of formal and return types for functions in the \
14667overloads selection menu is activated"),
14668 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14669
9ac4176b
PA
14670 add_catch_command ("exception", _("\
14671Catch Ada exceptions, when raised.\n\
14672With an argument, catch only exceptions with the given name."),
14673 catch_ada_exception_command,
14674 NULL,
14675 CATCH_PERMANENT,
14676 CATCH_TEMPORARY);
9f757bf7
XR
14677
14678 add_catch_command ("handlers", _("\
14679Catch Ada exceptions, when handled.\n\
14680With an argument, catch only exceptions with the given name."),
14681 catch_ada_handlers_command,
14682 NULL,
14683 CATCH_PERMANENT,
14684 CATCH_TEMPORARY);
9ac4176b
PA
14685 add_catch_command ("assert", _("\
14686Catch failed Ada assertions, when raised.\n\
14687With an argument, catch only exceptions with the given name."),
14688 catch_assert_command,
14689 NULL,
14690 CATCH_PERMANENT,
14691 CATCH_TEMPORARY);
14692
6c038f32 14693 varsize_limit = 65536;
6c038f32 14694
778865d3
JB
14695 add_info ("exceptions", info_exceptions_command,
14696 _("\
14697List all Ada exception names.\n\
14698If a regular expression is passed as an argument, only those matching\n\
14699the regular expression are listed."));
14700
c6044dd1
JB
14701 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14702 _("Set Ada maintenance-related variables."),
14703 &maint_set_ada_cmdlist, "maintenance set ada ",
14704 0/*allow-unknown*/, &maintenance_set_cmdlist);
14705
14706 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14707 _("Show Ada maintenance-related variables"),
14708 &maint_show_ada_cmdlist, "maintenance show ada ",
14709 0/*allow-unknown*/, &maintenance_show_cmdlist);
14710
14711 add_setshow_boolean_cmd
14712 ("ignore-descriptive-types", class_maintenance,
14713 &ada_ignore_descriptive_types_p,
14714 _("Set whether descriptive types generated by GNAT should be ignored."),
14715 _("Show whether descriptive types generated by GNAT should be ignored."),
14716 _("\
14717When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14718DWARF attribute."),
14719 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14720
6c038f32
PH
14721 decoded_names_store = htab_create_alloc
14722 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14723 NULL, xcalloc, xfree);
6b69afc4 14724
3d9434b5
JB
14725 /* The ada-lang observers. */
14726 observer_attach_new_objfile (ada_new_objfile_observer);
14727 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14728 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14729
14730 /* Setup various context-specific data. */
e802dbe0 14731 ada_inferior_data
8e260fc0 14732 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14733 ada_pspace_data_handle
14734 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14735}