]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* gdb.dwarf2/dw2-inline-param.exp: Log the objcopy command.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
28010a5d 65#include "exceptions.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
4c4b4cd2
PH
272\f
273
76a01679 274
4c4b4cd2 275/* Maximum-sized dynamic type. */
14f9c5c9
AS
276static unsigned int varsize_limit;
277
4c4b4cd2
PH
278/* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280static char *ada_completer_word_break_characters =
281#ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283#else
14f9c5c9 284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 285#endif
14f9c5c9 286
4c4b4cd2 287/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 288static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 289 = "__gnat_ada_main_program_name";
14f9c5c9 290
4c4b4cd2
PH
291/* Limit on the number of warnings to raise per expression evaluation. */
292static int warning_limit = 2;
293
294/* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296static int warnings_issued = 0;
297
298static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300};
301
302static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304};
305
306/* Space for allocating results of ada_lookup_symbol_list. */
307static struct obstack symbol_list_obstack;
308
e802dbe0
JB
309 /* Inferior-specific data. */
310
311/* Per-inferior data for this module. */
312
313struct ada_inferior_data
314{
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
3eecfa55
JB
320
321 /* The exception_support_info data. This data is used to determine
322 how to implement support for Ada exception catchpoints in a given
323 inferior. */
324 const struct exception_support_info *exception_info;
e802dbe0
JB
325};
326
327/* Our key to this module's inferior data. */
328static const struct inferior_data *ada_inferior_data;
329
330/* A cleanup routine for our inferior data. */
331static void
332ada_inferior_data_cleanup (struct inferior *inf, void *arg)
333{
334 struct ada_inferior_data *data;
335
336 data = inferior_data (inf, ada_inferior_data);
337 if (data != NULL)
338 xfree (data);
339}
340
341/* Return our inferior data for the given inferior (INF).
342
343 This function always returns a valid pointer to an allocated
344 ada_inferior_data structure. If INF's inferior data has not
345 been previously set, this functions creates a new one with all
346 fields set to zero, sets INF's inferior to it, and then returns
347 a pointer to that newly allocated ada_inferior_data. */
348
349static struct ada_inferior_data *
350get_ada_inferior_data (struct inferior *inf)
351{
352 struct ada_inferior_data *data;
353
354 data = inferior_data (inf, ada_inferior_data);
355 if (data == NULL)
356 {
357 data = XZALLOC (struct ada_inferior_data);
358 set_inferior_data (inf, ada_inferior_data, data);
359 }
360
361 return data;
362}
363
364/* Perform all necessary cleanups regarding our module's inferior data
365 that is required after the inferior INF just exited. */
366
367static void
368ada_inferior_exit (struct inferior *inf)
369{
370 ada_inferior_data_cleanup (inf, NULL);
371 set_inferior_data (inf, ada_inferior_data, NULL);
372}
373
4c4b4cd2
PH
374 /* Utilities */
375
720d1a40 376/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 377 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
378
379 Normally, we really expect a typedef type to only have 1 typedef layer.
380 In other words, we really expect the target type of a typedef type to be
381 a non-typedef type. This is particularly true for Ada units, because
382 the language does not have a typedef vs not-typedef distinction.
383 In that respect, the Ada compiler has been trying to eliminate as many
384 typedef definitions in the debugging information, since they generally
385 do not bring any extra information (we still use typedef under certain
386 circumstances related mostly to the GNAT encoding).
387
388 Unfortunately, we have seen situations where the debugging information
389 generated by the compiler leads to such multiple typedef layers. For
390 instance, consider the following example with stabs:
391
392 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
393 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
394
395 This is an error in the debugging information which causes type
396 pck__float_array___XUP to be defined twice, and the second time,
397 it is defined as a typedef of a typedef.
398
399 This is on the fringe of legality as far as debugging information is
400 concerned, and certainly unexpected. But it is easy to handle these
401 situations correctly, so we can afford to be lenient in this case. */
402
403static struct type *
404ada_typedef_target_type (struct type *type)
405{
406 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
407 type = TYPE_TARGET_TYPE (type);
408 return type;
409}
410
41d27058
JB
411/* Given DECODED_NAME a string holding a symbol name in its
412 decoded form (ie using the Ada dotted notation), returns
413 its unqualified name. */
414
415static const char *
416ada_unqualified_name (const char *decoded_name)
417{
418 const char *result = strrchr (decoded_name, '.');
419
420 if (result != NULL)
421 result++; /* Skip the dot... */
422 else
423 result = decoded_name;
424
425 return result;
426}
427
428/* Return a string starting with '<', followed by STR, and '>'.
429 The result is good until the next call. */
430
431static char *
432add_angle_brackets (const char *str)
433{
434 static char *result = NULL;
435
436 xfree (result);
88c15c34 437 result = xstrprintf ("<%s>", str);
41d27058
JB
438 return result;
439}
96d887e8 440
4c4b4cd2
PH
441static char *
442ada_get_gdb_completer_word_break_characters (void)
443{
444 return ada_completer_word_break_characters;
445}
446
e79af960
JB
447/* Print an array element index using the Ada syntax. */
448
449static void
450ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 451 const struct value_print_options *options)
e79af960 452{
79a45b7d 453 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
454 fprintf_filtered (stream, " => ");
455}
456
f27cf670 457/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 458 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 459 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 460
f27cf670
AS
461void *
462grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 463{
d2e4a39e
AS
464 if (*size < min_size)
465 {
466 *size *= 2;
467 if (*size < min_size)
4c4b4cd2 468 *size = min_size;
f27cf670 469 vect = xrealloc (vect, *size * element_size);
d2e4a39e 470 }
f27cf670 471 return vect;
14f9c5c9
AS
472}
473
474/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 475 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
476
477static int
ebf56fd3 478field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
479{
480 int len = strlen (target);
5b4ee69b 481
d2e4a39e 482 return
4c4b4cd2
PH
483 (strncmp (field_name, target, len) == 0
484 && (field_name[len] == '\0'
485 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
486 && strcmp (field_name + strlen (field_name) - 6,
487 "___XVN") != 0)));
14f9c5c9
AS
488}
489
490
872c8b51
JB
491/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
492 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
493 and return its index. This function also handles fields whose name
494 have ___ suffixes because the compiler sometimes alters their name
495 by adding such a suffix to represent fields with certain constraints.
496 If the field could not be found, return a negative number if
497 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
498
499int
500ada_get_field_index (const struct type *type, const char *field_name,
501 int maybe_missing)
502{
503 int fieldno;
872c8b51
JB
504 struct type *struct_type = check_typedef ((struct type *) type);
505
506 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
507 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
508 return fieldno;
509
510 if (!maybe_missing)
323e0a4a 511 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 512 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
513
514 return -1;
515}
516
517/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
518
519int
d2e4a39e 520ada_name_prefix_len (const char *name)
14f9c5c9
AS
521{
522 if (name == NULL)
523 return 0;
d2e4a39e 524 else
14f9c5c9 525 {
d2e4a39e 526 const char *p = strstr (name, "___");
5b4ee69b 527
14f9c5c9 528 if (p == NULL)
4c4b4cd2 529 return strlen (name);
14f9c5c9 530 else
4c4b4cd2 531 return p - name;
14f9c5c9
AS
532 }
533}
534
4c4b4cd2
PH
535/* Return non-zero if SUFFIX is a suffix of STR.
536 Return zero if STR is null. */
537
14f9c5c9 538static int
d2e4a39e 539is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
540{
541 int len1, len2;
5b4ee69b 542
14f9c5c9
AS
543 if (str == NULL)
544 return 0;
545 len1 = strlen (str);
546 len2 = strlen (suffix);
4c4b4cd2 547 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
548}
549
4c4b4cd2
PH
550/* The contents of value VAL, treated as a value of type TYPE. The
551 result is an lval in memory if VAL is. */
14f9c5c9 552
d2e4a39e 553static struct value *
4c4b4cd2 554coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 555{
61ee279c 556 type = ada_check_typedef (type);
df407dfe 557 if (value_type (val) == type)
4c4b4cd2 558 return val;
d2e4a39e 559 else
14f9c5c9 560 {
4c4b4cd2
PH
561 struct value *result;
562
563 /* Make sure that the object size is not unreasonable before
564 trying to allocate some memory for it. */
714e53ab 565 check_size (type);
4c4b4cd2 566
41e8491f
JK
567 if (value_lazy (val)
568 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
569 result = allocate_value_lazy (type);
570 else
571 {
572 result = allocate_value (type);
573 memcpy (value_contents_raw (result), value_contents (val),
574 TYPE_LENGTH (type));
575 }
74bcbdf3 576 set_value_component_location (result, val);
9bbda503
AC
577 set_value_bitsize (result, value_bitsize (val));
578 set_value_bitpos (result, value_bitpos (val));
42ae5230 579 set_value_address (result, value_address (val));
14f9c5c9
AS
580 return result;
581 }
582}
583
fc1a4b47
AC
584static const gdb_byte *
585cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
586{
587 if (valaddr == NULL)
588 return NULL;
589 else
590 return valaddr + offset;
591}
592
593static CORE_ADDR
ebf56fd3 594cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
595{
596 if (address == 0)
597 return 0;
d2e4a39e 598 else
14f9c5c9
AS
599 return address + offset;
600}
601
4c4b4cd2
PH
602/* Issue a warning (as for the definition of warning in utils.c, but
603 with exactly one argument rather than ...), unless the limit on the
604 number of warnings has passed during the evaluation of the current
605 expression. */
a2249542 606
77109804
AC
607/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
608 provided by "complaint". */
a0b31db1 609static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 610
14f9c5c9 611static void
a2249542 612lim_warning (const char *format, ...)
14f9c5c9 613{
a2249542 614 va_list args;
a2249542 615
5b4ee69b 616 va_start (args, format);
4c4b4cd2
PH
617 warnings_issued += 1;
618 if (warnings_issued <= warning_limit)
a2249542
MK
619 vwarning (format, args);
620
621 va_end (args);
4c4b4cd2
PH
622}
623
714e53ab
PH
624/* Issue an error if the size of an object of type T is unreasonable,
625 i.e. if it would be a bad idea to allocate a value of this type in
626 GDB. */
627
628static void
629check_size (const struct type *type)
630{
631 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 632 error (_("object size is larger than varsize-limit"));
714e53ab
PH
633}
634
0963b4bd 635/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 636static LONGEST
c3e5cd34 637max_of_size (int size)
4c4b4cd2 638{
76a01679 639 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 640
76a01679 641 return top_bit | (top_bit - 1);
4c4b4cd2
PH
642}
643
0963b4bd 644/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 645static LONGEST
c3e5cd34 646min_of_size (int size)
4c4b4cd2 647{
c3e5cd34 648 return -max_of_size (size) - 1;
4c4b4cd2
PH
649}
650
0963b4bd 651/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 652static ULONGEST
c3e5cd34 653umax_of_size (int size)
4c4b4cd2 654{
76a01679 655 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 656
76a01679 657 return top_bit | (top_bit - 1);
4c4b4cd2
PH
658}
659
0963b4bd 660/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
661static LONGEST
662max_of_type (struct type *t)
4c4b4cd2 663{
c3e5cd34
PH
664 if (TYPE_UNSIGNED (t))
665 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
666 else
667 return max_of_size (TYPE_LENGTH (t));
668}
669
0963b4bd 670/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
671static LONGEST
672min_of_type (struct type *t)
673{
674 if (TYPE_UNSIGNED (t))
675 return 0;
676 else
677 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
678}
679
680/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
681LONGEST
682ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 683{
76a01679 684 switch (TYPE_CODE (type))
4c4b4cd2
PH
685 {
686 case TYPE_CODE_RANGE:
690cc4eb 687 return TYPE_HIGH_BOUND (type);
4c4b4cd2 688 case TYPE_CODE_ENUM:
690cc4eb
PH
689 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
690 case TYPE_CODE_BOOL:
691 return 1;
692 case TYPE_CODE_CHAR:
76a01679 693 case TYPE_CODE_INT:
690cc4eb 694 return max_of_type (type);
4c4b4cd2 695 default:
43bbcdc2 696 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
697 }
698}
699
700/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
701LONGEST
702ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 703{
76a01679 704 switch (TYPE_CODE (type))
4c4b4cd2
PH
705 {
706 case TYPE_CODE_RANGE:
690cc4eb 707 return TYPE_LOW_BOUND (type);
4c4b4cd2 708 case TYPE_CODE_ENUM:
690cc4eb
PH
709 return TYPE_FIELD_BITPOS (type, 0);
710 case TYPE_CODE_BOOL:
711 return 0;
712 case TYPE_CODE_CHAR:
76a01679 713 case TYPE_CODE_INT:
690cc4eb 714 return min_of_type (type);
4c4b4cd2 715 default:
43bbcdc2 716 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
717 }
718}
719
720/* The identity on non-range types. For range types, the underlying
76a01679 721 non-range scalar type. */
4c4b4cd2
PH
722
723static struct type *
18af8284 724get_base_type (struct type *type)
4c4b4cd2
PH
725{
726 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
727 {
76a01679
JB
728 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
729 return type;
4c4b4cd2
PH
730 type = TYPE_TARGET_TYPE (type);
731 }
732 return type;
14f9c5c9 733}
4c4b4cd2 734\f
76a01679 735
4c4b4cd2 736 /* Language Selection */
14f9c5c9
AS
737
738/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 739 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 740
14f9c5c9 741enum language
ccefe4c4 742ada_update_initial_language (enum language lang)
14f9c5c9 743{
d2e4a39e 744 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
745 (struct objfile *) NULL) != NULL)
746 return language_ada;
14f9c5c9
AS
747
748 return lang;
749}
96d887e8
PH
750
751/* If the main procedure is written in Ada, then return its name.
752 The result is good until the next call. Return NULL if the main
753 procedure doesn't appear to be in Ada. */
754
755char *
756ada_main_name (void)
757{
758 struct minimal_symbol *msym;
f9bc20b9 759 static char *main_program_name = NULL;
6c038f32 760
96d887e8
PH
761 /* For Ada, the name of the main procedure is stored in a specific
762 string constant, generated by the binder. Look for that symbol,
763 extract its address, and then read that string. If we didn't find
764 that string, then most probably the main procedure is not written
765 in Ada. */
766 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
767
768 if (msym != NULL)
769 {
f9bc20b9
JB
770 CORE_ADDR main_program_name_addr;
771 int err_code;
772
96d887e8
PH
773 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
774 if (main_program_name_addr == 0)
323e0a4a 775 error (_("Invalid address for Ada main program name."));
96d887e8 776
f9bc20b9
JB
777 xfree (main_program_name);
778 target_read_string (main_program_name_addr, &main_program_name,
779 1024, &err_code);
780
781 if (err_code != 0)
782 return NULL;
96d887e8
PH
783 return main_program_name;
784 }
785
786 /* The main procedure doesn't seem to be in Ada. */
787 return NULL;
788}
14f9c5c9 789\f
4c4b4cd2 790 /* Symbols */
d2e4a39e 791
4c4b4cd2
PH
792/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
793 of NULLs. */
14f9c5c9 794
d2e4a39e
AS
795const struct ada_opname_map ada_opname_table[] = {
796 {"Oadd", "\"+\"", BINOP_ADD},
797 {"Osubtract", "\"-\"", BINOP_SUB},
798 {"Omultiply", "\"*\"", BINOP_MUL},
799 {"Odivide", "\"/\"", BINOP_DIV},
800 {"Omod", "\"mod\"", BINOP_MOD},
801 {"Orem", "\"rem\"", BINOP_REM},
802 {"Oexpon", "\"**\"", BINOP_EXP},
803 {"Olt", "\"<\"", BINOP_LESS},
804 {"Ole", "\"<=\"", BINOP_LEQ},
805 {"Ogt", "\">\"", BINOP_GTR},
806 {"Oge", "\">=\"", BINOP_GEQ},
807 {"Oeq", "\"=\"", BINOP_EQUAL},
808 {"One", "\"/=\"", BINOP_NOTEQUAL},
809 {"Oand", "\"and\"", BINOP_BITWISE_AND},
810 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
811 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
812 {"Oconcat", "\"&\"", BINOP_CONCAT},
813 {"Oabs", "\"abs\"", UNOP_ABS},
814 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
815 {"Oadd", "\"+\"", UNOP_PLUS},
816 {"Osubtract", "\"-\"", UNOP_NEG},
817 {NULL, NULL}
14f9c5c9
AS
818};
819
4c4b4cd2
PH
820/* The "encoded" form of DECODED, according to GNAT conventions.
821 The result is valid until the next call to ada_encode. */
822
14f9c5c9 823char *
4c4b4cd2 824ada_encode (const char *decoded)
14f9c5c9 825{
4c4b4cd2
PH
826 static char *encoding_buffer = NULL;
827 static size_t encoding_buffer_size = 0;
d2e4a39e 828 const char *p;
14f9c5c9 829 int k;
d2e4a39e 830
4c4b4cd2 831 if (decoded == NULL)
14f9c5c9
AS
832 return NULL;
833
4c4b4cd2
PH
834 GROW_VECT (encoding_buffer, encoding_buffer_size,
835 2 * strlen (decoded) + 10);
14f9c5c9
AS
836
837 k = 0;
4c4b4cd2 838 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 839 {
cdc7bb92 840 if (*p == '.')
4c4b4cd2
PH
841 {
842 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
843 k += 2;
844 }
14f9c5c9 845 else if (*p == '"')
4c4b4cd2
PH
846 {
847 const struct ada_opname_map *mapping;
848
849 for (mapping = ada_opname_table;
1265e4aa
JB
850 mapping->encoded != NULL
851 && strncmp (mapping->decoded, p,
852 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
853 ;
854 if (mapping->encoded == NULL)
323e0a4a 855 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
856 strcpy (encoding_buffer + k, mapping->encoded);
857 k += strlen (mapping->encoded);
858 break;
859 }
d2e4a39e 860 else
4c4b4cd2
PH
861 {
862 encoding_buffer[k] = *p;
863 k += 1;
864 }
14f9c5c9
AS
865 }
866
4c4b4cd2
PH
867 encoding_buffer[k] = '\0';
868 return encoding_buffer;
14f9c5c9
AS
869}
870
871/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
872 quotes, unfolded, but with the quotes stripped away. Result good
873 to next call. */
874
d2e4a39e
AS
875char *
876ada_fold_name (const char *name)
14f9c5c9 877{
d2e4a39e 878 static char *fold_buffer = NULL;
14f9c5c9
AS
879 static size_t fold_buffer_size = 0;
880
881 int len = strlen (name);
d2e4a39e 882 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
883
884 if (name[0] == '\'')
885 {
d2e4a39e
AS
886 strncpy (fold_buffer, name + 1, len - 2);
887 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
888 }
889 else
890 {
891 int i;
5b4ee69b 892
14f9c5c9 893 for (i = 0; i <= len; i += 1)
4c4b4cd2 894 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
895 }
896
897 return fold_buffer;
898}
899
529cad9c
PH
900/* Return nonzero if C is either a digit or a lowercase alphabet character. */
901
902static int
903is_lower_alphanum (const char c)
904{
905 return (isdigit (c) || (isalpha (c) && islower (c)));
906}
907
c90092fe
JB
908/* ENCODED is the linkage name of a symbol and LEN contains its length.
909 This function saves in LEN the length of that same symbol name but
910 without either of these suffixes:
29480c32
JB
911 . .{DIGIT}+
912 . ${DIGIT}+
913 . ___{DIGIT}+
914 . __{DIGIT}+.
c90092fe 915
29480c32
JB
916 These are suffixes introduced by the compiler for entities such as
917 nested subprogram for instance, in order to avoid name clashes.
918 They do not serve any purpose for the debugger. */
919
920static void
921ada_remove_trailing_digits (const char *encoded, int *len)
922{
923 if (*len > 1 && isdigit (encoded[*len - 1]))
924 {
925 int i = *len - 2;
5b4ee69b 926
29480c32
JB
927 while (i > 0 && isdigit (encoded[i]))
928 i--;
929 if (i >= 0 && encoded[i] == '.')
930 *len = i;
931 else if (i >= 0 && encoded[i] == '$')
932 *len = i;
933 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
934 *len = i - 2;
935 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
936 *len = i - 1;
937 }
938}
939
940/* Remove the suffix introduced by the compiler for protected object
941 subprograms. */
942
943static void
944ada_remove_po_subprogram_suffix (const char *encoded, int *len)
945{
946 /* Remove trailing N. */
947
948 /* Protected entry subprograms are broken into two
949 separate subprograms: The first one is unprotected, and has
950 a 'N' suffix; the second is the protected version, and has
0963b4bd 951 the 'P' suffix. The second calls the first one after handling
29480c32
JB
952 the protection. Since the P subprograms are internally generated,
953 we leave these names undecoded, giving the user a clue that this
954 entity is internal. */
955
956 if (*len > 1
957 && encoded[*len - 1] == 'N'
958 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
959 *len = *len - 1;
960}
961
69fadcdf
JB
962/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
963
964static void
965ada_remove_Xbn_suffix (const char *encoded, int *len)
966{
967 int i = *len - 1;
968
969 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
970 i--;
971
972 if (encoded[i] != 'X')
973 return;
974
975 if (i == 0)
976 return;
977
978 if (isalnum (encoded[i-1]))
979 *len = i;
980}
981
29480c32
JB
982/* If ENCODED follows the GNAT entity encoding conventions, then return
983 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
984 replaced by ENCODED.
14f9c5c9 985
4c4b4cd2 986 The resulting string is valid until the next call of ada_decode.
29480c32 987 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
988 is returned. */
989
990const char *
991ada_decode (const char *encoded)
14f9c5c9
AS
992{
993 int i, j;
994 int len0;
d2e4a39e 995 const char *p;
4c4b4cd2 996 char *decoded;
14f9c5c9 997 int at_start_name;
4c4b4cd2
PH
998 static char *decoding_buffer = NULL;
999 static size_t decoding_buffer_size = 0;
d2e4a39e 1000
29480c32
JB
1001 /* The name of the Ada main procedure starts with "_ada_".
1002 This prefix is not part of the decoded name, so skip this part
1003 if we see this prefix. */
4c4b4cd2
PH
1004 if (strncmp (encoded, "_ada_", 5) == 0)
1005 encoded += 5;
14f9c5c9 1006
29480c32
JB
1007 /* If the name starts with '_', then it is not a properly encoded
1008 name, so do not attempt to decode it. Similarly, if the name
1009 starts with '<', the name should not be decoded. */
4c4b4cd2 1010 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1011 goto Suppress;
1012
4c4b4cd2 1013 len0 = strlen (encoded);
4c4b4cd2 1014
29480c32
JB
1015 ada_remove_trailing_digits (encoded, &len0);
1016 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1017
4c4b4cd2
PH
1018 /* Remove the ___X.* suffix if present. Do not forget to verify that
1019 the suffix is located before the current "end" of ENCODED. We want
1020 to avoid re-matching parts of ENCODED that have previously been
1021 marked as discarded (by decrementing LEN0). */
1022 p = strstr (encoded, "___");
1023 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1024 {
1025 if (p[3] == 'X')
4c4b4cd2 1026 len0 = p - encoded;
14f9c5c9 1027 else
4c4b4cd2 1028 goto Suppress;
14f9c5c9 1029 }
4c4b4cd2 1030
29480c32
JB
1031 /* Remove any trailing TKB suffix. It tells us that this symbol
1032 is for the body of a task, but that information does not actually
1033 appear in the decoded name. */
1034
4c4b4cd2 1035 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1036 len0 -= 3;
76a01679 1037
a10967fa
JB
1038 /* Remove any trailing TB suffix. The TB suffix is slightly different
1039 from the TKB suffix because it is used for non-anonymous task
1040 bodies. */
1041
1042 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1043 len0 -= 2;
1044
29480c32
JB
1045 /* Remove trailing "B" suffixes. */
1046 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1047
4c4b4cd2 1048 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1049 len0 -= 1;
1050
4c4b4cd2 1051 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1052
4c4b4cd2
PH
1053 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1054 decoded = decoding_buffer;
14f9c5c9 1055
29480c32
JB
1056 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1057
4c4b4cd2 1058 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1059 {
4c4b4cd2
PH
1060 i = len0 - 2;
1061 while ((i >= 0 && isdigit (encoded[i]))
1062 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1063 i -= 1;
1064 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1065 len0 = i - 1;
1066 else if (encoded[i] == '$')
1067 len0 = i;
d2e4a39e 1068 }
14f9c5c9 1069
29480c32
JB
1070 /* The first few characters that are not alphabetic are not part
1071 of any encoding we use, so we can copy them over verbatim. */
1072
4c4b4cd2
PH
1073 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1074 decoded[j] = encoded[i];
14f9c5c9
AS
1075
1076 at_start_name = 1;
1077 while (i < len0)
1078 {
29480c32 1079 /* Is this a symbol function? */
4c4b4cd2
PH
1080 if (at_start_name && encoded[i] == 'O')
1081 {
1082 int k;
5b4ee69b 1083
4c4b4cd2
PH
1084 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1085 {
1086 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1087 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1088 op_len - 1) == 0)
1089 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1090 {
1091 strcpy (decoded + j, ada_opname_table[k].decoded);
1092 at_start_name = 0;
1093 i += op_len;
1094 j += strlen (ada_opname_table[k].decoded);
1095 break;
1096 }
1097 }
1098 if (ada_opname_table[k].encoded != NULL)
1099 continue;
1100 }
14f9c5c9
AS
1101 at_start_name = 0;
1102
529cad9c
PH
1103 /* Replace "TK__" with "__", which will eventually be translated
1104 into "." (just below). */
1105
4c4b4cd2
PH
1106 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1107 i += 2;
529cad9c 1108
29480c32
JB
1109 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1110 be translated into "." (just below). These are internal names
1111 generated for anonymous blocks inside which our symbol is nested. */
1112
1113 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1114 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1115 && isdigit (encoded [i+4]))
1116 {
1117 int k = i + 5;
1118
1119 while (k < len0 && isdigit (encoded[k]))
1120 k++; /* Skip any extra digit. */
1121
1122 /* Double-check that the "__B_{DIGITS}+" sequence we found
1123 is indeed followed by "__". */
1124 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1125 i = k;
1126 }
1127
529cad9c
PH
1128 /* Remove _E{DIGITS}+[sb] */
1129
1130 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1131 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1132 one implements the actual entry code, and has a suffix following
1133 the convention above; the second one implements the barrier and
1134 uses the same convention as above, except that the 'E' is replaced
1135 by a 'B'.
1136
1137 Just as above, we do not decode the name of barrier functions
1138 to give the user a clue that the code he is debugging has been
1139 internally generated. */
1140
1141 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1142 && isdigit (encoded[i+2]))
1143 {
1144 int k = i + 3;
1145
1146 while (k < len0 && isdigit (encoded[k]))
1147 k++;
1148
1149 if (k < len0
1150 && (encoded[k] == 'b' || encoded[k] == 's'))
1151 {
1152 k++;
1153 /* Just as an extra precaution, make sure that if this
1154 suffix is followed by anything else, it is a '_'.
1155 Otherwise, we matched this sequence by accident. */
1156 if (k == len0
1157 || (k < len0 && encoded[k] == '_'))
1158 i = k;
1159 }
1160 }
1161
1162 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1163 the GNAT front-end in protected object subprograms. */
1164
1165 if (i < len0 + 3
1166 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1167 {
1168 /* Backtrack a bit up until we reach either the begining of
1169 the encoded name, or "__". Make sure that we only find
1170 digits or lowercase characters. */
1171 const char *ptr = encoded + i - 1;
1172
1173 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1174 ptr--;
1175 if (ptr < encoded
1176 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1177 i++;
1178 }
1179
4c4b4cd2
PH
1180 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1181 {
29480c32
JB
1182 /* This is a X[bn]* sequence not separated from the previous
1183 part of the name with a non-alpha-numeric character (in other
1184 words, immediately following an alpha-numeric character), then
1185 verify that it is placed at the end of the encoded name. If
1186 not, then the encoding is not valid and we should abort the
1187 decoding. Otherwise, just skip it, it is used in body-nested
1188 package names. */
4c4b4cd2
PH
1189 do
1190 i += 1;
1191 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1192 if (i < len0)
1193 goto Suppress;
1194 }
cdc7bb92 1195 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1196 {
29480c32 1197 /* Replace '__' by '.'. */
4c4b4cd2
PH
1198 decoded[j] = '.';
1199 at_start_name = 1;
1200 i += 2;
1201 j += 1;
1202 }
14f9c5c9 1203 else
4c4b4cd2 1204 {
29480c32
JB
1205 /* It's a character part of the decoded name, so just copy it
1206 over. */
4c4b4cd2
PH
1207 decoded[j] = encoded[i];
1208 i += 1;
1209 j += 1;
1210 }
14f9c5c9 1211 }
4c4b4cd2 1212 decoded[j] = '\000';
14f9c5c9 1213
29480c32
JB
1214 /* Decoded names should never contain any uppercase character.
1215 Double-check this, and abort the decoding if we find one. */
1216
4c4b4cd2
PH
1217 for (i = 0; decoded[i] != '\0'; i += 1)
1218 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1219 goto Suppress;
1220
4c4b4cd2
PH
1221 if (strcmp (decoded, encoded) == 0)
1222 return encoded;
1223 else
1224 return decoded;
14f9c5c9
AS
1225
1226Suppress:
4c4b4cd2
PH
1227 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1228 decoded = decoding_buffer;
1229 if (encoded[0] == '<')
1230 strcpy (decoded, encoded);
14f9c5c9 1231 else
88c15c34 1232 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1233 return decoded;
1234
1235}
1236
1237/* Table for keeping permanent unique copies of decoded names. Once
1238 allocated, names in this table are never released. While this is a
1239 storage leak, it should not be significant unless there are massive
1240 changes in the set of decoded names in successive versions of a
1241 symbol table loaded during a single session. */
1242static struct htab *decoded_names_store;
1243
1244/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1245 in the language-specific part of GSYMBOL, if it has not been
1246 previously computed. Tries to save the decoded name in the same
1247 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1248 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1249 GSYMBOL).
4c4b4cd2
PH
1250 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1251 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1252 when a decoded name is cached in it. */
4c4b4cd2 1253
76a01679
JB
1254char *
1255ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1256{
76a01679 1257 char **resultp =
afa16725 1258 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1259
4c4b4cd2
PH
1260 if (*resultp == NULL)
1261 {
1262 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1263
714835d5 1264 if (gsymbol->obj_section != NULL)
76a01679 1265 {
714835d5 1266 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1267
714835d5
UW
1268 *resultp = obsavestring (decoded, strlen (decoded),
1269 &objf->objfile_obstack);
76a01679 1270 }
4c4b4cd2 1271 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1272 case, we put the result on the heap. Since we only decode
1273 when needed, we hope this usually does not cause a
1274 significant memory leak (FIXME). */
4c4b4cd2 1275 if (*resultp == NULL)
76a01679
JB
1276 {
1277 char **slot = (char **) htab_find_slot (decoded_names_store,
1278 decoded, INSERT);
5b4ee69b 1279
76a01679
JB
1280 if (*slot == NULL)
1281 *slot = xstrdup (decoded);
1282 *resultp = *slot;
1283 }
4c4b4cd2 1284 }
14f9c5c9 1285
4c4b4cd2
PH
1286 return *resultp;
1287}
76a01679 1288
2c0b251b 1289static char *
76a01679 1290ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1291{
1292 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1293}
1294
1295/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1296 suffixes that encode debugging information or leading _ada_ on
1297 SYM_NAME (see is_name_suffix commentary for the debugging
1298 information that is ignored). If WILD, then NAME need only match a
1299 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1300 either argument is NULL. */
14f9c5c9 1301
2c0b251b 1302static int
40658b94 1303match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1304{
1305 if (sym_name == NULL || name == NULL)
1306 return 0;
1307 else if (wild)
73589123 1308 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1309 else
1310 {
1311 int len_name = strlen (name);
5b4ee69b 1312
4c4b4cd2
PH
1313 return (strncmp (sym_name, name, len_name) == 0
1314 && is_name_suffix (sym_name + len_name))
1315 || (strncmp (sym_name, "_ada_", 5) == 0
1316 && strncmp (sym_name + 5, name, len_name) == 0
1317 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1318 }
14f9c5c9 1319}
14f9c5c9 1320\f
d2e4a39e 1321
4c4b4cd2 1322 /* Arrays */
14f9c5c9 1323
28c85d6c
JB
1324/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1325 generated by the GNAT compiler to describe the index type used
1326 for each dimension of an array, check whether it follows the latest
1327 known encoding. If not, fix it up to conform to the latest encoding.
1328 Otherwise, do nothing. This function also does nothing if
1329 INDEX_DESC_TYPE is NULL.
1330
1331 The GNAT encoding used to describle the array index type evolved a bit.
1332 Initially, the information would be provided through the name of each
1333 field of the structure type only, while the type of these fields was
1334 described as unspecified and irrelevant. The debugger was then expected
1335 to perform a global type lookup using the name of that field in order
1336 to get access to the full index type description. Because these global
1337 lookups can be very expensive, the encoding was later enhanced to make
1338 the global lookup unnecessary by defining the field type as being
1339 the full index type description.
1340
1341 The purpose of this routine is to allow us to support older versions
1342 of the compiler by detecting the use of the older encoding, and by
1343 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1344 we essentially replace each field's meaningless type by the associated
1345 index subtype). */
1346
1347void
1348ada_fixup_array_indexes_type (struct type *index_desc_type)
1349{
1350 int i;
1351
1352 if (index_desc_type == NULL)
1353 return;
1354 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1355
1356 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1357 to check one field only, no need to check them all). If not, return
1358 now.
1359
1360 If our INDEX_DESC_TYPE was generated using the older encoding,
1361 the field type should be a meaningless integer type whose name
1362 is not equal to the field name. */
1363 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1364 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1365 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1366 return;
1367
1368 /* Fixup each field of INDEX_DESC_TYPE. */
1369 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1370 {
1371 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1372 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1373
1374 if (raw_type)
1375 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1376 }
1377}
1378
4c4b4cd2 1379/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1380
d2e4a39e
AS
1381static char *bound_name[] = {
1382 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1383 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1384};
1385
1386/* Maximum number of array dimensions we are prepared to handle. */
1387
4c4b4cd2 1388#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1389
14f9c5c9 1390
4c4b4cd2
PH
1391/* The desc_* routines return primitive portions of array descriptors
1392 (fat pointers). */
14f9c5c9
AS
1393
1394/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1395 level of indirection, if needed. */
1396
d2e4a39e
AS
1397static struct type *
1398desc_base_type (struct type *type)
14f9c5c9
AS
1399{
1400 if (type == NULL)
1401 return NULL;
61ee279c 1402 type = ada_check_typedef (type);
720d1a40
JB
1403 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1404 type = ada_typedef_target_type (type);
1405
1265e4aa
JB
1406 if (type != NULL
1407 && (TYPE_CODE (type) == TYPE_CODE_PTR
1408 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1409 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1410 else
1411 return type;
1412}
1413
4c4b4cd2
PH
1414/* True iff TYPE indicates a "thin" array pointer type. */
1415
14f9c5c9 1416static int
d2e4a39e 1417is_thin_pntr (struct type *type)
14f9c5c9 1418{
d2e4a39e 1419 return
14f9c5c9
AS
1420 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1421 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1422}
1423
4c4b4cd2
PH
1424/* The descriptor type for thin pointer type TYPE. */
1425
d2e4a39e
AS
1426static struct type *
1427thin_descriptor_type (struct type *type)
14f9c5c9 1428{
d2e4a39e 1429 struct type *base_type = desc_base_type (type);
5b4ee69b 1430
14f9c5c9
AS
1431 if (base_type == NULL)
1432 return NULL;
1433 if (is_suffix (ada_type_name (base_type), "___XVE"))
1434 return base_type;
d2e4a39e 1435 else
14f9c5c9 1436 {
d2e4a39e 1437 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1438
14f9c5c9 1439 if (alt_type == NULL)
4c4b4cd2 1440 return base_type;
14f9c5c9 1441 else
4c4b4cd2 1442 return alt_type;
14f9c5c9
AS
1443 }
1444}
1445
4c4b4cd2
PH
1446/* A pointer to the array data for thin-pointer value VAL. */
1447
d2e4a39e
AS
1448static struct value *
1449thin_data_pntr (struct value *val)
14f9c5c9 1450{
828292f2 1451 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1452 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1453
556bdfd4
UW
1454 data_type = lookup_pointer_type (data_type);
1455
14f9c5c9 1456 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1457 return value_cast (data_type, value_copy (val));
d2e4a39e 1458 else
42ae5230 1459 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1460}
1461
4c4b4cd2
PH
1462/* True iff TYPE indicates a "thick" array pointer type. */
1463
14f9c5c9 1464static int
d2e4a39e 1465is_thick_pntr (struct type *type)
14f9c5c9
AS
1466{
1467 type = desc_base_type (type);
1468 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1469 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1470}
1471
4c4b4cd2
PH
1472/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1473 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1474
d2e4a39e
AS
1475static struct type *
1476desc_bounds_type (struct type *type)
14f9c5c9 1477{
d2e4a39e 1478 struct type *r;
14f9c5c9
AS
1479
1480 type = desc_base_type (type);
1481
1482 if (type == NULL)
1483 return NULL;
1484 else if (is_thin_pntr (type))
1485 {
1486 type = thin_descriptor_type (type);
1487 if (type == NULL)
4c4b4cd2 1488 return NULL;
14f9c5c9
AS
1489 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1490 if (r != NULL)
61ee279c 1491 return ada_check_typedef (r);
14f9c5c9
AS
1492 }
1493 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1494 {
1495 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1496 if (r != NULL)
61ee279c 1497 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1498 }
1499 return NULL;
1500}
1501
1502/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1503 one, a pointer to its bounds data. Otherwise NULL. */
1504
d2e4a39e
AS
1505static struct value *
1506desc_bounds (struct value *arr)
14f9c5c9 1507{
df407dfe 1508 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1509
d2e4a39e 1510 if (is_thin_pntr (type))
14f9c5c9 1511 {
d2e4a39e 1512 struct type *bounds_type =
4c4b4cd2 1513 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1514 LONGEST addr;
1515
4cdfadb1 1516 if (bounds_type == NULL)
323e0a4a 1517 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1518
1519 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1520 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1521 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1522 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1523 addr = value_as_long (arr);
d2e4a39e 1524 else
42ae5230 1525 addr = value_address (arr);
14f9c5c9 1526
d2e4a39e 1527 return
4c4b4cd2
PH
1528 value_from_longest (lookup_pointer_type (bounds_type),
1529 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1530 }
1531
1532 else if (is_thick_pntr (type))
05e522ef
JB
1533 {
1534 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1535 _("Bad GNAT array descriptor"));
1536 struct type *p_bounds_type = value_type (p_bounds);
1537
1538 if (p_bounds_type
1539 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1540 {
1541 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1542
1543 if (TYPE_STUB (target_type))
1544 p_bounds = value_cast (lookup_pointer_type
1545 (ada_check_typedef (target_type)),
1546 p_bounds);
1547 }
1548 else
1549 error (_("Bad GNAT array descriptor"));
1550
1551 return p_bounds;
1552 }
14f9c5c9
AS
1553 else
1554 return NULL;
1555}
1556
4c4b4cd2
PH
1557/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1558 position of the field containing the address of the bounds data. */
1559
14f9c5c9 1560static int
d2e4a39e 1561fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1562{
1563 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1564}
1565
1566/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1567 size of the field containing the address of the bounds data. */
1568
14f9c5c9 1569static int
d2e4a39e 1570fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1571{
1572 type = desc_base_type (type);
1573
d2e4a39e 1574 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1575 return TYPE_FIELD_BITSIZE (type, 1);
1576 else
61ee279c 1577 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1578}
1579
4c4b4cd2 1580/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1581 pointer to one, the type of its array data (a array-with-no-bounds type);
1582 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1583 data. */
4c4b4cd2 1584
d2e4a39e 1585static struct type *
556bdfd4 1586desc_data_target_type (struct type *type)
14f9c5c9
AS
1587{
1588 type = desc_base_type (type);
1589
4c4b4cd2 1590 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1591 if (is_thin_pntr (type))
556bdfd4 1592 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1593 else if (is_thick_pntr (type))
556bdfd4
UW
1594 {
1595 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1596
1597 if (data_type
1598 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1599 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1600 }
1601
1602 return NULL;
14f9c5c9
AS
1603}
1604
1605/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1606 its array data. */
4c4b4cd2 1607
d2e4a39e
AS
1608static struct value *
1609desc_data (struct value *arr)
14f9c5c9 1610{
df407dfe 1611 struct type *type = value_type (arr);
5b4ee69b 1612
14f9c5c9
AS
1613 if (is_thin_pntr (type))
1614 return thin_data_pntr (arr);
1615 else if (is_thick_pntr (type))
d2e4a39e 1616 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1617 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1618 else
1619 return NULL;
1620}
1621
1622
1623/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1624 position of the field containing the address of the data. */
1625
14f9c5c9 1626static int
d2e4a39e 1627fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1628{
1629 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1630}
1631
1632/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1633 size of the field containing the address of the data. */
1634
14f9c5c9 1635static int
d2e4a39e 1636fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1637{
1638 type = desc_base_type (type);
1639
1640 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1641 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1642 else
14f9c5c9
AS
1643 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1644}
1645
4c4b4cd2 1646/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1647 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1648 bound, if WHICH is 1. The first bound is I=1. */
1649
d2e4a39e
AS
1650static struct value *
1651desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1652{
d2e4a39e 1653 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1654 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1655}
1656
1657/* If BOUNDS is an array-bounds structure type, return the bit position
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
14f9c5c9 1661static int
d2e4a39e 1662desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1663{
d2e4a39e 1664 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1665}
1666
1667/* If BOUNDS is an array-bounds structure type, return the bit field size
1668 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1669 bound, if WHICH is 1. The first bound is I=1. */
1670
76a01679 1671static int
d2e4a39e 1672desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1673{
1674 type = desc_base_type (type);
1675
d2e4a39e
AS
1676 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1677 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1678 else
1679 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1680}
1681
1682/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1683 Ith bound (numbering from 1). Otherwise, NULL. */
1684
d2e4a39e
AS
1685static struct type *
1686desc_index_type (struct type *type, int i)
14f9c5c9
AS
1687{
1688 type = desc_base_type (type);
1689
1690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1691 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1692 else
14f9c5c9
AS
1693 return NULL;
1694}
1695
4c4b4cd2
PH
1696/* The number of index positions in the array-bounds type TYPE.
1697 Return 0 if TYPE is NULL. */
1698
14f9c5c9 1699static int
d2e4a39e 1700desc_arity (struct type *type)
14f9c5c9
AS
1701{
1702 type = desc_base_type (type);
1703
1704 if (type != NULL)
1705 return TYPE_NFIELDS (type) / 2;
1706 return 0;
1707}
1708
4c4b4cd2
PH
1709/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1710 an array descriptor type (representing an unconstrained array
1711 type). */
1712
76a01679
JB
1713static int
1714ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1715{
1716 if (type == NULL)
1717 return 0;
61ee279c 1718 type = ada_check_typedef (type);
4c4b4cd2 1719 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1720 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1721}
1722
52ce6436 1723/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1724 * to one. */
52ce6436 1725
2c0b251b 1726static int
52ce6436
PH
1727ada_is_array_type (struct type *type)
1728{
1729 while (type != NULL
1730 && (TYPE_CODE (type) == TYPE_CODE_PTR
1731 || TYPE_CODE (type) == TYPE_CODE_REF))
1732 type = TYPE_TARGET_TYPE (type);
1733 return ada_is_direct_array_type (type);
1734}
1735
4c4b4cd2 1736/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1737
14f9c5c9 1738int
4c4b4cd2 1739ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1740{
1741 if (type == NULL)
1742 return 0;
61ee279c 1743 type = ada_check_typedef (type);
14f9c5c9 1744 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1745 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1746 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1747 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1748}
1749
4c4b4cd2
PH
1750/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1751
14f9c5c9 1752int
4c4b4cd2 1753ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1754{
556bdfd4 1755 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1756
1757 if (type == NULL)
1758 return 0;
61ee279c 1759 type = ada_check_typedef (type);
556bdfd4
UW
1760 return (data_type != NULL
1761 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1762 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1763}
1764
1765/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1766 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1767 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1768 is still needed. */
1769
14f9c5c9 1770int
ebf56fd3 1771ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1772{
d2e4a39e 1773 return
14f9c5c9
AS
1774 type != NULL
1775 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1776 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1777 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1778 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1779}
1780
1781
4c4b4cd2 1782/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1783 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1784 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1785 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1786 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1787 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1788 a descriptor. */
d2e4a39e
AS
1789struct type *
1790ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1791{
ad82864c
JB
1792 if (ada_is_constrained_packed_array_type (value_type (arr)))
1793 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1794
df407dfe
AC
1795 if (!ada_is_array_descriptor_type (value_type (arr)))
1796 return value_type (arr);
d2e4a39e
AS
1797
1798 if (!bounds)
ad82864c
JB
1799 {
1800 struct type *array_type =
1801 ada_check_typedef (desc_data_target_type (value_type (arr)));
1802
1803 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1804 TYPE_FIELD_BITSIZE (array_type, 0) =
1805 decode_packed_array_bitsize (value_type (arr));
1806
1807 return array_type;
1808 }
14f9c5c9
AS
1809 else
1810 {
d2e4a39e 1811 struct type *elt_type;
14f9c5c9 1812 int arity;
d2e4a39e 1813 struct value *descriptor;
14f9c5c9 1814
df407dfe
AC
1815 elt_type = ada_array_element_type (value_type (arr), -1);
1816 arity = ada_array_arity (value_type (arr));
14f9c5c9 1817
d2e4a39e 1818 if (elt_type == NULL || arity == 0)
df407dfe 1819 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1820
1821 descriptor = desc_bounds (arr);
d2e4a39e 1822 if (value_as_long (descriptor) == 0)
4c4b4cd2 1823 return NULL;
d2e4a39e 1824 while (arity > 0)
4c4b4cd2 1825 {
e9bb382b
UW
1826 struct type *range_type = alloc_type_copy (value_type (arr));
1827 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1828 struct value *low = desc_one_bound (descriptor, arity, 0);
1829 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1830
5b4ee69b 1831 arity -= 1;
df407dfe 1832 create_range_type (range_type, value_type (low),
529cad9c
PH
1833 longest_to_int (value_as_long (low)),
1834 longest_to_int (value_as_long (high)));
4c4b4cd2 1835 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1836
1837 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1838 {
1839 /* We need to store the element packed bitsize, as well as
1840 recompute the array size, because it was previously
1841 computed based on the unpacked element size. */
1842 LONGEST lo = value_as_long (low);
1843 LONGEST hi = value_as_long (high);
1844
1845 TYPE_FIELD_BITSIZE (elt_type, 0) =
1846 decode_packed_array_bitsize (value_type (arr));
1847 /* If the array has no element, then the size is already
1848 zero, and does not need to be recomputed. */
1849 if (lo < hi)
1850 {
1851 int array_bitsize =
1852 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1853
1854 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1855 }
1856 }
4c4b4cd2 1857 }
14f9c5c9
AS
1858
1859 return lookup_pointer_type (elt_type);
1860 }
1861}
1862
1863/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1864 Otherwise, returns either a standard GDB array with bounds set
1865 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1866 GDB array. Returns NULL if ARR is a null fat pointer. */
1867
d2e4a39e
AS
1868struct value *
1869ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1870{
df407dfe 1871 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1872 {
d2e4a39e 1873 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1874
14f9c5c9 1875 if (arrType == NULL)
4c4b4cd2 1876 return NULL;
14f9c5c9
AS
1877 return value_cast (arrType, value_copy (desc_data (arr)));
1878 }
ad82864c
JB
1879 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1880 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1881 else
1882 return arr;
1883}
1884
1885/* If ARR does not represent an array, returns ARR unchanged.
