]>
Commit | Line | Data |
---|---|---|
6e681866 | 1 | /* Ada language support routines for GDB, the GNU debugger. |
10a2c479 | 2 | |
61baf725 | 3 | Copyright (C) 1992-2017 Free Software Foundation, Inc. |
14f9c5c9 | 4 | |
a9762ec7 | 5 | This file is part of GDB. |
14f9c5c9 | 6 | |
a9762ec7 JB |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
14f9c5c9 | 11 | |
a9762ec7 JB |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
14f9c5c9 | 16 | |
a9762ec7 JB |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 19 | |
96d887e8 | 20 | |
4c4b4cd2 | 21 | #include "defs.h" |
14f9c5c9 | 22 | #include <ctype.h> |
14f9c5c9 | 23 | #include "demangle.h" |
4c4b4cd2 PH |
24 | #include "gdb_regex.h" |
25 | #include "frame.h" | |
14f9c5c9 AS |
26 | #include "symtab.h" |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
a53b64ea | 32 | #include "varobj.h" |
14f9c5c9 AS |
33 | #include "c-lang.h" |
34 | #include "inferior.h" | |
35 | #include "symfile.h" | |
36 | #include "objfiles.h" | |
37 | #include "breakpoint.h" | |
38 | #include "gdbcore.h" | |
4c4b4cd2 PH |
39 | #include "hashtab.h" |
40 | #include "gdb_obstack.h" | |
14f9c5c9 | 41 | #include "ada-lang.h" |
4c4b4cd2 | 42 | #include "completer.h" |
53ce3c39 | 43 | #include <sys/stat.h> |
14f9c5c9 | 44 | #include "ui-out.h" |
fe898f56 | 45 | #include "block.h" |
04714b91 | 46 | #include "infcall.h" |
de4f826b | 47 | #include "dictionary.h" |
f7f9143b JB |
48 | #include "annotate.h" |
49 | #include "valprint.h" | |
9bbc9174 | 50 | #include "source.h" |
0259addd | 51 | #include "observer.h" |
2ba95b9b | 52 | #include "vec.h" |
692465f1 | 53 | #include "stack.h" |
fa864999 | 54 | #include "gdb_vecs.h" |
79d43c61 | 55 | #include "typeprint.h" |
22cee43f | 56 | #include "namespace.h" |
14f9c5c9 | 57 | |
ccefe4c4 | 58 | #include "psymtab.h" |
40bc484c | 59 | #include "value.h" |
956a9fb9 | 60 | #include "mi/mi-common.h" |
9ac4176b | 61 | #include "arch-utils.h" |
0fcd72ba | 62 | #include "cli/cli-utils.h" |
14bc53a8 | 63 | #include "common/function-view.h" |
d5722aa2 | 64 | #include "common/byte-vector.h" |
ccefe4c4 | 65 | |
4c4b4cd2 | 66 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 67 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
68 | Copied from valarith.c. */ |
69 | ||
70 | #ifndef TRUNCATION_TOWARDS_ZERO | |
71 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
72 | #endif | |
73 | ||
d2e4a39e | 74 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 75 | |
d2e4a39e | 76 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 77 | |
d2e4a39e | 78 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 79 | |
d2e4a39e | 80 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 81 | |
d2e4a39e | 82 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 83 | |
556bdfd4 | 84 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 85 | |
d2e4a39e | 86 | static struct value *desc_data (struct value *); |
14f9c5c9 | 87 | |
d2e4a39e | 88 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 89 | |
d2e4a39e | 90 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 91 | |
d2e4a39e | 92 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 93 | |
d2e4a39e | 94 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 95 | |
d2e4a39e | 96 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 97 | |
d2e4a39e | 98 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 99 | |
d2e4a39e | 100 | static int desc_arity (struct type *); |
14f9c5c9 | 101 | |
d2e4a39e | 102 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 103 | |
d2e4a39e | 104 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 105 | |
40658b94 PH |
106 | static int full_match (const char *, const char *); |
107 | ||
40bc484c | 108 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 109 | |
4c4b4cd2 | 110 | static void ada_add_block_symbols (struct obstack *, |
f0c5f9b2 | 111 | const struct block *, const char *, |
2570f2b7 | 112 | domain_enum, struct objfile *, int); |
14f9c5c9 | 113 | |
22cee43f PMR |
114 | static void ada_add_all_symbols (struct obstack *, const struct block *, |
115 | const char *, domain_enum, int, int *); | |
116 | ||
d12307c1 | 117 | static int is_nonfunction (struct block_symbol *, int); |
14f9c5c9 | 118 | |
76a01679 | 119 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
f0c5f9b2 | 120 | const struct block *); |
14f9c5c9 | 121 | |
4c4b4cd2 PH |
122 | static int num_defns_collected (struct obstack *); |
123 | ||
d12307c1 | 124 | static struct block_symbol *defns_collected (struct obstack *, int); |
14f9c5c9 | 125 | |
4c4b4cd2 | 126 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 127 | struct type *); |
14f9c5c9 | 128 | |
d2e4a39e | 129 | static void replace_operator_with_call (struct expression **, int, int, int, |
270140bd | 130 | struct symbol *, const struct block *); |
14f9c5c9 | 131 | |
d2e4a39e | 132 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 133 | |
a121b7c1 | 134 | static const char *ada_op_name (enum exp_opcode); |
4c4b4cd2 PH |
135 | |
136 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int numeric_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int integer_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int scalar_type_p (struct type *); |
14f9c5c9 | 143 | |
d2e4a39e | 144 | static int discrete_type_p (struct type *); |
14f9c5c9 | 145 | |
aeb5907d JB |
146 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
147 | const char **, | |
148 | int *, | |
149 | const char **); | |
150 | ||
151 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
270140bd | 152 | const struct block *); |
aeb5907d | 153 | |
a121b7c1 | 154 | static struct type *ada_lookup_struct_elt_type (struct type *, const char *, |
988f6b3d | 155 | int, int); |
4c4b4cd2 | 156 | |
d2e4a39e | 157 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 158 | |
b4ba55a1 JB |
159 | static struct type *ada_find_parallel_type_with_name (struct type *, |
160 | const char *); | |
161 | ||
d2e4a39e | 162 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 163 | |
10a2c479 | 164 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 165 | const gdb_byte *, |
4c4b4cd2 PH |
166 | CORE_ADDR, struct value *); |
167 | ||
168 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 169 | |
28c85d6c | 170 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 171 | |
d2e4a39e | 172 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 173 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 174 | |
d2e4a39e | 175 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 178 | |
ad82864c | 179 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 180 | |
ad82864c JB |
181 | static long decode_packed_array_bitsize (struct type *); |
182 | ||
183 | static struct value *decode_constrained_packed_array (struct value *); | |
184 | ||
185 | static int ada_is_packed_array_type (struct type *); | |
186 | ||
187 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 188 | |
d2e4a39e | 189 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 190 | struct value **); |
14f9c5c9 | 191 | |
50810684 | 192 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 193 | |
4c4b4cd2 PH |
194 | static struct value *coerce_unspec_val_to_type (struct value *, |
195 | struct type *); | |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
108d56a4 | 218 | static struct value *ada_search_struct_field (const char *, struct value *, int, |
4c4b4cd2 PH |
219 | struct type *); |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
0d5cff50 | 224 | static int find_struct_field (const char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
d12307c1 | 230 | static int ada_resolve_function (struct block_symbol *, int, |
4c4b4cd2 PH |
231 | struct value **, int, const char *, |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab | 238 | |
52ce6436 PH |
239 | static struct value *ada_index_struct_field (int, struct value *, int, |
240 | struct type *); | |
241 | ||
242 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
243 | struct expression *, |
244 | int *, enum noside); | |
52ce6436 PH |
245 | |
246 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
247 | struct expression *, | |
248 | int *, LONGEST *, int *, | |
249 | int, LONGEST, LONGEST); | |
250 | ||
251 | static void aggregate_assign_positional (struct value *, struct value *, | |
252 | struct expression *, | |
253 | int *, LONGEST *, int *, int, | |
254 | LONGEST, LONGEST); | |
255 | ||
256 | ||
257 | static void aggregate_assign_others (struct value *, struct value *, | |
258 | struct expression *, | |
259 | int *, LONGEST *, int, LONGEST, LONGEST); | |
260 | ||
261 | ||
262 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
263 | ||
264 | ||
265 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
266 | int *, enum noside); | |
267 | ||
268 | static void ada_forward_operator_length (struct expression *, int, int *, | |
269 | int *); | |
852dff6c JB |
270 | |
271 | static struct type *ada_find_any_type (const char *name); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
ee01b665 JB |
274 | /* The result of a symbol lookup to be stored in our symbol cache. */ |
275 | ||
276 | struct cache_entry | |
277 | { | |
278 | /* The name used to perform the lookup. */ | |
279 | const char *name; | |
280 | /* The namespace used during the lookup. */ | |
fe978cb0 | 281 | domain_enum domain; |
ee01b665 JB |
282 | /* The symbol returned by the lookup, or NULL if no matching symbol |
283 | was found. */ | |
284 | struct symbol *sym; | |
285 | /* The block where the symbol was found, or NULL if no matching | |
286 | symbol was found. */ | |
287 | const struct block *block; | |
288 | /* A pointer to the next entry with the same hash. */ | |
289 | struct cache_entry *next; | |
290 | }; | |
291 | ||
292 | /* The Ada symbol cache, used to store the result of Ada-mode symbol | |
293 | lookups in the course of executing the user's commands. | |
294 | ||
295 | The cache is implemented using a simple, fixed-sized hash. | |
296 | The size is fixed on the grounds that there are not likely to be | |
297 | all that many symbols looked up during any given session, regardless | |
298 | of the size of the symbol table. If we decide to go to a resizable | |
299 | table, let's just use the stuff from libiberty instead. */ | |
300 | ||
301 | #define HASH_SIZE 1009 | |
302 | ||
303 | struct ada_symbol_cache | |
304 | { | |
305 | /* An obstack used to store the entries in our cache. */ | |
306 | struct obstack cache_space; | |
307 | ||
308 | /* The root of the hash table used to implement our symbol cache. */ | |
309 | struct cache_entry *root[HASH_SIZE]; | |
310 | }; | |
311 | ||
312 | static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache); | |
76a01679 | 313 | |
4c4b4cd2 | 314 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
315 | static unsigned int varsize_limit; |
316 | ||
67cb5b2d | 317 | static const char ada_completer_word_break_characters[] = |
4c4b4cd2 PH |
318 | #ifdef VMS |
319 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
320 | #else | |
14f9c5c9 | 321 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 322 | #endif |
14f9c5c9 | 323 | |
4c4b4cd2 | 324 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 325 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 326 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 327 | |
4c4b4cd2 PH |
328 | /* Limit on the number of warnings to raise per expression evaluation. */ |
329 | static int warning_limit = 2; | |
330 | ||
331 | /* Number of warning messages issued; reset to 0 by cleanups after | |
332 | expression evaluation. */ | |
333 | static int warnings_issued = 0; | |
334 | ||
335 | static const char *known_runtime_file_name_patterns[] = { | |
336 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
337 | }; | |
338 | ||
339 | static const char *known_auxiliary_function_name_patterns[] = { | |
340 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
341 | }; | |
342 | ||
343 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
344 | static struct obstack symbol_list_obstack; | |
345 | ||
c6044dd1 JB |
346 | /* Maintenance-related settings for this module. */ |
347 | ||
348 | static struct cmd_list_element *maint_set_ada_cmdlist; | |
349 | static struct cmd_list_element *maint_show_ada_cmdlist; | |
350 | ||
351 | /* Implement the "maintenance set ada" (prefix) command. */ | |
352 | ||
353 | static void | |
354 | maint_set_ada_cmd (char *args, int from_tty) | |
355 | { | |
635c7e8a TT |
356 | help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands, |
357 | gdb_stdout); | |
c6044dd1 JB |
358 | } |
359 | ||
360 | /* Implement the "maintenance show ada" (prefix) command. */ | |
361 | ||
362 | static void | |
363 | maint_show_ada_cmd (char *args, int from_tty) | |
364 | { | |
365 | cmd_show_list (maint_show_ada_cmdlist, from_tty, ""); | |
366 | } | |
367 | ||
368 | /* The "maintenance ada set/show ignore-descriptive-type" value. */ | |
369 | ||
370 | static int ada_ignore_descriptive_types_p = 0; | |
371 | ||
e802dbe0 JB |
372 | /* Inferior-specific data. */ |
373 | ||
374 | /* Per-inferior data for this module. */ | |
375 | ||
376 | struct ada_inferior_data | |
377 | { | |
378 | /* The ada__tags__type_specific_data type, which is used when decoding | |
379 | tagged types. With older versions of GNAT, this type was directly | |
380 | accessible through a component ("tsd") in the object tag. But this | |
381 | is no longer the case, so we cache it for each inferior. */ | |
382 | struct type *tsd_type; | |
3eecfa55 JB |
383 | |
384 | /* The exception_support_info data. This data is used to determine | |
385 | how to implement support for Ada exception catchpoints in a given | |
386 | inferior. */ | |
387 | const struct exception_support_info *exception_info; | |
e802dbe0 JB |
388 | }; |
389 | ||
390 | /* Our key to this module's inferior data. */ | |
391 | static const struct inferior_data *ada_inferior_data; | |
392 | ||
393 | /* A cleanup routine for our inferior data. */ | |
394 | static void | |
395 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
396 | { | |
397 | struct ada_inferior_data *data; | |
398 | ||
9a3c8263 | 399 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
400 | if (data != NULL) |
401 | xfree (data); | |
402 | } | |
403 | ||
404 | /* Return our inferior data for the given inferior (INF). | |
405 | ||
406 | This function always returns a valid pointer to an allocated | |
407 | ada_inferior_data structure. If INF's inferior data has not | |
408 | been previously set, this functions creates a new one with all | |
409 | fields set to zero, sets INF's inferior to it, and then returns | |
410 | a pointer to that newly allocated ada_inferior_data. */ | |
411 | ||
412 | static struct ada_inferior_data * | |
413 | get_ada_inferior_data (struct inferior *inf) | |
414 | { | |
415 | struct ada_inferior_data *data; | |
416 | ||
9a3c8263 | 417 | data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data); |
e802dbe0 JB |
418 | if (data == NULL) |
419 | { | |
41bf6aca | 420 | data = XCNEW (struct ada_inferior_data); |
e802dbe0 JB |
421 | set_inferior_data (inf, ada_inferior_data, data); |
422 | } | |
423 | ||
424 | return data; | |
425 | } | |
426 | ||
427 | /* Perform all necessary cleanups regarding our module's inferior data | |
428 | that is required after the inferior INF just exited. */ | |
429 | ||
430 | static void | |
431 | ada_inferior_exit (struct inferior *inf) | |
432 | { | |
433 | ada_inferior_data_cleanup (inf, NULL); | |
434 | set_inferior_data (inf, ada_inferior_data, NULL); | |
435 | } | |
436 | ||
ee01b665 JB |
437 | |
438 | /* program-space-specific data. */ | |
439 | ||
440 | /* This module's per-program-space data. */ | |
441 | struct ada_pspace_data | |
442 | { | |
443 | /* The Ada symbol cache. */ | |
444 | struct ada_symbol_cache *sym_cache; | |
445 | }; | |
446 | ||
447 | /* Key to our per-program-space data. */ | |
448 | static const struct program_space_data *ada_pspace_data_handle; | |
449 | ||
450 | /* Return this module's data for the given program space (PSPACE). | |
451 | If not is found, add a zero'ed one now. | |
452 | ||
453 | This function always returns a valid object. */ | |
454 | ||
455 | static struct ada_pspace_data * | |
456 | get_ada_pspace_data (struct program_space *pspace) | |
457 | { | |
458 | struct ada_pspace_data *data; | |
459 | ||
9a3c8263 SM |
460 | data = ((struct ada_pspace_data *) |
461 | program_space_data (pspace, ada_pspace_data_handle)); | |
ee01b665 JB |
462 | if (data == NULL) |
463 | { | |
464 | data = XCNEW (struct ada_pspace_data); | |
465 | set_program_space_data (pspace, ada_pspace_data_handle, data); | |
466 | } | |
467 | ||
468 | return data; | |
469 | } | |
470 | ||
471 | /* The cleanup callback for this module's per-program-space data. */ | |
472 | ||
473 | static void | |
474 | ada_pspace_data_cleanup (struct program_space *pspace, void *data) | |
475 | { | |
9a3c8263 | 476 | struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data; |
ee01b665 JB |
477 | |
478 | if (pspace_data->sym_cache != NULL) | |
479 | ada_free_symbol_cache (pspace_data->sym_cache); | |
480 | xfree (pspace_data); | |
481 | } | |
482 | ||
4c4b4cd2 PH |
483 | /* Utilities */ |
484 | ||
720d1a40 | 485 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 486 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
487 | |
488 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
489 | In other words, we really expect the target type of a typedef type to be | |
490 | a non-typedef type. This is particularly true for Ada units, because | |
491 | the language does not have a typedef vs not-typedef distinction. | |
492 | In that respect, the Ada compiler has been trying to eliminate as many | |
493 | typedef definitions in the debugging information, since they generally | |
494 | do not bring any extra information (we still use typedef under certain | |
495 | circumstances related mostly to the GNAT encoding). | |
496 | ||
497 | Unfortunately, we have seen situations where the debugging information | |
498 | generated by the compiler leads to such multiple typedef layers. For | |
499 | instance, consider the following example with stabs: | |
500 | ||
501 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
502 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
503 | ||
504 | This is an error in the debugging information which causes type | |
505 | pck__float_array___XUP to be defined twice, and the second time, | |
506 | it is defined as a typedef of a typedef. | |
507 | ||
508 | This is on the fringe of legality as far as debugging information is | |
509 | concerned, and certainly unexpected. But it is easy to handle these | |
510 | situations correctly, so we can afford to be lenient in this case. */ | |
511 | ||
512 | static struct type * | |
513 | ada_typedef_target_type (struct type *type) | |
514 | { | |
515 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
516 | type = TYPE_TARGET_TYPE (type); | |
517 | return type; | |
518 | } | |
519 | ||
41d27058 JB |
520 | /* Given DECODED_NAME a string holding a symbol name in its |
521 | decoded form (ie using the Ada dotted notation), returns | |
522 | its unqualified name. */ | |
523 | ||
524 | static const char * | |
525 | ada_unqualified_name (const char *decoded_name) | |
526 | { | |
2b0f535a JB |
527 | const char *result; |
528 | ||
529 | /* If the decoded name starts with '<', it means that the encoded | |
530 | name does not follow standard naming conventions, and thus that | |
531 | it is not your typical Ada symbol name. Trying to unqualify it | |
532 | is therefore pointless and possibly erroneous. */ | |
533 | if (decoded_name[0] == '<') | |
534 | return decoded_name; | |
535 | ||
536 | result = strrchr (decoded_name, '.'); | |
41d27058 JB |
537 | if (result != NULL) |
538 | result++; /* Skip the dot... */ | |
539 | else | |
540 | result = decoded_name; | |
541 | ||
542 | return result; | |
543 | } | |
544 | ||
545 | /* Return a string starting with '<', followed by STR, and '>'. | |
546 | The result is good until the next call. */ | |
547 | ||
548 | static char * | |
549 | add_angle_brackets (const char *str) | |
550 | { | |
551 | static char *result = NULL; | |
552 | ||
553 | xfree (result); | |
88c15c34 | 554 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
555 | return result; |
556 | } | |
96d887e8 | 557 | |
67cb5b2d | 558 | static const char * |
4c4b4cd2 PH |
559 | ada_get_gdb_completer_word_break_characters (void) |
560 | { | |
561 | return ada_completer_word_break_characters; | |
562 | } | |
563 | ||
e79af960 JB |
564 | /* Print an array element index using the Ada syntax. */ |
565 | ||
566 | static void | |
567 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 568 | const struct value_print_options *options) |
e79af960 | 569 | { |
79a45b7d | 570 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
571 | fprintf_filtered (stream, " => "); |
572 | } | |
573 | ||
f27cf670 | 574 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 575 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 576 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 577 | |
f27cf670 AS |
578 | void * |
579 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 580 | { |
d2e4a39e AS |
581 | if (*size < min_size) |
582 | { | |
583 | *size *= 2; | |
584 | if (*size < min_size) | |
4c4b4cd2 | 585 | *size = min_size; |
f27cf670 | 586 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 587 | } |
f27cf670 | 588 | return vect; |
14f9c5c9 AS |
589 | } |
590 | ||
591 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 592 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
593 | |
594 | static int | |
ebf56fd3 | 595 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
596 | { |
597 | int len = strlen (target); | |
5b4ee69b | 598 | |
d2e4a39e | 599 | return |
4c4b4cd2 PH |
600 | (strncmp (field_name, target, len) == 0 |
601 | && (field_name[len] == '\0' | |
61012eef | 602 | || (startswith (field_name + len, "___") |
76a01679 JB |
603 | && strcmp (field_name + strlen (field_name) - 6, |
604 | "___XVN") != 0))); | |
14f9c5c9 AS |
605 | } |
606 | ||
607 | ||
872c8b51 JB |
608 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
609 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
610 | and return its index. This function also handles fields whose name | |
611 | have ___ suffixes because the compiler sometimes alters their name | |
612 | by adding such a suffix to represent fields with certain constraints. | |
613 | If the field could not be found, return a negative number if | |
614 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
615 | |
616 | int | |
617 | ada_get_field_index (const struct type *type, const char *field_name, | |
618 | int maybe_missing) | |
619 | { | |
620 | int fieldno; | |
872c8b51 JB |
621 | struct type *struct_type = check_typedef ((struct type *) type); |
622 | ||
623 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
624 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
625 | return fieldno; |
626 | ||
627 | if (!maybe_missing) | |
323e0a4a | 628 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 629 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
630 | |
631 | return -1; | |
632 | } | |
633 | ||
634 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
635 | |
636 | int | |
d2e4a39e | 637 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
638 | { |
639 | if (name == NULL) | |
640 | return 0; | |
d2e4a39e | 641 | else |
14f9c5c9 | 642 | { |
d2e4a39e | 643 | const char *p = strstr (name, "___"); |
5b4ee69b | 644 | |
14f9c5c9 | 645 | if (p == NULL) |
4c4b4cd2 | 646 | return strlen (name); |
14f9c5c9 | 647 | else |
4c4b4cd2 | 648 | return p - name; |
14f9c5c9 AS |
649 | } |
650 | } | |
651 | ||
4c4b4cd2 PH |
652 | /* Return non-zero if SUFFIX is a suffix of STR. |
653 | Return zero if STR is null. */ | |
654 | ||
14f9c5c9 | 655 | static int |
d2e4a39e | 656 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
657 | { |
658 | int len1, len2; | |
5b4ee69b | 659 | |
14f9c5c9 AS |
660 | if (str == NULL) |
661 | return 0; | |
662 | len1 = strlen (str); | |
663 | len2 = strlen (suffix); | |
4c4b4cd2 | 664 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
665 | } |
666 | ||
4c4b4cd2 PH |
667 | /* The contents of value VAL, treated as a value of type TYPE. The |
668 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 669 | |
d2e4a39e | 670 | static struct value * |
4c4b4cd2 | 671 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 672 | { |
61ee279c | 673 | type = ada_check_typedef (type); |
df407dfe | 674 | if (value_type (val) == type) |
4c4b4cd2 | 675 | return val; |
d2e4a39e | 676 | else |
14f9c5c9 | 677 | { |
4c4b4cd2 PH |
678 | struct value *result; |
679 | ||
680 | /* Make sure that the object size is not unreasonable before | |
681 | trying to allocate some memory for it. */ | |
c1b5a1a6 | 682 | ada_ensure_varsize_limit (type); |
4c4b4cd2 | 683 | |
41e8491f JK |
684 | if (value_lazy (val) |
685 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
686 | result = allocate_value_lazy (type); | |
687 | else | |
688 | { | |
689 | result = allocate_value (type); | |
9a0dc9e3 | 690 | value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type)); |
41e8491f | 691 | } |
74bcbdf3 | 692 | set_value_component_location (result, val); |
9bbda503 AC |
693 | set_value_bitsize (result, value_bitsize (val)); |
694 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 695 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
696 | return result; |
697 | } | |
698 | } | |
699 | ||
fc1a4b47 AC |
700 | static const gdb_byte * |
701 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
702 | { |
703 | if (valaddr == NULL) | |
704 | return NULL; | |
705 | else | |
706 | return valaddr + offset; | |
707 | } | |
708 | ||
709 | static CORE_ADDR | |
ebf56fd3 | 710 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
711 | { |
712 | if (address == 0) | |
713 | return 0; | |
d2e4a39e | 714 | else |
14f9c5c9 AS |
715 | return address + offset; |
716 | } | |
717 | ||
4c4b4cd2 PH |
718 | /* Issue a warning (as for the definition of warning in utils.c, but |
719 | with exactly one argument rather than ...), unless the limit on the | |
720 | number of warnings has passed during the evaluation of the current | |
721 | expression. */ | |
a2249542 | 722 | |
77109804 AC |
723 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
724 | provided by "complaint". */ | |
a0b31db1 | 725 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 726 | |
14f9c5c9 | 727 | static void |
a2249542 | 728 | lim_warning (const char *format, ...) |
14f9c5c9 | 729 | { |
a2249542 | 730 | va_list args; |
a2249542 | 731 | |
5b4ee69b | 732 | va_start (args, format); |
4c4b4cd2 PH |
733 | warnings_issued += 1; |
734 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
735 | vwarning (format, args); |
736 | ||
737 | va_end (args); | |
4c4b4cd2 PH |
738 | } |
739 | ||
714e53ab PH |
740 | /* Issue an error if the size of an object of type T is unreasonable, |
741 | i.e. if it would be a bad idea to allocate a value of this type in | |
742 | GDB. */ | |
743 | ||
c1b5a1a6 JB |
744 | void |
745 | ada_ensure_varsize_limit (const struct type *type) | |
714e53ab PH |
746 | { |
747 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 748 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
749 | } |
750 | ||
0963b4bd | 751 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 752 | static LONGEST |
c3e5cd34 | 753 | max_of_size (int size) |
4c4b4cd2 | 754 | { |
76a01679 | 755 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 756 | |
76a01679 | 757 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
758 | } |
759 | ||
0963b4bd | 760 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 761 | static LONGEST |
c3e5cd34 | 762 | min_of_size (int size) |
4c4b4cd2 | 763 | { |
c3e5cd34 | 764 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
765 | } |
766 | ||
0963b4bd | 767 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 768 | static ULONGEST |
c3e5cd34 | 769 | umax_of_size (int size) |
4c4b4cd2 | 770 | { |
76a01679 | 771 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 772 | |
76a01679 | 773 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
774 | } |
775 | ||
0963b4bd | 776 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
777 | static LONGEST |
778 | max_of_type (struct type *t) | |
4c4b4cd2 | 779 | { |
c3e5cd34 PH |
780 | if (TYPE_UNSIGNED (t)) |
781 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
782 | else | |
783 | return max_of_size (TYPE_LENGTH (t)); | |
784 | } | |
785 | ||
0963b4bd | 786 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
787 | static LONGEST |
788 | min_of_type (struct type *t) | |
789 | { | |
790 | if (TYPE_UNSIGNED (t)) | |
791 | return 0; | |
792 | else | |
793 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
794 | } |
795 | ||
796 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
797 | LONGEST |
798 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 799 | { |
c3345124 | 800 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 801 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
802 | { |
803 | case TYPE_CODE_RANGE: | |
690cc4eb | 804 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 805 | case TYPE_CODE_ENUM: |
14e75d8e | 806 | return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); |
690cc4eb PH |
807 | case TYPE_CODE_BOOL: |
808 | return 1; | |
809 | case TYPE_CODE_CHAR: | |
76a01679 | 810 | case TYPE_CODE_INT: |
690cc4eb | 811 | return max_of_type (type); |
4c4b4cd2 | 812 | default: |
43bbcdc2 | 813 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
814 | } |
815 | } | |
816 | ||
14e75d8e | 817 | /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ |
43bbcdc2 PH |
818 | LONGEST |
819 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 820 | { |
c3345124 | 821 | type = resolve_dynamic_type (type, NULL, 0); |
76a01679 | 822 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
823 | { |
824 | case TYPE_CODE_RANGE: | |
690cc4eb | 825 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 826 | case TYPE_CODE_ENUM: |
14e75d8e | 827 | return TYPE_FIELD_ENUMVAL (type, 0); |
690cc4eb PH |
828 | case TYPE_CODE_BOOL: |
829 | return 0; | |
830 | case TYPE_CODE_CHAR: | |
76a01679 | 831 | case TYPE_CODE_INT: |
690cc4eb | 832 | return min_of_type (type); |
4c4b4cd2 | 833 | default: |
43bbcdc2 | 834 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
835 | } |
836 | } | |
837 | ||
838 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 839 | non-range scalar type. */ |
4c4b4cd2 PH |
840 | |
841 | static struct type * | |
18af8284 | 842 | get_base_type (struct type *type) |
4c4b4cd2 PH |
843 | { |
844 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
845 | { | |
76a01679 JB |
846 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
847 | return type; | |
4c4b4cd2 PH |
848 | type = TYPE_TARGET_TYPE (type); |
849 | } | |
850 | return type; | |
14f9c5c9 | 851 | } |
41246937 JB |
852 | |
853 | /* Return a decoded version of the given VALUE. This means returning | |
854 | a value whose type is obtained by applying all the GNAT-specific | |
855 | encondings, making the resulting type a static but standard description | |
856 | of the initial type. */ | |
857 | ||
858 | struct value * | |
859 | ada_get_decoded_value (struct value *value) | |
860 | { | |
861 | struct type *type = ada_check_typedef (value_type (value)); | |
862 | ||
863 | if (ada_is_array_descriptor_type (type) | |
864 | || (ada_is_constrained_packed_array_type (type) | |
865 | && TYPE_CODE (type) != TYPE_CODE_PTR)) | |
866 | { | |
867 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ | |
868 | value = ada_coerce_to_simple_array_ptr (value); | |
869 | else | |
870 | value = ada_coerce_to_simple_array (value); | |
871 | } | |
872 | else | |
873 | value = ada_to_fixed_value (value); | |
874 | ||
875 | return value; | |
876 | } | |
877 | ||
878 | /* Same as ada_get_decoded_value, but with the given TYPE. | |
879 | Because there is no associated actual value for this type, | |
880 | the resulting type might be a best-effort approximation in | |
881 | the case of dynamic types. */ | |
882 | ||
883 | struct type * | |
884 | ada_get_decoded_type (struct type *type) | |
885 | { | |
886 | type = to_static_fixed_type (type); | |
887 | if (ada_is_constrained_packed_array_type (type)) | |
888 | type = ada_coerce_to_simple_array_type (type); | |
889 | return type; | |
890 | } | |
891 | ||
4c4b4cd2 | 892 | \f |
76a01679 | 893 | |
4c4b4cd2 | 894 | /* Language Selection */ |
14f9c5c9 AS |
895 | |
896 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 897 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 898 | |
14f9c5c9 | 899 | enum language |
ccefe4c4 | 900 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 901 | { |
d2e4a39e | 902 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
3b7344d5 | 903 | (struct objfile *) NULL).minsym != NULL) |
4c4b4cd2 | 904 | return language_ada; |
14f9c5c9 AS |
905 | |
906 | return lang; | |
907 | } | |
96d887e8 PH |
908 | |
909 | /* If the main procedure is written in Ada, then return its name. | |
910 | The result is good until the next call. Return NULL if the main | |
911 | procedure doesn't appear to be in Ada. */ | |
912 | ||
913 | char * | |
914 | ada_main_name (void) | |
915 | { | |
3b7344d5 | 916 | struct bound_minimal_symbol msym; |
f9bc20b9 | 917 | static char *main_program_name = NULL; |
6c038f32 | 918 | |
96d887e8 PH |
919 | /* For Ada, the name of the main procedure is stored in a specific |
920 | string constant, generated by the binder. Look for that symbol, | |
921 | extract its address, and then read that string. If we didn't find | |
922 | that string, then most probably the main procedure is not written | |
923 | in Ada. */ | |
924 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
925 | ||
3b7344d5 | 926 | if (msym.minsym != NULL) |
96d887e8 | 927 | { |
f9bc20b9 JB |
928 | CORE_ADDR main_program_name_addr; |
929 | int err_code; | |
930 | ||
77e371c0 | 931 | main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym); |
96d887e8 | 932 | if (main_program_name_addr == 0) |
323e0a4a | 933 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 934 | |
f9bc20b9 JB |
935 | xfree (main_program_name); |
936 | target_read_string (main_program_name_addr, &main_program_name, | |
937 | 1024, &err_code); | |
938 | ||
939 | if (err_code != 0) | |
940 | return NULL; | |
96d887e8 PH |
941 | return main_program_name; |
942 | } | |
943 | ||
944 | /* The main procedure doesn't seem to be in Ada. */ | |
945 | return NULL; | |
946 | } | |
14f9c5c9 | 947 | \f |
4c4b4cd2 | 948 | /* Symbols */ |
d2e4a39e | 949 | |
4c4b4cd2 PH |
950 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
951 | of NULLs. */ | |
14f9c5c9 | 952 | |
d2e4a39e AS |
953 | const struct ada_opname_map ada_opname_table[] = { |
954 | {"Oadd", "\"+\"", BINOP_ADD}, | |
955 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
956 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
957 | {"Odivide", "\"/\"", BINOP_DIV}, | |
958 | {"Omod", "\"mod\"", BINOP_MOD}, | |
959 | {"Orem", "\"rem\"", BINOP_REM}, | |
960 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
961 | {"Olt", "\"<\"", BINOP_LESS}, | |
962 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
963 | {"Ogt", "\">\"", BINOP_GTR}, | |
964 | {"Oge", "\">=\"", BINOP_GEQ}, | |
965 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
966 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
967 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
968 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
969 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
970 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
971 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
972 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
973 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
974 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
975 | {NULL, NULL} | |
14f9c5c9 AS |
976 | }; |
977 | ||
4c4b4cd2 PH |
978 | /* The "encoded" form of DECODED, according to GNAT conventions. |
979 | The result is valid until the next call to ada_encode. */ | |
980 | ||
14f9c5c9 | 981 | char * |
4c4b4cd2 | 982 | ada_encode (const char *decoded) |
14f9c5c9 | 983 | { |
4c4b4cd2 PH |
984 | static char *encoding_buffer = NULL; |
985 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 986 | const char *p; |
14f9c5c9 | 987 | int k; |
d2e4a39e | 988 | |
4c4b4cd2 | 989 | if (decoded == NULL) |
14f9c5c9 AS |
990 | return NULL; |
991 | ||
4c4b4cd2 PH |
992 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
993 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
994 | |
995 | k = 0; | |
4c4b4cd2 | 996 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 997 | { |
cdc7bb92 | 998 | if (*p == '.') |
4c4b4cd2 PH |
999 | { |
1000 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
1001 | k += 2; | |
1002 | } | |
14f9c5c9 | 1003 | else if (*p == '"') |
4c4b4cd2 PH |
1004 | { |
1005 | const struct ada_opname_map *mapping; | |
1006 | ||
1007 | for (mapping = ada_opname_table; | |
1265e4aa | 1008 | mapping->encoded != NULL |
61012eef | 1009 | && !startswith (p, mapping->decoded); mapping += 1) |
4c4b4cd2 PH |
1010 | ; |
1011 | if (mapping->encoded == NULL) | |
323e0a4a | 1012 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
1013 | strcpy (encoding_buffer + k, mapping->encoded); |
1014 | k += strlen (mapping->encoded); | |
1015 | break; | |
1016 | } | |
d2e4a39e | 1017 | else |
4c4b4cd2 PH |
1018 | { |
1019 | encoding_buffer[k] = *p; | |
1020 | k += 1; | |
1021 | } | |
14f9c5c9 AS |
1022 | } |
1023 | ||
4c4b4cd2 PH |
1024 | encoding_buffer[k] = '\0'; |
1025 | return encoding_buffer; | |
14f9c5c9 AS |
1026 | } |
1027 | ||
1028 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
1029 | quotes, unfolded, but with the quotes stripped away. Result good |
1030 | to next call. */ | |
1031 | ||
d2e4a39e AS |
1032 | char * |
1033 | ada_fold_name (const char *name) | |
14f9c5c9 | 1034 | { |
d2e4a39e | 1035 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
1036 | static size_t fold_buffer_size = 0; |
1037 | ||
1038 | int len = strlen (name); | |
d2e4a39e | 1039 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
1040 | |
1041 | if (name[0] == '\'') | |
1042 | { | |
d2e4a39e AS |
1043 | strncpy (fold_buffer, name + 1, len - 2); |
1044 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
1045 | } |
1046 | else | |
1047 | { | |
1048 | int i; | |
5b4ee69b | 1049 | |
14f9c5c9 | 1050 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 1051 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
1052 | } |
1053 | ||
1054 | return fold_buffer; | |
1055 | } | |
1056 | ||
529cad9c PH |
1057 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
1058 | ||
1059 | static int | |
1060 | is_lower_alphanum (const char c) | |
1061 | { | |
1062 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
1063 | } | |
1064 | ||
c90092fe JB |
1065 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
1066 | This function saves in LEN the length of that same symbol name but | |
1067 | without either of these suffixes: | |
29480c32 JB |
1068 | . .{DIGIT}+ |
1069 | . ${DIGIT}+ | |
1070 | . ___{DIGIT}+ | |
1071 | . __{DIGIT}+. | |
c90092fe | 1072 | |
29480c32 JB |
1073 | These are suffixes introduced by the compiler for entities such as |
1074 | nested subprogram for instance, in order to avoid name clashes. | |
1075 | They do not serve any purpose for the debugger. */ | |
1076 | ||
1077 | static void | |
1078 | ada_remove_trailing_digits (const char *encoded, int *len) | |
1079 | { | |
1080 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
1081 | { | |
1082 | int i = *len - 2; | |
5b4ee69b | 1083 | |
29480c32 JB |
1084 | while (i > 0 && isdigit (encoded[i])) |
1085 | i--; | |
1086 | if (i >= 0 && encoded[i] == '.') | |
1087 | *len = i; | |
1088 | else if (i >= 0 && encoded[i] == '$') | |
1089 | *len = i; | |
61012eef | 1090 | else if (i >= 2 && startswith (encoded + i - 2, "___")) |
29480c32 | 1091 | *len = i - 2; |
61012eef | 1092 | else if (i >= 1 && startswith (encoded + i - 1, "__")) |
29480c32 JB |
1093 | *len = i - 1; |
1094 | } | |
1095 | } | |
1096 | ||
1097 | /* Remove the suffix introduced by the compiler for protected object | |
1098 | subprograms. */ | |
1099 | ||
1100 | static void | |
1101 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
1102 | { | |
1103 | /* Remove trailing N. */ | |
1104 | ||
1105 | /* Protected entry subprograms are broken into two | |
1106 | separate subprograms: The first one is unprotected, and has | |
1107 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 1108 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
1109 | the protection. Since the P subprograms are internally generated, |
1110 | we leave these names undecoded, giving the user a clue that this | |
1111 | entity is internal. */ | |
1112 | ||
1113 | if (*len > 1 | |
1114 | && encoded[*len - 1] == 'N' | |
1115 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
1116 | *len = *len - 1; | |
1117 | } | |
1118 | ||
69fadcdf JB |
1119 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
1120 | ||
1121 | static void | |
1122 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
1123 | { | |
1124 | int i = *len - 1; | |
1125 | ||
1126 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
1127 | i--; | |
1128 | ||
1129 | if (encoded[i] != 'X') | |
1130 | return; | |
1131 | ||
1132 | if (i == 0) | |
1133 | return; | |
1134 | ||
1135 | if (isalnum (encoded[i-1])) | |
1136 | *len = i; | |
1137 | } | |
1138 | ||
29480c32 JB |
1139 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
1140 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
1141 | replaced by ENCODED. | |
14f9c5c9 | 1142 | |
4c4b4cd2 | 1143 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 1144 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
1145 | is returned. */ |
1146 | ||
1147 | const char * | |