1886 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1887 be ARR itself if it already is in the proper form). */
1888
720d1a40 1889struct value *
d2e4a39e 1890ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1891{
df407dfe 1892 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1893 {
d2e4a39e 1894 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1895
14f9c5c9 1896 if (arrVal == NULL)
323e0a4a 1897 error (_("Bounds unavailable for null array pointer."));
529cad9c 1898 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1899 return value_ind (arrVal);
1900 }
ad82864c
JB
1901 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1902 return decode_constrained_packed_array (arr);
d2e4a39e 1903 else
14f9c5c9
AS
1904 return arr;
1905}
1906
1907/* If TYPE represents a GNAT array type, return it translated to an
1908 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1909 packing). For other types, is the identity. */
1910
d2e4a39e
AS
1911struct type *
1912ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1913{
ad82864c
JB
1914 if (ada_is_constrained_packed_array_type (type))
1915 return decode_constrained_packed_array_type (type);
17280b9f
UW
1916
1917 if (ada_is_array_descriptor_type (type))
556bdfd4 1918 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1919
1920 return type;
14f9c5c9
AS
1921}
1922
4c4b4cd2
PH
1923/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1924
ad82864c
JB
1925static int
1926ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1927{
1928 if (type == NULL)
1929 return 0;
4c4b4cd2 1930 type = desc_base_type (type);
61ee279c 1931 type = ada_check_typedef (type);
d2e4a39e 1932 return
14f9c5c9
AS
1933 ada_type_name (type) != NULL
1934 && strstr (ada_type_name (type), "___XP") != NULL;
1935}
1936
ad82864c
JB
1937/* Non-zero iff TYPE represents a standard GNAT constrained
1938 packed-array type. */
1939
1940int
1941ada_is_constrained_packed_array_type (struct type *type)
1942{
1943 return ada_is_packed_array_type (type)
1944 && !ada_is_array_descriptor_type (type);
1945}
1946
1947/* Non-zero iff TYPE represents an array descriptor for a
1948 unconstrained packed-array type. */
1949
1950static int
1951ada_is_unconstrained_packed_array_type (struct type *type)
1952{
1953 return ada_is_packed_array_type (type)
1954 && ada_is_array_descriptor_type (type);
1955}
1956
1957/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1958 return the size of its elements in bits. */
1959
1960static long
1961decode_packed_array_bitsize (struct type *type)
1962{
720d1a40 1963 char *raw_name;
ad82864c
JB
1964 char *tail;
1965 long bits;
1966
720d1a40
JB
1967 /* Access to arrays implemented as fat pointers are encoded as a typedef
1968 of the fat pointer type. We need the name of the fat pointer type
1969 to do the decoding, so strip the typedef layer. */
1970 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1971 type = ada_typedef_target_type (type);
1972
1973 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1974 if (!raw_name)
1975 raw_name = ada_type_name (desc_base_type (type));
1976
1977 if (!raw_name)
1978 return 0;
1979
1980 tail = strstr (raw_name, "___XP");
720d1a40 1981 gdb_assert (tail != NULL);
ad82864c
JB
1982
1983 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1984 {
1985 lim_warning
1986 (_("could not understand bit size information on packed array"));
1987 return 0;
1988 }
1989
1990 return bits;
1991}
1992
14f9c5c9
AS
1993/* Given that TYPE is a standard GDB array type with all bounds filled
1994 in, and that the element size of its ultimate scalar constituents
1995 (that is, either its elements, or, if it is an array of arrays, its
1996 elements' elements, etc.) is *ELT_BITS, return an identical type,
1997 but with the bit sizes of its elements (and those of any
1998 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1999 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2000 in bits. */
2001
d2e4a39e 2002static struct type *
ad82864c 2003constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2004{
d2e4a39e
AS
2005 struct type *new_elt_type;
2006 struct type *new_type;
14f9c5c9
AS
2007 LONGEST low_bound, high_bound;
2008
61ee279c 2009 type = ada_check_typedef (type);
14f9c5c9
AS
2010 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2011 return type;
2012
e9bb382b 2013 new_type = alloc_type_copy (type);
ad82864c
JB
2014 new_elt_type =
2015 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2016 elt_bits);
262452ec 2017 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2018 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2019 TYPE_NAME (new_type) = ada_type_name (type);
2020
262452ec 2021 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2022 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2023 low_bound = high_bound = 0;
2024 if (high_bound < low_bound)
2025 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2026 else
14f9c5c9
AS
2027 {
2028 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2029 TYPE_LENGTH (new_type) =
4c4b4cd2 2030 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2031 }
2032
876cecd0 2033 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2034 return new_type;
2035}
2036
ad82864c
JB
2037/* The array type encoded by TYPE, where
2038 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2039
d2e4a39e 2040static struct type *
ad82864c 2041decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2042{
727e3d2e
JB
2043 char *raw_name = ada_type_name (ada_check_typedef (type));
2044 char *name;
2045 char *tail;
d2e4a39e 2046 struct type *shadow_type;
14f9c5c9 2047 long bits;
14f9c5c9 2048
727e3d2e
JB
2049 if (!raw_name)
2050 raw_name = ada_type_name (desc_base_type (type));
2051
2052 if (!raw_name)
2053 return NULL;
2054
2055 name = (char *) alloca (strlen (raw_name) + 1);
2056 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2057 type = desc_base_type (type);
2058
14f9c5c9
AS
2059 memcpy (name, raw_name, tail - raw_name);
2060 name[tail - raw_name] = '\000';
2061
b4ba55a1
JB
2062 shadow_type = ada_find_parallel_type_with_name (type, name);
2063
2064 if (shadow_type == NULL)
14f9c5c9 2065 {
323e0a4a 2066 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2067 return NULL;
2068 }
cb249c71 2069 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2070
2071 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2072 {
0963b4bd
MS
2073 lim_warning (_("could not understand bounds "
2074 "information on packed array"));
14f9c5c9
AS
2075 return NULL;
2076 }
d2e4a39e 2077
ad82864c
JB
2078 bits = decode_packed_array_bitsize (type);
2079 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2080}
2081
ad82864c
JB
2082/* Given that ARR is a struct value *indicating a GNAT constrained packed
2083 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2084 standard GDB array type except that the BITSIZEs of the array
2085 target types are set to the number of bits in each element, and the
4c4b4cd2 2086 type length is set appropriately. */
14f9c5c9 2087
d2e4a39e 2088static struct value *
ad82864c 2089decode_constrained_packed_array (struct value *arr)
14f9c5c9 2090{
4c4b4cd2 2091 struct type *type;
14f9c5c9 2092
4c4b4cd2 2093 arr = ada_coerce_ref (arr);
284614f0
JB
2094
2095 /* If our value is a pointer, then dererence it. Make sure that
2096 this operation does not cause the target type to be fixed, as
2097 this would indirectly cause this array to be decoded. The rest
2098 of the routine assumes that the array hasn't been decoded yet,
2099 so we use the basic "value_ind" routine to perform the dereferencing,
2100 as opposed to using "ada_value_ind". */
828292f2 2101 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2102 arr = value_ind (arr);
4c4b4cd2 2103
ad82864c 2104 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2105 if (type == NULL)
2106 {
323e0a4a 2107 error (_("can't unpack array"));
14f9c5c9
AS
2108 return NULL;
2109 }
61ee279c 2110
50810684 2111 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2112 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2113 {
2114 /* This is a (right-justified) modular type representing a packed
2115 array with no wrapper. In order to interpret the value through
2116 the (left-justified) packed array type we just built, we must
2117 first left-justify it. */
2118 int bit_size, bit_pos;
2119 ULONGEST mod;
2120
df407dfe 2121 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2122 bit_size = 0;
2123 while (mod > 0)
2124 {
2125 bit_size += 1;
2126 mod >>= 1;
2127 }
df407dfe 2128 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2129 arr = ada_value_primitive_packed_val (arr, NULL,
2130 bit_pos / HOST_CHAR_BIT,
2131 bit_pos % HOST_CHAR_BIT,
2132 bit_size,
2133 type);
2134 }
2135
4c4b4cd2 2136 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2137}
2138
2139
2140/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2141 given in IND. ARR must be a simple array. */
14f9c5c9 2142
d2e4a39e
AS
2143static struct value *
2144value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2145{
2146 int i;
2147 int bits, elt_off, bit_off;
2148 long elt_total_bit_offset;
d2e4a39e
AS
2149 struct type *elt_type;
2150 struct value *v;
14f9c5c9
AS
2151
2152 bits = 0;
2153 elt_total_bit_offset = 0;
df407dfe 2154 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2155 for (i = 0; i < arity; i += 1)
14f9c5c9 2156 {
d2e4a39e 2157 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2158 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2159 error
0963b4bd
MS
2160 (_("attempt to do packed indexing of "
2161 "something other than a packed array"));
14f9c5c9 2162 else
4c4b4cd2
PH
2163 {
2164 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2165 LONGEST lowerbound, upperbound;
2166 LONGEST idx;
2167
2168 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2169 {
323e0a4a 2170 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2171 lowerbound = upperbound = 0;
2172 }
2173
3cb382c9 2174 idx = pos_atr (ind[i]);
4c4b4cd2 2175 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2176 lim_warning (_("packed array index %ld out of bounds"),
2177 (long) idx);
4c4b4cd2
PH
2178 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2179 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2180 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2181 }
14f9c5c9
AS
2182 }
2183 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2184 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2185
2186 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2187 bits, elt_type);
14f9c5c9
AS
2188 return v;
2189}
2190
4c4b4cd2 2191/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2192
2193static int
d2e4a39e 2194has_negatives (struct type *type)
14f9c5c9 2195{
d2e4a39e
AS
2196 switch (TYPE_CODE (type))
2197 {
2198 default:
2199 return 0;
2200 case TYPE_CODE_INT:
2201 return !TYPE_UNSIGNED (type);
2202 case TYPE_CODE_RANGE:
2203 return TYPE_LOW_BOUND (type) < 0;
2204 }
14f9c5c9 2205}
d2e4a39e 2206
14f9c5c9
AS
2207
2208/* Create a new value of type TYPE from the contents of OBJ starting
2209 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2210 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2211 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2212 VALADDR is ignored unless OBJ is NULL, in which case,
2213 VALADDR+OFFSET must address the start of storage containing the
2214 packed value. The value returned in this case is never an lval.
2215 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2216
d2e4a39e 2217struct value *
fc1a4b47 2218ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2219 long offset, int bit_offset, int bit_size,
4c4b4cd2 2220 struct type *type)
14f9c5c9 2221{
d2e4a39e 2222 struct value *v;
4c4b4cd2
PH
2223 int src, /* Index into the source area */
2224 targ, /* Index into the target area */
2225 srcBitsLeft, /* Number of source bits left to move */
2226 nsrc, ntarg, /* Number of source and target bytes */
2227 unusedLS, /* Number of bits in next significant
2228 byte of source that are unused */
2229 accumSize; /* Number of meaningful bits in accum */
2230 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2231 unsigned char *unpacked;
4c4b4cd2 2232 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2233 unsigned char sign;
2234 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2235 /* Transmit bytes from least to most significant; delta is the direction
2236 the indices move. */
50810684 2237 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2238
61ee279c 2239 type = ada_check_typedef (type);
14f9c5c9
AS
2240
2241 if (obj == NULL)
2242 {
2243 v = allocate_value (type);
d2e4a39e 2244 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2245 }
9214ee5f 2246 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2247 {
2248 v = value_at (type,
42ae5230 2249 value_address (obj) + offset);
d2e4a39e 2250 bytes = (unsigned char *) alloca (len);
42ae5230 2251 read_memory (value_address (v), bytes, len);
14f9c5c9 2252 }
d2e4a39e 2253 else
14f9c5c9
AS
2254 {
2255 v = allocate_value (type);
0fd88904 2256 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2257 }
d2e4a39e
AS
2258
2259 if (obj != NULL)
14f9c5c9 2260 {
42ae5230 2261 CORE_ADDR new_addr;
5b4ee69b 2262
74bcbdf3 2263 set_value_component_location (v, obj);
42ae5230 2264 new_addr = value_address (obj) + offset;
9bbda503
AC
2265 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2266 set_value_bitsize (v, bit_size);
df407dfe 2267 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2268 {
42ae5230 2269 ++new_addr;
9bbda503 2270 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2271 }
42ae5230 2272 set_value_address (v, new_addr);
14f9c5c9
AS
2273 }
2274 else
9bbda503 2275 set_value_bitsize (v, bit_size);
0fd88904 2276 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2277
2278 srcBitsLeft = bit_size;
2279 nsrc = len;
2280 ntarg = TYPE_LENGTH (type);
2281 sign = 0;
2282 if (bit_size == 0)
2283 {
2284 memset (unpacked, 0, TYPE_LENGTH (type));
2285 return v;
2286 }
50810684 2287 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2288 {
d2e4a39e 2289 src = len - 1;
1265e4aa
JB
2290 if (has_negatives (type)
2291 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2292 sign = ~0;
d2e4a39e
AS
2293
2294 unusedLS =
4c4b4cd2
PH
2295 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2296 % HOST_CHAR_BIT;
14f9c5c9
AS
2297
2298 switch (TYPE_CODE (type))
4c4b4cd2
PH
2299 {
2300 case TYPE_CODE_ARRAY:
2301 case TYPE_CODE_UNION:
2302 case TYPE_CODE_STRUCT:
2303 /* Non-scalar values must be aligned at a byte boundary... */
2304 accumSize =
2305 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2306 /* ... And are placed at the beginning (most-significant) bytes
2307 of the target. */
529cad9c 2308 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2309 ntarg = targ + 1;
4c4b4cd2
PH
2310 break;
2311 default:
2312 accumSize = 0;
2313 targ = TYPE_LENGTH (type) - 1;
2314 break;
2315 }
14f9c5c9 2316 }
d2e4a39e 2317 else
14f9c5c9
AS
2318 {
2319 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2320
2321 src = targ = 0;
2322 unusedLS = bit_offset;
2323 accumSize = 0;
2324
d2e4a39e 2325 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2326 sign = ~0;
14f9c5c9 2327 }
d2e4a39e 2328
14f9c5c9
AS
2329 accum = 0;
2330 while (nsrc > 0)
2331 {
2332 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2333 part of the value. */
d2e4a39e 2334 unsigned int unusedMSMask =
4c4b4cd2
PH
2335 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2336 1;
2337 /* Sign-extend bits for this byte. */
14f9c5c9 2338 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2339
d2e4a39e 2340 accum |=
4c4b4cd2 2341 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2342 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2343 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2344 {
2345 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2346 accumSize -= HOST_CHAR_BIT;
2347 accum >>= HOST_CHAR_BIT;
2348 ntarg -= 1;
2349 targ += delta;
2350 }
14f9c5c9
AS
2351 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2352 unusedLS = 0;
2353 nsrc -= 1;
2354 src += delta;
2355 }
2356 while (ntarg > 0)
2357 {
2358 accum |= sign << accumSize;
2359 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2360 accumSize -= HOST_CHAR_BIT;
2361 accum >>= HOST_CHAR_BIT;
2362 ntarg -= 1;
2363 targ += delta;
2364 }
2365
2366 return v;
2367}
d2e4a39e 2368
14f9c5c9
AS
2369/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2370 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2371 not overlap. */
14f9c5c9 2372static void
fc1a4b47 2373move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2374 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2375{
2376 unsigned int accum, mask;
2377 int accum_bits, chunk_size;
2378
2379 target += targ_offset / HOST_CHAR_BIT;
2380 targ_offset %= HOST_CHAR_BIT;
2381 source += src_offset / HOST_CHAR_BIT;
2382 src_offset %= HOST_CHAR_BIT;
50810684 2383 if (bits_big_endian_p)
14f9c5c9
AS
2384 {
2385 accum = (unsigned char) *source;
2386 source += 1;
2387 accum_bits = HOST_CHAR_BIT - src_offset;
2388
d2e4a39e 2389 while (n > 0)
4c4b4cd2
PH
2390 {
2391 int unused_right;
5b4ee69b 2392
4c4b4cd2
PH
2393 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2394 accum_bits += HOST_CHAR_BIT;
2395 source += 1;
2396 chunk_size = HOST_CHAR_BIT - targ_offset;
2397 if (chunk_size > n)
2398 chunk_size = n;
2399 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2400 mask = ((1 << chunk_size) - 1) << unused_right;
2401 *target =
2402 (*target & ~mask)
2403 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2404 n -= chunk_size;
2405 accum_bits -= chunk_size;
2406 target += 1;
2407 targ_offset = 0;
2408 }
14f9c5c9
AS
2409 }
2410 else
2411 {
2412 accum = (unsigned char) *source >> src_offset;
2413 source += 1;
2414 accum_bits = HOST_CHAR_BIT - src_offset;
2415
d2e4a39e 2416 while (n > 0)
4c4b4cd2
PH
2417 {
2418 accum = accum + ((unsigned char) *source << accum_bits);
2419 accum_bits += HOST_CHAR_BIT;
2420 source += 1;
2421 chunk_size = HOST_CHAR_BIT - targ_offset;
2422 if (chunk_size > n)
2423 chunk_size = n;
2424 mask = ((1 << chunk_size) - 1) << targ_offset;
2425 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2426 n -= chunk_size;
2427 accum_bits -= chunk_size;
2428 accum >>= chunk_size;
2429 target += 1;
2430 targ_offset = 0;
2431 }
14f9c5c9
AS
2432 }
2433}
2434
14f9c5c9
AS
2435/* Store the contents of FROMVAL into the location of TOVAL.
2436 Return a new value with the location of TOVAL and contents of
2437 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2438 floating-point or non-scalar types. */
14f9c5c9 2439
d2e4a39e
AS
2440static struct value *
2441ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2442{
df407dfe
AC
2443 struct type *type = value_type (toval);
2444 int bits = value_bitsize (toval);
14f9c5c9 2445
52ce6436
PH
2446 toval = ada_coerce_ref (toval);
2447 fromval = ada_coerce_ref (fromval);
2448
2449 if (ada_is_direct_array_type (value_type (toval)))
2450 toval = ada_coerce_to_simple_array (toval);
2451 if (ada_is_direct_array_type (value_type (fromval)))
2452 fromval = ada_coerce_to_simple_array (fromval);
2453
88e3b34b 2454 if (!deprecated_value_modifiable (toval))
323e0a4a 2455 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2456
d2e4a39e 2457 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2458 && bits > 0
d2e4a39e 2459 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2460 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2461 {
df407dfe
AC
2462 int len = (value_bitpos (toval)
2463 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2464 int from_size;
d2e4a39e
AS
2465 char *buffer = (char *) alloca (len);
2466 struct value *val;
42ae5230 2467 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2468
2469 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2470 fromval = value_cast (type, fromval);
14f9c5c9 2471
52ce6436 2472 read_memory (to_addr, buffer, len);
aced2898
PH
2473 from_size = value_bitsize (fromval);
2474 if (from_size == 0)
2475 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2476 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2477 move_bits (buffer, value_bitpos (toval),
50810684 2478 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2479 else
50810684
UW
2480 move_bits (buffer, value_bitpos (toval),
2481 value_contents (fromval), 0, bits, 0);
52ce6436 2482 write_memory (to_addr, buffer, len);
8cebebb9
PP
2483 observer_notify_memory_changed (to_addr, len, buffer);
2484
14f9c5c9 2485 val = value_copy (toval);
0fd88904 2486 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2487 TYPE_LENGTH (type));
04624583 2488 deprecated_set_value_type (val, type);
d2e4a39e 2489
14f9c5c9
AS
2490 return val;
2491 }
2492
2493 return value_assign (toval, fromval);
2494}
2495
2496
52ce6436
PH
2497/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2498 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2499 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2500 * COMPONENT, and not the inferior's memory. The current contents
2501 * of COMPONENT are ignored. */
2502static void
2503value_assign_to_component (struct value *container, struct value *component,
2504 struct value *val)
2505{
2506 LONGEST offset_in_container =
42ae5230 2507 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2508 int bit_offset_in_container =
2509 value_bitpos (component) - value_bitpos (container);
2510 int bits;
2511
2512 val = value_cast (value_type (component), val);
2513
2514 if (value_bitsize (component) == 0)
2515 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2516 else
2517 bits = value_bitsize (component);
2518
50810684 2519 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2520 move_bits (value_contents_writeable (container) + offset_in_container,
2521 value_bitpos (container) + bit_offset_in_container,
2522 value_contents (val),
2523 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2524 bits, 1);
52ce6436
PH
2525 else
2526 move_bits (value_contents_writeable (container) + offset_in_container,
2527 value_bitpos (container) + bit_offset_in_container,
50810684 2528 value_contents (val), 0, bits, 0);
52ce6436
PH
2529}
2530
4c4b4cd2
PH
2531/* The value of the element of array ARR at the ARITY indices given in IND.
2532 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2533 thereto. */
2534
d2e4a39e
AS
2535struct value *
2536ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2537{
2538 int k;
d2e4a39e
AS
2539 struct value *elt;
2540 struct type *elt_type;
14f9c5c9
AS
2541
2542 elt = ada_coerce_to_simple_array (arr);
2543
df407dfe 2544 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2545 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2546 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2547 return value_subscript_packed (elt, arity, ind);
2548
2549 for (k = 0; k < arity; k += 1)
2550 {
2551 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2552 error (_("too many subscripts (%d expected)"), k);
2497b498 2553 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2554 }
2555 return elt;
2556}
2557
2558/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2559 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2560 IND. Does not read the entire array into memory. */
14f9c5c9 2561
2c0b251b 2562static struct value *
d2e4a39e 2563ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2564 struct value **ind)
14f9c5c9
AS
2565{
2566 int k;
2567
2568 for (k = 0; k < arity; k += 1)
2569 {
2570 LONGEST lwb, upb;
14f9c5c9
AS
2571
2572 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2573 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2574 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2575 value_copy (arr));
14f9c5c9 2576 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2577 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2578 type = TYPE_TARGET_TYPE (type);
2579 }
2580
2581 return value_ind (arr);
2582}
2583
0b5d8877 2584/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2585 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2586 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2587 per Ada rules. */
0b5d8877 2588static struct value *
f5938064
JG
2589ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2590 int low, int high)
0b5d8877 2591{
b0dd7688 2592 struct type *type0 = ada_check_typedef (type);
6c038f32 2593 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2594 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2595 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2596 struct type *index_type =
b0dd7688 2597 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2598 low, high);
6c038f32 2599 struct type *slice_type =
b0dd7688 2600 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2601
f5938064 2602 return value_at_lazy (slice_type, base);
0b5d8877
PH
2603}
2604
2605
2606static struct value *
2607ada_value_slice (struct value *array, int low, int high)
2608{
b0dd7688 2609 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2610 struct type *index_type =
0b5d8877 2611 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2612 struct type *slice_type =
0b5d8877 2613 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2614
6c038f32 2615 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2616}
2617
14f9c5c9
AS
2618/* If type is a record type in the form of a standard GNAT array
2619 descriptor, returns the number of dimensions for type. If arr is a
2620 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2621 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2622
2623int
d2e4a39e 2624ada_array_arity (struct type *type)
14f9c5c9
AS
2625{
2626 int arity;
2627
2628 if (type == NULL)
2629 return 0;
2630
2631 type = desc_base_type (type);
2632
2633 arity = 0;
d2e4a39e 2634 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2635 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2636 else
2637 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2638 {
4c4b4cd2 2639 arity += 1;
61ee279c 2640 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2641 }
d2e4a39e 2642
14f9c5c9
AS
2643 return arity;
2644}
2645
2646/* If TYPE is a record type in the form of a standard GNAT array
2647 descriptor or a simple array type, returns the element type for
2648 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2649 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2650
d2e4a39e
AS
2651struct type *
2652ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2653{
2654 type = desc_base_type (type);
2655
d2e4a39e 2656 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2657 {
2658 int k;
d2e4a39e 2659 struct type *p_array_type;
14f9c5c9 2660
556bdfd4 2661 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2662
2663 k = ada_array_arity (type);
2664 if (k == 0)
4c4b4cd2 2665 return NULL;
d2e4a39e 2666
4c4b4cd2 2667 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2668 if (nindices >= 0 && k > nindices)
4c4b4cd2 2669 k = nindices;
d2e4a39e 2670 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2671 {
61ee279c 2672 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2673 k -= 1;
2674 }
14f9c5c9
AS
2675 return p_array_type;
2676 }
2677 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2678 {
2679 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2680 {
2681 type = TYPE_TARGET_TYPE (type);
2682 nindices -= 1;
2683 }
14f9c5c9
AS
2684 return type;
2685 }
2686
2687 return NULL;
2688}
2689
4c4b4cd2 2690/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2691 Does not examine memory. Throws an error if N is invalid or TYPE
2692 is not an array type. NAME is the name of the Ada attribute being
2693 evaluated ('range, 'first, 'last, or 'length); it is used in building
2694 the error message. */
14f9c5c9 2695
1eea4ebd
UW
2696static struct type *
2697ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2698{
4c4b4cd2
PH
2699 struct type *result_type;
2700
14f9c5c9
AS
2701 type = desc_base_type (type);
2702
1eea4ebd
UW
2703 if (n < 0 || n > ada_array_arity (type))
2704 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2705
4c4b4cd2 2706 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2707 {
2708 int i;
2709
2710 for (i = 1; i < n; i += 1)
4c4b4cd2 2711 type = TYPE_TARGET_TYPE (type);
262452ec 2712 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2713 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2714 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2715 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2716 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2717 result_type = NULL;
14f9c5c9 2718 }
d2e4a39e 2719 else
1eea4ebd
UW
2720 {
2721 result_type = desc_index_type (desc_bounds_type (type), n);
2722 if (result_type == NULL)
2723 error (_("attempt to take bound of something that is not an array"));
2724 }
2725
2726 return result_type;
14f9c5c9
AS
2727}
2728
2729/* Given that arr is an array type, returns the lower bound of the
2730 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2731 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2732 array-descriptor type. It works for other arrays with bounds supplied
2733 by run-time quantities other than discriminants. */
14f9c5c9 2734
abb68b3e 2735static LONGEST
1eea4ebd 2736ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2737{
1ce677a4 2738 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2739 int i;
262452ec
JK
2740
2741 gdb_assert (which == 0 || which == 1);
14f9c5c9 2742
ad82864c
JB
2743 if (ada_is_constrained_packed_array_type (arr_type))
2744 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2745
4c4b4cd2 2746 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2747 return (LONGEST) - which;
14f9c5c9
AS
2748
2749 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2750 type = TYPE_TARGET_TYPE (arr_type);
2751 else
2752 type = arr_type;
2753
1ce677a4
UW
2754 elt_type = type;
2755 for (i = n; i > 1; i--)
2756 elt_type = TYPE_TARGET_TYPE (type);
2757
14f9c5c9 2758 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2759 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2760 if (index_type_desc != NULL)
28c85d6c
JB
2761 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2762 NULL);
262452ec 2763 else
1ce677a4 2764 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2765
43bbcdc2
PH
2766 return
2767 (LONGEST) (which == 0
2768 ? ada_discrete_type_low_bound (index_type)
2769 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2770}
2771
2772/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2773 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2774 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2775 supplied by run-time quantities other than discriminants. */
14f9c5c9 2776
1eea4ebd 2777static LONGEST
4dc81987 2778ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2779{
df407dfe 2780 struct type *arr_type = value_type (arr);
14f9c5c9 2781
ad82864c
JB
2782 if (ada_is_constrained_packed_array_type (arr_type))
2783 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2784 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2785 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2786 else
1eea4ebd 2787 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2788}
2789
2790/* Given that arr is an array value, returns the length of the
2791 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2792 supplied by run-time quantities other than discriminants.
2793 Does not work for arrays indexed by enumeration types with representation
2794 clauses at the moment. */
14f9c5c9 2795
1eea4ebd 2796static LONGEST
d2e4a39e 2797ada_array_length (struct value *arr, int n)
14f9c5c9 2798{
df407dfe 2799 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2800
ad82864c
JB
2801 if (ada_is_constrained_packed_array_type (arr_type))
2802 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2803
4c4b4cd2 2804 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2805 return (ada_array_bound_from_type (arr_type, n, 1)
2806 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2807 else
1eea4ebd
UW
2808 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2809 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2810}
2811
2812/* An empty array whose type is that of ARR_TYPE (an array type),
2813 with bounds LOW to LOW-1. */
2814
2815static struct value *
2816empty_array (struct type *arr_type, int low)
2817{
b0dd7688 2818 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2819 struct type *index_type =
b0dd7688 2820 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2821 low, low - 1);
b0dd7688 2822 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2823
0b5d8877 2824 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2825}
14f9c5c9 2826\f
d2e4a39e 2827
4c4b4cd2 2828 /* Name resolution */
14f9c5c9 2829
4c4b4cd2
PH
2830/* The "decoded" name for the user-definable Ada operator corresponding
2831 to OP. */
14f9c5c9 2832
d2e4a39e 2833static const char *
4c4b4cd2 2834ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2835{
2836 int i;
2837
4c4b4cd2 2838 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2839 {
2840 if (ada_opname_table[i].op == op)
4c4b4cd2 2841 return ada_opname_table[i].decoded;
14f9c5c9 2842 }
323e0a4a 2843 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2844}
2845
2846
4c4b4cd2
PH
2847/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2848 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2849 undefined namespace) and converts operators that are
2850 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2851 non-null, it provides a preferred result type [at the moment, only
2852 type void has any effect---causing procedures to be preferred over
2853 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2854 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2855
4c4b4cd2
PH
2856static void
2857resolve (struct expression **expp, int void_context_p)
14f9c5c9 2858{
30b15541
UW
2859 struct type *context_type = NULL;
2860 int pc = 0;
2861
2862 if (void_context_p)
2863 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2864
2865 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2866}
2867
4c4b4cd2
PH
2868/* Resolve the operator of the subexpression beginning at
2869 position *POS of *EXPP. "Resolving" consists of replacing
2870 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2871 with their resolutions, replacing built-in operators with
2872 function calls to user-defined operators, where appropriate, and,
2873 when DEPROCEDURE_P is non-zero, converting function-valued variables
2874 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2875 are as in ada_resolve, above. */
14f9c5c9 2876
d2e4a39e 2877static struct value *
4c4b4cd2 2878resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2879 struct type *context_type)
14f9c5c9
AS
2880{
2881 int pc = *pos;
2882 int i;
4c4b4cd2 2883 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2884 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2885 struct value **argvec; /* Vector of operand types (alloca'ed). */
2886 int nargs; /* Number of operands. */
52ce6436 2887 int oplen;
14f9c5c9
AS
2888
2889 argvec = NULL;
2890 nargs = 0;
2891 exp = *expp;
2892
52ce6436
PH
2893 /* Pass one: resolve operands, saving their types and updating *pos,
2894 if needed. */
14f9c5c9
AS
2895 switch (op)
2896 {
4c4b4cd2
PH
2897 case OP_FUNCALL:
2898 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2899 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2900 *pos += 7;
4c4b4cd2
PH
2901 else
2902 {
2903 *pos += 3;
2904 resolve_subexp (expp, pos, 0, NULL);
2905 }
2906 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2907 break;
2908
14f9c5c9 2909 case UNOP_ADDR:
4c4b4cd2
PH
2910 *pos += 1;
2911 resolve_subexp (expp, pos, 0, NULL);
2912 break;
2913
52ce6436
PH
2914 case UNOP_QUAL:
2915 *pos += 3;
17466c1a 2916 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2917 break;
2918
52ce6436 2919 case OP_ATR_MODULUS:
4c4b4cd2
PH
2920 case OP_ATR_SIZE:
2921 case OP_ATR_TAG:
4c4b4cd2
PH
2922 case OP_ATR_FIRST:
2923 case OP_ATR_LAST:
2924 case OP_ATR_LENGTH:
2925 case OP_ATR_POS:
2926 case OP_ATR_VAL:
4c4b4cd2
PH
2927 case OP_ATR_MIN:
2928 case OP_ATR_MAX:
52ce6436
PH
2929 case TERNOP_IN_RANGE:
2930 case BINOP_IN_BOUNDS:
2931 case UNOP_IN_RANGE:
2932 case OP_AGGREGATE:
2933 case OP_OTHERS:
2934 case OP_CHOICES:
2935 case OP_POSITIONAL:
2936 case OP_DISCRETE_RANGE:
2937 case OP_NAME:
2938 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2939 *pos += oplen;
14f9c5c9
AS
2940 break;
2941
2942 case BINOP_ASSIGN:
2943 {
4c4b4cd2
PH
2944 struct value *arg1;
2945
2946 *pos += 1;
2947 arg1 = resolve_subexp (expp, pos, 0, NULL);
2948 if (arg1 == NULL)
2949 resolve_subexp (expp, pos, 1, NULL);
2950 else
df407dfe 2951 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2952 break;
14f9c5c9
AS
2953 }
2954
4c4b4cd2 2955 case UNOP_CAST:
4c4b4cd2
PH
2956 *pos += 3;
2957 nargs = 1;
2958 break;
14f9c5c9 2959
4c4b4cd2
PH
2960 case BINOP_ADD:
2961 case BINOP_SUB:
2962 case BINOP_MUL:
2963 case BINOP_DIV:
2964 case BINOP_REM:
2965 case BINOP_MOD:
2966 case BINOP_EXP:
2967 case BINOP_CONCAT:
2968 case BINOP_LOGICAL_AND:
2969 case BINOP_LOGICAL_OR:
2970 case BINOP_BITWISE_AND:
2971 case BINOP_BITWISE_IOR:
2972 case BINOP_BITWISE_XOR:
14f9c5c9 2973
4c4b4cd2
PH
2974 case BINOP_EQUAL:
2975 case BINOP_NOTEQUAL:
2976 case BINOP_LESS:
2977 case BINOP_GTR:
2978 case BINOP_LEQ:
2979 case BINOP_GEQ:
14f9c5c9 2980
4c4b4cd2
PH
2981 case BINOP_REPEAT:
2982 case BINOP_SUBSCRIPT:
2983 case BINOP_COMMA:
40c8aaa9
JB
2984 *pos += 1;
2985 nargs = 2;
2986 break;
14f9c5c9 2987
4c4b4cd2
PH
2988 case UNOP_NEG:
2989 case UNOP_PLUS:
2990 case UNOP_LOGICAL_NOT:
2991 case UNOP_ABS:
2992 case UNOP_IND:
2993 *pos += 1;
2994 nargs = 1;
2995 break;
14f9c5c9 2996
4c4b4cd2
PH
2997 case OP_LONG:
2998 case OP_DOUBLE:
2999 case OP_VAR_VALUE:
3000 *pos += 4;
3001 break;
14f9c5c9 3002
4c4b4cd2
PH
3003 case OP_TYPE:
3004 case OP_BOOL:
3005 case OP_LAST:
4c4b4cd2
PH
3006 case OP_INTERNALVAR:
3007 *pos += 3;
3008 break;
14f9c5c9 3009
4c4b4cd2
PH
3010 case UNOP_MEMVAL:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
67f3407f
DJ
3015 case OP_REGISTER:
3016 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3017 break;
3018
4c4b4cd2
PH
3019 case STRUCTOP_STRUCT:
3020 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3021 nargs = 1;
3022 break;
3023
4c4b4cd2 3024 case TERNOP_SLICE:
4c4b4cd2
PH
3025 *pos += 1;
3026 nargs = 3;
3027 break;
3028
52ce6436 3029 case OP_STRING:
14f9c5c9 3030 break;
4c4b4cd2
PH
3031
3032 default:
323e0a4a 3033 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3034 }
3035
76a01679 3036 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3037 for (i = 0; i < nargs; i += 1)
3038 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3039 argvec[i] = NULL;
3040 exp = *expp;
3041
3042 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3043 switch (op)
3044 {
3045 default:
3046 break;
3047
14f9c5c9 3048 case OP_VAR_VALUE:
4c4b4cd2 3049 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3050 {
3051 struct ada_symbol_info *candidates;
3052 int n_candidates;
3053
3054 n_candidates =
3055 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3056 (exp->elts[pc + 2].symbol),
3057 exp->elts[pc + 1].block, VAR_DOMAIN,
3058 &candidates);
3059
3060 if (n_candidates > 1)
3061 {
3062 /* Types tend to get re-introduced locally, so if there
3063 are any local symbols that are not types, first filter
3064 out all types. */
3065 int j;
3066 for (j = 0; j < n_candidates; j += 1)
3067 switch (SYMBOL_CLASS (candidates[j].sym))
3068 {
3069 case LOC_REGISTER:
3070 case LOC_ARG:
3071 case LOC_REF_ARG:
76a01679
JB
3072 case LOC_REGPARM_ADDR:
3073 case LOC_LOCAL:
76a01679 3074 case LOC_COMPUTED:
76a01679
JB
3075 goto FoundNonType;
3076 default:
3077 break;
3078 }
3079 FoundNonType:
3080 if (j < n_candidates)
3081 {
3082 j = 0;
3083 while (j < n_candidates)
3084 {
3085 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3086 {
3087 candidates[j] = candidates[n_candidates - 1];
3088 n_candidates -= 1;
3089 }
3090 else
3091 j += 1;
3092 }
3093 }
3094 }
3095
3096 if (n_candidates == 0)
323e0a4a 3097 error (_("No definition found for %s"),
76a01679
JB
3098 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3099 else if (n_candidates == 1)
3100 i = 0;
3101 else if (deprocedure_p
3102 && !is_nonfunction (candidates, n_candidates))
3103 {
06d5cf63
JB
3104 i = ada_resolve_function
3105 (candidates, n_candidates, NULL, 0,
3106 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3107 context_type);
76a01679 3108 if (i < 0)
323e0a4a 3109 error (_("Could not find a match for %s"),
76a01679
JB
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 }
3112 else
3113 {
323e0a4a 3114 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3115 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3116 user_select_syms (candidates, n_candidates, 1);
3117 i = 0;
3118 }
3119
3120 exp->elts[pc + 1].block = candidates[i].block;
3121 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3122 if (innermost_block == NULL
3123 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3124 innermost_block = candidates[i].block;
3125 }
3126
3127 if (deprocedure_p
3128 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3129 == TYPE_CODE_FUNC))
3130 {
3131 replace_operator_with_call (expp, pc, 0, 0,
3132 exp->elts[pc + 2].symbol,
3133 exp->elts[pc + 1].block);
3134 exp = *expp;
3135 }
14f9c5c9
AS
3136 break;
3137
3138 case OP_FUNCALL:
3139 {
4c4b4cd2 3140 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3141 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3142 {
3143 struct ada_symbol_info *candidates;
3144 int n_candidates;
3145
3146 n_candidates =
76a01679
JB
3147 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3148 (exp->elts[pc + 5].symbol),
3149 exp->elts[pc + 4].block, VAR_DOMAIN,
3150 &candidates);
4c4b4cd2
PH
3151 if (n_candidates == 1)
3152 i = 0;
3153 else
3154 {
06d5cf63
JB
3155 i = ada_resolve_function
3156 (candidates, n_candidates,
3157 argvec, nargs,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3159 context_type);
4c4b4cd2 3160 if (i < 0)
323e0a4a 3161 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3163 }
3164
3165 exp->elts[pc + 4].block = candidates[i].block;
3166 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3167 if (innermost_block == NULL
3168 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3169 innermost_block = candidates[i].block;
3170 }
14f9c5c9
AS
3171 }
3172 break;
3173 case BINOP_ADD:
3174 case BINOP_SUB:
3175 case BINOP_MUL:
3176 case BINOP_DIV:
3177 case BINOP_REM:
3178 case BINOP_MOD:
3179 case BINOP_CONCAT:
3180 case BINOP_BITWISE_AND:
3181 case BINOP_BITWISE_IOR:
3182 case BINOP_BITWISE_XOR:
3183 case BINOP_EQUAL:
3184 case BINOP_NOTEQUAL:
3185 case BINOP_LESS:
3186 case BINOP_GTR:
3187 case BINOP_LEQ:
3188 case BINOP_GEQ:
3189 case BINOP_EXP:
3190 case UNOP_NEG:
3191 case UNOP_PLUS:
3192 case UNOP_LOGICAL_NOT:
3193 case UNOP_ABS:
3194 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3195 {
3196 struct ada_symbol_info *candidates;
3197 int n_candidates;
3198
3199 n_candidates =
3200 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3201 (struct block *) NULL, VAR_DOMAIN,
3202 &candidates);
3203 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3204 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3205 if (i < 0)
3206 break;
3207
76a01679
JB
3208 replace_operator_with_call (expp, pc, nargs, 1,
3209 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3210 exp = *expp;
3211 }
14f9c5c9 3212 break;
4c4b4cd2
PH
3213
3214 case OP_TYPE:
b3dbf008 3215 case OP_REGISTER:
4c4b4cd2 3216 return NULL;
14f9c5c9
AS
3217 }
3218
3219 *pos = pc;
3220 return evaluate_subexp_type (exp, pos);
3221}
3222
3223/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3224 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3225 a non-pointer. */
14f9c5c9 3226/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3227 liberal. */
14f9c5c9
AS
3228
3229static int
4dc81987 3230ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3231{
61ee279c
PH
3232 ftype = ada_check_typedef (ftype);
3233 atype = ada_check_typedef (atype);
14f9c5c9
AS
3234
3235 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3236 ftype = TYPE_TARGET_TYPE (ftype);
3237 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3238 atype = TYPE_TARGET_TYPE (atype);
3239
d2e4a39e 3240 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3241 {
3242 default:
5b3d5b7d 3243 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3244 case TYPE_CODE_PTR:
3245 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3246 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3247 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3248 else
1265e4aa
JB
3249 return (may_deref
3250 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3255 {
3256 case TYPE_CODE_INT:
3257 case TYPE_CODE_ENUM:
3258 case TYPE_CODE_RANGE:
3259 return 1;
3260 default:
3261 return 0;
3262 }
14f9c5c9
AS
3263
3264 case TYPE_CODE_ARRAY:
d2e4a39e 3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3266 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3267
3268 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3269 if (ada_is_array_descriptor_type (ftype))
3270 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3271 || ada_is_array_descriptor_type (atype));
14f9c5c9 3272 else
4c4b4cd2
PH
3273 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3274 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3275
3276 case TYPE_CODE_UNION:
3277 case TYPE_CODE_FLT:
3278 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3279 }
3280}
3281
3282/* Return non-zero if the formals of FUNC "sufficiently match" the
3283 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3284 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3285 argument function. */
14f9c5c9
AS
3286
3287static int
d2e4a39e 3288ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3289{
3290 int i;
d2e4a39e 3291 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3292
1265e4aa
JB
3293 if (SYMBOL_CLASS (func) == LOC_CONST
3294 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3295 return (n_actuals == 0);
3296 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3297 return 0;
3298
3299 if (TYPE_NFIELDS (func_type) != n_actuals)
3300 return 0;
3301
3302 for (i = 0; i < n_actuals; i += 1)
3303 {
4c4b4cd2 3304 if (actuals[i] == NULL)
76a01679
JB
3305 return 0;
3306 else
3307 {
5b4ee69b
MS
3308 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3309 i));
df407dfe 3310 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3311
76a01679
JB
3312 if (!ada_type_match (ftype, atype, 1))
3313 return 0;
3314 }
14f9c5c9
AS
3315 }
3316 return 1;
3317}
3318
3319/* False iff function type FUNC_TYPE definitely does not produce a value
3320 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3321 FUNC_TYPE is not a valid function type with a non-null return type
3322 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3323
3324static int
d2e4a39e 3325return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3326{
d2e4a39e 3327 struct type *return_type;
14f9c5c9
AS
3328
3329 if (func_type == NULL)
3330 return 1;
3331
4c4b4cd2 3332 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3333 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3334 else
18af8284 3335 return_type = get_base_type (func_type);
14f9c5c9
AS
3336 if (return_type == NULL)
3337 return 1;
3338
18af8284 3339 context_type = get_base_type (context_type);
14f9c5c9
AS
3340
3341 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3342 return context_type == NULL || return_type == context_type;
3343 else if (context_type == NULL)
3344 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3345 else
3346 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3347}
3348
3349
4c4b4cd2 3350/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3351 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3352 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3353 that returns that type, then eliminate matches that don't. If
3354 CONTEXT_TYPE is void and there is at least one match that does not
3355 return void, eliminate all matches that do.
3356
14f9c5c9
AS
3357 Asks the user if there is more than one match remaining. Returns -1
3358 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3359 solely for messages. May re-arrange and modify SYMS in
3360 the process; the index returned is for the modified vector. */
14f9c5c9 3361
4c4b4cd2
PH
3362static int
3363ada_resolve_function (struct ada_symbol_info syms[],
3364 int nsyms, struct value **args, int nargs,
3365 const char *name, struct type *context_type)
14f9c5c9 3366{
30b15541 3367 int fallback;
14f9c5c9 3368 int k;
4c4b4cd2 3369 int m; /* Number of hits */
14f9c5c9 3370
d2e4a39e 3371 m = 0;
30b15541
UW
3372 /* In the first pass of the loop, we only accept functions matching
3373 context_type. If none are found, we add a second pass of the loop
3374 where every function is accepted. */
3375 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3376 {
3377 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3378 {
61ee279c 3379 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3380
3381 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3382 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3383 {
3384 syms[m] = syms[k];
3385 m += 1;
3386 }
3387 }
14f9c5c9
AS
3388 }
3389
3390 if (m == 0)
3391 return -1;
3392 else if (m > 1)
3393 {
323e0a4a 3394 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3395 user_select_syms (syms, m, 1);
14f9c5c9
AS
3396 return 0;
3397 }
3398 return 0;
3399}
3400
4c4b4cd2
PH
3401/* Returns true (non-zero) iff decoded name N0 should appear before N1
3402 in a listing of choices during disambiguation (see sort_choices, below).
3403 The idea is that overloadings of a subprogram name from the
3404 same package should sort in their source order. We settle for ordering
3405 such symbols by their trailing number (__N or $N). */
3406
14f9c5c9 3407static int
4c4b4cd2 3408encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3409{
3410 if (N1 == NULL)
3411 return 0;
3412 else if (N0 == NULL)
3413 return 1;
3414 else
3415 {
3416 int k0, k1;
5b4ee69b 3417
d2e4a39e 3418 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3419 ;
d2e4a39e 3420 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3421 ;
d2e4a39e 3422 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3423 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3424 {
3425 int n0, n1;
5b4ee69b 3426
4c4b4cd2
PH
3427 n0 = k0;
3428 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3429 n0 -= 1;
3430 n1 = k1;
3431 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3432 n1 -= 1;
3433 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3434 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3435 }
14f9c5c9
AS
3436 return (strcmp (N0, N1) < 0);
3437 }
3438}
d2e4a39e 3439
4c4b4cd2
PH
3440/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3441 encoded names. */
3442
d2e4a39e 3443static void
4c4b4cd2 3444sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3445{
4c4b4cd2 3446 int i;
5b4ee69b 3447
d2e4a39e 3448 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3449 {
4c4b4cd2 3450 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3451 int j;
3452
d2e4a39e 3453 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3454 {
3455 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3456 SYMBOL_LINKAGE_NAME (sym.sym)))
3457 break;
3458 syms[j + 1] = syms[j];
3459 }
d2e4a39e 3460 syms[j + 1] = sym;
14f9c5c9
AS
3461 }
3462}
3463
4c4b4cd2
PH
3464/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3465 by asking the user (if necessary), returning the number selected,
3466 and setting the first elements of SYMS items. Error if no symbols
3467 selected. */
14f9c5c9
AS
3468
3469/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3470 to be re-integrated one of these days. */
14f9c5c9
AS
3471
3472int
4c4b4cd2 3473user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3474{
3475 int i;
d2e4a39e 3476 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3477 int n_chosen;
3478 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3479 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3480
3481 if (max_results < 1)
323e0a4a 3482 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3483 if (nsyms <= 1)
3484 return nsyms;
3485
717d2f5a
JB
3486 if (select_mode == multiple_symbols_cancel)
3487 error (_("\
3488canceled because the command is ambiguous\n\
3489See set/show multiple-symbol."));
3490
3491 /* If select_mode is "all", then return all possible symbols.
3492 Only do that if more than one symbol can be selected, of course.
3493 Otherwise, display the menu as usual. */
3494 if (select_mode == multiple_symbols_all && max_results > 1)
3495 return nsyms;
3496
323e0a4a 3497 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3498 if (max_results > 1)
323e0a4a 3499 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3500
4c4b4cd2 3501 sort_choices (syms, nsyms);
14f9c5c9
AS
3502
3503 for (i = 0; i < nsyms; i += 1)
3504 {
4c4b4cd2
PH
3505 if (syms[i].sym == NULL)
3506 continue;
3507
3508 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3509 {
76a01679
JB
3510 struct symtab_and_line sal =
3511 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3512
323e0a4a
AC
3513 if (sal.symtab == NULL)
3514 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3515 i + first_choice,
3516 SYMBOL_PRINT_NAME (syms[i].sym),
3517 sal.line);
3518 else
3519 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3520 SYMBOL_PRINT_NAME (syms[i].sym),
3521 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3522 continue;
3523 }
d2e4a39e 3524 else
4c4b4cd2
PH
3525 {
3526 int is_enumeral =
3527 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3528 && SYMBOL_TYPE (syms[i].sym) != NULL
3529 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3530 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3531
3532 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3533 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3534 i + first_choice,
3535 SYMBOL_PRINT_NAME (syms[i].sym),
3536 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3537 else if (is_enumeral
3538 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3539 {
a3f17187 3540 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3541 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3542 gdb_stdout, -1, 0);
323e0a4a 3543 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3544 SYMBOL_PRINT_NAME (syms[i].sym));
3545 }
3546 else if (symtab != NULL)
3547 printf_unfiltered (is_enumeral
323e0a4a
AC
3548 ? _("[%d] %s in %s (enumeral)\n")
3549 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3550 i + first_choice,
3551 SYMBOL_PRINT_NAME (syms[i].sym),
3552 symtab->filename);
3553 else
3554 printf_unfiltered (is_enumeral
323e0a4a
AC
3555 ? _("[%d] %s (enumeral)\n")
3556 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3557 i + first_choice,
3558 SYMBOL_PRINT_NAME (syms[i].sym));
3559 }
14f9c5c9 3560 }
d2e4a39e 3561
14f9c5c9 3562 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3563 "overload-choice");
14f9c5c9
AS
3564
3565 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3566 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3567
3568 return n_chosen;
3569}
3570
3571/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3572 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3573 order in CHOICES[0 .. N-1], and return N.
3574
3575 The user types choices as a sequence of numbers on one line
3576 separated by blanks, encoding them as follows:
3577
4c4b4cd2 3578 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3579 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3580 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3581
4c4b4cd2 3582 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3583
3584 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3585 prompts (for use with the -f switch). */
14f9c5c9
AS
3586
3587int
d2e4a39e 3588get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3589 int is_all_choice, char *annotation_suffix)
14f9c5c9 3590{
d2e4a39e 3591 char *args;
0bcd0149 3592 char *prompt;
14f9c5c9
AS
3593 int n_chosen;
3594 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3595
14f9c5c9
AS
3596 prompt = getenv ("PS2");
3597 if (prompt == NULL)
0bcd0149 3598 prompt = "> ";
14f9c5c9 3599
0bcd0149 3600 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3601
14f9c5c9 3602 if (args == NULL)
323e0a4a 3603 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3604
3605 n_chosen = 0;
76a01679 3606
4c4b4cd2
PH
3607 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3608 order, as given in args. Choices are validated. */
14f9c5c9
AS
3609 while (1)
3610 {
d2e4a39e 3611 char *args2;
14f9c5c9
AS
3612 int choice, j;
3613
3614 while (isspace (*args))
4c4b4cd2 3615 args += 1;
14f9c5c9 3616 if (*args == '\0' && n_chosen == 0)
323e0a4a 3617 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3618 else if (*args == '\0')
4c4b4cd2 3619 break;
14f9c5c9
AS
3620
3621 choice = strtol (args, &args2, 10);
d2e4a39e 3622 if (args == args2 || choice < 0
4c4b4cd2 3623 || choice > n_choices + first_choice - 1)
323e0a4a 3624 error (_("Argument must be choice number"));
14f9c5c9
AS
3625 args = args2;
3626
d2e4a39e 3627 if (choice == 0)
323e0a4a 3628 error (_("cancelled"));
14f9c5c9
AS
3629
3630 if (choice < first_choice)
4c4b4cd2
PH
3631 {
3632 n_chosen = n_choices;
3633 for (j = 0; j < n_choices; j += 1)
3634 choices[j] = j;
3635 break;
3636 }
14f9c5c9
AS
3637 choice -= first_choice;
3638
d2e4a39e 3639 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3640 {
3641 }
14f9c5c9
AS
3642
3643 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3644 {
3645 int k;
5b4ee69b 3646
4c4b4cd2
PH
3647 for (k = n_chosen - 1; k > j; k -= 1)
3648 choices[k + 1] = choices[k];
3649 choices[j + 1] = choice;
3650 n_chosen += 1;
3651 }
14f9c5c9
AS
3652 }
3653
3654 if (n_chosen > max_results)
323e0a4a 3655 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3656
14f9c5c9
AS
3657 return n_chosen;
3658}
3659
4c4b4cd2
PH
3660/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3661 on the function identified by SYM and BLOCK, and taking NARGS
3662 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3663
3664static void
d2e4a39e 3665replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3666 int oplen, struct symbol *sym,
3667 struct block *block)
14f9c5c9
AS
3668{
3669 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3670 symbol, -oplen for operator being replaced). */
d2e4a39e 3671 struct expression *newexp = (struct expression *)
8c1a34e7 3672 xzalloc (sizeof (struct expression)
4c4b4cd2 3673 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3674 struct expression *exp = *expp;
14f9c5c9
AS
3675
3676 newexp->nelts = exp->nelts + 7 - oplen;
3677 newexp->language_defn = exp->language_defn;
3489610d 3678 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3679 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3680 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3681 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3682
3683 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3684 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3685
3686 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3687 newexp->elts[pc + 4].block = block;
3688 newexp->elts[pc + 5].symbol = sym;
3689
3690 *expp = newexp;
aacb1f0a 3691 xfree (exp);
d2e4a39e 3692}
14f9c5c9
AS
3693
3694/* Type-class predicates */
3695
4c4b4cd2
PH
3696/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3697 or FLOAT). */
14f9c5c9
AS
3698
3699static int
d2e4a39e 3700numeric_type_p (struct type *type)
14f9c5c9
AS
3701{
3702 if (type == NULL)
3703 return 0;
d2e4a39e
AS
3704 else
3705 {
3706 switch (TYPE_CODE (type))
4c4b4cd2
PH
3707 {
3708 case TYPE_CODE_INT:
3709 case TYPE_CODE_FLT:
3710 return 1;
3711 case TYPE_CODE_RANGE:
3712 return (type == TYPE_TARGET_TYPE (type)
3713 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3714 default:
3715 return 0;
3716 }
d2e4a39e 3717 }
14f9c5c9
AS
3718}
3719
4c4b4cd2 3720/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3721
3722static int
d2e4a39e 3723integer_type_p (struct type *type)
14f9c5c9
AS
3724{
3725 if (type == NULL)
3726 return 0;
d2e4a39e
AS
3727 else
3728 {
3729 switch (TYPE_CODE (type))
4c4b4cd2
PH
3730 {
3731 case TYPE_CODE_INT:
3732 return 1;
3733 case TYPE_CODE_RANGE:
3734 return (type == TYPE_TARGET_TYPE (type)
3735 || integer_type_p (TYPE_TARGET_TYPE (type)));
3736 default:
3737 return 0;
3738 }
d2e4a39e 3739 }
14f9c5c9
AS
3740}
3741
4c4b4cd2 3742/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3743
3744static int
d2e4a39e 3745scalar_type_p (struct type *type)
14f9c5c9
AS
3746{
3747 if (type == NULL)
3748 return 0;
d2e4a39e
AS
3749 else
3750 {
3751 switch (TYPE_CODE (type))
4c4b4cd2
PH
3752 {
3753 case TYPE_CODE_INT:
3754 case TYPE_CODE_RANGE:
3755 case TYPE_CODE_ENUM:
3756 case TYPE_CODE_FLT:
3757 return 1;
3758 default:
3759 return 0;
3760 }
d2e4a39e 3761 }
14f9c5c9
AS
3762}
3763
4c4b4cd2 3764/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3765
3766static int
d2e4a39e 3767discrete_type_p (struct type *type)
14f9c5c9
AS
3768{
3769 if (type == NULL)
3770 return 0;
d2e4a39e
AS
3771 else
3772 {
3773 switch (TYPE_CODE (type))
4c4b4cd2
PH
3774 {
3775 case TYPE_CODE_INT:
3776 case TYPE_CODE_RANGE:
3777 case TYPE_CODE_ENUM:
872f0337 3778 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3779 return 1;
3780 default:
3781 return 0;
3782 }
d2e4a39e 3783 }
14f9c5c9
AS
3784}
3785
4c4b4cd2
PH
3786/* Returns non-zero if OP with operands in the vector ARGS could be
3787 a user-defined function. Errs on the side of pre-defined operators
3788 (i.e., result 0). */
14f9c5c9
AS
3789
3790static int
d2e4a39e 3791possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3792{
76a01679 3793 struct type *type0 =
df407dfe 3794 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3795 struct type *type1 =
df407dfe 3796 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3797
4c4b4cd2
PH
3798 if (type0 == NULL)
3799 return 0;
3800
14f9c5c9
AS
3801 switch (op)
3802 {
3803 default:
3804 return 0;
3805
3806 case BINOP_ADD:
3807 case BINOP_SUB:
3808 case BINOP_MUL:
3809 case BINOP_DIV:
d2e4a39e 3810 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3811
3812 case BINOP_REM:
3813 case BINOP_MOD:
3814 case BINOP_BITWISE_AND:
3815 case BINOP_BITWISE_IOR:
3816 case BINOP_BITWISE_XOR:
d2e4a39e 3817 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3818
3819 case BINOP_EQUAL:
3820 case BINOP_NOTEQUAL:
3821 case BINOP_LESS:
3822 case BINOP_GTR:
3823 case BINOP_LEQ:
3824 case BINOP_GEQ:
d2e4a39e 3825 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3826
3827 case BINOP_CONCAT:
ee90b9ab 3828 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3829
3830 case BINOP_EXP:
d2e4a39e 3831 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3832
3833 case UNOP_NEG:
3834 case UNOP_PLUS:
3835 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3836 case UNOP_ABS:
3837 return (!numeric_type_p (type0));
14f9c5c9
AS
3838
3839 }
3840}
3841\f
4c4b4cd2 3842 /* Renaming */
14f9c5c9 3843
aeb5907d
JB
3844/* NOTES:
3845
3846 1. In the following, we assume that a renaming type's name may
3847 have an ___XD suffix. It would be nice if this went away at some
3848 point.
3849 2. We handle both the (old) purely type-based representation of
3850 renamings and the (new) variable-based encoding. At some point,
3851 it is devoutly to be hoped that the former goes away
3852 (FIXME: hilfinger-2007-07-09).
3853 3. Subprogram renamings are not implemented, although the XRS
3854 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3855
3856/* If SYM encodes a renaming,
3857
3858 <renaming> renames <renamed entity>,
3859
3860 sets *LEN to the length of the renamed entity's name,
3861 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3862 the string describing the subcomponent selected from the renamed
0963b4bd 3863 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3864 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3865 are undefined). Otherwise, returns a value indicating the category
3866 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3867 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3868 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3869 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3870 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3871 may be NULL, in which case they are not assigned.
3872
3873 [Currently, however, GCC does not generate subprogram renamings.] */
3874
3875enum ada_renaming_category
3876ada_parse_renaming (struct symbol *sym,
3877 const char **renamed_entity, int *len,
3878 const char **renaming_expr)
3879{
3880 enum ada_renaming_category kind;
3881 const char *info;
3882 const char *suffix;
3883
3884 if (sym == NULL)
3885 return ADA_NOT_RENAMING;
3886 switch (SYMBOL_CLASS (sym))
14f9c5c9 3887 {
aeb5907d
JB
3888 default:
3889 return ADA_NOT_RENAMING;
3890 case LOC_TYPEDEF:
3891 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3892 renamed_entity, len, renaming_expr);
3893 case LOC_LOCAL:
3894 case LOC_STATIC:
3895 case LOC_COMPUTED:
3896 case LOC_OPTIMIZED_OUT:
3897 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3898 if (info == NULL)
3899 return ADA_NOT_RENAMING;
3900 switch (info[5])
3901 {
3902 case '_':
3903 kind = ADA_OBJECT_RENAMING;
3904 info += 6;
3905 break;
3906 case 'E':
3907 kind = ADA_EXCEPTION_RENAMING;
3908 info += 7;
3909 break;
3910 case 'P':
3911 kind = ADA_PACKAGE_RENAMING;
3912 info += 7;
3913 break;
3914 case 'S':
3915 kind = ADA_SUBPROGRAM_RENAMING;
3916 info += 7;
3917 break;
3918 default:
3919 return ADA_NOT_RENAMING;
3920 }
14f9c5c9 3921 }
4c4b4cd2 3922
aeb5907d
JB
3923 if (renamed_entity != NULL)
3924 *renamed_entity = info;
3925 suffix = strstr (info, "___XE");
3926 if (suffix == NULL || suffix == info)
3927 return ADA_NOT_RENAMING;
3928 if (len != NULL)
3929 *len = strlen (info) - strlen (suffix);
3930 suffix += 5;
3931 if (renaming_expr != NULL)
3932 *renaming_expr = suffix;
3933 return kind;
3934}
3935
3936/* Assuming TYPE encodes a renaming according to the old encoding in
3937 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3938 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3939 ADA_NOT_RENAMING otherwise. */
3940static enum ada_renaming_category
3941parse_old_style_renaming (struct type *type,
3942 const char **renamed_entity, int *len,
3943 const char **renaming_expr)
3944{
3945 enum ada_renaming_category kind;
3946 const char *name;
3947 const char *info;
3948 const char *suffix;
14f9c5c9 3949
aeb5907d
JB
3950 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3951 || TYPE_NFIELDS (type) != 1)
3952 return ADA_NOT_RENAMING;
14f9c5c9 3953
aeb5907d
JB
3954 name = type_name_no_tag (type);
3955 if (name == NULL)
3956 return ADA_NOT_RENAMING;
3957
3958 name = strstr (name, "___XR");
3959 if (name == NULL)
3960 return ADA_NOT_RENAMING;
3961 switch (name[5])
3962 {
3963 case '\0':
3964 case '_':
3965 kind = ADA_OBJECT_RENAMING;
3966 break;
3967 case 'E':
3968 kind = ADA_EXCEPTION_RENAMING;
3969 break;
3970 case 'P':
3971 kind = ADA_PACKAGE_RENAMING;
3972 break;
3973 case 'S':
3974 kind = ADA_SUBPROGRAM_RENAMING;
3975 break;
3976 default:
3977 return ADA_NOT_RENAMING;
3978 }
14f9c5c9 3979
aeb5907d
JB
3980 info = TYPE_FIELD_NAME (type, 0);
3981 if (info == NULL)
3982 return ADA_NOT_RENAMING;
3983 if (renamed_entity != NULL)
3984 *renamed_entity = info;
3985 suffix = strstr (info, "___XE");
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix + 5;
3988 if (suffix == NULL || suffix == info)
3989 return ADA_NOT_RENAMING;
3990 if (len != NULL)
3991 *len = suffix - info;
3992 return kind;
3993}
52ce6436 3994
14f9c5c9 3995\f
d2e4a39e 3996
4c4b4cd2 3997 /* Evaluation: Function Calls */
14f9c5c9 3998
4c4b4cd2 3999/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4000 lvalues, and otherwise has the side-effect of allocating memory
4001 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4002
d2e4a39e 4003static struct value *
40bc484c 4004ensure_lval (struct value *val)
14f9c5c9 4005{
40bc484c
JB
4006 if (VALUE_LVAL (val) == not_lval
4007 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4008 {
df407dfe 4009 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4010 const CORE_ADDR addr =
4011 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4012
40bc484c 4013 set_value_address (val, addr);
a84a8a0d 4014 VALUE_LVAL (val) = lval_memory;
40bc484c 4015 write_memory (addr, value_contents (val), len);
c3e5cd34 4016 }
14f9c5c9
AS
4017
4018 return val;
4019}
4020
4021/* Return the value ACTUAL, converted to be an appropriate value for a
4022 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4023 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4024 values not residing in memory, updating it as needed. */
14f9c5c9 4025
a93c0eb6 4026struct value *
40bc484c 4027ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4028{
df407dfe 4029 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4030 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4031 struct type *formal_target =
4032 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4033 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4034 struct type *actual_target =
4035 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4036 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4037
4c4b4cd2 4038 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4039 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4040 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4041 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4042 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4043 {
a84a8a0d 4044 struct value *result;
5b4ee69b 4045
14f9c5c9 4046 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4047 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4048 result = desc_data (actual);
14f9c5c9 4049 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4050 {
4051 if (VALUE_LVAL (actual) != lval_memory)
4052 {
4053 struct value *val;
5b4ee69b 4054
df407dfe 4055 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4056 val = allocate_value (actual_type);
990a07ab 4057 memcpy ((char *) value_contents_raw (val),
0fd88904 4058 (char *) value_contents (actual),
4c4b4cd2 4059 TYPE_LENGTH (actual_type));
40bc484c 4060 actual = ensure_lval (val);
4c4b4cd2 4061 }
a84a8a0d 4062 result = value_addr (actual);
4c4b4cd2 4063 }
a84a8a0d
JB
4064 else
4065 return actual;
4066 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4067 }
4068 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4069 return ada_value_ind (actual);
4070
4071 return actual;
4072}
4073
438c98a1
JB
4074/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4075 type TYPE. This is usually an inefficient no-op except on some targets
4076 (such as AVR) where the representation of a pointer and an address
4077 differs. */
4078
4079static CORE_ADDR
4080value_pointer (struct value *value, struct type *type)
4081{
4082 struct gdbarch *gdbarch = get_type_arch (type);
4083 unsigned len = TYPE_LENGTH (type);
4084 gdb_byte *buf = alloca (len);
4085 CORE_ADDR addr;
4086
4087 addr = value_address (value);
4088 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4089 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4090 return addr;
4091}
4092
14f9c5c9 4093
4c4b4cd2
PH
4094/* Push a descriptor of type TYPE for array value ARR on the stack at
4095 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4096 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4097 to-descriptor type rather than a descriptor type), a struct value *
4098 representing a pointer to this descriptor. */
14f9c5c9 4099
d2e4a39e 4100static struct value *
40bc484c 4101make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4102{
d2e4a39e
AS
4103 struct type *bounds_type = desc_bounds_type (type);
4104 struct type *desc_type = desc_base_type (type);
4105 struct value *descriptor = allocate_value (desc_type);
4106 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4107 int i;
d2e4a39e 4108
0963b4bd
MS
4109 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4110 i > 0; i -= 1)
14f9c5c9 4111 {
19f220c3
JK
4112 modify_field (value_type (bounds), value_contents_writeable (bounds),
4113 ada_array_bound (arr, i, 0),
4114 desc_bound_bitpos (bounds_type, i, 0),
4115 desc_bound_bitsize (bounds_type, i, 0));
4116 modify_field (value_type (bounds), value_contents_writeable (bounds),
4117 ada_array_bound (arr, i, 1),
4118 desc_bound_bitpos (bounds_type, i, 1),
4119 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4120 }
d2e4a39e 4121
40bc484c 4122 bounds = ensure_lval (bounds);
d2e4a39e 4123
19f220c3
JK
4124 modify_field (value_type (descriptor),
4125 value_contents_writeable (descriptor),
4126 value_pointer (ensure_lval (arr),
4127 TYPE_FIELD_TYPE (desc_type, 0)),
4128 fat_pntr_data_bitpos (desc_type),
4129 fat_pntr_data_bitsize (desc_type));
4130
4131 modify_field (value_type (descriptor),
4132 value_contents_writeable (descriptor),
4133 value_pointer (bounds,
4134 TYPE_FIELD_TYPE (desc_type, 1)),
4135 fat_pntr_bounds_bitpos (desc_type),
4136 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4137
40bc484c 4138 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4139
4140 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4141 return value_addr (descriptor);
4142 else
4143 return descriptor;
4144}
14f9c5c9 4145\f
963a6417 4146/* Dummy definitions for an experimental caching module that is not
0963b4bd 4147 * used in the public sources. */
96d887e8 4148
96d887e8
PH
4149static int
4150lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4151 struct symbol **sym, struct block **block)
96d887e8
PH
4152{
4153 return 0;
4154}
4155
4156static void
4157cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4158 struct block *block)
96d887e8
PH
4159{
4160}
4c4b4cd2
PH
4161\f
4162 /* Symbol Lookup */
4163
4164/* Return the result of a standard (literal, C-like) lookup of NAME in
4165 given DOMAIN, visible from lexical block BLOCK. */
4166
4167static struct symbol *
4168standard_lookup (const char *name, const struct block *block,
4169 domain_enum domain)
4170{
4171 struct symbol *sym;
4c4b4cd2 4172
2570f2b7 4173 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4174 return sym;
2570f2b7
UW
4175 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4176 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4177 return sym;
4178}
4179
4180
4181/* Non-zero iff there is at least one non-function/non-enumeral symbol
4182 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4183 since they contend in overloading in the same way. */
4184static int
4185is_nonfunction (struct ada_symbol_info syms[], int n)
4186{
4187 int i;
4188
4189 for (i = 0; i < n; i += 1)
4190 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4191 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4192 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4193 return 1;
4194
4195 return 0;
4196}
4197
4198/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4199 struct types. Otherwise, they may not. */
14f9c5c9
AS
4200
4201static int
d2e4a39e 4202equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4203{
d2e4a39e 4204 if (type0 == type1)
14f9c5c9 4205 return 1;
d2e4a39e 4206 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4207 || TYPE_CODE (type0) != TYPE_CODE (type1))
4208 return 0;
d2e4a39e 4209 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4210 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4211 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4212 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4213 return 1;
d2e4a39e 4214
14f9c5c9
AS
4215 return 0;
4216}
4217
4218/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4219 no more defined than that of SYM1. */
14f9c5c9
AS
4220
4221static int
d2e4a39e 4222lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4223{
4224 if (sym0 == sym1)
4225 return 1;
176620f1 4226 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4227 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4228 return 0;
4229
d2e4a39e 4230 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4231 {
4232 case LOC_UNDEF:
4233 return 1;
4234 case LOC_TYPEDEF:
4235 {
4c4b4cd2
PH
4236 struct type *type0 = SYMBOL_TYPE (sym0);
4237 struct type *type1 = SYMBOL_TYPE (sym1);
4238 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4239 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4240 int len0 = strlen (name0);
5b4ee69b 4241
4c4b4cd2
PH
4242 return
4243 TYPE_CODE (type0) == TYPE_CODE (type1)
4244 && (equiv_types (type0, type1)
4245 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4246 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4247 }
4248 case LOC_CONST:
4249 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4250 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4251 default:
4252 return 0;
14f9c5c9
AS
4253 }
4254}
4255
4c4b4cd2
PH
4256/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4257 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4258
4259static void
76a01679
JB
4260add_defn_to_vec (struct obstack *obstackp,
4261 struct symbol *sym,
2570f2b7 4262 struct block *block)
14f9c5c9
AS
4263{
4264 int i;
4c4b4cd2 4265 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4266
529cad9c
PH
4267 /* Do not try to complete stub types, as the debugger is probably
4268 already scanning all symbols matching a certain name at the
4269 time when this function is called. Trying to replace the stub
4270 type by its associated full type will cause us to restart a scan
4271 which may lead to an infinite recursion. Instead, the client
4272 collecting the matching symbols will end up collecting several
4273 matches, with at least one of them complete. It can then filter
4274 out the stub ones if needed. */
4275
4c4b4cd2
PH
4276 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4277 {
4278 if (lesseq_defined_than (sym, prevDefns[i].sym))
4279 return;
4280 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4281 {
4282 prevDefns[i].sym = sym;
4283 prevDefns[i].block = block;
4c4b4cd2 4284 return;
76a01679 4285 }
4c4b4cd2
PH
4286 }
4287
4288 {
4289 struct ada_symbol_info info;
4290
4291 info.sym = sym;
4292 info.block = block;
4c4b4cd2
PH
4293 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4294 }
4295}
4296
4297/* Number of ada_symbol_info structures currently collected in
4298 current vector in *OBSTACKP. */
4299
76a01679
JB
4300static int
4301num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4302{
4303 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4304}
4305
4306/* Vector of ada_symbol_info structures currently collected in current
4307 vector in *OBSTACKP. If FINISH, close off the vector and return
4308 its final address. */
4309
76a01679 4310static struct ada_symbol_info *
4c4b4cd2
PH
4311defns_collected (struct obstack *obstackp, int finish)
4312{
4313 if (finish)
4314 return obstack_finish (obstackp);
4315 else
4316 return (struct ada_symbol_info *) obstack_base (obstackp);
4317}
4318
96d887e8
PH
4319/* Return a minimal symbol matching NAME according to Ada decoding
4320 rules. Returns NULL if there is no such minimal symbol. Names
4321 prefixed with "standard__" are handled specially: "standard__" is
4322 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4323
96d887e8
PH
4324struct minimal_symbol *
4325ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4326{
4c4b4cd2 4327 struct objfile *objfile;
96d887e8
PH
4328 struct minimal_symbol *msymbol;
4329 int wild_match;
4c4b4cd2 4330
96d887e8 4331 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4332 {
96d887e8 4333 name += sizeof ("standard__") - 1;
4c4b4cd2 4334 wild_match = 0;
4c4b4cd2
PH
4335 }
4336 else
96d887e8 4337 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4338
96d887e8
PH
4339 ALL_MSYMBOLS (objfile, msymbol)
4340 {
40658b94 4341 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4342 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4343 return msymbol;
4344 }
4c4b4cd2 4345
96d887e8
PH
4346 return NULL;
4347}
4c4b4cd2 4348
96d887e8
PH
4349/* For all subprograms that statically enclose the subprogram of the
4350 selected frame, add symbols matching identifier NAME in DOMAIN
4351 and their blocks to the list of data in OBSTACKP, as for
4352 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4353 wildcard prefix. */
4c4b4cd2 4354
96d887e8
PH
4355static void
4356add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4357 const char *name, domain_enum namespace,
96d887e8
PH
4358 int wild_match)
4359{
96d887e8 4360}
14f9c5c9 4361
96d887e8
PH
4362/* True if TYPE is definitely an artificial type supplied to a symbol
4363 for which no debugging information was given in the symbol file. */
14f9c5c9 4364
96d887e8
PH
4365static int
4366is_nondebugging_type (struct type *type)
4367{
4368 char *name = ada_type_name (type);
5b4ee69b 4369
96d887e8
PH
4370 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4371}
4c4b4cd2 4372
8f17729f
JB
4373/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4374 that are deemed "identical" for practical purposes.
4375
4376 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4377 types and that their number of enumerals is identical (in other
4378 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4379
4380static int
4381ada_identical_enum_types_p (struct type *type1, struct type *type2)
4382{
4383 int i;
4384
4385 /* The heuristic we use here is fairly conservative. We consider
4386 that 2 enumerate types are identical if they have the same
4387 number of enumerals and that all enumerals have the same
4388 underlying value and name. */
4389
4390 /* All enums in the type should have an identical underlying value. */
4391 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4392 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4393 return 0;
4394
4395 /* All enumerals should also have the same name (modulo any numerical
4396 suffix). */
4397 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4398 {
4399 char *name_1 = TYPE_FIELD_NAME (type1, i);
4400 char *name_2 = TYPE_FIELD_NAME (type2, i);
4401 int len_1 = strlen (name_1);
4402 int len_2 = strlen (name_2);
4403
4404 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4405 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4406 if (len_1 != len_2
4407 || strncmp (TYPE_FIELD_NAME (type1, i),
4408 TYPE_FIELD_NAME (type2, i),
4409 len_1) != 0)
4410 return 0;
4411 }
4412
4413 return 1;
4414}
4415
4416/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4417 that are deemed "identical" for practical purposes. Sometimes,
4418 enumerals are not strictly identical, but their types are so similar
4419 that they can be considered identical.
4420
4421 For instance, consider the following code:
4422
4423 type Color is (Black, Red, Green, Blue, White);
4424 type RGB_Color is new Color range Red .. Blue;
4425
4426 Type RGB_Color is a subrange of an implicit type which is a copy
4427 of type Color. If we call that implicit type RGB_ColorB ("B" is
4428 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4429 As a result, when an expression references any of the enumeral
4430 by name (Eg. "print green"), the expression is technically
4431 ambiguous and the user should be asked to disambiguate. But
4432 doing so would only hinder the user, since it wouldn't matter
4433 what choice he makes, the outcome would always be the same.
4434 So, for practical purposes, we consider them as the same. */
4435
4436static int
4437symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4438{
4439 int i;
4440
4441 /* Before performing a thorough comparison check of each type,
4442 we perform a series of inexpensive checks. We expect that these
4443 checks will quickly fail in the vast majority of cases, and thus
4444 help prevent the unnecessary use of a more expensive comparison.
4445 Said comparison also expects us to make some of these checks
4446 (see ada_identical_enum_types_p). */
4447
4448 /* Quick check: All symbols should have an enum type. */
4449 for (i = 0; i < nsyms; i++)
4450 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4451 return 0;
4452
4453 /* Quick check: They should all have the same value. */
4454 for (i = 1; i < nsyms; i++)
4455 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4456 return 0;
4457
4458 /* Quick check: They should all have the same number of enumerals. */
4459 for (i = 1; i < nsyms; i++)
4460 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4461 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4462 return 0;
4463
4464 /* All the sanity checks passed, so we might have a set of
4465 identical enumeration types. Perform a more complete
4466 comparison of the type of each symbol. */
4467 for (i = 1; i < nsyms; i++)
4468 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4469 SYMBOL_TYPE (syms[0].sym)))
4470 return 0;
4471
4472 return 1;
4473}
4474
96d887e8
PH
4475/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4476 duplicate other symbols in the list (The only case I know of where
4477 this happens is when object files containing stabs-in-ecoff are
4478 linked with files containing ordinary ecoff debugging symbols (or no
4479 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4480 Returns the number of items in the modified list. */
4c4b4cd2 4481
96d887e8
PH
4482static int
4483remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4484{
4485 int i, j;
4c4b4cd2 4486
8f17729f
JB
4487 /* We should never be called with less than 2 symbols, as there
4488 cannot be any extra symbol in that case. But it's easy to
4489 handle, since we have nothing to do in that case. */
4490 if (nsyms < 2)
4491 return nsyms;
4492
96d887e8
PH
4493 i = 0;
4494 while (i < nsyms)
4495 {
a35ddb44 4496 int remove_p = 0;
339c13b6
JB
4497
4498 /* If two symbols have the same name and one of them is a stub type,
4499 the get rid of the stub. */
4500
4501 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4502 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4503 {
4504 for (j = 0; j < nsyms; j++)
4505 {
4506 if (j != i
4507 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4508 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4509 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4510 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4511 remove_p = 1;
339c13b6
JB
4512 }
4513 }
4514
4515 /* Two symbols with the same name, same class and same address
4516 should be identical. */
4517
4518 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4519 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4520 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4521 {
4522 for (j = 0; j < nsyms; j += 1)
4523 {
4524 if (i != j
4525 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4526 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4527 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4528 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4529 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4530 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4531 remove_p = 1;
4c4b4cd2 4532 }
4c4b4cd2 4533 }
339c13b6 4534
a35ddb44 4535 if (remove_p)
339c13b6
JB
4536 {
4537 for (j = i + 1; j < nsyms; j += 1)
4538 syms[j - 1] = syms[j];
4539 nsyms -= 1;
4540 }
4541
96d887e8 4542 i += 1;
14f9c5c9 4543 }
8f17729f
JB
4544
4545 /* If all the remaining symbols are identical enumerals, then
4546 just keep the first one and discard the rest.
4547
4548 Unlike what we did previously, we do not discard any entry
4549 unless they are ALL identical. This is because the symbol
4550 comparison is not a strict comparison, but rather a practical
4551 comparison. If all symbols are considered identical, then
4552 we can just go ahead and use the first one and discard the rest.
4553 But if we cannot reduce the list to a single element, we have
4554 to ask the user to disambiguate anyways. And if we have to
4555 present a multiple-choice menu, it's less confusing if the list
4556 isn't missing some choices that were identical and yet distinct. */
4557 if (symbols_are_identical_enums (syms, nsyms))
4558 nsyms = 1;
4559
96d887e8 4560 return nsyms;
14f9c5c9
AS
4561}
4562
96d887e8
PH
4563/* Given a type that corresponds to a renaming entity, use the type name
4564 to extract the scope (package name or function name, fully qualified,
4565 and following the GNAT encoding convention) where this renaming has been
4566 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4567
96d887e8
PH
4568static char *
4569xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4570{
96d887e8 4571 /* The renaming types adhere to the following convention:
0963b4bd 4572 <scope>__<rename>___<XR extension>.
96d887e8
PH
4573 So, to extract the scope, we search for the "___XR" extension,
4574 and then backtrack until we find the first "__". */
76a01679 4575
96d887e8
PH
4576 const char *name = type_name_no_tag (renaming_type);
4577 char *suffix = strstr (name, "___XR");
4578 char *last;
4579 int scope_len;
4580 char *scope;
14f9c5c9 4581
96d887e8
PH
4582 /* Now, backtrack a bit until we find the first "__". Start looking
4583 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4584
96d887e8
PH
4585 for (last = suffix - 3; last > name; last--)
4586 if (last[0] == '_' && last[1] == '_')
4587 break;
76a01679 4588
96d887e8 4589 /* Make a copy of scope and return it. */
14f9c5c9 4590
96d887e8
PH
4591 scope_len = last - name;
4592 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4593
96d887e8
PH
4594 strncpy (scope, name, scope_len);
4595 scope[scope_len] = '\0';
4c4b4cd2 4596
96d887e8 4597 return scope;
4c4b4cd2
PH
4598}
4599
96d887e8 4600/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4601
96d887e8
PH
4602static int
4603is_package_name (const char *name)
4c4b4cd2 4604{
96d887e8
PH
4605 /* Here, We take advantage of the fact that no symbols are generated
4606 for packages, while symbols are generated for each function.
4607 So the condition for NAME represent a package becomes equivalent
4608 to NAME not existing in our list of symbols. There is only one
4609 small complication with library-level functions (see below). */
4c4b4cd2 4610
96d887e8 4611 char *fun_name;
76a01679 4612
96d887e8
PH
4613 /* If it is a function that has not been defined at library level,
4614 then we should be able to look it up in the symbols. */
4615 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4616 return 0;
14f9c5c9 4617
96d887e8
PH
4618 /* Library-level function names start with "_ada_". See if function
4619 "_ada_" followed by NAME can be found. */
14f9c5c9 4620
96d887e8 4621 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4622 functions names cannot contain "__" in them. */
96d887e8
PH
4623 if (strstr (name, "__") != NULL)
4624 return 0;
4c4b4cd2 4625
b435e160 4626 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4627
96d887e8
PH
4628 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4629}
14f9c5c9 4630
96d887e8 4631/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4632 not visible from FUNCTION_NAME. */
14f9c5c9 4633
96d887e8 4634static int
aeb5907d 4635old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4636{
aeb5907d
JB
4637 char *scope;
4638
4639 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4640 return 0;
4641
4642 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4643
96d887e8 4644 make_cleanup (xfree, scope);
14f9c5c9 4645
96d887e8
PH
4646 /* If the rename has been defined in a package, then it is visible. */
4647 if (is_package_name (scope))
aeb5907d 4648 return 0;
14f9c5c9 4649
96d887e8
PH
4650 /* Check that the rename is in the current function scope by checking
4651 that its name starts with SCOPE. */
76a01679 4652
96d887e8
PH
4653 /* If the function name starts with "_ada_", it means that it is
4654 a library-level function. Strip this prefix before doing the
4655 comparison, as the encoding for the renaming does not contain
4656 this prefix. */
4657 if (strncmp (function_name, "_ada_", 5) == 0)
4658 function_name += 5;
f26caa11 4659
aeb5907d 4660 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4661}
4662
aeb5907d
JB
4663/* Remove entries from SYMS that corresponds to a renaming entity that
4664 is not visible from the function associated with CURRENT_BLOCK or
4665 that is superfluous due to the presence of more specific renaming
4666 information. Places surviving symbols in the initial entries of
4667 SYMS and returns the number of surviving symbols.
96d887e8
PH
4668
4669 Rationale:
aeb5907d
JB
4670 First, in cases where an object renaming is implemented as a
4671 reference variable, GNAT may produce both the actual reference
4672 variable and the renaming encoding. In this case, we discard the
4673 latter.
4674
4675 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4676 entity. Unfortunately, STABS currently does not support the definition
4677 of types that are local to a given lexical block, so all renamings types
4678 are emitted at library level. As a consequence, if an application
4679 contains two renaming entities using the same name, and a user tries to
4680 print the value of one of these entities, the result of the ada symbol
4681 lookup will also contain the wrong renaming type.
f26caa11 4682
96d887e8
PH
4683 This function partially covers for this limitation by attempting to
4684 remove from the SYMS list renaming symbols that should be visible
4685 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4686 method with the current information available. The implementation
4687 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4688
4689 - When the user tries to print a rename in a function while there
4690 is another rename entity defined in a package: Normally, the
4691 rename in the function has precedence over the rename in the
4692 package, so the latter should be removed from the list. This is
4693 currently not the case.
4694
4695 - This function will incorrectly remove valid renames if
4696 the CURRENT_BLOCK corresponds to a function which symbol name
4697 has been changed by an "Export" pragma. As a consequence,
4698 the user will be unable to print such rename entities. */
4c4b4cd2 4699
14f9c5c9 4700static int
aeb5907d
JB
4701remove_irrelevant_renamings (struct ada_symbol_info *syms,
4702 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4703{
4704 struct symbol *current_function;
4705 char *current_function_name;
4706 int i;
aeb5907d
JB
4707 int is_new_style_renaming;
4708
4709 /* If there is both a renaming foo___XR... encoded as a variable and
4710 a simple variable foo in the same block, discard the latter.
0963b4bd 4711 First, zero out such symbols, then compress. */
aeb5907d
JB
4712 is_new_style_renaming = 0;
4713 for (i = 0; i < nsyms; i += 1)
4714 {
4715 struct symbol *sym = syms[i].sym;
4716 struct block *block = syms[i].block;
4717 const char *name;
4718 const char *suffix;
4719
4720 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4721 continue;
4722 name = SYMBOL_LINKAGE_NAME (sym);
4723 suffix = strstr (name, "___XR");
4724
4725 if (suffix != NULL)
4726 {
4727 int name_len = suffix - name;
4728 int j;
5b4ee69b 4729
aeb5907d
JB
4730 is_new_style_renaming = 1;
4731 for (j = 0; j < nsyms; j += 1)
4732 if (i != j && syms[j].sym != NULL
4733 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4734 name_len) == 0
4735 && block == syms[j].block)
4736 syms[j].sym = NULL;
4737 }
4738 }
4739 if (is_new_style_renaming)
4740 {
4741 int j, k;
4742
4743 for (j = k = 0; j < nsyms; j += 1)
4744 if (syms[j].sym != NULL)
4745 {
4746 syms[k] = syms[j];
4747 k += 1;
4748 }
4749 return k;
4750 }
4c4b4cd2
PH
4751
4752 /* Extract the function name associated to CURRENT_BLOCK.
4753 Abort if unable to do so. */
76a01679 4754
4c4b4cd2
PH
4755 if (current_block == NULL)
4756 return nsyms;
76a01679 4757
7f0df278 4758 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4759 if (current_function == NULL)
4760 return nsyms;
4761
4762 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4763 if (current_function_name == NULL)
4764 return nsyms;
4765
4766 /* Check each of the symbols, and remove it from the list if it is
4767 a type corresponding to a renaming that is out of the scope of
4768 the current block. */
4769
4770 i = 0;
4771 while (i < nsyms)
4772 {
aeb5907d
JB
4773 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4774 == ADA_OBJECT_RENAMING
4775 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4776 {
4777 int j;
5b4ee69b 4778
aeb5907d 4779 for (j = i + 1; j < nsyms; j += 1)
76a01679 4780 syms[j - 1] = syms[j];
4c4b4cd2
PH
4781 nsyms -= 1;
4782 }
4783 else
4784 i += 1;
4785 }
4786
4787 return nsyms;
4788}
4789
339c13b6
JB
4790/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4791 whose name and domain match NAME and DOMAIN respectively.
4792 If no match was found, then extend the search to "enclosing"
4793 routines (in other words, if we're inside a nested function,
4794 search the symbols defined inside the enclosing functions).
4795
4796 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4797
4798static void
4799ada_add_local_symbols (struct obstack *obstackp, const char *name,
4800 struct block *block, domain_enum domain,
4801 int wild_match)
4802{
4803 int block_depth = 0;
4804
4805 while (block != NULL)
4806 {
4807 block_depth += 1;
4808 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4809
4810 /* If we found a non-function match, assume that's the one. */
4811 if (is_nonfunction (defns_collected (obstackp, 0),
4812 num_defns_collected (obstackp)))
4813 return;
4814
4815 block = BLOCK_SUPERBLOCK (block);
4816 }
4817
4818 /* If no luck so far, try to find NAME as a local symbol in some lexically
4819 enclosing subprogram. */
4820 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4821 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4822}
4823
ccefe4c4 4824/* An object of this type is used as the user_data argument when
40658b94 4825 calling the map_matching_symbols method. */
ccefe4c4 4826
40658b94 4827struct match_data
ccefe4c4 4828{
40658b94 4829 struct objfile *objfile;
ccefe4c4 4830 struct obstack *obstackp;
40658b94
PH
4831 struct symbol *arg_sym;
4832 int found_sym;
ccefe4c4
TT
4833};
4834
40658b94
PH
4835/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4836 to a list of symbols. DATA0 is a pointer to a struct match_data *
4837 containing the obstack that collects the symbol list, the file that SYM
4838 must come from, a flag indicating whether a non-argument symbol has
4839 been found in the current block, and the last argument symbol
4840 passed in SYM within the current block (if any). When SYM is null,
4841 marking the end of a block, the argument symbol is added if no
4842 other has been found. */
ccefe4c4 4843
40658b94
PH
4844static int
4845aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4846{
40658b94
PH
4847 struct match_data *data = (struct match_data *) data0;
4848
4849 if (sym == NULL)
4850 {
4851 if (!data->found_sym && data->arg_sym != NULL)
4852 add_defn_to_vec (data->obstackp,
4853 fixup_symbol_section (data->arg_sym, data->objfile),
4854 block);
4855 data->found_sym = 0;
4856 data->arg_sym = NULL;
4857 }
4858 else
4859 {
4860 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4861 return 0;
4862 else if (SYMBOL_IS_ARGUMENT (sym))
4863 data->arg_sym = sym;
4864 else
4865 {
4866 data->found_sym = 1;
4867 add_defn_to_vec (data->obstackp,
4868 fixup_symbol_section (sym, data->objfile),
4869 block);
4870 }
4871 }
4872 return 0;
4873}
4874
4875/* Compare STRING1 to STRING2, with results as for strcmp.
4876 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4877 implies compare_names (STRING1, STRING2) (they may differ as to
4878 what symbols compare equal). */
5b4ee69b 4879
40658b94
PH
4880static int
4881compare_names (const char *string1, const char *string2)
4882{
4883 while (*string1 != '\0' && *string2 != '\0')
4884 {
4885 if (isspace (*string1) || isspace (*string2))
4886 return strcmp_iw_ordered (string1, string2);
4887 if (*string1 != *string2)
4888 break;
4889 string1 += 1;
4890 string2 += 1;
4891 }
4892 switch (*string1)
4893 {
4894 case '(':
4895 return strcmp_iw_ordered (string1, string2);
4896 case '_':
4897 if (*string2 == '\0')
4898 {
052874e8 4899 if (is_name_suffix (string1))
40658b94
PH
4900 return 0;
4901 else
1a1d5513 4902 return 1;
40658b94 4903 }
dbb8534f 4904 /* FALLTHROUGH */
40658b94
PH
4905 default:
4906 if (*string2 == '(')
4907 return strcmp_iw_ordered (string1, string2);
4908 else
4909 return *string1 - *string2;
4910 }
ccefe4c4
TT
4911}
4912
339c13b6
JB
4913/* Add to OBSTACKP all non-local symbols whose name and domain match
4914 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4915 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4916
4917static void
40658b94
PH
4918add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4919 domain_enum domain, int global,
4920 int is_wild_match)
339c13b6
JB
4921{
4922 struct objfile *objfile;
40658b94 4923 struct match_data data;
339c13b6 4924
ccefe4c4 4925 data.obstackp = obstackp;
40658b94 4926 data.arg_sym = NULL;
339c13b6 4927
ccefe4c4 4928 ALL_OBJFILES (objfile)
40658b94
PH
4929 {
4930 data.objfile = objfile;
4931
4932 if (is_wild_match)
4933 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4934 aux_add_nonlocal_symbols, &data,
4935 wild_match, NULL);
4936 else
4937 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4938 aux_add_nonlocal_symbols, &data,
4939 full_match, compare_names);
4940 }
4941
4942 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4943 {
4944 ALL_OBJFILES (objfile)
4945 {
4946 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4947 strcpy (name1, "_ada_");
4948 strcpy (name1 + sizeof ("_ada_") - 1, name);
4949 data.objfile = objfile;
0963b4bd
MS
4950 objfile->sf->qf->map_matching_symbols (name1, domain,
4951 objfile, global,
4952 aux_add_nonlocal_symbols,
4953 &data,
40658b94
PH
4954 full_match, compare_names);
4955 }
4956 }
339c13b6
JB
4957}
4958
4c4b4cd2
PH
4959/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4960 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4961 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4962 indicating the symbols found and the blocks and symbol tables (if
4963 any) in which they were found. This vector are transient---good only to
4964 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4965 symbol match within the nest of blocks whose innermost member is BLOCK0,
4966 is the one match returned (no other matches in that or
4967 enclosing blocks is returned). If there are any matches in or
4968 surrounding BLOCK0, then these alone are returned. Otherwise, the
4969 search extends to global and file-scope (static) symbol tables.