1148 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
1149 | { |
1150 | int i, j; | |
1151 | int len0; | |
d2e4a39e | 1152 | const char *p; |
4c4b4cd2 | 1153 | char *decoded; |
14f9c5c9 | 1154 | int at_start_name; |
4c4b4cd2 PH |
1155 | static char *decoding_buffer = NULL; |
1156 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 1157 | |
29480c32 JB |
1158 | /* The name of the Ada main procedure starts with "_ada_". |
1159 | This prefix is not part of the decoded name, so skip this part | |
1160 | if we see this prefix. */ | |
61012eef | 1161 | if (startswith (encoded, "_ada_")) |
4c4b4cd2 | 1162 | encoded += 5; |
14f9c5c9 | 1163 | |
29480c32 JB |
1164 | /* If the name starts with '_', then it is not a properly encoded |
1165 | name, so do not attempt to decode it. Similarly, if the name | |
1166 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1167 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1168 | goto Suppress; |
1169 | ||
4c4b4cd2 | 1170 | len0 = strlen (encoded); |
4c4b4cd2 | 1171 | |
29480c32 JB |
1172 | ada_remove_trailing_digits (encoded, &len0); |
1173 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1174 | |
4c4b4cd2 PH |
1175 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1176 | the suffix is located before the current "end" of ENCODED. We want | |
1177 | to avoid re-matching parts of ENCODED that have previously been | |
1178 | marked as discarded (by decrementing LEN0). */ | |
1179 | p = strstr (encoded, "___"); | |
1180 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1181 | { |
1182 | if (p[3] == 'X') | |
4c4b4cd2 | 1183 | len0 = p - encoded; |
14f9c5c9 | 1184 | else |
4c4b4cd2 | 1185 | goto Suppress; |
14f9c5c9 | 1186 | } |
4c4b4cd2 | 1187 | |
29480c32 JB |
1188 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1189 | is for the body of a task, but that information does not actually | |
1190 | appear in the decoded name. */ | |
1191 | ||
61012eef | 1192 | if (len0 > 3 && startswith (encoded + len0 - 3, "TKB")) |
14f9c5c9 | 1193 | len0 -= 3; |
76a01679 | 1194 | |
a10967fa JB |
1195 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1196 | from the TKB suffix because it is used for non-anonymous task | |
1197 | bodies. */ | |
1198 | ||
61012eef | 1199 | if (len0 > 2 && startswith (encoded + len0 - 2, "TB")) |
a10967fa JB |
1200 | len0 -= 2; |
1201 | ||
29480c32 JB |
1202 | /* Remove trailing "B" suffixes. */ |
1203 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1204 | ||
61012eef | 1205 | if (len0 > 1 && startswith (encoded + len0 - 1, "B")) |
14f9c5c9 AS |
1206 | len0 -= 1; |
1207 | ||
4c4b4cd2 | 1208 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1209 | |
4c4b4cd2 PH |
1210 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1211 | decoded = decoding_buffer; | |
14f9c5c9 | 1212 | |
29480c32 JB |
1213 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1214 | ||
4c4b4cd2 | 1215 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1216 | { |
4c4b4cd2 PH |
1217 | i = len0 - 2; |
1218 | while ((i >= 0 && isdigit (encoded[i])) | |
1219 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1220 | i -= 1; | |
1221 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1222 | len0 = i - 1; | |
1223 | else if (encoded[i] == '$') | |
1224 | len0 = i; | |
d2e4a39e | 1225 | } |
14f9c5c9 | 1226 | |
29480c32 JB |
1227 | /* The first few characters that are not alphabetic are not part |
1228 | of any encoding we use, so we can copy them over verbatim. */ | |
1229 | ||
4c4b4cd2 PH |
1230 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1231 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1232 | |
1233 | at_start_name = 1; | |
1234 | while (i < len0) | |
1235 | { | |
29480c32 | 1236 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1237 | if (at_start_name && encoded[i] == 'O') |
1238 | { | |
1239 | int k; | |
5b4ee69b | 1240 | |
4c4b4cd2 PH |
1241 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1242 | { | |
1243 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1244 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1245 | op_len - 1) == 0) | |
1246 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1247 | { |
1248 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1249 | at_start_name = 0; | |
1250 | i += op_len; | |
1251 | j += strlen (ada_opname_table[k].decoded); | |
1252 | break; | |
1253 | } | |
1254 | } | |
1255 | if (ada_opname_table[k].encoded != NULL) | |
1256 | continue; | |
1257 | } | |
14f9c5c9 AS |
1258 | at_start_name = 0; |
1259 | ||
529cad9c PH |
1260 | /* Replace "TK__" with "__", which will eventually be translated |
1261 | into "." (just below). */ | |
1262 | ||
61012eef | 1263 | if (i < len0 - 4 && startswith (encoded + i, "TK__")) |
4c4b4cd2 | 1264 | i += 2; |
529cad9c | 1265 | |
29480c32 JB |
1266 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1267 | be translated into "." (just below). These are internal names | |
1268 | generated for anonymous blocks inside which our symbol is nested. */ | |
1269 | ||
1270 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1271 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1272 | && isdigit (encoded [i+4])) | |
1273 | { | |
1274 | int k = i + 5; | |
1275 | ||
1276 | while (k < len0 && isdigit (encoded[k])) | |
1277 | k++; /* Skip any extra digit. */ | |
1278 | ||
1279 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1280 | is indeed followed by "__". */ | |
1281 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1282 | i = k; | |
1283 | } | |
1284 | ||
529cad9c PH |
1285 | /* Remove _E{DIGITS}+[sb] */ |
1286 | ||
1287 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1288 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1289 | one implements the actual entry code, and has a suffix following |
1290 | the convention above; the second one implements the barrier and | |
1291 | uses the same convention as above, except that the 'E' is replaced | |
1292 | by a 'B'. | |
1293 | ||
1294 | Just as above, we do not decode the name of barrier functions | |
1295 | to give the user a clue that the code he is debugging has been | |
1296 | internally generated. */ | |
1297 | ||
1298 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1299 | && isdigit (encoded[i+2])) | |
1300 | { | |
1301 | int k = i + 3; | |
1302 | ||
1303 | while (k < len0 && isdigit (encoded[k])) | |
1304 | k++; | |
1305 | ||
1306 | if (k < len0 | |
1307 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1308 | { | |
1309 | k++; | |
1310 | /* Just as an extra precaution, make sure that if this | |
1311 | suffix is followed by anything else, it is a '_'. | |
1312 | Otherwise, we matched this sequence by accident. */ | |
1313 | if (k == len0 | |
1314 | || (k < len0 && encoded[k] == '_')) | |
1315 | i = k; | |
1316 | } | |
1317 | } | |
1318 | ||
1319 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1320 | the GNAT front-end in protected object subprograms. */ | |
1321 | ||
1322 | if (i < len0 + 3 | |
1323 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1324 | { | |
1325 | /* Backtrack a bit up until we reach either the begining of | |
1326 | the encoded name, or "__". Make sure that we only find | |
1327 | digits or lowercase characters. */ | |
1328 | const char *ptr = encoded + i - 1; | |
1329 | ||
1330 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1331 | ptr--; | |
1332 | if (ptr < encoded | |
1333 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1334 | i++; | |
1335 | } | |
1336 | ||
4c4b4cd2 PH |
1337 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1338 | { | |
29480c32 JB |
1339 | /* This is a X[bn]* sequence not separated from the previous |
1340 | part of the name with a non-alpha-numeric character (in other | |
1341 | words, immediately following an alpha-numeric character), then | |
1342 | verify that it is placed at the end of the encoded name. If | |
1343 | not, then the encoding is not valid and we should abort the | |
1344 | decoding. Otherwise, just skip it, it is used in body-nested | |
1345 | package names. */ | |
4c4b4cd2 PH |
1346 | do |
1347 | i += 1; | |
1348 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1349 | if (i < len0) | |
1350 | goto Suppress; | |
1351 | } | |
cdc7bb92 | 1352 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1353 | { |
29480c32 | 1354 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1355 | decoded[j] = '.'; |
1356 | at_start_name = 1; | |
1357 | i += 2; | |
1358 | j += 1; | |
1359 | } | |
14f9c5c9 | 1360 | else |
4c4b4cd2 | 1361 | { |
29480c32 JB |
1362 | /* It's a character part of the decoded name, so just copy it |
1363 | over. */ | |
4c4b4cd2 PH |
1364 | decoded[j] = encoded[i]; |
1365 | i += 1; | |
1366 | j += 1; | |
1367 | } | |
14f9c5c9 | 1368 | } |
4c4b4cd2 | 1369 | decoded[j] = '\000'; |
14f9c5c9 | 1370 | |
29480c32 JB |
1371 | /* Decoded names should never contain any uppercase character. |
1372 | Double-check this, and abort the decoding if we find one. */ | |
1373 | ||
4c4b4cd2 PH |
1374 | for (i = 0; decoded[i] != '\0'; i += 1) |
1375 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1376 | goto Suppress; |
1377 | ||
4c4b4cd2 PH |
1378 | if (strcmp (decoded, encoded) == 0) |
1379 | return encoded; | |
1380 | else | |
1381 | return decoded; | |
14f9c5c9 AS |
1382 | |
1383 | Suppress: | |
4c4b4cd2 PH |
1384 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1385 | decoded = decoding_buffer; | |
1386 | if (encoded[0] == '<') | |
1387 | strcpy (decoded, encoded); | |
14f9c5c9 | 1388 | else |
88c15c34 | 1389 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1390 | return decoded; |
1391 | ||
1392 | } | |
1393 | ||
1394 | /* Table for keeping permanent unique copies of decoded names. Once | |
1395 | allocated, names in this table are never released. While this is a | |
1396 | storage leak, it should not be significant unless there are massive | |
1397 | changes in the set of decoded names in successive versions of a | |
1398 | symbol table loaded during a single session. */ | |
1399 | static struct htab *decoded_names_store; | |
1400 | ||
1401 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1402 | in the language-specific part of GSYMBOL, if it has not been | |
1403 | previously computed. Tries to save the decoded name in the same | |
1404 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1405 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1406 | GSYMBOL). |
4c4b4cd2 PH |
1407 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1408 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1409 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1410 | |
45e6c716 | 1411 | const char * |
f85f34ed | 1412 | ada_decode_symbol (const struct general_symbol_info *arg) |
4c4b4cd2 | 1413 | { |
f85f34ed TT |
1414 | struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; |
1415 | const char **resultp = | |
615b3f62 | 1416 | &gsymbol->language_specific.demangled_name; |
5b4ee69b | 1417 | |
f85f34ed | 1418 | if (!gsymbol->ada_mangled) |
4c4b4cd2 PH |
1419 | { |
1420 | const char *decoded = ada_decode (gsymbol->name); | |
f85f34ed | 1421 | struct obstack *obstack = gsymbol->language_specific.obstack; |
5b4ee69b | 1422 | |
f85f34ed | 1423 | gsymbol->ada_mangled = 1; |
5b4ee69b | 1424 | |
f85f34ed | 1425 | if (obstack != NULL) |
224c3ddb SM |
1426 | *resultp |
1427 | = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded)); | |
f85f34ed | 1428 | else |
76a01679 | 1429 | { |
f85f34ed TT |
1430 | /* Sometimes, we can't find a corresponding objfile, in |
1431 | which case, we put the result on the heap. Since we only | |
1432 | decode when needed, we hope this usually does not cause a | |
1433 | significant memory leak (FIXME). */ | |
1434 | ||
76a01679 JB |
1435 | char **slot = (char **) htab_find_slot (decoded_names_store, |
1436 | decoded, INSERT); | |
5b4ee69b | 1437 | |
76a01679 JB |
1438 | if (*slot == NULL) |
1439 | *slot = xstrdup (decoded); | |
1440 | *resultp = *slot; | |
1441 | } | |
4c4b4cd2 | 1442 | } |
14f9c5c9 | 1443 | |
4c4b4cd2 PH |
1444 | return *resultp; |
1445 | } | |
76a01679 | 1446 | |
2c0b251b | 1447 | static char * |
76a01679 | 1448 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1449 | { |
1450 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1451 | } |
1452 | ||
8b302db8 TT |
1453 | /* Implement la_sniff_from_mangled_name for Ada. */ |
1454 | ||
1455 | static int | |
1456 | ada_sniff_from_mangled_name (const char *mangled, char **out) | |
1457 | { | |
1458 | const char *demangled = ada_decode (mangled); | |
1459 | ||
1460 | *out = NULL; | |
1461 | ||
1462 | if (demangled != mangled && demangled != NULL && demangled[0] != '<') | |
1463 | { | |
1464 | /* Set the gsymbol language to Ada, but still return 0. | |
1465 | Two reasons for that: | |
1466 | ||
1467 | 1. For Ada, we prefer computing the symbol's decoded name | |
1468 | on the fly rather than pre-compute it, in order to save | |
1469 | memory (Ada projects are typically very large). | |
1470 | ||
1471 | 2. There are some areas in the definition of the GNAT | |
1472 | encoding where, with a bit of bad luck, we might be able | |
1473 | to decode a non-Ada symbol, generating an incorrect | |
1474 | demangled name (Eg: names ending with "TB" for instance | |
1475 | are identified as task bodies and so stripped from | |
1476 | the decoded name returned). | |
1477 | ||
1478 | Returning 1, here, but not setting *DEMANGLED, helps us get a | |
1479 | little bit of the best of both worlds. Because we're last, | |
1480 | we should not affect any of the other languages that were | |
1481 | able to demangle the symbol before us; we get to correctly | |
1482 | tag Ada symbols as such; and even if we incorrectly tagged a | |
1483 | non-Ada symbol, which should be rare, any routing through the | |
1484 | Ada language should be transparent (Ada tries to behave much | |
1485 | like C/C++ with non-Ada symbols). */ | |
1486 | return 1; | |
1487 | } | |
1488 | ||
1489 | return 0; | |
1490 | } | |
1491 | ||
14f9c5c9 | 1492 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing |
4c4b4cd2 PH |
1493 | suffixes that encode debugging information or leading _ada_ on |
1494 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1495 | information that is ignored). If WILD, then NAME need only match a | |
1496 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1497 | either argument is NULL. */ | |
14f9c5c9 | 1498 | |
2c0b251b | 1499 | static int |
40658b94 | 1500 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1501 | { |
1502 | if (sym_name == NULL || name == NULL) | |
1503 | return 0; | |
1504 | else if (wild) | |
73589123 | 1505 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1506 | else |
1507 | { | |
1508 | int len_name = strlen (name); | |
5b4ee69b | 1509 | |
4c4b4cd2 PH |
1510 | return (strncmp (sym_name, name, len_name) == 0 |
1511 | && is_name_suffix (sym_name + len_name)) | |
61012eef | 1512 | || (startswith (sym_name, "_ada_") |
4c4b4cd2 PH |
1513 | && strncmp (sym_name + 5, name, len_name) == 0 |
1514 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1515 | } |
14f9c5c9 | 1516 | } |
14f9c5c9 | 1517 | \f |
d2e4a39e | 1518 | |
4c4b4cd2 | 1519 | /* Arrays */ |
14f9c5c9 | 1520 | |
28c85d6c JB |
1521 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1522 | generated by the GNAT compiler to describe the index type used | |
1523 | for each dimension of an array, check whether it follows the latest | |
1524 | known encoding. If not, fix it up to conform to the latest encoding. | |
1525 | Otherwise, do nothing. This function also does nothing if | |
1526 | INDEX_DESC_TYPE is NULL. | |
1527 | ||
1528 | The GNAT encoding used to describle the array index type evolved a bit. | |
1529 | Initially, the information would be provided through the name of each | |
1530 | field of the structure type only, while the type of these fields was | |
1531 | described as unspecified and irrelevant. The debugger was then expected | |
1532 | to perform a global type lookup using the name of that field in order | |
1533 | to get access to the full index type description. Because these global | |
1534 | lookups can be very expensive, the encoding was later enhanced to make | |
1535 | the global lookup unnecessary by defining the field type as being | |
1536 | the full index type description. | |
1537 | ||
1538 | The purpose of this routine is to allow us to support older versions | |
1539 | of the compiler by detecting the use of the older encoding, and by | |
1540 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1541 | we essentially replace each field's meaningless type by the associated | |
1542 | index subtype). */ | |
1543 | ||
1544 | void | |
1545 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1546 | { | |
1547 | int i; | |
1548 | ||
1549 | if (index_desc_type == NULL) | |
1550 | return; | |
1551 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1552 | ||
1553 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1554 | to check one field only, no need to check them all). If not, return | |
1555 | now. | |
1556 | ||
1557 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1558 | the field type should be a meaningless integer type whose name | |
1559 | is not equal to the field name. */ | |
1560 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1561 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1562 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1563 | return; | |
1564 | ||
1565 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1566 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1567 | { | |
0d5cff50 | 1568 | const char *name = TYPE_FIELD_NAME (index_desc_type, i); |
28c85d6c JB |
1569 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); |
1570 | ||
1571 | if (raw_type) | |
1572 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1573 | } | |
1574 | } | |
1575 | ||
4c4b4cd2 | 1576 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1577 | |
a121b7c1 | 1578 | static const char *bound_name[] = { |
d2e4a39e | 1579 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", |
14f9c5c9 AS |
1580 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1581 | }; | |
1582 | ||
1583 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1584 | ||
4c4b4cd2 | 1585 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1586 | |
14f9c5c9 | 1587 | |
4c4b4cd2 PH |
1588 | /* The desc_* routines return primitive portions of array descriptors |
1589 | (fat pointers). */ | |
14f9c5c9 AS |
1590 | |
1591 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1592 | level of indirection, if needed. */ |
1593 | ||
d2e4a39e AS |
1594 | static struct type * |
1595 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1596 | { |
1597 | if (type == NULL) | |
1598 | return NULL; | |
61ee279c | 1599 | type = ada_check_typedef (type); |
720d1a40 JB |
1600 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1601 | type = ada_typedef_target_type (type); | |
1602 | ||
1265e4aa JB |
1603 | if (type != NULL |
1604 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1605 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1606 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1607 | else |
1608 | return type; | |
1609 | } | |
1610 | ||
4c4b4cd2 PH |
1611 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1612 | ||
14f9c5c9 | 1613 | static int |
d2e4a39e | 1614 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1615 | { |
d2e4a39e | 1616 | return |
14f9c5c9 AS |
1617 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1618 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1619 | } | |
1620 | ||
4c4b4cd2 PH |
1621 | /* The descriptor type for thin pointer type TYPE. */ |
1622 | ||
d2e4a39e AS |
1623 | static struct type * |
1624 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1625 | { |
d2e4a39e | 1626 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1627 | |
14f9c5c9 AS |
1628 | if (base_type == NULL) |
1629 | return NULL; | |
1630 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1631 | return base_type; | |
d2e4a39e | 1632 | else |
14f9c5c9 | 1633 | { |
d2e4a39e | 1634 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1635 | |
14f9c5c9 | 1636 | if (alt_type == NULL) |
4c4b4cd2 | 1637 | return base_type; |
14f9c5c9 | 1638 | else |
4c4b4cd2 | 1639 | return alt_type; |
14f9c5c9 AS |
1640 | } |
1641 | } | |
1642 | ||
4c4b4cd2 PH |
1643 | /* A pointer to the array data for thin-pointer value VAL. */ |
1644 | ||
d2e4a39e AS |
1645 | static struct value * |
1646 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1647 | { |
828292f2 | 1648 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1649 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1650 | |
556bdfd4 UW |
1651 | data_type = lookup_pointer_type (data_type); |
1652 | ||
14f9c5c9 | 1653 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1654 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1655 | else |
42ae5230 | 1656 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1657 | } |
1658 | ||
4c4b4cd2 PH |
1659 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1660 | ||
14f9c5c9 | 1661 | static int |
d2e4a39e | 1662 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1663 | { |
1664 | type = desc_base_type (type); | |
1665 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1666 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1667 | } |
1668 | ||
4c4b4cd2 PH |
1669 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1670 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1671 | |
d2e4a39e AS |
1672 | static struct type * |
1673 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1674 | { |
d2e4a39e | 1675 | struct type *r; |
14f9c5c9 AS |
1676 | |
1677 | type = desc_base_type (type); | |
1678 | ||
1679 | if (type == NULL) | |
1680 | return NULL; | |
1681 | else if (is_thin_pntr (type)) | |
1682 | { | |
1683 | type = thin_descriptor_type (type); | |
1684 | if (type == NULL) | |
4c4b4cd2 | 1685 | return NULL; |
14f9c5c9 AS |
1686 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1687 | if (r != NULL) | |
61ee279c | 1688 | return ada_check_typedef (r); |
14f9c5c9 AS |
1689 | } |
1690 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1691 | { | |
1692 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1693 | if (r != NULL) | |
61ee279c | 1694 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1695 | } |
1696 | return NULL; | |
1697 | } | |
1698 | ||
1699 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1700 | one, a pointer to its bounds data. Otherwise NULL. */ |
1701 | ||
d2e4a39e AS |
1702 | static struct value * |
1703 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1704 | { |
df407dfe | 1705 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1706 | |
d2e4a39e | 1707 | if (is_thin_pntr (type)) |
14f9c5c9 | 1708 | { |
d2e4a39e | 1709 | struct type *bounds_type = |
4c4b4cd2 | 1710 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1711 | LONGEST addr; |
1712 | ||
4cdfadb1 | 1713 | if (bounds_type == NULL) |
323e0a4a | 1714 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1715 | |
1716 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1717 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1718 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1719 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1720 | addr = value_as_long (arr); |
d2e4a39e | 1721 | else |
42ae5230 | 1722 | addr = value_address (arr); |
14f9c5c9 | 1723 | |
d2e4a39e | 1724 | return |
4c4b4cd2 PH |
1725 | value_from_longest (lookup_pointer_type (bounds_type), |
1726 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1727 | } |
1728 | ||
1729 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1730 | { |
1731 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1732 | _("Bad GNAT array descriptor")); | |
1733 | struct type *p_bounds_type = value_type (p_bounds); | |
1734 | ||
1735 | if (p_bounds_type | |
1736 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1737 | { | |
1738 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1739 | ||
1740 | if (TYPE_STUB (target_type)) | |
1741 | p_bounds = value_cast (lookup_pointer_type | |
1742 | (ada_check_typedef (target_type)), | |
1743 | p_bounds); | |
1744 | } | |
1745 | else | |
1746 | error (_("Bad GNAT array descriptor")); | |
1747 | ||
1748 | return p_bounds; | |
1749 | } | |
14f9c5c9 AS |
1750 | else |
1751 | return NULL; | |
1752 | } | |
1753 | ||
4c4b4cd2 PH |
1754 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1755 | position of the field containing the address of the bounds data. */ | |
1756 | ||
14f9c5c9 | 1757 | static int |
d2e4a39e | 1758 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1759 | { |
1760 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1761 | } | |
1762 | ||
1763 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1764 | size of the field containing the address of the bounds data. */ |
1765 | ||
14f9c5c9 | 1766 | static int |
d2e4a39e | 1767 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1768 | { |
1769 | type = desc_base_type (type); | |
1770 | ||
d2e4a39e | 1771 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1772 | return TYPE_FIELD_BITSIZE (type, 1); |
1773 | else | |
61ee279c | 1774 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1775 | } |
1776 | ||
4c4b4cd2 | 1777 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1778 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1779 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1780 | data. */ | |
4c4b4cd2 | 1781 | |
d2e4a39e | 1782 | static struct type * |
556bdfd4 | 1783 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1784 | { |
1785 | type = desc_base_type (type); | |
1786 | ||
4c4b4cd2 | 1787 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1788 | if (is_thin_pntr (type)) |
556bdfd4 | 1789 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1790 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1791 | { |
1792 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1793 | ||
1794 | if (data_type | |
1795 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1796 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1797 | } |
1798 | ||
1799 | return NULL; | |
14f9c5c9 AS |
1800 | } |
1801 | ||
1802 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1803 | its array data. */ | |
4c4b4cd2 | 1804 | |
d2e4a39e AS |
1805 | static struct value * |
1806 | desc_data (struct value *arr) | |
14f9c5c9 | 1807 | { |
df407dfe | 1808 | struct type *type = value_type (arr); |
5b4ee69b | 1809 | |
14f9c5c9 AS |
1810 | if (is_thin_pntr (type)) |
1811 | return thin_data_pntr (arr); | |
1812 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1813 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1814 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1815 | else |
1816 | return NULL; | |
1817 | } | |
1818 | ||
1819 | ||
1820 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1821 | position of the field containing the address of the data. */ |
1822 | ||
14f9c5c9 | 1823 | static int |
d2e4a39e | 1824 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1825 | { |
1826 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1827 | } | |
1828 | ||
1829 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1830 | size of the field containing the address of the data. */ |
1831 | ||
14f9c5c9 | 1832 | static int |
d2e4a39e | 1833 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1834 | { |
1835 | type = desc_base_type (type); | |
1836 | ||
1837 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1838 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1839 | else |
14f9c5c9 AS |
1840 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1841 | } | |
1842 | ||
4c4b4cd2 | 1843 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1844 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1845 | bound, if WHICH is 1. The first bound is I=1. */ |
1846 | ||
d2e4a39e AS |
1847 | static struct value * |
1848 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1849 | { |
d2e4a39e | 1850 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1851 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1852 | } |
1853 | ||
1854 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1855 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1856 | bound, if WHICH is 1. The first bound is I=1. */ |
1857 | ||
14f9c5c9 | 1858 | static int |
d2e4a39e | 1859 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1860 | { |
d2e4a39e | 1861 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1862 | } |
1863 | ||
1864 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1865 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1866 | bound, if WHICH is 1. The first bound is I=1. */ |
1867 | ||
76a01679 | 1868 | static int |
d2e4a39e | 1869 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1870 | { |
1871 | type = desc_base_type (type); | |
1872 | ||
d2e4a39e AS |
1873 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1874 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1875 | else | |
1876 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1877 | } |
1878 | ||
1879 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1880 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1881 | ||
d2e4a39e AS |
1882 | static struct type * |
1883 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1884 | { |
1885 | type = desc_base_type (type); | |
1886 | ||
1887 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1888 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1889 | else | |
14f9c5c9 AS |
1890 | return NULL; |
1891 | } | |
1892 | ||
4c4b4cd2 PH |
1893 | /* The number of index positions in the array-bounds type TYPE. |
1894 | Return 0 if TYPE is NULL. */ | |
1895 | ||
14f9c5c9 | 1896 | static int |
d2e4a39e | 1897 | desc_arity (struct type *type) |
14f9c5c9 AS |
1898 | { |
1899 | type = desc_base_type (type); | |
1900 | ||
1901 | if (type != NULL) | |
1902 | return TYPE_NFIELDS (type) / 2; | |
1903 | return 0; | |
1904 | } | |
1905 | ||
4c4b4cd2 PH |
1906 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1907 | an array descriptor type (representing an unconstrained array | |
1908 | type). */ | |
1909 | ||
76a01679 JB |
1910 | static int |
1911 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1912 | { |
1913 | if (type == NULL) | |
1914 | return 0; | |
61ee279c | 1915 | type = ada_check_typedef (type); |
4c4b4cd2 | 1916 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1917 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1918 | } |
1919 | ||
52ce6436 | 1920 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1921 | * to one. */ |
52ce6436 | 1922 | |
2c0b251b | 1923 | static int |
52ce6436 PH |
1924 | ada_is_array_type (struct type *type) |
1925 | { | |
1926 | while (type != NULL | |
1927 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1928 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1929 | type = TYPE_TARGET_TYPE (type); | |
1930 | return ada_is_direct_array_type (type); | |
1931 | } | |
1932 | ||
4c4b4cd2 | 1933 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1934 | |
14f9c5c9 | 1935 | int |
4c4b4cd2 | 1936 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1937 | { |
1938 | if (type == NULL) | |
1939 | return 0; | |
61ee279c | 1940 | type = ada_check_typedef (type); |
14f9c5c9 | 1941 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1942 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1943 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1944 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1945 | } |
1946 | ||
4c4b4cd2 PH |
1947 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1948 | ||
14f9c5c9 | 1949 | int |
4c4b4cd2 | 1950 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1951 | { |
556bdfd4 | 1952 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1953 | |
1954 | if (type == NULL) | |
1955 | return 0; | |
61ee279c | 1956 | type = ada_check_typedef (type); |
556bdfd4 UW |
1957 | return (data_type != NULL |
1958 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1959 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1960 | } |
1961 | ||
1962 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1963 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1964 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1965 | is still needed. */ |
1966 | ||
14f9c5c9 | 1967 | int |
ebf56fd3 | 1968 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1969 | { |
d2e4a39e | 1970 | return |
14f9c5c9 AS |
1971 | type != NULL |
1972 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1973 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1974 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1975 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1976 | } |
1977 | ||
1978 | ||
4c4b4cd2 | 1979 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1980 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1981 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1982 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1983 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1984 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1985 | a descriptor. */ |
d2e4a39e AS |
1986 | struct type * |
1987 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1988 | { |
ad82864c JB |
1989 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1990 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1991 | |
df407dfe AC |
1992 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1993 | return value_type (arr); | |
d2e4a39e AS |
1994 | |
1995 | if (!bounds) | |
ad82864c JB |
1996 | { |
1997 | struct type *array_type = | |
1998 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1999 | ||
2000 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
2001 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
2002 | decode_packed_array_bitsize (value_type (arr)); | |
2003 | ||
2004 | return array_type; | |
2005 | } | |
14f9c5c9 AS |
2006 | else |
2007 | { | |
d2e4a39e | 2008 | struct type *elt_type; |
14f9c5c9 | 2009 | int arity; |
d2e4a39e | 2010 | struct value *descriptor; |
14f9c5c9 | 2011 | |
df407dfe AC |
2012 | elt_type = ada_array_element_type (value_type (arr), -1); |
2013 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 2014 | |
d2e4a39e | 2015 | if (elt_type == NULL || arity == 0) |
df407dfe | 2016 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
2017 | |
2018 | descriptor = desc_bounds (arr); | |
d2e4a39e | 2019 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 2020 | return NULL; |
d2e4a39e | 2021 | while (arity > 0) |
4c4b4cd2 | 2022 | { |
e9bb382b UW |
2023 | struct type *range_type = alloc_type_copy (value_type (arr)); |
2024 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
2025 | struct value *low = desc_one_bound (descriptor, arity, 0); |
2026 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 2027 | |
5b4ee69b | 2028 | arity -= 1; |
0c9c3474 SA |
2029 | create_static_range_type (range_type, value_type (low), |
2030 | longest_to_int (value_as_long (low)), | |
2031 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 2032 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
2033 | |
2034 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
2035 | { |
2036 | /* We need to store the element packed bitsize, as well as | |
2037 | recompute the array size, because it was previously | |
2038 | computed based on the unpacked element size. */ | |
2039 | LONGEST lo = value_as_long (low); | |
2040 | LONGEST hi = value_as_long (high); | |
2041 | ||
2042 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
2043 | decode_packed_array_bitsize (value_type (arr)); | |
2044 | /* If the array has no element, then the size is already | |
2045 | zero, and does not need to be recomputed. */ | |
2046 | if (lo < hi) | |
2047 | { | |
2048 | int array_bitsize = | |
2049 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
2050 | ||
2051 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
2052 | } | |
2053 | } | |
4c4b4cd2 | 2054 | } |
14f9c5c9 AS |
2055 | |
2056 | return lookup_pointer_type (elt_type); | |
2057 | } | |
2058 | } | |
2059 | ||
2060 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
2061 | Otherwise, returns either a standard GDB array with bounds set |
2062 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
2063 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
2064 | ||
d2e4a39e AS |
2065 | struct value * |
2066 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 2067 | { |
df407dfe | 2068 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2069 | { |
d2e4a39e | 2070 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 2071 | |
14f9c5c9 | 2072 | if (arrType == NULL) |
4c4b4cd2 | 2073 | return NULL; |
14f9c5c9 AS |
2074 | return value_cast (arrType, value_copy (desc_data (arr))); |
2075 | } | |
ad82864c JB |
2076 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2077 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
2078 | else |
2079 | return arr; | |
2080 | } | |
2081 | ||
2082 | /* If ARR does not represent an array, returns ARR unchanged. | |
2083 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
2084 | be ARR itself if it already is in the proper form). */ |
2085 | ||
720d1a40 | 2086 | struct value * |
d2e4a39e | 2087 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 2088 | { |
df407dfe | 2089 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 2090 | { |
d2e4a39e | 2091 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 2092 | |
14f9c5c9 | 2093 | if (arrVal == NULL) |
323e0a4a | 2094 | error (_("Bounds unavailable for null array pointer.")); |
c1b5a1a6 | 2095 | ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
2096 | return value_ind (arrVal); |
2097 | } | |
ad82864c JB |
2098 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
2099 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 2100 | else |
14f9c5c9 AS |
2101 | return arr; |
2102 | } | |
2103 | ||
2104 | /* If TYPE represents a GNAT array type, return it translated to an | |
2105 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
2106 | packing). For other types, is the identity. */ |
2107 | ||
d2e4a39e AS |
2108 | struct type * |
2109 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 2110 | { |
ad82864c JB |
2111 | if (ada_is_constrained_packed_array_type (type)) |
2112 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
2113 | |
2114 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 2115 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
2116 | |
2117 | return type; | |
14f9c5c9 AS |
2118 | } |
2119 | ||
4c4b4cd2 PH |
2120 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
2121 | ||
ad82864c JB |
2122 | static int |
2123 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
2124 | { |
2125 | if (type == NULL) | |
2126 | return 0; | |
4c4b4cd2 | 2127 | type = desc_base_type (type); |
61ee279c | 2128 | type = ada_check_typedef (type); |
d2e4a39e | 2129 | return |
14f9c5c9 AS |
2130 | ada_type_name (type) != NULL |
2131 | && strstr (ada_type_name (type), "___XP") != NULL; | |
2132 | } | |
2133 | ||
ad82864c JB |
2134 | /* Non-zero iff TYPE represents a standard GNAT constrained |
2135 | packed-array type. */ | |
2136 | ||
2137 | int | |
2138 | ada_is_constrained_packed_array_type (struct type *type) | |
2139 | { | |
2140 | return ada_is_packed_array_type (type) | |
2141 | && !ada_is_array_descriptor_type (type); | |
2142 | } | |
2143 | ||
2144 | /* Non-zero iff TYPE represents an array descriptor for a | |
2145 | unconstrained packed-array type. */ | |
2146 | ||
2147 | static int | |
2148 | ada_is_unconstrained_packed_array_type (struct type *type) | |
2149 | { | |
2150 | return ada_is_packed_array_type (type) | |
2151 | && ada_is_array_descriptor_type (type); | |
2152 | } | |
2153 | ||
2154 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
2155 | return the size of its elements in bits. */ | |
2156 | ||
2157 | static long | |
2158 | decode_packed_array_bitsize (struct type *type) | |
2159 | { | |
0d5cff50 DE |
2160 | const char *raw_name; |
2161 | const char *tail; | |
ad82864c JB |
2162 | long bits; |
2163 | ||
720d1a40 JB |
2164 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
2165 | of the fat pointer type. We need the name of the fat pointer type | |
2166 | to do the decoding, so strip the typedef layer. */ | |
2167 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
2168 | type = ada_typedef_target_type (type); | |
2169 | ||
2170 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
2171 | if (!raw_name) |
2172 | raw_name = ada_type_name (desc_base_type (type)); | |
2173 | ||
2174 | if (!raw_name) | |
2175 | return 0; | |
2176 | ||
2177 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 2178 | gdb_assert (tail != NULL); |
ad82864c JB |
2179 | |
2180 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
2181 | { | |
2182 | lim_warning | |
2183 | (_("could not understand bit size information on packed array")); | |
2184 | return 0; | |
2185 | } | |
2186 | ||
2187 | return bits; | |
2188 | } | |
2189 | ||
14f9c5c9 AS |
2190 | /* Given that TYPE is a standard GDB array type with all bounds filled |
2191 | in, and that the element size of its ultimate scalar constituents | |
2192 | (that is, either its elements, or, if it is an array of arrays, its | |
2193 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
2194 | but with the bit sizes of its elements (and those of any | |
2195 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 | 2196 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
4a46959e JB |
2197 | in bits. |
2198 | ||
2199 | Note that, for arrays whose index type has an XA encoding where | |
2200 | a bound references a record discriminant, getting that discriminant, | |
2201 | and therefore the actual value of that bound, is not possible | |
2202 | because none of the given parameters gives us access to the record. | |
2203 | This function assumes that it is OK in the context where it is being | |
2204 | used to return an array whose bounds are still dynamic and where | |
2205 | the length is arbitrary. */ | |
4c4b4cd2 | 2206 | |