4970 Names prefixed with "standard__" are handled specially: "standard__"
4971 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4972
4973int
4c4b4cd2 4974ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4975 domain_enum namespace,
4976 struct ada_symbol_info **results)
14f9c5c9
AS
4977{
4978 struct symbol *sym;
14f9c5c9 4979 struct block *block;
4c4b4cd2 4980 const char *name;
4c4b4cd2 4981 int wild_match;
14f9c5c9 4982 int cacheIfUnique;
4c4b4cd2 4983 int ndefns;
14f9c5c9 4984
4c4b4cd2
PH
4985 obstack_free (&symbol_list_obstack, NULL);
4986 obstack_init (&symbol_list_obstack);
14f9c5c9 4987
14f9c5c9
AS
4988 cacheIfUnique = 0;
4989
4990 /* Search specified block and its superiors. */
4991
4c4b4cd2
PH
4992 wild_match = (strstr (name0, "__") == NULL);
4993 name = name0;
76a01679
JB
4994 block = (struct block *) block0; /* FIXME: No cast ought to be
4995 needed, but adding const will
4996 have a cascade effect. */
339c13b6
JB
4997
4998 /* Special case: If the user specifies a symbol name inside package
4999 Standard, do a non-wild matching of the symbol name without
5000 the "standard__" prefix. This was primarily introduced in order
5001 to allow the user to specifically access the standard exceptions
5002 using, for instance, Standard.Constraint_Error when Constraint_Error
5003 is ambiguous (due to the user defining its own Constraint_Error
5004 entity inside its program). */
4c4b4cd2
PH
5005 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5006 {
5007 wild_match = 0;
5008 block = NULL;
5009 name = name0 + sizeof ("standard__") - 1;
5010 }
5011
339c13b6 5012 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5013
339c13b6
JB
5014 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5015 wild_match);
4c4b4cd2 5016 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 5017 goto done;
d2e4a39e 5018
339c13b6
JB
5019 /* No non-global symbols found. Check our cache to see if we have
5020 already performed this search before. If we have, then return
5021 the same result. */
5022
14f9c5c9 5023 cacheIfUnique = 1;
2570f2b7 5024 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5025 {
5026 if (sym != NULL)
2570f2b7 5027 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5028 goto done;
5029 }
14f9c5c9 5030
339c13b6
JB
5031 /* Search symbols from all global blocks. */
5032
40658b94
PH
5033 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5034 wild_match);
d2e4a39e 5035
4c4b4cd2 5036 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5037 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5038
4c4b4cd2 5039 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5040 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5041 wild_match);
14f9c5c9 5042
4c4b4cd2
PH
5043done:
5044 ndefns = num_defns_collected (&symbol_list_obstack);
5045 *results = defns_collected (&symbol_list_obstack, 1);
5046
5047 ndefns = remove_extra_symbols (*results, ndefns);
5048
d2e4a39e 5049 if (ndefns == 0)
2570f2b7 5050 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5051
4c4b4cd2 5052 if (ndefns == 1 && cacheIfUnique)
2570f2b7 5053 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5054
aeb5907d 5055 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5056
14f9c5c9
AS
5057 return ndefns;
5058}
5059
f8eba3c6
TT
5060/* If NAME is the name of an entity, return a string that should
5061 be used to look that entity up in Ada units. This string should
5062 be deallocated after use using xfree.
5063
5064 NAME can have any form that the "break" or "print" commands might
5065 recognize. In other words, it does not have to be the "natural"
5066 name, or the "encoded" name. */
5067
5068char *
5069ada_name_for_lookup (const char *name)
5070{
5071 char *canon;
5072 int nlen = strlen (name);
5073
5074 if (name[0] == '<' && name[nlen - 1] == '>')
5075 {
5076 canon = xmalloc (nlen - 1);
5077 memcpy (canon, name + 1, nlen - 2);
5078 canon[nlen - 2] = '\0';
5079 }
5080 else
5081 canon = xstrdup (ada_encode (ada_fold_name (name)));
5082 return canon;
5083}
5084
5085/* Implementation of the la_iterate_over_symbols method. */
5086
5087static void
5088ada_iterate_over_symbols (const struct block *block,
5089 const char *name, domain_enum domain,
5090 int (*callback) (struct symbol *, void *),
5091 void *data)
5092{
5093 int ndefs, i;
5094 struct ada_symbol_info *results;
5095
5096 ndefs = ada_lookup_symbol_list (name, block, domain, &results);
5097 for (i = 0; i < ndefs; ++i)
5098 {
5099 if (! (*callback) (results[i].sym, data))
5100 break;
5101 }
5102}
5103
d2e4a39e 5104struct symbol *
aeb5907d 5105ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5106 domain_enum namespace, struct block **block_found)
14f9c5c9 5107{
4c4b4cd2 5108 struct ada_symbol_info *candidates;
14f9c5c9
AS
5109 int n_candidates;
5110
aeb5907d 5111 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
5112
5113 if (n_candidates == 0)
5114 return NULL;
4c4b4cd2 5115
aeb5907d
JB
5116 if (block_found != NULL)
5117 *block_found = candidates[0].block;
4c4b4cd2 5118
21b556f4 5119 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5120}
5121
5122/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5123 scope and in global scopes, or NULL if none. NAME is folded and
5124 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5125 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5126 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5127 table in which the symbol was found (in both cases, these
5128 assignments occur only if the pointers are non-null). */
5129struct symbol *
5130ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5131 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5132{
5133 if (is_a_field_of_this != NULL)
5134 *is_a_field_of_this = 0;
5135
5136 return
5137 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5138 block0, namespace, NULL);
4c4b4cd2 5139}
14f9c5c9 5140
4c4b4cd2
PH
5141static struct symbol *
5142ada_lookup_symbol_nonlocal (const char *name,
76a01679 5143 const struct block *block,
21b556f4 5144 const domain_enum domain)
4c4b4cd2 5145{
94af9270 5146 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5147}
5148
5149
4c4b4cd2
PH
5150/* True iff STR is a possible encoded suffix of a normal Ada name
5151 that is to be ignored for matching purposes. Suffixes of parallel
5152 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5153 are given by any of the regular expressions:
4c4b4cd2 5154
babe1480
JB
5155 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5156 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5157 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5158 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5159
5160 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5161 match is performed. This sequence is used to differentiate homonyms,
5162 is an optional part of a valid name suffix. */
4c4b4cd2 5163
14f9c5c9 5164static int
d2e4a39e 5165is_name_suffix (const char *str)
14f9c5c9
AS
5166{
5167 int k;
4c4b4cd2
PH
5168 const char *matching;
5169 const int len = strlen (str);
5170
babe1480
JB
5171 /* Skip optional leading __[0-9]+. */
5172
4c4b4cd2
PH
5173 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5174 {
babe1480
JB
5175 str += 3;
5176 while (isdigit (str[0]))
5177 str += 1;
4c4b4cd2 5178 }
babe1480
JB
5179
5180 /* [.$][0-9]+ */
4c4b4cd2 5181
babe1480 5182 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5183 {
babe1480 5184 matching = str + 1;
4c4b4cd2
PH
5185 while (isdigit (matching[0]))
5186 matching += 1;
5187 if (matching[0] == '\0')
5188 return 1;
5189 }
5190
5191 /* ___[0-9]+ */
babe1480 5192
4c4b4cd2
PH
5193 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5194 {
5195 matching = str + 3;
5196 while (isdigit (matching[0]))
5197 matching += 1;
5198 if (matching[0] == '\0')
5199 return 1;
5200 }
5201
529cad9c
PH
5202#if 0
5203 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5204 with a N at the end. Unfortunately, the compiler uses the same
5205 convention for other internal types it creates. So treating
529cad9c 5206 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5207 some regressions. For instance, consider the case of an enumerated
5208 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5209 name ends with N.
5210 Having a single character like this as a suffix carrying some
0963b4bd 5211 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5212 to be something like "_N" instead. In the meantime, do not do
5213 the following check. */
5214 /* Protected Object Subprograms */
5215 if (len == 1 && str [0] == 'N')
5216 return 1;
5217#endif
5218
5219 /* _E[0-9]+[bs]$ */
5220 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5221 {
5222 matching = str + 3;
5223 while (isdigit (matching[0]))
5224 matching += 1;
5225 if ((matching[0] == 'b' || matching[0] == 's')
5226 && matching [1] == '\0')
5227 return 1;
5228 }
5229
4c4b4cd2
PH
5230 /* ??? We should not modify STR directly, as we are doing below. This
5231 is fine in this case, but may become problematic later if we find
5232 that this alternative did not work, and want to try matching
5233 another one from the begining of STR. Since we modified it, we
5234 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5235 if (str[0] == 'X')
5236 {
5237 str += 1;
d2e4a39e 5238 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5239 {
5240 if (str[0] != 'n' && str[0] != 'b')
5241 return 0;
5242 str += 1;
5243 }
14f9c5c9 5244 }
babe1480 5245
14f9c5c9
AS
5246 if (str[0] == '\000')
5247 return 1;
babe1480 5248
d2e4a39e 5249 if (str[0] == '_')
14f9c5c9
AS
5250 {
5251 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5252 return 0;
d2e4a39e 5253 if (str[2] == '_')
4c4b4cd2 5254 {
61ee279c
PH
5255 if (strcmp (str + 3, "JM") == 0)
5256 return 1;
5257 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5258 the LJM suffix in favor of the JM one. But we will
5259 still accept LJM as a valid suffix for a reasonable
5260 amount of time, just to allow ourselves to debug programs
5261 compiled using an older version of GNAT. */
4c4b4cd2
PH
5262 if (strcmp (str + 3, "LJM") == 0)
5263 return 1;
5264 if (str[3] != 'X')
5265 return 0;
1265e4aa
JB
5266 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5267 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5268 return 1;
5269 if (str[4] == 'R' && str[5] != 'T')
5270 return 1;
5271 return 0;
5272 }
5273 if (!isdigit (str[2]))
5274 return 0;
5275 for (k = 3; str[k] != '\0'; k += 1)
5276 if (!isdigit (str[k]) && str[k] != '_')
5277 return 0;
14f9c5c9
AS
5278 return 1;
5279 }
4c4b4cd2 5280 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5281 {
4c4b4cd2
PH
5282 for (k = 2; str[k] != '\0'; k += 1)
5283 if (!isdigit (str[k]) && str[k] != '_')
5284 return 0;
14f9c5c9
AS
5285 return 1;
5286 }
5287 return 0;
5288}
d2e4a39e 5289
aeb5907d
JB
5290/* Return non-zero if the string starting at NAME and ending before
5291 NAME_END contains no capital letters. */
529cad9c
PH
5292
5293static int
5294is_valid_name_for_wild_match (const char *name0)
5295{
5296 const char *decoded_name = ada_decode (name0);
5297 int i;
5298
5823c3ef
JB
5299 /* If the decoded name starts with an angle bracket, it means that
5300 NAME0 does not follow the GNAT encoding format. It should then
5301 not be allowed as a possible wild match. */
5302 if (decoded_name[0] == '<')
5303 return 0;
5304
529cad9c
PH
5305 for (i=0; decoded_name[i] != '\0'; i++)
5306 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5307 return 0;
5308
5309 return 1;
5310}
5311
73589123
PH
5312/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5313 that could start a simple name. Assumes that *NAMEP points into
5314 the string beginning at NAME0. */
4c4b4cd2 5315
14f9c5c9 5316static int
73589123 5317advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5318{
73589123 5319 const char *name = *namep;
5b4ee69b 5320
5823c3ef 5321 while (1)
14f9c5c9 5322 {
aa27d0b3 5323 int t0, t1;
73589123
PH
5324
5325 t0 = *name;
5326 if (t0 == '_')
5327 {
5328 t1 = name[1];
5329 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5330 {
5331 name += 1;
5332 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5333 break;
5334 else
5335 name += 1;
5336 }
aa27d0b3
JB
5337 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5338 || name[2] == target0))
73589123
PH
5339 {
5340 name += 2;
5341 break;
5342 }
5343 else
5344 return 0;
5345 }
5346 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5347 name += 1;
5348 else
5823c3ef 5349 return 0;
73589123
PH
5350 }
5351
5352 *namep = name;
5353 return 1;
5354}
5355
5356/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5357 informational suffixes of NAME (i.e., for which is_name_suffix is
5358 true). Assumes that PATN is a lower-cased Ada simple name. */
5359
5360static int
5361wild_match (const char *name, const char *patn)
5362{
5363 const char *p, *n;
5364 const char *name0 = name;
5365
5366 while (1)
5367 {
5368 const char *match = name;
5369
5370 if (*name == *patn)
5371 {
5372 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5373 if (*p != *name)
5374 break;
5375 if (*p == '\0' && is_name_suffix (name))
5376 return match != name0 && !is_valid_name_for_wild_match (name0);
5377
5378 if (name[-1] == '_')
5379 name -= 1;
5380 }
5381 if (!advance_wild_match (&name, name0, *patn))
5382 return 1;
96d887e8 5383 }
96d887e8
PH
5384}
5385
40658b94
PH
5386/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5387 informational suffix. */
5388
c4d840bd
PH
5389static int
5390full_match (const char *sym_name, const char *search_name)
5391{
40658b94 5392 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5393}
5394
5395
96d887e8
PH
5396/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5397 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5398 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5399 OBJFILE is the section containing BLOCK.
5400 SYMTAB is recorded with each symbol added. */
5401
5402static void
5403ada_add_block_symbols (struct obstack *obstackp,
76a01679 5404 struct block *block, const char *name,
96d887e8 5405 domain_enum domain, struct objfile *objfile,
2570f2b7 5406 int wild)
96d887e8
PH
5407{
5408 struct dict_iterator iter;
5409 int name_len = strlen (name);
5410 /* A matching argument symbol, if any. */
5411 struct symbol *arg_sym;
5412 /* Set true when we find a matching non-argument symbol. */
5413 int found_sym;
5414 struct symbol *sym;
5415
5416 arg_sym = NULL;
5417 found_sym = 0;
5418 if (wild)
5419 {
c4d840bd
PH
5420 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5421 wild_match, &iter);
5422 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5423 {
5eeb2539
AR
5424 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5425 SYMBOL_DOMAIN (sym), domain)
73589123 5426 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5427 {
2a2d4dc3
AS
5428 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5429 continue;
5430 else if (SYMBOL_IS_ARGUMENT (sym))
5431 arg_sym = sym;
5432 else
5433 {
76a01679
JB
5434 found_sym = 1;
5435 add_defn_to_vec (obstackp,
5436 fixup_symbol_section (sym, objfile),
2570f2b7 5437 block);
76a01679
JB
5438 }
5439 }
5440 }
96d887e8
PH
5441 }
5442 else
5443 {
c4d840bd 5444 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5445 full_match, &iter);
c4d840bd 5446 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5447 {
5eeb2539
AR
5448 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5449 SYMBOL_DOMAIN (sym), domain))
76a01679 5450 {
c4d840bd
PH
5451 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5452 {
5453 if (SYMBOL_IS_ARGUMENT (sym))
5454 arg_sym = sym;
5455 else
2a2d4dc3 5456 {
c4d840bd
PH
5457 found_sym = 1;
5458 add_defn_to_vec (obstackp,
5459 fixup_symbol_section (sym, objfile),
5460 block);
2a2d4dc3 5461 }
c4d840bd 5462 }
76a01679
JB
5463 }
5464 }
96d887e8
PH
5465 }
5466
5467 if (!found_sym && arg_sym != NULL)
5468 {
76a01679
JB
5469 add_defn_to_vec (obstackp,
5470 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5471 block);
96d887e8
PH
5472 }
5473
5474 if (!wild)
5475 {
5476 arg_sym = NULL;
5477 found_sym = 0;
5478
5479 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5480 {
5eeb2539
AR
5481 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5482 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5483 {
5484 int cmp;
5485
5486 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5487 if (cmp == 0)
5488 {
5489 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5490 if (cmp == 0)
5491 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5492 name_len);
5493 }
5494
5495 if (cmp == 0
5496 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5497 {
2a2d4dc3
AS
5498 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5499 {
5500 if (SYMBOL_IS_ARGUMENT (sym))
5501 arg_sym = sym;
5502 else
5503 {
5504 found_sym = 1;
5505 add_defn_to_vec (obstackp,
5506 fixup_symbol_section (sym, objfile),
5507 block);
5508 }
5509 }
76a01679
JB
5510 }
5511 }
76a01679 5512 }
96d887e8
PH
5513
5514 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5515 They aren't parameters, right? */
5516 if (!found_sym && arg_sym != NULL)
5517 {
5518 add_defn_to_vec (obstackp,
76a01679 5519 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5520 block);
96d887e8
PH
5521 }
5522 }
5523}
5524\f
41d27058
JB
5525
5526 /* Symbol Completion */
5527
5528/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5529 name in a form that's appropriate for the completion. The result
5530 does not need to be deallocated, but is only good until the next call.
5531
5532 TEXT_LEN is equal to the length of TEXT.
5533 Perform a wild match if WILD_MATCH is set.
5534 ENCODED should be set if TEXT represents the start of a symbol name
5535 in its encoded form. */
5536
5537static const char *
5538symbol_completion_match (const char *sym_name,
5539 const char *text, int text_len,
5540 int wild_match, int encoded)
5541{
41d27058
JB
5542 const int verbatim_match = (text[0] == '<');
5543 int match = 0;
5544
5545 if (verbatim_match)
5546 {
5547 /* Strip the leading angle bracket. */
5548 text = text + 1;
5549 text_len--;
5550 }
5551
5552 /* First, test against the fully qualified name of the symbol. */
5553
5554 if (strncmp (sym_name, text, text_len) == 0)
5555 match = 1;
5556
5557 if (match && !encoded)
5558 {
5559 /* One needed check before declaring a positive match is to verify
5560 that iff we are doing a verbatim match, the decoded version
5561 of the symbol name starts with '<'. Otherwise, this symbol name
5562 is not a suitable completion. */
5563 const char *sym_name_copy = sym_name;
5564 int has_angle_bracket;
5565
5566 sym_name = ada_decode (sym_name);
5567 has_angle_bracket = (sym_name[0] == '<');
5568 match = (has_angle_bracket == verbatim_match);
5569 sym_name = sym_name_copy;
5570 }
5571
5572 if (match && !verbatim_match)
5573 {
5574 /* When doing non-verbatim match, another check that needs to
5575 be done is to verify that the potentially matching symbol name
5576 does not include capital letters, because the ada-mode would
5577 not be able to understand these symbol names without the
5578 angle bracket notation. */
5579 const char *tmp;
5580
5581 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5582 if (*tmp != '\0')
5583 match = 0;
5584 }
5585
5586 /* Second: Try wild matching... */
5587
5588 if (!match && wild_match)
5589 {
5590 /* Since we are doing wild matching, this means that TEXT
5591 may represent an unqualified symbol name. We therefore must
5592 also compare TEXT against the unqualified name of the symbol. */
5593 sym_name = ada_unqualified_name (ada_decode (sym_name));
5594
5595 if (strncmp (sym_name, text, text_len) == 0)
5596 match = 1;
5597 }
5598
5599 /* Finally: If we found a mach, prepare the result to return. */
5600
5601 if (!match)
5602 return NULL;
5603
5604 if (verbatim_match)
5605 sym_name = add_angle_brackets (sym_name);
5606
5607 if (!encoded)
5608 sym_name = ada_decode (sym_name);
5609
5610 return sym_name;
5611}
5612
2ba95b9b
JB
5613DEF_VEC_P (char_ptr);
5614
41d27058
JB
5615/* A companion function to ada_make_symbol_completion_list().
5616 Check if SYM_NAME represents a symbol which name would be suitable
5617 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5618 it is appended at the end of the given string vector SV.
5619
5620 ORIG_TEXT is the string original string from the user command
5621 that needs to be completed. WORD is the entire command on which
5622 completion should be performed. These two parameters are used to
5623 determine which part of the symbol name should be added to the
5624 completion vector.
5625 if WILD_MATCH is set, then wild matching is performed.
5626 ENCODED should be set if TEXT represents a symbol name in its
5627 encoded formed (in which case the completion should also be
5628 encoded). */
5629
5630static void
d6565258 5631symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5632 const char *sym_name,
5633 const char *text, int text_len,
5634 const char *orig_text, const char *word,
5635 int wild_match, int encoded)
5636{
5637 const char *match = symbol_completion_match (sym_name, text, text_len,
5638 wild_match, encoded);
5639 char *completion;
5640
5641 if (match == NULL)
5642 return;
5643
5644 /* We found a match, so add the appropriate completion to the given
5645 string vector. */
5646
5647 if (word == orig_text)
5648 {
5649 completion = xmalloc (strlen (match) + 5);
5650 strcpy (completion, match);
5651 }
5652 else if (word > orig_text)
5653 {
5654 /* Return some portion of sym_name. */
5655 completion = xmalloc (strlen (match) + 5);
5656 strcpy (completion, match + (word - orig_text));
5657 }
5658 else
5659 {
5660 /* Return some of ORIG_TEXT plus sym_name. */
5661 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5662 strncpy (completion, word, orig_text - word);
5663 completion[orig_text - word] = '\0';
5664 strcat (completion, match);
5665 }
5666
d6565258 5667 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5668}
5669
ccefe4c4 5670/* An object of this type is passed as the user_data argument to the
7b08b9eb 5671 expand_partial_symbol_names method. */
ccefe4c4
TT
5672struct add_partial_datum
5673{
5674 VEC(char_ptr) **completions;
5675 char *text;
5676 int text_len;
5677 char *text0;
5678 char *word;
5679 int wild_match;
5680 int encoded;
5681};
5682
7b08b9eb
JK
5683/* A callback for expand_partial_symbol_names. */
5684static int
f8eba3c6
TT
5685ada_expand_partial_symbol_name (const struct language_defn *language,
5686 const char *name, void *user_data)
ccefe4c4
TT
5687{
5688 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5689
5690 return symbol_completion_match (name, data->text, data->text_len,
5691 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5692}
5693
41d27058
JB
5694/* Return a list of possible symbol names completing TEXT0. The list
5695 is NULL terminated. WORD is the entire command on which completion
5696 is made. */
5697
5698static char **
5699ada_make_symbol_completion_list (char *text0, char *word)
5700{
5701 char *text;
5702 int text_len;
5703 int wild_match;
5704 int encoded;
2ba95b9b 5705 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5706 struct symbol *sym;
5707 struct symtab *s;
41d27058
JB
5708 struct minimal_symbol *msymbol;
5709 struct objfile *objfile;
5710 struct block *b, *surrounding_static_block = 0;
5711 int i;
5712 struct dict_iterator iter;
5713
5714 if (text0[0] == '<')
5715 {
5716 text = xstrdup (text0);
5717 make_cleanup (xfree, text);
5718 text_len = strlen (text);
5719 wild_match = 0;
5720 encoded = 1;
5721 }
5722 else
5723 {
5724 text = xstrdup (ada_encode (text0));
5725 make_cleanup (xfree, text);
5726 text_len = strlen (text);
5727 for (i = 0; i < text_len; i++)
5728 text[i] = tolower (text[i]);
5729
5730 encoded = (strstr (text0, "__") != NULL);
5731 /* If the name contains a ".", then the user is entering a fully
5732 qualified entity name, and the match must not be done in wild
5733 mode. Similarly, if the user wants to complete what looks like
5734 an encoded name, the match must not be done in wild mode. */
5735 wild_match = (strchr (text0, '.') == NULL && !encoded);
5736 }
5737
5738 /* First, look at the partial symtab symbols. */
41d27058 5739 {
ccefe4c4
TT
5740 struct add_partial_datum data;
5741
5742 data.completions = &completions;
5743 data.text = text;
5744 data.text_len = text_len;
5745 data.text0 = text0;
5746 data.word = word;
5747 data.wild_match = wild_match;
5748 data.encoded = encoded;
7b08b9eb 5749 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5750 }
5751
5752 /* At this point scan through the misc symbol vectors and add each
5753 symbol you find to the list. Eventually we want to ignore
5754 anything that isn't a text symbol (everything else will be
5755 handled by the psymtab code above). */
5756
5757 ALL_MSYMBOLS (objfile, msymbol)
5758 {
5759 QUIT;
d6565258 5760 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5761 text, text_len, text0, word, wild_match, encoded);
5762 }
5763
5764 /* Search upwards from currently selected frame (so that we can
5765 complete on local vars. */
5766
5767 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5768 {
5769 if (!BLOCK_SUPERBLOCK (b))
5770 surrounding_static_block = b; /* For elmin of dups */
5771
5772 ALL_BLOCK_SYMBOLS (b, iter, sym)
5773 {
d6565258 5774 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5775 text, text_len, text0, word,
5776 wild_match, encoded);
5777 }
5778 }
5779
5780 /* Go through the symtabs and check the externs and statics for
5781 symbols which match. */
5782
5783 ALL_SYMTABS (objfile, s)
5784 {
5785 QUIT;
5786 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5787 ALL_BLOCK_SYMBOLS (b, iter, sym)
5788 {
d6565258 5789 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5790 text, text_len, text0, word,
5791 wild_match, encoded);
5792 }
5793 }
5794
5795 ALL_SYMTABS (objfile, s)
5796 {
5797 QUIT;
5798 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5799 /* Don't do this block twice. */
5800 if (b == surrounding_static_block)
5801 continue;
5802 ALL_BLOCK_SYMBOLS (b, iter, sym)
5803 {
d6565258 5804 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5805 text, text_len, text0, word,
5806 wild_match, encoded);
5807 }
5808 }
5809
5810 /* Append the closing NULL entry. */
2ba95b9b 5811 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5812
2ba95b9b
JB
5813 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5814 return the copy. It's unfortunate that we have to make a copy
5815 of an array that we're about to destroy, but there is nothing much
5816 we can do about it. Fortunately, it's typically not a very large
5817 array. */
5818 {
5819 const size_t completions_size =
5820 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5821 char **result = xmalloc (completions_size);
2ba95b9b
JB
5822
5823 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5824
5825 VEC_free (char_ptr, completions);
5826 return result;
5827 }
41d27058
JB
5828}
5829
963a6417 5830 /* Field Access */
96d887e8 5831
73fb9985
JB
5832/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5833 for tagged types. */
5834
5835static int
5836ada_is_dispatch_table_ptr_type (struct type *type)
5837{
5838 char *name;
5839
5840 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5841 return 0;
5842
5843 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5844 if (name == NULL)
5845 return 0;
5846
5847 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5848}
5849
963a6417
PH
5850/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5851 to be invisible to users. */
96d887e8 5852
963a6417
PH
5853int
5854ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5855{
963a6417
PH
5856 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5857 return 1;
73fb9985
JB
5858
5859 /* Check the name of that field. */
5860 {
5861 const char *name = TYPE_FIELD_NAME (type, field_num);
5862
5863 /* Anonymous field names should not be printed.
5864 brobecker/2007-02-20: I don't think this can actually happen
5865 but we don't want to print the value of annonymous fields anyway. */
5866 if (name == NULL)
5867 return 1;
5868
5869 /* A field named "_parent" is internally generated by GNAT for
5870 tagged types, and should not be printed either. */
5871 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5872 return 1;
5873 }
5874
5875 /* If this is the dispatch table of a tagged type, then ignore. */
5876 if (ada_is_tagged_type (type, 1)
5877 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5878 return 1;
5879
5880 /* Not a special field, so it should not be ignored. */
5881 return 0;
963a6417 5882}
96d887e8 5883
963a6417 5884/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5885 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5886
963a6417
PH
5887int
5888ada_is_tagged_type (struct type *type, int refok)
5889{
5890 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5891}
96d887e8 5892
963a6417 5893/* True iff TYPE represents the type of X'Tag */
96d887e8 5894
963a6417
PH
5895int
5896ada_is_tag_type (struct type *type)
5897{
5898 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5899 return 0;
5900 else
96d887e8 5901 {
963a6417 5902 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5903
963a6417
PH
5904 return (name != NULL
5905 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5906 }
96d887e8
PH
5907}
5908
963a6417 5909/* The type of the tag on VAL. */
76a01679 5910
963a6417
PH
5911struct type *
5912ada_tag_type (struct value *val)
96d887e8 5913{
df407dfe 5914 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5915}
96d887e8 5916
963a6417 5917/* The value of the tag on VAL. */
96d887e8 5918
963a6417
PH
5919struct value *
5920ada_value_tag (struct value *val)
5921{
03ee6b2e 5922 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5923}
5924
963a6417
PH
5925/* The value of the tag on the object of type TYPE whose contents are
5926 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5927 ADDRESS. */
96d887e8 5928
963a6417 5929static struct value *
10a2c479 5930value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5931 const gdb_byte *valaddr,
963a6417 5932 CORE_ADDR address)
96d887e8 5933{
b5385fc0 5934 int tag_byte_offset;
963a6417 5935 struct type *tag_type;
5b4ee69b 5936
963a6417 5937 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5938 NULL, NULL, NULL))
96d887e8 5939 {
fc1a4b47 5940 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5941 ? NULL
5942 : valaddr + tag_byte_offset);
963a6417 5943 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5944
963a6417 5945 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5946 }
963a6417
PH
5947 return NULL;
5948}
96d887e8 5949
963a6417
PH
5950static struct type *
5951type_from_tag (struct value *tag)
5952{
5953 const char *type_name = ada_tag_name (tag);
5b4ee69b 5954
963a6417
PH
5955 if (type_name != NULL)
5956 return ada_find_any_type (ada_encode (type_name));
5957 return NULL;
5958}
96d887e8 5959
963a6417
PH
5960struct tag_args
5961{
5962 struct value *tag;
5963 char *name;
5964};
4c4b4cd2 5965
529cad9c
PH
5966
5967static int ada_tag_name_1 (void *);
5968static int ada_tag_name_2 (struct tag_args *);
5969
4c4b4cd2 5970/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5971 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5972 The value stored in ARGS->name is valid until the next call to
5973 ada_tag_name_1. */
5974
5975static int
5976ada_tag_name_1 (void *args0)
5977{
5978 struct tag_args *args = (struct tag_args *) args0;
5979 static char name[1024];
76a01679 5980 char *p;
4c4b4cd2 5981 struct value *val;
5b4ee69b 5982
4c4b4cd2 5983 args->name = NULL;
03ee6b2e 5984 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5985 if (val == NULL)
5986 return ada_tag_name_2 (args);
03ee6b2e 5987 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5988 if (val == NULL)
5989 return 0;
5990 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5991 for (p = name; *p != '\0'; p += 1)
5992 if (isalpha (*p))
5993 *p = tolower (*p);
5994 args->name = name;
5995 return 0;
5996}
5997
e802dbe0
JB
5998/* Return the "ada__tags__type_specific_data" type. */
5999
6000static struct type *
6001ada_get_tsd_type (struct inferior *inf)
6002{
6003 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6004
6005 if (data->tsd_type == 0)
6006 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6007 return data->tsd_type;
6008}
6009
529cad9c
PH
6010/* Utility function for ada_tag_name_1 that tries the second
6011 representation for the dispatch table (in which there is no
6012 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 6013 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
6014
6015static int
6016ada_tag_name_2 (struct tag_args *args)
6017{
6018 struct type *info_type;
6019 static char name[1024];
6020 char *p;
6021 struct value *val, *valp;
6022
6023 args->name = NULL;
e802dbe0 6024 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
6025 if (info_type == NULL)
6026 return 0;
6027 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6028 valp = value_cast (info_type, args->tag);
6029 if (valp == NULL)
6030 return 0;
2497b498 6031 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
6032 if (val == NULL)
6033 return 0;
03ee6b2e 6034 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
6035 if (val == NULL)
6036 return 0;
6037 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6038 for (p = name; *p != '\0'; p += 1)
6039 if (isalpha (*p))
6040 *p = tolower (*p);
6041 args->name = name;
6042 return 0;
6043}
6044
6045/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 6046 a C string. */
4c4b4cd2
PH
6047
6048const char *
6049ada_tag_name (struct value *tag)
6050{
6051 struct tag_args args;
5b4ee69b 6052
df407dfe 6053 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6054 return NULL;
76a01679 6055 args.tag = tag;
4c4b4cd2
PH
6056 args.name = NULL;
6057 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6058 return args.name;
6059}
6060
6061/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6062
d2e4a39e 6063struct type *
ebf56fd3 6064ada_parent_type (struct type *type)
14f9c5c9
AS
6065{
6066 int i;
6067
61ee279c 6068 type = ada_check_typedef (type);
14f9c5c9
AS
6069
6070 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6071 return NULL;
6072
6073 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6074 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6075 {
6076 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6077
6078 /* If the _parent field is a pointer, then dereference it. */
6079 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6080 parent_type = TYPE_TARGET_TYPE (parent_type);
6081 /* If there is a parallel XVS type, get the actual base type. */
6082 parent_type = ada_get_base_type (parent_type);
6083
6084 return ada_check_typedef (parent_type);
6085 }
14f9c5c9
AS
6086
6087 return NULL;
6088}
6089
4c4b4cd2
PH
6090/* True iff field number FIELD_NUM of structure type TYPE contains the
6091 parent-type (inherited) fields of a derived type. Assumes TYPE is
6092 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6093
6094int
ebf56fd3 6095ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6096{
61ee279c 6097 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6098
4c4b4cd2
PH
6099 return (name != NULL
6100 && (strncmp (name, "PARENT", 6) == 0
6101 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6102}
6103
4c4b4cd2 6104/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6105 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6106 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6107 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6108 structures. */
14f9c5c9
AS
6109
6110int
ebf56fd3 6111ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6112{
d2e4a39e 6113 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6114
d2e4a39e 6115 return (name != NULL
4c4b4cd2
PH
6116 && (strncmp (name, "PARENT", 6) == 0
6117 || strcmp (name, "REP") == 0
6118 || strncmp (name, "_parent", 7) == 0
6119 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6120}
6121
4c4b4cd2
PH
6122/* True iff field number FIELD_NUM of structure or union type TYPE
6123 is a variant wrapper. Assumes TYPE is a structure type with at least
6124 FIELD_NUM+1 fields. */
14f9c5c9
AS
6125
6126int
ebf56fd3 6127ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6128{
d2e4a39e 6129 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6130
14f9c5c9 6131 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6132 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6133 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6134 == TYPE_CODE_UNION)));
14f9c5c9
AS
6135}
6136
6137/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6138 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6139 returns the type of the controlling discriminant for the variant.
6140 May return NULL if the type could not be found. */
14f9c5c9 6141
d2e4a39e 6142struct type *
ebf56fd3 6143ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6144{
d2e4a39e 6145 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6146
7c964f07 6147 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6148}
6149
4c4b4cd2 6150/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6151 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6152 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6153
6154int
ebf56fd3 6155ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6156{
d2e4a39e 6157 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6158
14f9c5c9
AS
6159 return (name != NULL && name[0] == 'O');
6160}
6161
6162/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6163 returns the name of the discriminant controlling the variant.
6164 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6165
d2e4a39e 6166char *
ebf56fd3 6167ada_variant_discrim_name (struct type *type0)
14f9c5c9 6168{
d2e4a39e 6169 static char *result = NULL;
14f9c5c9 6170 static size_t result_len = 0;
d2e4a39e
AS
6171 struct type *type;
6172 const char *name;
6173 const char *discrim_end;
6174 const char *discrim_start;
14f9c5c9
AS
6175
6176 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6177 type = TYPE_TARGET_TYPE (type0);
6178 else
6179 type = type0;
6180
6181 name = ada_type_name (type);
6182
6183 if (name == NULL || name[0] == '\000')
6184 return "";
6185
6186 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6187 discrim_end -= 1)
6188 {
4c4b4cd2
PH
6189 if (strncmp (discrim_end, "___XVN", 6) == 0)
6190 break;
14f9c5c9
AS
6191 }
6192 if (discrim_end == name)
6193 return "";
6194
d2e4a39e 6195 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6196 discrim_start -= 1)
6197 {
d2e4a39e 6198 if (discrim_start == name + 1)
4c4b4cd2 6199 return "";
76a01679 6200 if ((discrim_start > name + 3
4c4b4cd2
PH
6201 && strncmp (discrim_start - 3, "___", 3) == 0)
6202 || discrim_start[-1] == '.')
6203 break;
14f9c5c9
AS
6204 }
6205
6206 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6207 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6208 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6209 return result;
6210}
6211
4c4b4cd2
PH
6212/* Scan STR for a subtype-encoded number, beginning at position K.
6213 Put the position of the character just past the number scanned in
6214 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6215 Return 1 if there was a valid number at the given position, and 0
6216 otherwise. A "subtype-encoded" number consists of the absolute value
6217 in decimal, followed by the letter 'm' to indicate a negative number.
6218 Assumes 0m does not occur. */
14f9c5c9
AS
6219
6220int
d2e4a39e 6221ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6222{
6223 ULONGEST RU;
6224
d2e4a39e 6225 if (!isdigit (str[k]))
14f9c5c9
AS
6226 return 0;
6227
4c4b4cd2 6228 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6229 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6230 LONGEST. */
14f9c5c9
AS
6231 RU = 0;
6232 while (isdigit (str[k]))
6233 {
d2e4a39e 6234 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6235 k += 1;
6236 }
6237
d2e4a39e 6238 if (str[k] == 'm')
14f9c5c9
AS
6239 {
6240 if (R != NULL)
4c4b4cd2 6241 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6242 k += 1;
6243 }
6244 else if (R != NULL)
6245 *R = (LONGEST) RU;
6246
4c4b4cd2 6247 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6248 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6249 number representable as a LONGEST (although either would probably work
6250 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6251 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6252
6253 if (new_k != NULL)
6254 *new_k = k;
6255 return 1;
6256}
6257
4c4b4cd2
PH
6258/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6259 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6260 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6261
d2e4a39e 6262int
ebf56fd3 6263ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6264{
d2e4a39e 6265 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6266 int p;
6267
6268 p = 0;
6269 while (1)
6270 {
d2e4a39e 6271 switch (name[p])
4c4b4cd2
PH
6272 {
6273 case '\0':
6274 return 0;
6275 case 'S':
6276 {
6277 LONGEST W;
5b4ee69b 6278
4c4b4cd2
PH
6279 if (!ada_scan_number (name, p + 1, &W, &p))
6280 return 0;
6281 if (val == W)
6282 return 1;
6283 break;
6284 }
6285 case 'R':
6286 {
6287 LONGEST L, U;
5b4ee69b 6288
4c4b4cd2
PH
6289 if (!ada_scan_number (name, p + 1, &L, &p)
6290 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6291 return 0;
6292 if (val >= L && val <= U)
6293 return 1;
6294 break;
6295 }
6296 case 'O':
6297 return 1;
6298 default:
6299 return 0;
6300 }
6301 }
6302}
6303
0963b4bd 6304/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6305
6306/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6307 ARG_TYPE, extract and return the value of one of its (non-static)
6308 fields. FIELDNO says which field. Differs from value_primitive_field
6309 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6310
4c4b4cd2 6311static struct value *
d2e4a39e 6312ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6313 struct type *arg_type)
14f9c5c9 6314{
14f9c5c9
AS
6315 struct type *type;
6316
61ee279c 6317 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6318 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6319
4c4b4cd2 6320 /* Handle packed fields. */
14f9c5c9
AS
6321
6322 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6323 {
6324 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6325 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6326
0fd88904 6327 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6328 offset + bit_pos / 8,
6329 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6330 }
6331 else
6332 return value_primitive_field (arg1, offset, fieldno, arg_type);
6333}
6334
52ce6436
PH
6335/* Find field with name NAME in object of type TYPE. If found,
6336 set the following for each argument that is non-null:
6337 - *FIELD_TYPE_P to the field's type;
6338 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6339 an object of that type;
6340 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6341 - *BIT_SIZE_P to its size in bits if the field is packed, and
6342 0 otherwise;
6343 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6344 fields up to but not including the desired field, or by the total
6345 number of fields if not found. A NULL value of NAME never
6346 matches; the function just counts visible fields in this case.
6347
0963b4bd 6348 Returns 1 if found, 0 otherwise. */
52ce6436 6349
4c4b4cd2 6350static int
76a01679
JB
6351find_struct_field (char *name, struct type *type, int offset,
6352 struct type **field_type_p,
52ce6436
PH
6353 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6354 int *index_p)
4c4b4cd2
PH
6355{
6356 int i;
6357
61ee279c 6358 type = ada_check_typedef (type);
76a01679 6359
52ce6436
PH
6360 if (field_type_p != NULL)
6361 *field_type_p = NULL;
6362 if (byte_offset_p != NULL)
d5d6fca5 6363 *byte_offset_p = 0;
52ce6436
PH
6364 if (bit_offset_p != NULL)
6365 *bit_offset_p = 0;
6366 if (bit_size_p != NULL)
6367 *bit_size_p = 0;
6368
6369 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6370 {
6371 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6372 int fld_offset = offset + bit_pos / 8;
6373 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6374
4c4b4cd2
PH
6375 if (t_field_name == NULL)
6376 continue;
6377
52ce6436 6378 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6379 {
6380 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6381
52ce6436
PH
6382 if (field_type_p != NULL)
6383 *field_type_p = TYPE_FIELD_TYPE (type, i);
6384 if (byte_offset_p != NULL)
6385 *byte_offset_p = fld_offset;
6386 if (bit_offset_p != NULL)
6387 *bit_offset_p = bit_pos % 8;
6388 if (bit_size_p != NULL)
6389 *bit_size_p = bit_size;
76a01679
JB
6390 return 1;
6391 }
4c4b4cd2
PH
6392 else if (ada_is_wrapper_field (type, i))
6393 {
52ce6436
PH
6394 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6395 field_type_p, byte_offset_p, bit_offset_p,
6396 bit_size_p, index_p))
76a01679
JB
6397 return 1;
6398 }
4c4b4cd2
PH
6399 else if (ada_is_variant_part (type, i))
6400 {
52ce6436
PH
6401 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6402 fixed type?? */
4c4b4cd2 6403 int j;
52ce6436
PH
6404 struct type *field_type
6405 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6406
52ce6436 6407 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6408 {
76a01679
JB
6409 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6410 fld_offset
6411 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6412 field_type_p, byte_offset_p,
52ce6436 6413 bit_offset_p, bit_size_p, index_p))
76a01679 6414 return 1;
4c4b4cd2
PH
6415 }
6416 }
52ce6436
PH
6417 else if (index_p != NULL)
6418 *index_p += 1;
4c4b4cd2
PH
6419 }
6420 return 0;
6421}
6422
0963b4bd 6423/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6424
52ce6436
PH
6425static int
6426num_visible_fields (struct type *type)
6427{
6428 int n;
5b4ee69b 6429
52ce6436
PH
6430 n = 0;
6431 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6432 return n;
6433}
14f9c5c9 6434
4c4b4cd2 6435/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6436 and search in it assuming it has (class) type TYPE.
6437 If found, return value, else return NULL.
6438
4c4b4cd2 6439 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6440
4c4b4cd2 6441static struct value *
d2e4a39e 6442ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6443 struct type *type)
14f9c5c9
AS
6444{
6445 int i;
14f9c5c9 6446
5b4ee69b 6447 type = ada_check_typedef (type);
52ce6436 6448 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6449 {
6450 char *t_field_name = TYPE_FIELD_NAME (type, i);
6451
6452 if (t_field_name == NULL)
4c4b4cd2 6453 continue;
14f9c5c9
AS
6454
6455 else if (field_name_match (t_field_name, name))
4c4b4cd2 6456 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6457
6458 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6459 {
0963b4bd 6460 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6461 ada_search_struct_field (name, arg,
6462 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6463 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6464
4c4b4cd2
PH
6465 if (v != NULL)
6466 return v;
6467 }
14f9c5c9
AS
6468
6469 else if (ada_is_variant_part (type, i))
4c4b4cd2 6470 {
0963b4bd 6471 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6472 int j;
5b4ee69b
MS
6473 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6474 i));
4c4b4cd2
PH
6475 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6476
52ce6436 6477 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6478 {
0963b4bd
MS
6479 struct value *v = ada_search_struct_field /* Force line
6480 break. */
06d5cf63
JB
6481 (name, arg,
6482 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6483 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6484
4c4b4cd2
PH
6485 if (v != NULL)
6486 return v;
6487 }
6488 }
14f9c5c9
AS
6489 }
6490 return NULL;
6491}
d2e4a39e 6492
52ce6436
PH
6493static struct value *ada_index_struct_field_1 (int *, struct value *,
6494 int, struct type *);
6495
6496
6497/* Return field #INDEX in ARG, where the index is that returned by
6498 * find_struct_field through its INDEX_P argument. Adjust the address
6499 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6500 * If found, return value, else return NULL. */
52ce6436
PH
6501
6502static struct value *
6503ada_index_struct_field (int index, struct value *arg, int offset,
6504 struct type *type)
6505{
6506 return ada_index_struct_field_1 (&index, arg, offset, type);
6507}
6508
6509
6510/* Auxiliary function for ada_index_struct_field. Like
6511 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6512 * *INDEX_P. */
52ce6436
PH
6513
6514static struct value *
6515ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6516 struct type *type)
6517{
6518 int i;
6519 type = ada_check_typedef (type);
6520
6521 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6522 {
6523 if (TYPE_FIELD_NAME (type, i) == NULL)
6524 continue;
6525 else if (ada_is_wrapper_field (type, i))
6526 {
0963b4bd 6527 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6528 ada_index_struct_field_1 (index_p, arg,
6529 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6530 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6531
52ce6436
PH
6532 if (v != NULL)
6533 return v;
6534 }
6535
6536 else if (ada_is_variant_part (type, i))
6537 {
6538 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6539 find_struct_field. */
52ce6436
PH
6540 error (_("Cannot assign this kind of variant record"));
6541 }
6542 else if (*index_p == 0)
6543 return ada_value_primitive_field (arg, offset, i, type);
6544 else
6545 *index_p -= 1;
6546 }
6547 return NULL;
6548}
6549
4c4b4cd2
PH
6550/* Given ARG, a value of type (pointer or reference to a)*
6551 structure/union, extract the component named NAME from the ultimate
6552 target structure/union and return it as a value with its
f5938064 6553 appropriate type.