d2e4a39e | 2207 | static struct type * |
ad82864c | 2208 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 2209 | { |
d2e4a39e AS |
2210 | struct type *new_elt_type; |
2211 | struct type *new_type; | |
99b1c762 JB |
2212 | struct type *index_type_desc; |
2213 | struct type *index_type; | |
14f9c5c9 AS |
2214 | LONGEST low_bound, high_bound; |
2215 | ||
61ee279c | 2216 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2217 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2218 | return type; | |
2219 | ||
99b1c762 JB |
2220 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
2221 | if (index_type_desc) | |
2222 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), | |
2223 | NULL); | |
2224 | else | |
2225 | index_type = TYPE_INDEX_TYPE (type); | |
2226 | ||
e9bb382b | 2227 | new_type = alloc_type_copy (type); |
ad82864c JB |
2228 | new_elt_type = |
2229 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2230 | elt_bits); | |
99b1c762 | 2231 | create_array_type (new_type, new_elt_type, index_type); |
14f9c5c9 AS |
2232 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2233 | TYPE_NAME (new_type) = ada_type_name (type); | |
2234 | ||
4a46959e JB |
2235 | if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE |
2236 | && is_dynamic_type (check_typedef (index_type))) | |
2237 | || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) | |
14f9c5c9 AS |
2238 | low_bound = high_bound = 0; |
2239 | if (high_bound < low_bound) | |
2240 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2241 | else |
14f9c5c9 AS |
2242 | { |
2243 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2244 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2245 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2246 | } |
2247 | ||
876cecd0 | 2248 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2249 | return new_type; |
2250 | } | |
2251 | ||
ad82864c JB |
2252 | /* The array type encoded by TYPE, where |
2253 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2254 | |
d2e4a39e | 2255 | static struct type * |
ad82864c | 2256 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2257 | { |
0d5cff50 | 2258 | const char *raw_name = ada_type_name (ada_check_typedef (type)); |
727e3d2e | 2259 | char *name; |
0d5cff50 | 2260 | const char *tail; |
d2e4a39e | 2261 | struct type *shadow_type; |
14f9c5c9 | 2262 | long bits; |
14f9c5c9 | 2263 | |
727e3d2e JB |
2264 | if (!raw_name) |
2265 | raw_name = ada_type_name (desc_base_type (type)); | |
2266 | ||
2267 | if (!raw_name) | |
2268 | return NULL; | |
2269 | ||
2270 | name = (char *) alloca (strlen (raw_name) + 1); | |
2271 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2272 | type = desc_base_type (type); |
2273 | ||
14f9c5c9 AS |
2274 | memcpy (name, raw_name, tail - raw_name); |
2275 | name[tail - raw_name] = '\000'; | |
2276 | ||
b4ba55a1 JB |
2277 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2278 | ||
2279 | if (shadow_type == NULL) | |
14f9c5c9 | 2280 | { |
323e0a4a | 2281 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2282 | return NULL; |
2283 | } | |
f168693b | 2284 | shadow_type = check_typedef (shadow_type); |
14f9c5c9 AS |
2285 | |
2286 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2287 | { | |
0963b4bd MS |
2288 | lim_warning (_("could not understand bounds " |
2289 | "information on packed array")); | |
14f9c5c9 AS |
2290 | return NULL; |
2291 | } | |
d2e4a39e | 2292 | |
ad82864c JB |
2293 | bits = decode_packed_array_bitsize (type); |
2294 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2295 | } |
2296 | ||
ad82864c JB |
2297 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2298 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2299 | standard GDB array type except that the BITSIZEs of the array |
2300 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2301 | type length is set appropriately. */ |
14f9c5c9 | 2302 | |
d2e4a39e | 2303 | static struct value * |
ad82864c | 2304 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2305 | { |
4c4b4cd2 | 2306 | struct type *type; |
14f9c5c9 | 2307 | |
11aa919a PMR |
2308 | /* If our value is a pointer, then dereference it. Likewise if |
2309 | the value is a reference. Make sure that this operation does not | |
2310 | cause the target type to be fixed, as this would indirectly cause | |
2311 | this array to be decoded. The rest of the routine assumes that | |
2312 | the array hasn't been decoded yet, so we use the basic "coerce_ref" | |
2313 | and "value_ind" routines to perform the dereferencing, as opposed | |
2314 | to using "ada_coerce_ref" or "ada_value_ind". */ | |
2315 | arr = coerce_ref (arr); | |
828292f2 | 2316 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2317 | arr = value_ind (arr); |
4c4b4cd2 | 2318 | |
ad82864c | 2319 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2320 | if (type == NULL) |
2321 | { | |
323e0a4a | 2322 | error (_("can't unpack array")); |
14f9c5c9 AS |
2323 | return NULL; |
2324 | } | |
61ee279c | 2325 | |
50810684 | 2326 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2327 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2328 | { |
2329 | /* This is a (right-justified) modular type representing a packed | |
2330 | array with no wrapper. In order to interpret the value through | |
2331 | the (left-justified) packed array type we just built, we must | |
2332 | first left-justify it. */ | |
2333 | int bit_size, bit_pos; | |
2334 | ULONGEST mod; | |
2335 | ||
df407dfe | 2336 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2337 | bit_size = 0; |
2338 | while (mod > 0) | |
2339 | { | |
2340 | bit_size += 1; | |
2341 | mod >>= 1; | |
2342 | } | |
df407dfe | 2343 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2344 | arr = ada_value_primitive_packed_val (arr, NULL, |
2345 | bit_pos / HOST_CHAR_BIT, | |
2346 | bit_pos % HOST_CHAR_BIT, | |
2347 | bit_size, | |
2348 | type); | |
2349 | } | |
2350 | ||
4c4b4cd2 | 2351 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2352 | } |
2353 | ||
2354 | ||
2355 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2356 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2357 | |
d2e4a39e AS |
2358 | static struct value * |
2359 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2360 | { |
2361 | int i; | |
2362 | int bits, elt_off, bit_off; | |
2363 | long elt_total_bit_offset; | |
d2e4a39e AS |
2364 | struct type *elt_type; |
2365 | struct value *v; | |
14f9c5c9 AS |
2366 | |
2367 | bits = 0; | |
2368 | elt_total_bit_offset = 0; | |
df407dfe | 2369 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2370 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2371 | { |
d2e4a39e | 2372 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2373 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2374 | error | |
0963b4bd MS |
2375 | (_("attempt to do packed indexing of " |
2376 | "something other than a packed array")); | |
14f9c5c9 | 2377 | else |
4c4b4cd2 PH |
2378 | { |
2379 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2380 | LONGEST lowerbound, upperbound; | |
2381 | LONGEST idx; | |
2382 | ||
2383 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2384 | { | |
323e0a4a | 2385 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2386 | lowerbound = upperbound = 0; |
2387 | } | |
2388 | ||
3cb382c9 | 2389 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2390 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2391 | lim_warning (_("packed array index %ld out of bounds"), |
2392 | (long) idx); | |
4c4b4cd2 PH |
2393 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2394 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2395 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2396 | } |
14f9c5c9 AS |
2397 | } |
2398 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2399 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2400 | |
2401 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2402 | bits, elt_type); |
14f9c5c9 AS |
2403 | return v; |
2404 | } | |
2405 | ||
4c4b4cd2 | 2406 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2407 | |
2408 | static int | |
d2e4a39e | 2409 | has_negatives (struct type *type) |
14f9c5c9 | 2410 | { |
d2e4a39e AS |
2411 | switch (TYPE_CODE (type)) |
2412 | { | |
2413 | default: | |
2414 | return 0; | |
2415 | case TYPE_CODE_INT: | |
2416 | return !TYPE_UNSIGNED (type); | |
2417 | case TYPE_CODE_RANGE: | |
2418 | return TYPE_LOW_BOUND (type) < 0; | |
2419 | } | |
14f9c5c9 | 2420 | } |
d2e4a39e | 2421 | |
f93fca70 | 2422 | /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET, |
5b639dea | 2423 | unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of |
f93fca70 | 2424 | the unpacked buffer. |
14f9c5c9 | 2425 | |
5b639dea JB |
2426 | The size of the unpacked buffer (UNPACKED_LEN) is expected to be large |
2427 | enough to contain at least BIT_OFFSET bits. If not, an error is raised. | |
2428 | ||
f93fca70 JB |
2429 | IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode, |
2430 | zero otherwise. | |
14f9c5c9 | 2431 | |
f93fca70 | 2432 | IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type. |
a1c95e6b | 2433 | |
f93fca70 JB |
2434 | IS_SCALAR is nonzero if the data corresponds to a signed type. */ |
2435 | ||
2436 | static void | |
2437 | ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size, | |
2438 | gdb_byte *unpacked, int unpacked_len, | |
2439 | int is_big_endian, int is_signed_type, | |
2440 | int is_scalar) | |
2441 | { | |
a1c95e6b JB |
2442 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
2443 | int src_idx; /* Index into the source area */ | |
2444 | int src_bytes_left; /* Number of source bytes left to process. */ | |
2445 | int srcBitsLeft; /* Number of source bits left to move */ | |
2446 | int unusedLS; /* Number of bits in next significant | |
2447 | byte of source that are unused */ | |
2448 | ||
a1c95e6b JB |
2449 | int unpacked_idx; /* Index into the unpacked buffer */ |
2450 | int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */ | |
2451 | ||
4c4b4cd2 | 2452 | unsigned long accum; /* Staging area for bits being transferred */ |
a1c95e6b | 2453 | int accumSize; /* Number of meaningful bits in accum */ |
14f9c5c9 | 2454 | unsigned char sign; |
a1c95e6b | 2455 | |
4c4b4cd2 PH |
2456 | /* Transmit bytes from least to most significant; delta is the direction |
2457 | the indices move. */ | |
f93fca70 | 2458 | int delta = is_big_endian ? -1 : 1; |
14f9c5c9 | 2459 | |
5b639dea JB |
2460 | /* Make sure that unpacked is large enough to receive the BIT_SIZE |
2461 | bits from SRC. .*/ | |
2462 | if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len) | |
2463 | error (_("Cannot unpack %d bits into buffer of %d bytes"), | |
2464 | bit_size, unpacked_len); | |
2465 | ||
14f9c5c9 | 2466 | srcBitsLeft = bit_size; |
086ca51f | 2467 | src_bytes_left = src_len; |
f93fca70 | 2468 | unpacked_bytes_left = unpacked_len; |
14f9c5c9 | 2469 | sign = 0; |
f93fca70 JB |
2470 | |
2471 | if (is_big_endian) | |
14f9c5c9 | 2472 | { |
086ca51f | 2473 | src_idx = src_len - 1; |
f93fca70 JB |
2474 | if (is_signed_type |
2475 | && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2476 | sign = ~0; |
d2e4a39e AS |
2477 | |
2478 | unusedLS = | |
4c4b4cd2 PH |
2479 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2480 | % HOST_CHAR_BIT; | |
14f9c5c9 | 2481 | |
f93fca70 JB |
2482 | if (is_scalar) |
2483 | { | |
2484 | accumSize = 0; | |
2485 | unpacked_idx = unpacked_len - 1; | |
2486 | } | |
2487 | else | |
2488 | { | |
4c4b4cd2 PH |
2489 | /* Non-scalar values must be aligned at a byte boundary... */ |
2490 | accumSize = | |
2491 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2492 | /* ... And are placed at the beginning (most-significant) bytes | |
2493 | of the target. */ | |
086ca51f JB |
2494 | unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
2495 | unpacked_bytes_left = unpacked_idx + 1; | |
f93fca70 | 2496 | } |
14f9c5c9 | 2497 | } |
d2e4a39e | 2498 | else |
14f9c5c9 AS |
2499 | { |
2500 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2501 | ||
086ca51f | 2502 | src_idx = unpacked_idx = 0; |
14f9c5c9 AS |
2503 | unusedLS = bit_offset; |
2504 | accumSize = 0; | |
2505 | ||
f93fca70 | 2506 | if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2507 | sign = ~0; |
14f9c5c9 | 2508 | } |
d2e4a39e | 2509 | |
14f9c5c9 | 2510 | accum = 0; |
086ca51f | 2511 | while (src_bytes_left > 0) |
14f9c5c9 AS |
2512 | { |
2513 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2514 | part of the value. */ |
d2e4a39e | 2515 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2516 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2517 | 1; | |
2518 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2519 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2520 | |
d2e4a39e | 2521 | accum |= |
086ca51f | 2522 | (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2523 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2524 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 | 2525 | { |
db297a65 | 2526 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
4c4b4cd2 PH |
2527 | accumSize -= HOST_CHAR_BIT; |
2528 | accum >>= HOST_CHAR_BIT; | |
086ca51f JB |
2529 | unpacked_bytes_left -= 1; |
2530 | unpacked_idx += delta; | |
4c4b4cd2 | 2531 | } |
14f9c5c9 AS |
2532 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2533 | unusedLS = 0; | |
086ca51f JB |
2534 | src_bytes_left -= 1; |
2535 | src_idx += delta; | |
14f9c5c9 | 2536 | } |
086ca51f | 2537 | while (unpacked_bytes_left > 0) |
14f9c5c9 AS |
2538 | { |
2539 | accum |= sign << accumSize; | |
db297a65 | 2540 | unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT); |
14f9c5c9 | 2541 | accumSize -= HOST_CHAR_BIT; |
9cd4d857 JB |
2542 | if (accumSize < 0) |
2543 | accumSize = 0; | |
14f9c5c9 | 2544 | accum >>= HOST_CHAR_BIT; |
086ca51f JB |
2545 | unpacked_bytes_left -= 1; |
2546 | unpacked_idx += delta; | |
14f9c5c9 | 2547 | } |
f93fca70 JB |
2548 | } |
2549 | ||
2550 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2551 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2552 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
2553 | assigning through the result will set the field fetched from. | |
2554 | VALADDR is ignored unless OBJ is NULL, in which case, | |
2555 | VALADDR+OFFSET must address the start of storage containing the | |
2556 | packed value. The value returned in this case is never an lval. | |
2557 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
2558 | ||
2559 | struct value * | |
2560 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, | |
2561 | long offset, int bit_offset, int bit_size, | |
2562 | struct type *type) | |
2563 | { | |
2564 | struct value *v; | |
bfb1c796 | 2565 | const gdb_byte *src; /* First byte containing data to unpack */ |
f93fca70 | 2566 | gdb_byte *unpacked; |
220475ed | 2567 | const int is_scalar = is_scalar_type (type); |
d0a9e810 | 2568 | const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type)); |
d5722aa2 | 2569 | gdb::byte_vector staging; |
f93fca70 JB |
2570 | |
2571 | type = ada_check_typedef (type); | |
2572 | ||
d0a9e810 | 2573 | if (obj == NULL) |
bfb1c796 | 2574 | src = valaddr + offset; |
d0a9e810 | 2575 | else |
bfb1c796 | 2576 | src = value_contents (obj) + offset; |
d0a9e810 JB |
2577 | |
2578 | if (is_dynamic_type (type)) | |
2579 | { | |
2580 | /* The length of TYPE might by dynamic, so we need to resolve | |
2581 | TYPE in order to know its actual size, which we then use | |
2582 | to create the contents buffer of the value we return. | |
2583 | The difficulty is that the data containing our object is | |
2584 | packed, and therefore maybe not at a byte boundary. So, what | |
2585 | we do, is unpack the data into a byte-aligned buffer, and then | |
2586 | use that buffer as our object's value for resolving the type. */ | |
d5722aa2 PA |
2587 | int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
2588 | staging.resize (staging_len); | |
d0a9e810 JB |
2589 | |
2590 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
d5722aa2 | 2591 | staging.data (), staging.size (), |
d0a9e810 JB |
2592 | is_big_endian, has_negatives (type), |
2593 | is_scalar); | |
d5722aa2 | 2594 | type = resolve_dynamic_type (type, staging.data (), 0); |
0cafa88c JB |
2595 | if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT) |
2596 | { | |
2597 | /* This happens when the length of the object is dynamic, | |
2598 | and is actually smaller than the space reserved for it. | |
2599 | For instance, in an array of variant records, the bit_size | |
2600 | we're given is the array stride, which is constant and | |
2601 | normally equal to the maximum size of its element. | |
2602 | But, in reality, each element only actually spans a portion | |
2603 | of that stride. */ | |
2604 | bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT; | |
2605 | } | |
d0a9e810 JB |
2606 | } |
2607 | ||
f93fca70 JB |
2608 | if (obj == NULL) |
2609 | { | |
2610 | v = allocate_value (type); | |
bfb1c796 | 2611 | src = valaddr + offset; |
f93fca70 JB |
2612 | } |
2613 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) | |
2614 | { | |
0cafa88c | 2615 | int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; |
bfb1c796 | 2616 | gdb_byte *buf; |
0cafa88c | 2617 | |
f93fca70 | 2618 | v = value_at (type, value_address (obj) + offset); |
bfb1c796 PA |
2619 | buf = (gdb_byte *) alloca (src_len); |
2620 | read_memory (value_address (v), buf, src_len); | |
2621 | src = buf; | |
f93fca70 JB |
2622 | } |
2623 | else | |
2624 | { | |
2625 | v = allocate_value (type); | |
bfb1c796 | 2626 | src = value_contents (obj) + offset; |
f93fca70 JB |
2627 | } |
2628 | ||
2629 | if (obj != NULL) | |
2630 | { | |
2631 | long new_offset = offset; | |
2632 | ||
2633 | set_value_component_location (v, obj); | |
2634 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); | |
2635 | set_value_bitsize (v, bit_size); | |
2636 | if (value_bitpos (v) >= HOST_CHAR_BIT) | |
2637 | { | |
2638 | ++new_offset; | |
2639 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); | |
2640 | } | |
2641 | set_value_offset (v, new_offset); | |
2642 | ||
2643 | /* Also set the parent value. This is needed when trying to | |
2644 | assign a new value (in inferior memory). */ | |
2645 | set_value_parent (v, obj); | |
2646 | } | |
2647 | else | |
2648 | set_value_bitsize (v, bit_size); | |
bfb1c796 | 2649 | unpacked = value_contents_writeable (v); |
f93fca70 JB |
2650 | |
2651 | if (bit_size == 0) | |
2652 | { | |
2653 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2654 | return v; | |
2655 | } | |
2656 | ||
d5722aa2 | 2657 | if (staging.size () == TYPE_LENGTH (type)) |
f93fca70 | 2658 | { |
d0a9e810 JB |
2659 | /* Small short-cut: If we've unpacked the data into a buffer |
2660 | of the same size as TYPE's length, then we can reuse that, | |
2661 | instead of doing the unpacking again. */ | |
d5722aa2 | 2662 | memcpy (unpacked, staging.data (), staging.size ()); |
f93fca70 | 2663 | } |
d0a9e810 JB |
2664 | else |
2665 | ada_unpack_from_contents (src, bit_offset, bit_size, | |
2666 | unpacked, TYPE_LENGTH (type), | |
2667 | is_big_endian, has_negatives (type), is_scalar); | |
f93fca70 | 2668 | |
14f9c5c9 AS |
2669 | return v; |
2670 | } | |
d2e4a39e | 2671 | |
14f9c5c9 AS |
2672 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2673 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2674 | not overlap. */ |
14f9c5c9 | 2675 | static void |
fc1a4b47 | 2676 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2677 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2678 | { |
2679 | unsigned int accum, mask; | |
2680 | int accum_bits, chunk_size; | |
2681 | ||
2682 | target += targ_offset / HOST_CHAR_BIT; | |
2683 | targ_offset %= HOST_CHAR_BIT; | |
2684 | source += src_offset / HOST_CHAR_BIT; | |
2685 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2686 | if (bits_big_endian_p) |
14f9c5c9 AS |
2687 | { |
2688 | accum = (unsigned char) *source; | |
2689 | source += 1; | |
2690 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2691 | ||
d2e4a39e | 2692 | while (n > 0) |
4c4b4cd2 PH |
2693 | { |
2694 | int unused_right; | |
5b4ee69b | 2695 | |
4c4b4cd2 PH |
2696 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2697 | accum_bits += HOST_CHAR_BIT; | |
2698 | source += 1; | |
2699 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2700 | if (chunk_size > n) | |
2701 | chunk_size = n; | |
2702 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2703 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2704 | *target = | |
2705 | (*target & ~mask) | |
2706 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2707 | n -= chunk_size; | |
2708 | accum_bits -= chunk_size; | |
2709 | target += 1; | |
2710 | targ_offset = 0; | |
2711 | } | |
14f9c5c9 AS |
2712 | } |
2713 | else | |
2714 | { | |
2715 | accum = (unsigned char) *source >> src_offset; | |
2716 | source += 1; | |
2717 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2718 | ||
d2e4a39e | 2719 | while (n > 0) |
4c4b4cd2 PH |
2720 | { |
2721 | accum = accum + ((unsigned char) *source << accum_bits); | |
2722 | accum_bits += HOST_CHAR_BIT; | |
2723 | source += 1; | |
2724 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2725 | if (chunk_size > n) | |
2726 | chunk_size = n; | |
2727 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2728 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2729 | n -= chunk_size; | |
2730 | accum_bits -= chunk_size; | |
2731 | accum >>= chunk_size; | |
2732 | target += 1; | |
2733 | targ_offset = 0; | |
2734 | } | |
14f9c5c9 AS |
2735 | } |
2736 | } | |
2737 | ||
14f9c5c9 AS |
2738 | /* Store the contents of FROMVAL into the location of TOVAL. |
2739 | Return a new value with the location of TOVAL and contents of | |
2740 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2741 | floating-point or non-scalar types. */ |
14f9c5c9 | 2742 | |
d2e4a39e AS |
2743 | static struct value * |
2744 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2745 | { |
df407dfe AC |
2746 | struct type *type = value_type (toval); |
2747 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2748 | |
52ce6436 PH |
2749 | toval = ada_coerce_ref (toval); |
2750 | fromval = ada_coerce_ref (fromval); | |
2751 | ||
2752 | if (ada_is_direct_array_type (value_type (toval))) | |
2753 | toval = ada_coerce_to_simple_array (toval); | |
2754 | if (ada_is_direct_array_type (value_type (fromval))) | |
2755 | fromval = ada_coerce_to_simple_array (fromval); | |
2756 | ||
88e3b34b | 2757 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2758 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2759 | |
d2e4a39e | 2760 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2761 | && bits > 0 |
d2e4a39e | 2762 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2763 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2764 | { |
df407dfe AC |
2765 | int len = (value_bitpos (toval) |
2766 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2767 | int from_size; |
224c3ddb | 2768 | gdb_byte *buffer = (gdb_byte *) alloca (len); |
d2e4a39e | 2769 | struct value *val; |
42ae5230 | 2770 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2771 | |
2772 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2773 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2774 | |
52ce6436 | 2775 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2776 | from_size = value_bitsize (fromval); |
2777 | if (from_size == 0) | |
2778 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2779 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2780 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2781 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2782 | else |
50810684 UW |
2783 | move_bits (buffer, value_bitpos (toval), |
2784 | value_contents (fromval), 0, bits, 0); | |
972daa01 | 2785 | write_memory_with_notification (to_addr, buffer, len); |
8cebebb9 | 2786 | |
14f9c5c9 | 2787 | val = value_copy (toval); |
0fd88904 | 2788 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2789 | TYPE_LENGTH (type)); |
04624583 | 2790 | deprecated_set_value_type (val, type); |
d2e4a39e | 2791 | |
14f9c5c9 AS |
2792 | return val; |
2793 | } | |
2794 | ||
2795 | return value_assign (toval, fromval); | |
2796 | } | |
2797 | ||
2798 | ||
7c512744 JB |
2799 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2800 | CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2801 | CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2802 | COMPONENT, and not the inferior's memory. The current contents | |
2803 | of COMPONENT are ignored. | |
2804 | ||
2805 | Although not part of the initial design, this function also works | |
2806 | when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER | |
2807 | had a null address, and COMPONENT had an address which is equal to | |
2808 | its offset inside CONTAINER. */ | |
2809 | ||
52ce6436 PH |
2810 | static void |
2811 | value_assign_to_component (struct value *container, struct value *component, | |
2812 | struct value *val) | |
2813 | { | |
2814 | LONGEST offset_in_container = | |
42ae5230 | 2815 | (LONGEST) (value_address (component) - value_address (container)); |
7c512744 | 2816 | int bit_offset_in_container = |
52ce6436 PH |
2817 | value_bitpos (component) - value_bitpos (container); |
2818 | int bits; | |
7c512744 | 2819 | |
52ce6436 PH |
2820 | val = value_cast (value_type (component), val); |
2821 | ||
2822 | if (value_bitsize (component) == 0) | |
2823 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2824 | else | |
2825 | bits = value_bitsize (component); | |
2826 | ||
50810684 | 2827 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
7c512744 | 2828 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 PH |
2829 | value_bitpos (container) + bit_offset_in_container, |
2830 | value_contents (val), | |
2831 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2832 | bits, 1); |
52ce6436 | 2833 | else |
7c512744 | 2834 | move_bits (value_contents_writeable (container) + offset_in_container, |
52ce6436 | 2835 | value_bitpos (container) + bit_offset_in_container, |
50810684 | 2836 | value_contents (val), 0, bits, 0); |
7c512744 JB |
2837 | } |
2838 | ||
4c4b4cd2 PH |
2839 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2840 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2841 | thereto. */ |
2842 | ||
d2e4a39e AS |
2843 | struct value * |
2844 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2845 | { |
2846 | int k; | |
d2e4a39e AS |
2847 | struct value *elt; |
2848 | struct type *elt_type; | |
14f9c5c9 AS |
2849 | |
2850 | elt = ada_coerce_to_simple_array (arr); | |
2851 | ||
df407dfe | 2852 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2853 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2854 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2855 | return value_subscript_packed (elt, arity, ind); | |
2856 | ||
2857 | for (k = 0; k < arity; k += 1) | |
2858 | { | |
2859 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2860 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2861 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2862 | } |
2863 | return elt; | |
2864 | } | |
2865 | ||
deede10c JB |
2866 | /* Assuming ARR is a pointer to a GDB array, the value of the element |
2867 | of *ARR at the ARITY indices given in IND. | |
919e6dbe PMR |
2868 | Does not read the entire array into memory. |
2869 | ||
2870 | Note: Unlike what one would expect, this function is used instead of | |
2871 | ada_value_subscript for basically all non-packed array types. The reason | |
2872 | for this is that a side effect of doing our own pointer arithmetics instead | |
2873 | of relying on value_subscript is that there is no implicit typedef peeling. | |
2874 | This is important for arrays of array accesses, where it allows us to | |
2875 | preserve the fact that the array's element is an array access, where the | |
2876 | access part os encoded in a typedef layer. */ | |
14f9c5c9 | 2877 | |
2c0b251b | 2878 | static struct value * |
deede10c | 2879 | ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind) |
14f9c5c9 AS |
2880 | { |
2881 | int k; | |
919e6dbe | 2882 | struct value *array_ind = ada_value_ind (arr); |
deede10c | 2883 | struct type *type |
919e6dbe PMR |
2884 | = check_typedef (value_enclosing_type (array_ind)); |
2885 | ||
2886 | if (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
2887 | && TYPE_FIELD_BITSIZE (type, 0) > 0) | |
2888 | return value_subscript_packed (array_ind, arity, ind); | |
14f9c5c9 AS |
2889 | |
2890 | for (k = 0; k < arity; k += 1) | |
2891 | { | |
2892 | LONGEST lwb, upb; | |
aa715135 | 2893 | struct value *lwb_value; |
14f9c5c9 AS |
2894 | |
2895 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2896 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2897 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2898 | value_copy (arr)); |
14f9c5c9 | 2899 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
aa715135 JG |
2900 | lwb_value = value_from_longest (value_type(ind[k]), lwb); |
2901 | arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value)); | |
14f9c5c9 AS |
2902 | type = TYPE_TARGET_TYPE (type); |
2903 | } | |
2904 | ||
2905 | return value_ind (arr); | |
2906 | } | |
2907 | ||
0b5d8877 | 2908 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
aa715135 JG |
2909 | actual type of ARRAY_PTR is ignored), returns the Ada slice of |
2910 | HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of | |
2911 | this array is LOW, as per Ada rules. */ | |
0b5d8877 | 2912 | static struct value * |
f5938064 JG |
2913 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2914 | int low, int high) | |
0b5d8877 | 2915 | { |
b0dd7688 | 2916 | struct type *type0 = ada_check_typedef (type); |
aa715135 | 2917 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)); |
0c9c3474 | 2918 | struct type *index_type |
aa715135 | 2919 | = create_static_range_type (NULL, base_index_type, low, high); |
6c038f32 | 2920 | struct type *slice_type = |
b0dd7688 | 2921 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
aa715135 JG |
2922 | int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)); |
2923 | LONGEST base_low_pos, low_pos; | |
2924 | CORE_ADDR base; | |
2925 | ||
2926 | if (!discrete_position (base_index_type, low, &low_pos) | |
2927 | || !discrete_position (base_index_type, base_low, &base_low_pos)) | |
2928 | { | |
2929 | warning (_("unable to get positions in slice, use bounds instead")); | |
2930 | low_pos = low; | |
2931 | base_low_pos = base_low; | |
2932 | } | |
5b4ee69b | 2933 | |
aa715135 JG |
2934 | base = value_as_address (array_ptr) |
2935 | + ((low_pos - base_low_pos) | |
2936 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
f5938064 | 2937 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2938 | } |
2939 | ||
2940 | ||
2941 | static struct value * | |
2942 | ada_value_slice (struct value *array, int low, int high) | |
2943 | { | |
b0dd7688 | 2944 | struct type *type = ada_check_typedef (value_type (array)); |
aa715135 | 2945 | struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
0c9c3474 SA |
2946 | struct type *index_type |
2947 | = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); | |
6c038f32 | 2948 | struct type *slice_type = |
0b5d8877 | 2949 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
aa715135 | 2950 | LONGEST low_pos, high_pos; |
5b4ee69b | 2951 | |
aa715135 JG |
2952 | if (!discrete_position (base_index_type, low, &low_pos) |
2953 | || !discrete_position (base_index_type, high, &high_pos)) | |
2954 | { | |
2955 | warning (_("unable to get positions in slice, use bounds instead")); | |
2956 | low_pos = low; | |
2957 | high_pos = high; | |
2958 | } | |
2959 | ||
2960 | return value_cast (slice_type, | |
2961 | value_slice (array, low, high_pos - low_pos + 1)); | |
0b5d8877 PH |
2962 | } |
2963 | ||
14f9c5c9 AS |
2964 | /* If type is a record type in the form of a standard GNAT array |
2965 | descriptor, returns the number of dimensions for type. If arr is a | |
2966 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2967 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2968 | |
2969 | int | |
d2e4a39e | 2970 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2971 | { |
2972 | int arity; | |
2973 | ||
2974 | if (type == NULL) | |
2975 | return 0; | |
2976 | ||
2977 | type = desc_base_type (type); | |
2978 | ||
2979 | arity = 0; | |
d2e4a39e | 2980 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2981 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2982 | else |
2983 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2984 | { |
4c4b4cd2 | 2985 | arity += 1; |
61ee279c | 2986 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2987 | } |
d2e4a39e | 2988 | |
14f9c5c9 AS |
2989 | return arity; |
2990 | } | |
2991 | ||
2992 | /* If TYPE is a record type in the form of a standard GNAT array | |
2993 | descriptor or a simple array type, returns the element type for | |
2994 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2995 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2996 | |
d2e4a39e AS |
2997 | struct type * |
2998 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2999 | { |
3000 | type = desc_base_type (type); | |
3001 | ||
d2e4a39e | 3002 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
3003 | { |
3004 | int k; | |
d2e4a39e | 3005 | struct type *p_array_type; |
14f9c5c9 | 3006 | |
556bdfd4 | 3007 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
3008 | |
3009 | k = ada_array_arity (type); | |
3010 | if (k == 0) | |
4c4b4cd2 | 3011 | return NULL; |
d2e4a39e | 3012 | |
4c4b4cd2 | 3013 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 3014 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 3015 | k = nindices; |
d2e4a39e | 3016 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 3017 | { |
61ee279c | 3018 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
3019 | k -= 1; |
3020 | } | |
14f9c5c9 AS |
3021 | return p_array_type; |
3022 | } | |
3023 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
3024 | { | |
3025 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
3026 | { |
3027 | type = TYPE_TARGET_TYPE (type); | |
3028 | nindices -= 1; | |
3029 | } | |
14f9c5c9 AS |
3030 | return type; |
3031 | } | |
3032 | ||
3033 | return NULL; | |
3034 | } | |
3035 | ||
4c4b4cd2 | 3036 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
3037 | Does not examine memory. Throws an error if N is invalid or TYPE |
3038 | is not an array type. NAME is the name of the Ada attribute being | |
3039 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
3040 | the error message. */ | |
14f9c5c9 | 3041 | |
1eea4ebd UW |
3042 | static struct type * |
3043 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 3044 | { |
4c4b4cd2 PH |
3045 | struct type *result_type; |
3046 | ||
14f9c5c9 AS |
3047 | type = desc_base_type (type); |
3048 | ||
1eea4ebd UW |
3049 | if (n < 0 || n > ada_array_arity (type)) |
3050 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 3051 | |
4c4b4cd2 | 3052 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
3053 | { |
3054 | int i; | |
3055 | ||
3056 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 3057 | type = TYPE_TARGET_TYPE (type); |
262452ec | 3058 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
3059 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
3060 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 3061 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
3062 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
3063 | result_type = NULL; | |
14f9c5c9 | 3064 | } |
d2e4a39e | 3065 | else |
1eea4ebd UW |
3066 | { |
3067 | result_type = desc_index_type (desc_bounds_type (type), n); | |
3068 | if (result_type == NULL) | |
3069 | error (_("attempt to take bound of something that is not an array")); | |
3070 | } | |
3071 | ||
3072 | return result_type; | |
14f9c5c9 AS |
3073 | } |
3074 | ||
3075 | /* Given that arr is an array type, returns the lower bound of the | |
3076 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 3077 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
3078 | array-descriptor type. It works for other arrays with bounds supplied |
3079 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 3080 | |
abb68b3e | 3081 | static LONGEST |
fb5e3d5c | 3082 | ada_array_bound_from_type (struct type *arr_type, int n, int which) |
14f9c5c9 | 3083 | { |
8a48ac95 | 3084 | struct type *type, *index_type_desc, *index_type; |
1ce677a4 | 3085 | int i; |
262452ec JK |
3086 | |
3087 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 3088 | |
ad82864c JB |
3089 | if (ada_is_constrained_packed_array_type (arr_type)) |
3090 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 3091 | |
4c4b4cd2 | 3092 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3093 | return (LONGEST) - which; |
14f9c5c9 AS |
3094 | |
3095 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
3096 | type = TYPE_TARGET_TYPE (arr_type); | |
3097 | else | |
3098 | type = arr_type; | |
3099 | ||
bafffb51 JB |
3100 | if (TYPE_FIXED_INSTANCE (type)) |
3101 | { | |
3102 | /* The array has already been fixed, so we do not need to | |
3103 | check the parallel ___XA type again. That encoding has | |
3104 | already been applied, so ignore it now. */ | |
3105 | index_type_desc = NULL; | |
3106 | } | |
3107 | else | |
3108 | { | |
3109 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
3110 | ada_fixup_array_indexes_type (index_type_desc); | |
3111 | } | |
3112 | ||
262452ec | 3113 | if (index_type_desc != NULL) |
28c85d6c JB |
3114 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
3115 | NULL); | |
262452ec | 3116 | else |
8a48ac95 JB |
3117 | { |
3118 | struct type *elt_type = check_typedef (type); | |
3119 | ||
3120 | for (i = 1; i < n; i++) | |
3121 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
3122 | ||
3123 | index_type = TYPE_INDEX_TYPE (elt_type); | |
3124 | } | |
262452ec | 3125 | |
43bbcdc2 PH |
3126 | return |
3127 | (LONGEST) (which == 0 | |
3128 | ? ada_discrete_type_low_bound (index_type) | |
3129 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
3130 | } |
3131 | ||
3132 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
3133 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
3134 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 3135 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 3136 | |
1eea4ebd | 3137 | static LONGEST |
4dc81987 | 3138 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 3139 | { |
eb479039 JB |
3140 | struct type *arr_type; |
3141 | ||
3142 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3143 | arr = value_ind (arr); | |
3144 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3145 | |
ad82864c JB |
3146 | if (ada_is_constrained_packed_array_type (arr_type)) |
3147 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 3148 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 3149 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 3150 | else |
1eea4ebd | 3151 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
3152 | } |
3153 | ||
3154 | /* Given that arr is an array value, returns the length of the | |
3155 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
3156 | supplied by run-time quantities other than discriminants. |
3157 | Does not work for arrays indexed by enumeration types with representation | |
3158 | clauses at the moment. */ | |
14f9c5c9 | 3159 | |
1eea4ebd | 3160 | static LONGEST |
d2e4a39e | 3161 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 3162 | { |
aa715135 JG |
3163 | struct type *arr_type, *index_type; |
3164 | int low, high; | |
eb479039 JB |
3165 | |
3166 | if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR) | |
3167 | arr = value_ind (arr); | |
3168 | arr_type = value_enclosing_type (arr); | |
14f9c5c9 | 3169 | |
ad82864c JB |
3170 | if (ada_is_constrained_packed_array_type (arr_type)) |
3171 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 3172 | |
4c4b4cd2 | 3173 | if (ada_is_simple_array_type (arr_type)) |
aa715135 JG |
3174 | { |
3175 | low = ada_array_bound_from_type (arr_type, n, 0); | |
3176 | high = ada_array_bound_from_type (arr_type, n, 1); | |
3177 | } | |
14f9c5c9 | 3178 | else |
aa715135 JG |
3179 | { |
3180 | low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0)); | |
3181 | high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1)); | |
3182 | } | |
3183 | ||
f168693b | 3184 | arr_type = check_typedef (arr_type); |
aa715135 JG |
3185 | index_type = TYPE_INDEX_TYPE (arr_type); |
3186 | if (index_type != NULL) | |
3187 | { | |
3188 | struct type *base_type; | |
3189 | if (TYPE_CODE (index_type) == TYPE_CODE_RANGE) | |
3190 | base_type = TYPE_TARGET_TYPE (index_type); | |
3191 | else | |
3192 | base_type = index_type; | |
3193 | ||
3194 | low = pos_atr (value_from_longest (base_type, low)); | |
3195 | high = pos_atr (value_from_longest (base_type, high)); | |
3196 | } | |
3197 | return high - low + 1; | |
4c4b4cd2 PH |
3198 | } |
3199 | ||
3200 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
3201 | with bounds LOW to LOW-1. */ | |
3202 | ||
3203 | static struct value * | |
3204 | empty_array (struct type *arr_type, int low) | |
3205 | { | |
b0dd7688 | 3206 | struct type *arr_type0 = ada_check_typedef (arr_type); |
0c9c3474 SA |
3207 | struct type *index_type |
3208 | = create_static_range_type | |
3209 | (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1); | |
b0dd7688 | 3210 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 3211 | |
0b5d8877 | 3212 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 3213 | } |
14f9c5c9 | 3214 | \f |
d2e4a39e | 3215 | |
4c4b4cd2 | 3216 | /* Name resolution */ |
14f9c5c9 | 3217 | |
4c4b4cd2 PH |
3218 | /* The "decoded" name for the user-definable Ada operator corresponding |
3219 | to OP. */ | |
14f9c5c9 | 3220 | |
d2e4a39e | 3221 | static const char * |
4c4b4cd2 | 3222 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
3223 | { |
3224 | int i; | |
3225 | ||
4c4b4cd2 | 3226 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
3227 | { |
3228 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 3229 | return ada_opname_table[i].decoded; |
14f9c5c9 | 3230 | } |
323e0a4a | 3231 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
3232 | } |
3233 | ||
3234 | ||
4c4b4cd2 PH |
3235 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
3236 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
3237 | undefined namespace) and converts operators that are | |
3238 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
3239 | non-null, it provides a preferred result type [at the moment, only |
3240 | type void has any effect---causing procedures to be preferred over | |
3241 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 3242 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 3243 | |
4c4b4cd2 PH |
3244 | static void |
3245 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 3246 | { |
30b15541 UW |
3247 | struct type *context_type = NULL; |
3248 | int pc = 0; | |
3249 | ||
3250 | if (void_context_p) | |
3251 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
3252 | ||
3253 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
3254 | } |
3255 | ||
4c4b4cd2 PH |
3256 | /* Resolve the operator of the subexpression beginning at |
3257 | position *POS of *EXPP. "Resolving" consists of replacing | |
3258 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
3259 | with their resolutions, replacing built-in operators with | |
3260 | function calls to user-defined operators, where appropriate, and, | |
3261 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
3262 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
3263 | are as in ada_resolve, above. */ | |
14f9c5c9 | 3264 | |
d2e4a39e | 3265 | static struct value * |
4c4b4cd2 | 3266 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 3267 | struct type *context_type) |
14f9c5c9 AS |
3268 | { |
3269 | int pc = *pos; | |
3270 | int i; | |
4c4b4cd2 | 3271 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 3272 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
3273 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
3274 | int nargs; /* Number of operands. */ | |
52ce6436 | 3275 | int oplen; |
14f9c5c9 AS |
3276 | |
3277 | argvec = NULL; | |
3278 | nargs = 0; | |
3279 | exp = *expp; | |
3280 | ||
52ce6436 PH |
3281 | /* Pass one: resolve operands, saving their types and updating *pos, |
3282 | if needed. */ | |
14f9c5c9 AS |
3283 | switch (op) |
3284 | { | |
4c4b4cd2 PH |
3285 | case OP_FUNCALL: |
3286 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
3287 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
3288 | *pos += 7; | |
4c4b4cd2 PH |
3289 | else |
3290 | { | |
3291 | *pos += 3; | |
3292 | resolve_subexp (expp, pos, 0, NULL); | |
3293 | } | |
3294 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
3295 | break; |
3296 | ||
14f9c5c9 | 3297 | case UNOP_ADDR: |
4c4b4cd2 PH |
3298 | *pos += 1; |
3299 | resolve_subexp (expp, pos, 0, NULL); | |
3300 | break; | |
3301 | ||
52ce6436 PH |
3302 | case UNOP_QUAL: |
3303 | *pos += 3; | |
17466c1a | 3304 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
3305 | break; |
3306 | ||
52ce6436 | 3307 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
3308 | case OP_ATR_SIZE: |
3309 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
3310 | case OP_ATR_FIRST: |
3311 | case OP_ATR_LAST: | |
3312 | case OP_ATR_LENGTH: | |
3313 | case OP_ATR_POS: | |
3314 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
3315 | case OP_ATR_MIN: |
3316 | case OP_ATR_MAX: | |
52ce6436 PH |
3317 | case TERNOP_IN_RANGE: |
3318 | case BINOP_IN_BOUNDS: | |
3319 | case UNOP_IN_RANGE: | |
3320 | case OP_AGGREGATE: | |
3321 | case OP_OTHERS: | |
3322 | case OP_CHOICES: | |
3323 | case OP_POSITIONAL: | |
3324 | case OP_DISCRETE_RANGE: | |
3325 | case OP_NAME: | |
3326 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
3327 | *pos += oplen; | |
14f9c5c9 AS |
3328 | break; |
3329 | ||
3330 | case BINOP_ASSIGN: | |
3331 | { | |
4c4b4cd2 PH |
3332 | struct value *arg1; |
3333 | ||
3334 | *pos += 1; | |
3335 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
3336 | if (arg1 == NULL) | |
3337 | resolve_subexp (expp, pos, 1, NULL); | |
3338 | else | |
df407dfe | 3339 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 3340 | break; |
14f9c5c9 AS |
3341 | } |
3342 | ||
4c4b4cd2 | 3343 | case UNOP_CAST: |
4c4b4cd2 PH |
3344 | *pos += 3; |
3345 | nargs = 1; | |
3346 | break; | |
14f9c5c9 | 3347 | |
4c4b4cd2 PH |
3348 | case BINOP_ADD: |
3349 | case BINOP_SUB: | |
3350 | case BINOP_MUL: | |
3351 | case BINOP_DIV: | |
3352 | case BINOP_REM: | |
3353 | case BINOP_MOD: | |
3354 | case BINOP_EXP: | |
3355 | case BINOP_CONCAT: | |
3356 | case BINOP_LOGICAL_AND: | |
3357 | case BINOP_LOGICAL_OR: | |
3358 | case BINOP_BITWISE_AND: | |
3359 | case BINOP_BITWISE_IOR: | |
3360 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 3361 | |
4c4b4cd2 PH |
3362 | case BINOP_EQUAL: |
3363 | case BINOP_NOTEQUAL: | |
3364 | case BINOP_LESS: | |
3365 | case BINOP_GTR: | |
3366 | case BINOP_LEQ: | |
3367 | case BINOP_GEQ: | |
14f9c5c9 | 3368 | |
4c4b4cd2 PH |
3369 | case BINOP_REPEAT: |
3370 | case BINOP_SUBSCRIPT: | |
3371 | case BINOP_COMMA: | |
40c8aaa9 JB |
3372 | *pos += 1; |
3373 | nargs = 2; | |
3374 | break; | |
14f9c5c9 | 3375 | |
4c4b4cd2 PH |
3376 | case UNOP_NEG: |
3377 | case UNOP_PLUS: | |
3378 | case UNOP_LOGICAL_NOT: | |
3379 | case UNOP_ABS: | |
3380 | case UNOP_IND: | |
3381 | *pos += 1; | |
3382 | nargs = 1; | |
3383 | break; | |
14f9c5c9 | 3384 | |
4c4b4cd2 PH |
3385 | case OP_LONG: |
3386 | case OP_DOUBLE: | |
3387 | case OP_VAR_VALUE: | |
74ea4be4 | 3388 | case OP_VAR_MSYM_VALUE: |
4c4b4cd2 PH |
3389 | *pos += 4; |
3390 | break; | |
14f9c5c9 | 3391 | |
4c4b4cd2 PH |
3392 | case OP_TYPE: |
3393 | case OP_BOOL: | |
3394 | case OP_LAST: | |
4c4b4cd2 PH |
3395 | case OP_INTERNALVAR: |
3396 | *pos += 3; | |
3397 | break; | |
14f9c5c9 | 3398 | |
4c4b4cd2 PH |
3399 | case UNOP_MEMVAL: |
3400 | *pos += 3; | |
3401 | nargs = 1; | |
3402 | break; | |
3403 | ||
67f3407f DJ |
3404 | case OP_REGISTER: |
3405 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3406 | break; | |
3407 | ||
4c4b4cd2 PH |
3408 | case STRUCTOP_STRUCT: |
3409 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3410 | nargs = 1; | |
3411 | break; | |
3412 | ||
4c4b4cd2 | 3413 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3414 | *pos += 1; |
3415 | nargs = 3; | |
3416 | break; | |
3417 | ||
52ce6436 | 3418 | case OP_STRING: |
14f9c5c9 | 3419 | break; |
4c4b4cd2 PH |
3420 | |
3421 | default: | |
323e0a4a | 3422 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3423 | } |
3424 | ||
8d749320 | 3425 | argvec = XALLOCAVEC (struct value *, nargs + 1); |
4c4b4cd2 PH |
3426 | for (i = 0; i < nargs; i += 1) |
3427 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3428 | argvec[i] = NULL; | |
3429 | exp = *expp; | |
3430 | ||
3431 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3432 | switch (op) |
3433 | { | |
3434 | default: | |
3435 | break; | |
3436 | ||
14f9c5c9 | 3437 | case OP_VAR_VALUE: |
4c4b4cd2 | 3438 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 | 3439 | { |
d12307c1 | 3440 | struct block_symbol *candidates; |
76a01679 JB |
3441 | int n_candidates; |
3442 | ||
3443 | n_candidates = | |
3444 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3445 | (exp->elts[pc + 2].symbol), | |
3446 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
4eeaa230 | 3447 | &candidates); |
76a01679 JB |
3448 | |
3449 | if (n_candidates > 1) | |
3450 | { | |
3451 | /* Types tend to get re-introduced locally, so if there | |
3452 | are any local symbols that are not types, first filter | |
3453 | out all types. */ | |
3454 | int j; | |
3455 | for (j = 0; j < n_candidates; j += 1) | |
d12307c1 | 3456 | switch (SYMBOL_CLASS (candidates[j].symbol)) |
76a01679 JB |
3457 | { |
3458 | case LOC_REGISTER: | |
3459 | case LOC_ARG: | |
3460 | case LOC_REF_ARG: | |
76a01679 JB |
3461 | case LOC_REGPARM_ADDR: |
3462 | case LOC_LOCAL: | |
76a01679 | 3463 | case LOC_COMPUTED: |
76a01679 JB |
3464 | goto FoundNonType; |
3465 | default: | |
3466 | break; | |
3467 | } | |
3468 | FoundNonType: | |
3469 | if (j < n_candidates) | |
3470 | { | |
3471 | j = 0; | |
3472 | while (j < n_candidates) | |
3473 | { | |
d12307c1 | 3474 | if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF) |
76a01679 JB |
3475 | { |
3476 | candidates[j] = candidates[n_candidates - 1]; | |
3477 | n_candidates -= 1; | |
3478 | } | |
3479 | else | |
3480 | j += 1; | |
3481 | } | |
3482 | } | |
3483 | } | |
3484 | ||
3485 | if (n_candidates == 0) | |
323e0a4a | 3486 | error (_("No definition found for %s"), |
76a01679 JB |
3487 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3488 | else if (n_candidates == 1) | |
3489 | i = 0; | |
3490 | else if (deprocedure_p | |
3491 | && !is_nonfunction (candidates, n_candidates)) | |
3492 | { | |
06d5cf63 JB |
3493 | i = ada_resolve_function |
3494 | (candidates, n_candidates, NULL, 0, | |
3495 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3496 | context_type); | |
76a01679 | 3497 | if (i < 0) |
323e0a4a | 3498 | error (_("Could not find a match for %s"), |
76a01679 JB |
3499 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3500 | } | |
3501 | else | |
3502 | { | |
323e0a4a | 3503 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3504 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3505 | user_select_syms (candidates, n_candidates, 1); | |
3506 | i = 0; | |
3507 | } | |
3508 | ||
3509 | exp->elts[pc + 1].block = candidates[i].block; | |
d12307c1 | 3510 | exp->elts[pc + 2].symbol = candidates[i].symbol; |
1265e4aa JB |
3511 | if (innermost_block == NULL |
3512 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3513 | innermost_block = candidates[i].block; |
3514 | } | |
3515 | ||
3516 | if (deprocedure_p | |
3517 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3518 | == TYPE_CODE_FUNC)) | |
3519 | { | |
3520 | replace_operator_with_call (expp, pc, 0, 0, | |
3521 | exp->elts[pc + 2].symbol, | |
3522 | exp->elts[pc + 1].block); | |
3523 | exp = *expp; | |
3524 | } | |
14f9c5c9 AS |
3525 | break; |
3526 | ||
3527 | case OP_FUNCALL: | |
3528 | { | |
4c4b4cd2 | 3529 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3530 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 | 3531 | { |
d12307c1 | 3532 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3533 | int n_candidates; |
3534 | ||
3535 | n_candidates = | |
76a01679 JB |
3536 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3537 | (exp->elts[pc + 5].symbol), | |
3538 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
4eeaa230 | 3539 | &candidates); |
4c4b4cd2 PH |
3540 | if (n_candidates == 1) |
3541 | i = 0; | |
3542 | else | |
3543 | { | |
06d5cf63 JB |
3544 | i = ada_resolve_function |
3545 | (candidates, n_candidates, | |
3546 | argvec, nargs, | |
3547 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3548 | context_type); | |
4c4b4cd2 | 3549 | if (i < 0) |
323e0a4a | 3550 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3551 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3552 | } | |
3553 | ||
3554 | exp->elts[pc + 4].block = candidates[i].block; | |
d12307c1 | 3555 | exp->elts[pc + 5].symbol = candidates[i].symbol; |
1265e4aa JB |
3556 | if (innermost_block == NULL |
3557 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3558 | innermost_block = candidates[i].block; |
3559 | } | |
14f9c5c9 AS |
3560 | } |
3561 | break; | |
3562 | case BINOP_ADD: | |
3563 | case BINOP_SUB: | |
3564 | case BINOP_MUL: | |
3565 | case BINOP_DIV: | |
3566 | case BINOP_REM: | |
3567 | case BINOP_MOD: | |
3568 | case BINOP_CONCAT: | |
3569 | case BINOP_BITWISE_AND: | |
3570 | case BINOP_BITWISE_IOR: | |
3571 | case BINOP_BITWISE_XOR: | |
3572 | case BINOP_EQUAL: | |
3573 | case BINOP_NOTEQUAL: | |
3574 | case BINOP_LESS: | |
3575 | case BINOP_GTR: | |
3576 | case BINOP_LEQ: | |
3577 | case BINOP_GEQ: | |
3578 | case BINOP_EXP: | |
3579 | case UNOP_NEG: | |
3580 | case UNOP_PLUS: | |
3581 | case UNOP_LOGICAL_NOT: | |
3582 | case UNOP_ABS: | |
3583 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 | 3584 | { |
d12307c1 | 3585 | struct block_symbol *candidates; |
4c4b4cd2 PH |
3586 | int n_candidates; |
3587 | ||
3588 | n_candidates = | |
3589 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3590 | (struct block *) NULL, VAR_DOMAIN, | |
4eeaa230 | 3591 | &candidates); |
4c4b4cd2 | 3592 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, |
76a01679 | 3593 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3594 | if (i < 0) |
3595 | break; | |
3596 | ||
d12307c1 PMR |
3597 | replace_operator_with_call (expp, pc, nargs, 1, |
3598 | candidates[i].symbol, | |
3599 | candidates[i].block); | |
4c4b4cd2 PH |
3600 | exp = *expp; |
3601 | } | |
14f9c5c9 | 3602 | break; |
4c4b4cd2 PH |
3603 | |
3604 | case OP_TYPE: | |
b3dbf008 | 3605 | case OP_REGISTER: |
4c4b4cd2 | 3606 | return NULL; |
14f9c5c9 AS |
3607 | } |
3608 | ||
3609 | *pos = pc; | |
3610 | return evaluate_subexp_type (exp, pos); | |
3611 | } | |
3612 | ||
3613 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3614 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3615 | a non-pointer. */ |
14f9c5c9 | 3616 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3617 | liberal. */ |
14f9c5c9 AS |
3618 | |
3619 | static int | |
4dc81987 | 3620 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3621 | { |
61ee279c PH |
3622 | ftype = ada_check_typedef (ftype); |
3623 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3624 | |
3625 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3626 | ftype = TYPE_TARGET_TYPE (ftype); | |
3627 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3628 | atype = TYPE_TARGET_TYPE (atype); | |
3629 | ||
d2e4a39e | 3630 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3631 | { |
3632 | default: | |
5b3d5b7d | 3633 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3634 | case TYPE_CODE_PTR: |
3635 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3636 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3637 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3638 | else |
1265e4aa JB |
3639 | return (may_deref |
3640 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3641 | case TYPE_CODE_INT: |
3642 | case TYPE_CODE_ENUM: | |
3643 | case TYPE_CODE_RANGE: | |
3644 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3645 | { |
3646 | case TYPE_CODE_INT: | |
3647 | case TYPE_CODE_ENUM: | |
3648 | case TYPE_CODE_RANGE: | |
3649 | return 1; | |
3650 | default: | |
3651 | return 0; | |
3652 | } | |
14f9c5c9 AS |
3653 | |
3654 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3655 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3656 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3657 | |
3658 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3659 | if (ada_is_array_descriptor_type (ftype)) |
3660 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3661 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3662 | else |
4c4b4cd2 PH |
3663 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3664 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3665 | |
3666 | case TYPE_CODE_UNION: | |
3667 | case TYPE_CODE_FLT: | |
3668 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3669 | } | |
3670 | } | |
3671 | ||
3672 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3673 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3674 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3675 | argument function. */ |
14f9c5c9 AS |
3676 | |
3677 | static int | |
d2e4a39e | 3678 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3679 | { |
3680 | int i; | |
d2e4a39e | 3681 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3682 | |
1265e4aa JB |
3683 | if (SYMBOL_CLASS (func) == LOC_CONST |
3684 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3685 | return (n_actuals == 0); |
3686 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3687 | return 0; | |
3688 | ||
3689 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3690 | return 0; | |
3691 | ||
3692 | for (i = 0; i < n_actuals; i += 1) | |
3693 | { | |
4c4b4cd2 | 3694 | if (actuals[i] == NULL) |
76a01679 JB |
3695 | return 0; |
3696 | else | |
3697 | { | |
5b4ee69b MS |
3698 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3699 | i)); | |
df407dfe | 3700 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3701 | |
76a01679 JB |
3702 | if (!ada_type_match (ftype, atype, 1)) |
3703 | return 0; | |
3704 | } | |
14f9c5c9 AS |
3705 | } |
3706 | return 1; | |
3707 | } | |
3708 | ||
3709 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3710 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3711 | FUNC_TYPE is not a valid function type with a non-null return type | |
3712 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3713 | ||
3714 | static int | |
d2e4a39e | 3715 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3716 | { |
d2e4a39e | 3717 | struct type *return_type; |
14f9c5c9 AS |
3718 | |
3719 | if (func_type == NULL) | |
3720 | return 1; | |
3721 | ||
4c4b4cd2 | 3722 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3723 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3724 | else |
18af8284 | 3725 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3726 | if (return_type == NULL) |
3727 | return 1; | |
3728 | ||
18af8284 | 3729 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3730 | |
3731 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3732 | return context_type == NULL || return_type == context_type; | |
3733 | else if (context_type == NULL) | |
3734 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3735 | else | |
3736 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3737 | } | |
3738 | ||
3739 | ||
4c4b4cd2 | 3740 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3741 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3742 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3743 | that returns that type, then eliminate matches that don't. If | |
3744 | CONTEXT_TYPE is void and there is at least one match that does not | |
3745 | return void, eliminate all matches that do. | |
3746 | ||
14f9c5c9 AS |
3747 | Asks the user if there is more than one match remaining. Returns -1 |
3748 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3749 | solely for messages. May re-arrange and modify SYMS in |
3750 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3751 | |
4c4b4cd2 | 3752 | static int |
d12307c1 | 3753 | ada_resolve_function (struct block_symbol syms[], |
4c4b4cd2 PH |
3754 | int nsyms, struct value **args, int nargs, |
3755 | const char *name, struct type *context_type) | |
14f9c5c9 | 3756 | { |
30b15541 | 3757 | int fallback; |
14f9c5c9 | 3758 | int k; |
4c4b4cd2 | 3759 | int m; /* Number of hits */ |
14f9c5c9 | 3760 | |
d2e4a39e | 3761 | m = 0; |
30b15541 UW |
3762 | /* In the first pass of the loop, we only accept functions matching |
3763 | context_type. If none are found, we add a second pass of the loop | |
3764 | where every function is accepted. */ | |
3765 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3766 | { |
3767 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3768 | { |
d12307c1 | 3769 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol)); |
4c4b4cd2 | 3770 | |
d12307c1 | 3771 | if (ada_args_match (syms[k].symbol, args, nargs) |
30b15541 | 3772 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3773 | { |
3774 | syms[m] = syms[k]; | |
3775 | m += 1; | |
3776 | } | |
3777 | } | |
14f9c5c9 AS |
3778 | } |
3779 | ||
dc5c8746 PMR |
3780 | /* If we got multiple matches, ask the user which one to use. Don't do this |
3781 | interactive thing during completion, though, as the purpose of the | |
3782 | completion is providing a list of all possible matches. Prompting the | |
3783 | user to filter it down would be completely unexpected in this case. */ | |
14f9c5c9 AS |
3784 | if (m == 0) |
3785 | return -1; | |
dc5c8746 | 3786 | else if (m > 1 && !parse_completion) |
14f9c5c9 | 3787 | { |
323e0a4a | 3788 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3789 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3790 | return 0; |
3791 | } | |
3792 | return 0; | |
3793 | } | |
3794 | ||
4c4b4cd2 PH |
3795 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3796 | in a listing of choices during disambiguation (see sort_choices, below). | |
3797 | The idea is that overloadings of a subprogram name from the | |
3798 | same package should sort in their source order. We settle for ordering | |
3799 | such symbols by their trailing number (__N or $N). */ | |
3800 | ||
14f9c5c9 | 3801 | static int |
0d5cff50 | 3802 | encoded_ordered_before (const char *N0, const char *N1) |
14f9c5c9 AS |
3803 | { |
3804 | if (N1 == NULL) | |
3805 | return 0; | |
3806 | else if (N0 == NULL) | |
3807 | return 1; | |
3808 | else | |
3809 | { | |
3810 | int k0, k1; | |
5b4ee69b | 3811 | |
d2e4a39e | 3812 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3813 | ; |
d2e4a39e | 3814 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3815 | ; |
d2e4a39e | 3816 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3817 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3818 | { | |
3819 | int n0, n1; | |
5b4ee69b | 3820 | |
4c4b4cd2 PH |
3821 | n0 = k0; |
3822 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3823 | n0 -= 1; | |
3824 | n1 = k1; | |
3825 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3826 | n1 -= 1; | |
3827 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3828 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3829 | } | |
14f9c5c9 AS |
3830 | return (strcmp (N0, N1) < 0); |
3831 | } | |
3832 | } | |
d2e4a39e | 3833 | |
4c4b4cd2 PH |
3834 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3835 | encoded names. */ | |
3836 | ||
d2e4a39e | 3837 | static void |
d12307c1 | 3838 | sort_choices (struct block_symbol syms[], int nsyms) |
14f9c5c9 | 3839 | { |
4c4b4cd2 | 3840 | int i; |
5b4ee69b | 3841 | |
d2e4a39e | 3842 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3843 | { |
d12307c1 | 3844 | struct block_symbol sym = syms[i]; |
14f9c5c9 AS |
3845 | int j; |
3846 | ||
d2e4a39e | 3847 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 | 3848 | { |
d12307c1 PMR |
3849 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol), |
3850 | SYMBOL_LINKAGE_NAME (sym.symbol))) | |
4c4b4cd2 PH |
3851 | break; |
3852 | syms[j + 1] = syms[j]; | |
3853 | } | |
d2e4a39e | 3854 | syms[j + 1] = sym; |
14f9c5c9 AS |
3855 | } |
3856 | } | |
3857 | ||
d72413e6 PMR |
3858 | /* Whether GDB should display formals and return types for functions in the |
3859 | overloads selection menu. */ | |
3860 | static int print_signatures = 1; | |
3861 | ||
3862 | /* Print the signature for SYM on STREAM according to the FLAGS options. For | |
3863 | all but functions, the signature is just the name of the symbol. For | |
3864 | functions, this is the name of the function, the list of types for formals | |
3865 | and the return type (if any). */ | |
3866 | ||
3867 | static void | |
3868 | ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym, | |
3869 | const struct type_print_options *flags) | |
3870 | { | |
3871 | struct type *type = SYMBOL_TYPE (sym); | |
3872 | ||
3873 | fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym)); | |
3874 | if (!print_signatures | |
3875 | || type == NULL | |
3876 | || TYPE_CODE (type) != TYPE_CODE_FUNC) | |
3877 | return; | |
3878 | ||
3879 | if (TYPE_NFIELDS (type) > 0) | |
3880 | { | |
3881 | int i; | |
3882 | ||
3883 | fprintf_filtered (stream, " ("); | |
3884 | for (i = 0; i < TYPE_NFIELDS (type); ++i) | |
3885 | { | |
3886 | if (i > 0) | |
3887 | fprintf_filtered (stream, "; "); | |
3888 | ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0, | |
3889 | flags); | |
3890 | } | |
3891 | fprintf_filtered (stream, ")"); | |
3892 | } | |
3893 | if (TYPE_TARGET_TYPE (type) != NULL | |
3894 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID) | |
3895 | { | |
3896 | fprintf_filtered (stream, " return "); | |
3897 | ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags); | |
3898 | } | |
3899 | } | |
3900 | ||
4c4b4cd2 PH |
3901 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3902 | by asking the user (if necessary), returning the number selected, | |
3903 | and setting the first elements of SYMS items. Error if no symbols | |
3904 | selected. */ | |
14f9c5c9 AS |
3905 | |
3906 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3907 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3908 | |
3909 | int | |
d12307c1 | 3910 | user_select_syms (struct block_symbol *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3911 | { |
3912 | int i; | |
8d749320 | 3913 | int *chosen = XALLOCAVEC (int , nsyms); |
14f9c5c9 AS |
3914 | int n_chosen; |
3915 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3916 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3917 | |
3918 | if (max_results < 1) | |
323e0a4a | 3919 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3920 | if (nsyms <= 1) |
3921 | return nsyms; | |
3922 | ||
717d2f5a JB |
3923 | if (select_mode == multiple_symbols_cancel) |
3924 | error (_("\ | |
3925 | canceled because the command is ambiguous\n\ | |
3926 | See set/show multiple-symbol.")); | |
3927 | ||
3928 | /* If select_mode is "all", then return all possible symbols. | |
3929 | Only do that if more than one symbol can be selected, of course. | |
3930 | Otherwise, display the menu as usual. */ | |
3931 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3932 | return nsyms; | |
3933 | ||
323e0a4a | 3934 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3935 | if (max_results > 1) |
323e0a4a | 3936 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3937 | |
4c4b4cd2 | 3938 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3939 | |
3940 | for (i = 0; i < nsyms; i += 1) | |
3941 | { | |
d12307c1 | 3942 | if (syms[i].symbol == NULL) |
4c4b4cd2 PH |
3943 | continue; |
3944 | ||
d12307c1 | 3945 | if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK) |
4c4b4cd2 | 3946 | { |
76a01679 | 3947 | struct symtab_and_line sal = |
d12307c1 | 3948 | find_function_start_sal (syms[i].symbol, 1); |
5b4ee69b | 3949 | |
d72413e6 PMR |
3950 | printf_unfiltered ("[%d] ", i + first_choice); |
3951 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3952 | &type_print_raw_options); | |
323e0a4a | 3953 | if (sal.symtab == NULL) |
d72413e6 | 3954 | printf_unfiltered (_(" at <no source file available>:%d\n"), |
323e0a4a AC |
3955 | sal.line); |
3956 | else | |
d72413e6 | 3957 | printf_unfiltered (_(" at %s:%d\n"), |
05cba821 JK |
3958 | symtab_to_filename_for_display (sal.symtab), |
3959 | sal.line); | |
4c4b4cd2 PH |
3960 | continue; |
3961 | } | |
d2e4a39e | 3962 | else |
4c4b4cd2 PH |
3963 | { |
3964 | int is_enumeral = | |
d12307c1 PMR |
3965 | (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST |
3966 | && SYMBOL_TYPE (syms[i].symbol) != NULL | |
3967 | && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM); | |
1994afbf DE |
3968 | struct symtab *symtab = NULL; |
3969 | ||
d12307c1 PMR |
3970 | if (SYMBOL_OBJFILE_OWNED (syms[i].symbol)) |
3971 | symtab = symbol_symtab (syms[i].symbol); | |
4c4b4cd2 | 3972 | |
d12307c1 | 3973 | if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL) |
d72413e6 PMR |
3974 | { |
3975 | printf_unfiltered ("[%d] ", i + first_choice); | |
3976 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3977 | &type_print_raw_options); | |
3978 | printf_unfiltered (_(" at %s:%d\n"), | |
3979 | symtab_to_filename_for_display (symtab), | |
3980 | SYMBOL_LINE (syms[i].symbol)); | |
3981 | } | |
76a01679 | 3982 | else if (is_enumeral |
d12307c1 | 3983 | && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL) |
4c4b4cd2 | 3984 | { |
a3f17187 | 3985 | printf_unfiltered (("[%d] "), i + first_choice); |
d12307c1 | 3986 | ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL, |
79d43c61 | 3987 | gdb_stdout, -1, 0, &type_print_raw_options); |
323e0a4a | 3988 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
d12307c1 | 3989 | SYMBOL_PRINT_NAME (syms[i].symbol)); |
4c4b4cd2 | 3990 | } |
d72413e6 PMR |
3991 | else |
3992 | { | |
3993 | printf_unfiltered ("[%d] ", i + first_choice); | |
3994 | ada_print_symbol_signature (gdb_stdout, syms[i].symbol, | |
3995 | &type_print_raw_options); | |
3996 | ||
3997 | if (symtab != NULL) | |
3998 | printf_unfiltered (is_enumeral | |
3999 | ? _(" in %s (enumeral)\n") | |
4000 | : _(" at %s:?\n"), | |
4001 | symtab_to_filename_for_display (symtab)); | |
4002 | else | |
4003 | printf_unfiltered (is_enumeral | |
4004 | ? _(" (enumeral)\n") | |
4005 | : _(" at ?\n")); | |
4006 | } | |
4c4b4cd2 | 4007 | } |
14f9c5c9 | 4008 | } |
d2e4a39e | 4009 | |
14f9c5c9 | 4010 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 4011 | "overload-choice"); |
14f9c5c9 AS |
4012 | |
4013 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 4014 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
4015 | |
4016 | return n_chosen; | |
4017 | } | |
4018 | ||
4019 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 4020 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
4021 | order in CHOICES[0 .. N-1], and return N. |
4022 | ||
4023 | The user types choices as a sequence of numbers on one line | |
4024 | separated by blanks, encoding them as follows: | |
4025 | ||
4c4b4cd2 | 4026 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
4027 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
4028 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
4029 | ||
4c4b4cd2 | 4030 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
4031 | |
4032 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 4033 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
4034 | |
4035 | int | |
d2e4a39e | 4036 | get_selections (int *choices, int n_choices, int max_results, |
a121b7c1 | 4037 | int is_all_choice, const char *annotation_suffix) |
14f9c5c9 | 4038 | { |
d2e4a39e | 4039 | char *args; |
a121b7c1 | 4040 | const char *prompt; |
14f9c5c9 AS |
4041 | int n_chosen; |
4042 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 4043 | |
14f9c5c9 AS |
4044 | prompt = getenv ("PS2"); |
4045 | if (prompt == NULL) | |
0bcd0149 | 4046 | prompt = "> "; |
14f9c5c9 | 4047 | |
0bcd0149 | 4048 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 4049 | |
14f9c5c9 | 4050 | if (args == NULL) |
323e0a4a | 4051 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
4052 | |
4053 | n_chosen = 0; | |
76a01679 | 4054 | |
4c4b4cd2 PH |
4055 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
4056 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
4057 | while (1) |
4058 | { | |
d2e4a39e | 4059 | char *args2; |
14f9c5c9 AS |
4060 | int choice, j; |
4061 | ||
0fcd72ba | 4062 | args = skip_spaces (args); |
14f9c5c9 | 4063 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 4064 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 4065 | else if (*args == '\0') |
4c4b4cd2 | 4066 | break; |
14f9c5c9 AS |
4067 | |
4068 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 4069 | if (args == args2 || choice < 0 |
4c4b4cd2 | 4070 | || choice > n_choices + first_choice - 1) |
323e0a4a | 4071 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
4072 | args = args2; |
4073 | ||
d2e4a39e | 4074 | if (choice == 0) |
323e0a4a | 4075 | error (_("cancelled")); |
14f9c5c9 AS |
4076 | |
4077 | if (choice < first_choice) | |
4c4b4cd2 PH |
4078 | { |
4079 | n_chosen = n_choices; | |
4080 | for (j = 0; j < n_choices; j += 1) | |
4081 | choices[j] = j; | |
4082 | break; | |
4083 | } | |
14f9c5c9 AS |
4084 | choice -= first_choice; |
4085 | ||
d2e4a39e | 4086 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
4087 | { |
4088 | } | |
14f9c5c9 AS |
4089 | |
4090 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
4091 | { |
4092 | int k; | |
5b4ee69b | 4093 | |
4c4b4cd2 PH |
4094 | for (k = n_chosen - 1; k > j; k -= 1) |
4095 | choices[k + 1] = choices[k]; | |
4096 | choices[j + 1] = choice; | |
4097 | n_chosen += 1; | |
4098 | } | |
14f9c5c9 AS |
4099 | } |
4100 | ||
4101 | if (n_chosen > max_results) | |
323e0a4a | 4102 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 4103 | |
14f9c5c9 AS |
4104 | return n_chosen; |
4105 | } | |
4106 | ||
4c4b4cd2 PH |
4107 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
4108 | on the function identified by SYM and BLOCK, and taking NARGS | |
4109 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
4110 | |
4111 | static void | |
d2e4a39e | 4112 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 | 4113 | int oplen, struct symbol *sym, |
270140bd | 4114 | const struct block *block) |
14f9c5c9 AS |
4115 | { |
4116 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 4117 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 4118 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 4119 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 4120 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 4121 | struct expression *exp = *expp; |
14f9c5c9 AS |
4122 | |
4123 | newexp->nelts = exp->nelts + 7 - oplen; | |
4124 | newexp->language_defn = exp->language_defn; | |
3489610d | 4125 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 4126 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 4127 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 4128 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
4129 | |
4130 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
4131 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
4132 | ||
4133 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
4134 | newexp->elts[pc + 4].block = block; | |
4135 | newexp->elts[pc + 5].symbol = sym; | |
4136 | ||
4137 | *expp = newexp; | |
aacb1f0a | 4138 | xfree (exp); |
d2e4a39e | 4139 | } |
14f9c5c9 AS |
4140 | |
4141 | /* Type-class predicates */ | |
4142 | ||
4c4b4cd2 PH |
4143 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
4144 | or FLOAT). */ | |
14f9c5c9 AS |
4145 | |
4146 | static int | |
d2e4a39e | 4147 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
4148 | { |
4149 | if (type == NULL) | |
4150 | return 0; | |
d2e4a39e AS |
4151 | else |
4152 | { | |
4153 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4154 | { |
4155 | case TYPE_CODE_INT: | |
4156 | case TYPE_CODE_FLT: | |
4157 | return 1; | |
4158 | case TYPE_CODE_RANGE: | |
4159 | return (type == TYPE_TARGET_TYPE (type) | |
4160 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
4161 | default: | |
4162 | return 0; | |
4163 | } | |
d2e4a39e | 4164 | } |
14f9c5c9 AS |
4165 | } |
4166 | ||
4c4b4cd2 | 4167 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
4168 | |
4169 | static int | |
d2e4a39e | 4170 | integer_type_p (struct type *type) |
14f9c5c9 AS |
4171 | { |
4172 | if (type == NULL) | |
4173 | return 0; | |
d2e4a39e AS |
4174 | else |
4175 | { | |
4176 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4177 | { |
4178 | case TYPE_CODE_INT: | |
4179 | return 1; | |
4180 | case TYPE_CODE_RANGE: | |
4181 | return (type == TYPE_TARGET_TYPE (type) | |
4182 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
4183 | default: | |
4184 | return 0; | |
4185 | } | |
d2e4a39e | 4186 | } |
14f9c5c9 AS |
4187 | } |
4188 | ||
4c4b4cd2 | 4189 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
4190 | |
4191 | static int | |
d2e4a39e | 4192 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
4193 | { |
4194 | if (type == NULL) | |
4195 | return 0; | |
d2e4a39e AS |
4196 | else |
4197 | { | |
4198 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4199 | { |
4200 | case TYPE_CODE_INT: | |
4201 | case TYPE_CODE_RANGE: | |
4202 | case TYPE_CODE_ENUM: | |
4203 | case TYPE_CODE_FLT: | |
4204 | return 1; | |
4205 | default: | |
4206 | return 0; | |
4207 | } | |
d2e4a39e | 4208 | } |
14f9c5c9 AS |
4209 | } |
4210 | ||
4c4b4cd2 | 4211 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
4212 | |
4213 | static int | |
d2e4a39e | 4214 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
4215 | { |
4216 | if (type == NULL) | |
4217 | return 0; | |
d2e4a39e AS |
4218 | else |
4219 | { | |
4220 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
4221 | { |
4222 | case TYPE_CODE_INT: | |
4223 | case TYPE_CODE_RANGE: | |
4224 | case TYPE_CODE_ENUM: | |
872f0337 | 4225 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
4226 | return 1; |
4227 | default: | |
4228 | return 0; | |
4229 | } | |
d2e4a39e | 4230 | } |
14f9c5c9 AS |
4231 | } |
4232 | ||
4c4b4cd2 PH |
4233 | /* Returns non-zero if OP with operands in the vector ARGS could be |
4234 | a user-defined function. Errs on the side of pre-defined operators | |
4235 | (i.e., result 0). */ | |
14f9c5c9 AS |
4236 | |
4237 | static int | |
d2e4a39e | 4238 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 4239 | { |
76a01679 | 4240 | struct type *type0 = |
df407dfe | 4241 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 4242 | struct type *type1 = |
df407dfe | 4243 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 4244 | |
4c4b4cd2 PH |
4245 | if (type0 == NULL) |
4246 | return 0; | |
4247 | ||
14f9c5c9 AS |
4248 | switch (op) |
4249 | { | |
4250 | default: | |
4251 | return 0; | |
4252 | ||
4253 | case BINOP_ADD: | |
4254 | case BINOP_SUB: | |
4255 | case BINOP_MUL: | |
4256 | case BINOP_DIV: | |
d2e4a39e | 4257 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
4258 | |
4259 | case BINOP_REM: | |
4260 | case BINOP_MOD: | |
4261 | case BINOP_BITWISE_AND: | |
4262 | case BINOP_BITWISE_IOR: | |
4263 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 4264 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4265 | |
4266 | case BINOP_EQUAL: | |
4267 | case BINOP_NOTEQUAL: | |
4268 | case BINOP_LESS: | |
4269 | case BINOP_GTR: | |
4270 | case BINOP_LEQ: | |
4271 | case BINOP_GEQ: | |
d2e4a39e | 4272 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
4273 | |
4274 | case BINOP_CONCAT: | |
ee90b9ab | 4275 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
4276 | |
4277 | case BINOP_EXP: | |
d2e4a39e | 4278 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
4279 | |
4280 | case UNOP_NEG: | |
4281 | case UNOP_PLUS: | |
4282 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
4283 | case UNOP_ABS: |
4284 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
4285 | |
4286 | } | |
4287 | } | |
4288 | \f | |
4c4b4cd2 | 4289 | /* Renaming */ |
14f9c5c9 | 4290 | |
aeb5907d JB |
4291 | /* NOTES: |
4292 | ||
4293 | 1. In the following, we assume that a renaming type's name may | |
4294 | have an ___XD suffix. It would be nice if this went away at some | |
4295 | point. | |
4296 | 2. We handle both the (old) purely type-based representation of | |
4297 | renamings and the (new) variable-based encoding. At some point, | |
4298 | it is devoutly to be hoped that the former goes away | |
4299 | (FIXME: hilfinger-2007-07-09). | |
4300 | 3. Subprogram renamings are not implemented, although the XRS | |
4301 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
4302 | ||
4303 | /* If SYM encodes a renaming, | |
4304 | ||
4305 | <renaming> renames <renamed entity>, | |
4306 | ||
4307 | sets *LEN to the length of the renamed entity's name, | |
4308 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
4309 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 4310 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
4311 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
4312 | are undefined). Otherwise, returns a value indicating the category | |
4313 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
4314 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
4315 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
4316 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
4317 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
4318 | may be NULL, in which case they are not assigned. | |
4319 | ||
4320 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
4321 | ||
4322 | enum ada_renaming_category | |
4323 | ada_parse_renaming (struct symbol *sym, | |
4324 | const char **renamed_entity, int *len, | |
4325 | const char **renaming_expr) | |
4326 | { | |
4327 | enum ada_renaming_category kind; | |
4328 | const char *info; | |
4329 | const char *suffix; | |
4330 | ||
4331 | if (sym == NULL) | |
4332 | return ADA_NOT_RENAMING; | |
4333 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 4334 | { |
aeb5907d JB |
4335 | default: |
4336 | return ADA_NOT_RENAMING; | |
4337 | case LOC_TYPEDEF: | |
4338 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
4339 | renamed_entity, len, renaming_expr); | |
4340 | case LOC_LOCAL: | |
4341 | case LOC_STATIC: | |
4342 | case LOC_COMPUTED: | |
4343 | case LOC_OPTIMIZED_OUT: | |
4344 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
4345 | if (info == NULL) | |
4346 | return ADA_NOT_RENAMING; | |
4347 | switch (info[5]) | |
4348 | { | |
4349 | case '_': | |
4350 | kind = ADA_OBJECT_RENAMING; | |
4351 | info += 6; | |
4352 | break; | |
4353 | case 'E': | |
4354 | kind = ADA_EXCEPTION_RENAMING; | |
4355 | info += 7; | |
4356 | break; | |
4357 | case 'P': | |
4358 | kind = ADA_PACKAGE_RENAMING; | |
4359 | info += 7; | |
4360 | break; | |
4361 | case 'S': | |
4362 | kind = ADA_SUBPROGRAM_RENAMING; | |
4363 | info += 7; | |
4364 | break; | |
4365 | default: | |
4366 | return ADA_NOT_RENAMING; | |
4367 | } | |
14f9c5c9 | 4368 | } |
4c4b4cd2 | 4369 | |
aeb5907d JB |
4370 | if (renamed_entity != NULL) |
4371 | *renamed_entity = info; | |
4372 | suffix = strstr (info, "___XE"); | |
4373 | if (suffix == NULL || suffix == info) | |
4374 | return ADA_NOT_RENAMING; | |
4375 | if (len != NULL) | |
4376 | *len = strlen (info) - strlen (suffix); | |
4377 | suffix += 5; | |
4378 | if (renaming_expr != NULL) | |
4379 | *renaming_expr = suffix; | |
4380 | return kind; | |
4381 | } | |
4382 | ||
4383 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
4384 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