14f9c5c9 6554
4c4b4cd2
PH
6555 The routine searches for NAME among all members of the structure itself
6556 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6557 (e.g., '_parent').
6558
03ee6b2e
PH
6559 If NO_ERR, then simply return NULL in case of error, rather than
6560 calling error. */
14f9c5c9 6561
d2e4a39e 6562struct value *
03ee6b2e 6563ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6564{
4c4b4cd2 6565 struct type *t, *t1;
d2e4a39e 6566 struct value *v;
14f9c5c9 6567
4c4b4cd2 6568 v = NULL;
df407dfe 6569 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6570 if (TYPE_CODE (t) == TYPE_CODE_REF)
6571 {
6572 t1 = TYPE_TARGET_TYPE (t);
6573 if (t1 == NULL)
03ee6b2e 6574 goto BadValue;
61ee279c 6575 t1 = ada_check_typedef (t1);
4c4b4cd2 6576 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6577 {
994b9211 6578 arg = coerce_ref (arg);
76a01679
JB
6579 t = t1;
6580 }
4c4b4cd2 6581 }
14f9c5c9 6582
4c4b4cd2
PH
6583 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6584 {
6585 t1 = TYPE_TARGET_TYPE (t);
6586 if (t1 == NULL)
03ee6b2e 6587 goto BadValue;
61ee279c 6588 t1 = ada_check_typedef (t1);
4c4b4cd2 6589 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6590 {
6591 arg = value_ind (arg);
6592 t = t1;
6593 }
4c4b4cd2 6594 else
76a01679 6595 break;
4c4b4cd2 6596 }
14f9c5c9 6597
4c4b4cd2 6598 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6599 goto BadValue;
14f9c5c9 6600
4c4b4cd2
PH
6601 if (t1 == t)
6602 v = ada_search_struct_field (name, arg, 0, t);
6603 else
6604 {
6605 int bit_offset, bit_size, byte_offset;
6606 struct type *field_type;
6607 CORE_ADDR address;
6608
76a01679
JB
6609 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6610 address = value_as_address (arg);
4c4b4cd2 6611 else
0fd88904 6612 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6613
1ed6ede0 6614 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6615 if (find_struct_field (name, t1, 0,
6616 &field_type, &byte_offset, &bit_offset,
52ce6436 6617 &bit_size, NULL))
76a01679
JB
6618 {
6619 if (bit_size != 0)
6620 {
714e53ab
PH
6621 if (TYPE_CODE (t) == TYPE_CODE_REF)
6622 arg = ada_coerce_ref (arg);
6623 else
6624 arg = ada_value_ind (arg);
76a01679
JB
6625 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6626 bit_offset, bit_size,
6627 field_type);
6628 }
6629 else
f5938064 6630 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6631 }
6632 }
6633
03ee6b2e
PH
6634 if (v != NULL || no_err)
6635 return v;
6636 else
323e0a4a 6637 error (_("There is no member named %s."), name);
14f9c5c9 6638
03ee6b2e
PH
6639 BadValue:
6640 if (no_err)
6641 return NULL;
6642 else
0963b4bd
MS
6643 error (_("Attempt to extract a component of "
6644 "a value that is not a record."));
14f9c5c9
AS
6645}
6646
6647/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6648 If DISPP is non-null, add its byte displacement from the beginning of a
6649 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6650 work for packed fields).
6651
6652 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6653 followed by "___".
14f9c5c9 6654
0963b4bd 6655 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6656 be a (pointer or reference)+ to a struct or union, and the
6657 ultimate target type will be searched.
14f9c5c9
AS
6658
6659 Looks recursively into variant clauses and parent types.
6660
4c4b4cd2
PH
6661 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6662 TYPE is not a type of the right kind. */
14f9c5c9 6663
4c4b4cd2 6664static struct type *
76a01679
JB
6665ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6666 int noerr, int *dispp)
14f9c5c9
AS
6667{
6668 int i;
6669
6670 if (name == NULL)
6671 goto BadName;
6672
76a01679 6673 if (refok && type != NULL)
4c4b4cd2
PH
6674 while (1)
6675 {
61ee279c 6676 type = ada_check_typedef (type);
76a01679
JB
6677 if (TYPE_CODE (type) != TYPE_CODE_PTR
6678 && TYPE_CODE (type) != TYPE_CODE_REF)
6679 break;
6680 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6681 }
14f9c5c9 6682
76a01679 6683 if (type == NULL
1265e4aa
JB
6684 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6685 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6686 {
4c4b4cd2 6687 if (noerr)
76a01679 6688 return NULL;
4c4b4cd2 6689 else
76a01679
JB
6690 {
6691 target_terminal_ours ();
6692 gdb_flush (gdb_stdout);
323e0a4a
AC
6693 if (type == NULL)
6694 error (_("Type (null) is not a structure or union type"));
6695 else
6696 {
6697 /* XXX: type_sprint */
6698 fprintf_unfiltered (gdb_stderr, _("Type "));
6699 type_print (type, "", gdb_stderr, -1);
6700 error (_(" is not a structure or union type"));
6701 }
76a01679 6702 }
14f9c5c9
AS
6703 }
6704
6705 type = to_static_fixed_type (type);
6706
6707 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6708 {
6709 char *t_field_name = TYPE_FIELD_NAME (type, i);
6710 struct type *t;
6711 int disp;
d2e4a39e 6712
14f9c5c9 6713 if (t_field_name == NULL)
4c4b4cd2 6714 continue;
14f9c5c9
AS
6715
6716 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6717 {
6718 if (dispp != NULL)
6719 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6720 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6721 }
14f9c5c9
AS
6722
6723 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6724 {
6725 disp = 0;
6726 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6727 0, 1, &disp);
6728 if (t != NULL)
6729 {
6730 if (dispp != NULL)
6731 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6732 return t;
6733 }
6734 }
14f9c5c9
AS
6735
6736 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6737 {
6738 int j;
5b4ee69b
MS
6739 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6740 i));
4c4b4cd2
PH
6741
6742 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6743 {
b1f33ddd
JB
6744 /* FIXME pnh 2008/01/26: We check for a field that is
6745 NOT wrapped in a struct, since the compiler sometimes
6746 generates these for unchecked variant types. Revisit
0963b4bd 6747 if the compiler changes this practice. */
b1f33ddd 6748 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6749 disp = 0;
b1f33ddd
JB
6750 if (v_field_name != NULL
6751 && field_name_match (v_field_name, name))
6752 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6753 else
0963b4bd
MS
6754 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6755 j),
b1f33ddd
JB
6756 name, 0, 1, &disp);
6757
4c4b4cd2
PH
6758 if (t != NULL)
6759 {
6760 if (dispp != NULL)
6761 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6762 return t;
6763 }
6764 }
6765 }
14f9c5c9
AS
6766
6767 }
6768
6769BadName:
d2e4a39e 6770 if (!noerr)
14f9c5c9
AS
6771 {
6772 target_terminal_ours ();
6773 gdb_flush (gdb_stdout);
323e0a4a
AC
6774 if (name == NULL)
6775 {
6776 /* XXX: type_sprint */
6777 fprintf_unfiltered (gdb_stderr, _("Type "));
6778 type_print (type, "", gdb_stderr, -1);
6779 error (_(" has no component named <null>"));
6780 }
6781 else
6782 {
6783 /* XXX: type_sprint */
6784 fprintf_unfiltered (gdb_stderr, _("Type "));
6785 type_print (type, "", gdb_stderr, -1);
6786 error (_(" has no component named %s"), name);
6787 }
14f9c5c9
AS
6788 }
6789
6790 return NULL;
6791}
6792
b1f33ddd
JB
6793/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6794 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6795 represents an unchecked union (that is, the variant part of a
0963b4bd 6796 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6797
6798static int
6799is_unchecked_variant (struct type *var_type, struct type *outer_type)
6800{
6801 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6802
b1f33ddd
JB
6803 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6804 == NULL);
6805}
6806
6807
14f9c5c9
AS
6808/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6809 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6810 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6811 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6812
d2e4a39e 6813int
ebf56fd3 6814ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6815 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6816{
6817 int others_clause;
6818 int i;
d2e4a39e 6819 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6820 struct value *outer;
6821 struct value *discrim;
14f9c5c9
AS
6822 LONGEST discrim_val;
6823
0c281816
JB
6824 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6825 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6826 if (discrim == NULL)
14f9c5c9 6827 return -1;
0c281816 6828 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6829
6830 others_clause = -1;
6831 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6832 {
6833 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6834 others_clause = i;
14f9c5c9 6835 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6836 return i;
14f9c5c9
AS
6837 }
6838
6839 return others_clause;
6840}
d2e4a39e 6841\f
14f9c5c9
AS
6842
6843
4c4b4cd2 6844 /* Dynamic-Sized Records */
14f9c5c9
AS
6845
6846/* Strategy: The type ostensibly attached to a value with dynamic size
6847 (i.e., a size that is not statically recorded in the debugging
6848 data) does not accurately reflect the size or layout of the value.
6849 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6850 conventional types that are constructed on the fly. */
14f9c5c9
AS
6851
6852/* There is a subtle and tricky problem here. In general, we cannot
6853 determine the size of dynamic records without its data. However,
6854 the 'struct value' data structure, which GDB uses to represent
6855 quantities in the inferior process (the target), requires the size
6856 of the type at the time of its allocation in order to reserve space
6857 for GDB's internal copy of the data. That's why the
6858 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6859 rather than struct value*s.
14f9c5c9
AS
6860
6861 However, GDB's internal history variables ($1, $2, etc.) are
6862 struct value*s containing internal copies of the data that are not, in
6863 general, the same as the data at their corresponding addresses in
6864 the target. Fortunately, the types we give to these values are all
6865 conventional, fixed-size types (as per the strategy described
6866 above), so that we don't usually have to perform the
6867 'to_fixed_xxx_type' conversions to look at their values.
6868 Unfortunately, there is one exception: if one of the internal
6869 history variables is an array whose elements are unconstrained
6870 records, then we will need to create distinct fixed types for each
6871 element selected. */
6872
6873/* The upshot of all of this is that many routines take a (type, host
6874 address, target address) triple as arguments to represent a value.
6875 The host address, if non-null, is supposed to contain an internal
6876 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6877 target at the target address. */
14f9c5c9
AS
6878
6879/* Assuming that VAL0 represents a pointer value, the result of
6880 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6881 dynamic-sized types. */
14f9c5c9 6882
d2e4a39e
AS
6883struct value *
6884ada_value_ind (struct value *val0)
14f9c5c9 6885{
d2e4a39e 6886 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6887
4c4b4cd2 6888 return ada_to_fixed_value (val);
14f9c5c9
AS
6889}
6890
6891/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6892 qualifiers on VAL0. */
6893
d2e4a39e
AS
6894static struct value *
6895ada_coerce_ref (struct value *val0)
6896{
df407dfe 6897 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6898 {
6899 struct value *val = val0;
5b4ee69b 6900
994b9211 6901 val = coerce_ref (val);
d2e4a39e 6902 val = unwrap_value (val);
4c4b4cd2 6903 return ada_to_fixed_value (val);
d2e4a39e
AS
6904 }
6905 else
14f9c5c9
AS
6906 return val0;
6907}
6908
6909/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6910 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6911
6912static unsigned int
ebf56fd3 6913align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6914{
6915 return (off + alignment - 1) & ~(alignment - 1);
6916}
6917
4c4b4cd2 6918/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6919
6920static unsigned int
ebf56fd3 6921field_alignment (struct type *type, int f)
14f9c5c9 6922{
d2e4a39e 6923 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6924 int len;
14f9c5c9
AS
6925 int align_offset;
6926
64a1bf19
JB
6927 /* The field name should never be null, unless the debugging information
6928 is somehow malformed. In this case, we assume the field does not
6929 require any alignment. */
6930 if (name == NULL)
6931 return 1;
6932
6933 len = strlen (name);
6934
4c4b4cd2
PH
6935 if (!isdigit (name[len - 1]))
6936 return 1;
14f9c5c9 6937
d2e4a39e 6938 if (isdigit (name[len - 2]))
14f9c5c9
AS
6939 align_offset = len - 2;
6940 else
6941 align_offset = len - 1;
6942
4c4b4cd2 6943 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6944 return TARGET_CHAR_BIT;
6945
4c4b4cd2
PH
6946 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6947}
6948
6949/* Find a symbol named NAME. Ignores ambiguity. */
6950
6951struct symbol *
6952ada_find_any_symbol (const char *name)
6953{
6954 struct symbol *sym;
6955
6956 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6957 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6958 return sym;
6959
6960 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6961 return sym;
14f9c5c9
AS
6962}
6963
dddfab26
UW
6964/* Find a type named NAME. Ignores ambiguity. This routine will look
6965 solely for types defined by debug info, it will not search the GDB
6966 primitive types. */
4c4b4cd2 6967
d2e4a39e 6968struct type *
ebf56fd3 6969ada_find_any_type (const char *name)
14f9c5c9 6970{
4c4b4cd2 6971 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6972
14f9c5c9 6973 if (sym != NULL)
dddfab26 6974 return SYMBOL_TYPE (sym);
14f9c5c9 6975
dddfab26 6976 return NULL;
14f9c5c9
AS
6977}
6978
aeb5907d
JB
6979/* Given NAME and an associated BLOCK, search all symbols for
6980 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6981 associated to NAME. Return this symbol if found, return
6982 NULL otherwise. */
6983
6984struct symbol *
6985ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6986{
6987 struct symbol *sym;
6988
6989 sym = find_old_style_renaming_symbol (name, block);
6990
6991 if (sym != NULL)
6992 return sym;
6993
0963b4bd 6994 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6995 sym = ada_find_any_symbol (name);
6996 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6997 return sym;
6998 else
6999 return NULL;
7000}
7001
7002static struct symbol *
7003find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7004{
7f0df278 7005 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7006 char *rename;
7007
7008 if (function_sym != NULL)
7009 {
7010 /* If the symbol is defined inside a function, NAME is not fully
7011 qualified. This means we need to prepend the function name
7012 as well as adding the ``___XR'' suffix to build the name of
7013 the associated renaming symbol. */
7014 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7015 /* Function names sometimes contain suffixes used
7016 for instance to qualify nested subprograms. When building
7017 the XR type name, we need to make sure that this suffix is
7018 not included. So do not include any suffix in the function
7019 name length below. */
69fadcdf 7020 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7021 const int rename_len = function_name_len + 2 /* "__" */
7022 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7023
529cad9c 7024 /* Strip the suffix if necessary. */
69fadcdf
JB
7025 ada_remove_trailing_digits (function_name, &function_name_len);
7026 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7027 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7028
4c4b4cd2
PH
7029 /* Library-level functions are a special case, as GNAT adds
7030 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7031 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7032 have this prefix, so we need to skip this prefix if present. */
7033 if (function_name_len > 5 /* "_ada_" */
7034 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7035 {
7036 function_name += 5;
7037 function_name_len -= 5;
7038 }
4c4b4cd2
PH
7039
7040 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7041 strncpy (rename, function_name, function_name_len);
7042 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7043 "__%s___XR", name);
4c4b4cd2
PH
7044 }
7045 else
7046 {
7047 const int rename_len = strlen (name) + 6;
5b4ee69b 7048
4c4b4cd2 7049 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7050 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7051 }
7052
7053 return ada_find_any_symbol (rename);
7054}
7055
14f9c5c9 7056/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7057 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7058 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7059 otherwise return 0. */
7060
14f9c5c9 7061int
d2e4a39e 7062ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7063{
7064 if (type1 == NULL)
7065 return 1;
7066 else if (type0 == NULL)
7067 return 0;
7068 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7069 return 1;
7070 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7071 return 0;
4c4b4cd2
PH
7072 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7073 return 1;
ad82864c 7074 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7075 return 1;
4c4b4cd2
PH
7076 else if (ada_is_array_descriptor_type (type0)
7077 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7078 return 1;
aeb5907d
JB
7079 else
7080 {
7081 const char *type0_name = type_name_no_tag (type0);
7082 const char *type1_name = type_name_no_tag (type1);
7083
7084 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7085 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7086 return 1;
7087 }
14f9c5c9
AS
7088 return 0;
7089}
7090
7091/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7092 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7093
d2e4a39e
AS
7094char *
7095ada_type_name (struct type *type)
14f9c5c9 7096{
d2e4a39e 7097 if (type == NULL)
14f9c5c9
AS
7098 return NULL;
7099 else if (TYPE_NAME (type) != NULL)
7100 return TYPE_NAME (type);
7101 else
7102 return TYPE_TAG_NAME (type);
7103}
7104
b4ba55a1
JB
7105/* Search the list of "descriptive" types associated to TYPE for a type
7106 whose name is NAME. */
7107
7108static struct type *
7109find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7110{
7111 struct type *result;
7112
7113 /* If there no descriptive-type info, then there is no parallel type
7114 to be found. */
7115 if (!HAVE_GNAT_AUX_INFO (type))
7116 return NULL;
7117
7118 result = TYPE_DESCRIPTIVE_TYPE (type);
7119 while (result != NULL)
7120 {
7121 char *result_name = ada_type_name (result);
7122
7123 if (result_name == NULL)
7124 {
7125 warning (_("unexpected null name on descriptive type"));
7126 return NULL;
7127 }
7128
7129 /* If the names match, stop. */
7130 if (strcmp (result_name, name) == 0)
7131 break;
7132
7133 /* Otherwise, look at the next item on the list, if any. */
7134 if (HAVE_GNAT_AUX_INFO (result))
7135 result = TYPE_DESCRIPTIVE_TYPE (result);
7136 else
7137 result = NULL;
7138 }
7139
7140 /* If we didn't find a match, see whether this is a packed array. With
7141 older compilers, the descriptive type information is either absent or
7142 irrelevant when it comes to packed arrays so the above lookup fails.
7143 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7144 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7145 return ada_find_any_type (name);
7146
7147 return result;
7148}
7149
7150/* Find a parallel type to TYPE with the specified NAME, using the
7151 descriptive type taken from the debugging information, if available,
7152 and otherwise using the (slower) name-based method. */
7153
7154static struct type *
7155ada_find_parallel_type_with_name (struct type *type, const char *name)
7156{
7157 struct type *result = NULL;
7158
7159 if (HAVE_GNAT_AUX_INFO (type))
7160 result = find_parallel_type_by_descriptive_type (type, name);
7161 else
7162 result = ada_find_any_type (name);
7163
7164 return result;
7165}
7166
7167/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7168 SUFFIX to the name of TYPE. */
14f9c5c9 7169
d2e4a39e 7170struct type *
ebf56fd3 7171ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7172{
b4ba55a1 7173 char *name, *typename = ada_type_name (type);
14f9c5c9 7174 int len;
d2e4a39e 7175
14f9c5c9
AS
7176 if (typename == NULL)
7177 return NULL;
7178
7179 len = strlen (typename);
7180
b4ba55a1 7181 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7182
7183 strcpy (name, typename);
7184 strcpy (name + len, suffix);
7185
b4ba55a1 7186 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7187}
7188
14f9c5c9 7189/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7190 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7191
d2e4a39e
AS
7192static struct type *
7193dynamic_template_type (struct type *type)
14f9c5c9 7194{
61ee279c 7195 type = ada_check_typedef (type);
14f9c5c9
AS
7196
7197 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7198 || ada_type_name (type) == NULL)
14f9c5c9 7199 return NULL;
d2e4a39e 7200 else
14f9c5c9
AS
7201 {
7202 int len = strlen (ada_type_name (type));
5b4ee69b 7203
4c4b4cd2
PH
7204 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7205 return type;
14f9c5c9 7206 else
4c4b4cd2 7207 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7208 }
7209}
7210
7211/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7212 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7213
d2e4a39e
AS
7214static int
7215is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7216{
7217 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7218
d2e4a39e 7219 return name != NULL
14f9c5c9
AS
7220 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7221 && strstr (name, "___XVL") != NULL;
7222}
7223
4c4b4cd2
PH
7224/* The index of the variant field of TYPE, or -1 if TYPE does not
7225 represent a variant record type. */
14f9c5c9 7226
d2e4a39e 7227static int
4c4b4cd2 7228variant_field_index (struct type *type)
14f9c5c9
AS
7229{
7230 int f;
7231
4c4b4cd2
PH
7232 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7233 return -1;
7234
7235 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7236 {
7237 if (ada_is_variant_part (type, f))
7238 return f;
7239 }
7240 return -1;
14f9c5c9
AS
7241}
7242
4c4b4cd2
PH
7243/* A record type with no fields. */
7244
d2e4a39e 7245static struct type *
e9bb382b 7246empty_record (struct type *template)
14f9c5c9 7247{
e9bb382b 7248 struct type *type = alloc_type_copy (template);
5b4ee69b 7249
14f9c5c9
AS
7250 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7251 TYPE_NFIELDS (type) = 0;
7252 TYPE_FIELDS (type) = NULL;
b1f33ddd 7253 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7254 TYPE_NAME (type) = "<empty>";
7255 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7256 TYPE_LENGTH (type) = 0;
7257 return type;
7258}
7259
7260/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7261 the value of type TYPE at VALADDR or ADDRESS (see comments at
7262 the beginning of this section) VAL according to GNAT conventions.
7263 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7264 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7265 an outer-level type (i.e., as opposed to a branch of a variant.) A
7266 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7267 of the variant.
14f9c5c9 7268
4c4b4cd2
PH
7269 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7270 length are not statically known are discarded. As a consequence,
7271 VALADDR, ADDRESS and DVAL0 are ignored.
7272
7273 NOTE: Limitations: For now, we assume that dynamic fields and
7274 variants occupy whole numbers of bytes. However, they need not be
7275 byte-aligned. */
7276
7277struct type *
10a2c479 7278ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7279 const gdb_byte *valaddr,
4c4b4cd2
PH
7280 CORE_ADDR address, struct value *dval0,
7281 int keep_dynamic_fields)
14f9c5c9 7282{
d2e4a39e
AS
7283 struct value *mark = value_mark ();
7284 struct value *dval;
7285 struct type *rtype;
14f9c5c9 7286 int nfields, bit_len;
4c4b4cd2 7287 int variant_field;
14f9c5c9 7288 long off;
d94e4f4f 7289 int fld_bit_len;
14f9c5c9
AS
7290 int f;
7291
4c4b4cd2
PH
7292 /* Compute the number of fields in this record type that are going
7293 to be processed: unless keep_dynamic_fields, this includes only
7294 fields whose position and length are static will be processed. */
7295 if (keep_dynamic_fields)
7296 nfields = TYPE_NFIELDS (type);
7297 else
7298 {
7299 nfields = 0;
76a01679 7300 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7301 && !ada_is_variant_part (type, nfields)
7302 && !is_dynamic_field (type, nfields))
7303 nfields++;
7304 }
7305
e9bb382b 7306 rtype = alloc_type_copy (type);
14f9c5c9
AS
7307 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7308 INIT_CPLUS_SPECIFIC (rtype);
7309 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7310 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7311 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7312 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7313 TYPE_NAME (rtype) = ada_type_name (type);
7314 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7315 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7316
d2e4a39e
AS
7317 off = 0;
7318 bit_len = 0;
4c4b4cd2
PH
7319 variant_field = -1;
7320
14f9c5c9
AS
7321 for (f = 0; f < nfields; f += 1)
7322 {
6c038f32
PH
7323 off = align_value (off, field_alignment (type, f))
7324 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7325 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7326 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7327
d2e4a39e 7328 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7329 {
7330 variant_field = f;
d94e4f4f 7331 fld_bit_len = 0;
4c4b4cd2 7332 }
14f9c5c9 7333 else if (is_dynamic_field (type, f))
4c4b4cd2 7334 {
284614f0
JB
7335 const gdb_byte *field_valaddr = valaddr;
7336 CORE_ADDR field_address = address;
7337 struct type *field_type =
7338 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7339
4c4b4cd2 7340 if (dval0 == NULL)
b5304971
JG
7341 {
7342 /* rtype's length is computed based on the run-time
7343 value of discriminants. If the discriminants are not
7344 initialized, the type size may be completely bogus and
0963b4bd 7345 GDB may fail to allocate a value for it. So check the
b5304971
JG
7346 size first before creating the value. */
7347 check_size (rtype);
7348 dval = value_from_contents_and_address (rtype, valaddr, address);
7349 }
4c4b4cd2
PH
7350 else
7351 dval = dval0;
7352
284614f0
JB
7353 /* If the type referenced by this field is an aligner type, we need
7354 to unwrap that aligner type, because its size might not be set.
7355 Keeping the aligner type would cause us to compute the wrong
7356 size for this field, impacting the offset of the all the fields
7357 that follow this one. */
7358 if (ada_is_aligner_type (field_type))
7359 {
7360 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7361
7362 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7363 field_address = cond_offset_target (field_address, field_offset);
7364 field_type = ada_aligned_type (field_type);
7365 }
7366
7367 field_valaddr = cond_offset_host (field_valaddr,
7368 off / TARGET_CHAR_BIT);
7369 field_address = cond_offset_target (field_address,
7370 off / TARGET_CHAR_BIT);
7371
7372 /* Get the fixed type of the field. Note that, in this case,
7373 we do not want to get the real type out of the tag: if
7374 the current field is the parent part of a tagged record,
7375 we will get the tag of the object. Clearly wrong: the real
7376 type of the parent is not the real type of the child. We
7377 would end up in an infinite loop. */
7378 field_type = ada_get_base_type (field_type);
7379 field_type = ada_to_fixed_type (field_type, field_valaddr,
7380 field_address, dval, 0);
27f2a97b
JB
7381 /* If the field size is already larger than the maximum
7382 object size, then the record itself will necessarily
7383 be larger than the maximum object size. We need to make
7384 this check now, because the size might be so ridiculously
7385 large (due to an uninitialized variable in the inferior)
7386 that it would cause an overflow when adding it to the
7387 record size. */
7388 check_size (field_type);
284614f0
JB
7389
7390 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7391 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7392 /* The multiplication can potentially overflow. But because
7393 the field length has been size-checked just above, and
7394 assuming that the maximum size is a reasonable value,
7395 an overflow should not happen in practice. So rather than
7396 adding overflow recovery code to this already complex code,
7397 we just assume that it's not going to happen. */
d94e4f4f 7398 fld_bit_len =
4c4b4cd2
PH
7399 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7400 }
14f9c5c9 7401 else
4c4b4cd2 7402 {
9f0dec2d
JB
7403 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7404
720d1a40
JB
7405 /* If our field is a typedef type (most likely a typedef of
7406 a fat pointer, encoding an array access), then we need to
7407 look at its target type to determine its characteristics.
7408 In particular, we would miscompute the field size if we took
7409 the size of the typedef (zero), instead of the size of
7410 the target type. */
7411 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7412 field_type = ada_typedef_target_type (field_type);
7413
9f0dec2d 7414 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7415 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7416 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7417 fld_bit_len =
4c4b4cd2
PH
7418 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7419 else
d94e4f4f 7420 fld_bit_len =
9f0dec2d 7421 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7422 }
14f9c5c9 7423 if (off + fld_bit_len > bit_len)
4c4b4cd2 7424 bit_len = off + fld_bit_len;
d94e4f4f 7425 off += fld_bit_len;
4c4b4cd2
PH
7426 TYPE_LENGTH (rtype) =
7427 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7428 }
4c4b4cd2
PH
7429
7430 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7431 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7432 the record. This can happen in the presence of representation
7433 clauses. */
7434 if (variant_field >= 0)
7435 {
7436 struct type *branch_type;
7437
7438 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7439
7440 if (dval0 == NULL)
7441 dval = value_from_contents_and_address (rtype, valaddr, address);
7442 else
7443 dval = dval0;
7444
7445 branch_type =
7446 to_fixed_variant_branch_type
7447 (TYPE_FIELD_TYPE (type, variant_field),
7448 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7449 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7450 if (branch_type == NULL)
7451 {
7452 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7453 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7454 TYPE_NFIELDS (rtype) -= 1;
7455 }
7456 else
7457 {
7458 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7459 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7460 fld_bit_len =
7461 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7462 TARGET_CHAR_BIT;
7463 if (off + fld_bit_len > bit_len)
7464 bit_len = off + fld_bit_len;
7465 TYPE_LENGTH (rtype) =
7466 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7467 }
7468 }
7469
714e53ab
PH
7470 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7471 should contain the alignment of that record, which should be a strictly
7472 positive value. If null or negative, then something is wrong, most
7473 probably in the debug info. In that case, we don't round up the size
0963b4bd 7474 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7475 the current RTYPE length might be good enough for our purposes. */
7476 if (TYPE_LENGTH (type) <= 0)
7477 {
323e0a4a
AC
7478 if (TYPE_NAME (rtype))
7479 warning (_("Invalid type size for `%s' detected: %d."),
7480 TYPE_NAME (rtype), TYPE_LENGTH (type));
7481 else
7482 warning (_("Invalid type size for <unnamed> detected: %d."),
7483 TYPE_LENGTH (type));
714e53ab
PH
7484 }
7485 else
7486 {
7487 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7488 TYPE_LENGTH (type));
7489 }
14f9c5c9
AS
7490
7491 value_free_to_mark (mark);
d2e4a39e 7492 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7493 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7494 return rtype;
7495}
7496
4c4b4cd2
PH
7497/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7498 of 1. */
14f9c5c9 7499
d2e4a39e 7500static struct type *
fc1a4b47 7501template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7502 CORE_ADDR address, struct value *dval0)
7503{
7504 return ada_template_to_fixed_record_type_1 (type, valaddr,
7505 address, dval0, 1);
7506}
7507
7508/* An ordinary record type in which ___XVL-convention fields and
7509 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7510 static approximations, containing all possible fields. Uses
7511 no runtime values. Useless for use in values, but that's OK,
7512 since the results are used only for type determinations. Works on both
7513 structs and unions. Representation note: to save space, we memorize
7514 the result of this function in the TYPE_TARGET_TYPE of the
7515 template type. */
7516
7517static struct type *
7518template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7519{
7520 struct type *type;
7521 int nfields;
7522 int f;
7523
4c4b4cd2
PH
7524 if (TYPE_TARGET_TYPE (type0) != NULL)
7525 return TYPE_TARGET_TYPE (type0);
7526
7527 nfields = TYPE_NFIELDS (type0);
7528 type = type0;
14f9c5c9
AS
7529
7530 for (f = 0; f < nfields; f += 1)
7531 {
61ee279c 7532 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7533 struct type *new_type;
14f9c5c9 7534
4c4b4cd2
PH
7535 if (is_dynamic_field (type0, f))
7536 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7537 else
f192137b 7538 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7539 if (type == type0 && new_type != field_type)
7540 {
e9bb382b 7541 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7542 TYPE_CODE (type) = TYPE_CODE (type0);
7543 INIT_CPLUS_SPECIFIC (type);
7544 TYPE_NFIELDS (type) = nfields;
7545 TYPE_FIELDS (type) = (struct field *)
7546 TYPE_ALLOC (type, nfields * sizeof (struct field));
7547 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7548 sizeof (struct field) * nfields);
7549 TYPE_NAME (type) = ada_type_name (type0);
7550 TYPE_TAG_NAME (type) = NULL;
876cecd0 7551 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7552 TYPE_LENGTH (type) = 0;
7553 }
7554 TYPE_FIELD_TYPE (type, f) = new_type;
7555 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7556 }
14f9c5c9
AS
7557 return type;
7558}
7559
4c4b4cd2 7560/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7561 whose address in memory is ADDRESS, returns a revision of TYPE,
7562 which should be a non-dynamic-sized record, in which the variant
7563 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7564 for discriminant values in DVAL0, which can be NULL if the record
7565 contains the necessary discriminant values. */
7566
d2e4a39e 7567static struct type *
fc1a4b47 7568to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7569 CORE_ADDR address, struct value *dval0)
14f9c5c9 7570{
d2e4a39e 7571 struct value *mark = value_mark ();
4c4b4cd2 7572 struct value *dval;
d2e4a39e 7573 struct type *rtype;
14f9c5c9
AS
7574 struct type *branch_type;
7575 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7576 int variant_field = variant_field_index (type);
14f9c5c9 7577
4c4b4cd2 7578 if (variant_field == -1)
14f9c5c9
AS
7579 return type;
7580
4c4b4cd2
PH
7581 if (dval0 == NULL)
7582 dval = value_from_contents_and_address (type, valaddr, address);
7583 else
7584 dval = dval0;
7585
e9bb382b 7586 rtype = alloc_type_copy (type);
14f9c5c9 7587 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7588 INIT_CPLUS_SPECIFIC (rtype);
7589 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7590 TYPE_FIELDS (rtype) =
7591 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7592 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7593 sizeof (struct field) * nfields);
14f9c5c9
AS
7594 TYPE_NAME (rtype) = ada_type_name (type);
7595 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7596 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7597 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7598
4c4b4cd2
PH
7599 branch_type = to_fixed_variant_branch_type
7600 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7601 cond_offset_host (valaddr,
4c4b4cd2
PH
7602 TYPE_FIELD_BITPOS (type, variant_field)
7603 / TARGET_CHAR_BIT),
d2e4a39e 7604 cond_offset_target (address,
4c4b4cd2
PH
7605 TYPE_FIELD_BITPOS (type, variant_field)
7606 / TARGET_CHAR_BIT), dval);
d2e4a39e 7607 if (branch_type == NULL)
14f9c5c9 7608 {
4c4b4cd2 7609 int f;
5b4ee69b 7610
4c4b4cd2
PH
7611 for (f = variant_field + 1; f < nfields; f += 1)
7612 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7613 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7614 }
7615 else
7616 {
4c4b4cd2
PH
7617 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7618 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7619 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7620 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7621 }
4c4b4cd2 7622 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7623
4c4b4cd2 7624 value_free_to_mark (mark);
14f9c5c9
AS
7625 return rtype;
7626}
7627
7628/* An ordinary record type (with fixed-length fields) that describes
7629 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7630 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7631 should be in DVAL, a record value; it may be NULL if the object
7632 at ADDR itself contains any necessary discriminant values.
7633 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7634 values from the record are needed. Except in the case that DVAL,
7635 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7636 unchecked) is replaced by a particular branch of the variant.
7637
7638 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7639 is questionable and may be removed. It can arise during the
7640 processing of an unconstrained-array-of-record type where all the
7641 variant branches have exactly the same size. This is because in
7642 such cases, the compiler does not bother to use the XVS convention
7643 when encoding the record. I am currently dubious of this
7644 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7645
d2e4a39e 7646static struct type *
fc1a4b47 7647to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7648 CORE_ADDR address, struct value *dval)
14f9c5c9 7649{
d2e4a39e 7650 struct type *templ_type;
14f9c5c9 7651
876cecd0 7652 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7653 return type0;
7654
d2e4a39e 7655 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7656
7657 if (templ_type != NULL)
7658 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7659 else if (variant_field_index (type0) >= 0)
7660 {
7661 if (dval == NULL && valaddr == NULL && address == 0)
7662 return type0;
7663 return to_record_with_fixed_variant_part (type0, valaddr, address,
7664 dval);
7665 }
14f9c5c9
AS
7666 else
7667 {
876cecd0 7668 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7669 return type0;
7670 }
7671
7672}
7673
7674/* An ordinary record type (with fixed-length fields) that describes
7675 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7676 union type. Any necessary discriminants' values should be in DVAL,
7677 a record value. That is, this routine selects the appropriate
7678 branch of the union at ADDR according to the discriminant value
b1f33ddd 7679 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7680 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7681
d2e4a39e 7682static struct type *
fc1a4b47 7683to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7684 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7685{
7686 int which;
d2e4a39e
AS
7687 struct type *templ_type;
7688 struct type *var_type;
14f9c5c9
AS
7689
7690 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7691 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7692 else
14f9c5c9
AS
7693 var_type = var_type0;
7694
7695 templ_type = ada_find_parallel_type (var_type, "___XVU");
7696
7697 if (templ_type != NULL)
7698 var_type = templ_type;
7699
b1f33ddd
JB
7700 if (is_unchecked_variant (var_type, value_type (dval)))
7701 return var_type0;
d2e4a39e
AS
7702 which =
7703 ada_which_variant_applies (var_type,
0fd88904 7704 value_type (dval), value_contents (dval));
14f9c5c9
AS
7705
7706 if (which < 0)
e9bb382b 7707 return empty_record (var_type);
14f9c5c9 7708 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7709 return to_fixed_record_type
d2e4a39e
AS
7710 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7711 valaddr, address, dval);
4c4b4cd2 7712 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7713 return
7714 to_fixed_record_type
7715 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7716 else
7717 return TYPE_FIELD_TYPE (var_type, which);
7718}
7719
7720/* Assuming that TYPE0 is an array type describing the type of a value
7721 at ADDR, and that DVAL describes a record containing any
7722 discriminants used in TYPE0, returns a type for the value that
7723 contains no dynamic components (that is, no components whose sizes
7724 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7725 true, gives an error message if the resulting type's size is over
4c4b4cd2 7726 varsize_limit. */
14f9c5c9 7727
d2e4a39e
AS
7728static struct type *
7729to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7730 int ignore_too_big)
14f9c5c9 7731{
d2e4a39e
AS
7732 struct type *index_type_desc;
7733 struct type *result;
ad82864c 7734 int constrained_packed_array_p;
14f9c5c9 7735
b0dd7688 7736 type0 = ada_check_typedef (type0);
284614f0 7737 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7738 return type0;
14f9c5c9 7739
ad82864c
JB
7740 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7741 if (constrained_packed_array_p)
7742 type0 = decode_constrained_packed_array_type (type0);
284614f0 7743
14f9c5c9 7744 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7745 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7746 if (index_type_desc == NULL)
7747 {
61ee279c 7748 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7749
14f9c5c9 7750 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7751 depend on the contents of the array in properly constructed
7752 debugging data. */
529cad9c
PH
7753 /* Create a fixed version of the array element type.
7754 We're not providing the address of an element here,
e1d5a0d2 7755 and thus the actual object value cannot be inspected to do
529cad9c
PH
7756 the conversion. This should not be a problem, since arrays of
7757 unconstrained objects are not allowed. In particular, all
7758 the elements of an array of a tagged type should all be of
7759 the same type specified in the debugging info. No need to
7760 consult the object tag. */
1ed6ede0 7761 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7762
284614f0
JB
7763 /* Make sure we always create a new array type when dealing with
7764 packed array types, since we're going to fix-up the array
7765 type length and element bitsize a little further down. */
ad82864c 7766 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7767 result = type0;
14f9c5c9 7768 else
e9bb382b 7769 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7770 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7771 }
7772 else
7773 {
7774 int i;
7775 struct type *elt_type0;
7776
7777 elt_type0 = type0;
7778 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7779 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7780
7781 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7782 depend on the contents of the array in properly constructed
7783 debugging data. */
529cad9c
PH
7784 /* Create a fixed version of the array element type.
7785 We're not providing the address of an element here,
e1d5a0d2 7786 and thus the actual object value cannot be inspected to do
529cad9c
PH
7787 the conversion. This should not be a problem, since arrays of
7788 unconstrained objects are not allowed. In particular, all
7789 the elements of an array of a tagged type should all be of
7790 the same type specified in the debugging info. No need to
7791 consult the object tag. */
1ed6ede0
JB
7792 result =
7793 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7794
7795 elt_type0 = type0;
14f9c5c9 7796 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7797 {
7798 struct type *range_type =
28c85d6c 7799 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7800
e9bb382b 7801 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7802 result, range_type);
1ce677a4 7803 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7804 }
d2e4a39e 7805 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7806 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7807 }
7808
ad82864c 7809 if (constrained_packed_array_p)
284614f0
JB
7810 {
7811 /* So far, the resulting type has been created as if the original
7812 type was a regular (non-packed) array type. As a result, the
7813 bitsize of the array elements needs to be set again, and the array
7814 length needs to be recomputed based on that bitsize. */
7815 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7816 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7817
7818 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7819 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7820 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7821 TYPE_LENGTH (result)++;
7822 }
7823
876cecd0 7824 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7825 return result;
d2e4a39e 7826}
14f9c5c9
AS
7827
7828
7829/* A standard type (containing no dynamically sized components)
7830 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7831 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7832 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7833 ADDRESS or in VALADDR contains these discriminants.
7834
1ed6ede0
JB
7835 If CHECK_TAG is not null, in the case of tagged types, this function
7836 attempts to locate the object's tag and use it to compute the actual
7837 type. However, when ADDRESS is null, we cannot use it to determine the
7838 location of the tag, and therefore compute the tagged type's actual type.
7839 So we return the tagged type without consulting the tag. */
529cad9c 7840
f192137b
JB
7841static struct type *
7842ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7843 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7844{
61ee279c 7845 type = ada_check_typedef (type);
d2e4a39e
AS
7846 switch (TYPE_CODE (type))
7847 {
7848 default:
14f9c5c9 7849 return type;
d2e4a39e 7850 case TYPE_CODE_STRUCT:
4c4b4cd2 7851 {
76a01679 7852 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7853 struct type *fixed_record_type =
7854 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7855
529cad9c
PH
7856 /* If STATIC_TYPE is a tagged type and we know the object's address,
7857 then we can determine its tag, and compute the object's actual
0963b4bd 7858 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7859 type (the parent part of the record may have dynamic fields
7860 and the way the location of _tag is expressed may depend on
7861 them). */
529cad9c 7862
1ed6ede0 7863 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7864 {
7865 struct type *real_type =
1ed6ede0
JB
7866 type_from_tag (value_tag_from_contents_and_address
7867 (fixed_record_type,
7868 valaddr,
7869 address));
5b4ee69b 7870
76a01679 7871 if (real_type != NULL)
1ed6ede0 7872 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7873 }
4af88198
JB
7874
7875 /* Check to see if there is a parallel ___XVZ variable.
7876 If there is, then it provides the actual size of our type. */
7877 else if (ada_type_name (fixed_record_type) != NULL)
7878 {
7879 char *name = ada_type_name (fixed_record_type);
7880 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7881 int xvz_found = 0;
7882 LONGEST size;
7883
88c15c34 7884 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7885 size = get_int_var_value (xvz_name, &xvz_found);
7886 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7887 {
7888 fixed_record_type = copy_type (fixed_record_type);
7889 TYPE_LENGTH (fixed_record_type) = size;
7890
7891 /* The FIXED_RECORD_TYPE may have be a stub. We have
7892 observed this when the debugging info is STABS, and
7893 apparently it is something that is hard to fix.
7894
7895 In practice, we don't need the actual type definition
7896 at all, because the presence of the XVZ variable allows us
7897 to assume that there must be a XVS type as well, which we
7898 should be able to use later, when we need the actual type
7899 definition.
7900
7901 In the meantime, pretend that the "fixed" type we are
7902 returning is NOT a stub, because this can cause trouble
7903 when using this type to create new types targeting it.
7904 Indeed, the associated creation routines often check
7905 whether the target type is a stub and will try to replace
0963b4bd 7906 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7907 might cause the new type to have the wrong size too.
7908 Consider the case of an array, for instance, where the size
7909 of the array is computed from the number of elements in
7910 our array multiplied by the size of its element. */
7911 TYPE_STUB (fixed_record_type) = 0;
7912 }
7913 }
1ed6ede0 7914 return fixed_record_type;
4c4b4cd2 7915 }
d2e4a39e 7916 case TYPE_CODE_ARRAY:
4c4b4cd2 7917 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7918 case TYPE_CODE_UNION:
7919 if (dval == NULL)
4c4b4cd2 7920 return type;
d2e4a39e 7921 else
4c4b4cd2 7922 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7923 }
14f9c5c9
AS
7924}
7925
f192137b
JB
7926/* The same as ada_to_fixed_type_1, except that it preserves the type
7927 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7928
7929 The typedef layer needs be preserved in order to differentiate between
7930 arrays and array pointers when both types are implemented using the same
7931 fat pointer. In the array pointer case, the pointer is encoded as
7932 a typedef of the pointer type. For instance, considering:
7933
7934 type String_Access is access String;
7935 S1 : String_Access := null;
7936
7937 To the debugger, S1 is defined as a typedef of type String. But
7938 to the user, it is a pointer. So if the user tries to print S1,
7939 we should not dereference the array, but print the array address
7940 instead.
7941
7942 If we didn't preserve the typedef layer, we would lose the fact that
7943 the type is to be presented as a pointer (needs de-reference before
7944 being printed). And we would also use the source-level type name. */
f192137b
JB
7945
7946struct type *
7947ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7948 CORE_ADDR address, struct value *dval, int check_tag)
7949
7950{
7951 struct type *fixed_type =
7952 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7953
96dbd2c1
JB
7954 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7955 then preserve the typedef layer.
7956
7957 Implementation note: We can only check the main-type portion of
7958 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7959 from TYPE now returns a type that has the same instance flags
7960 as TYPE. For instance, if TYPE is a "typedef const", and its
7961 target type is a "struct", then the typedef elimination will return
7962 a "const" version of the target type. See check_typedef for more
7963 details about how the typedef layer elimination is done.
7964
7965 brobecker/2010-11-19: It seems to me that the only case where it is
7966 useful to preserve the typedef layer is when dealing with fat pointers.
7967 Perhaps, we could add a check for that and preserve the typedef layer
7968 only in that situation. But this seems unecessary so far, probably
7969 because we call check_typedef/ada_check_typedef pretty much everywhere.