4385 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
4386 | ADA_NOT_RENAMING otherwise. */ | |
4387 | static enum ada_renaming_category | |
4388 | parse_old_style_renaming (struct type *type, | |
4389 | const char **renamed_entity, int *len, | |
4390 | const char **renaming_expr) | |
4391 | { | |
4392 | enum ada_renaming_category kind; | |
4393 | const char *name; | |
4394 | const char *info; | |
4395 | const char *suffix; | |
14f9c5c9 | 4396 | |
aeb5907d JB |
4397 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
4398 | || TYPE_NFIELDS (type) != 1) | |
4399 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 4400 | |
aeb5907d JB |
4401 | name = type_name_no_tag (type); |
4402 | if (name == NULL) | |
4403 | return ADA_NOT_RENAMING; | |
4404 | ||
4405 | name = strstr (name, "___XR"); | |
4406 | if (name == NULL) | |
4407 | return ADA_NOT_RENAMING; | |
4408 | switch (name[5]) | |
4409 | { | |
4410 | case '\0': | |
4411 | case '_': | |
4412 | kind = ADA_OBJECT_RENAMING; | |
4413 | break; | |
4414 | case 'E': | |
4415 | kind = ADA_EXCEPTION_RENAMING; | |
4416 | break; | |
4417 | case 'P': | |
4418 | kind = ADA_PACKAGE_RENAMING; | |
4419 | break; | |
4420 | case 'S': | |
4421 | kind = ADA_SUBPROGRAM_RENAMING; | |
4422 | break; | |
4423 | default: | |
4424 | return ADA_NOT_RENAMING; | |
4425 | } | |
14f9c5c9 | 4426 | |
aeb5907d JB |
4427 | info = TYPE_FIELD_NAME (type, 0); |
4428 | if (info == NULL) | |
4429 | return ADA_NOT_RENAMING; | |
4430 | if (renamed_entity != NULL) | |
4431 | *renamed_entity = info; | |
4432 | suffix = strstr (info, "___XE"); | |
4433 | if (renaming_expr != NULL) | |
4434 | *renaming_expr = suffix + 5; | |
4435 | if (suffix == NULL || suffix == info) | |
4436 | return ADA_NOT_RENAMING; | |
4437 | if (len != NULL) | |
4438 | *len = suffix - info; | |
4439 | return kind; | |
a5ee536b JB |
4440 | } |
4441 | ||
4442 | /* Compute the value of the given RENAMING_SYM, which is expected to | |
4443 | be a symbol encoding a renaming expression. BLOCK is the block | |
4444 | used to evaluate the renaming. */ | |
52ce6436 | 4445 | |
a5ee536b JB |
4446 | static struct value * |
4447 | ada_read_renaming_var_value (struct symbol *renaming_sym, | |
3977b71f | 4448 | const struct block *block) |
a5ee536b | 4449 | { |
bbc13ae3 | 4450 | const char *sym_name; |
a5ee536b | 4451 | |
bbc13ae3 | 4452 | sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); |
4d01a485 PA |
4453 | expression_up expr = parse_exp_1 (&sym_name, 0, block, 0); |
4454 | return evaluate_expression (expr.get ()); | |
a5ee536b | 4455 | } |
14f9c5c9 | 4456 | \f |
d2e4a39e | 4457 | |
4c4b4cd2 | 4458 | /* Evaluation: Function Calls */ |
14f9c5c9 | 4459 | |
4c4b4cd2 | 4460 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
4461 | lvalues, and otherwise has the side-effect of allocating memory |
4462 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 4463 | |
d2e4a39e | 4464 | static struct value * |
40bc484c | 4465 | ensure_lval (struct value *val) |
14f9c5c9 | 4466 | { |
40bc484c JB |
4467 | if (VALUE_LVAL (val) == not_lval |
4468 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4469 | { |
df407dfe | 4470 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4471 | const CORE_ADDR addr = |
4472 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4473 | |
a84a8a0d | 4474 | VALUE_LVAL (val) = lval_memory; |
1a088441 | 4475 | set_value_address (val, addr); |
40bc484c | 4476 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4477 | } |
14f9c5c9 AS |
4478 | |
4479 | return val; | |
4480 | } | |
4481 | ||
4482 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4483 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4484 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4485 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4486 | |
a93c0eb6 | 4487 | struct value * |
40bc484c | 4488 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4489 | { |
df407dfe | 4490 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4491 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4492 | struct type *formal_target = |
4493 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4494 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4495 | struct type *actual_target = |
4496 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4497 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4498 | |
4c4b4cd2 | 4499 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4500 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4501 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4502 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4503 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4504 | { |
a84a8a0d | 4505 | struct value *result; |
5b4ee69b | 4506 | |
14f9c5c9 | 4507 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4508 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4509 | result = desc_data (actual); |
14f9c5c9 | 4510 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4511 | { |
4512 | if (VALUE_LVAL (actual) != lval_memory) | |
4513 | { | |
4514 | struct value *val; | |
5b4ee69b | 4515 | |
df407dfe | 4516 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4517 | val = allocate_value (actual_type); |
990a07ab | 4518 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4519 | (char *) value_contents (actual), |
4c4b4cd2 | 4520 | TYPE_LENGTH (actual_type)); |
40bc484c | 4521 | actual = ensure_lval (val); |
4c4b4cd2 | 4522 | } |
a84a8a0d | 4523 | result = value_addr (actual); |
4c4b4cd2 | 4524 | } |
a84a8a0d JB |
4525 | else |
4526 | return actual; | |
b1af9e97 | 4527 | return value_cast_pointers (formal_type, result, 0); |
14f9c5c9 AS |
4528 | } |
4529 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4530 | return ada_value_ind (actual); | |
8344af1e JB |
4531 | else if (ada_is_aligner_type (formal_type)) |
4532 | { | |
4533 | /* We need to turn this parameter into an aligner type | |
4534 | as well. */ | |
4535 | struct value *aligner = allocate_value (formal_type); | |
4536 | struct value *component = ada_value_struct_elt (aligner, "F", 0); | |
4537 | ||
4538 | value_assign_to_component (aligner, component, actual); | |
4539 | return aligner; | |
4540 | } | |
14f9c5c9 AS |
4541 | |
4542 | return actual; | |
4543 | } | |
4544 | ||
438c98a1 JB |
4545 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4546 | type TYPE. This is usually an inefficient no-op except on some targets | |
4547 | (such as AVR) where the representation of a pointer and an address | |
4548 | differs. */ | |
4549 | ||
4550 | static CORE_ADDR | |
4551 | value_pointer (struct value *value, struct type *type) | |
4552 | { | |
4553 | struct gdbarch *gdbarch = get_type_arch (type); | |
4554 | unsigned len = TYPE_LENGTH (type); | |
224c3ddb | 4555 | gdb_byte *buf = (gdb_byte *) alloca (len); |
438c98a1 JB |
4556 | CORE_ADDR addr; |
4557 | ||
4558 | addr = value_address (value); | |
4559 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4560 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4561 | return addr; | |
4562 | } | |
4563 | ||
14f9c5c9 | 4564 | |
4c4b4cd2 PH |
4565 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4566 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4567 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4568 | to-descriptor type rather than a descriptor type), a struct value * |
4569 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4570 | |
d2e4a39e | 4571 | static struct value * |
40bc484c | 4572 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4573 | { |
d2e4a39e AS |
4574 | struct type *bounds_type = desc_bounds_type (type); |
4575 | struct type *desc_type = desc_base_type (type); | |
4576 | struct value *descriptor = allocate_value (desc_type); | |
4577 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4578 | int i; |
d2e4a39e | 4579 | |
0963b4bd MS |
4580 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4581 | i > 0; i -= 1) | |
14f9c5c9 | 4582 | { |
19f220c3 JK |
4583 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4584 | ada_array_bound (arr, i, 0), | |
4585 | desc_bound_bitpos (bounds_type, i, 0), | |
4586 | desc_bound_bitsize (bounds_type, i, 0)); | |
4587 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4588 | ada_array_bound (arr, i, 1), | |
4589 | desc_bound_bitpos (bounds_type, i, 1), | |
4590 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4591 | } |
d2e4a39e | 4592 | |
40bc484c | 4593 | bounds = ensure_lval (bounds); |
d2e4a39e | 4594 | |
19f220c3 JK |
4595 | modify_field (value_type (descriptor), |
4596 | value_contents_writeable (descriptor), | |
4597 | value_pointer (ensure_lval (arr), | |
4598 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4599 | fat_pntr_data_bitpos (desc_type), | |
4600 | fat_pntr_data_bitsize (desc_type)); | |
4601 | ||
4602 | modify_field (value_type (descriptor), | |
4603 | value_contents_writeable (descriptor), | |
4604 | value_pointer (bounds, | |
4605 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4606 | fat_pntr_bounds_bitpos (desc_type), | |
4607 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4608 | |
40bc484c | 4609 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4610 | |
4611 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4612 | return value_addr (descriptor); | |
4613 | else | |
4614 | return descriptor; | |
4615 | } | |
14f9c5c9 | 4616 | \f |
3d9434b5 JB |
4617 | /* Symbol Cache Module */ |
4618 | ||
3d9434b5 | 4619 | /* Performance measurements made as of 2010-01-15 indicate that |
ee01b665 | 4620 | this cache does bring some noticeable improvements. Depending |
3d9434b5 JB |
4621 | on the type of entity being printed, the cache can make it as much |
4622 | as an order of magnitude faster than without it. | |
4623 | ||
4624 | The descriptive type DWARF extension has significantly reduced | |
4625 | the need for this cache, at least when DWARF is being used. However, | |
4626 | even in this case, some expensive name-based symbol searches are still | |
4627 | sometimes necessary - to find an XVZ variable, mostly. */ | |
4628 | ||
ee01b665 | 4629 | /* Initialize the contents of SYM_CACHE. */ |
3d9434b5 | 4630 | |
ee01b665 JB |
4631 | static void |
4632 | ada_init_symbol_cache (struct ada_symbol_cache *sym_cache) | |
4633 | { | |
4634 | obstack_init (&sym_cache->cache_space); | |
4635 | memset (sym_cache->root, '\000', sizeof (sym_cache->root)); | |
4636 | } | |
3d9434b5 | 4637 | |
ee01b665 JB |
4638 | /* Free the memory used by SYM_CACHE. */ |
4639 | ||
4640 | static void | |
4641 | ada_free_symbol_cache (struct ada_symbol_cache *sym_cache) | |
3d9434b5 | 4642 | { |
ee01b665 JB |
4643 | obstack_free (&sym_cache->cache_space, NULL); |
4644 | xfree (sym_cache); | |
4645 | } | |
3d9434b5 | 4646 | |
ee01b665 JB |
4647 | /* Return the symbol cache associated to the given program space PSPACE. |
4648 | If not allocated for this PSPACE yet, allocate and initialize one. */ | |
3d9434b5 | 4649 | |
ee01b665 JB |
4650 | static struct ada_symbol_cache * |
4651 | ada_get_symbol_cache (struct program_space *pspace) | |
4652 | { | |
4653 | struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace); | |
ee01b665 | 4654 | |
66c168ae | 4655 | if (pspace_data->sym_cache == NULL) |
ee01b665 | 4656 | { |
66c168ae JB |
4657 | pspace_data->sym_cache = XCNEW (struct ada_symbol_cache); |
4658 | ada_init_symbol_cache (pspace_data->sym_cache); | |
ee01b665 JB |
4659 | } |
4660 | ||
66c168ae | 4661 | return pspace_data->sym_cache; |
ee01b665 | 4662 | } |
3d9434b5 JB |
4663 | |
4664 | /* Clear all entries from the symbol cache. */ | |
4665 | ||
4666 | static void | |
4667 | ada_clear_symbol_cache (void) | |
4668 | { | |
ee01b665 JB |
4669 | struct ada_symbol_cache *sym_cache |
4670 | = ada_get_symbol_cache (current_program_space); | |
4671 | ||
4672 | obstack_free (&sym_cache->cache_space, NULL); | |
4673 | ada_init_symbol_cache (sym_cache); | |
3d9434b5 JB |
4674 | } |
4675 | ||
fe978cb0 | 4676 | /* Search our cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4677 | Return it if found, or NULL otherwise. */ |
4678 | ||
4679 | static struct cache_entry ** | |
fe978cb0 | 4680 | find_entry (const char *name, domain_enum domain) |
3d9434b5 | 4681 | { |
ee01b665 JB |
4682 | struct ada_symbol_cache *sym_cache |
4683 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4684 | int h = msymbol_hash (name) % HASH_SIZE; |
4685 | struct cache_entry **e; | |
4686 | ||
ee01b665 | 4687 | for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next) |
3d9434b5 | 4688 | { |
fe978cb0 | 4689 | if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0) |
3d9434b5 JB |
4690 | return e; |
4691 | } | |
4692 | return NULL; | |
4693 | } | |
4694 | ||
fe978cb0 | 4695 | /* Search the symbol cache for an entry matching NAME and DOMAIN. |
3d9434b5 JB |
4696 | Return 1 if found, 0 otherwise. |
4697 | ||
4698 | If an entry was found and SYM is not NULL, set *SYM to the entry's | |
4699 | SYM. Same principle for BLOCK if not NULL. */ | |
96d887e8 | 4700 | |
96d887e8 | 4701 | static int |
fe978cb0 | 4702 | lookup_cached_symbol (const char *name, domain_enum domain, |
f0c5f9b2 | 4703 | struct symbol **sym, const struct block **block) |
96d887e8 | 4704 | { |
fe978cb0 | 4705 | struct cache_entry **e = find_entry (name, domain); |
3d9434b5 JB |
4706 | |
4707 | if (e == NULL) | |
4708 | return 0; | |
4709 | if (sym != NULL) | |
4710 | *sym = (*e)->sym; | |
4711 | if (block != NULL) | |
4712 | *block = (*e)->block; | |
4713 | return 1; | |
96d887e8 PH |
4714 | } |
4715 | ||
3d9434b5 | 4716 | /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME |
fe978cb0 | 4717 | in domain DOMAIN, save this result in our symbol cache. */ |
3d9434b5 | 4718 | |
96d887e8 | 4719 | static void |
fe978cb0 | 4720 | cache_symbol (const char *name, domain_enum domain, struct symbol *sym, |
270140bd | 4721 | const struct block *block) |
96d887e8 | 4722 | { |
ee01b665 JB |
4723 | struct ada_symbol_cache *sym_cache |
4724 | = ada_get_symbol_cache (current_program_space); | |
3d9434b5 JB |
4725 | int h; |
4726 | char *copy; | |
4727 | struct cache_entry *e; | |
4728 | ||
1994afbf DE |
4729 | /* Symbols for builtin types don't have a block. |
4730 | For now don't cache such symbols. */ | |
4731 | if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym)) | |
4732 | return; | |
4733 | ||
3d9434b5 JB |
4734 | /* If the symbol is a local symbol, then do not cache it, as a search |
4735 | for that symbol depends on the context. To determine whether | |
4736 | the symbol is local or not, we check the block where we found it | |
4737 | against the global and static blocks of its associated symtab. */ | |
4738 | if (sym | |
08be3fe3 | 4739 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4740 | GLOBAL_BLOCK) != block |
08be3fe3 | 4741 | && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)), |
439247b6 | 4742 | STATIC_BLOCK) != block) |
3d9434b5 JB |
4743 | return; |
4744 | ||
4745 | h = msymbol_hash (name) % HASH_SIZE; | |
ee01b665 JB |
4746 | e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space, |
4747 | sizeof (*e)); | |
4748 | e->next = sym_cache->root[h]; | |
4749 | sym_cache->root[h] = e; | |
224c3ddb SM |
4750 | e->name = copy |
4751 | = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1); | |
3d9434b5 JB |
4752 | strcpy (copy, name); |
4753 | e->sym = sym; | |
fe978cb0 | 4754 | e->domain = domain; |
3d9434b5 | 4755 | e->block = block; |
96d887e8 | 4756 | } |
4c4b4cd2 PH |
4757 | \f |
4758 | /* Symbol Lookup */ | |
4759 | ||
c0431670 JB |
4760 | /* Return nonzero if wild matching should be used when searching for |
4761 | all symbols matching LOOKUP_NAME. | |
4762 | ||
4763 | LOOKUP_NAME is expected to be a symbol name after transformation | |
4764 | for Ada lookups (see ada_name_for_lookup). */ | |
4765 | ||
4766 | static int | |
4767 | should_use_wild_match (const char *lookup_name) | |
4768 | { | |
4769 | return (strstr (lookup_name, "__") == NULL); | |
4770 | } | |
4771 | ||
4c4b4cd2 PH |
4772 | /* Return the result of a standard (literal, C-like) lookup of NAME in |
4773 | given DOMAIN, visible from lexical block BLOCK. */ | |
4774 | ||
4775 | static struct symbol * | |
4776 | standard_lookup (const char *name, const struct block *block, | |
4777 | domain_enum domain) | |
4778 | { | |
acbd605d | 4779 | /* Initialize it just to avoid a GCC false warning. */ |
d12307c1 | 4780 | struct block_symbol sym = {NULL, NULL}; |
4c4b4cd2 | 4781 | |
d12307c1 PMR |
4782 | if (lookup_cached_symbol (name, domain, &sym.symbol, NULL)) |
4783 | return sym.symbol; | |
2570f2b7 | 4784 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
d12307c1 PMR |
4785 | cache_symbol (name, domain, sym.symbol, sym.block); |
4786 | return sym.symbol; | |
4c4b4cd2 PH |
4787 | } |
4788 | ||
4789 | ||
4790 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4791 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4792 | since they contend in overloading in the same way. */ | |
4793 | static int | |
d12307c1 | 4794 | is_nonfunction (struct block_symbol syms[], int n) |
4c4b4cd2 PH |
4795 | { |
4796 | int i; | |
4797 | ||
4798 | for (i = 0; i < n; i += 1) | |
d12307c1 PMR |
4799 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC |
4800 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM | |
4801 | || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST)) | |
14f9c5c9 AS |
4802 | return 1; |
4803 | ||
4804 | return 0; | |
4805 | } | |
4806 | ||
4807 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4808 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4809 | |
4810 | static int | |
d2e4a39e | 4811 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4812 | { |
d2e4a39e | 4813 | if (type0 == type1) |
14f9c5c9 | 4814 | return 1; |
d2e4a39e | 4815 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4816 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4817 | return 0; | |
d2e4a39e | 4818 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4819 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4820 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4821 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4822 | return 1; |
d2e4a39e | 4823 | |
14f9c5c9 AS |
4824 | return 0; |
4825 | } | |
4826 | ||
4827 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4828 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4829 | |
4830 | static int | |
d2e4a39e | 4831 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4832 | { |
4833 | if (sym0 == sym1) | |
4834 | return 1; | |
176620f1 | 4835 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4836 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4837 | return 0; | |
4838 | ||
d2e4a39e | 4839 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4840 | { |
4841 | case LOC_UNDEF: | |
4842 | return 1; | |
4843 | case LOC_TYPEDEF: | |
4844 | { | |
4c4b4cd2 PH |
4845 | struct type *type0 = SYMBOL_TYPE (sym0); |
4846 | struct type *type1 = SYMBOL_TYPE (sym1); | |
0d5cff50 DE |
4847 | const char *name0 = SYMBOL_LINKAGE_NAME (sym0); |
4848 | const char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4c4b4cd2 | 4849 | int len0 = strlen (name0); |
5b4ee69b | 4850 | |
4c4b4cd2 PH |
4851 | return |
4852 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4853 | && (equiv_types (type0, type1) | |
4854 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
61012eef | 4855 | && startswith (name1 + len0, "___XV"))); |
14f9c5c9 AS |
4856 | } |
4857 | case LOC_CONST: | |
4858 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4859 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4860 | default: |
4861 | return 0; | |
14f9c5c9 AS |
4862 | } |
4863 | } | |
4864 | ||
d12307c1 | 4865 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol |
4c4b4cd2 | 4866 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ |
14f9c5c9 AS |
4867 | |
4868 | static void | |
76a01679 JB |
4869 | add_defn_to_vec (struct obstack *obstackp, |
4870 | struct symbol *sym, | |
f0c5f9b2 | 4871 | const struct block *block) |
14f9c5c9 AS |
4872 | { |
4873 | int i; | |
d12307c1 | 4874 | struct block_symbol *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4875 | |
529cad9c PH |
4876 | /* Do not try to complete stub types, as the debugger is probably |
4877 | already scanning all symbols matching a certain name at the | |
4878 | time when this function is called. Trying to replace the stub | |
4879 | type by its associated full type will cause us to restart a scan | |
4880 | which may lead to an infinite recursion. Instead, the client | |
4881 | collecting the matching symbols will end up collecting several | |
4882 | matches, with at least one of them complete. It can then filter | |
4883 | out the stub ones if needed. */ | |
4884 | ||
4c4b4cd2 PH |
4885 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4886 | { | |
d12307c1 | 4887 | if (lesseq_defined_than (sym, prevDefns[i].symbol)) |
4c4b4cd2 | 4888 | return; |
d12307c1 | 4889 | else if (lesseq_defined_than (prevDefns[i].symbol, sym)) |
4c4b4cd2 | 4890 | { |
d12307c1 | 4891 | prevDefns[i].symbol = sym; |
4c4b4cd2 | 4892 | prevDefns[i].block = block; |
4c4b4cd2 | 4893 | return; |
76a01679 | 4894 | } |
4c4b4cd2 PH |
4895 | } |
4896 | ||
4897 | { | |
d12307c1 | 4898 | struct block_symbol info; |
4c4b4cd2 | 4899 | |
d12307c1 | 4900 | info.symbol = sym; |
4c4b4cd2 | 4901 | info.block = block; |
d12307c1 | 4902 | obstack_grow (obstackp, &info, sizeof (struct block_symbol)); |
4c4b4cd2 PH |
4903 | } |
4904 | } | |
4905 | ||
d12307c1 PMR |
4906 | /* Number of block_symbol structures currently collected in current vector in |
4907 | OBSTACKP. */ | |
4c4b4cd2 | 4908 | |
76a01679 JB |
4909 | static int |
4910 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 | 4911 | { |
d12307c1 | 4912 | return obstack_object_size (obstackp) / sizeof (struct block_symbol); |
4c4b4cd2 PH |
4913 | } |
4914 | ||
d12307c1 PMR |
4915 | /* Vector of block_symbol structures currently collected in current vector in |
4916 | OBSTACKP. If FINISH, close off the vector and return its final address. */ | |
4c4b4cd2 | 4917 | |
d12307c1 | 4918 | static struct block_symbol * |
4c4b4cd2 PH |
4919 | defns_collected (struct obstack *obstackp, int finish) |
4920 | { | |
4921 | if (finish) | |
224c3ddb | 4922 | return (struct block_symbol *) obstack_finish (obstackp); |
4c4b4cd2 | 4923 | else |
d12307c1 | 4924 | return (struct block_symbol *) obstack_base (obstackp); |
4c4b4cd2 PH |
4925 | } |
4926 | ||
7c7b6655 TT |
4927 | /* Return a bound minimal symbol matching NAME according to Ada |
4928 | decoding rules. Returns an invalid symbol if there is no such | |
4929 | minimal symbol. Names prefixed with "standard__" are handled | |
4930 | specially: "standard__" is first stripped off, and only static and | |
4931 | global symbols are searched. */ | |
4c4b4cd2 | 4932 | |
7c7b6655 | 4933 | struct bound_minimal_symbol |
96d887e8 | 4934 | ada_lookup_simple_minsym (const char *name) |
4c4b4cd2 | 4935 | { |
7c7b6655 | 4936 | struct bound_minimal_symbol result; |
4c4b4cd2 | 4937 | struct objfile *objfile; |
96d887e8 | 4938 | struct minimal_symbol *msymbol; |
dc4024cd | 4939 | const int wild_match_p = should_use_wild_match (name); |
4c4b4cd2 | 4940 | |
7c7b6655 TT |
4941 | memset (&result, 0, sizeof (result)); |
4942 | ||
c0431670 JB |
4943 | /* Special case: If the user specifies a symbol name inside package |
4944 | Standard, do a non-wild matching of the symbol name without | |
4945 | the "standard__" prefix. This was primarily introduced in order | |
4946 | to allow the user to specifically access the standard exceptions | |
4947 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4948 | is ambiguous (due to the user defining its own Constraint_Error | |
4949 | entity inside its program). */ | |
61012eef | 4950 | if (startswith (name, "standard__")) |
c0431670 | 4951 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4952 | |
96d887e8 PH |
4953 | ALL_MSYMBOLS (objfile, msymbol) |
4954 | { | |
efd66ac6 | 4955 | if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) |
96d887e8 | 4956 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
7c7b6655 TT |
4957 | { |
4958 | result.minsym = msymbol; | |
4959 | result.objfile = objfile; | |
4960 | break; | |
4961 | } | |
96d887e8 | 4962 | } |
4c4b4cd2 | 4963 | |
7c7b6655 | 4964 | return result; |
96d887e8 | 4965 | } |
4c4b4cd2 | 4966 | |
96d887e8 PH |
4967 | /* For all subprograms that statically enclose the subprogram of the |
4968 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4969 | and their blocks to the list of data in OBSTACKP, as for | |
48b78332 JB |
4970 | ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME |
4971 | with a wildcard prefix. */ | |
4c4b4cd2 | 4972 | |
96d887e8 PH |
4973 | static void |
4974 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
fe978cb0 | 4975 | const char *name, domain_enum domain, |
48b78332 | 4976 | int wild_match_p) |
96d887e8 | 4977 | { |
96d887e8 | 4978 | } |
14f9c5c9 | 4979 | |
96d887e8 PH |
4980 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4981 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4982 | |
96d887e8 PH |
4983 | static int |
4984 | is_nondebugging_type (struct type *type) | |
4985 | { | |
0d5cff50 | 4986 | const char *name = ada_type_name (type); |
5b4ee69b | 4987 | |
96d887e8 PH |
4988 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4989 | } | |
4c4b4cd2 | 4990 | |
8f17729f JB |
4991 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4992 | that are deemed "identical" for practical purposes. | |
4993 | ||
4994 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4995 | types and that their number of enumerals is identical (in other | |
4996 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4997 | ||
4998 | static int | |
4999 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
5000 | { | |
5001 | int i; | |
5002 | ||
5003 | /* The heuristic we use here is fairly conservative. We consider | |
5004 | that 2 enumerate types are identical if they have the same | |
5005 | number of enumerals and that all enumerals have the same | |
5006 | underlying value and name. */ | |
5007 | ||
5008 | /* All enums in the type should have an identical underlying value. */ | |
5009 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
14e75d8e | 5010 | if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) |
8f17729f JB |
5011 | return 0; |
5012 | ||
5013 | /* All enumerals should also have the same name (modulo any numerical | |
5014 | suffix). */ | |
5015 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
5016 | { | |
0d5cff50 DE |
5017 | const char *name_1 = TYPE_FIELD_NAME (type1, i); |
5018 | const char *name_2 = TYPE_FIELD_NAME (type2, i); | |
8f17729f JB |
5019 | int len_1 = strlen (name_1); |
5020 | int len_2 = strlen (name_2); | |
5021 | ||
5022 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
5023 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
5024 | if (len_1 != len_2 | |
5025 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
5026 | TYPE_FIELD_NAME (type2, i), | |
5027 | len_1) != 0) | |
5028 | return 0; | |
5029 | } | |
5030 | ||
5031 | return 1; | |
5032 | } | |
5033 | ||
5034 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
5035 | that are deemed "identical" for practical purposes. Sometimes, | |
5036 | enumerals are not strictly identical, but their types are so similar | |
5037 | that they can be considered identical. | |
5038 | ||
5039 | For instance, consider the following code: | |
5040 | ||
5041 | type Color is (Black, Red, Green, Blue, White); | |
5042 | type RGB_Color is new Color range Red .. Blue; | |
5043 | ||
5044 | Type RGB_Color is a subrange of an implicit type which is a copy | |
5045 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
5046 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
5047 | As a result, when an expression references any of the enumeral | |
5048 | by name (Eg. "print green"), the expression is technically | |
5049 | ambiguous and the user should be asked to disambiguate. But | |
5050 | doing so would only hinder the user, since it wouldn't matter | |
5051 | what choice he makes, the outcome would always be the same. | |
5052 | So, for practical purposes, we consider them as the same. */ | |
5053 | ||
5054 | static int | |
d12307c1 | 5055 | symbols_are_identical_enums (struct block_symbol *syms, int nsyms) |
8f17729f JB |
5056 | { |
5057 | int i; | |
5058 | ||
5059 | /* Before performing a thorough comparison check of each type, | |
5060 | we perform a series of inexpensive checks. We expect that these | |
5061 | checks will quickly fail in the vast majority of cases, and thus | |
5062 | help prevent the unnecessary use of a more expensive comparison. | |
5063 | Said comparison also expects us to make some of these checks | |
5064 | (see ada_identical_enum_types_p). */ | |
5065 | ||
5066 | /* Quick check: All symbols should have an enum type. */ | |
5067 | for (i = 0; i < nsyms; i++) | |
d12307c1 | 5068 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM) |
8f17729f JB |
5069 | return 0; |
5070 | ||
5071 | /* Quick check: They should all have the same value. */ | |
5072 | for (i = 1; i < nsyms; i++) | |
d12307c1 | 5073 | if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol)) |
8f17729f JB |
5074 | return 0; |
5075 | ||
5076 | /* Quick check: They should all have the same number of enumerals. */ | |
5077 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5078 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol)) |
5079 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5080 | return 0; |
5081 | ||
5082 | /* All the sanity checks passed, so we might have a set of | |
5083 | identical enumeration types. Perform a more complete | |
5084 | comparison of the type of each symbol. */ | |
5085 | for (i = 1; i < nsyms; i++) | |
d12307c1 PMR |
5086 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol), |
5087 | SYMBOL_TYPE (syms[0].symbol))) | |
8f17729f JB |
5088 | return 0; |
5089 | ||
5090 | return 1; | |
5091 | } | |
5092 | ||
96d887e8 PH |
5093 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
5094 | duplicate other symbols in the list (The only case I know of where | |
5095 | this happens is when object files containing stabs-in-ecoff are | |
5096 | linked with files containing ordinary ecoff debugging symbols (or no | |
5097 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
5098 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 5099 | |
96d887e8 | 5100 | static int |
d12307c1 | 5101 | remove_extra_symbols (struct block_symbol *syms, int nsyms) |
96d887e8 PH |
5102 | { |
5103 | int i, j; | |
4c4b4cd2 | 5104 | |
8f17729f JB |
5105 | /* We should never be called with less than 2 symbols, as there |
5106 | cannot be any extra symbol in that case. But it's easy to | |
5107 | handle, since we have nothing to do in that case. */ | |
5108 | if (nsyms < 2) | |
5109 | return nsyms; | |
5110 | ||
96d887e8 PH |
5111 | i = 0; |
5112 | while (i < nsyms) | |
5113 | { | |
a35ddb44 | 5114 | int remove_p = 0; |
339c13b6 JB |
5115 | |
5116 | /* If two symbols have the same name and one of them is a stub type, | |
5117 | the get rid of the stub. */ | |
5118 | ||
d12307c1 PMR |
5119 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol)) |
5120 | && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL) | |
339c13b6 JB |
5121 | { |
5122 | for (j = 0; j < nsyms; j++) | |
5123 | { | |
5124 | if (j != i | |
d12307c1 PMR |
5125 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol)) |
5126 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL | |
5127 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5128 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0) | |
a35ddb44 | 5129 | remove_p = 1; |
339c13b6 JB |
5130 | } |
5131 | } | |
5132 | ||
5133 | /* Two symbols with the same name, same class and same address | |
5134 | should be identical. */ | |
5135 | ||
d12307c1 PMR |
5136 | else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL |
5137 | && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC | |
5138 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol))) | |
96d887e8 PH |
5139 | { |
5140 | for (j = 0; j < nsyms; j += 1) | |
5141 | { | |
5142 | if (i != j | |
d12307c1 PMR |
5143 | && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL |
5144 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol), | |
5145 | SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0 | |
5146 | && SYMBOL_CLASS (syms[i].symbol) | |
5147 | == SYMBOL_CLASS (syms[j].symbol) | |
5148 | && SYMBOL_VALUE_ADDRESS (syms[i].symbol) | |
5149 | == SYMBOL_VALUE_ADDRESS (syms[j].symbol)) | |
a35ddb44 | 5150 | remove_p = 1; |
4c4b4cd2 | 5151 | } |
4c4b4cd2 | 5152 | } |
339c13b6 | 5153 | |
a35ddb44 | 5154 | if (remove_p) |
339c13b6 JB |
5155 | { |
5156 | for (j = i + 1; j < nsyms; j += 1) | |
5157 | syms[j - 1] = syms[j]; | |
5158 | nsyms -= 1; | |
5159 | } | |
5160 | ||
96d887e8 | 5161 | i += 1; |
14f9c5c9 | 5162 | } |
8f17729f JB |
5163 | |
5164 | /* If all the remaining symbols are identical enumerals, then | |
5165 | just keep the first one and discard the rest. | |
5166 | ||
5167 | Unlike what we did previously, we do not discard any entry | |
5168 | unless they are ALL identical. This is because the symbol | |
5169 | comparison is not a strict comparison, but rather a practical | |
5170 | comparison. If all symbols are considered identical, then | |
5171 | we can just go ahead and use the first one and discard the rest. | |
5172 | But if we cannot reduce the list to a single element, we have | |
5173 | to ask the user to disambiguate anyways. And if we have to | |
5174 | present a multiple-choice menu, it's less confusing if the list | |
5175 | isn't missing some choices that were identical and yet distinct. */ | |
5176 | if (symbols_are_identical_enums (syms, nsyms)) | |
5177 | nsyms = 1; | |
5178 | ||
96d887e8 | 5179 | return nsyms; |
14f9c5c9 AS |
5180 | } |
5181 | ||
96d887e8 PH |
5182 | /* Given a type that corresponds to a renaming entity, use the type name |
5183 | to extract the scope (package name or function name, fully qualified, | |
5184 | and following the GNAT encoding convention) where this renaming has been | |
5185 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 5186 | |
96d887e8 PH |
5187 | static char * |
5188 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 5189 | { |
96d887e8 | 5190 | /* The renaming types adhere to the following convention: |
0963b4bd | 5191 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
5192 | So, to extract the scope, we search for the "___XR" extension, |
5193 | and then backtrack until we find the first "__". */ | |
76a01679 | 5194 | |
96d887e8 | 5195 | const char *name = type_name_no_tag (renaming_type); |
108d56a4 SM |
5196 | const char *suffix = strstr (name, "___XR"); |
5197 | const char *last; | |
96d887e8 PH |
5198 | int scope_len; |
5199 | char *scope; | |
14f9c5c9 | 5200 | |
96d887e8 PH |
5201 | /* Now, backtrack a bit until we find the first "__". Start looking |
5202 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 5203 | |
96d887e8 PH |
5204 | for (last = suffix - 3; last > name; last--) |
5205 | if (last[0] == '_' && last[1] == '_') | |
5206 | break; | |
76a01679 | 5207 | |
96d887e8 | 5208 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 5209 | |
96d887e8 PH |
5210 | scope_len = last - name; |
5211 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 5212 | |
96d887e8 PH |
5213 | strncpy (scope, name, scope_len); |
5214 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 5215 | |
96d887e8 | 5216 | return scope; |
4c4b4cd2 PH |
5217 | } |
5218 | ||
96d887e8 | 5219 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 5220 | |
96d887e8 PH |
5221 | static int |
5222 | is_package_name (const char *name) | |
4c4b4cd2 | 5223 | { |
96d887e8 PH |
5224 | /* Here, We take advantage of the fact that no symbols are generated |
5225 | for packages, while symbols are generated for each function. | |
5226 | So the condition for NAME represent a package becomes equivalent | |
5227 | to NAME not existing in our list of symbols. There is only one | |
5228 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 5229 | |
96d887e8 | 5230 | char *fun_name; |
76a01679 | 5231 | |
96d887e8 PH |
5232 | /* If it is a function that has not been defined at library level, |
5233 | then we should be able to look it up in the symbols. */ | |
5234 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
5235 | return 0; | |
14f9c5c9 | 5236 | |
96d887e8 PH |
5237 | /* Library-level function names start with "_ada_". See if function |
5238 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 5239 | |
96d887e8 | 5240 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 5241 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
5242 | if (strstr (name, "__") != NULL) |
5243 | return 0; | |
4c4b4cd2 | 5244 | |
b435e160 | 5245 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 5246 | |
96d887e8 PH |
5247 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
5248 | } | |
14f9c5c9 | 5249 | |
96d887e8 | 5250 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 5251 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 5252 | |
96d887e8 | 5253 | static int |
0d5cff50 | 5254 | old_renaming_is_invisible (const struct symbol *sym, const char *function_name) |
96d887e8 | 5255 | { |
aeb5907d | 5256 | char *scope; |
1509e573 | 5257 | struct cleanup *old_chain; |
aeb5907d JB |
5258 | |
5259 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
5260 | return 0; | |
5261 | ||
5262 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
1509e573 | 5263 | old_chain = make_cleanup (xfree, scope); |
14f9c5c9 | 5264 | |
96d887e8 PH |
5265 | /* If the rename has been defined in a package, then it is visible. */ |
5266 | if (is_package_name (scope)) | |
1509e573 JB |
5267 | { |
5268 | do_cleanups (old_chain); | |
5269 | return 0; | |
5270 | } | |
14f9c5c9 | 5271 | |
96d887e8 PH |
5272 | /* Check that the rename is in the current function scope by checking |
5273 | that its name starts with SCOPE. */ | |
76a01679 | 5274 | |
96d887e8 PH |
5275 | /* If the function name starts with "_ada_", it means that it is |
5276 | a library-level function. Strip this prefix before doing the | |
5277 | comparison, as the encoding for the renaming does not contain | |
5278 | this prefix. */ | |
61012eef | 5279 | if (startswith (function_name, "_ada_")) |
96d887e8 | 5280 | function_name += 5; |
f26caa11 | 5281 | |
1509e573 | 5282 | { |
61012eef | 5283 | int is_invisible = !startswith (function_name, scope); |
1509e573 JB |
5284 | |
5285 | do_cleanups (old_chain); | |
5286 | return is_invisible; | |
5287 | } | |
f26caa11 PH |
5288 | } |
5289 | ||
aeb5907d JB |
5290 | /* Remove entries from SYMS that corresponds to a renaming entity that |
5291 | is not visible from the function associated with CURRENT_BLOCK or | |
5292 | that is superfluous due to the presence of more specific renaming | |
5293 | information. Places surviving symbols in the initial entries of | |
5294 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
5295 | |
5296 | Rationale: | |
aeb5907d JB |
5297 | First, in cases where an object renaming is implemented as a |
5298 | reference variable, GNAT may produce both the actual reference | |
5299 | variable and the renaming encoding. In this case, we discard the | |
5300 | latter. | |
5301 | ||
5302 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
5303 | entity. Unfortunately, STABS currently does not support the definition |
5304 | of types that are local to a given lexical block, so all renamings types | |
5305 | are emitted at library level. As a consequence, if an application | |
5306 | contains two renaming entities using the same name, and a user tries to | |
5307 | print the value of one of these entities, the result of the ada symbol | |
5308 | lookup will also contain the wrong renaming type. | |
f26caa11 | 5309 | |
96d887e8 PH |
5310 | This function partially covers for this limitation by attempting to |
5311 | remove from the SYMS list renaming symbols that should be visible | |
5312 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
5313 | method with the current information available. The implementation | |
5314 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
5315 | ||
5316 | - When the user tries to print a rename in a function while there | |
5317 | is another rename entity defined in a package: Normally, the | |
5318 | rename in the function has precedence over the rename in the | |
5319 | package, so the latter should be removed from the list. This is | |
5320 | currently not the case. | |
5321 | ||
5322 | - This function will incorrectly remove valid renames if | |
5323 | the CURRENT_BLOCK corresponds to a function which symbol name | |
5324 | has been changed by an "Export" pragma. As a consequence, | |
5325 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 5326 | |
14f9c5c9 | 5327 | static int |
d12307c1 | 5328 | remove_irrelevant_renamings (struct block_symbol *syms, |
aeb5907d | 5329 | int nsyms, const struct block *current_block) |
4c4b4cd2 PH |
5330 | { |
5331 | struct symbol *current_function; | |
0d5cff50 | 5332 | const char *current_function_name; |
4c4b4cd2 | 5333 | int i; |
aeb5907d JB |
5334 | int is_new_style_renaming; |
5335 | ||
5336 | /* If there is both a renaming foo___XR... encoded as a variable and | |
5337 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 5338 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
5339 | is_new_style_renaming = 0; |
5340 | for (i = 0; i < nsyms; i += 1) | |
5341 | { | |
d12307c1 | 5342 | struct symbol *sym = syms[i].symbol; |
270140bd | 5343 | const struct block *block = syms[i].block; |
aeb5907d JB |
5344 | const char *name; |
5345 | const char *suffix; | |
5346 | ||
5347 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
5348 | continue; | |
5349 | name = SYMBOL_LINKAGE_NAME (sym); | |
5350 | suffix = strstr (name, "___XR"); | |
5351 | ||
5352 | if (suffix != NULL) | |
5353 | { | |
5354 | int name_len = suffix - name; | |
5355 | int j; | |
5b4ee69b | 5356 | |
aeb5907d JB |
5357 | is_new_style_renaming = 1; |
5358 | for (j = 0; j < nsyms; j += 1) | |
d12307c1 PMR |
5359 | if (i != j && syms[j].symbol != NULL |
5360 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol), | |
aeb5907d JB |
5361 | name_len) == 0 |
5362 | && block == syms[j].block) | |
d12307c1 | 5363 | syms[j].symbol = NULL; |
aeb5907d JB |
5364 | } |
5365 | } | |
5366 | if (is_new_style_renaming) | |
5367 | { | |
5368 | int j, k; | |
5369 | ||
5370 | for (j = k = 0; j < nsyms; j += 1) | |
d12307c1 | 5371 | if (syms[j].symbol != NULL) |
aeb5907d JB |
5372 | { |
5373 | syms[k] = syms[j]; | |
5374 | k += 1; | |
5375 | } | |
5376 | return k; | |
5377 | } | |
4c4b4cd2 PH |
5378 | |
5379 | /* Extract the function name associated to CURRENT_BLOCK. | |
5380 | Abort if unable to do so. */ | |
76a01679 | 5381 | |
4c4b4cd2 PH |
5382 | if (current_block == NULL) |
5383 | return nsyms; | |
76a01679 | 5384 | |
7f0df278 | 5385 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
5386 | if (current_function == NULL) |
5387 | return nsyms; | |
5388 | ||
5389 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
5390 | if (current_function_name == NULL) | |
5391 | return nsyms; | |
5392 | ||
5393 | /* Check each of the symbols, and remove it from the list if it is | |
5394 | a type corresponding to a renaming that is out of the scope of | |
5395 | the current block. */ | |
5396 | ||
5397 | i = 0; | |
5398 | while (i < nsyms) | |
5399 | { | |
d12307c1 | 5400 | if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL) |
aeb5907d | 5401 | == ADA_OBJECT_RENAMING |
d12307c1 | 5402 | && old_renaming_is_invisible (syms[i].symbol, current_function_name)) |
4c4b4cd2 PH |
5403 | { |
5404 | int j; | |
5b4ee69b | 5405 | |
aeb5907d | 5406 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 5407 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
5408 | nsyms -= 1; |
5409 | } | |
5410 | else | |
5411 | i += 1; | |
5412 | } | |
5413 | ||
5414 | return nsyms; | |
5415 | } | |
5416 | ||
339c13b6 JB |
5417 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
5418 | whose name and domain match NAME and DOMAIN respectively. | |
5419 | If no match was found, then extend the search to "enclosing" | |
5420 | routines (in other words, if we're inside a nested function, | |
5421 | search the symbols defined inside the enclosing functions). | |
d0a8ab18 JB |
5422 | If WILD_MATCH_P is nonzero, perform the naming matching in |
5423 | "wild" mode (see function "wild_match" for more info). | |
339c13b6 JB |
5424 | |
5425 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
5426 | ||
5427 | static void | |
5428 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
f0c5f9b2 | 5429 | const struct block *block, domain_enum domain, |
d0a8ab18 | 5430 | int wild_match_p) |
339c13b6 JB |
5431 | { |
5432 | int block_depth = 0; | |
5433 | ||
5434 | while (block != NULL) | |
5435 | { | |
5436 | block_depth += 1; | |
d0a8ab18 JB |
5437 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5438 | wild_match_p); | |
339c13b6 JB |
5439 | |
5440 | /* If we found a non-function match, assume that's the one. */ | |
5441 | if (is_nonfunction (defns_collected (obstackp, 0), | |
5442 | num_defns_collected (obstackp))) | |
5443 | return; | |
5444 | ||
5445 | block = BLOCK_SUPERBLOCK (block); | |
5446 | } | |
5447 | ||
5448 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
5449 | enclosing subprogram. */ | |
5450 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
d0a8ab18 | 5451 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); |
339c13b6 JB |
5452 | } |
5453 | ||
ccefe4c4 | 5454 | /* An object of this type is used as the user_data argument when |
40658b94 | 5455 | calling the map_matching_symbols method. */ |
ccefe4c4 | 5456 | |
40658b94 | 5457 | struct match_data |
ccefe4c4 | 5458 | { |
40658b94 | 5459 | struct objfile *objfile; |
ccefe4c4 | 5460 | struct obstack *obstackp; |
40658b94 PH |
5461 | struct symbol *arg_sym; |
5462 | int found_sym; | |
ccefe4c4 TT |
5463 | }; |
5464 | ||
22cee43f | 5465 | /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK, |
40658b94 PH |
5466 | to a list of symbols. DATA0 is a pointer to a struct match_data * |
5467 | containing the obstack that collects the symbol list, the file that SYM | |
5468 | must come from, a flag indicating whether a non-argument symbol has | |
5469 | been found in the current block, and the last argument symbol | |
5470 | passed in SYM within the current block (if any). When SYM is null, | |
5471 | marking the end of a block, the argument symbol is added if no | |
5472 | other has been found. */ | |
ccefe4c4 | 5473 | |
40658b94 PH |
5474 | static int |
5475 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 5476 | { |
40658b94 PH |
5477 | struct match_data *data = (struct match_data *) data0; |
5478 | ||
5479 | if (sym == NULL) | |
5480 | { | |
5481 | if (!data->found_sym && data->arg_sym != NULL) | |
5482 | add_defn_to_vec (data->obstackp, | |
5483 | fixup_symbol_section (data->arg_sym, data->objfile), | |
5484 | block); | |
5485 | data->found_sym = 0; | |
5486 | data->arg_sym = NULL; | |
5487 | } | |
5488 | else | |
5489 | { | |
5490 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
5491 | return 0; | |
5492 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5493 | data->arg_sym = sym; | |
5494 | else | |
5495 | { | |
5496 | data->found_sym = 1; | |
5497 | add_defn_to_vec (data->obstackp, | |
5498 | fixup_symbol_section (sym, data->objfile), | |
5499 | block); | |
5500 | } | |
5501 | } | |
5502 | return 0; | |
5503 | } | |
5504 | ||
22cee43f PMR |
5505 | /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted |
5506 | by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If | |
5507 | WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see | |
5508 | function "wild_match" for more information). Return whether we found such | |
5509 | symbols. */ | |
5510 | ||
5511 | static int | |
5512 | ada_add_block_renamings (struct obstack *obstackp, | |
5513 | const struct block *block, | |
5514 | const char *name, | |
5515 | domain_enum domain, | |
5516 | int wild_match_p) | |
5517 | { | |
5518 | struct using_direct *renaming; | |
5519 | int defns_mark = num_defns_collected (obstackp); | |
5520 | ||
5521 | for (renaming = block_using (block); | |
5522 | renaming != NULL; | |
5523 | renaming = renaming->next) | |
5524 | { | |
5525 | const char *r_name; | |
5526 | int name_match; | |
5527 | ||
5528 | /* Avoid infinite recursions: skip this renaming if we are actually | |
5529 | already traversing it. | |
5530 | ||
5531 | Currently, symbol lookup in Ada don't use the namespace machinery from | |
5532 | C++/Fortran support: skip namespace imports that use them. */ | |
5533 | if (renaming->searched | |
5534 | || (renaming->import_src != NULL | |
5535 | && renaming->import_src[0] != '\0') | |
5536 | || (renaming->import_dest != NULL | |
5537 | && renaming->import_dest[0] != '\0')) | |
5538 | continue; | |
5539 | renaming->searched = 1; | |
5540 | ||
5541 | /* TODO: here, we perform another name-based symbol lookup, which can | |
5542 | pull its own multiple overloads. In theory, we should be able to do | |
5543 | better in this case since, in DWARF, DW_AT_import is a DIE reference, | |
5544 | not a simple name. But in order to do this, we would need to enhance | |
5545 | the DWARF reader to associate a symbol to this renaming, instead of a | |
5546 | name. So, for now, we do something simpler: re-use the C++/Fortran | |
5547 | namespace machinery. */ | |
5548 | r_name = (renaming->alias != NULL | |
5549 | ? renaming->alias | |
5550 | : renaming->declaration); | |
5551 | name_match | |
5552 | = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name); | |
5553 | if (name_match == 0) | |
5554 | ada_add_all_symbols (obstackp, block, renaming->declaration, domain, | |
5555 | 1, NULL); | |
5556 | renaming->searched = 0; | |
5557 | } | |
5558 | return num_defns_collected (obstackp) != defns_mark; | |
5559 | } | |
5560 | ||
db230ce3 JB |
5561 | /* Implements compare_names, but only applying the comparision using |
5562 | the given CASING. */ | |
5b4ee69b | 5563 | |
40658b94 | 5564 | static int |
db230ce3 JB |
5565 | compare_names_with_case (const char *string1, const char *string2, |
5566 | enum case_sensitivity casing) | |
40658b94 PH |
5567 | { |
5568 | while (*string1 != '\0' && *string2 != '\0') | |
5569 | { | |
db230ce3 JB |
5570 | char c1, c2; |
5571 | ||
40658b94 PH |
5572 | if (isspace (*string1) || isspace (*string2)) |
5573 | return strcmp_iw_ordered (string1, string2); | |
db230ce3 JB |
5574 | |
5575 | if (casing == case_sensitive_off) | |
5576 | { | |
5577 | c1 = tolower (*string1); | |
5578 | c2 = tolower (*string2); | |
5579 | } | |
5580 | else | |
5581 | { | |
5582 | c1 = *string1; | |
5583 | c2 = *string2; | |
5584 | } | |
5585 | if (c1 != c2) | |
40658b94 | 5586 | break; |
db230ce3 | 5587 | |
40658b94 PH |
5588 | string1 += 1; |
5589 | string2 += 1; | |
5590 | } | |
db230ce3 | 5591 | |
40658b94 PH |
5592 | switch (*string1) |
5593 | { | |
5594 | case '(': | |
5595 | return strcmp_iw_ordered (string1, string2); | |
5596 | case '_': | |
5597 | if (*string2 == '\0') | |
5598 | { | |
052874e8 | 5599 | if (is_name_suffix (string1)) |
40658b94 PH |
5600 | return 0; |
5601 | else | |
1a1d5513 | 5602 | return 1; |
40658b94 | 5603 | } |
dbb8534f | 5604 | /* FALLTHROUGH */ |
40658b94 PH |
5605 | default: |
5606 | if (*string2 == '(') | |
5607 | return strcmp_iw_ordered (string1, string2); | |
5608 | else | |
db230ce3 JB |
5609 | { |
5610 | if (casing == case_sensitive_off) | |
5611 | return tolower (*string1) - tolower (*string2); | |
5612 | else | |
5613 | return *string1 - *string2; | |
5614 | } | |
40658b94 | 5615 | } |
ccefe4c4 TT |
5616 | } |
5617 | ||
db230ce3 JB |
5618 | /* Compare STRING1 to STRING2, with results as for strcmp. |
5619 | Compatible with strcmp_iw_ordered in that... | |
5620 | ||
5621 | strcmp_iw_ordered (STRING1, STRING2) <= 0 | |
5622 | ||
5623 | ... implies... | |
5624 | ||
5625 | compare_names (STRING1, STRING2) <= 0 | |
5626 | ||
5627 | (they may differ as to what symbols compare equal). */ | |
5628 | ||
5629 | static int | |
5630 | compare_names (const char *string1, const char *string2) | |
5631 | { | |
5632 | int result; | |
5633 | ||
5634 | /* Similar to what strcmp_iw_ordered does, we need to perform | |
5635 | a case-insensitive comparison first, and only resort to | |
5636 | a second, case-sensitive, comparison if the first one was | |
5637 | not sufficient to differentiate the two strings. */ | |
5638 | ||
5639 | result = compare_names_with_case (string1, string2, case_sensitive_off); | |
5640 | if (result == 0) | |
5641 | result = compare_names_with_case (string1, string2, case_sensitive_on); | |
5642 | ||
5643 | return result; | |
5644 | } | |
5645 | ||
339c13b6 JB |
5646 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
5647 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
5648 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
5649 | ||
5650 | static void | |
40658b94 PH |
5651 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
5652 | domain_enum domain, int global, | |
5653 | int is_wild_match) | |
339c13b6 JB |
5654 | { |
5655 | struct objfile *objfile; | |
22cee43f | 5656 | struct compunit_symtab *cu; |
40658b94 | 5657 | struct match_data data; |
339c13b6 | 5658 | |
6475f2fe | 5659 | memset (&data, 0, sizeof data); |
ccefe4c4 | 5660 | data.obstackp = obstackp; |
339c13b6 | 5661 | |
ccefe4c4 | 5662 | ALL_OBJFILES (objfile) |
40658b94 PH |
5663 | { |
5664 | data.objfile = objfile; | |
5665 | ||
5666 | if (is_wild_match) | |
4186eb54 KS |
5667 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5668 | aux_add_nonlocal_symbols, &data, | |
5669 | wild_match, NULL); | |
40658b94 | 5670 | else |
4186eb54 KS |
5671 | objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, |
5672 | aux_add_nonlocal_symbols, &data, | |
5673 | full_match, compare_names); | |
22cee43f PMR |
5674 | |
5675 | ALL_OBJFILE_COMPUNITS (objfile, cu) | |
5676 | { | |
5677 | const struct block *global_block | |
5678 | = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK); | |
5679 | ||
5680 | if (ada_add_block_renamings (obstackp, global_block , name, domain, | |
5681 | is_wild_match)) | |
5682 | data.found_sym = 1; | |
5683 | } | |
40658b94 PH |
5684 | } |
5685 | ||
5686 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
5687 | { | |
5688 | ALL_OBJFILES (objfile) | |
5689 | { | |
224c3ddb | 5690 | char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_")); |
40658b94 PH |
5691 | strcpy (name1, "_ada_"); |
5692 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
5693 | data.objfile = objfile; | |
ade7ed9e DE |
5694 | objfile->sf->qf->map_matching_symbols (objfile, name1, domain, |
5695 | global, | |
0963b4bd MS |
5696 | aux_add_nonlocal_symbols, |
5697 | &data, | |
40658b94 PH |
5698 | full_match, compare_names); |
5699 | } | |
5700 | } | |
339c13b6 JB |
5701 | } |
5702 | ||
22cee43f | 5703 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is |
4eeaa230 | 5704 | non-zero, enclosing scope and in global scopes, returning the number of |
22cee43f | 5705 | matches. Add these to OBSTACKP. |
4eeaa230 | 5706 | |
22cee43f PMR |
5707 | When FULL_SEARCH is non-zero, any non-function/non-enumeral |
5708 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
4c4b4cd2 | 5709 | is the one match returned (no other matches in that or |
d9680e73 | 5710 | enclosing blocks is returned). If there are any matches in or |
22cee43f | 5711 | surrounding BLOCK, then these alone are returned. |
4eeaa230 | 5712 | |
9f88c959 | 5713 | Names prefixed with "standard__" are handled specially: "standard__" |
22cee43f | 5714 | is first stripped off, and only static and global symbols are searched. |
14f9c5c9 | 5715 | |
22cee43f PMR |
5716 | If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had |
5717 | to lookup global symbols. */ | |
5718 | ||
5719 | static void | |
5720 | ada_add_all_symbols (struct obstack *obstackp, | |
5721 | const struct block *block, | |
5722 | const char *name, | |
5723 | domain_enum domain, | |
5724 | int full_search, | |
5725 | int *made_global_lookup_p) | |
14f9c5c9 AS |
5726 | { |
5727 | struct symbol *sym; | |
22cee43f | 5728 | const int wild_match_p = should_use_wild_match (name); |
14f9c5c9 | 5729 | |
22cee43f PMR |
5730 | if (made_global_lookup_p) |
5731 | *made_global_lookup_p = 0; | |
339c13b6 JB |
5732 | |
5733 | /* Special case: If the user specifies a symbol name inside package | |
5734 | Standard, do a non-wild matching of the symbol name without | |
5735 | the "standard__" prefix. This was primarily introduced in order | |
5736 | to allow the user to specifically access the standard exceptions | |
5737 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
5738 | is ambiguous (due to the user defining its own Constraint_Error | |
5739 | entity inside its program). */ | |
22cee43f | 5740 | if (startswith (name, "standard__")) |
4c4b4cd2 | 5741 | { |
4c4b4cd2 | 5742 | block = NULL; |
22cee43f | 5743 | name = name + sizeof ("standard__") - 1; |
4c4b4cd2 PH |
5744 | } |
5745 | ||
339c13b6 | 5746 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5747 | |
4eeaa230 DE |
5748 | if (block != NULL) |
5749 | { | |
5750 | if (full_search) | |
22cee43f | 5751 | ada_add_local_symbols (obstackp, name, block, domain, wild_match_p); |
4eeaa230 DE |
5752 | else |
5753 | { | |
5754 | /* In the !full_search case we're are being called by | |
5755 | ada_iterate_over_symbols, and we don't want to search | |
5756 | superblocks. */ | |
22cee43f PMR |
5757 | ada_add_block_symbols (obstackp, block, name, domain, NULL, |
5758 | wild_match_p); | |
4eeaa230 | 5759 | } |
22cee43f PMR |
5760 | if (num_defns_collected (obstackp) > 0 || !full_search) |
5761 | return; | |
4eeaa230 | 5762 | } |
d2e4a39e | 5763 | |
339c13b6 JB |
5764 | /* No non-global symbols found. Check our cache to see if we have |
5765 | already performed this search before. If we have, then return | |
5766 | the same result. */ | |
5767 | ||
22cee43f | 5768 | if (lookup_cached_symbol (name, domain, &sym, &block)) |
4c4b4cd2 PH |
5769 | { |
5770 | if (sym != NULL) | |
22cee43f PMR |
5771 | add_defn_to_vec (obstackp, sym, block); |
5772 | return; | |
4c4b4cd2 | 5773 | } |
14f9c5c9 | 5774 | |
22cee43f PMR |
5775 | if (made_global_lookup_p) |
5776 | *made_global_lookup_p = 1; | |
b1eedac9 | 5777 | |
339c13b6 JB |
5778 | /* Search symbols from all global blocks. */ |
5779 | ||
22cee43f | 5780 | add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p); |
d2e4a39e | 5781 | |
4c4b4cd2 | 5782 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5783 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5784 | |
22cee43f PMR |
5785 | if (num_defns_collected (obstackp) == 0) |
5786 | add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p); | |
5787 | } | |
5788 | ||
5789 | /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is | |
5790 | non-zero, enclosing scope and in global scopes, returning the number of | |
5791 | matches. | |
5792 | Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, | |
5793 | indicating the symbols found and the blocks and symbol tables (if | |
5794 | any) in which they were found. This vector is transient---good only to | |
5795 | the next call of ada_lookup_symbol_list. | |
5796 | ||
5797 | When full_search is non-zero, any non-function/non-enumeral | |
5798 | symbol match within the nest of blocks whose innermost member is BLOCK, | |
5799 | is the one match returned (no other matches in that or | |
5800 | enclosing blocks is returned). If there are any matches in or | |
5801 | surrounding BLOCK, then these alone are returned. | |
5802 | ||
5803 | Names prefixed with "standard__" are handled specially: "standard__" | |
5804 | is first stripped off, and only static and global symbols are searched. */ | |
5805 | ||
5806 | static int | |
5807 | ada_lookup_symbol_list_worker (const char *name, const struct block *block, | |
5808 | domain_enum domain, | |
5809 | struct block_symbol **results, | |
5810 | int full_search) | |
5811 | { | |
5812 | const int wild_match_p = should_use_wild_match (name); | |
5813 | int syms_from_global_search; | |
5814 | int ndefns; | |
5815 | ||
5816 | obstack_free (&symbol_list_obstack, NULL); | |
5817 | obstack_init (&symbol_list_obstack); | |
5818 | ada_add_all_symbols (&symbol_list_obstack, block, name, domain, | |
5819 | full_search, &syms_from_global_search); | |
14f9c5c9 | 5820 | |
4c4b4cd2 PH |
5821 | ndefns = num_defns_collected (&symbol_list_obstack); |
5822 | *results = defns_collected (&symbol_list_obstack, 1); | |
5823 | ||
5824 | ndefns = remove_extra_symbols (*results, ndefns); | |
5825 | ||
b1eedac9 | 5826 | if (ndefns == 0 && full_search && syms_from_global_search) |
22cee43f | 5827 | cache_symbol (name, domain, NULL, NULL); |
14f9c5c9 | 5828 | |
b1eedac9 | 5829 | if (ndefns == 1 && full_search && syms_from_global_search) |
22cee43f | 5830 | cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block); |
14f9c5c9 | 5831 | |
22cee43f | 5832 | ndefns = remove_irrelevant_renamings (*results, ndefns, block); |
14f9c5c9 AS |
5833 | return ndefns; |
5834 | } | |
5835 | ||
4eeaa230 DE |
5836 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and |
5837 | in global scopes, returning the number of matches, and setting *RESULTS | |
5838 | to a vector of (SYM,BLOCK) tuples. | |
5839 | See ada_lookup_symbol_list_worker for further details. */ | |
5840 | ||
5841 | int | |
5842 | ada_lookup_symbol_list (const char *name0, const struct block *block0, | |
d12307c1 | 5843 | domain_enum domain, struct block_symbol **results) |
4eeaa230 DE |
5844 | { |
5845 | return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); | |
5846 | } | |
5847 | ||
5848 | /* Implementation of the la_iterate_over_symbols method. */ | |
5849 | ||
5850 | static void | |
14bc53a8 PA |
5851 | ada_iterate_over_symbols |
5852 | (const struct block *block, const char *name, domain_enum domain, | |
5853 | gdb::function_view<symbol_found_callback_ftype> callback) | |
4eeaa230 DE |
5854 | { |
5855 | int ndefs, i; | |
d12307c1 | 5856 | struct block_symbol *results; |
4eeaa230 DE |
5857 | |
5858 | ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); | |
5859 | for (i = 0; i < ndefs; ++i) | |
5860 | { | |
14bc53a8 | 5861 | if (!callback (results[i].symbol)) |
4eeaa230 DE |
5862 | break; |
5863 | } | |
5864 | } | |
5865 | ||
f8eba3c6 | 5866 | /* If NAME is the name of an entity, return a string that should |
2f408ecb | 5867 | be used to look that entity up in Ada units. |
f8eba3c6 TT |
5868 | |
5869 | NAME can have any form that the "break" or "print" commands might | |
5870 | recognize. In other words, it does not have to be the "natural" | |
5871 | name, or the "encoded" name. */ | |
5872 | ||
2f408ecb | 5873 | std::string |
f8eba3c6 TT |
5874 | ada_name_for_lookup (const char *name) |
5875 | { | |
f8eba3c6 TT |
5876 | int nlen = strlen (name); |
5877 | ||
5878 | if (name[0] == '<' && name[nlen - 1] == '>') | |
2f408ecb | 5879 | return std::string (name + 1, nlen - 2); |
f8eba3c6 | 5880 | else |
2f408ecb | 5881 | return ada_encode (ada_fold_name (name)); |
f8eba3c6 TT |
5882 | } |
5883 | ||
4e5c77fe JB |
5884 | /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set |
5885 | to 1, but choosing the first symbol found if there are multiple | |
5886 | choices. | |
5887 | ||
5e2336be JB |
5888 | The result is stored in *INFO, which must be non-NULL. |
5889 | If no match is found, INFO->SYM is set to NULL. */ | |
4e5c77fe JB |
5890 | |
5891 | void | |
5892 | ada_lookup_encoded_symbol (const char *name, const struct block *block, | |
fe978cb0 | 5893 | domain_enum domain, |
d12307c1 | 5894 | struct block_symbol *info) |
14f9c5c9 | 5895 | { |
d12307c1 | 5896 | struct block_symbol *candidates; |
14f9c5c9 AS |
5897 | int n_candidates; |
5898 | ||
5e2336be | 5899 | gdb_assert (info != NULL); |
d12307c1 | 5900 | memset (info, 0, sizeof (struct block_symbol)); |
4e5c77fe | 5901 | |
fe978cb0 | 5902 | n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates); |
14f9c5c9 | 5903 | if (n_candidates == 0) |
4e5c77fe | 5904 | return; |
4c4b4cd2 | 5905 | |
5e2336be | 5906 | *info = candidates[0]; |
d12307c1 | 5907 | info->symbol = fixup_symbol_section (info->symbol, NULL); |
4e5c77fe | 5908 | } |
aeb5907d JB |
5909 | |
5910 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5911 | scope and in global scopes, or NULL if none. NAME is folded and | |
5912 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5913 | choosing the first symbol if there are multiple choices. |
4e5c77fe JB |
5914 | If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ |
5915 | ||
d12307c1 | 5916 | struct block_symbol |
aeb5907d | 5917 | ada_lookup_symbol (const char *name, const struct block *block0, |
fe978cb0 | 5918 | domain_enum domain, int *is_a_field_of_this) |
aeb5907d | 5919 | { |
d12307c1 | 5920 | struct block_symbol info; |
4e5c77fe | 5921 | |
aeb5907d JB |
5922 | if (is_a_field_of_this != NULL) |
5923 | *is_a_field_of_this = 0; | |
5924 | ||
4e5c77fe | 5925 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), |
fe978cb0 | 5926 | block0, domain, &info); |
d12307c1 | 5927 | return info; |
4c4b4cd2 | 5928 | } |
14f9c5c9 | 5929 | |
d12307c1 | 5930 | static struct block_symbol |
f606139a DE |
5931 | ada_lookup_symbol_nonlocal (const struct language_defn *langdef, |
5932 | const char *name, | |
76a01679 | 5933 | const struct block *block, |
21b556f4 | 5934 | const domain_enum domain) |
4c4b4cd2 | 5935 | { |
d12307c1 | 5936 | struct block_symbol sym; |
04dccad0 JB |
5937 | |
5938 | sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL); | |
d12307c1 | 5939 | if (sym.symbol != NULL) |
04dccad0 JB |
5940 | return sym; |
5941 | ||
5942 | /* If we haven't found a match at this point, try the primitive | |
5943 | types. In other languages, this search is performed before | |
5944 | searching for global symbols in order to short-circuit that | |
5945 | global-symbol search if it happens that the name corresponds | |
5946 | to a primitive type. But we cannot do the same in Ada, because | |
5947 | it is perfectly legitimate for a program to declare a type which | |
5948 | has the same name as a standard type. If looking up a type in | |
5949 | that situation, we have traditionally ignored the primitive type | |
5950 | in favor of user-defined types. This is why, unlike most other | |
5951 | languages, we search the primitive types this late and only after | |
5952 | having searched the global symbols without success. */ | |
5953 | ||
5954 | if (domain == VAR_DOMAIN) | |
5955 | { | |
5956 | struct gdbarch *gdbarch; | |
5957 | ||
5958 | if (block == NULL) | |
5959 | gdbarch = target_gdbarch (); | |
5960 | else | |
5961 | gdbarch = block_gdbarch (block); | |
d12307c1 PMR |
5962 | sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name); |
5963 | if (sym.symbol != NULL) | |
04dccad0 JB |
5964 | return sym; |
5965 | } | |
5966 | ||
d12307c1 | 5967 | return (struct block_symbol) {NULL, NULL}; |
14f9c5c9 AS |
5968 | } |
5969 | ||
5970 | ||
4c4b4cd2 PH |
5971 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5972 | that is to be ignored for matching purposes. Suffixes of parallel | |
5973 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5974 | are given by any of the regular expressions: |
4c4b4cd2 | 5975 | |
babe1480 JB |
5976 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5977 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
9ac7f98e | 5978 | TKB [subprogram suffix for task bodies] |
babe1480 | 5979 | _E[0-9]+[bs]$ [protected object entry suffixes] |
61ee279c | 5980 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5981 | |
5982 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5983 | match is performed. This sequence is used to differentiate homonyms, | |
5984 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5985 | |
14f9c5c9 | 5986 | static int |
d2e4a39e | 5987 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5988 | { |
5989 | int k; | |
4c4b4cd2 PH |
5990 | const char *matching; |
5991 | const int len = strlen (str); | |
5992 | ||
babe1480 JB |
5993 | /* Skip optional leading __[0-9]+. */ |
5994 | ||
4c4b4cd2 PH |
5995 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5996 | { | |
babe1480 JB |
5997 | str += 3; |
5998 | while (isdigit (str[0])) | |
5999 | str += 1; | |
4c4b4cd2 | 6000 | } |
babe1480 JB |
6001 | |
6002 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 6003 | |
babe1480 | 6004 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 6005 | { |
babe1480 | 6006 | matching = str + 1; |
4c4b4cd2 PH |
6007 | while (isdigit (matching[0])) |
6008 | matching += 1; | |
6009 | if (matching[0] == '\0') | |
6010 | return 1; | |
6011 | } | |
6012 | ||
6013 | /* ___[0-9]+ */ | |
babe1480 | 6014 | |
4c4b4cd2 PH |
6015 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
6016 | { | |
6017 | matching = str + 3; | |
6018 | while (isdigit (matching[0])) | |
6019 | matching += 1; | |
6020 | if (matching[0] == '\0') | |
6021 | return 1; | |
6022 | } | |
6023 | ||
9ac7f98e JB |
6024 | /* "TKB" suffixes are used for subprograms implementing task bodies. */ |
6025 | ||
6026 | if (strcmp (str, "TKB") == 0) | |
6027 | return 1; | |
6028 | ||
529cad9c PH |
6029 | #if 0 |
6030 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
6031 | with a N at the end. Unfortunately, the compiler uses the same |
6032 | convention for other internal types it creates. So treating | |
529cad9c | 6033 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
6034 | some regressions. For instance, consider the case of an enumerated |
6035 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
6036 | name ends with N. |
6037 | Having a single character like this as a suffix carrying some | |
0963b4bd | 6038 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
6039 | to be something like "_N" instead. In the meantime, do not do |
6040 | the following check. */ | |
6041 | /* Protected Object Subprograms */ | |
6042 | if (len == 1 && str [0] == 'N') | |
6043 | return 1; | |
6044 | #endif | |
6045 | ||
6046 | /* _E[0-9]+[bs]$ */ | |
6047 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
6048 | { | |
6049 | matching = str + 3; | |
6050 | while (isdigit (matching[0])) | |
6051 | matching += 1; | |
6052 | if ((matching[0] == 'b' || matching[0] == 's') | |
6053 | && matching [1] == '\0') | |
6054 | return 1; | |
6055 | } | |
6056 | ||
4c4b4cd2 PH |
6057 | /* ??? We should not modify STR directly, as we are doing below. This |
6058 | is fine in this case, but may become problematic later if we find | |
6059 | that this alternative did not work, and want to try matching | |
6060 | another one from the begining of STR. Since we modified it, we | |
6061 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
6062 | if (str[0] == 'X') |
6063 | { | |
6064 | str += 1; | |
d2e4a39e | 6065 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
6066 | { |
6067 | if (str[0] != 'n' && str[0] != 'b') | |
6068 | return 0; | |
6069 | str += 1; | |
6070 | } | |
14f9c5c9 | 6071 | } |
babe1480 | 6072 | |
14f9c5c9 AS |
6073 | if (str[0] == '\000') |
6074 | return 1; | |
babe1480 | 6075 | |
d2e4a39e | 6076 | if (str[0] == '_') |
14f9c5c9 AS |
6077 | { |
6078 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 6079 | return 0; |
d2e4a39e | 6080 | if (str[2] == '_') |
4c4b4cd2 | 6081 | { |
61ee279c PH |
6082 | if (strcmp (str + 3, "JM") == 0) |
6083 | return 1; | |
6084 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
6085 | the LJM suffix in favor of the JM one. But we will | |
6086 | still accept LJM as a valid suffix for a reasonable | |
6087 | amount of time, just to allow ourselves to debug programs | |
6088 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
6089 | if (strcmp (str + 3, "LJM") == 0) |
6090 | return 1; | |
6091 | if (str[3] != 'X') | |
6092 | return 0; | |
1265e4aa JB |
6093 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
6094 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
6095 | return 1; |
6096 | if (str[4] == 'R' && str[5] != 'T') | |
6097 | return 1; | |
6098 | return 0; | |
6099 | } | |
6100 | if (!isdigit (str[2])) | |
6101 | return 0; | |
6102 | for (k = 3; str[k] != '\0'; k += 1) | |
6103 | if (!isdigit (str[k]) && str[k] != '_') | |
6104 | return 0; | |
14f9c5c9 AS |
6105 | return 1; |
6106 | } | |
4c4b4cd2 | 6107 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 6108 | { |
4c4b4cd2 PH |
6109 | for (k = 2; str[k] != '\0'; k += 1) |
6110 | if (!isdigit (str[k]) && str[k] != '_') | |
6111 | return 0; | |
14f9c5c9 AS |
6112 | return 1; |
6113 | } | |
6114 | return 0; | |
6115 | } | |
d2e4a39e | 6116 | |
aeb5907d JB |
6117 | /* Return non-zero if the string starting at NAME and ending before |
6118 | NAME_END contains no capital letters. */ | |
529cad9c PH |
6119 | |
6120 | static int | |
6121 | is_valid_name_for_wild_match (const char *name0) | |
6122 | { | |
6123 | const char *decoded_name = ada_decode (name0); | |
6124 | int i; | |
6125 | ||
5823c3ef JB |
6126 | /* If the decoded name starts with an angle bracket, it means that |
6127 | NAME0 does not follow the GNAT encoding format. It should then | |
6128 | not be allowed as a possible wild match. */ | |
6129 | if (decoded_name[0] == '<') | |
6130 | return 0; | |
6131 | ||
529cad9c PH |
6132 | for (i=0; decoded_name[i] != '\0'; i++) |
6133 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
6134 | return 0; | |
6135 | ||
6136 | return 1; | |
6137 | } | |
6138 | ||
73589123 PH |
6139 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
6140 | that could start a simple name. Assumes that *NAMEP points into | |
6141 | the string beginning at NAME0. */ | |
4c4b4cd2 | 6142 | |
14f9c5c9 | 6143 | static int |
73589123 | 6144 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 6145 | { |
73589123 | 6146 | const char *name = *namep; |
5b4ee69b | 6147 | |
5823c3ef | 6148 | while (1) |
14f9c5c9 | 6149 | { |
aa27d0b3 | 6150 | int t0, t1; |
73589123 PH |
6151 | |
6152 | t0 = *name; | |
6153 | if (t0 == '_') | |
6154 | { | |
6155 | t1 = name[1]; | |
6156 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
6157 | { | |
6158 | name += 1; | |
61012eef | 6159 | if (name == name0 + 5 && startswith (name0, "_ada")) |
73589123 PH |
6160 | break; |
6161 | else | |
6162 | name += 1; | |
6163 | } | |
aa27d0b3 JB |
6164 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
6165 | || name[2] == target0)) | |
73589123 PH |
6166 | { |
6167 | name += 2; | |
6168 | break; | |
6169 | } | |
6170 | else | |
6171 | return 0; | |
6172 | } | |
6173 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
6174 | name += 1; | |
6175 | else | |
5823c3ef | 6176 | return 0; |
73589123 PH |
6177 | } |
6178 | ||
6179 | *namep = name; | |
6180 | return 1; | |
6181 | } | |
6182 | ||
6183 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
6184 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
6185 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
6186 | ||
6187 | static int | |
6188 | wild_match (const char *name, const char *patn) | |
6189 | { | |
22e048c9 | 6190 | const char *p; |
73589123 PH |
6191 | const char *name0 = name; |
6192 | ||
6193 | while (1) | |
6194 | { | |
6195 | const char *match = name; | |
6196 | ||
6197 | if (*name == *patn) | |
6198 | { | |
6199 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
6200 | if (*p != *name) | |
6201 | break; | |
6202 | if (*p == '\0' && is_name_suffix (name)) | |
6203 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
6204 | ||
6205 | if (name[-1] == '_') | |
6206 | name -= 1; | |
6207 | } | |
6208 | if (!advance_wild_match (&name, name0, *patn)) | |
6209 | return 1; | |
96d887e8 | 6210 | } |
96d887e8 PH |
6211 | } |
6212 | ||
40658b94 PH |
6213 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
6214 | informational suffix. */ | |
6215 | ||
c4d840bd PH |
6216 | static int |
6217 | full_match (const char *sym_name, const char *search_name) | |
6218 | { | |
40658b94 | 6219 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
6220 | } |
6221 | ||
6222 | ||
96d887e8 PH |
6223 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
6224 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 6225 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
4eeaa230 | 6226 | OBJFILE is the section containing BLOCK. */ |
96d887e8 PH |
6227 | |
6228 | static void | |
6229 | ada_add_block_symbols (struct obstack *obstackp, | |
f0c5f9b2 | 6230 | const struct block *block, const char *name, |
96d887e8 | 6231 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 6232 | int wild) |
96d887e8 | 6233 | { |
8157b174 | 6234 | struct block_iterator iter; |
96d887e8 PH |
6235 | int name_len = strlen (name); |
6236 | /* A matching argument symbol, if any. */ | |
6237 | struct symbol *arg_sym; | |
6238 | /* Set true when we find a matching non-argument symbol. */ | |
6239 | int found_sym; | |
6240 | struct symbol *sym; | |
6241 | ||
6242 | arg_sym = NULL; | |
6243 | found_sym = 0; | |
6244 | if (wild) | |
6245 | { | |
8157b174 TT |
6246 | for (sym = block_iter_match_first (block, name, wild_match, &iter); |
6247 | sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 6248 | { |
4186eb54 KS |
6249 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6250 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 6251 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 6252 | { |
2a2d4dc3 AS |
6253 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
6254 | continue; | |
6255 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
6256 | arg_sym = sym; | |
6257 | else | |
6258 | { | |
76a01679 JB |
6259 | found_sym = 1; |
6260 | add_defn_to_vec (obstackp, | |
6261 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 6262 | block); |
76a01679 JB |
6263 | } |
6264 | } | |
6265 | } | |
96d887e8 PH |
6266 | } |
6267 | else | |
6268 | { | |
8157b174 TT |
6269 | for (sym = block_iter_match_first (block, name, full_match, &iter); |
6270 | sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) | |
76a01679 | 6271 | { |
4186eb54 KS |
6272 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6273 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 6274 | { |
c4d840bd PH |
6275 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6276 | { | |
6277 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6278 | arg_sym = sym; | |
6279 | else | |
2a2d4dc3 | 6280 | { |
c4d840bd PH |
6281 | found_sym = 1; |
6282 | add_defn_to_vec (obstackp, | |
6283 | fixup_symbol_section (sym, objfile), | |
6284 | block); | |
2a2d4dc3 | 6285 | } |
c4d840bd | 6286 | } |
76a01679 JB |
6287 | } |
6288 | } | |
96d887e8 PH |
6289 | } |
6290 | ||
22cee43f PMR |
6291 | /* Handle renamings. */ |
6292 | ||
6293 | if (ada_add_block_renamings (obstackp, block, name, domain, wild)) | |
6294 | found_sym = 1; | |
6295 | ||
96d887e8 PH |
6296 | if (!found_sym && arg_sym != NULL) |
6297 | { | |
76a01679 JB |
6298 | add_defn_to_vec (obstackp, |
6299 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 6300 | block); |
96d887e8 PH |
6301 | } |
6302 | ||
6303 | if (!wild) | |
6304 | { | |
6305 | arg_sym = NULL; | |
6306 | found_sym = 0; | |
6307 | ||
6308 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 6309 | { |
4186eb54 KS |
6310 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
6311 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
6312 | { |
6313 | int cmp; | |
6314 | ||
6315 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
6316 | if (cmp == 0) | |
6317 | { | |
61012eef | 6318 | cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_"); |
76a01679 JB |
6319 | if (cmp == 0) |
6320 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
6321 | name_len); | |
6322 | } | |
6323 | ||
6324 | if (cmp == 0 | |
6325 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
6326 | { | |
2a2d4dc3 AS |
6327 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
6328 | { | |
6329 | if (SYMBOL_IS_ARGUMENT (sym)) | |
6330 | arg_sym = sym; | |
6331 | else | |
6332 | { | |
6333 | found_sym = 1; | |
6334 | add_defn_to_vec (obstackp, | |
6335 | fixup_symbol_section (sym, objfile), | |
6336 | block); | |
6337 | } | |
6338 | } | |
76a01679 JB |
6339 | } |
6340 | } | |
76a01679 | 6341 | } |
96d887e8 PH |
6342 | |
6343 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
6344 | They aren't parameters, right? */ | |
6345 | if (!found_sym && arg_sym != NULL) | |
6346 | { | |
6347 | add_defn_to_vec (obstackp, | |
76a01679 | 6348 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 6349 | block); |
96d887e8 PH |
6350 | } |
6351 | } | |
6352 | } | |
6353 | \f | |
41d27058 JB |
6354 | |
6355 | /* Symbol Completion */ | |
6356 | ||
6357 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
6358 | name in a form that's appropriate for the completion. The result | |
6359 | does not need to be deallocated, but is only good until the next call. | |
6360 | ||
6361 | TEXT_LEN is equal to the length of TEXT. | |
e701b3c0 | 6362 | Perform a wild match if WILD_MATCH_P is set. |
6ea35997 | 6363 | ENCODED_P should be set if TEXT represents the start of a symbol name |
41d27058 JB |
6364 | in its encoded form. */ |
6365 | ||
6366 | static const char * | |
6367 | symbol_completion_match (const char *sym_name, | |
6368 | const char *text, int text_len, | |
6ea35997 | 6369 | int wild_match_p, int encoded_p) |
41d27058 | 6370 | { |
41d27058 JB |
6371 | const int verbatim_match = (text[0] == '<'); |
6372 | int match = 0; | |
6373 | ||
6374 | if (verbatim_match) | |
6375 | { | |
6376 | /* Strip the leading angle bracket. */ | |
6377 | text = text + 1; | |
6378 | text_len--; | |
6379 | } | |
6380 | ||
6381 | /* First, test against the fully qualified name of the symbol. */ | |
6382 | ||
6383 | if (strncmp (sym_name, text, text_len) == 0) | |
6384 | match = 1; | |
6385 | ||
6ea35997 | 6386 | if (match && !encoded_p) |
41d27058 JB |
6387 | { |
6388 | /* One needed check before declaring a positive match is to verify | |
6389 | that iff we are doing a verbatim match, the decoded version | |
6390 | of the symbol name starts with '<'. Otherwise, this symbol name | |
6391 | is not a suitable completion. */ | |
6392 | const char *sym_name_copy = sym_name; | |
6393 | int has_angle_bracket; | |
6394 | ||
6395 | sym_name = ada_decode (sym_name); | |
6396 | has_angle_bracket = (sym_name[0] == '<'); | |
6397 | match = (has_angle_bracket == verbatim_match); | |
6398 | sym_name = sym_name_copy; | |
6399 | } | |
6400 | ||
6401 | if (match && !verbatim_match) | |
6402 | { | |
6403 | /* When doing non-verbatim match, another check that needs to | |
6404 | be done is to verify that the potentially matching symbol name | |
6405 | does not include capital letters, because the ada-mode would | |
6406 | not be able to understand these symbol names without the | |
6407 | angle bracket notation. */ | |
6408 | const char *tmp; | |
6409 | ||
6410 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
6411 | if (*tmp != '\0') | |
6412 | match = 0; | |
6413 | } | |
6414 | ||
6415 | /* Second: Try wild matching... */ | |
6416 | ||
e701b3c0 | 6417 | if (!match && wild_match_p) |
41d27058 JB |
6418 | { |
6419 | /* Since we are doing wild matching, this means that TEXT | |
6420 | may represent an unqualified symbol name. We therefore must | |
6421 | also compare TEXT against the unqualified name of the symbol. */ | |
6422 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
6423 | ||
6424 | if (strncmp (sym_name, text, text_len) == 0) | |
6425 | match = 1; | |
6426 | } | |
6427 | ||
6428 | /* Finally: If we found a mach, prepare the result to return. */ | |
6429 | ||
6430 | if (!match) | |
6431 | return NULL; | |
6432 | ||
6433 | if (verbatim_match) | |
6434 | sym_name = add_angle_brackets (sym_name); | |
6435 | ||
6ea35997 | 6436 | if (!encoded_p) |
41d27058 JB |
6437 | sym_name = ada_decode (sym_name); |
6438 | ||
6439 | return sym_name; | |
6440 | } | |