7970 */
f192137b 7971 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7972 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7973 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7974 return type;
7975
7976 return fixed_type;
7977}
7978
14f9c5c9 7979/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7980 TYPE0, but based on no runtime data. */
14f9c5c9 7981
d2e4a39e
AS
7982static struct type *
7983to_static_fixed_type (struct type *type0)
14f9c5c9 7984{
d2e4a39e 7985 struct type *type;
14f9c5c9
AS
7986
7987 if (type0 == NULL)
7988 return NULL;
7989
876cecd0 7990 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7991 return type0;
7992
61ee279c 7993 type0 = ada_check_typedef (type0);
d2e4a39e 7994
14f9c5c9
AS
7995 switch (TYPE_CODE (type0))
7996 {
7997 default:
7998 return type0;
7999 case TYPE_CODE_STRUCT:
8000 type = dynamic_template_type (type0);
d2e4a39e 8001 if (type != NULL)
4c4b4cd2
PH
8002 return template_to_static_fixed_type (type);
8003 else
8004 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8005 case TYPE_CODE_UNION:
8006 type = ada_find_parallel_type (type0, "___XVU");
8007 if (type != NULL)
4c4b4cd2
PH
8008 return template_to_static_fixed_type (type);
8009 else
8010 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8011 }
8012}
8013
4c4b4cd2
PH
8014/* A static approximation of TYPE with all type wrappers removed. */
8015
d2e4a39e
AS
8016static struct type *
8017static_unwrap_type (struct type *type)
14f9c5c9
AS
8018{
8019 if (ada_is_aligner_type (type))
8020 {
61ee279c 8021 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8022 if (ada_type_name (type1) == NULL)
4c4b4cd2 8023 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8024
8025 return static_unwrap_type (type1);
8026 }
d2e4a39e 8027 else
14f9c5c9 8028 {
d2e4a39e 8029 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8030
d2e4a39e 8031 if (raw_real_type == type)
4c4b4cd2 8032 return type;
14f9c5c9 8033 else
4c4b4cd2 8034 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8035 }
8036}
8037
8038/* In some cases, incomplete and private types require
4c4b4cd2 8039 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8040 type Foo;
8041 type FooP is access Foo;
8042 V: FooP;
8043 type Foo is array ...;
4c4b4cd2 8044 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8045 cross-references to such types, we instead substitute for FooP a
8046 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8047 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8048
8049/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8050 exists, otherwise TYPE. */
8051
d2e4a39e 8052struct type *
61ee279c 8053ada_check_typedef (struct type *type)
14f9c5c9 8054{
727e3d2e
JB
8055 if (type == NULL)
8056 return NULL;
8057
720d1a40
JB
8058 /* If our type is a typedef type of a fat pointer, then we're done.
8059 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8060 what allows us to distinguish between fat pointers that represent
8061 array types, and fat pointers that represent array access types
8062 (in both cases, the compiler implements them as fat pointers). */
8063 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8064 && is_thick_pntr (ada_typedef_target_type (type)))
8065 return type;
8066
14f9c5c9
AS
8067 CHECK_TYPEDEF (type);
8068 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8069 || !TYPE_STUB (type)
14f9c5c9
AS
8070 || TYPE_TAG_NAME (type) == NULL)
8071 return type;
d2e4a39e 8072 else
14f9c5c9 8073 {
d2e4a39e
AS
8074 char *name = TYPE_TAG_NAME (type);
8075 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8076
05e522ef
JB
8077 if (type1 == NULL)
8078 return type;
8079
8080 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8081 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8082 types, only for the typedef-to-array types). If that's the case,
8083 strip the typedef layer. */
8084 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8085 type1 = ada_check_typedef (type1);
8086
8087 return type1;
14f9c5c9
AS
8088 }
8089}
8090
8091/* A value representing the data at VALADDR/ADDRESS as described by
8092 type TYPE0, but with a standard (static-sized) type that correctly
8093 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8094 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8095 creation of struct values]. */
14f9c5c9 8096
4c4b4cd2
PH
8097static struct value *
8098ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8099 struct value *val0)
14f9c5c9 8100{
1ed6ede0 8101 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8102
14f9c5c9
AS
8103 if (type == type0 && val0 != NULL)
8104 return val0;
d2e4a39e 8105 else
4c4b4cd2
PH
8106 return value_from_contents_and_address (type, 0, address);
8107}
8108
8109/* A value representing VAL, but with a standard (static-sized) type
8110 that correctly describes it. Does not necessarily create a new
8111 value. */
8112
0c3acc09 8113struct value *
4c4b4cd2
PH
8114ada_to_fixed_value (struct value *val)
8115{
df407dfe 8116 return ada_to_fixed_value_create (value_type (val),
42ae5230 8117 value_address (val),
4c4b4cd2 8118 val);
14f9c5c9 8119}
d2e4a39e 8120\f
14f9c5c9 8121
14f9c5c9
AS
8122/* Attributes */
8123
4c4b4cd2
PH
8124/* Table mapping attribute numbers to names.
8125 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8126
d2e4a39e 8127static const char *attribute_names[] = {
14f9c5c9
AS
8128 "<?>",
8129
d2e4a39e 8130 "first",
14f9c5c9
AS
8131 "last",
8132 "length",
8133 "image",
14f9c5c9
AS
8134 "max",
8135 "min",
4c4b4cd2
PH
8136 "modulus",
8137 "pos",
8138 "size",
8139 "tag",
14f9c5c9 8140 "val",
14f9c5c9
AS
8141 0
8142};
8143
d2e4a39e 8144const char *
4c4b4cd2 8145ada_attribute_name (enum exp_opcode n)
14f9c5c9 8146{
4c4b4cd2
PH
8147 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8148 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8149 else
8150 return attribute_names[0];
8151}
8152
4c4b4cd2 8153/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8154
4c4b4cd2
PH
8155static LONGEST
8156pos_atr (struct value *arg)
14f9c5c9 8157{
24209737
PH
8158 struct value *val = coerce_ref (arg);
8159 struct type *type = value_type (val);
14f9c5c9 8160
d2e4a39e 8161 if (!discrete_type_p (type))
323e0a4a 8162 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8163
8164 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8165 {
8166 int i;
24209737 8167 LONGEST v = value_as_long (val);
14f9c5c9 8168
d2e4a39e 8169 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8170 {
8171 if (v == TYPE_FIELD_BITPOS (type, i))
8172 return i;
8173 }
323e0a4a 8174 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8175 }
8176 else
24209737 8177 return value_as_long (val);
4c4b4cd2
PH
8178}
8179
8180static struct value *
3cb382c9 8181value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8182{
3cb382c9 8183 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8184}
8185
4c4b4cd2 8186/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8187
d2e4a39e
AS
8188static struct value *
8189value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8190{
d2e4a39e 8191 if (!discrete_type_p (type))
323e0a4a 8192 error (_("'VAL only defined on discrete types"));
df407dfe 8193 if (!integer_type_p (value_type (arg)))
323e0a4a 8194 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8195
8196 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8197 {
8198 long pos = value_as_long (arg);
5b4ee69b 8199
14f9c5c9 8200 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8201 error (_("argument to 'VAL out of range"));
d2e4a39e 8202 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8203 }
8204 else
8205 return value_from_longest (type, value_as_long (arg));
8206}
14f9c5c9 8207\f
d2e4a39e 8208
4c4b4cd2 8209 /* Evaluation */
14f9c5c9 8210
4c4b4cd2
PH
8211/* True if TYPE appears to be an Ada character type.
8212 [At the moment, this is true only for Character and Wide_Character;
8213 It is a heuristic test that could stand improvement]. */
14f9c5c9 8214
d2e4a39e
AS
8215int
8216ada_is_character_type (struct type *type)
14f9c5c9 8217{
7b9f71f2
JB
8218 const char *name;
8219
8220 /* If the type code says it's a character, then assume it really is,
8221 and don't check any further. */
8222 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8223 return 1;
8224
8225 /* Otherwise, assume it's a character type iff it is a discrete type
8226 with a known character type name. */
8227 name = ada_type_name (type);
8228 return (name != NULL
8229 && (TYPE_CODE (type) == TYPE_CODE_INT
8230 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8231 && (strcmp (name, "character") == 0
8232 || strcmp (name, "wide_character") == 0
5a517ebd 8233 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8234 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8235}
8236
4c4b4cd2 8237/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8238
8239int
ebf56fd3 8240ada_is_string_type (struct type *type)
14f9c5c9 8241{
61ee279c 8242 type = ada_check_typedef (type);
d2e4a39e 8243 if (type != NULL
14f9c5c9 8244 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8245 && (ada_is_simple_array_type (type)
8246 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8247 && ada_array_arity (type) == 1)
8248 {
8249 struct type *elttype = ada_array_element_type (type, 1);
8250
8251 return ada_is_character_type (elttype);
8252 }
d2e4a39e 8253 else
14f9c5c9
AS
8254 return 0;
8255}
8256
5bf03f13
JB
8257/* The compiler sometimes provides a parallel XVS type for a given
8258 PAD type. Normally, it is safe to follow the PAD type directly,
8259 but older versions of the compiler have a bug that causes the offset
8260 of its "F" field to be wrong. Following that field in that case
8261 would lead to incorrect results, but this can be worked around
8262 by ignoring the PAD type and using the associated XVS type instead.
8263
8264 Set to True if the debugger should trust the contents of PAD types.
8265 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8266static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8267
8268/* True if TYPE is a struct type introduced by the compiler to force the
8269 alignment of a value. Such types have a single field with a
4c4b4cd2 8270 distinctive name. */
14f9c5c9
AS
8271
8272int
ebf56fd3 8273ada_is_aligner_type (struct type *type)
14f9c5c9 8274{
61ee279c 8275 type = ada_check_typedef (type);
714e53ab 8276
5bf03f13 8277 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8278 return 0;
8279
14f9c5c9 8280 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8281 && TYPE_NFIELDS (type) == 1
8282 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8283}
8284
8285/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8286 the parallel type. */
14f9c5c9 8287
d2e4a39e
AS
8288struct type *
8289ada_get_base_type (struct type *raw_type)
14f9c5c9 8290{
d2e4a39e
AS
8291 struct type *real_type_namer;
8292 struct type *raw_real_type;
14f9c5c9
AS
8293
8294 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8295 return raw_type;
8296
284614f0
JB
8297 if (ada_is_aligner_type (raw_type))
8298 /* The encoding specifies that we should always use the aligner type.
8299 So, even if this aligner type has an associated XVS type, we should
8300 simply ignore it.
8301
8302 According to the compiler gurus, an XVS type parallel to an aligner
8303 type may exist because of a stabs limitation. In stabs, aligner
8304 types are empty because the field has a variable-sized type, and
8305 thus cannot actually be used as an aligner type. As a result,
8306 we need the associated parallel XVS type to decode the type.
8307 Since the policy in the compiler is to not change the internal
8308 representation based on the debugging info format, we sometimes
8309 end up having a redundant XVS type parallel to the aligner type. */
8310 return raw_type;
8311
14f9c5c9 8312 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8313 if (real_type_namer == NULL
14f9c5c9
AS
8314 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8315 || TYPE_NFIELDS (real_type_namer) != 1)
8316 return raw_type;
8317
f80d3ff2
JB
8318 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8319 {
8320 /* This is an older encoding form where the base type needs to be
8321 looked up by name. We prefer the newer enconding because it is
8322 more efficient. */
8323 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8324 if (raw_real_type == NULL)
8325 return raw_type;
8326 else
8327 return raw_real_type;
8328 }
8329
8330 /* The field in our XVS type is a reference to the base type. */
8331 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8332}
14f9c5c9 8333
4c4b4cd2 8334/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8335
d2e4a39e
AS
8336struct type *
8337ada_aligned_type (struct type *type)
14f9c5c9
AS
8338{
8339 if (ada_is_aligner_type (type))
8340 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8341 else
8342 return ada_get_base_type (type);
8343}
8344
8345
8346/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8347 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8348
fc1a4b47
AC
8349const gdb_byte *
8350ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8351{
d2e4a39e 8352 if (ada_is_aligner_type (type))
14f9c5c9 8353 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8354 valaddr +
8355 TYPE_FIELD_BITPOS (type,
8356 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8357 else
8358 return valaddr;
8359}
8360
4c4b4cd2
PH
8361
8362
14f9c5c9 8363/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8364 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8365const char *
8366ada_enum_name (const char *name)
14f9c5c9 8367{
4c4b4cd2
PH
8368 static char *result;
8369 static size_t result_len = 0;
d2e4a39e 8370 char *tmp;
14f9c5c9 8371
4c4b4cd2
PH
8372 /* First, unqualify the enumeration name:
8373 1. Search for the last '.' character. If we find one, then skip
177b42fe 8374 all the preceding characters, the unqualified name starts
76a01679 8375 right after that dot.
4c4b4cd2 8376 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8377 translates dots into "__". Search forward for double underscores,
8378 but stop searching when we hit an overloading suffix, which is
8379 of the form "__" followed by digits. */
4c4b4cd2 8380
c3e5cd34
PH
8381 tmp = strrchr (name, '.');
8382 if (tmp != NULL)
4c4b4cd2
PH
8383 name = tmp + 1;
8384 else
14f9c5c9 8385 {
4c4b4cd2
PH
8386 while ((tmp = strstr (name, "__")) != NULL)
8387 {
8388 if (isdigit (tmp[2]))
8389 break;
8390 else
8391 name = tmp + 2;
8392 }
14f9c5c9
AS
8393 }
8394
8395 if (name[0] == 'Q')
8396 {
14f9c5c9 8397 int v;
5b4ee69b 8398
14f9c5c9 8399 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8400 {
8401 if (sscanf (name + 2, "%x", &v) != 1)
8402 return name;
8403 }
14f9c5c9 8404 else
4c4b4cd2 8405 return name;
14f9c5c9 8406
4c4b4cd2 8407 GROW_VECT (result, result_len, 16);
14f9c5c9 8408 if (isascii (v) && isprint (v))
88c15c34 8409 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8410 else if (name[1] == 'U')
88c15c34 8411 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8412 else
88c15c34 8413 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8414
8415 return result;
8416 }
d2e4a39e 8417 else
4c4b4cd2 8418 {
c3e5cd34
PH
8419 tmp = strstr (name, "__");
8420 if (tmp == NULL)
8421 tmp = strstr (name, "$");
8422 if (tmp != NULL)
4c4b4cd2
PH
8423 {
8424 GROW_VECT (result, result_len, tmp - name + 1);
8425 strncpy (result, name, tmp - name);
8426 result[tmp - name] = '\0';
8427 return result;
8428 }
8429
8430 return name;
8431 }
14f9c5c9
AS
8432}
8433
14f9c5c9
AS
8434/* Evaluate the subexpression of EXP starting at *POS as for
8435 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8436 expression. */
14f9c5c9 8437
d2e4a39e
AS
8438static struct value *
8439evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8440{
4b27a620 8441 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8442}
8443
8444/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8445 value it wraps. */
14f9c5c9 8446
d2e4a39e
AS
8447static struct value *
8448unwrap_value (struct value *val)
14f9c5c9 8449{
df407dfe 8450 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8451
14f9c5c9
AS
8452 if (ada_is_aligner_type (type))
8453 {
de4d072f 8454 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8455 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8456
14f9c5c9 8457 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8458 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8459
8460 return unwrap_value (v);
8461 }
d2e4a39e 8462 else
14f9c5c9 8463 {
d2e4a39e 8464 struct type *raw_real_type =
61ee279c 8465 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8466
5bf03f13
JB
8467 /* If there is no parallel XVS or XVE type, then the value is
8468 already unwrapped. Return it without further modification. */
8469 if ((type == raw_real_type)
8470 && ada_find_parallel_type (type, "___XVE") == NULL)
8471 return val;
14f9c5c9 8472
d2e4a39e 8473 return
4c4b4cd2
PH
8474 coerce_unspec_val_to_type
8475 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8476 value_address (val),
1ed6ede0 8477 NULL, 1));
14f9c5c9
AS
8478 }
8479}
d2e4a39e
AS
8480
8481static struct value *
8482cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8483{
8484 LONGEST val;
8485
df407dfe 8486 if (type == value_type (arg))
14f9c5c9 8487 return arg;
df407dfe 8488 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8489 val = ada_float_to_fixed (type,
df407dfe 8490 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8491 value_as_long (arg)));
d2e4a39e 8492 else
14f9c5c9 8493 {
a53b7a21 8494 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8495
14f9c5c9
AS
8496 val = ada_float_to_fixed (type, argd);
8497 }
8498
8499 return value_from_longest (type, val);
8500}
8501
d2e4a39e 8502static struct value *
a53b7a21 8503cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8504{
df407dfe 8505 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8506 value_as_long (arg));
5b4ee69b 8507
a53b7a21 8508 return value_from_double (type, val);
14f9c5c9
AS
8509}
8510
4c4b4cd2
PH
8511/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8512 return the converted value. */
8513
d2e4a39e
AS
8514static struct value *
8515coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8516{
df407dfe 8517 struct type *type2 = value_type (val);
5b4ee69b 8518
14f9c5c9
AS
8519 if (type == type2)
8520 return val;
8521
61ee279c
PH
8522 type2 = ada_check_typedef (type2);
8523 type = ada_check_typedef (type);
14f9c5c9 8524
d2e4a39e
AS
8525 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8526 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8527 {
8528 val = ada_value_ind (val);
df407dfe 8529 type2 = value_type (val);
14f9c5c9
AS
8530 }
8531
d2e4a39e 8532 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8533 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8534 {
8535 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8536 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8537 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8538 error (_("Incompatible types in assignment"));
04624583 8539 deprecated_set_value_type (val, type);
14f9c5c9 8540 }
d2e4a39e 8541 return val;
14f9c5c9
AS
8542}
8543
4c4b4cd2
PH
8544static struct value *
8545ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8546{
8547 struct value *val;
8548 struct type *type1, *type2;
8549 LONGEST v, v1, v2;
8550
994b9211
AC
8551 arg1 = coerce_ref (arg1);
8552 arg2 = coerce_ref (arg2);
18af8284
JB
8553 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8554 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8555
76a01679
JB
8556 if (TYPE_CODE (type1) != TYPE_CODE_INT
8557 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8558 return value_binop (arg1, arg2, op);
8559
76a01679 8560 switch (op)
4c4b4cd2
PH
8561 {
8562 case BINOP_MOD:
8563 case BINOP_DIV:
8564 case BINOP_REM:
8565 break;
8566 default:
8567 return value_binop (arg1, arg2, op);
8568 }
8569
8570 v2 = value_as_long (arg2);
8571 if (v2 == 0)
323e0a4a 8572 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8573
8574 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8575 return value_binop (arg1, arg2, op);
8576
8577 v1 = value_as_long (arg1);
8578 switch (op)
8579 {
8580 case BINOP_DIV:
8581 v = v1 / v2;
76a01679
JB
8582 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8583 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8584 break;
8585 case BINOP_REM:
8586 v = v1 % v2;
76a01679
JB
8587 if (v * v1 < 0)
8588 v -= v2;
4c4b4cd2
PH
8589 break;
8590 default:
8591 /* Should not reach this point. */
8592 v = 0;
8593 }
8594
8595 val = allocate_value (type1);
990a07ab 8596 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8597 TYPE_LENGTH (value_type (val)),
8598 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8599 return val;
8600}
8601
8602static int
8603ada_value_equal (struct value *arg1, struct value *arg2)
8604{
df407dfe
AC
8605 if (ada_is_direct_array_type (value_type (arg1))
8606 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8607 {
f58b38bf
JB
8608 /* Automatically dereference any array reference before
8609 we attempt to perform the comparison. */
8610 arg1 = ada_coerce_ref (arg1);
8611 arg2 = ada_coerce_ref (arg2);
8612
4c4b4cd2
PH
8613 arg1 = ada_coerce_to_simple_array (arg1);
8614 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8615 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8616 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8617 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8618 /* FIXME: The following works only for types whose
76a01679
JB
8619 representations use all bits (no padding or undefined bits)
8620 and do not have user-defined equality. */
8621 return
df407dfe 8622 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8623 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8624 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8625 }
8626 return value_equal (arg1, arg2);
8627}
8628
52ce6436
PH
8629/* Total number of component associations in the aggregate starting at
8630 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8631 OP_AGGREGATE. */
52ce6436
PH
8632
8633static int
8634num_component_specs (struct expression *exp, int pc)
8635{
8636 int n, m, i;
5b4ee69b 8637
52ce6436
PH
8638 m = exp->elts[pc + 1].longconst;
8639 pc += 3;
8640 n = 0;
8641 for (i = 0; i < m; i += 1)
8642 {
8643 switch (exp->elts[pc].opcode)
8644 {
8645 default:
8646 n += 1;
8647 break;
8648 case OP_CHOICES:
8649 n += exp->elts[pc + 1].longconst;
8650 break;
8651 }
8652 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8653 }
8654 return n;
8655}
8656
8657/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8658 component of LHS (a simple array or a record), updating *POS past
8659 the expression, assuming that LHS is contained in CONTAINER. Does
8660 not modify the inferior's memory, nor does it modify LHS (unless
8661 LHS == CONTAINER). */
8662
8663static void
8664assign_component (struct value *container, struct value *lhs, LONGEST index,
8665 struct expression *exp, int *pos)
8666{
8667 struct value *mark = value_mark ();
8668 struct value *elt;
5b4ee69b 8669
52ce6436
PH
8670 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8671 {
22601c15
UW
8672 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8673 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8674
52ce6436
PH
8675 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8676 }
8677 else
8678 {
8679 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8680 elt = ada_to_fixed_value (unwrap_value (elt));
8681 }
8682
8683 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8684 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8685 else
8686 value_assign_to_component (container, elt,
8687 ada_evaluate_subexp (NULL, exp, pos,
8688 EVAL_NORMAL));
8689
8690 value_free_to_mark (mark);
8691}
8692
8693/* Assuming that LHS represents an lvalue having a record or array
8694 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8695 of that aggregate's value to LHS, advancing *POS past the
8696 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8697 lvalue containing LHS (possibly LHS itself). Does not modify
8698 the inferior's memory, nor does it modify the contents of
0963b4bd 8699 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8700
8701static struct value *
8702assign_aggregate (struct value *container,
8703 struct value *lhs, struct expression *exp,
8704 int *pos, enum noside noside)
8705{
8706 struct type *lhs_type;
8707 int n = exp->elts[*pos+1].longconst;
8708 LONGEST low_index, high_index;
8709 int num_specs;
8710 LONGEST *indices;
8711 int max_indices, num_indices;
8712 int is_array_aggregate;
8713 int i;
52ce6436
PH
8714
8715 *pos += 3;
8716 if (noside != EVAL_NORMAL)
8717 {
52ce6436
PH
8718 for (i = 0; i < n; i += 1)
8719 ada_evaluate_subexp (NULL, exp, pos, noside);
8720 return container;
8721 }
8722
8723 container = ada_coerce_ref (container);
8724 if (ada_is_direct_array_type (value_type (container)))
8725 container = ada_coerce_to_simple_array (container);
8726 lhs = ada_coerce_ref (lhs);
8727 if (!deprecated_value_modifiable (lhs))
8728 error (_("Left operand of assignment is not a modifiable lvalue."));
8729
8730 lhs_type = value_type (lhs);
8731 if (ada_is_direct_array_type (lhs_type))
8732 {
8733 lhs = ada_coerce_to_simple_array (lhs);
8734 lhs_type = value_type (lhs);
8735 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8736 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8737 is_array_aggregate = 1;
8738 }
8739 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8740 {
8741 low_index = 0;
8742 high_index = num_visible_fields (lhs_type) - 1;
8743 is_array_aggregate = 0;
8744 }
8745 else
8746 error (_("Left-hand side must be array or record."));
8747
8748 num_specs = num_component_specs (exp, *pos - 3);
8749 max_indices = 4 * num_specs + 4;
8750 indices = alloca (max_indices * sizeof (indices[0]));
8751 indices[0] = indices[1] = low_index - 1;
8752 indices[2] = indices[3] = high_index + 1;
8753 num_indices = 4;
8754
8755 for (i = 0; i < n; i += 1)
8756 {
8757 switch (exp->elts[*pos].opcode)
8758 {
1fbf5ada
JB
8759 case OP_CHOICES:
8760 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8761 &num_indices, max_indices,
8762 low_index, high_index);
8763 break;
8764 case OP_POSITIONAL:
8765 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8766 &num_indices, max_indices,
8767 low_index, high_index);
1fbf5ada
JB
8768 break;
8769 case OP_OTHERS:
8770 if (i != n-1)
8771 error (_("Misplaced 'others' clause"));
8772 aggregate_assign_others (container, lhs, exp, pos, indices,
8773 num_indices, low_index, high_index);
8774 break;
8775 default:
8776 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8777 }
8778 }
8779
8780 return container;
8781}
8782
8783/* Assign into the component of LHS indexed by the OP_POSITIONAL
8784 construct at *POS, updating *POS past the construct, given that
8785 the positions are relative to lower bound LOW, where HIGH is the
8786 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8787 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8788 assign_aggregate. */
52ce6436
PH
8789static void
8790aggregate_assign_positional (struct value *container,
8791 struct value *lhs, struct expression *exp,
8792 int *pos, LONGEST *indices, int *num_indices,
8793 int max_indices, LONGEST low, LONGEST high)
8794{
8795 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8796
8797 if (ind - 1 == high)
e1d5a0d2 8798 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8799 if (ind <= high)
8800 {
8801 add_component_interval (ind, ind, indices, num_indices, max_indices);
8802 *pos += 3;
8803 assign_component (container, lhs, ind, exp, pos);
8804 }
8805 else
8806 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8807}
8808
8809/* Assign into the components of LHS indexed by the OP_CHOICES
8810 construct at *POS, updating *POS past the construct, given that
8811 the allowable indices are LOW..HIGH. Record the indices assigned
8812 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8813 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8814static void
8815aggregate_assign_from_choices (struct value *container,
8816 struct value *lhs, struct expression *exp,
8817 int *pos, LONGEST *indices, int *num_indices,
8818 int max_indices, LONGEST low, LONGEST high)
8819{
8820 int j;
8821 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8822 int choice_pos, expr_pc;
8823 int is_array = ada_is_direct_array_type (value_type (lhs));
8824
8825 choice_pos = *pos += 3;
8826
8827 for (j = 0; j < n_choices; j += 1)
8828 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8829 expr_pc = *pos;
8830 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8831
8832 for (j = 0; j < n_choices; j += 1)
8833 {
8834 LONGEST lower, upper;
8835 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8836
52ce6436
PH
8837 if (op == OP_DISCRETE_RANGE)
8838 {
8839 choice_pos += 1;
8840 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8841 EVAL_NORMAL));
8842 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8843 EVAL_NORMAL));
8844 }
8845 else if (is_array)
8846 {
8847 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8848 EVAL_NORMAL));
8849 upper = lower;
8850 }
8851 else
8852 {
8853 int ind;
8854 char *name;
5b4ee69b 8855
52ce6436
PH
8856 switch (op)
8857 {
8858 case OP_NAME:
8859 name = &exp->elts[choice_pos + 2].string;
8860 break;
8861 case OP_VAR_VALUE:
8862 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8863 break;
8864 default:
8865 error (_("Invalid record component association."));
8866 }
8867 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8868 ind = 0;
8869 if (! find_struct_field (name, value_type (lhs), 0,
8870 NULL, NULL, NULL, NULL, &ind))
8871 error (_("Unknown component name: %s."), name);
8872 lower = upper = ind;
8873 }
8874
8875 if (lower <= upper && (lower < low || upper > high))
8876 error (_("Index in component association out of bounds."));
8877
8878 add_component_interval (lower, upper, indices, num_indices,
8879 max_indices);
8880 while (lower <= upper)
8881 {
8882 int pos1;
5b4ee69b 8883
52ce6436
PH
8884 pos1 = expr_pc;
8885 assign_component (container, lhs, lower, exp, &pos1);
8886 lower += 1;
8887 }
8888 }
8889}
8890
8891/* Assign the value of the expression in the OP_OTHERS construct in
8892 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8893 have not been previously assigned. The index intervals already assigned
8894 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8895 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8896static void
8897aggregate_assign_others (struct value *container,
8898 struct value *lhs, struct expression *exp,
8899 int *pos, LONGEST *indices, int num_indices,
8900 LONGEST low, LONGEST high)
8901{
8902 int i;
5ce64950 8903 int expr_pc = *pos + 1;
52ce6436
PH
8904
8905 for (i = 0; i < num_indices - 2; i += 2)
8906 {
8907 LONGEST ind;
5b4ee69b 8908
52ce6436
PH
8909 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8910 {
5ce64950 8911 int localpos;
5b4ee69b 8912
5ce64950
MS
8913 localpos = expr_pc;
8914 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8915 }
8916 }
8917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8918}
8919
8920/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8921 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8922 modifying *SIZE as needed. It is an error if *SIZE exceeds
8923 MAX_SIZE. The resulting intervals do not overlap. */
8924static void
8925add_component_interval (LONGEST low, LONGEST high,
8926 LONGEST* indices, int *size, int max_size)
8927{
8928 int i, j;
5b4ee69b 8929
52ce6436
PH
8930 for (i = 0; i < *size; i += 2) {
8931 if (high >= indices[i] && low <= indices[i + 1])
8932 {
8933 int kh;
5b4ee69b 8934
52ce6436
PH
8935 for (kh = i + 2; kh < *size; kh += 2)
8936 if (high < indices[kh])
8937 break;
8938 if (low < indices[i])
8939 indices[i] = low;
8940 indices[i + 1] = indices[kh - 1];
8941 if (high > indices[i + 1])
8942 indices[i + 1] = high;
8943 memcpy (indices + i + 2, indices + kh, *size - kh);
8944 *size -= kh - i - 2;
8945 return;
8946 }
8947 else if (high < indices[i])
8948 break;
8949 }
8950
8951 if (*size == max_size)
8952 error (_("Internal error: miscounted aggregate components."));
8953 *size += 2;
8954 for (j = *size-1; j >= i+2; j -= 1)
8955 indices[j] = indices[j - 2];
8956 indices[i] = low;
8957 indices[i + 1] = high;
8958}
8959
6e48bd2c
JB
8960/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8961 is different. */
8962
8963static struct value *
8964ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8965{
8966 if (type == ada_check_typedef (value_type (arg2)))
8967 return arg2;
8968
8969 if (ada_is_fixed_point_type (type))
8970 return (cast_to_fixed (type, arg2));
8971
8972 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8973 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8974
8975 return value_cast (type, arg2);
8976}
8977
284614f0
JB
8978/* Evaluating Ada expressions, and printing their result.
8979 ------------------------------------------------------
8980
21649b50
JB
8981 1. Introduction:
8982 ----------------
8983
284614f0
JB
8984 We usually evaluate an Ada expression in order to print its value.
8985 We also evaluate an expression in order to print its type, which
8986 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8987 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8988 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8989 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8990 similar.
8991
8992 Evaluating expressions is a little more complicated for Ada entities
8993 than it is for entities in languages such as C. The main reason for
8994 this is that Ada provides types whose definition might be dynamic.
8995 One example of such types is variant records. Or another example
8996 would be an array whose bounds can only be known at run time.
8997
8998 The following description is a general guide as to what should be
8999 done (and what should NOT be done) in order to evaluate an expression
9000 involving such types, and when. This does not cover how the semantic
9001 information is encoded by GNAT as this is covered separatly. For the
9002 document used as the reference for the GNAT encoding, see exp_dbug.ads
9003 in the GNAT sources.
9004
9005 Ideally, we should embed each part of this description next to its
9006 associated code. Unfortunately, the amount of code is so vast right
9007 now that it's hard to see whether the code handling a particular
9008 situation might be duplicated or not. One day, when the code is
9009 cleaned up, this guide might become redundant with the comments
9010 inserted in the code, and we might want to remove it.
9011
21649b50
JB
9012 2. ``Fixing'' an Entity, the Simple Case:
9013 -----------------------------------------
9014
284614f0
JB
9015 When evaluating Ada expressions, the tricky issue is that they may
9016 reference entities whose type contents and size are not statically
9017 known. Consider for instance a variant record:
9018
9019 type Rec (Empty : Boolean := True) is record
9020 case Empty is
9021 when True => null;
9022 when False => Value : Integer;
9023 end case;
9024 end record;
9025 Yes : Rec := (Empty => False, Value => 1);
9026 No : Rec := (empty => True);
9027
9028 The size and contents of that record depends on the value of the
9029 descriminant (Rec.Empty). At this point, neither the debugging
9030 information nor the associated type structure in GDB are able to
9031 express such dynamic types. So what the debugger does is to create
9032 "fixed" versions of the type that applies to the specific object.
9033 We also informally refer to this opperation as "fixing" an object,
9034 which means creating its associated fixed type.
9035
9036 Example: when printing the value of variable "Yes" above, its fixed
9037 type would look like this:
9038
9039 type Rec is record
9040 Empty : Boolean;
9041 Value : Integer;
9042 end record;
9043
9044 On the other hand, if we printed the value of "No", its fixed type
9045 would become:
9046
9047 type Rec is record
9048 Empty : Boolean;
9049 end record;
9050
9051 Things become a little more complicated when trying to fix an entity
9052 with a dynamic type that directly contains another dynamic type,
9053 such as an array of variant records, for instance. There are
9054 two possible cases: Arrays, and records.
9055
21649b50
JB
9056 3. ``Fixing'' Arrays:
9057 ---------------------
9058
9059 The type structure in GDB describes an array in terms of its bounds,
9060 and the type of its elements. By design, all elements in the array
9061 have the same type and we cannot represent an array of variant elements
9062 using the current type structure in GDB. When fixing an array,
9063 we cannot fix the array element, as we would potentially need one
9064 fixed type per element of the array. As a result, the best we can do
9065 when fixing an array is to produce an array whose bounds and size
9066 are correct (allowing us to read it from memory), but without having
9067 touched its element type. Fixing each element will be done later,
9068 when (if) necessary.
9069
9070 Arrays are a little simpler to handle than records, because the same
9071 amount of memory is allocated for each element of the array, even if
1b536f04 9072 the amount of space actually used by each element differs from element
21649b50 9073 to element. Consider for instance the following array of type Rec:
284614f0
JB
9074
9075 type Rec_Array is array (1 .. 2) of Rec;
9076
1b536f04
JB
9077 The actual amount of memory occupied by each element might be different
9078 from element to element, depending on the value of their discriminant.
21649b50 9079 But the amount of space reserved for each element in the array remains
1b536f04 9080 fixed regardless. So we simply need to compute that size using
21649b50
JB
9081 the debugging information available, from which we can then determine
9082 the array size (we multiply the number of elements of the array by
9083 the size of each element).
9084
9085 The simplest case is when we have an array of a constrained element
9086 type. For instance, consider the following type declarations:
9087
9088 type Bounded_String (Max_Size : Integer) is
9089 Length : Integer;
9090 Buffer : String (1 .. Max_Size);
9091 end record;
9092 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9093
9094 In this case, the compiler describes the array as an array of
9095 variable-size elements (identified by its XVS suffix) for which
9096 the size can be read in the parallel XVZ variable.
9097
9098 In the case of an array of an unconstrained element type, the compiler
9099 wraps the array element inside a private PAD type. This type should not
9100 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9101 that we also use the adjective "aligner" in our code to designate
9102 these wrapper types.
9103
1b536f04 9104 In some cases, the size allocated for each element is statically
21649b50
JB
9105 known. In that case, the PAD type already has the correct size,
9106 and the array element should remain unfixed.
9107
9108 But there are cases when this size is not statically known.
9109 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9110
9111 type Dynamic is array (1 .. Five) of Integer;
9112 type Wrapper (Has_Length : Boolean := False) is record
9113 Data : Dynamic;
9114 case Has_Length is
9115 when True => Length : Integer;
9116 when False => null;
9117 end case;
9118 end record;
9119 type Wrapper_Array is array (1 .. 2) of Wrapper;
9120
9121 Hello : Wrapper_Array := (others => (Has_Length => True,
9122 Data => (others => 17),
9123 Length => 1));
9124
9125
9126 The debugging info would describe variable Hello as being an
9127 array of a PAD type. The size of that PAD type is not statically
9128 known, but can be determined using a parallel XVZ variable.
9129 In that case, a copy of the PAD type with the correct size should
9130 be used for the fixed array.
9131
21649b50
JB
9132 3. ``Fixing'' record type objects:
9133 ----------------------------------
9134
9135 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9136 record types. In this case, in order to compute the associated
9137 fixed type, we need to determine the size and offset of each of
9138 its components. This, in turn, requires us to compute the fixed
9139 type of each of these components.
9140
9141 Consider for instance the example:
9142
9143 type Bounded_String (Max_Size : Natural) is record
9144 Str : String (1 .. Max_Size);
9145 Length : Natural;
9146 end record;
9147 My_String : Bounded_String (Max_Size => 10);
9148
9149 In that case, the position of field "Length" depends on the size
9150 of field Str, which itself depends on the value of the Max_Size
21649b50 9151 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9152 we need to fix the type of field Str. Therefore, fixing a variant
9153 record requires us to fix each of its components.
9154
9155 However, if a component does not have a dynamic size, the component
9156 should not be fixed. In particular, fields that use a PAD type
9157 should not fixed. Here is an example where this might happen
9158 (assuming type Rec above):
9159
9160 type Container (Big : Boolean) is record
9161 First : Rec;
9162 After : Integer;
9163 case Big is
9164 when True => Another : Integer;
9165 when False => null;
9166 end case;
9167 end record;
9168 My_Container : Container := (Big => False,
9169 First => (Empty => True),
9170 After => 42);
9171
9172 In that example, the compiler creates a PAD type for component First,
9173 whose size is constant, and then positions the component After just
9174 right after it. The offset of component After is therefore constant
9175 in this case.
9176
9177 The debugger computes the position of each field based on an algorithm
9178 that uses, among other things, the actual position and size of the field
21649b50
JB
9179 preceding it. Let's now imagine that the user is trying to print
9180 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9181 end up computing the offset of field After based on the size of the
9182 fixed version of field First. And since in our example First has
9183 only one actual field, the size of the fixed type is actually smaller
9184 than the amount of space allocated to that field, and thus we would
9185 compute the wrong offset of field After.
9186
21649b50
JB
9187 To make things more complicated, we need to watch out for dynamic
9188 components of variant records (identified by the ___XVL suffix in
9189 the component name). Even if the target type is a PAD type, the size
9190 of that type might not be statically known. So the PAD type needs
9191 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9192 we might end up with the wrong size for our component. This can be
9193 observed with the following type declarations:
284614f0
JB
9194
9195 type Octal is new Integer range 0 .. 7;
9196 type Octal_Array is array (Positive range <>) of Octal;
9197 pragma Pack (Octal_Array);
9198
9199 type Octal_Buffer (Size : Positive) is record
9200 Buffer : Octal_Array (1 .. Size);
9201 Length : Integer;
9202 end record;
9203
9204 In that case, Buffer is a PAD type whose size is unset and needs
9205 to be computed by fixing the unwrapped type.
9206
21649b50
JB
9207 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9208 ----------------------------------------------------------
9209
9210 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9211 thus far, be actually fixed?
9212
9213 The answer is: Only when referencing that element. For instance
9214 when selecting one component of a record, this specific component
9215 should be fixed at that point in time. Or when printing the value
9216 of a record, each component should be fixed before its value gets
9217 printed. Similarly for arrays, the element of the array should be
9218 fixed when printing each element of the array, or when extracting
9219 one element out of that array. On the other hand, fixing should
9220 not be performed on the elements when taking a slice of an array!
9221
9222 Note that one of the side-effects of miscomputing the offset and
9223 size of each field is that we end up also miscomputing the size
9224 of the containing type. This can have adverse results when computing
9225 the value of an entity. GDB fetches the value of an entity based
9226 on the size of its type, and thus a wrong size causes GDB to fetch
9227 the wrong amount of memory. In the case where the computed size is
9228 too small, GDB fetches too little data to print the value of our
9229 entiry. Results in this case as unpredicatble, as we usually read
9230 past the buffer containing the data =:-o. */
9231
9232/* Implement the evaluate_exp routine in the exp_descriptor structure
9233 for the Ada language. */
9234
52ce6436 9235static struct value *
ebf56fd3 9236ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9237 int *pos, enum noside noside)
14f9c5c9
AS
9238{
9239 enum exp_opcode op;
b5385fc0 9240 int tem;
14f9c5c9
AS
9241 int pc;
9242 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9243 struct type *type;
52ce6436 9244 int nargs, oplen;
d2e4a39e 9245 struct value **argvec;
14f9c5c9 9246
d2e4a39e
AS
9247 pc = *pos;
9248 *pos += 1;
14f9c5c9
AS
9249 op = exp->elts[pc].opcode;
9250
d2e4a39e 9251 switch (op)
14f9c5c9
AS
9252 {
9253 default:
9254 *pos -= 1;
6e48bd2c
JB
9255 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9256 arg1 = unwrap_value (arg1);
9257
9258 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9259 then we need to perform the conversion manually, because
9260 evaluate_subexp_standard doesn't do it. This conversion is
9261 necessary in Ada because the different kinds of float/fixed
9262 types in Ada have different representations.
9263
9264 Similarly, we need to perform the conversion from OP_LONG
9265 ourselves. */
9266 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9267 arg1 = ada_value_cast (expect_type, arg1, noside);
9268
9269 return arg1;
4c4b4cd2
PH
9270
9271 case OP_STRING:
9272 {
76a01679 9273 struct value *result;
5b4ee69b 9274
76a01679
JB
9275 *pos -= 1;
9276 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9277 /* The result type will have code OP_STRING, bashed there from
9278 OP_ARRAY. Bash it back. */
df407dfe
AC
9279 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9280 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9281 return result;
4c4b4cd2 9282 }
14f9c5c9
AS
9283
9284 case UNOP_CAST:
9285 (*pos) += 2;
9286 type = exp->elts[pc + 1].type;
9287 arg1 = evaluate_subexp (type, exp, pos, noside);
9288 if (noside == EVAL_SKIP)
4c4b4cd2 9289 goto nosideret;
6e48bd2c 9290 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9291 return arg1;
9292
4c4b4cd2
PH
9293 case UNOP_QUAL:
9294 (*pos) += 2;
9295 type = exp->elts[pc + 1].type;
9296 return ada_evaluate_subexp (type, exp, pos, noside);
9297
14f9c5c9
AS
9298 case BINOP_ASSIGN:
9299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9300 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9301 {
9302 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9303 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9304 return arg1;
9305 return ada_value_assign (arg1, arg1);
9306 }
003f3813
JB
9307 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9308 except if the lhs of our assignment is a convenience variable.
9309 In the case of assigning to a convenience variable, the lhs
9310 should be exactly the result of the evaluation of the rhs. */
9311 type = value_type (arg1);
9312 if (VALUE_LVAL (arg1) == lval_internalvar)
9313 type = NULL;
9314 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9315 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9316 return arg1;
df407dfe
AC
9317 if (ada_is_fixed_point_type (value_type (arg1)))
9318 arg2 = cast_to_fixed (value_type (arg1), arg2);
9319 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9320 error
323e0a4a 9321 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9322 else
df407dfe 9323 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9324 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9325
9326 case BINOP_ADD:
9327 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9328 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9329 if (noside == EVAL_SKIP)
4c4b4cd2 9330 goto nosideret;
2ac8a782
JB
9331 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9332 return (value_from_longest
9333 (value_type (arg1),
9334 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9335 if ((ada_is_fixed_point_type (value_type (arg1))
9336 || ada_is_fixed_point_type (value_type (arg2)))
9337 && value_type (arg1) != value_type (arg2))
323e0a4a 9338 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9339 /* Do the addition, and cast the result to the type of the first
9340 argument. We cannot cast the result to a reference type, so if
9341 ARG1 is a reference type, find its underlying type. */
9342 type = value_type (arg1);
9343 while (TYPE_CODE (type) == TYPE_CODE_REF)
9344 type = TYPE_TARGET_TYPE (type);
f44316fa 9345 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9346 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9347
9348 case BINOP_SUB:
9349 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9350 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9351 if (noside == EVAL_SKIP)
4c4b4cd2 9352 goto nosideret;
2ac8a782
JB
9353 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9354 return (value_from_longest
9355 (value_type (arg1),
9356 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9357 if ((ada_is_fixed_point_type (value_type (arg1))
9358 || ada_is_fixed_point_type (value_type (arg2)))
9359 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9360 error (_("Operands of fixed-point subtraction "
9361 "must have the same type"));
b7789565
JB
9362 /* Do the substraction, and cast the result to the type of the first
9363 argument. We cannot cast the result to a reference type, so if
9364 ARG1 is a reference type, find its underlying type. */
9365 type = value_type (arg1);
9366 while (TYPE_CODE (type) == TYPE_CODE_REF)
9367 type = TYPE_TARGET_TYPE (type);
f44316fa 9368 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9369 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9370
9371 case BINOP_MUL:
9372 case BINOP_DIV:
e1578042
JB
9373 case BINOP_REM:
9374 case BINOP_MOD:
14f9c5c9
AS
9375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9376 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9377 if (noside == EVAL_SKIP)
4c4b4cd2 9378 goto nosideret;
e1578042 9379 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9380 {
9381 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9382 return value_zero (value_type (arg1), not_lval);
9383 }
14f9c5c9 9384 else
4c4b4cd2 9385 {
a53b7a21 9386 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9387 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9388 arg1 = cast_from_fixed (type, arg1);
df407dfe 9389 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9390 arg2 = cast_from_fixed (type, arg2);
f44316fa 9391 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9392 return ada_value_binop (arg1, arg2, op);
9393 }
9394
4c4b4cd2
PH
9395 case BINOP_EQUAL:
9396 case BINOP_NOTEQUAL:
14f9c5c9 9397 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9398 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9399 if (noside == EVAL_SKIP)
76a01679 9400 goto nosideret;
4c4b4cd2 9401 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9402 tem = 0;
4c4b4cd2 9403 else
f44316fa
UW
9404 {
9405 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9406 tem = ada_value_equal (arg1, arg2);
9407 }
4c4b4cd2 9408 if (op == BINOP_NOTEQUAL)
76a01679 9409 tem = !tem;
fbb06eb1
UW
9410 type = language_bool_type (exp->language_defn, exp->gdbarch);
9411 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9412
9413 case UNOP_NEG:
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 if (noside == EVAL_SKIP)
9416 goto nosideret;
df407dfe
AC
9417 else if (ada_is_fixed_point_type (value_type (arg1)))
9418 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9419 else
f44316fa
UW
9420 {
9421 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9422 return value_neg (arg1);
9423 }
4c4b4cd2 9424
2330c6c6
JB
9425 case BINOP_LOGICAL_AND:
9426 case BINOP_LOGICAL_OR:
9427 case UNOP_LOGICAL_NOT:
000d5124
JB
9428 {
9429 struct value *val;
9430
9431 *pos -= 1;
9432 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9433 type = language_bool_type (exp->language_defn, exp->gdbarch);
9434 return value_cast (type, val);
000d5124 9435 }
2330c6c6
JB
9436
9437 case BINOP_BITWISE_AND:
9438 case BINOP_BITWISE_IOR:
9439 case BINOP_BITWISE_XOR:
000d5124
JB
9440 {
9441 struct value *val;
9442
9443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9444 *pos = pc;
9445 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9446
9447 return value_cast (value_type (arg1), val);
9448 }
2330c6c6 9449
14f9c5c9
AS
9450 case OP_VAR_VALUE:
9451 *pos -= 1;
6799def4 9452
14f9c5c9 9453 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9454 {
9455 *pos += 4;
9456 goto nosideret;
9457 }
9458 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9459 /* Only encountered when an unresolved symbol occurs in a
9460 context other than a function call, in which case, it is
52ce6436 9461 invalid. */
323e0a4a 9462 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9465 {
0c1f74cf 9466 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9467 /* Check to see if this is a tagged type. We also need to handle
9468 the case where the type is a reference to a tagged type, but
9469 we have to be careful to exclude pointers to tagged types.