6441 | ||
eb3ff9a5 | 6442 | /* A companion function to ada_collect_symbol_completion_matches(). |
41d27058 | 6443 | Check if SYM_NAME represents a symbol which name would be suitable |
eb3ff9a5 PA |
6444 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case it |
6445 | is added as a completion match to TRACKER. | |
41d27058 JB |
6446 | |
6447 | ORIG_TEXT is the string original string from the user command | |
6448 | that needs to be completed. WORD is the entire command on which | |
6449 | completion should be performed. These two parameters are used to | |
6450 | determine which part of the symbol name should be added to the | |
6451 | completion vector. | |
c0af1706 | 6452 | if WILD_MATCH_P is set, then wild matching is performed. |
cb8e9b97 | 6453 | ENCODED_P should be set if TEXT represents a symbol name in its |
41d27058 JB |
6454 | encoded formed (in which case the completion should also be |
6455 | encoded). */ | |
6456 | ||
6457 | static void | |
eb3ff9a5 PA |
6458 | symbol_completion_add (completion_tracker &tracker, |
6459 | const char *sym_name, | |
41d27058 JB |
6460 | const char *text, int text_len, |
6461 | const char *orig_text, const char *word, | |
cb8e9b97 | 6462 | int wild_match_p, int encoded_p) |
41d27058 JB |
6463 | { |
6464 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
cb8e9b97 | 6465 | wild_match_p, encoded_p); |
41d27058 JB |
6466 | char *completion; |
6467 | ||
6468 | if (match == NULL) | |
6469 | return; | |
6470 | ||
6471 | /* We found a match, so add the appropriate completion to the given | |
6472 | string vector. */ | |
6473 | ||
6474 | if (word == orig_text) | |
6475 | { | |
224c3ddb | 6476 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6477 | strcpy (completion, match); |
6478 | } | |
6479 | else if (word > orig_text) | |
6480 | { | |
6481 | /* Return some portion of sym_name. */ | |
224c3ddb | 6482 | completion = (char *) xmalloc (strlen (match) + 5); |
41d27058 JB |
6483 | strcpy (completion, match + (word - orig_text)); |
6484 | } | |
6485 | else | |
6486 | { | |
6487 | /* Return some of ORIG_TEXT plus sym_name. */ | |
224c3ddb | 6488 | completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5); |
41d27058 JB |
6489 | strncpy (completion, word, orig_text - word); |
6490 | completion[orig_text - word] = '\0'; | |
6491 | strcat (completion, match); | |
6492 | } | |
6493 | ||
eb3ff9a5 | 6494 | tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion)); |
41d27058 JB |
6495 | } |
6496 | ||
eb3ff9a5 PA |
6497 | /* Add the list of possible symbol names completing TEXT0 to TRACKER. |
6498 | WORD is the entire command on which completion is made. */ | |
41d27058 | 6499 | |
eb3ff9a5 PA |
6500 | static void |
6501 | ada_collect_symbol_completion_matches (completion_tracker &tracker, | |
c6756f62 | 6502 | complete_symbol_mode mode, |
eb3ff9a5 PA |
6503 | const char *text0, const char *word, |
6504 | enum type_code code) | |
41d27058 JB |
6505 | { |
6506 | char *text; | |
6507 | int text_len; | |
b1ed564a JB |
6508 | int wild_match_p; |
6509 | int encoded_p; | |
41d27058 | 6510 | struct symbol *sym; |
43f3e411 | 6511 | struct compunit_symtab *s; |
41d27058 JB |
6512 | struct minimal_symbol *msymbol; |
6513 | struct objfile *objfile; | |
3977b71f | 6514 | const struct block *b, *surrounding_static_block = 0; |
41d27058 | 6515 | int i; |
8157b174 | 6516 | struct block_iterator iter; |
b8fea896 | 6517 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
41d27058 | 6518 | |
2f68a895 TT |
6519 | gdb_assert (code == TYPE_CODE_UNDEF); |
6520 | ||
41d27058 JB |
6521 | if (text0[0] == '<') |
6522 | { | |
6523 | text = xstrdup (text0); | |
6524 | make_cleanup (xfree, text); | |
6525 | text_len = strlen (text); | |
b1ed564a JB |
6526 | wild_match_p = 0; |
6527 | encoded_p = 1; | |
41d27058 JB |
6528 | } |
6529 | else | |
6530 | { | |
6531 | text = xstrdup (ada_encode (text0)); | |
6532 | make_cleanup (xfree, text); | |
6533 | text_len = strlen (text); | |
6534 | for (i = 0; i < text_len; i++) | |
6535 | text[i] = tolower (text[i]); | |
6536 | ||
b1ed564a | 6537 | encoded_p = (strstr (text0, "__") != NULL); |
41d27058 JB |
6538 | /* If the name contains a ".", then the user is entering a fully |
6539 | qualified entity name, and the match must not be done in wild | |
6540 | mode. Similarly, if the user wants to complete what looks like | |
6541 | an encoded name, the match must not be done in wild mode. */ | |
b1ed564a | 6542 | wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); |
41d27058 JB |
6543 | } |
6544 | ||
6545 | /* First, look at the partial symtab symbols. */ | |
14bc53a8 PA |
6546 | expand_symtabs_matching (NULL, |
6547 | [&] (const char *symname) | |
6548 | { | |
6549 | return symbol_completion_match (symname, | |
6550 | text, text_len, | |
6551 | wild_match_p, | |
6552 | encoded_p); | |
6553 | }, | |
6554 | NULL, | |
6555 | ALL_DOMAIN); | |
41d27058 JB |
6556 | |
6557 | /* At this point scan through the misc symbol vectors and add each | |
6558 | symbol you find to the list. Eventually we want to ignore | |
6559 | anything that isn't a text symbol (everything else will be | |
6560 | handled by the psymtab code above). */ | |
6561 | ||
6562 | ALL_MSYMBOLS (objfile, msymbol) | |
6563 | { | |
6564 | QUIT; | |
eb3ff9a5 | 6565 | symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol), |
b1ed564a JB |
6566 | text, text_len, text0, word, wild_match_p, |
6567 | encoded_p); | |
41d27058 JB |
6568 | } |
6569 | ||
6570 | /* Search upwards from currently selected frame (so that we can | |
6571 | complete on local vars. */ | |
6572 | ||
6573 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
6574 | { | |
6575 | if (!BLOCK_SUPERBLOCK (b)) | |
6576 | surrounding_static_block = b; /* For elmin of dups */ | |
6577 | ||
6578 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6579 | { | |
eb3ff9a5 | 6580 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6581 | text, text_len, text0, word, |
b1ed564a | 6582 | wild_match_p, encoded_p); |
41d27058 JB |
6583 | } |
6584 | } | |
6585 | ||
6586 | /* Go through the symtabs and check the externs and statics for | |
43f3e411 | 6587 | symbols which match. */ |
41d27058 | 6588 | |
43f3e411 | 6589 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6590 | { |
6591 | QUIT; | |
43f3e411 | 6592 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK); |
41d27058 JB |
6593 | ALL_BLOCK_SYMBOLS (b, iter, sym) |
6594 | { | |
eb3ff9a5 | 6595 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6596 | text, text_len, text0, word, |
b1ed564a | 6597 | wild_match_p, encoded_p); |
41d27058 JB |
6598 | } |
6599 | } | |
6600 | ||
43f3e411 | 6601 | ALL_COMPUNITS (objfile, s) |
41d27058 JB |
6602 | { |
6603 | QUIT; | |
43f3e411 | 6604 | b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK); |
41d27058 JB |
6605 | /* Don't do this block twice. */ |
6606 | if (b == surrounding_static_block) | |
6607 | continue; | |
6608 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6609 | { | |
eb3ff9a5 | 6610 | symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym), |
41d27058 | 6611 | text, text_len, text0, word, |
b1ed564a | 6612 | wild_match_p, encoded_p); |
41d27058 JB |
6613 | } |
6614 | } | |
6615 | ||
b8fea896 | 6616 | do_cleanups (old_chain); |
41d27058 JB |
6617 | } |
6618 | ||
963a6417 | 6619 | /* Field Access */ |
96d887e8 | 6620 | |
73fb9985 JB |
6621 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
6622 | for tagged types. */ | |
6623 | ||
6624 | static int | |
6625 | ada_is_dispatch_table_ptr_type (struct type *type) | |
6626 | { | |
0d5cff50 | 6627 | const char *name; |
73fb9985 JB |
6628 | |
6629 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
6630 | return 0; | |
6631 | ||
6632 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
6633 | if (name == NULL) | |
6634 | return 0; | |
6635 | ||
6636 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
6637 | } | |
6638 | ||
ac4a2da4 JG |
6639 | /* Return non-zero if TYPE is an interface tag. */ |
6640 | ||
6641 | static int | |
6642 | ada_is_interface_tag (struct type *type) | |
6643 | { | |
6644 | const char *name = TYPE_NAME (type); | |
6645 | ||
6646 | if (name == NULL) | |
6647 | return 0; | |
6648 | ||
6649 | return (strcmp (name, "ada__tags__interface_tag") == 0); | |
6650 | } | |
6651 | ||
963a6417 PH |
6652 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
6653 | to be invisible to users. */ | |
96d887e8 | 6654 | |
963a6417 PH |
6655 | int |
6656 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 6657 | { |
963a6417 PH |
6658 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
6659 | return 1; | |
ffde82bf | 6660 | |
73fb9985 JB |
6661 | /* Check the name of that field. */ |
6662 | { | |
6663 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
6664 | ||
6665 | /* Anonymous field names should not be printed. | |
6666 | brobecker/2007-02-20: I don't think this can actually happen | |
6667 | but we don't want to print the value of annonymous fields anyway. */ | |
6668 | if (name == NULL) | |
6669 | return 1; | |
6670 | ||
ffde82bf JB |
6671 | /* Normally, fields whose name start with an underscore ("_") |
6672 | are fields that have been internally generated by the compiler, | |
6673 | and thus should not be printed. The "_parent" field is special, | |
6674 | however: This is a field internally generated by the compiler | |
6675 | for tagged types, and it contains the components inherited from | |
6676 | the parent type. This field should not be printed as is, but | |
6677 | should not be ignored either. */ | |
61012eef | 6678 | if (name[0] == '_' && !startswith (name, "_parent")) |
73fb9985 JB |
6679 | return 1; |
6680 | } | |
6681 | ||
ac4a2da4 JG |
6682 | /* If this is the dispatch table of a tagged type or an interface tag, |
6683 | then ignore. */ | |
73fb9985 | 6684 | if (ada_is_tagged_type (type, 1) |
ac4a2da4 JG |
6685 | && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) |
6686 | || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) | |
73fb9985 JB |
6687 | return 1; |
6688 | ||
6689 | /* Not a special field, so it should not be ignored. */ | |
6690 | return 0; | |
963a6417 | 6691 | } |
96d887e8 | 6692 | |
963a6417 | 6693 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 6694 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 6695 | |
963a6417 PH |
6696 | int |
6697 | ada_is_tagged_type (struct type *type, int refok) | |
6698 | { | |
988f6b3d | 6699 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL); |
963a6417 | 6700 | } |
96d887e8 | 6701 | |
963a6417 | 6702 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 6703 | |
963a6417 PH |
6704 | int |
6705 | ada_is_tag_type (struct type *type) | |
6706 | { | |
460efde1 JB |
6707 | type = ada_check_typedef (type); |
6708 | ||
963a6417 PH |
6709 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) |
6710 | return 0; | |
6711 | else | |
96d887e8 | 6712 | { |
963a6417 | 6713 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 6714 | |
963a6417 PH |
6715 | return (name != NULL |
6716 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 6717 | } |
96d887e8 PH |
6718 | } |
6719 | ||
963a6417 | 6720 | /* The type of the tag on VAL. */ |
76a01679 | 6721 | |
963a6417 PH |
6722 | struct type * |
6723 | ada_tag_type (struct value *val) | |
96d887e8 | 6724 | { |
988f6b3d | 6725 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0); |
963a6417 | 6726 | } |
96d887e8 | 6727 | |
b50d69b5 JG |
6728 | /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, |
6729 | retired at Ada 05). */ | |
6730 | ||
6731 | static int | |
6732 | is_ada95_tag (struct value *tag) | |
6733 | { | |
6734 | return ada_value_struct_elt (tag, "tsd", 1) != NULL; | |
6735 | } | |
6736 | ||
963a6417 | 6737 | /* The value of the tag on VAL. */ |
96d887e8 | 6738 | |
963a6417 PH |
6739 | struct value * |
6740 | ada_value_tag (struct value *val) | |
6741 | { | |
03ee6b2e | 6742 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
6743 | } |
6744 | ||
963a6417 PH |
6745 | /* The value of the tag on the object of type TYPE whose contents are |
6746 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 6747 | ADDRESS. */ |
96d887e8 | 6748 | |
963a6417 | 6749 | static struct value * |
10a2c479 | 6750 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 6751 | const gdb_byte *valaddr, |
963a6417 | 6752 | CORE_ADDR address) |
96d887e8 | 6753 | { |
b5385fc0 | 6754 | int tag_byte_offset; |
963a6417 | 6755 | struct type *tag_type; |
5b4ee69b | 6756 | |
963a6417 | 6757 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 6758 | NULL, NULL, NULL)) |
96d887e8 | 6759 | { |
fc1a4b47 | 6760 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
6761 | ? NULL |
6762 | : valaddr + tag_byte_offset); | |
963a6417 | 6763 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 6764 | |
963a6417 | 6765 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 6766 | } |
963a6417 PH |
6767 | return NULL; |
6768 | } | |
96d887e8 | 6769 | |
963a6417 PH |
6770 | static struct type * |
6771 | type_from_tag (struct value *tag) | |
6772 | { | |
6773 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 6774 | |
963a6417 PH |
6775 | if (type_name != NULL) |
6776 | return ada_find_any_type (ada_encode (type_name)); | |
6777 | return NULL; | |
6778 | } | |
96d887e8 | 6779 | |
b50d69b5 JG |
6780 | /* Given a value OBJ of a tagged type, return a value of this |
6781 | type at the base address of the object. The base address, as | |
6782 | defined in Ada.Tags, it is the address of the primary tag of | |
6783 | the object, and therefore where the field values of its full | |
6784 | view can be fetched. */ | |
6785 | ||
6786 | struct value * | |
6787 | ada_tag_value_at_base_address (struct value *obj) | |
6788 | { | |
b50d69b5 JG |
6789 | struct value *val; |
6790 | LONGEST offset_to_top = 0; | |
6791 | struct type *ptr_type, *obj_type; | |
6792 | struct value *tag; | |
6793 | CORE_ADDR base_address; | |
6794 | ||
6795 | obj_type = value_type (obj); | |
6796 | ||
6797 | /* It is the responsability of the caller to deref pointers. */ | |
6798 | ||
6799 | if (TYPE_CODE (obj_type) == TYPE_CODE_PTR | |
6800 | || TYPE_CODE (obj_type) == TYPE_CODE_REF) | |
6801 | return obj; | |
6802 | ||
6803 | tag = ada_value_tag (obj); | |
6804 | if (!tag) | |
6805 | return obj; | |
6806 | ||
6807 | /* Base addresses only appeared with Ada 05 and multiple inheritance. */ | |
6808 | ||
6809 | if (is_ada95_tag (tag)) | |
6810 | return obj; | |
6811 | ||
6812 | ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; | |
6813 | ptr_type = lookup_pointer_type (ptr_type); | |
6814 | val = value_cast (ptr_type, tag); | |
6815 | if (!val) | |
6816 | return obj; | |
6817 | ||
6818 | /* It is perfectly possible that an exception be raised while | |
6819 | trying to determine the base address, just like for the tag; | |
6820 | see ada_tag_name for more details. We do not print the error | |
6821 | message for the same reason. */ | |
6822 | ||
492d29ea | 6823 | TRY |
b50d69b5 JG |
6824 | { |
6825 | offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); | |
6826 | } | |
6827 | ||
492d29ea PA |
6828 | CATCH (e, RETURN_MASK_ERROR) |
6829 | { | |
6830 | return obj; | |
6831 | } | |
6832 | END_CATCH | |
b50d69b5 JG |
6833 | |
6834 | /* If offset is null, nothing to do. */ | |
6835 | ||
6836 | if (offset_to_top == 0) | |
6837 | return obj; | |
6838 | ||
6839 | /* -1 is a special case in Ada.Tags; however, what should be done | |
6840 | is not quite clear from the documentation. So do nothing for | |
6841 | now. */ | |
6842 | ||
6843 | if (offset_to_top == -1) | |
6844 | return obj; | |
6845 | ||
6846 | base_address = value_address (obj) - offset_to_top; | |
6847 | tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); | |
6848 | ||
6849 | /* Make sure that we have a proper tag at the new address. | |
6850 | Otherwise, offset_to_top is bogus (which can happen when | |
6851 | the object is not initialized yet). */ | |
6852 | ||
6853 | if (!tag) | |
6854 | return obj; | |
6855 | ||
6856 | obj_type = type_from_tag (tag); | |
6857 | ||
6858 | if (!obj_type) | |
6859 | return obj; | |
6860 | ||
6861 | return value_from_contents_and_address (obj_type, NULL, base_address); | |
6862 | } | |
6863 | ||
1b611343 JB |
6864 | /* Return the "ada__tags__type_specific_data" type. */ |
6865 | ||
6866 | static struct type * | |
6867 | ada_get_tsd_type (struct inferior *inf) | |
963a6417 | 6868 | { |
1b611343 | 6869 | struct ada_inferior_data *data = get_ada_inferior_data (inf); |
4c4b4cd2 | 6870 | |
1b611343 JB |
6871 | if (data->tsd_type == 0) |
6872 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
6873 | return data->tsd_type; | |
6874 | } | |
529cad9c | 6875 | |
1b611343 JB |
6876 | /* Return the TSD (type-specific data) associated to the given TAG. |
6877 | TAG is assumed to be the tag of a tagged-type entity. | |
529cad9c | 6878 | |
1b611343 | 6879 | May return NULL if we are unable to get the TSD. */ |
4c4b4cd2 | 6880 | |
1b611343 JB |
6881 | static struct value * |
6882 | ada_get_tsd_from_tag (struct value *tag) | |
4c4b4cd2 | 6883 | { |
4c4b4cd2 | 6884 | struct value *val; |
1b611343 | 6885 | struct type *type; |
5b4ee69b | 6886 | |
1b611343 JB |
6887 | /* First option: The TSD is simply stored as a field of our TAG. |
6888 | Only older versions of GNAT would use this format, but we have | |
6889 | to test it first, because there are no visible markers for | |
6890 | the current approach except the absence of that field. */ | |
529cad9c | 6891 | |
1b611343 JB |
6892 | val = ada_value_struct_elt (tag, "tsd", 1); |
6893 | if (val) | |
6894 | return val; | |
e802dbe0 | 6895 | |
1b611343 JB |
6896 | /* Try the second representation for the dispatch table (in which |
6897 | there is no explicit 'tsd' field in the referent of the tag pointer, | |
6898 | and instead the tsd pointer is stored just before the dispatch | |
6899 | table. */ | |
e802dbe0 | 6900 | |
1b611343 JB |
6901 | type = ada_get_tsd_type (current_inferior()); |
6902 | if (type == NULL) | |
6903 | return NULL; | |
6904 | type = lookup_pointer_type (lookup_pointer_type (type)); | |
6905 | val = value_cast (type, tag); | |
6906 | if (val == NULL) | |
6907 | return NULL; | |
6908 | return value_ind (value_ptradd (val, -1)); | |
e802dbe0 JB |
6909 | } |
6910 | ||
1b611343 JB |
6911 | /* Given the TSD of a tag (type-specific data), return a string |
6912 | containing the name of the associated type. | |
6913 | ||
6914 | The returned value is good until the next call. May return NULL | |
6915 | if we are unable to determine the tag name. */ | |
6916 | ||
6917 | static char * | |
6918 | ada_tag_name_from_tsd (struct value *tsd) | |
529cad9c | 6919 | { |
529cad9c PH |
6920 | static char name[1024]; |
6921 | char *p; | |
1b611343 | 6922 | struct value *val; |
529cad9c | 6923 | |
1b611343 | 6924 | val = ada_value_struct_elt (tsd, "expanded_name", 1); |
4c4b4cd2 | 6925 | if (val == NULL) |
1b611343 | 6926 | return NULL; |
4c4b4cd2 PH |
6927 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); |
6928 | for (p = name; *p != '\0'; p += 1) | |
6929 | if (isalpha (*p)) | |
6930 | *p = tolower (*p); | |
1b611343 | 6931 | return name; |
4c4b4cd2 PH |
6932 | } |
6933 | ||
6934 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
1b611343 JB |
6935 | a C string. |
6936 | ||
6937 | Return NULL if the TAG is not an Ada tag, or if we were unable to | |
6938 | determine the name of that tag. The result is good until the next | |
6939 | call. */ | |
4c4b4cd2 PH |
6940 | |
6941 | const char * | |
6942 | ada_tag_name (struct value *tag) | |
6943 | { | |
1b611343 | 6944 | char *name = NULL; |
5b4ee69b | 6945 | |
df407dfe | 6946 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6947 | return NULL; |
1b611343 JB |
6948 | |
6949 | /* It is perfectly possible that an exception be raised while trying | |
6950 | to determine the TAG's name, even under normal circumstances: | |
6951 | The associated variable may be uninitialized or corrupted, for | |
6952 | instance. We do not let any exception propagate past this point. | |
6953 | instead we return NULL. | |
6954 | ||
6955 | We also do not print the error message either (which often is very | |
6956 | low-level (Eg: "Cannot read memory at 0x[...]"), but instead let | |
6957 | the caller print a more meaningful message if necessary. */ | |
492d29ea | 6958 | TRY |
1b611343 JB |
6959 | { |
6960 | struct value *tsd = ada_get_tsd_from_tag (tag); | |
6961 | ||
6962 | if (tsd != NULL) | |
6963 | name = ada_tag_name_from_tsd (tsd); | |
6964 | } | |
492d29ea PA |
6965 | CATCH (e, RETURN_MASK_ERROR) |
6966 | { | |
6967 | } | |
6968 | END_CATCH | |
1b611343 JB |
6969 | |
6970 | return name; | |
4c4b4cd2 PH |
6971 | } |
6972 | ||
6973 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6974 | |
d2e4a39e | 6975 | struct type * |
ebf56fd3 | 6976 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6977 | { |
6978 | int i; | |
6979 | ||
61ee279c | 6980 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6981 | |
6982 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6983 | return NULL; | |
6984 | ||
6985 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6986 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6987 | { |
6988 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6989 | ||
6990 | /* If the _parent field is a pointer, then dereference it. */ | |
6991 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6992 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6993 | /* If there is a parallel XVS type, get the actual base type. */ | |
6994 | parent_type = ada_get_base_type (parent_type); | |
6995 | ||
6996 | return ada_check_typedef (parent_type); | |
6997 | } | |
14f9c5c9 AS |
6998 | |
6999 | return NULL; | |
7000 | } | |
7001 | ||
4c4b4cd2 PH |
7002 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
7003 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
7004 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7005 | |
7006 | int | |
ebf56fd3 | 7007 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 7008 | { |
61ee279c | 7009 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 7010 | |
4c4b4cd2 | 7011 | return (name != NULL |
61012eef GB |
7012 | && (startswith (name, "PARENT") |
7013 | || startswith (name, "_parent"))); | |
14f9c5c9 AS |
7014 | } |
7015 | ||
4c4b4cd2 | 7016 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 7017 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 7018 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 7019 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 7020 | structures. */ |
14f9c5c9 AS |
7021 | |
7022 | int | |
ebf56fd3 | 7023 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 7024 | { |
d2e4a39e | 7025 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7026 | |
dddc0e16 JB |
7027 | if (name != NULL && strcmp (name, "RETVAL") == 0) |
7028 | { | |
7029 | /* This happens in functions with "out" or "in out" parameters | |
7030 | which are passed by copy. For such functions, GNAT describes | |
7031 | the function's return type as being a struct where the return | |
7032 | value is in a field called RETVAL, and where the other "out" | |
7033 | or "in out" parameters are fields of that struct. This is not | |
7034 | a wrapper. */ | |
7035 | return 0; | |
7036 | } | |
7037 | ||
d2e4a39e | 7038 | return (name != NULL |
61012eef | 7039 | && (startswith (name, "PARENT") |
4c4b4cd2 | 7040 | || strcmp (name, "REP") == 0 |
61012eef | 7041 | || startswith (name, "_parent") |
4c4b4cd2 | 7042 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); |
14f9c5c9 AS |
7043 | } |
7044 | ||
4c4b4cd2 PH |
7045 | /* True iff field number FIELD_NUM of structure or union type TYPE |
7046 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
7047 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
7048 | |
7049 | int | |
ebf56fd3 | 7050 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 7051 | { |
d2e4a39e | 7052 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 7053 | |
14f9c5c9 | 7054 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 7055 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
7056 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
7057 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
7058 | } |
7059 | ||
7060 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 7061 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
7062 | returns the type of the controlling discriminant for the variant. |
7063 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 7064 | |
d2e4a39e | 7065 | struct type * |
ebf56fd3 | 7066 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 7067 | { |
a121b7c1 | 7068 | const char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7069 | |
988f6b3d | 7070 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1); |
14f9c5c9 AS |
7071 | } |
7072 | ||
4c4b4cd2 | 7073 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 7074 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 7075 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
7076 | |
7077 | int | |
ebf56fd3 | 7078 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 7079 | { |
d2e4a39e | 7080 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 7081 | |
14f9c5c9 AS |
7082 | return (name != NULL && name[0] == 'O'); |
7083 | } | |
7084 | ||
7085 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
7086 | returns the name of the discriminant controlling the variant. |
7087 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 7088 | |
a121b7c1 | 7089 | const char * |
ebf56fd3 | 7090 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 7091 | { |
d2e4a39e | 7092 | static char *result = NULL; |
14f9c5c9 | 7093 | static size_t result_len = 0; |
d2e4a39e AS |
7094 | struct type *type; |
7095 | const char *name; | |
7096 | const char *discrim_end; | |
7097 | const char *discrim_start; | |
14f9c5c9 AS |
7098 | |
7099 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
7100 | type = TYPE_TARGET_TYPE (type0); | |
7101 | else | |
7102 | type = type0; | |
7103 | ||
7104 | name = ada_type_name (type); | |
7105 | ||
7106 | if (name == NULL || name[0] == '\000') | |
7107 | return ""; | |
7108 | ||
7109 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
7110 | discrim_end -= 1) | |
7111 | { | |
61012eef | 7112 | if (startswith (discrim_end, "___XVN")) |
4c4b4cd2 | 7113 | break; |
14f9c5c9 AS |
7114 | } |
7115 | if (discrim_end == name) | |
7116 | return ""; | |
7117 | ||
d2e4a39e | 7118 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
7119 | discrim_start -= 1) |
7120 | { | |
d2e4a39e | 7121 | if (discrim_start == name + 1) |
4c4b4cd2 | 7122 | return ""; |
76a01679 | 7123 | if ((discrim_start > name + 3 |
61012eef | 7124 | && startswith (discrim_start - 3, "___")) |
4c4b4cd2 PH |
7125 | || discrim_start[-1] == '.') |
7126 | break; | |
14f9c5c9 AS |
7127 | } |
7128 | ||
7129 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
7130 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 7131 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
7132 | return result; |
7133 | } | |
7134 | ||
4c4b4cd2 PH |
7135 | /* Scan STR for a subtype-encoded number, beginning at position K. |
7136 | Put the position of the character just past the number scanned in | |
7137 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
7138 | Return 1 if there was a valid number at the given position, and 0 | |
7139 | otherwise. A "subtype-encoded" number consists of the absolute value | |
7140 | in decimal, followed by the letter 'm' to indicate a negative number. | |
7141 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
7142 | |
7143 | int | |
d2e4a39e | 7144 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
7145 | { |
7146 | ULONGEST RU; | |
7147 | ||
d2e4a39e | 7148 | if (!isdigit (str[k])) |
14f9c5c9 AS |
7149 | return 0; |
7150 | ||
4c4b4cd2 | 7151 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 7152 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 7153 | LONGEST. */ |
14f9c5c9 AS |
7154 | RU = 0; |
7155 | while (isdigit (str[k])) | |
7156 | { | |
d2e4a39e | 7157 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
7158 | k += 1; |
7159 | } | |
7160 | ||
d2e4a39e | 7161 | if (str[k] == 'm') |
14f9c5c9 AS |
7162 | { |
7163 | if (R != NULL) | |
4c4b4cd2 | 7164 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
7165 | k += 1; |
7166 | } | |
7167 | else if (R != NULL) | |
7168 | *R = (LONGEST) RU; | |
7169 | ||
4c4b4cd2 | 7170 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
7171 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
7172 | number representable as a LONGEST (although either would probably work | |
7173 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 7174 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
7175 | |
7176 | if (new_k != NULL) | |
7177 | *new_k = k; | |
7178 | return 1; | |
7179 | } | |
7180 | ||
4c4b4cd2 PH |
7181 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
7182 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
7183 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 7184 | |
d2e4a39e | 7185 | int |
ebf56fd3 | 7186 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 7187 | { |
d2e4a39e | 7188 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
7189 | int p; |
7190 | ||
7191 | p = 0; | |
7192 | while (1) | |
7193 | { | |
d2e4a39e | 7194 | switch (name[p]) |
4c4b4cd2 PH |
7195 | { |
7196 | case '\0': | |
7197 | return 0; | |
7198 | case 'S': | |
7199 | { | |
7200 | LONGEST W; | |
5b4ee69b | 7201 | |
4c4b4cd2 PH |
7202 | if (!ada_scan_number (name, p + 1, &W, &p)) |
7203 | return 0; | |
7204 | if (val == W) | |
7205 | return 1; | |
7206 | break; | |
7207 | } | |
7208 | case 'R': | |
7209 | { | |
7210 | LONGEST L, U; | |
5b4ee69b | 7211 | |
4c4b4cd2 PH |
7212 | if (!ada_scan_number (name, p + 1, &L, &p) |
7213 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
7214 | return 0; | |
7215 | if (val >= L && val <= U) | |
7216 | return 1; | |
7217 | break; | |
7218 | } | |
7219 | case 'O': | |
7220 | return 1; | |
7221 | default: | |
7222 | return 0; | |
7223 | } | |
7224 | } | |
7225 | } | |
7226 | ||
0963b4bd | 7227 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
7228 | |
7229 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
7230 | ARG_TYPE, extract and return the value of one of its (non-static) | |
7231 | fields. FIELDNO says which field. Differs from value_primitive_field | |
7232 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 7233 | |
4c4b4cd2 | 7234 | static struct value * |
d2e4a39e | 7235 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 7236 | struct type *arg_type) |
14f9c5c9 | 7237 | { |
14f9c5c9 AS |
7238 | struct type *type; |
7239 | ||
61ee279c | 7240 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
7241 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
7242 | ||
4c4b4cd2 | 7243 | /* Handle packed fields. */ |
14f9c5c9 AS |
7244 | |
7245 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
7246 | { | |
7247 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
7248 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 7249 | |
0fd88904 | 7250 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
7251 | offset + bit_pos / 8, |
7252 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
7253 | } |
7254 | else | |
7255 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
7256 | } | |
7257 | ||
52ce6436 PH |
7258 | /* Find field with name NAME in object of type TYPE. If found, |
7259 | set the following for each argument that is non-null: | |
7260 | - *FIELD_TYPE_P to the field's type; | |
7261 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
7262 | an object of that type; | |
7263 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
7264 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
7265 | 0 otherwise; | |
7266 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
7267 | fields up to but not including the desired field, or by the total | |
7268 | number of fields if not found. A NULL value of NAME never | |
7269 | matches; the function just counts visible fields in this case. | |
7270 | ||
0963b4bd | 7271 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 7272 | |
4c4b4cd2 | 7273 | static int |
0d5cff50 | 7274 | find_struct_field (const char *name, struct type *type, int offset, |
76a01679 | 7275 | struct type **field_type_p, |
52ce6436 PH |
7276 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
7277 | int *index_p) | |
4c4b4cd2 PH |
7278 | { |
7279 | int i; | |
7280 | ||
61ee279c | 7281 | type = ada_check_typedef (type); |
76a01679 | 7282 | |
52ce6436 PH |
7283 | if (field_type_p != NULL) |
7284 | *field_type_p = NULL; | |
7285 | if (byte_offset_p != NULL) | |
d5d6fca5 | 7286 | *byte_offset_p = 0; |
52ce6436 PH |
7287 | if (bit_offset_p != NULL) |
7288 | *bit_offset_p = 0; | |
7289 | if (bit_size_p != NULL) | |
7290 | *bit_size_p = 0; | |
7291 | ||
7292 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
7293 | { |
7294 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
7295 | int fld_offset = offset + bit_pos / 8; | |
0d5cff50 | 7296 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
76a01679 | 7297 | |
4c4b4cd2 PH |
7298 | if (t_field_name == NULL) |
7299 | continue; | |
7300 | ||
52ce6436 | 7301 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
7302 | { |
7303 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 7304 | |
52ce6436 PH |
7305 | if (field_type_p != NULL) |
7306 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
7307 | if (byte_offset_p != NULL) | |
7308 | *byte_offset_p = fld_offset; | |
7309 | if (bit_offset_p != NULL) | |
7310 | *bit_offset_p = bit_pos % 8; | |
7311 | if (bit_size_p != NULL) | |
7312 | *bit_size_p = bit_size; | |
76a01679 JB |
7313 | return 1; |
7314 | } | |
4c4b4cd2 PH |
7315 | else if (ada_is_wrapper_field (type, i)) |
7316 | { | |
52ce6436 PH |
7317 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
7318 | field_type_p, byte_offset_p, bit_offset_p, | |
7319 | bit_size_p, index_p)) | |
76a01679 JB |
7320 | return 1; |
7321 | } | |
4c4b4cd2 PH |
7322 | else if (ada_is_variant_part (type, i)) |
7323 | { | |
52ce6436 PH |
7324 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
7325 | fixed type?? */ | |
4c4b4cd2 | 7326 | int j; |
52ce6436 PH |
7327 | struct type *field_type |
7328 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 7329 | |
52ce6436 | 7330 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7331 | { |
76a01679 JB |
7332 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
7333 | fld_offset | |
7334 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7335 | field_type_p, byte_offset_p, | |
52ce6436 | 7336 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 7337 | return 1; |
4c4b4cd2 PH |
7338 | } |
7339 | } | |
52ce6436 PH |
7340 | else if (index_p != NULL) |
7341 | *index_p += 1; | |
4c4b4cd2 PH |
7342 | } |
7343 | return 0; | |
7344 | } | |
7345 | ||
0963b4bd | 7346 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 7347 | |
52ce6436 PH |
7348 | static int |
7349 | num_visible_fields (struct type *type) | |
7350 | { | |
7351 | int n; | |
5b4ee69b | 7352 | |
52ce6436 PH |
7353 | n = 0; |
7354 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
7355 | return n; | |
7356 | } | |
14f9c5c9 | 7357 | |
4c4b4cd2 | 7358 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
7359 | and search in it assuming it has (class) type TYPE. |
7360 | If found, return value, else return NULL. | |
7361 | ||
4c4b4cd2 | 7362 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 7363 | |
4c4b4cd2 | 7364 | static struct value * |
108d56a4 | 7365 | ada_search_struct_field (const char *name, struct value *arg, int offset, |
4c4b4cd2 | 7366 | struct type *type) |
14f9c5c9 AS |
7367 | { |
7368 | int i; | |
14f9c5c9 | 7369 | |
5b4ee69b | 7370 | type = ada_check_typedef (type); |
52ce6436 | 7371 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 | 7372 | { |
0d5cff50 | 7373 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 AS |
7374 | |
7375 | if (t_field_name == NULL) | |
4c4b4cd2 | 7376 | continue; |
14f9c5c9 AS |
7377 | |
7378 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 7379 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
7380 | |
7381 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7382 | { |
0963b4bd | 7383 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
7384 | ada_search_struct_field (name, arg, |
7385 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7386 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7387 | |
4c4b4cd2 PH |
7388 | if (v != NULL) |
7389 | return v; | |
7390 | } | |
14f9c5c9 AS |
7391 | |
7392 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 7393 | { |
0963b4bd | 7394 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 7395 | int j; |
5b4ee69b MS |
7396 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7397 | i)); | |
4c4b4cd2 PH |
7398 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
7399 | ||
52ce6436 | 7400 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 7401 | { |
0963b4bd MS |
7402 | struct value *v = ada_search_struct_field /* Force line |
7403 | break. */ | |
06d5cf63 JB |
7404 | (name, arg, |
7405 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
7406 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 7407 | |
4c4b4cd2 PH |
7408 | if (v != NULL) |
7409 | return v; | |
7410 | } | |
7411 | } | |
14f9c5c9 AS |
7412 | } |
7413 | return NULL; | |
7414 | } | |
d2e4a39e | 7415 | |
52ce6436 PH |
7416 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
7417 | int, struct type *); | |
7418 | ||
7419 | ||
7420 | /* Return field #INDEX in ARG, where the index is that returned by | |
7421 | * find_struct_field through its INDEX_P argument. Adjust the address | |
7422 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 7423 | * If found, return value, else return NULL. */ |
52ce6436 PH |
7424 | |
7425 | static struct value * | |
7426 | ada_index_struct_field (int index, struct value *arg, int offset, | |
7427 | struct type *type) | |
7428 | { | |
7429 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
7430 | } | |
7431 | ||
7432 | ||
7433 | /* Auxiliary function for ada_index_struct_field. Like | |
7434 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 7435 | * *INDEX_P. */ |
52ce6436 PH |
7436 | |
7437 | static struct value * | |
7438 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
7439 | struct type *type) | |
7440 | { | |
7441 | int i; | |
7442 | type = ada_check_typedef (type); | |
7443 | ||
7444 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7445 | { | |
7446 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
7447 | continue; | |
7448 | else if (ada_is_wrapper_field (type, i)) | |
7449 | { | |
0963b4bd | 7450 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
7451 | ada_index_struct_field_1 (index_p, arg, |
7452 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
7453 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 7454 | |
52ce6436 PH |
7455 | if (v != NULL) |
7456 | return v; | |
7457 | } | |
7458 | ||
7459 | else if (ada_is_variant_part (type, i)) | |
7460 | { | |
7461 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 7462 | find_struct_field. */ |
52ce6436 PH |
7463 | error (_("Cannot assign this kind of variant record")); |
7464 | } | |
7465 | else if (*index_p == 0) | |
7466 | return ada_value_primitive_field (arg, offset, i, type); | |
7467 | else | |
7468 | *index_p -= 1; | |
7469 | } | |
7470 | return NULL; | |
7471 | } | |
7472 | ||
4c4b4cd2 PH |
7473 | /* Given ARG, a value of type (pointer or reference to a)* |
7474 | structure/union, extract the component named NAME from the ultimate | |
7475 | target structure/union and return it as a value with its | |
f5938064 | 7476 | appropriate type. |
14f9c5c9 | 7477 | |
4c4b4cd2 PH |
7478 | The routine searches for NAME among all members of the structure itself |
7479 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
7480 | (e.g., '_parent'). |
7481 | ||
03ee6b2e PH |
7482 | If NO_ERR, then simply return NULL in case of error, rather than |
7483 | calling error. */ | |
14f9c5c9 | 7484 | |
d2e4a39e | 7485 | struct value * |
a121b7c1 | 7486 | ada_value_struct_elt (struct value *arg, const char *name, int no_err) |
14f9c5c9 | 7487 | { |
4c4b4cd2 | 7488 | struct type *t, *t1; |
d2e4a39e | 7489 | struct value *v; |
14f9c5c9 | 7490 | |
4c4b4cd2 | 7491 | v = NULL; |
df407dfe | 7492 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
7493 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7494 | { | |
7495 | t1 = TYPE_TARGET_TYPE (t); | |
7496 | if (t1 == NULL) | |
03ee6b2e | 7497 | goto BadValue; |
61ee279c | 7498 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7499 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 7500 | { |
994b9211 | 7501 | arg = coerce_ref (arg); |
76a01679 JB |
7502 | t = t1; |
7503 | } | |
4c4b4cd2 | 7504 | } |
14f9c5c9 | 7505 | |
4c4b4cd2 PH |
7506 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
7507 | { | |
7508 | t1 = TYPE_TARGET_TYPE (t); | |
7509 | if (t1 == NULL) | |
03ee6b2e | 7510 | goto BadValue; |
61ee279c | 7511 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 7512 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
7513 | { |
7514 | arg = value_ind (arg); | |
7515 | t = t1; | |
7516 | } | |
4c4b4cd2 | 7517 | else |
76a01679 | 7518 | break; |
4c4b4cd2 | 7519 | } |
14f9c5c9 | 7520 | |
4c4b4cd2 | 7521 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 7522 | goto BadValue; |
14f9c5c9 | 7523 | |
4c4b4cd2 PH |
7524 | if (t1 == t) |
7525 | v = ada_search_struct_field (name, arg, 0, t); | |
7526 | else | |
7527 | { | |
7528 | int bit_offset, bit_size, byte_offset; | |
7529 | struct type *field_type; | |
7530 | CORE_ADDR address; | |
7531 | ||
76a01679 | 7532 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
b50d69b5 | 7533 | address = value_address (ada_value_ind (arg)); |
4c4b4cd2 | 7534 | else |
b50d69b5 | 7535 | address = value_address (ada_coerce_ref (arg)); |
14f9c5c9 | 7536 | |