9470 The latter should be shown as usual (as a pointer), whereas
9471 a reference should mostly be transparent to the user. */
9472 if (ada_is_tagged_type (type, 0)
9473 || (TYPE_CODE(type) == TYPE_CODE_REF
9474 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9475 {
9476 /* Tagged types are a little special in the fact that the real
9477 type is dynamic and can only be determined by inspecting the
9478 object's tag. This means that we need to get the object's
9479 value first (EVAL_NORMAL) and then extract the actual object
9480 type from its tag.
9481
9482 Note that we cannot skip the final step where we extract
9483 the object type from its tag, because the EVAL_NORMAL phase
9484 results in dynamic components being resolved into fixed ones.
9485 This can cause problems when trying to print the type
9486 description of tagged types whose parent has a dynamic size:
9487 We use the type name of the "_parent" component in order
9488 to print the name of the ancestor type in the type description.
9489 If that component had a dynamic size, the resolution into
9490 a fixed type would result in the loss of that type name,
9491 thus preventing us from printing the name of the ancestor
9492 type in the type description. */
b79819ba
JB
9493 struct type *actual_type;
9494
0c1f74cf 9495 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9496 actual_type = type_from_tag (ada_value_tag (arg1));
9497 if (actual_type == NULL)
9498 /* If, for some reason, we were unable to determine
9499 the actual type from the tag, then use the static
9500 approximation that we just computed as a fallback.
9501 This can happen if the debugging information is
9502 incomplete, for instance. */
9503 actual_type = type;
9504
9505 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9506 }
9507
4c4b4cd2
PH
9508 *pos += 4;
9509 return value_zero
9510 (to_static_fixed_type
9511 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9512 not_lval);
9513 }
d2e4a39e 9514 else
4c4b4cd2 9515 {
284614f0
JB
9516 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9517 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9518 return ada_to_fixed_value (arg1);
9519 }
9520
9521 case OP_FUNCALL:
9522 (*pos) += 2;
9523
9524 /* Allocate arg vector, including space for the function to be
9525 called in argvec[0] and a terminating NULL. */
9526 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9527 argvec =
9528 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9529
9530 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9532 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9533 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9534 else
9535 {
9536 for (tem = 0; tem <= nargs; tem += 1)
9537 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9538 argvec[tem] = 0;
9539
9540 if (noside == EVAL_SKIP)
9541 goto nosideret;
9542 }
9543
ad82864c
JB
9544 if (ada_is_constrained_packed_array_type
9545 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9546 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9547 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9548 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9549 /* This is a packed array that has already been fixed, and
9550 therefore already coerced to a simple array. Nothing further
9551 to do. */
9552 ;
df407dfe
AC
9553 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9554 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9555 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9556 argvec[0] = value_addr (argvec[0]);
9557
df407dfe 9558 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9559
9560 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9561 them. So, if this is an array typedef (encoding use for array
9562 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9564 type = ada_typedef_target_type (type);
9565
4c4b4cd2
PH
9566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9567 {
61ee279c 9568 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9569 {
9570 case TYPE_CODE_FUNC:
61ee279c 9571 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9572 break;
9573 case TYPE_CODE_ARRAY:
9574 break;
9575 case TYPE_CODE_STRUCT:
9576 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9577 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9578 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9579 break;
9580 default:
323e0a4a 9581 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9582 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9583 break;
9584 }
9585 }
9586
9587 switch (TYPE_CODE (type))
9588 {
9589 case TYPE_CODE_FUNC:
9590 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9591 return allocate_value (TYPE_TARGET_TYPE (type));
9592 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9593 case TYPE_CODE_STRUCT:
9594 {
9595 int arity;
9596
4c4b4cd2
PH
9597 arity = ada_array_arity (type);
9598 type = ada_array_element_type (type, nargs);
9599 if (type == NULL)
323e0a4a 9600 error (_("cannot subscript or call a record"));
4c4b4cd2 9601 if (arity != nargs)
323e0a4a 9602 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9603 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9604 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9605 return
9606 unwrap_value (ada_value_subscript
9607 (argvec[0], nargs, argvec + 1));
9608 }
9609 case TYPE_CODE_ARRAY:
9610 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9611 {
9612 type = ada_array_element_type (type, nargs);
9613 if (type == NULL)
323e0a4a 9614 error (_("element type of array unknown"));
4c4b4cd2 9615 else
0a07e705 9616 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9617 }
9618 return
9619 unwrap_value (ada_value_subscript
9620 (ada_coerce_to_simple_array (argvec[0]),
9621 nargs, argvec + 1));
9622 case TYPE_CODE_PTR: /* Pointer to array */
9623 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9625 {
9626 type = ada_array_element_type (type, nargs);
9627 if (type == NULL)
323e0a4a 9628 error (_("element type of array unknown"));
4c4b4cd2 9629 else
0a07e705 9630 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9631 }
9632 return
9633 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9634 nargs, argvec + 1));
9635
9636 default:
e1d5a0d2
PH
9637 error (_("Attempt to index or call something other than an "
9638 "array or function"));
4c4b4cd2
PH
9639 }
9640
9641 case TERNOP_SLICE:
9642 {
9643 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9644 struct value *low_bound_val =
9645 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9646 struct value *high_bound_val =
9647 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9648 LONGEST low_bound;
9649 LONGEST high_bound;
5b4ee69b 9650
994b9211
AC
9651 low_bound_val = coerce_ref (low_bound_val);
9652 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9653 low_bound = pos_atr (low_bound_val);
9654 high_bound = pos_atr (high_bound_val);
963a6417 9655
4c4b4cd2
PH
9656 if (noside == EVAL_SKIP)
9657 goto nosideret;
9658
4c4b4cd2
PH
9659 /* If this is a reference to an aligner type, then remove all
9660 the aligners. */
df407dfe
AC
9661 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9662 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9663 TYPE_TARGET_TYPE (value_type (array)) =
9664 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9665
ad82864c 9666 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9667 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9668
9669 /* If this is a reference to an array or an array lvalue,
9670 convert to a pointer. */
df407dfe
AC
9671 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9672 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9673 && VALUE_LVAL (array) == lval_memory))
9674 array = value_addr (array);
9675
1265e4aa 9676 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9677 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9678 (value_type (array))))
0b5d8877 9679 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9680
9681 array = ada_coerce_to_simple_array_ptr (array);
9682
714e53ab
PH
9683 /* If we have more than one level of pointer indirection,
9684 dereference the value until we get only one level. */
df407dfe
AC
9685 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9686 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9687 == TYPE_CODE_PTR))
9688 array = value_ind (array);
9689
9690 /* Make sure we really do have an array type before going further,
9691 to avoid a SEGV when trying to get the index type or the target
9692 type later down the road if the debug info generated by
9693 the compiler is incorrect or incomplete. */
df407dfe 9694 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9695 error (_("cannot take slice of non-array"));
714e53ab 9696
828292f2
JB
9697 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9698 == TYPE_CODE_PTR)
4c4b4cd2 9699 {
828292f2
JB
9700 struct type *type0 = ada_check_typedef (value_type (array));
9701
0b5d8877 9702 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9703 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9704 else
9705 {
9706 struct type *arr_type0 =
828292f2 9707 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9708
f5938064
JG
9709 return ada_value_slice_from_ptr (array, arr_type0,
9710 longest_to_int (low_bound),
9711 longest_to_int (high_bound));
4c4b4cd2
PH
9712 }
9713 }
9714 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715 return array;
9716 else if (high_bound < low_bound)
df407dfe 9717 return empty_array (value_type (array), low_bound);
4c4b4cd2 9718 else
529cad9c
PH
9719 return ada_value_slice (array, longest_to_int (low_bound),
9720 longest_to_int (high_bound));
4c4b4cd2 9721 }
14f9c5c9 9722
4c4b4cd2
PH
9723 case UNOP_IN_RANGE:
9724 (*pos) += 2;
9725 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9726 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9727
14f9c5c9 9728 if (noside == EVAL_SKIP)
4c4b4cd2 9729 goto nosideret;
14f9c5c9 9730
4c4b4cd2
PH
9731 switch (TYPE_CODE (type))
9732 {
9733 default:
e1d5a0d2
PH
9734 lim_warning (_("Membership test incompletely implemented; "
9735 "always returns true"));
fbb06eb1
UW
9736 type = language_bool_type (exp->language_defn, exp->gdbarch);
9737 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9738
9739 case TYPE_CODE_RANGE:
030b4912
UW
9740 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9741 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9742 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9743 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9744 type = language_bool_type (exp->language_defn, exp->gdbarch);
9745 return
9746 value_from_longest (type,
4c4b4cd2
PH
9747 (value_less (arg1, arg3)
9748 || value_equal (arg1, arg3))
9749 && (value_less (arg2, arg1)
9750 || value_equal (arg2, arg1)));
9751 }
9752
9753 case BINOP_IN_BOUNDS:
14f9c5c9 9754 (*pos) += 2;
4c4b4cd2
PH
9755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9756 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9757
4c4b4cd2
PH
9758 if (noside == EVAL_SKIP)
9759 goto nosideret;
14f9c5c9 9760
4c4b4cd2 9761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9762 {
9763 type = language_bool_type (exp->language_defn, exp->gdbarch);
9764 return value_zero (type, not_lval);
9765 }
14f9c5c9 9766
4c4b4cd2 9767 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9768
1eea4ebd
UW
9769 type = ada_index_type (value_type (arg2), tem, "range");
9770 if (!type)
9771 type = value_type (arg1);
14f9c5c9 9772
1eea4ebd
UW
9773 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9774 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9775
f44316fa
UW
9776 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9777 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9778 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9779 return
fbb06eb1 9780 value_from_longest (type,
4c4b4cd2
PH
9781 (value_less (arg1, arg3)
9782 || value_equal (arg1, arg3))
9783 && (value_less (arg2, arg1)
9784 || value_equal (arg2, arg1)));
9785
9786 case TERNOP_IN_RANGE:
9787 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790
9791 if (noside == EVAL_SKIP)
9792 goto nosideret;
9793
f44316fa
UW
9794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9796 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9797 return
fbb06eb1 9798 value_from_longest (type,
4c4b4cd2
PH
9799 (value_less (arg1, arg3)
9800 || value_equal (arg1, arg3))
9801 && (value_less (arg2, arg1)
9802 || value_equal (arg2, arg1)));
9803
9804 case OP_ATR_FIRST:
9805 case OP_ATR_LAST:
9806 case OP_ATR_LENGTH:
9807 {
76a01679 9808 struct type *type_arg;
5b4ee69b 9809
76a01679
JB
9810 if (exp->elts[*pos].opcode == OP_TYPE)
9811 {
9812 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9813 arg1 = NULL;
5bc23cb3 9814 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9815 }
9816 else
9817 {
9818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9819 type_arg = NULL;
9820 }
9821
9822 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9823 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9824 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9825 *pos += 4;
9826
9827 if (noside == EVAL_SKIP)
9828 goto nosideret;
9829
9830 if (type_arg == NULL)
9831 {
9832 arg1 = ada_coerce_ref (arg1);
9833
ad82864c 9834 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9835 arg1 = ada_coerce_to_simple_array (arg1);
9836
1eea4ebd
UW
9837 type = ada_index_type (value_type (arg1), tem,
9838 ada_attribute_name (op));
9839 if (type == NULL)
9840 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9841
9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9843 return allocate_value (type);
76a01679
JB
9844
9845 switch (op)
9846 {
9847 default: /* Should never happen. */
323e0a4a 9848 error (_("unexpected attribute encountered"));
76a01679 9849 case OP_ATR_FIRST:
1eea4ebd
UW
9850 return value_from_longest
9851 (type, ada_array_bound (arg1, tem, 0));
76a01679 9852 case OP_ATR_LAST:
1eea4ebd
UW
9853 return value_from_longest
9854 (type, ada_array_bound (arg1, tem, 1));
76a01679 9855 case OP_ATR_LENGTH:
1eea4ebd
UW
9856 return value_from_longest
9857 (type, ada_array_length (arg1, tem));
76a01679
JB
9858 }
9859 }
9860 else if (discrete_type_p (type_arg))
9861 {
9862 struct type *range_type;
9863 char *name = ada_type_name (type_arg);
5b4ee69b 9864
76a01679
JB
9865 range_type = NULL;
9866 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9867 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9868 if (range_type == NULL)
9869 range_type = type_arg;
9870 switch (op)
9871 {
9872 default:
323e0a4a 9873 error (_("unexpected attribute encountered"));
76a01679 9874 case OP_ATR_FIRST:
690cc4eb 9875 return value_from_longest
43bbcdc2 9876 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9877 case OP_ATR_LAST:
690cc4eb 9878 return value_from_longest
43bbcdc2 9879 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9880 case OP_ATR_LENGTH:
323e0a4a 9881 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9882 }
9883 }
9884 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9885 error (_("unimplemented type attribute"));
76a01679
JB
9886 else
9887 {
9888 LONGEST low, high;
9889
ad82864c
JB
9890 if (ada_is_constrained_packed_array_type (type_arg))
9891 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9892
1eea4ebd 9893 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9894 if (type == NULL)
1eea4ebd
UW
9895 type = builtin_type (exp->gdbarch)->builtin_int;
9896
76a01679
JB
9897 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9898 return allocate_value (type);
9899
9900 switch (op)
9901 {
9902 default:
323e0a4a 9903 error (_("unexpected attribute encountered"));
76a01679 9904 case OP_ATR_FIRST:
1eea4ebd 9905 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9906 return value_from_longest (type, low);
9907 case OP_ATR_LAST:
1eea4ebd 9908 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9909 return value_from_longest (type, high);
9910 case OP_ATR_LENGTH:
1eea4ebd
UW
9911 low = ada_array_bound_from_type (type_arg, tem, 0);
9912 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9913 return value_from_longest (type, high - low + 1);
9914 }
9915 }
14f9c5c9
AS
9916 }
9917
4c4b4cd2
PH
9918 case OP_ATR_TAG:
9919 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9920 if (noside == EVAL_SKIP)
76a01679 9921 goto nosideret;
4c4b4cd2
PH
9922
9923 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9924 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9925
9926 return ada_value_tag (arg1);
9927
9928 case OP_ATR_MIN:
9929 case OP_ATR_MAX:
9930 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9933 if (noside == EVAL_SKIP)
76a01679 9934 goto nosideret;
d2e4a39e 9935 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9936 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9937 else
f44316fa
UW
9938 {
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9940 return value_binop (arg1, arg2,
9941 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9942 }
14f9c5c9 9943
4c4b4cd2
PH
9944 case OP_ATR_MODULUS:
9945 {
31dedfee 9946 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9947
5b4ee69b 9948 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9949 if (noside == EVAL_SKIP)
9950 goto nosideret;
4c4b4cd2 9951
76a01679 9952 if (!ada_is_modular_type (type_arg))
323e0a4a 9953 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9954
76a01679
JB
9955 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9956 ada_modulus (type_arg));
4c4b4cd2
PH
9957 }
9958
9959
9960 case OP_ATR_POS:
9961 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 if (noside == EVAL_SKIP)
76a01679 9964 goto nosideret;
3cb382c9
UW
9965 type = builtin_type (exp->gdbarch)->builtin_int;
9966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9967 return value_zero (type, not_lval);
14f9c5c9 9968 else
3cb382c9 9969 return value_pos_atr (type, arg1);
14f9c5c9 9970
4c4b4cd2
PH
9971 case OP_ATR_SIZE:
9972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9973 type = value_type (arg1);
9974
9975 /* If the argument is a reference, then dereference its type, since
9976 the user is really asking for the size of the actual object,
9977 not the size of the pointer. */
9978 if (TYPE_CODE (type) == TYPE_CODE_REF)
9979 type = TYPE_TARGET_TYPE (type);
9980
4c4b4cd2 9981 if (noside == EVAL_SKIP)
76a01679 9982 goto nosideret;
4c4b4cd2 9983 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9984 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9985 else
22601c15 9986 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9987 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9988
9989 case OP_ATR_VAL:
9990 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9991 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9992 type = exp->elts[pc + 2].type;
14f9c5c9 9993 if (noside == EVAL_SKIP)
76a01679 9994 goto nosideret;
4c4b4cd2 9995 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9996 return value_zero (type, not_lval);
4c4b4cd2 9997 else
76a01679 9998 return value_val_atr (type, arg1);
4c4b4cd2
PH
9999
10000 case BINOP_EXP:
10001 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10002 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10003 if (noside == EVAL_SKIP)
10004 goto nosideret;
10005 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10006 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10007 else
f44316fa
UW
10008 {
10009 /* For integer exponentiation operations,
10010 only promote the first argument. */
10011 if (is_integral_type (value_type (arg2)))
10012 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10013 else
10014 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10015
10016 return value_binop (arg1, arg2, op);
10017 }
4c4b4cd2
PH
10018
10019 case UNOP_PLUS:
10020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 if (noside == EVAL_SKIP)
10022 goto nosideret;
10023 else
10024 return arg1;
10025
10026 case UNOP_ABS:
10027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10028 if (noside == EVAL_SKIP)
10029 goto nosideret;
f44316fa 10030 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10031 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10032 return value_neg (arg1);
14f9c5c9 10033 else
4c4b4cd2 10034 return arg1;
14f9c5c9
AS
10035
10036 case UNOP_IND:
6b0d7253 10037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10038 if (noside == EVAL_SKIP)
4c4b4cd2 10039 goto nosideret;
df407dfe 10040 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10042 {
10043 if (ada_is_array_descriptor_type (type))
10044 /* GDB allows dereferencing GNAT array descriptors. */
10045 {
10046 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10047
4c4b4cd2 10048 if (arrType == NULL)
323e0a4a 10049 error (_("Attempt to dereference null array pointer."));
00a4c844 10050 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10051 }
10052 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10053 || TYPE_CODE (type) == TYPE_CODE_REF
10054 /* In C you can dereference an array to get the 1st elt. */
10055 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10056 {
10057 type = to_static_fixed_type
10058 (ada_aligned_type
10059 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10060 check_size (type);
10061 return value_zero (type, lval_memory);
10062 }
4c4b4cd2 10063 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10064 {
10065 /* GDB allows dereferencing an int. */
10066 if (expect_type == NULL)
10067 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10068 lval_memory);
10069 else
10070 {
10071 expect_type =
10072 to_static_fixed_type (ada_aligned_type (expect_type));
10073 return value_zero (expect_type, lval_memory);
10074 }
10075 }
4c4b4cd2 10076 else
323e0a4a 10077 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10078 }
0963b4bd 10079 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10080 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10081
96967637
JB
10082 if (TYPE_CODE (type) == TYPE_CODE_INT)
10083 /* GDB allows dereferencing an int. If we were given
10084 the expect_type, then use that as the target type.
10085 Otherwise, assume that the target type is an int. */
10086 {
10087 if (expect_type != NULL)
10088 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10089 arg1));
10090 else
10091 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10092 (CORE_ADDR) value_as_address (arg1));
10093 }
6b0d7253 10094
4c4b4cd2
PH
10095 if (ada_is_array_descriptor_type (type))
10096 /* GDB allows dereferencing GNAT array descriptors. */
10097 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10098 else
4c4b4cd2 10099 return ada_value_ind (arg1);
14f9c5c9
AS
10100
10101 case STRUCTOP_STRUCT:
10102 tem = longest_to_int (exp->elts[pc + 1].longconst);
10103 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10105 if (noside == EVAL_SKIP)
4c4b4cd2 10106 goto nosideret;
14f9c5c9 10107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10108 {
df407dfe 10109 struct type *type1 = value_type (arg1);
5b4ee69b 10110
76a01679
JB
10111 if (ada_is_tagged_type (type1, 1))
10112 {
10113 type = ada_lookup_struct_elt_type (type1,
10114 &exp->elts[pc + 2].string,
10115 1, 1, NULL);
10116 if (type == NULL)
10117 /* In this case, we assume that the field COULD exist
10118 in some extension of the type. Return an object of
10119 "type" void, which will match any formal
0963b4bd 10120 (see ada_type_match). */
30b15541
UW
10121 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10122 lval_memory);
76a01679
JB
10123 }
10124 else
10125 type =
10126 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10127 0, NULL);
10128
10129 return value_zero (ada_aligned_type (type), lval_memory);
10130 }
14f9c5c9 10131 else
284614f0
JB
10132 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10133 arg1 = unwrap_value (arg1);
10134 return ada_to_fixed_value (arg1);
10135
14f9c5c9 10136 case OP_TYPE:
4c4b4cd2
PH
10137 /* The value is not supposed to be used. This is here to make it
10138 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10139 (*pos) += 2;
10140 if (noside == EVAL_SKIP)
4c4b4cd2 10141 goto nosideret;
14f9c5c9 10142 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10143 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10144 else
323e0a4a 10145 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10146
10147 case OP_AGGREGATE:
10148 case OP_CHOICES:
10149 case OP_OTHERS:
10150 case OP_DISCRETE_RANGE:
10151 case OP_POSITIONAL:
10152 case OP_NAME:
10153 if (noside == EVAL_NORMAL)
10154 switch (op)
10155 {
10156 case OP_NAME:
10157 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10158 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10159 case OP_AGGREGATE:
10160 error (_("Aggregates only allowed on the right of an assignment"));
10161 default:
0963b4bd
MS
10162 internal_error (__FILE__, __LINE__,
10163 _("aggregate apparently mangled"));
52ce6436
PH
10164 }
10165
10166 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10167 *pos += oplen - 1;
10168 for (tem = 0; tem < nargs; tem += 1)
10169 ada_evaluate_subexp (NULL, exp, pos, noside);
10170 goto nosideret;
14f9c5c9
AS
10171 }
10172
10173nosideret:
22601c15 10174 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10175}
14f9c5c9 10176\f
d2e4a39e 10177
4c4b4cd2 10178 /* Fixed point */
14f9c5c9
AS
10179
10180/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10181 type name that encodes the 'small and 'delta information.
4c4b4cd2 10182 Otherwise, return NULL. */
14f9c5c9 10183
d2e4a39e 10184static const char *
ebf56fd3 10185fixed_type_info (struct type *type)
14f9c5c9 10186{
d2e4a39e 10187 const char *name = ada_type_name (type);
14f9c5c9
AS
10188 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10189
d2e4a39e
AS
10190 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10191 {
14f9c5c9 10192 const char *tail = strstr (name, "___XF_");
5b4ee69b 10193
14f9c5c9 10194 if (tail == NULL)
4c4b4cd2 10195 return NULL;
d2e4a39e 10196 else
4c4b4cd2 10197 return tail + 5;
14f9c5c9
AS
10198 }
10199 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10200 return fixed_type_info (TYPE_TARGET_TYPE (type));
10201 else
10202 return NULL;
10203}
10204
4c4b4cd2 10205/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10206
10207int
ebf56fd3 10208ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10209{
10210 return fixed_type_info (type) != NULL;
10211}
10212
4c4b4cd2
PH
10213/* Return non-zero iff TYPE represents a System.Address type. */
10214
10215int
10216ada_is_system_address_type (struct type *type)
10217{
10218 return (TYPE_NAME (type)
10219 && strcmp (TYPE_NAME (type), "system__address") == 0);
10220}
10221
14f9c5c9
AS
10222/* Assuming that TYPE is the representation of an Ada fixed-point
10223 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10224 delta cannot be determined. */
14f9c5c9
AS
10225
10226DOUBLEST
ebf56fd3 10227ada_delta (struct type *type)
14f9c5c9
AS
10228{
10229 const char *encoding = fixed_type_info (type);
facc390f 10230 DOUBLEST num, den;
14f9c5c9 10231
facc390f
JB
10232 /* Strictly speaking, num and den are encoded as integer. However,
10233 they may not fit into a long, and they will have to be converted
10234 to DOUBLEST anyway. So scan them as DOUBLEST. */
10235 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10236 &num, &den) < 2)
14f9c5c9 10237 return -1.0;
d2e4a39e 10238 else
facc390f 10239 return num / den;
14f9c5c9
AS
10240}
10241
10242/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10243 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10244
10245static DOUBLEST
ebf56fd3 10246scaling_factor (struct type *type)
14f9c5c9
AS
10247{
10248 const char *encoding = fixed_type_info (type);
facc390f 10249 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10250 int n;
d2e4a39e 10251
facc390f
JB
10252 /* Strictly speaking, num's and den's are encoded as integer. However,
10253 they may not fit into a long, and they will have to be converted
10254 to DOUBLEST anyway. So scan them as DOUBLEST. */
10255 n = sscanf (encoding,
10256 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10257 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10258 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10259
10260 if (n < 2)
10261 return 1.0;
10262 else if (n == 4)
facc390f 10263 return num1 / den1;
d2e4a39e 10264 else
facc390f 10265 return num0 / den0;
14f9c5c9
AS
10266}
10267
10268
10269/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10270 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10271
10272DOUBLEST
ebf56fd3 10273ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10274{
d2e4a39e 10275 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10276}
10277
4c4b4cd2
PH
10278/* The representation of a fixed-point value of type TYPE
10279 corresponding to the value X. */
14f9c5c9
AS
10280
10281LONGEST
ebf56fd3 10282ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10283{
10284 return (LONGEST) (x / scaling_factor (type) + 0.5);
10285}
10286
14f9c5c9 10287\f
d2e4a39e 10288
4c4b4cd2 10289 /* Range types */
14f9c5c9
AS
10290
10291/* Scan STR beginning at position K for a discriminant name, and
10292 return the value of that discriminant field of DVAL in *PX. If
10293 PNEW_K is not null, put the position of the character beyond the
10294 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10295 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10296
10297static int
07d8f827 10298scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10299 int *pnew_k)
14f9c5c9
AS
10300{
10301 static char *bound_buffer = NULL;
10302 static size_t bound_buffer_len = 0;
10303 char *bound;
10304 char *pend;
d2e4a39e 10305 struct value *bound_val;
14f9c5c9
AS
10306
10307 if (dval == NULL || str == NULL || str[k] == '\0')
10308 return 0;
10309
d2e4a39e 10310 pend = strstr (str + k, "__");
14f9c5c9
AS
10311 if (pend == NULL)
10312 {
d2e4a39e 10313 bound = str + k;
14f9c5c9
AS
10314 k += strlen (bound);
10315 }
d2e4a39e 10316 else
14f9c5c9 10317 {
d2e4a39e 10318 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10319 bound = bound_buffer;
d2e4a39e
AS
10320 strncpy (bound_buffer, str + k, pend - (str + k));
10321 bound[pend - (str + k)] = '\0';
10322 k = pend - str;
14f9c5c9 10323 }
d2e4a39e 10324
df407dfe 10325 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10326 if (bound_val == NULL)
10327 return 0;
10328
10329 *px = value_as_long (bound_val);
10330 if (pnew_k != NULL)
10331 *pnew_k = k;
10332 return 1;
10333}
10334
10335/* Value of variable named NAME in the current environment. If
10336 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10337 otherwise causes an error with message ERR_MSG. */
10338
d2e4a39e
AS
10339static struct value *
10340get_var_value (char *name, char *err_msg)
14f9c5c9 10341{
4c4b4cd2 10342 struct ada_symbol_info *syms;
14f9c5c9
AS
10343 int nsyms;
10344
4c4b4cd2
PH
10345 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10346 &syms);
14f9c5c9
AS
10347
10348 if (nsyms != 1)
10349 {
10350 if (err_msg == NULL)
4c4b4cd2 10351 return 0;
14f9c5c9 10352 else
8a3fe4f8 10353 error (("%s"), err_msg);
14f9c5c9
AS
10354 }
10355
4c4b4cd2 10356 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10357}
d2e4a39e 10358
14f9c5c9 10359/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10360 no such variable found, returns 0, and sets *FLAG to 0. If
10361 successful, sets *FLAG to 1. */
10362
14f9c5c9 10363LONGEST
4c4b4cd2 10364get_int_var_value (char *name, int *flag)
14f9c5c9 10365{
4c4b4cd2 10366 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10367
14f9c5c9
AS
10368 if (var_val == 0)
10369 {
10370 if (flag != NULL)
4c4b4cd2 10371 *flag = 0;
14f9c5c9
AS
10372 return 0;
10373 }
10374 else
10375 {
10376 if (flag != NULL)
4c4b4cd2 10377 *flag = 1;
14f9c5c9
AS
10378 return value_as_long (var_val);
10379 }
10380}
d2e4a39e 10381
14f9c5c9
AS
10382
10383/* Return a range type whose base type is that of the range type named
10384 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10385 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10386 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10387 corresponding range type from debug information; fall back to using it
10388 if symbol lookup fails. If a new type must be created, allocate it
10389 like ORIG_TYPE was. The bounds information, in general, is encoded
10390 in NAME, the base type given in the named range type. */
14f9c5c9 10391
d2e4a39e 10392static struct type *
28c85d6c 10393to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10394{
28c85d6c 10395 char *name;
14f9c5c9 10396 struct type *base_type;
d2e4a39e 10397 char *subtype_info;
14f9c5c9 10398
28c85d6c
JB
10399 gdb_assert (raw_type != NULL);
10400 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10401
1ce677a4 10402 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10403 base_type = TYPE_TARGET_TYPE (raw_type);
10404 else
10405 base_type = raw_type;
10406
28c85d6c 10407 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10408 subtype_info = strstr (name, "___XD");
10409 if (subtype_info == NULL)
690cc4eb 10410 {
43bbcdc2
PH
10411 LONGEST L = ada_discrete_type_low_bound (raw_type);
10412 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10413
690cc4eb
PH
10414 if (L < INT_MIN || U > INT_MAX)
10415 return raw_type;
10416 else
28c85d6c 10417 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10418 ada_discrete_type_low_bound (raw_type),
10419 ada_discrete_type_high_bound (raw_type));
690cc4eb 10420 }
14f9c5c9
AS
10421 else
10422 {
10423 static char *name_buf = NULL;
10424 static size_t name_len = 0;
10425 int prefix_len = subtype_info - name;
10426 LONGEST L, U;
10427 struct type *type;
10428 char *bounds_str;
10429 int n;
10430
10431 GROW_VECT (name_buf, name_len, prefix_len + 5);
10432 strncpy (name_buf, name, prefix_len);
10433 name_buf[prefix_len] = '\0';
10434
10435 subtype_info += 5;
10436 bounds_str = strchr (subtype_info, '_');
10437 n = 1;
10438
d2e4a39e 10439 if (*subtype_info == 'L')
4c4b4cd2
PH
10440 {
10441 if (!ada_scan_number (bounds_str, n, &L, &n)
10442 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10443 return raw_type;
10444 if (bounds_str[n] == '_')
10445 n += 2;
0963b4bd 10446 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10447 n += 1;
10448 subtype_info += 1;
10449 }
d2e4a39e 10450 else
4c4b4cd2
PH
10451 {
10452 int ok;
5b4ee69b 10453
4c4b4cd2
PH
10454 strcpy (name_buf + prefix_len, "___L");
10455 L = get_int_var_value (name_buf, &ok);
10456 if (!ok)
10457 {
323e0a4a 10458 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10459 L = 1;
10460 }
10461 }
14f9c5c9 10462
d2e4a39e 10463 if (*subtype_info == 'U')
4c4b4cd2
PH
10464 {
10465 if (!ada_scan_number (bounds_str, n, &U, &n)
10466 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10467 return raw_type;
10468 }
d2e4a39e 10469 else
4c4b4cd2
PH
10470 {
10471 int ok;
5b4ee69b 10472
4c4b4cd2
PH
10473 strcpy (name_buf + prefix_len, "___U");
10474 U = get_int_var_value (name_buf, &ok);
10475 if (!ok)
10476 {
323e0a4a 10477 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10478 U = L;
10479 }
10480 }
14f9c5c9 10481
28c85d6c 10482 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10483 TYPE_NAME (type) = name;
14f9c5c9
AS
10484 return type;
10485 }
10486}
10487
4c4b4cd2
PH
10488/* True iff NAME is the name of a range type. */
10489
14f9c5c9 10490int
d2e4a39e 10491ada_is_range_type_name (const char *name)
14f9c5c9
AS
10492{
10493 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10494}
14f9c5c9 10495\f
d2e4a39e 10496
4c4b4cd2
PH
10497 /* Modular types */
10498
10499/* True iff TYPE is an Ada modular type. */
14f9c5c9 10500
14f9c5c9 10501int
d2e4a39e 10502ada_is_modular_type (struct type *type)
14f9c5c9 10503{
18af8284 10504 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10505
10506 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10507 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10508 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10509}
10510
0056e4d5
JB
10511/* Try to determine the lower and upper bounds of the given modular type
10512 using the type name only. Return non-zero and set L and U as the lower
10513 and upper bounds (respectively) if successful. */
10514
10515int
10516ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10517{
10518 char *name = ada_type_name (type);
10519 char *suffix;
10520 int k;
10521 LONGEST U;
10522
10523 if (name == NULL)
10524 return 0;
10525
10526 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10527 we are looking for static bounds, which means an __XDLU suffix.
10528 Moreover, we know that the lower bound of modular types is always
10529 zero, so the actual suffix should start with "__XDLU_0__", and
10530 then be followed by the upper bound value. */
10531 suffix = strstr (name, "__XDLU_0__");
10532 if (suffix == NULL)
10533 return 0;
10534 k = 10;
10535 if (!ada_scan_number (suffix, k, &U, NULL))
10536 return 0;
10537
10538 *modulus = (ULONGEST) U + 1;
10539 return 1;
10540}
10541
4c4b4cd2
PH
10542/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10543
61ee279c 10544ULONGEST
0056e4d5 10545ada_modulus (struct type *type)
14f9c5c9 10546{
43bbcdc2 10547 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10548}
d2e4a39e 10549\f
f7f9143b
JB
10550
10551/* Ada exception catchpoint support:
10552 ---------------------------------
10553
10554 We support 3 kinds of exception catchpoints:
10555 . catchpoints on Ada exceptions
10556 . catchpoints on unhandled Ada exceptions
10557 . catchpoints on failed assertions
10558
10559 Exceptions raised during failed assertions, or unhandled exceptions
10560 could perfectly be caught with the general catchpoint on Ada exceptions.
10561 However, we can easily differentiate these two special cases, and having
10562 the option to distinguish these two cases from the rest can be useful
10563 to zero-in on certain situations.
10564
10565 Exception catchpoints are a specialized form of breakpoint,
10566 since they rely on inserting breakpoints inside known routines
10567 of the GNAT runtime. The implementation therefore uses a standard
10568 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10569 of breakpoint_ops.
10570
0259addd
JB
10571 Support in the runtime for exception catchpoints have been changed
10572 a few times already, and these changes affect the implementation
10573 of these catchpoints. In order to be able to support several
10574 variants of the runtime, we use a sniffer that will determine
28010a5d 10575 the runtime variant used by the program being debugged. */
f7f9143b
JB
10576
10577/* The different types of catchpoints that we introduced for catching
10578 Ada exceptions. */
10579
10580enum exception_catchpoint_kind
10581{
10582 ex_catch_exception,
10583 ex_catch_exception_unhandled,
10584 ex_catch_assert
10585};
10586
3d0b0fa3
JB
10587/* Ada's standard exceptions. */
10588
10589static char *standard_exc[] = {
10590 "constraint_error",
10591 "program_error",
10592 "storage_error",
10593 "tasking_error"
10594};
10595
0259addd
JB
10596typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10597
10598/* A structure that describes how to support exception catchpoints
10599 for a given executable. */
10600
10601struct exception_support_info
10602{
10603 /* The name of the symbol to break on in order to insert
10604 a catchpoint on exceptions. */
10605 const char *catch_exception_sym;
10606
10607 /* The name of the symbol to break on in order to insert
10608 a catchpoint on unhandled exceptions. */
10609 const char *catch_exception_unhandled_sym;
10610
10611 /* The name of the symbol to break on in order to insert
10612 a catchpoint on failed assertions. */
10613 const char *catch_assert_sym;
10614
10615 /* Assuming that the inferior just triggered an unhandled exception
10616 catchpoint, this function is responsible for returning the address
10617 in inferior memory where the name of that exception is stored.
10618 Return zero if the address could not be computed. */
10619 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10620};
10621
10622static CORE_ADDR ada_unhandled_exception_name_addr (void);
10623static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10624
10625/* The following exception support info structure describes how to
10626 implement exception catchpoints with the latest version of the
10627 Ada runtime (as of 2007-03-06). */
10628
10629static const struct exception_support_info default_exception_support_info =
10630{
10631 "__gnat_debug_raise_exception", /* catch_exception_sym */
10632 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10633 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10634 ada_unhandled_exception_name_addr
10635};
10636
10637/* The following exception support info structure describes how to
10638 implement exception catchpoints with a slightly older version
10639 of the Ada runtime. */
10640
10641static const struct exception_support_info exception_support_info_fallback =
10642{
10643 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10644 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10645 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10646 ada_unhandled_exception_name_addr_from_raise
10647};
10648
f17011e0
JB
10649/* Return nonzero if we can detect the exception support routines
10650 described in EINFO.
10651
10652 This function errors out if an abnormal situation is detected
10653 (for instance, if we find the exception support routines, but
10654 that support is found to be incomplete). */
10655
10656static int
10657ada_has_this_exception_support (const struct exception_support_info *einfo)
10658{
10659 struct symbol *sym;
10660
10661 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10662 that should be compiled with debugging information. As a result, we
10663 expect to find that symbol in the symtabs. */
10664
10665 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10666 if (sym == NULL)
a6af7abe
JB
10667 {
10668 /* Perhaps we did not find our symbol because the Ada runtime was
10669 compiled without debugging info, or simply stripped of it.
10670 It happens on some GNU/Linux distributions for instance, where
10671 users have to install a separate debug package in order to get
10672 the runtime's debugging info. In that situation, let the user
10673 know why we cannot insert an Ada exception catchpoint.
10674
10675 Note: Just for the purpose of inserting our Ada exception
10676 catchpoint, we could rely purely on the associated minimal symbol.
10677 But we would be operating in degraded mode anyway, since we are
10678 still lacking the debugging info needed later on to extract
10679 the name of the exception being raised (this name is printed in
10680 the catchpoint message, and is also used when trying to catch
10681 a specific exception). We do not handle this case for now. */
10682 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10683 error (_("Your Ada runtime appears to be missing some debugging "
10684 "information.\nCannot insert Ada exception catchpoint "
10685 "in this configuration."));
10686
10687 return 0;
10688 }
f17011e0
JB
10689
10690 /* Make sure that the symbol we found corresponds to a function. */
10691
10692 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10693 error (_("Symbol \"%s\" is not a function (class = %d)"),
10694 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10695
10696 return 1;
10697}
10698
0259addd
JB
10699/* Inspect the Ada runtime and determine which exception info structure
10700 should be used to provide support for exception catchpoints.
10701
3eecfa55
JB
10702 This function will always set the per-inferior exception_info,
10703 or raise an error. */
0259addd
JB
10704
10705static void
10706ada_exception_support_info_sniffer (void)
10707{
3eecfa55 10708 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10709 struct symbol *sym;
10710
10711 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10712 if (data->exception_info != NULL)
0259addd
JB
10713 return;
10714
10715 /* Check the latest (default) exception support info. */
f17011e0 10716 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10717 {
3eecfa55 10718 data->exception_info = &default_exception_support_info;
0259addd
JB
10719 return;
10720 }
10721
10722 /* Try our fallback exception suport info. */
f17011e0 10723 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10724 {
3eecfa55 10725 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10726 return;
10727 }
10728
10729 /* Sometimes, it is normal for us to not be able to find the routine
10730 we are looking for. This happens when the program is linked with
10731 the shared version of the GNAT runtime, and the program has not been
10732 started yet. Inform the user of these two possible causes if
10733 applicable. */
10734
ccefe4c4 10735 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10736 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10737
10738 /* If the symbol does not exist, then check that the program is
10739 already started, to make sure that shared libraries have been
10740 loaded. If it is not started, this may mean that the symbol is
10741 in a shared library. */
10742
10743 if (ptid_get_pid (inferior_ptid) == 0)
10744 error (_("Unable to insert catchpoint. Try to start the program first."));
10745
10746 /* At this point, we know that we are debugging an Ada program and
10747 that the inferior has been started, but we still are not able to
0963b4bd 10748 find the run-time symbols. That can mean that we are in
0259addd
JB
10749 configurable run time mode, or that a-except as been optimized
10750 out by the linker... In any case, at this point it is not worth
10751 supporting this feature. */
10752
7dda8cff 10753 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10754}
10755
f7f9143b
JB
10756/* True iff FRAME is very likely to be that of a function that is
10757 part of the runtime system. This is all very heuristic, but is
10758 intended to be used as advice as to what frames are uninteresting
10759 to most users. */
10760
10761static int
10762is_known_support_routine (struct frame_info *frame)
10763{
4ed6b5be 10764 struct symtab_and_line sal;
f7f9143b 10765 char *func_name;
692465f1 10766 enum language func_lang;
f7f9143b 10767 int i;
f7f9143b 10768
4ed6b5be
JB
10769 /* If this code does not have any debugging information (no symtab),
10770 This cannot be any user code. */
f7f9143b 10771
4ed6b5be 10772 find_frame_sal (frame, &sal);
f7f9143b
JB
10773 if (sal.symtab == NULL)
10774 return 1;
10775
4ed6b5be
JB
10776 /* If there is a symtab, but the associated source file cannot be
10777 located, then assume this is not user code: Selecting a frame
10778 for which we cannot display the code would not be very helpful
10779 for the user. This should also take care of case such as VxWorks
10780 where the kernel has some debugging info provided for a few units. */
f7f9143b 10781
9bbc9174 10782 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10783 return 1;
10784
4ed6b5be
JB
10785 /* Check the unit filename againt the Ada runtime file naming.
10786 We also check the name of the objfile against the name of some
10787 known system libraries that sometimes come with debugging info
10788 too. */
10789
f7f9143b
JB
10790 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10791 {
10792 re_comp (known_runtime_file_name_patterns[i]);
10793 if (re_exec (sal.symtab->filename))
10794 return 1;
4ed6b5be
JB
10795 if (sal.symtab->objfile != NULL
10796 && re_exec (sal.symtab->objfile->name))
10797 return 1;
f7f9143b
JB
10798 }
10799
4ed6b5be 10800 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10801
e9e07ba6 10802 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10803 if (func_name == NULL)
10804 return 1;
10805
10806 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10807 {
10808 re_comp (known_auxiliary_function_name_patterns[i]);
10809 if (re_exec (func_name))
10810 return 1;
10811 }
10812
10813 return 0;
10814}
10815
10816/* Find the first frame that contains debugging information and that is not
10817 part of the Ada run-time, starting from FI and moving upward. */
10818
0ef643c8 10819void
f7f9143b
JB
10820ada_find_printable_frame (struct frame_info *fi)
10821{
10822 for (; fi != NULL; fi = get_prev_frame (fi))
10823 {
10824 if (!is_known_support_routine (fi))
10825 {
10826 select_frame (fi);
10827 break;
10828 }
10829 }
10830
10831}
10832
10833/* Assuming that the inferior just triggered an unhandled exception
10834 catchpoint, return the address in inferior memory where the name
10835 of the exception is stored.
10836
10837 Return zero if the address could not be computed. */
10838
10839static CORE_ADDR
10840ada_unhandled_exception_name_addr (void)
0259addd
JB
10841{
10842 return parse_and_eval_address ("e.full_name");
10843}
10844
10845/* Same as ada_unhandled_exception_name_addr, except that this function
10846 should be used when the inferior uses an older version of the runtime,
10847 where the exception name needs to be extracted from a specific frame
10848 several frames up in the callstack. */
10849
10850static CORE_ADDR
10851ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10852{
10853 int frame_level;
10854 struct frame_info *fi;
3eecfa55 10855 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10856
10857 /* To determine the name of this exception, we need to select
10858 the frame corresponding to RAISE_SYM_NAME. This frame is
10859 at least 3 levels up, so we simply skip the first 3 frames
10860 without checking the name of their associated function. */
10861 fi = get_current_frame ();
10862 for (frame_level = 0; frame_level < 3; frame_level += 1)
10863 if (fi != NULL)
10864 fi = get_prev_frame (fi);
10865
10866 while (fi != NULL)
10867 {
692465f1
JB
10868 char *func_name;
10869 enum language func_lang;
10870
e9e07ba6 10871 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10872 if (func_name != NULL
3eecfa55 10873 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10874 break; /* We found the frame we were looking for... */
10875 fi = get_prev_frame (fi);
10876 }
10877
10878 if (fi == NULL)
10879 return 0;
10880
10881 select_frame (fi);
10882 return parse_and_eval_address ("id.full_name");
10883}
10884
10885/* Assuming the inferior just triggered an Ada exception catchpoint
10886 (of any type), return the address in inferior memory where the name
10887 of the exception is stored, if applicable.
10888
10889 Return zero if the address could not be computed, or if not relevant. */
10890
10891static CORE_ADDR
10892ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10893 struct breakpoint *b)
10894{
3eecfa55
JB
10895 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10896
f7f9143b
JB
10897 switch (ex)
10898 {
10899 case ex_catch_exception:
10900 return (parse_and_eval_address ("e.full_name"));
10901 break;
10902
10903 case ex_catch_exception_unhandled:
3eecfa55 10904 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10905 break;
10906
10907 case ex_catch_assert:
10908 return 0; /* Exception name is not relevant in this case. */
10909 break;
10910
10911 default:
10912 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10913 break;
10914 }
10915
10916 return 0; /* Should never be reached. */
10917}
10918
10919/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10920 any error that ada_exception_name_addr_1 might cause to be thrown.
10921 When an error is intercepted, a warning with the error message is printed,
10922 and zero is returned. */
10923
10924static CORE_ADDR
10925ada_exception_name_addr (enum exception_catchpoint_kind ex,
10926 struct breakpoint *b)
10927{
10928 struct gdb_exception e;
10929 CORE_ADDR result = 0;
10930
10931 TRY_CATCH (e, RETURN_MASK_ERROR)
10932 {
10933 result = ada_exception_name_addr_1 (ex, b);
10934 }
10935
10936 if (e.reason < 0)
10937 {
10938 warning (_("failed to get exception name: %s"), e.message);
10939 return 0;
10940 }
10941
10942 return result;
10943}
10944
28010a5d
PA
10945static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10946 char *, char **,
c0a91b2b 10947 const struct breakpoint_ops **);
28010a5d
PA
10948static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10949
10950/* Ada catchpoints.
10951
10952 In the case of catchpoints on Ada exceptions, the catchpoint will
10953 stop the target on every exception the program throws. When a user
10954 specifies the name of a specific exception, we translate this
10955 request into a condition expression (in text form), and then parse
10956 it into an expression stored in each of the catchpoint's locations.
10957 We then use this condition to check whether the exception that was
10958 raised is the one the user is interested in. If not, then the
10959 target is resumed again. We store the name of the requested
10960 exception, in order to be able to re-set the condition expression
10961 when symbols change. */
10962
10963/* An instance of this type is used to represent an Ada catchpoint
10964 breakpoint location. It includes a "struct bp_location" as a kind
10965 of base class; users downcast to "struct bp_location *" when
10966 needed. */
10967
10968struct ada_catchpoint_location
10969{
10970 /* The base class. */
10971 struct bp_location base;
10972
10973 /* The condition that checks whether the exception that was raised
10974 is the specific exception the user specified on catchpoint
10975 creation. */
10976 struct expression *excep_cond_expr;
10977};
10978
10979/* Implement the DTOR method in the bp_location_ops structure for all
10980 Ada exception catchpoint kinds. */
10981
10982static void
10983ada_catchpoint_location_dtor (struct bp_location *bl)
10984{
10985 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10986
10987 xfree (al->excep_cond_expr);
10988}
10989
10990/* The vtable to be used in Ada catchpoint locations. */
10991
10992static const struct bp_location_ops ada_catchpoint_location_ops =
10993{
10994 ada_catchpoint_location_dtor
10995};
10996
10997/* An instance of this type is used to represent an Ada catchpoint.
10998 It includes a "struct breakpoint" as a kind of base class; users
10999 downcast to "struct breakpoint *" when needed. */
11000
11001struct ada_catchpoint
11002{
11003 /* The base class. */
11004 struct breakpoint base;
11005
11006 /* The name of the specific exception the user specified. */
11007 char *excep_string;
11008};
11009
11010/* Parse the exception condition string in the context of each of the
11011 catchpoint's locations, and store them for later evaluation. */
11012
11013static void
11014create_excep_cond_exprs (struct ada_catchpoint *c)
11015{
11016 struct cleanup *old_chain;
11017 struct bp_location *bl;
11018 char *cond_string;
11019
11020 /* Nothing to do if there's no specific exception to catch. */
11021 if (c->excep_string == NULL)
11022 return;
11023
11024 /* Same if there are no locations... */
11025 if (c->base.loc == NULL)
11026 return;
11027
11028 /* Compute the condition expression in text form, from the specific
11029 expection we want to catch. */
11030 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11031 old_chain = make_cleanup (xfree, cond_string);
11032
11033 /* Iterate over all the catchpoint's locations, and parse an
11034 expression for each. */
11035 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11036 {
11037 struct ada_catchpoint_location *ada_loc
11038 = (struct ada_catchpoint_location *) bl;
11039 struct expression *exp = NULL;
11040
11041 if (!bl->shlib_disabled)
11042 {
11043 volatile struct gdb_exception e;
11044 char *s;
11045
11046 s = cond_string;
11047 TRY_CATCH (e, RETURN_MASK_ERROR)
11048 {
11049 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11050 }
11051 if (e.reason < 0)
11052 warning (_("failed to reevaluate internal exception condition "
11053 "for catchpoint %d: %s"),
11054 c->base.number, e.message);
11055 }
11056
11057 ada_loc->excep_cond_expr = exp;
11058 }
11059
11060 do_cleanups (old_chain);
11061}
11062
11063/* Implement the DTOR method in the breakpoint_ops structure for all
11064 exception catchpoint kinds. */
11065
11066static void
11067dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11068{
11069 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11070
11071 xfree (c->excep_string);
348d480f 11072
2060206e 11073 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11074}
11075
11076/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11077 structure for all exception catchpoint kinds. */
11078
11079static struct bp_location *
11080allocate_location_exception (enum exception_catchpoint_kind ex,
11081 struct breakpoint *self)
11082{
11083 struct ada_catchpoint_location *loc;
11084
11085 loc = XNEW (struct ada_catchpoint_location);
11086 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11087 loc->excep_cond_expr = NULL;
11088 return &loc->base;
11089}
11090
11091/* Implement the RE_SET method in the breakpoint_ops structure for all
11092 exception catchpoint kinds. */
11093
11094static void
11095re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11096{
11097 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11098
11099 /* Call the base class's method. This updates the catchpoint's
11100 locations. */
2060206e 11101 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11102
11103 /* Reparse the exception conditional expressions. One for each
11104 location. */
11105 create_excep_cond_exprs (c);
11106}
11107
11108/* Returns true if we should stop for this breakpoint hit. If the
11109 user specified a specific exception, we only want to cause a stop
11110 if the program thrown that exception. */
11111
11112static int
11113should_stop_exception (const struct bp_location *bl)
11114{
11115 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11116 const struct ada_catchpoint_location *ada_loc
11117 = (const struct ada_catchpoint_location *) bl;
11118 volatile struct gdb_exception ex;
11119 int stop;
11120
11121 /* With no specific exception, should always stop. */
11122 if (c->excep_string == NULL)
11123 return 1;
11124
11125 if (ada_loc->excep_cond_expr == NULL)
11126 {
11127 /* We will have a NULL expression if back when we were creating
11128 the expressions, this location's had failed to parse. */
11129 return 1;
11130 }
11131
11132 stop = 1;
11133 TRY_CATCH (ex, RETURN_MASK_ALL)
11134 {
11135 struct value *mark;
11136
11137 mark = value_mark ();
11138 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11139 value_free_to_mark (mark);
11140 }
11141 if (ex.reason < 0)
11142 exception_fprintf (gdb_stderr, ex,
11143 _("Error in testing exception condition:\n"));
11144 return stop;
11145}
11146
11147/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11148 for all exception catchpoint kinds. */
11149
11150static void
11151check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11152{
11153 bs->stop = should_stop_exception (bs->bp_location_at);
11154}
11155
f7f9143b
JB
11156/* Implement the PRINT_IT method in the breakpoint_ops structure
11157 for all exception catchpoint kinds. */
11158
11159static enum print_stop_action
348d480f 11160print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11161{
79a45e25 11162 struct ui_out *uiout = current_uiout;
348d480f
PA
11163 struct breakpoint *b = bs->breakpoint_at;
11164
956a9fb9 11165 annotate_catchpoint (b->number);
f7f9143b 11166
956a9fb9 11167 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11168 {
956a9fb9
JB
11169 ui_out_field_string (uiout, "reason",
11170 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11171 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11172 }
11173
00eb2c4a
JB
11174 ui_out_text (uiout,
11175 b->disposition == disp_del ? "\nTemporary catchpoint "
11176 : "\nCatchpoint ");
956a9fb9
JB
11177 ui_out_field_int (uiout, "bkptno", b->number);
11178 ui_out_text (uiout, ", ");
f7f9143b 11179
f7f9143b
JB
11180 switch (ex)
11181 {
11182 case ex_catch_exception:
f7f9143b 11183 case ex_catch_exception_unhandled:
956a9fb9
JB
11184 {
11185 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11186 char exception_name[256];
11187
11188 if (addr != 0)
11189 {
11190 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11191 exception_name [sizeof (exception_name) - 1] = '\0';
11192 }
11193 else
11194 {
11195 /* For some reason, we were unable to read the exception
11196 name. This could happen if the Runtime was compiled
11197 without debugging info, for instance. In that case,
11198 just replace the exception name by the generic string
11199 "exception" - it will read as "an exception" in the
11200 notification we are about to print. */
967cff16 11201 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11202 }
11203 /* In the case of unhandled exception breakpoints, we print
11204 the exception name as "unhandled EXCEPTION_NAME", to make
11205 it clearer to the user which kind of catchpoint just got
11206 hit. We used ui_out_text to make sure that this extra
11207 info does not pollute the exception name in the MI case. */
11208 if (ex == ex_catch_exception_unhandled)
11209 ui_out_text (uiout, "unhandled ");
11210 ui_out_field_string (uiout, "exception-name", exception_name);
11211 }
11212 break;
f7f9143b 11213 case ex_catch_assert:
956a9fb9
JB
11214 /* In this case, the name of the exception is not really
11215 important. Just print "failed assertion" to make it clearer
11216 that his program just hit an assertion-failure catchpoint.
11217 We used ui_out_text because this info does not belong in
11218 the MI output. */
11219 ui_out_text (uiout, "failed assertion");
11220 break;
f7f9143b 11221 }
956a9fb9
JB
11222 ui_out_text (uiout, " at ");
11223 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11224
11225 return PRINT_SRC_AND_LOC;
11226}
11227
11228/* Implement the PRINT_ONE method in the breakpoint_ops structure
11229 for all exception catchpoint kinds. */
11230
11231static void
11232print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11233 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11234{
79a45e25 11235 struct ui_out *uiout = current_uiout;
28010a5d 11236 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11237 struct value_print_options opts;
11238
11239 get_user_print_options (&opts);
11240 if (opts.addressprint)
f7f9143b
JB
11241 {
11242 annotate_field (4);
5af949e3 11243 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11244 }
11245
11246 annotate_field (5);
a6d9a66e 11247 *last_loc = b->loc;
f7f9143b
JB
11248 switch (ex)
11249 {
11250 case ex_catch_exception:
28010a5d 11251 if (c->excep_string != NULL)
f7f9143b 11252 {
28010a5d
PA
11253 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11254
f7f9143b
JB
11255 ui_out_field_string (uiout, "what", msg);
11256 xfree (msg);
11257 }
11258 else
11259 ui_out_field_string (uiout, "what", "all Ada exceptions");
11260
11261 break;
11262
11263 case ex_catch_exception_unhandled:
11264 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11265 break;
11266
11267 case ex_catch_assert:
11268 ui_out_field_string (uiout, "what", "failed Ada assertions");
11269 break;
11270
11271 default:
11272 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11273 break;
11274 }
11275}
11276
11277/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11278 for all exception catchpoint kinds. */
11279
11280static void
11281print_mention_exception (enum exception_catchpoint_kind ex,
11282 struct breakpoint *b)
11283{
28010a5d 11284 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11285 struct ui_out *uiout = current_uiout;
28010a5d 11286
00eb2c4a
JB
11287 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11288 : _("Catchpoint "));
11289 ui_out_field_int (uiout, "bkptno", b->number);
11290 ui_out_text (uiout, ": ");
11291
f7f9143b
JB
11292 switch (ex)
11293 {
11294 case ex_catch_exception:
28010a5d 11295 if (c->excep_string != NULL)
00eb2c4a
JB
11296 {
11297 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11298 struct cleanup *old_chain = make_cleanup (xfree, info);
11299
11300 ui_out_text (uiout, info);
11301 do_cleanups (old_chain);
11302 }
f7f9143b 11303 else
00eb2c4a 11304 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11305 break;
11306
11307 case ex_catch_exception_unhandled:
00eb2c4a 11308 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11309 break;
11310
11311 case ex_catch_assert:
00eb2c4a 11312 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11313 break;
11314
11315 default:
11316 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11317 break;
11318 }
11319}
11320
6149aea9
PA
11321/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11322 for all exception catchpoint kinds. */
11323
11324static void
11325print_recreate_exception (enum exception_catchpoint_kind ex,
11326 struct breakpoint *b, struct ui_file *fp)
11327{
28010a5d
PA
11328 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11329
6149aea9
PA
11330 switch (ex)
11331 {
11332 case ex_catch_exception:
11333 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11334 if (c->excep_string != NULL)
11335 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11336 break;
11337
11338 case ex_catch_exception_unhandled:
78076abc 11339 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11340 break;
11341
11342 case ex_catch_assert:
11343 fprintf_filtered (fp, "catch assert");
11344 break;
11345
11346 default:
11347 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11348 }
d9b3f62e 11349 print_recreate_thread (b, fp);
6149aea9
PA
11350}
11351
f7f9143b
JB
11352/* Virtual table for "catch exception" breakpoints. */
11353
28010a5d
PA
11354static void
11355dtor_catch_exception (struct breakpoint *b)
11356{
11357 dtor_exception (ex_catch_exception, b);
11358}
11359
11360static struct bp_location *
11361allocate_location_catch_exception (struct breakpoint *self)
11362{
11363 return allocate_location_exception (ex_catch_exception, self);
11364}
11365
11366static void
11367re_set_catch_exception (struct breakpoint *b)
11368{
11369 re_set_exception (ex_catch_exception, b);
11370}
11371
11372static void
11373check_status_catch_exception (bpstat bs)
11374{
11375 check_status_exception (ex_catch_exception, bs);
11376}
11377
f7f9143b 11378static enum print_stop_action
348d480f 11379print_it_catch_exception (bpstat bs)
f7f9143b 11380{
348d480f 11381 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11382}
11383
11384static void
a6d9a66e 11385print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11386{
a6d9a66e 11387 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11388}
11389
11390static void
11391print_mention_catch_exception (struct breakpoint *b)
11392{
11393 print_mention_exception (ex_catch_exception, b);
11394}
11395
6149aea9
PA
11396static void
11397print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11398{
11399 print_recreate_exception (ex_catch_exception, b, fp);
11400}
11401
2060206e 11402static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11403
11404/* Virtual table for "catch exception unhandled" breakpoints. */
11405
28010a5d
PA
11406static void
11407dtor_catch_exception_unhandled (struct breakpoint *b)
11408{
11409 dtor_exception (ex_catch_exception_unhandled, b);
11410}
11411
11412static struct bp_location *
11413allocate_location_catch_exception_unhandled (struct breakpoint *self)
11414{
11415 return allocate_location_exception (ex_catch_exception_unhandled, self);
11416}
11417
11418static void
11419re_set_catch_exception_unhandled (struct breakpoint *b)
11420{
11421 re_set_exception (ex_catch_exception_unhandled, b);
11422}
11423
11424static void
11425check_status_catch_exception_unhandled (bpstat bs)
11426{
11427 check_status_exception (ex_catch_exception_unhandled, bs);
11428}
11429
f7f9143b 11430static enum print_stop_action
348d480f 11431print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11432{
348d480f 11433 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11434}
11435
11436static void
a6d9a66e
UW
11437print_one_catch_exception_unhandled (struct breakpoint *b,
11438 struct bp_location **last_loc)
f7f9143b 11439{
a6d9a66e 11440 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11441}
11442
11443static void
11444print_mention_catch_exception_unhandled (struct breakpoint *b)
11445{
11446 print_mention_exception (ex_catch_exception_unhandled, b);
11447}
11448
6149aea9
PA
11449static void
11450print_recreate_catch_exception_unhandled (struct breakpoint *b,
11451 struct ui_file *fp)
11452{
11453 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11454}
11455
2060206e 11456static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11457
11458/* Virtual table for "catch assert" breakpoints. */
11459
28010a5d
PA
11460static void
11461dtor_catch_assert (struct breakpoint *b)
11462{
11463 dtor_exception (ex_catch_assert, b);
11464}
11465
11466static struct bp_location *
11467allocate_location_catch_assert (struct breakpoint *self)
11468{
11469 return allocate_location_exception (ex_catch_assert, self);
11470}
11471
11472static void
11473re_set_catch_assert (struct breakpoint *b)
11474{
11475 return re_set_exception (ex_catch_assert, b);
11476}
11477
11478static void
11479check_status_catch_assert (bpstat bs)
11480{
11481 check_status_exception (ex_catch_assert, bs);
11482}
11483
f7f9143b 11484static enum print_stop_action
348d480f 11485print_it_catch_assert (bpstat bs)
f7f9143b 11486{
348d480f 11487 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11488}
11489
11490static void
a6d9a66e 11491print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11492{
a6d9a66e 11493 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11494}
11495
11496static void
11497print_mention_catch_assert (struct breakpoint *b)
11498{
11499 print_mention_exception (ex_catch_assert, b);
11500}
11501
6149aea9
PA
11502static void
11503print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11504{
11505 print_recreate_exception (ex_catch_assert, b, fp);
11506}
11507
2060206e 11508static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11509
f7f9143b
JB
11510/* Return a newly allocated copy of the first space-separated token
11511 in ARGSP, and then adjust ARGSP to point immediately after that
11512 token.
11513
11514 Return NULL if ARGPS does not contain any more tokens. */
11515
11516static char *
11517ada_get_next_arg (char **argsp)
11518{
11519 char *args = *argsp;
11520 char *end;
11521 char *result;
11522
11523 /* Skip any leading white space. */
11524
11525 while (isspace (*args))
11526 args++;
11527
11528 if (args[0] == '\0')
11529 return NULL; /* No more arguments. */
11530
11531 /* Find the end of the current argument. */
11532
11533 end = args;
11534 while (*end != '\0' && !isspace (*end))
11535 end++;
11536
11537 /* Adjust ARGSP to point to the start of the next argument. */
11538
11539 *argsp = end;
11540
11541 /* Make a copy of the current argument and return it. */
11542
11543 result = xmalloc (end - args + 1);
11544 strncpy (result, args, end - args);
11545 result[end - args] = '\0';
11546
11547 return result;
11548}
11549
11550/* Split the arguments specified in a "catch exception" command.
11551 Set EX to the appropriate catchpoint type.
28010a5d 11552 Set EXCEP_STRING to the name of the specific exception if
f7f9143b
JB
11553 specified by the user. */
11554
11555static void
11556catch_ada_exception_command_split (char *args,
11557 enum exception_catchpoint_kind *ex,
28010a5d 11558 char **excep_string)
f7f9143b
JB
11559{
11560 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11561 char *exception_name;
11562
11563 exception_name = ada_get_next_arg (&args);
11564 make_cleanup (xfree, exception_name);
11565
11566 /* Check that we do not have any more arguments. Anything else
11567 is unexpected. */
11568
11569 while (isspace (*args))
11570 args++;
11571
11572 if (args[0] != '\0')
11573 error (_("Junk at end of expression"));
11574
11575 discard_cleanups (old_chain);
11576
11577 if (exception_name == NULL)
11578 {
11579 /* Catch all exceptions. */
11580 *ex = ex_catch_exception;
28010a5d 11581 *excep_string = NULL;
f7f9143b
JB
11582 }
11583 else if (strcmp (exception_name, "unhandled") == 0)
11584 {
11585 /* Catch unhandled exceptions. */
11586 *ex = ex_catch_exception_unhandled;
28010a5d 11587 *excep_string = NULL;
f7f9143b
JB
11588 }
11589 else
11590 {
11591 /* Catch a specific exception. */
11592 *ex = ex_catch_exception;
28010a5d 11593 *excep_string = exception_name;
f7f9143b
JB
11594 }
11595}
11596
11597/* Return the name of the symbol on which we should break in order to
11598 implement a catchpoint of the EX kind. */
11599
11600static const char *
11601ada_exception_sym_name (enum exception_catchpoint_kind ex)
11602{
3eecfa55
JB
11603 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11604
11605 gdb_assert (data->exception_info != NULL);
0259addd 11606
f7f9143b
JB
11607 switch (ex)
11608 {
11609 case ex_catch_exception:
3eecfa55 11610 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11611 break;
11612 case ex_catch_exception_unhandled:
3eecfa55 11613 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11614 break;
11615 case ex_catch_assert:
3eecfa55 11616 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11617 break;
11618 default:
11619 internal_error (__FILE__, __LINE__,
11620 _("unexpected catchpoint kind (%d)"), ex);
11621 }
11622}
11623
11624/* Return the breakpoint ops "virtual table" used for catchpoints
11625 of the EX kind. */
11626
c0a91b2b 11627static const struct breakpoint_ops *
4b9eee8c 11628ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11629{
11630 switch (ex)
11631 {
11632 case ex_catch_exception:
11633 return (&catch_exception_breakpoint_ops);
11634 break;
11635 case ex_catch_exception_unhandled:
11636 return (&catch_exception_unhandled_breakpoint_ops);
11637 break;
11638 case ex_catch_assert:
11639 return (&catch_assert_breakpoint_ops);
11640 break;
11641 default:
11642 internal_error (__FILE__, __LINE__,
11643 _("unexpected catchpoint kind (%d)"), ex);
11644 }
11645}
11646
11647/* Return the condition that will be used to match the current exception
11648 being raised with the exception that the user wants to catch. This
11649 assumes that this condition is used when the inferior just triggered
11650 an exception catchpoint.
11651
11652 The string returned is a newly allocated string that needs to be
11653 deallocated later. */
11654
11655static char *
28010a5d 11656ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11657{
3d0b0fa3
JB
11658 int i;
11659
0963b4bd 11660 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11661 runtime units that have been compiled without debugging info; if
28010a5d 11662 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11663 exception (e.g. "constraint_error") then, during the evaluation
11664 of the condition expression, the symbol lookup on this name would
0963b4bd 11665 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11666 may then be set only on user-defined exceptions which have the
11667 same not-fully-qualified name (e.g. my_package.constraint_error).
11668
11669 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11670 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11671 exception constraint_error" is rewritten into "catch exception
11672 standard.constraint_error".
11673
11674 If an exception named contraint_error is defined in another package of
11675 the inferior program, then the only way to specify this exception as a
11676 breakpoint condition is to use its fully-qualified named:
11677 e.g. my_package.constraint_error. */
11678
11679 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11680 {
28010a5d 11681 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11682 {
11683 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11684 excep_string);
3d0b0fa3
JB
11685 }
11686 }
28010a5d 11687 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11688}
11689
11690/* Return the symtab_and_line that should be used to insert an exception
11691 catchpoint of the TYPE kind.
11692
28010a5d
PA
11693 EXCEP_STRING should contain the name of a specific exception that
11694 the catchpoint should catch, or NULL otherwise.
f7f9143b 11695
28010a5d
PA
11696 ADDR_STRING returns the name of the function where the real
11697 breakpoint that implements the catchpoints is set, depending on the
11698 type of catchpoint we need to create. */
f7f9143b
JB
11699
11700static struct symtab_and_line
28010a5d 11701ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11702 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11703{
11704 const char *sym_name;
11705 struct symbol *sym;
f7f9143b 11706
0259addd
JB
11707 /* First, find out which exception support info to use. */
11708 ada_exception_support_info_sniffer ();
11709
11710 /* Then lookup the function on which we will break in order to catch
f7f9143b 11711 the Ada exceptions requested by the user. */
f7f9143b
JB
11712 sym_name = ada_exception_sym_name (ex);
11713 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11714
f17011e0
JB
11715 /* We can assume that SYM is not NULL at this stage. If the symbol
11716 did not exist, ada_exception_support_info_sniffer would have
11717 raised an exception.
f7f9143b 11718
f17011e0
JB
11719 Also, ada_exception_support_info_sniffer should have already
11720 verified that SYM is a function symbol. */
11721 gdb_assert (sym != NULL);
11722 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11723
11724 /* Set ADDR_STRING. */
f7f9143b
JB
11725 *addr_string = xstrdup (sym_name);
11726
f7f9143b 11727 /* Set OPS. */
4b9eee8c 11728 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11729
f17011e0 11730 return find_function_start_sal (sym, 1);
f7f9143b
JB
11731}
11732
11733/* Parse the arguments (ARGS) of the "catch exception" command.
11734
f7f9143b
JB
11735 If the user asked the catchpoint to catch only a specific
11736 exception, then save the exception name in ADDR_STRING.
11737
11738 See ada_exception_sal for a description of all the remaining
11739 function arguments of this function. */
11740
9ac4176b 11741static struct symtab_and_line
f7f9143b 11742ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11743 char **excep_string,
c0a91b2b 11744 const struct breakpoint_ops **ops)
f7f9143b
JB
11745{
11746 enum exception_catchpoint_kind ex;
11747
28010a5d
PA
11748 catch_ada_exception_command_split (args, &ex, excep_string);
11749 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11750}
11751
11752/* Create an Ada exception catchpoint. */
11753
11754static void
11755create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11756 struct symtab_and_line sal,
11757 char *addr_string,
11758 char *excep_string,
c0a91b2b 11759 const struct breakpoint_ops *ops,
28010a5d
PA
11760 int tempflag,
11761 int from_tty)
11762{
11763 struct ada_catchpoint *c;
11764
11765 c = XNEW (struct ada_catchpoint);
11766 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11767 ops, tempflag, from_tty);
11768 c->excep_string = excep_string;
11769 create_excep_cond_exprs (c);
3ea46bff 11770 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11771}
11772
9ac4176b
PA
11773/* Implement the "catch exception" command. */
11774
11775static void
11776catch_ada_exception_command (char *arg, int from_tty,
11777 struct cmd_list_element *command)
11778{
11779 struct gdbarch *gdbarch = get_current_arch ();
11780 int tempflag;
11781 struct symtab_and_line sal;
11782 char *addr_string = NULL;
28010a5d 11783 char *excep_string = NULL;
c0a91b2b 11784 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11785
11786 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11787
11788 if (!arg)
11789 arg = "";
28010a5d
PA
11790 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11791 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11792 excep_string, ops, tempflag, from_tty);
9ac4176b
PA
11793}
11794
11795static struct symtab_and_line
f7f9143b 11796ada_decode_assert_location (char *args, char **addr_string,
c0a91b2b 11797 const struct breakpoint_ops **ops)
f7f9143b
JB
11798{
11799 /* Check that no argument where provided at the end of the command. */
11800
11801 if (args != NULL)
11802 {
11803 while (isspace (*args))
11804 args++;
11805 if (*args != '\0')
11806 error (_("Junk at end of arguments."));
11807 }
11808
28010a5d 11809 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11810}
11811
9ac4176b
PA
11812/* Implement the "catch assert" command. */
11813
11814static void
11815catch_assert_command (char *arg, int from_tty,
11816 struct cmd_list_element *command)
11817{
11818 struct gdbarch *gdbarch = get_current_arch ();
11819 int tempflag;
11820 struct symtab_and_line sal;
11821 char *addr_string = NULL;
c0a91b2b 11822 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11823
11824 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11825
11826 if (!arg)
11827 arg = "";
11828 sal = ada_decode_assert_location (arg, &addr_string, &ops);
28010a5d
PA
11829 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11830 NULL, ops, tempflag, from_tty);
9ac4176b 11831}
4c4b4cd2
PH
11832 /* Operators */
11833/* Information about operators given special treatment in functions
11834 below. */
11835/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11836
11837#define ADA_OPERATORS \
11838 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11839 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11840 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11841 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11842 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11843 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11844 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11845 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11846 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11847 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11848 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11849 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11850 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11851 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11852 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11853 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11854 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11855 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11856 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11857
11858static void
554794dc
SDJ
11859ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11860 int *argsp)
4c4b4cd2
PH
11861{
11862 switch (exp->elts[pc - 1].opcode)
11863 {
76a01679 11864 default:
4c4b4cd2
PH
11865 operator_length_standard (exp, pc, oplenp, argsp);
11866 break;
11867
11868#define OP_DEFN(op, len, args, binop) \
11869 case op: *oplenp = len; *argsp = args; break;
11870 ADA_OPERATORS;
11871#undef OP_DEFN
52ce6436
PH
11872
11873 case OP_AGGREGATE:
11874 *oplenp = 3;
11875 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11876 break;
11877
11878 case OP_CHOICES:
11879 *oplenp = 3;
11880 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11881 break;
4c4b4cd2
PH
11882 }
11883}
11884
c0201579
JK
11885/* Implementation of the exp_descriptor method operator_check. */
11886
11887static int
11888ada_operator_check (struct expression *exp, int pos,
11889 int (*objfile_func) (struct objfile *objfile, void *data),
11890 void *data)
11891{
11892 const union exp_element *const elts = exp->elts;
11893 struct type *type = NULL;
11894
11895 switch (elts[pos].opcode)
11896 {
11897 case UNOP_IN_RANGE:
11898 case UNOP_QUAL:
11899 type = elts[pos + 1].type;
11900 break;
11901
11902 default:
11903 return operator_check_standard (exp, pos, objfile_func, data);
11904 }
11905
11906 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11907
11908 if (type && TYPE_OBJFILE (type)
11909 && (*objfile_func) (TYPE_OBJFILE (type), data))
11910 return 1;
11911
11912 return 0;
11913}
11914
4c4b4cd2
PH
11915static char *
11916ada_op_name (enum exp_opcode opcode)
11917{
11918 switch (opcode)
11919 {
76a01679 11920 default:
4c4b4cd2 11921 return op_name_standard (opcode);
52ce6436 11922
4c4b4cd2
PH
11923#define OP_DEFN(op, len, args, binop) case op: return #op;
11924 ADA_OPERATORS;
11925#undef OP_DEFN
52ce6436
PH
11926
11927 case OP_AGGREGATE:
11928 return "OP_AGGREGATE";
11929 case OP_CHOICES:
11930 return "OP_CHOICES";
11931 case OP_NAME:
11932 return "OP_NAME";
4c4b4cd2
PH
11933 }
11934}
11935
11936/* As for operator_length, but assumes PC is pointing at the first
11937 element of the operator, and gives meaningful results only for the
52ce6436 11938 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11939
11940static void
76a01679
JB
11941ada_forward_operator_length (struct expression *exp, int pc,
11942 int *oplenp, int *argsp)
4c4b4cd2 11943{
76a01679 11944 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11945 {
11946 default:
11947 *oplenp = *argsp = 0;
11948 break;
52ce6436 11949
4c4b4cd2
PH
11950#define OP_DEFN(op, len, args, binop) \
11951 case op: *oplenp = len; *argsp = args; break;
11952 ADA_OPERATORS;
11953#undef OP_DEFN
52ce6436
PH
11954
11955 case OP_AGGREGATE:
11956 *oplenp = 3;
11957 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11958 break;
11959
11960 case OP_CHOICES:
11961 *oplenp = 3;
11962 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11963 break;
11964
11965 case OP_STRING:
11966 case OP_NAME:
11967 {
11968 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11969
52ce6436
PH
11970 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11971 *argsp = 0;
11972 break;
11973 }
4c4b4cd2
PH
11974 }
11975}
11976
11977static int
11978ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11979{
11980 enum exp_opcode op = exp->elts[elt].opcode;
11981 int oplen, nargs;
11982 int pc = elt;
11983 int i;
76a01679 11984
4c4b4cd2
PH
11985 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11986
76a01679 11987 switch (op)
4c4b4cd2 11988 {
76a01679 11989 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11990 case OP_ATR_FIRST:
11991 case OP_ATR_LAST:
11992 case OP_ATR_LENGTH:
11993 case OP_ATR_IMAGE:
11994 case OP_ATR_MAX:
11995 case OP_ATR_MIN:
11996 case OP_ATR_MODULUS:
11997 case OP_ATR_POS:
11998 case OP_ATR_SIZE:
11999 case OP_ATR_TAG:
12000 case OP_ATR_VAL:
12001 break;
12002
12003 case UNOP_IN_RANGE:
12004 case UNOP_QUAL:
323e0a4a
AC
12005 /* XXX: gdb_sprint_host_address, type_sprint */
12006 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12007 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12008 fprintf_filtered (stream, " (");
12009 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12010 fprintf_filtered (stream, ")");
12011 break;
12012 case BINOP_IN_BOUNDS:
52ce6436
PH
12013 fprintf_filtered (stream, " (%d)",
12014 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12015 break;
12016 case TERNOP_IN_RANGE:
12017 break;
12018
52ce6436
PH
12019 case OP_AGGREGATE:
12020 case OP_OTHERS:
12021 case OP_DISCRETE_RANGE:
12022 case OP_POSITIONAL:
12023 case OP_CHOICES:
12024 break;
12025
12026 case OP_NAME:
12027 case OP_STRING:
12028 {
12029 char *name = &exp->elts[elt + 2].string;
12030 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12031
52ce6436
PH
12032 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12033 break;
12034 }
12035
4c4b4cd2
PH
12036 default:
12037 return dump_subexp_body_standard (exp, stream, elt);
12038 }
12039
12040 elt += oplen;
12041 for (i = 0; i < nargs; i += 1)
12042 elt = dump_subexp (exp, stream, elt);
12043
12044 return elt;
12045}
12046
12047/* The Ada extension of print_subexp (q.v.). */
12048
76a01679
JB
12049static void
12050ada_print_subexp (struct expression *exp, int *pos,
12051 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12052{
52ce6436 12053 int oplen, nargs, i;
4c4b4cd2
PH
12054 int pc = *pos;
12055 enum exp_opcode op = exp->elts[pc].opcode;
12056
12057 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12058
52ce6436 12059 *pos += oplen;
4c4b4cd2
PH
12060 switch (op)
12061 {
12062 default:
52ce6436 12063 *pos -= oplen;
4c4b4cd2
PH
12064 print_subexp_standard (exp, pos, stream, prec);
12065 return;
12066
12067 case OP_VAR_VALUE:
4c4b4cd2
PH
12068 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12069 return;
12070
12071 case BINOP_IN_BOUNDS:
323e0a4a 12072 /* XXX: sprint_subexp */
4c4b4cd2 12073 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12074 fputs_filtered (" in ", stream);
4c4b4cd2 12075 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12076 fputs_filtered ("'range", stream);
4c4b4cd2 12077 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12078 fprintf_filtered (stream, "(%ld)",
12079 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12080 return;
12081
12082 case TERNOP_IN_RANGE:
4c4b4cd2 12083 if (prec >= PREC_EQUAL)
76a01679 12084 fputs_filtered ("(", stream);
323e0a4a 12085 /* XXX: sprint_subexp */
4c4b4cd2 12086 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12087 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12088 print_subexp (exp, pos, stream, PREC_EQUAL);
12089 fputs_filtered (" .. ", stream);
12090 print_subexp (exp, pos, stream, PREC_EQUAL);
12091 if (prec >= PREC_EQUAL)
76a01679
JB
12092 fputs_filtered (")", stream);
12093 return;
4c4b4cd2
PH
12094
12095 case OP_ATR_FIRST:
12096 case OP_ATR_LAST:
12097 case OP_ATR_LENGTH:
12098 case OP_ATR_IMAGE:
12099 case OP_ATR_MAX:
12100 case OP_ATR_MIN:
12101 case OP_ATR_MODULUS:
12102 case OP_ATR_POS:
12103 case OP_ATR_SIZE:
12104 case OP_ATR_TAG:
12105 case OP_ATR_VAL:
4c4b4cd2 12106 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12107 {
12108 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12109 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12110 *pos += 3;
12111 }
4c4b4cd2 12112 else
76a01679 12113 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12114 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12115 if (nargs > 1)
76a01679
JB
12116 {
12117 int tem;
5b4ee69b 12118
76a01679
JB
12119 for (tem = 1; tem < nargs; tem += 1)
12120 {
12121 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12122 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12123 }
12124 fputs_filtered (")", stream);
12125 }
4c4b4cd2 12126 return;
14f9c5c9 12127
4c4b4cd2 12128 case UNOP_QUAL:
4c4b4cd2
PH
12129 type_print (exp->elts[pc + 1].type, "", stream, 0);
12130 fputs_filtered ("'(", stream);
12131 print_subexp (exp, pos, stream, PREC_PREFIX);
12132 fputs_filtered (")", stream);
12133 return;
14f9c5c9 12134
4c4b4cd2 12135 case UNOP_IN_RANGE:
323e0a4a 12136 /* XXX: sprint_subexp */
4c4b4cd2 12137 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12138 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12139 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12140 return;
52ce6436
PH
12141
12142 case OP_DISCRETE_RANGE:
12143 print_subexp (exp, pos, stream, PREC_SUFFIX);
12144 fputs_filtered ("..", stream);
12145 print_subexp (exp, pos, stream, PREC_SUFFIX);
12146 return;
12147
12148 case OP_OTHERS:
12149 fputs_filtered ("others => ", stream);
12150 print_subexp (exp, pos, stream, PREC_SUFFIX);
12151 return;
12152
12153 case OP_CHOICES:
12154 for (i = 0; i < nargs-1; i += 1)
12155 {
12156 if (i > 0)
12157 fputs_filtered ("|", stream);
12158 print_subexp (exp, pos, stream, PREC_SUFFIX);
12159 }
12160 fputs_filtered (" => ", stream);
12161 print_subexp (exp, pos, stream, PREC_SUFFIX);
12162 return;
12163
12164 case OP_POSITIONAL:
12165 print_subexp (exp, pos, stream, PREC_SUFFIX);
12166 return;
12167
12168 case OP_AGGREGATE:
12169 fputs_filtered ("(", stream);
12170 for (i = 0; i < nargs; i += 1)
12171 {
12172 if (i > 0)
12173 fputs_filtered (", ", stream);
12174 print_subexp (exp, pos, stream, PREC_SUFFIX);
12175 }
12176 fputs_filtered (")", stream);
12177 return;
4c4b4cd2
PH
12178 }
12179}
14f9c5c9
AS
12180
12181/* Table mapping opcodes into strings for printing operators
12182 and precedences of the operators. */
12183
d2e4a39e
AS
12184static const struct op_print ada_op_print_tab[] = {
12185 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12186 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12187 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12188 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12189 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12190 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12191 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12192 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12193 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12194 {">=", BINOP_GEQ, PREC_ORDER, 0},
12195 {">", BINOP_GTR, PREC_ORDER, 0},
12196 {"<", BINOP_LESS, PREC_ORDER, 0},
12197 {">>", BINOP_RSH, PREC_SHIFT, 0},
12198 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12199 {"+", BINOP_ADD, PREC_ADD, 0},
12200 {"-", BINOP_SUB, PREC_ADD, 0},
12201 {"&", BINOP_CONCAT, PREC_ADD, 0},
12202 {"*", BINOP_MUL, PREC_MUL, 0},
12203 {"/", BINOP_DIV, PREC_MUL, 0},
12204 {"rem", BINOP_REM, PREC_MUL, 0},
12205 {"mod", BINOP_MOD, PREC_MUL, 0},
12206 {"**", BINOP_EXP, PREC_REPEAT, 0},
12207 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12208 {"-", UNOP_NEG, PREC_PREFIX, 0},
12209 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12210 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12211 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12212 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12213 {".all", UNOP_IND, PREC_SUFFIX, 1},
12214 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12215 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12216 {NULL, 0, 0, 0}
14f9c5c9
AS
12217};
12218\f
72d5681a
PH
12219enum ada_primitive_types {
12220 ada_primitive_type_int,
12221 ada_primitive_type_long,
12222 ada_primitive_type_short,
12223 ada_primitive_type_char,
12224 ada_primitive_type_float,
12225 ada_primitive_type_double,
12226 ada_primitive_type_void,
12227 ada_primitive_type_long_long,
12228 ada_primitive_type_long_double,
12229 ada_primitive_type_natural,
12230 ada_primitive_type_positive,
12231 ada_primitive_type_system_address,
12232 nr_ada_primitive_types
12233};
6c038f32
PH
12234
12235static void
d4a9a881 12236ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12237 struct language_arch_info *lai)
12238{
d4a9a881 12239 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12240
72d5681a 12241 lai->primitive_type_vector
d4a9a881 12242 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12243 struct type *);
e9bb382b
UW
12244
12245 lai->primitive_type_vector [ada_primitive_type_int]
12246 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12247 0, "integer");
12248 lai->primitive_type_vector [ada_primitive_type_long]
12249 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12250 0, "long_integer");
12251 lai->primitive_type_vector [ada_primitive_type_short]
12252 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12253 0, "short_integer");
12254 lai->string_char_type
12255 = lai->primitive_type_vector [ada_primitive_type_char]
12256 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12257 lai->primitive_type_vector [ada_primitive_type_float]
12258 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12259 "float", NULL);
12260 lai->primitive_type_vector [ada_primitive_type_double]
12261 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12262 "long_float", NULL);
12263 lai->primitive_type_vector [ada_primitive_type_long_long]
12264 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12265 0, "long_long_integer");
12266 lai->primitive_type_vector [ada_primitive_type_long_double]
12267 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12268 "long_long_float", NULL);
12269 lai->primitive_type_vector [ada_primitive_type_natural]
12270 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12271 0, "natural");
12272 lai->primitive_type_vector [ada_primitive_type_positive]
12273 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12274 0, "positive");
12275 lai->primitive_type_vector [ada_primitive_type_void]
12276 = builtin->builtin_void;
12277
12278 lai->primitive_type_vector [ada_primitive_type_system_address]
12279 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12280 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12281 = "system__address";
fbb06eb1 12282
47e729a8 12283 lai->bool_type_symbol = NULL;
fbb06eb1 12284 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12285}
6c038f32
PH
12286\f
12287 /* Language vector */
12288
12289/* Not really used, but needed in the ada_language_defn. */
12290
12291static void
6c7a06a3 12292emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12293{
6c7a06a3 12294 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12295}
12296
12297static int
12298parse (void)
12299{
12300 warnings_issued = 0;
12301 return ada_parse ();
12302}
12303
12304static const struct exp_descriptor ada_exp_descriptor = {
12305 ada_print_subexp,
12306 ada_operator_length,
c0201579 12307 ada_operator_check,
6c038f32
PH
12308 ada_op_name,
12309 ada_dump_subexp_body,
12310 ada_evaluate_subexp
12311};
12312
12313const struct language_defn ada_language_defn = {
12314 "ada", /* Language name */
12315 language_ada,
6c038f32
PH
12316 range_check_off,
12317 type_check_off,
12318 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12319 that's not quite what this means. */
6c038f32 12320 array_row_major,
9a044a89 12321 macro_expansion_no,
6c038f32
PH
12322 &ada_exp_descriptor,
12323 parse,
12324 ada_error,
12325 resolve,
12326 ada_printchar, /* Print a character constant */
12327 ada_printstr, /* Function to print string constant */
12328 emit_char, /* Function to print single char (not used) */
6c038f32 12329 ada_print_type, /* Print a type using appropriate syntax */
be942545 12330 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12331 ada_val_print, /* Print a value using appropriate syntax */
12332 ada_value_print, /* Print a top-level value */
12333 NULL, /* Language specific skip_trampoline */
2b2d9e11 12334 NULL, /* name_of_this */
6c038f32
PH
12335 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12336 basic_lookup_transparent_type, /* lookup_transparent_type */
12337 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12338 NULL, /* Language specific
12339 class_name_from_physname */
6c038f32
PH
12340 ada_op_print_tab, /* expression operators for printing */
12341 0, /* c-style arrays */
12342 1, /* String lower bound */
6c038f32 12343 ada_get_gdb_completer_word_break_characters,
41d27058 12344 ada_make_symbol_completion_list,
72d5681a 12345 ada_language_arch_info,
e79af960 12346 ada_print_array_index,
41f1b697 12347 default_pass_by_reference,
ae6a3a4c 12348 c_get_string,
f8eba3c6
TT
12349 compare_names,
12350 ada_iterate_over_symbols,
6c038f32
PH
12351 LANG_MAGIC
12352};
12353
2c0b251b
PA
12354/* Provide a prototype to silence -Wmissing-prototypes. */
12355extern initialize_file_ftype _initialize_ada_language;
12356
5bf03f13
JB
12357/* Command-list for the "set/show ada" prefix command. */
12358static struct cmd_list_element *set_ada_list;
12359static struct cmd_list_element *show_ada_list;
12360
12361/* Implement the "set ada" prefix command. */
12362
12363static void
12364set_ada_command (char *arg, int from_tty)
12365{
12366 printf_unfiltered (_(\
12367"\"set ada\" must be followed by the name of a setting.\n"));
12368 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12369}
12370
12371/* Implement the "show ada" prefix command. */
12372
12373static void
12374show_ada_command (char *args, int from_tty)
12375{
12376 cmd_show_list (show_ada_list, from_tty, "");
12377}
12378
2060206e
PA
12379static void
12380initialize_ada_catchpoint_ops (void)
12381{
12382 struct breakpoint_ops *ops;
12383
12384 initialize_breakpoint_ops ();
12385
12386 ops = &catch_exception_breakpoint_ops;
12387 *ops = bkpt_breakpoint_ops;
12388 ops->dtor = dtor_catch_exception;
12389 ops->allocate_location = allocate_location_catch_exception;
12390 ops->re_set = re_set_catch_exception;
12391 ops->check_status = check_status_catch_exception;
12392 ops->print_it = print_it_catch_exception;
12393 ops->print_one = print_one_catch_exception;
12394 ops->print_mention = print_mention_catch_exception;
12395 ops->print_recreate = print_recreate_catch_exception;
12396
12397 ops = &catch_exception_unhandled_breakpoint_ops;
12398 *ops = bkpt_breakpoint_ops;
12399 ops->dtor = dtor_catch_exception_unhandled;
12400 ops->allocate_location = allocate_location_catch_exception_unhandled;
12401 ops->re_set = re_set_catch_exception_unhandled;
12402 ops->check_status = check_status_catch_exception_unhandled;
12403 ops->print_it = print_it_catch_exception_unhandled;
12404 ops->print_one = print_one_catch_exception_unhandled;
12405 ops->print_mention = print_mention_catch_exception_unhandled;
12406 ops->print_recreate = print_recreate_catch_exception_unhandled;
12407
12408 ops = &catch_assert_breakpoint_ops;
12409 *ops = bkpt_breakpoint_ops;
12410 ops->dtor = dtor_catch_assert;
12411 ops->allocate_location = allocate_location_catch_assert;
12412 ops->re_set = re_set_catch_assert;
12413 ops->check_status = check_status_catch_assert;
12414 ops->print_it = print_it_catch_assert;
12415 ops->print_one = print_one_catch_assert;
12416 ops->print_mention = print_mention_catch_assert;
12417 ops->print_recreate = print_recreate_catch_assert;
12418}
12419
d2e4a39e 12420void
6c038f32 12421_initialize_ada_language (void)
14f9c5c9 12422{
6c038f32
PH
12423 add_language (&ada_language_defn);
12424
2060206e
PA
12425 initialize_ada_catchpoint_ops ();
12426
5bf03f13
JB
12427 add_prefix_cmd ("ada", no_class, set_ada_command,
12428 _("Prefix command for changing Ada-specfic settings"),
12429 &set_ada_list, "set ada ", 0, &setlist);
12430
12431 add_prefix_cmd ("ada", no_class, show_ada_command,
12432 _("Generic command for showing Ada-specific settings."),
12433 &show_ada_list, "show ada ", 0, &showlist);
12434
12435 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12436 &trust_pad_over_xvs, _("\
12437Enable or disable an optimization trusting PAD types over XVS types"), _("\
12438Show whether an optimization trusting PAD types over XVS types is activated"),
12439 _("\
12440This is related to the encoding used by the GNAT compiler. The debugger\n\
12441should normally trust the contents of PAD types, but certain older versions\n\
12442of GNAT have a bug that sometimes causes the information in the PAD type\n\
12443to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12444work around this bug. It is always safe to turn this option \"off\", but\n\
12445this incurs a slight performance penalty, so it is recommended to NOT change\n\
12446this option to \"off\" unless necessary."),
12447 NULL, NULL, &set_ada_list, &show_ada_list);
12448
9ac4176b
PA
12449 add_catch_command ("exception", _("\
12450Catch Ada exceptions, when raised.\n\
12451With an argument, catch only exceptions with the given name."),
12452 catch_ada_exception_command,
12453 NULL,
12454 CATCH_PERMANENT,
12455 CATCH_TEMPORARY);
12456 add_catch_command ("assert", _("\
12457Catch failed Ada assertions, when raised.\n\
12458With an argument, catch only exceptions with the given name."),
12459 catch_assert_command,
12460 NULL,
12461 CATCH_PERMANENT,
12462 CATCH_TEMPORARY);
12463
6c038f32 12464 varsize_limit = 65536;
6c038f32
PH
12465
12466 obstack_init (&symbol_list_obstack);
12467
12468 decoded_names_store = htab_create_alloc
12469 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12470 NULL, xcalloc, xfree);
6b69afc4 12471
e802dbe0
JB
12472 /* Setup per-inferior data. */
12473 observer_attach_inferior_exit (ada_inferior_exit);
12474 ada_inferior_data
12475 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12476}