1ed6ede0 | 7537 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
7538 | if (find_struct_field (name, t1, 0, |
7539 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 7540 | &bit_size, NULL)) |
76a01679 JB |
7541 | { |
7542 | if (bit_size != 0) | |
7543 | { | |
714e53ab PH |
7544 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
7545 | arg = ada_coerce_ref (arg); | |
7546 | else | |
7547 | arg = ada_value_ind (arg); | |
76a01679 JB |
7548 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
7549 | bit_offset, bit_size, | |
7550 | field_type); | |
7551 | } | |
7552 | else | |
f5938064 | 7553 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
7554 | } |
7555 | } | |
7556 | ||
03ee6b2e PH |
7557 | if (v != NULL || no_err) |
7558 | return v; | |
7559 | else | |
323e0a4a | 7560 | error (_("There is no member named %s."), name); |
14f9c5c9 | 7561 | |
03ee6b2e PH |
7562 | BadValue: |
7563 | if (no_err) | |
7564 | return NULL; | |
7565 | else | |
0963b4bd MS |
7566 | error (_("Attempt to extract a component of " |
7567 | "a value that is not a record.")); | |
14f9c5c9 AS |
7568 | } |
7569 | ||
3b4de39c | 7570 | /* Return a string representation of type TYPE. */ |
99bbb428 | 7571 | |
3b4de39c | 7572 | static std::string |
99bbb428 PA |
7573 | type_as_string (struct type *type) |
7574 | { | |
d7e74731 | 7575 | string_file tmp_stream; |
99bbb428 | 7576 | |
d7e74731 | 7577 | type_print (type, "", &tmp_stream, -1); |
99bbb428 | 7578 | |
d7e74731 | 7579 | return std::move (tmp_stream.string ()); |
99bbb428 PA |
7580 | } |
7581 | ||
14f9c5c9 | 7582 | /* Given a type TYPE, look up the type of the component of type named NAME. |
4c4b4cd2 PH |
7583 | If DISPP is non-null, add its byte displacement from the beginning of a |
7584 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
7585 | work for packed fields). |
7586 | ||
7587 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 7588 | followed by "___". |
14f9c5c9 | 7589 | |
0963b4bd | 7590 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
7591 | be a (pointer or reference)+ to a struct or union, and the |
7592 | ultimate target type will be searched. | |
14f9c5c9 AS |
7593 | |
7594 | Looks recursively into variant clauses and parent types. | |
7595 | ||
4c4b4cd2 PH |
7596 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
7597 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 7598 | |
4c4b4cd2 | 7599 | static struct type * |
a121b7c1 | 7600 | ada_lookup_struct_elt_type (struct type *type, const char *name, int refok, |
988f6b3d | 7601 | int noerr) |
14f9c5c9 AS |
7602 | { |
7603 | int i; | |
7604 | ||
7605 | if (name == NULL) | |
7606 | goto BadName; | |
7607 | ||
76a01679 | 7608 | if (refok && type != NULL) |
4c4b4cd2 PH |
7609 | while (1) |
7610 | { | |
61ee279c | 7611 | type = ada_check_typedef (type); |
76a01679 JB |
7612 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
7613 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
7614 | break; | |
7615 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 7616 | } |
14f9c5c9 | 7617 | |
76a01679 | 7618 | if (type == NULL |
1265e4aa JB |
7619 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
7620 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 7621 | { |
4c4b4cd2 | 7622 | if (noerr) |
76a01679 | 7623 | return NULL; |
99bbb428 | 7624 | |
3b4de39c PA |
7625 | error (_("Type %s is not a structure or union type"), |
7626 | type != NULL ? type_as_string (type).c_str () : _("(null)")); | |
14f9c5c9 AS |
7627 | } |
7628 | ||
7629 | type = to_static_fixed_type (type); | |
7630 | ||
7631 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
7632 | { | |
0d5cff50 | 7633 | const char *t_field_name = TYPE_FIELD_NAME (type, i); |
14f9c5c9 | 7634 | struct type *t; |
d2e4a39e | 7635 | |
14f9c5c9 | 7636 | if (t_field_name == NULL) |
4c4b4cd2 | 7637 | continue; |
14f9c5c9 AS |
7638 | |
7639 | else if (field_name_match (t_field_name, name)) | |
988f6b3d | 7640 | return TYPE_FIELD_TYPE (type, i); |
14f9c5c9 AS |
7641 | |
7642 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 7643 | { |
4c4b4cd2 | 7644 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, |
988f6b3d | 7645 | 0, 1); |
4c4b4cd2 | 7646 | if (t != NULL) |
988f6b3d | 7647 | return t; |
4c4b4cd2 | 7648 | } |
14f9c5c9 AS |
7649 | |
7650 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
7651 | { |
7652 | int j; | |
5b4ee69b MS |
7653 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
7654 | i)); | |
4c4b4cd2 PH |
7655 | |
7656 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
7657 | { | |
b1f33ddd JB |
7658 | /* FIXME pnh 2008/01/26: We check for a field that is |
7659 | NOT wrapped in a struct, since the compiler sometimes | |
7660 | generates these for unchecked variant types. Revisit | |
0963b4bd | 7661 | if the compiler changes this practice. */ |
0d5cff50 | 7662 | const char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
988f6b3d | 7663 | |
b1f33ddd JB |
7664 | if (v_field_name != NULL |
7665 | && field_name_match (v_field_name, name)) | |
460efde1 | 7666 | t = TYPE_FIELD_TYPE (field_type, j); |
b1f33ddd | 7667 | else |
0963b4bd MS |
7668 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
7669 | j), | |
988f6b3d | 7670 | name, 0, 1); |
b1f33ddd | 7671 | |
4c4b4cd2 | 7672 | if (t != NULL) |
988f6b3d | 7673 | return t; |
4c4b4cd2 PH |
7674 | } |
7675 | } | |
14f9c5c9 AS |
7676 | |
7677 | } | |
7678 | ||
7679 | BadName: | |
d2e4a39e | 7680 | if (!noerr) |
14f9c5c9 | 7681 | { |
2b2798cc | 7682 | const char *name_str = name != NULL ? name : _("<null>"); |
99bbb428 PA |
7683 | |
7684 | error (_("Type %s has no component named %s"), | |
3b4de39c | 7685 | type_as_string (type).c_str (), name_str); |
14f9c5c9 AS |
7686 | } |
7687 | ||
7688 | return NULL; | |
7689 | } | |
7690 | ||
b1f33ddd JB |
7691 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7692 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
7693 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 7694 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
7695 | |
7696 | static int | |
7697 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
7698 | { | |
a121b7c1 | 7699 | const char *discrim_name = ada_variant_discrim_name (var_type); |
5b4ee69b | 7700 | |
988f6b3d | 7701 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL); |
b1f33ddd JB |
7702 | } |
7703 | ||
7704 | ||
14f9c5c9 AS |
7705 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
7706 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
7707 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
7708 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 7709 | |
d2e4a39e | 7710 | int |
ebf56fd3 | 7711 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 7712 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
7713 | { |
7714 | int others_clause; | |
7715 | int i; | |
a121b7c1 | 7716 | const char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
7717 | struct value *outer; |
7718 | struct value *discrim; | |
14f9c5c9 AS |
7719 | LONGEST discrim_val; |
7720 | ||
012370f6 TT |
7721 | /* Using plain value_from_contents_and_address here causes problems |
7722 | because we will end up trying to resolve a type that is currently | |
7723 | being constructed. */ | |
7724 | outer = value_from_contents_and_address_unresolved (outer_type, | |
7725 | outer_valaddr, 0); | |
0c281816 JB |
7726 | discrim = ada_value_struct_elt (outer, discrim_name, 1); |
7727 | if (discrim == NULL) | |
14f9c5c9 | 7728 | return -1; |
0c281816 | 7729 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
7730 | |
7731 | others_clause = -1; | |
7732 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
7733 | { | |
7734 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 7735 | others_clause = i; |
14f9c5c9 | 7736 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 7737 | return i; |
14f9c5c9 AS |
7738 | } |
7739 | ||
7740 | return others_clause; | |
7741 | } | |
d2e4a39e | 7742 | \f |
14f9c5c9 AS |
7743 | |
7744 | ||
4c4b4cd2 | 7745 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
7746 | |
7747 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
7748 | (i.e., a size that is not statically recorded in the debugging | |
7749 | data) does not accurately reflect the size or layout of the value. | |
7750 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 7751 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
7752 | |
7753 | /* There is a subtle and tricky problem here. In general, we cannot | |
7754 | determine the size of dynamic records without its data. However, | |
7755 | the 'struct value' data structure, which GDB uses to represent | |
7756 | quantities in the inferior process (the target), requires the size | |
7757 | of the type at the time of its allocation in order to reserve space | |
7758 | for GDB's internal copy of the data. That's why the | |
7759 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 7760 | rather than struct value*s. |
14f9c5c9 AS |
7761 | |
7762 | However, GDB's internal history variables ($1, $2, etc.) are | |
7763 | struct value*s containing internal copies of the data that are not, in | |
7764 | general, the same as the data at their corresponding addresses in | |
7765 | the target. Fortunately, the types we give to these values are all | |
7766 | conventional, fixed-size types (as per the strategy described | |
7767 | above), so that we don't usually have to perform the | |
7768 | 'to_fixed_xxx_type' conversions to look at their values. | |
7769 | Unfortunately, there is one exception: if one of the internal | |
7770 | history variables is an array whose elements are unconstrained | |
7771 | records, then we will need to create distinct fixed types for each | |
7772 | element selected. */ | |
7773 | ||
7774 | /* The upshot of all of this is that many routines take a (type, host | |
7775 | address, target address) triple as arguments to represent a value. | |
7776 | The host address, if non-null, is supposed to contain an internal | |
7777 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 7778 | target at the target address. */ |
14f9c5c9 AS |
7779 | |
7780 | /* Assuming that VAL0 represents a pointer value, the result of | |
7781 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 7782 | dynamic-sized types. */ |
14f9c5c9 | 7783 | |
d2e4a39e AS |
7784 | struct value * |
7785 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 7786 | { |
c48db5ca | 7787 | struct value *val = value_ind (val0); |
5b4ee69b | 7788 | |
b50d69b5 JG |
7789 | if (ada_is_tagged_type (value_type (val), 0)) |
7790 | val = ada_tag_value_at_base_address (val); | |
7791 | ||
4c4b4cd2 | 7792 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
7793 | } |
7794 | ||
7795 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
7796 | qualifiers on VAL0. */ |
7797 | ||
d2e4a39e AS |
7798 | static struct value * |
7799 | ada_coerce_ref (struct value *val0) | |
7800 | { | |
df407dfe | 7801 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
7802 | { |
7803 | struct value *val = val0; | |
5b4ee69b | 7804 | |
994b9211 | 7805 | val = coerce_ref (val); |
b50d69b5 JG |
7806 | |
7807 | if (ada_is_tagged_type (value_type (val), 0)) | |
7808 | val = ada_tag_value_at_base_address (val); | |
7809 | ||
4c4b4cd2 | 7810 | return ada_to_fixed_value (val); |
d2e4a39e AS |
7811 | } |
7812 | else | |
14f9c5c9 AS |
7813 | return val0; |
7814 | } | |
7815 | ||
7816 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 7817 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
7818 | |
7819 | static unsigned int | |
ebf56fd3 | 7820 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
7821 | { |
7822 | return (off + alignment - 1) & ~(alignment - 1); | |
7823 | } | |
7824 | ||
4c4b4cd2 | 7825 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
7826 | |
7827 | static unsigned int | |
ebf56fd3 | 7828 | field_alignment (struct type *type, int f) |
14f9c5c9 | 7829 | { |
d2e4a39e | 7830 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 7831 | int len; |
14f9c5c9 AS |
7832 | int align_offset; |
7833 | ||
64a1bf19 JB |
7834 | /* The field name should never be null, unless the debugging information |
7835 | is somehow malformed. In this case, we assume the field does not | |
7836 | require any alignment. */ | |
7837 | if (name == NULL) | |
7838 | return 1; | |
7839 | ||
7840 | len = strlen (name); | |
7841 | ||
4c4b4cd2 PH |
7842 | if (!isdigit (name[len - 1])) |
7843 | return 1; | |
14f9c5c9 | 7844 | |
d2e4a39e | 7845 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
7846 | align_offset = len - 2; |
7847 | else | |
7848 | align_offset = len - 1; | |
7849 | ||
61012eef | 7850 | if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV")) |
14f9c5c9 AS |
7851 | return TARGET_CHAR_BIT; |
7852 | ||
4c4b4cd2 PH |
7853 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
7854 | } | |
7855 | ||
852dff6c | 7856 | /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ |
4c4b4cd2 | 7857 | |
852dff6c JB |
7858 | static struct symbol * |
7859 | ada_find_any_type_symbol (const char *name) | |
4c4b4cd2 PH |
7860 | { |
7861 | struct symbol *sym; | |
7862 | ||
7863 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
4186eb54 | 7864 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) |
4c4b4cd2 PH |
7865 | return sym; |
7866 | ||
4186eb54 KS |
7867 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); |
7868 | return sym; | |
14f9c5c9 AS |
7869 | } |
7870 | ||
dddfab26 UW |
7871 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
7872 | solely for types defined by debug info, it will not search the GDB | |
7873 | primitive types. */ | |
4c4b4cd2 | 7874 | |
852dff6c | 7875 | static struct type * |
ebf56fd3 | 7876 | ada_find_any_type (const char *name) |
14f9c5c9 | 7877 | { |
852dff6c | 7878 | struct symbol *sym = ada_find_any_type_symbol (name); |
14f9c5c9 | 7879 | |
14f9c5c9 | 7880 | if (sym != NULL) |
dddfab26 | 7881 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 7882 | |
dddfab26 | 7883 | return NULL; |
14f9c5c9 AS |
7884 | } |
7885 | ||
739593e0 JB |
7886 | /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol |
7887 | associated with NAME_SYM's name. NAME_SYM may itself be a renaming | |
7888 | symbol, in which case it is returned. Otherwise, this looks for | |
7889 | symbols whose name is that of NAME_SYM suffixed with "___XR". | |
7890 | Return symbol if found, and NULL otherwise. */ | |
4c4b4cd2 PH |
7891 | |
7892 | struct symbol * | |
270140bd | 7893 | ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) |
aeb5907d | 7894 | { |
739593e0 | 7895 | const char *name = SYMBOL_LINKAGE_NAME (name_sym); |
aeb5907d JB |
7896 | struct symbol *sym; |
7897 | ||
739593e0 JB |
7898 | if (strstr (name, "___XR") != NULL) |
7899 | return name_sym; | |
7900 | ||
aeb5907d JB |
7901 | sym = find_old_style_renaming_symbol (name, block); |
7902 | ||
7903 | if (sym != NULL) | |
7904 | return sym; | |
7905 | ||
0963b4bd | 7906 | /* Not right yet. FIXME pnh 7/20/2007. */ |
852dff6c | 7907 | sym = ada_find_any_type_symbol (name); |
aeb5907d JB |
7908 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) |
7909 | return sym; | |
7910 | else | |
7911 | return NULL; | |
7912 | } | |
7913 | ||
7914 | static struct symbol * | |
270140bd | 7915 | find_old_style_renaming_symbol (const char *name, const struct block *block) |
4c4b4cd2 | 7916 | { |
7f0df278 | 7917 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
7918 | char *rename; |
7919 | ||
7920 | if (function_sym != NULL) | |
7921 | { | |
7922 | /* If the symbol is defined inside a function, NAME is not fully | |
7923 | qualified. This means we need to prepend the function name | |
7924 | as well as adding the ``___XR'' suffix to build the name of | |
7925 | the associated renaming symbol. */ | |
0d5cff50 | 7926 | const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); |
529cad9c PH |
7927 | /* Function names sometimes contain suffixes used |
7928 | for instance to qualify nested subprograms. When building | |
7929 | the XR type name, we need to make sure that this suffix is | |
7930 | not included. So do not include any suffix in the function | |
7931 | name length below. */ | |
69fadcdf | 7932 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
7933 | const int rename_len = function_name_len + 2 /* "__" */ |
7934 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 7935 | |
529cad9c | 7936 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
7937 | ada_remove_trailing_digits (function_name, &function_name_len); |
7938 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
7939 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 7940 | |
4c4b4cd2 PH |
7941 | /* Library-level functions are a special case, as GNAT adds |
7942 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 7943 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
7944 | have this prefix, so we need to skip this prefix if present. */ |
7945 | if (function_name_len > 5 /* "_ada_" */ | |
7946 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
7947 | { |
7948 | function_name += 5; | |
7949 | function_name_len -= 5; | |
7950 | } | |
4c4b4cd2 PH |
7951 | |
7952 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
7953 | strncpy (rename, function_name, function_name_len); |
7954 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
7955 | "__%s___XR", name); | |
4c4b4cd2 PH |
7956 | } |
7957 | else | |
7958 | { | |
7959 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 7960 | |
4c4b4cd2 | 7961 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7962 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7963 | } |
7964 | ||
852dff6c | 7965 | return ada_find_any_type_symbol (rename); |
4c4b4cd2 PH |
7966 | } |
7967 | ||
14f9c5c9 | 7968 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7969 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7970 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7971 | otherwise return 0. */ |
7972 | ||
14f9c5c9 | 7973 | int |
d2e4a39e | 7974 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7975 | { |
7976 | if (type1 == NULL) | |
7977 | return 1; | |
7978 | else if (type0 == NULL) | |
7979 | return 0; | |
7980 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7981 | return 1; | |
7982 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7983 | return 0; | |
4c4b4cd2 PH |
7984 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7985 | return 1; | |
ad82864c | 7986 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7987 | return 1; |
4c4b4cd2 PH |
7988 | else if (ada_is_array_descriptor_type (type0) |
7989 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7990 | return 1; |
aeb5907d JB |
7991 | else |
7992 | { | |
7993 | const char *type0_name = type_name_no_tag (type0); | |
7994 | const char *type1_name = type_name_no_tag (type1); | |
7995 | ||
7996 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7997 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7998 | return 1; | |
7999 | } | |
14f9c5c9 AS |
8000 | return 0; |
8001 | } | |
8002 | ||
8003 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
8004 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
8005 | ||
0d5cff50 | 8006 | const char * |
d2e4a39e | 8007 | ada_type_name (struct type *type) |
14f9c5c9 | 8008 | { |
d2e4a39e | 8009 | if (type == NULL) |
14f9c5c9 AS |
8010 | return NULL; |
8011 | else if (TYPE_NAME (type) != NULL) | |
8012 | return TYPE_NAME (type); | |
8013 | else | |
8014 | return TYPE_TAG_NAME (type); | |
8015 | } | |
8016 | ||
b4ba55a1 JB |
8017 | /* Search the list of "descriptive" types associated to TYPE for a type |
8018 | whose name is NAME. */ | |
8019 | ||
8020 | static struct type * | |
8021 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
8022 | { | |
931e5bc3 | 8023 | struct type *result, *tmp; |
b4ba55a1 | 8024 | |
c6044dd1 JB |
8025 | if (ada_ignore_descriptive_types_p) |
8026 | return NULL; | |
8027 | ||
b4ba55a1 JB |
8028 | /* If there no descriptive-type info, then there is no parallel type |
8029 | to be found. */ | |
8030 | if (!HAVE_GNAT_AUX_INFO (type)) | |
8031 | return NULL; | |
8032 | ||
8033 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
8034 | while (result != NULL) | |
8035 | { | |
0d5cff50 | 8036 | const char *result_name = ada_type_name (result); |
b4ba55a1 JB |
8037 | |
8038 | if (result_name == NULL) | |
8039 | { | |
8040 | warning (_("unexpected null name on descriptive type")); | |
8041 | return NULL; | |
8042 | } | |
8043 | ||
8044 | /* If the names match, stop. */ | |
8045 | if (strcmp (result_name, name) == 0) | |
8046 | break; | |
8047 | ||
8048 | /* Otherwise, look at the next item on the list, if any. */ | |
8049 | if (HAVE_GNAT_AUX_INFO (result)) | |
931e5bc3 JG |
8050 | tmp = TYPE_DESCRIPTIVE_TYPE (result); |
8051 | else | |
8052 | tmp = NULL; | |
8053 | ||
8054 | /* If not found either, try after having resolved the typedef. */ | |
8055 | if (tmp != NULL) | |
8056 | result = tmp; | |
b4ba55a1 | 8057 | else |
931e5bc3 | 8058 | { |
f168693b | 8059 | result = check_typedef (result); |
931e5bc3 JG |
8060 | if (HAVE_GNAT_AUX_INFO (result)) |
8061 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
8062 | else | |
8063 | result = NULL; | |
8064 | } | |
b4ba55a1 JB |
8065 | } |
8066 | ||
8067 | /* If we didn't find a match, see whether this is a packed array. With | |
8068 | older compilers, the descriptive type information is either absent or | |
8069 | irrelevant when it comes to packed arrays so the above lookup fails. | |
8070 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 8071 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
8072 | return ada_find_any_type (name); |
8073 | ||
8074 | return result; | |
8075 | } | |
8076 | ||
8077 | /* Find a parallel type to TYPE with the specified NAME, using the | |
8078 | descriptive type taken from the debugging information, if available, | |
8079 | and otherwise using the (slower) name-based method. */ | |
8080 | ||
8081 | static struct type * | |
8082 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
8083 | { | |
8084 | struct type *result = NULL; | |
8085 | ||
8086 | if (HAVE_GNAT_AUX_INFO (type)) | |
8087 | result = find_parallel_type_by_descriptive_type (type, name); | |
8088 | else | |
8089 | result = ada_find_any_type (name); | |
8090 | ||
8091 | return result; | |
8092 | } | |
8093 | ||
8094 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 8095 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 8096 | |
d2e4a39e | 8097 | struct type * |
ebf56fd3 | 8098 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 8099 | { |
0d5cff50 | 8100 | char *name; |
fe978cb0 | 8101 | const char *type_name = ada_type_name (type); |
14f9c5c9 | 8102 | int len; |
d2e4a39e | 8103 | |
fe978cb0 | 8104 | if (type_name == NULL) |
14f9c5c9 AS |
8105 | return NULL; |
8106 | ||
fe978cb0 | 8107 | len = strlen (type_name); |
14f9c5c9 | 8108 | |
b4ba55a1 | 8109 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 | 8110 | |
fe978cb0 | 8111 | strcpy (name, type_name); |
14f9c5c9 AS |
8112 | strcpy (name + len, suffix); |
8113 | ||
b4ba55a1 | 8114 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
8115 | } |
8116 | ||
14f9c5c9 | 8117 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 8118 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 8119 | |
d2e4a39e AS |
8120 | static struct type * |
8121 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 8122 | { |
61ee279c | 8123 | type = ada_check_typedef (type); |
14f9c5c9 AS |
8124 | |
8125 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 8126 | || ada_type_name (type) == NULL) |
14f9c5c9 | 8127 | return NULL; |
d2e4a39e | 8128 | else |
14f9c5c9 AS |
8129 | { |
8130 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 8131 | |
4c4b4cd2 PH |
8132 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
8133 | return type; | |
14f9c5c9 | 8134 | else |
4c4b4cd2 | 8135 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
8136 | } |
8137 | } | |
8138 | ||
8139 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 8140 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 8141 | |
d2e4a39e AS |
8142 | static int |
8143 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
8144 | { |
8145 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 8146 | |
d2e4a39e | 8147 | return name != NULL |
14f9c5c9 AS |
8148 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
8149 | && strstr (name, "___XVL") != NULL; | |
8150 | } | |
8151 | ||
4c4b4cd2 PH |
8152 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
8153 | represent a variant record type. */ | |
14f9c5c9 | 8154 | |
d2e4a39e | 8155 | static int |
4c4b4cd2 | 8156 | variant_field_index (struct type *type) |
14f9c5c9 AS |
8157 | { |
8158 | int f; | |
8159 | ||
4c4b4cd2 PH |
8160 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
8161 | return -1; | |
8162 | ||
8163 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
8164 | { | |
8165 | if (ada_is_variant_part (type, f)) | |
8166 | return f; | |
8167 | } | |
8168 | return -1; | |
14f9c5c9 AS |
8169 | } |
8170 | ||
4c4b4cd2 PH |
8171 | /* A record type with no fields. */ |
8172 | ||
d2e4a39e | 8173 | static struct type * |
fe978cb0 | 8174 | empty_record (struct type *templ) |
14f9c5c9 | 8175 | { |
fe978cb0 | 8176 | struct type *type = alloc_type_copy (templ); |
5b4ee69b | 8177 | |
14f9c5c9 AS |
8178 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
8179 | TYPE_NFIELDS (type) = 0; | |
8180 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 8181 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
8182 | TYPE_NAME (type) = "<empty>"; |
8183 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
8184 | TYPE_LENGTH (type) = 0; |
8185 | return type; | |
8186 | } | |
8187 | ||
8188 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
8189 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
8190 | the beginning of this section) VAL according to GNAT conventions. | |
8191 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 8192 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
8193 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
8194 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 8195 | of the variant. |
14f9c5c9 | 8196 | |
4c4b4cd2 PH |
8197 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
8198 | length are not statically known are discarded. As a consequence, | |
8199 | VALADDR, ADDRESS and DVAL0 are ignored. | |
8200 | ||
8201 | NOTE: Limitations: For now, we assume that dynamic fields and | |
8202 | variants occupy whole numbers of bytes. However, they need not be | |
8203 | byte-aligned. */ | |
8204 | ||
8205 | struct type * | |
10a2c479 | 8206 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 8207 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
8208 | CORE_ADDR address, struct value *dval0, |
8209 | int keep_dynamic_fields) | |
14f9c5c9 | 8210 | { |
d2e4a39e AS |
8211 | struct value *mark = value_mark (); |
8212 | struct value *dval; | |
8213 | struct type *rtype; | |
14f9c5c9 | 8214 | int nfields, bit_len; |
4c4b4cd2 | 8215 | int variant_field; |
14f9c5c9 | 8216 | long off; |
d94e4f4f | 8217 | int fld_bit_len; |
14f9c5c9 AS |
8218 | int f; |
8219 | ||
4c4b4cd2 PH |
8220 | /* Compute the number of fields in this record type that are going |
8221 | to be processed: unless keep_dynamic_fields, this includes only | |
8222 | fields whose position and length are static will be processed. */ | |
8223 | if (keep_dynamic_fields) | |
8224 | nfields = TYPE_NFIELDS (type); | |
8225 | else | |
8226 | { | |
8227 | nfields = 0; | |
76a01679 | 8228 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
8229 | && !ada_is_variant_part (type, nfields) |
8230 | && !is_dynamic_field (type, nfields)) | |
8231 | nfields++; | |
8232 | } | |
8233 | ||
e9bb382b | 8234 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
8235 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
8236 | INIT_CPLUS_SPECIFIC (rtype); | |
8237 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 8238 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
8239 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
8240 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
8241 | TYPE_NAME (rtype) = ada_type_name (type); | |
8242 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8243 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 8244 | |
d2e4a39e AS |
8245 | off = 0; |
8246 | bit_len = 0; | |
4c4b4cd2 PH |
8247 | variant_field = -1; |
8248 | ||
14f9c5c9 AS |
8249 | for (f = 0; f < nfields; f += 1) |
8250 | { | |
6c038f32 PH |
8251 | off = align_value (off, field_alignment (type, f)) |
8252 | + TYPE_FIELD_BITPOS (type, f); | |
945b3a32 | 8253 | SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); |
d2e4a39e | 8254 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 8255 | |
d2e4a39e | 8256 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
8257 | { |
8258 | variant_field = f; | |
d94e4f4f | 8259 | fld_bit_len = 0; |
4c4b4cd2 | 8260 | } |
14f9c5c9 | 8261 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 8262 | { |
284614f0 JB |
8263 | const gdb_byte *field_valaddr = valaddr; |
8264 | CORE_ADDR field_address = address; | |
8265 | struct type *field_type = | |
8266 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
8267 | ||
4c4b4cd2 | 8268 | if (dval0 == NULL) |
b5304971 JG |
8269 | { |
8270 | /* rtype's length is computed based on the run-time | |
8271 | value of discriminants. If the discriminants are not | |
8272 | initialized, the type size may be completely bogus and | |
0963b4bd | 8273 | GDB may fail to allocate a value for it. So check the |
b5304971 | 8274 | size first before creating the value. */ |
c1b5a1a6 | 8275 | ada_ensure_varsize_limit (rtype); |
012370f6 TT |
8276 | /* Using plain value_from_contents_and_address here |
8277 | causes problems because we will end up trying to | |
8278 | resolve a type that is currently being | |
8279 | constructed. */ | |
8280 | dval = value_from_contents_and_address_unresolved (rtype, | |
8281 | valaddr, | |
8282 | address); | |
9f1f738a | 8283 | rtype = value_type (dval); |
b5304971 | 8284 | } |
4c4b4cd2 PH |
8285 | else |
8286 | dval = dval0; | |
8287 | ||
284614f0 JB |
8288 | /* If the type referenced by this field is an aligner type, we need |
8289 | to unwrap that aligner type, because its size might not be set. | |
8290 | Keeping the aligner type would cause us to compute the wrong | |
8291 | size for this field, impacting the offset of the all the fields | |
8292 | that follow this one. */ | |
8293 | if (ada_is_aligner_type (field_type)) | |
8294 | { | |
8295 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
8296 | ||
8297 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
8298 | field_address = cond_offset_target (field_address, field_offset); | |
8299 | field_type = ada_aligned_type (field_type); | |
8300 | } | |
8301 | ||
8302 | field_valaddr = cond_offset_host (field_valaddr, | |
8303 | off / TARGET_CHAR_BIT); | |
8304 | field_address = cond_offset_target (field_address, | |
8305 | off / TARGET_CHAR_BIT); | |
8306 | ||
8307 | /* Get the fixed type of the field. Note that, in this case, | |
8308 | we do not want to get the real type out of the tag: if | |
8309 | the current field is the parent part of a tagged record, | |
8310 | we will get the tag of the object. Clearly wrong: the real | |
8311 | type of the parent is not the real type of the child. We | |
8312 | would end up in an infinite loop. */ | |
8313 | field_type = ada_get_base_type (field_type); | |
8314 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
8315 | field_address, dval, 0); | |
27f2a97b JB |
8316 | /* If the field size is already larger than the maximum |
8317 | object size, then the record itself will necessarily | |
8318 | be larger than the maximum object size. We need to make | |
8319 | this check now, because the size might be so ridiculously | |
8320 | large (due to an uninitialized variable in the inferior) | |
8321 | that it would cause an overflow when adding it to the | |
8322 | record size. */ | |
c1b5a1a6 | 8323 | ada_ensure_varsize_limit (field_type); |
284614f0 JB |
8324 | |
8325 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 8326 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
8327 | /* The multiplication can potentially overflow. But because |
8328 | the field length has been size-checked just above, and | |
8329 | assuming that the maximum size is a reasonable value, | |
8330 | an overflow should not happen in practice. So rather than | |
8331 | adding overflow recovery code to this already complex code, | |
8332 | we just assume that it's not going to happen. */ | |
d94e4f4f | 8333 | fld_bit_len = |
4c4b4cd2 PH |
8334 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
8335 | } | |
14f9c5c9 | 8336 | else |
4c4b4cd2 | 8337 | { |
5ded5331 JB |
8338 | /* Note: If this field's type is a typedef, it is important |
8339 | to preserve the typedef layer. | |
8340 | ||
8341 | Otherwise, we might be transforming a typedef to a fat | |
8342 | pointer (encoding a pointer to an unconstrained array), | |
8343 | into a basic fat pointer (encoding an unconstrained | |
8344 | array). As both types are implemented using the same | |
8345 | structure, the typedef is the only clue which allows us | |
8346 | to distinguish between the two options. Stripping it | |
8347 | would prevent us from printing this field appropriately. */ | |
8348 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
4c4b4cd2 PH |
8349 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
8350 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 8351 | fld_bit_len = |
4c4b4cd2 PH |
8352 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
8353 | else | |
5ded5331 JB |
8354 | { |
8355 | struct type *field_type = TYPE_FIELD_TYPE (type, f); | |
8356 | ||
8357 | /* We need to be careful of typedefs when computing | |
8358 | the length of our field. If this is a typedef, | |
8359 | get the length of the target type, not the length | |
8360 | of the typedef. */ | |
8361 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
8362 | field_type = ada_typedef_target_type (field_type); | |
8363 | ||
8364 | fld_bit_len = | |
8365 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; | |
8366 | } | |
4c4b4cd2 | 8367 | } |
14f9c5c9 | 8368 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 8369 | bit_len = off + fld_bit_len; |
d94e4f4f | 8370 | off += fld_bit_len; |
4c4b4cd2 PH |
8371 | TYPE_LENGTH (rtype) = |
8372 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 8373 | } |
4c4b4cd2 PH |
8374 | |
8375 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 8376 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
8377 | the record. This can happen in the presence of representation |
8378 | clauses. */ | |
8379 | if (variant_field >= 0) | |
8380 | { | |
8381 | struct type *branch_type; | |
8382 | ||
8383 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
8384 | ||
8385 | if (dval0 == NULL) | |
9f1f738a | 8386 | { |
012370f6 TT |
8387 | /* Using plain value_from_contents_and_address here causes |
8388 | problems because we will end up trying to resolve a type | |
8389 | that is currently being constructed. */ | |
8390 | dval = value_from_contents_and_address_unresolved (rtype, valaddr, | |
8391 | address); | |
9f1f738a SA |
8392 | rtype = value_type (dval); |
8393 | } | |
4c4b4cd2 PH |
8394 | else |
8395 | dval = dval0; | |
8396 | ||
8397 | branch_type = | |
8398 | to_fixed_variant_branch_type | |
8399 | (TYPE_FIELD_TYPE (type, variant_field), | |
8400 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
8401 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
8402 | if (branch_type == NULL) | |
8403 | { | |
8404 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
8405 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
8406 | TYPE_NFIELDS (rtype) -= 1; | |
8407 | } | |
8408 | else | |
8409 | { | |
8410 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
8411 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8412 | fld_bit_len = | |
8413 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
8414 | TARGET_CHAR_BIT; | |
8415 | if (off + fld_bit_len > bit_len) | |
8416 | bit_len = off + fld_bit_len; | |
8417 | TYPE_LENGTH (rtype) = | |
8418 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
8419 | } | |
8420 | } | |
8421 | ||
714e53ab PH |
8422 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
8423 | should contain the alignment of that record, which should be a strictly | |
8424 | positive value. If null or negative, then something is wrong, most | |
8425 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 8426 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
8427 | the current RTYPE length might be good enough for our purposes. */ |
8428 | if (TYPE_LENGTH (type) <= 0) | |
8429 | { | |
323e0a4a AC |
8430 | if (TYPE_NAME (rtype)) |
8431 | warning (_("Invalid type size for `%s' detected: %d."), | |
8432 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
8433 | else | |
8434 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
8435 | TYPE_LENGTH (type)); | |
714e53ab PH |
8436 | } |
8437 | else | |
8438 | { | |
8439 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
8440 | TYPE_LENGTH (type)); | |
8441 | } | |
14f9c5c9 AS |
8442 | |
8443 | value_free_to_mark (mark); | |
d2e4a39e | 8444 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 8445 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8446 | return rtype; |
8447 | } | |
8448 | ||
4c4b4cd2 PH |
8449 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
8450 | of 1. */ | |
14f9c5c9 | 8451 | |
d2e4a39e | 8452 | static struct type * |
fc1a4b47 | 8453 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
8454 | CORE_ADDR address, struct value *dval0) |
8455 | { | |
8456 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
8457 | address, dval0, 1); | |
8458 | } | |
8459 | ||
8460 | /* An ordinary record type in which ___XVL-convention fields and | |
8461 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
8462 | static approximations, containing all possible fields. Uses | |
8463 | no runtime values. Useless for use in values, but that's OK, | |
8464 | since the results are used only for type determinations. Works on both | |
8465 | structs and unions. Representation note: to save space, we memorize | |
8466 | the result of this function in the TYPE_TARGET_TYPE of the | |
8467 | template type. */ | |
8468 | ||
8469 | static struct type * | |
8470 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
8471 | { |
8472 | struct type *type; | |
8473 | int nfields; | |
8474 | int f; | |
8475 | ||
9e195661 PMR |
8476 | /* No need no do anything if the input type is already fixed. */ |
8477 | if (TYPE_FIXED_INSTANCE (type0)) | |
8478 | return type0; | |
8479 | ||
8480 | /* Likewise if we already have computed the static approximation. */ | |
4c4b4cd2 PH |
8481 | if (TYPE_TARGET_TYPE (type0) != NULL) |
8482 | return TYPE_TARGET_TYPE (type0); | |
8483 | ||
9e195661 | 8484 | /* Don't clone TYPE0 until we are sure we are going to need a copy. */ |
4c4b4cd2 | 8485 | type = type0; |
9e195661 PMR |
8486 | nfields = TYPE_NFIELDS (type0); |
8487 | ||
8488 | /* Whether or not we cloned TYPE0, cache the result so that we don't do | |
8489 | recompute all over next time. */ | |
8490 | TYPE_TARGET_TYPE (type0) = type; | |
14f9c5c9 AS |
8491 | |
8492 | for (f = 0; f < nfields; f += 1) | |
8493 | { | |
460efde1 | 8494 | struct type *field_type = TYPE_FIELD_TYPE (type0, f); |
4c4b4cd2 | 8495 | struct type *new_type; |
14f9c5c9 | 8496 | |
4c4b4cd2 | 8497 | if (is_dynamic_field (type0, f)) |
460efde1 JB |
8498 | { |
8499 | field_type = ada_check_typedef (field_type); | |
8500 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
8501 | } | |
14f9c5c9 | 8502 | else |
f192137b | 8503 | new_type = static_unwrap_type (field_type); |
9e195661 PMR |
8504 | |
8505 | if (new_type != field_type) | |
8506 | { | |
8507 | /* Clone TYPE0 only the first time we get a new field type. */ | |
8508 | if (type == type0) | |
8509 | { | |
8510 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); | |
8511 | TYPE_CODE (type) = TYPE_CODE (type0); | |
8512 | INIT_CPLUS_SPECIFIC (type); | |
8513 | TYPE_NFIELDS (type) = nfields; | |
8514 | TYPE_FIELDS (type) = (struct field *) | |
8515 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
8516 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
8517 | sizeof (struct field) * nfields); | |
8518 | TYPE_NAME (type) = ada_type_name (type0); | |
8519 | TYPE_TAG_NAME (type) = NULL; | |
8520 | TYPE_FIXED_INSTANCE (type) = 1; | |
8521 | TYPE_LENGTH (type) = 0; | |
8522 | } | |
8523 | TYPE_FIELD_TYPE (type, f) = new_type; | |
8524 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
8525 | } | |
14f9c5c9 | 8526 | } |
9e195661 | 8527 | |
14f9c5c9 AS |
8528 | return type; |
8529 | } | |
8530 | ||
4c4b4cd2 | 8531 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
8532 | whose address in memory is ADDRESS, returns a revision of TYPE, |
8533 | which should be a non-dynamic-sized record, in which the variant | |
8534 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
8535 | for discriminant values in DVAL0, which can be NULL if the record |
8536 | contains the necessary discriminant values. */ | |
8537 | ||
d2e4a39e | 8538 | static struct type * |
fc1a4b47 | 8539 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 8540 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 8541 | { |
d2e4a39e | 8542 | struct value *mark = value_mark (); |
4c4b4cd2 | 8543 | struct value *dval; |
d2e4a39e | 8544 | struct type *rtype; |
14f9c5c9 AS |
8545 | struct type *branch_type; |
8546 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 8547 | int variant_field = variant_field_index (type); |
14f9c5c9 | 8548 | |
4c4b4cd2 | 8549 | if (variant_field == -1) |
14f9c5c9 AS |
8550 | return type; |
8551 | ||
4c4b4cd2 | 8552 | if (dval0 == NULL) |
9f1f738a SA |
8553 | { |
8554 | dval = value_from_contents_and_address (type, valaddr, address); | |
8555 | type = value_type (dval); | |
8556 | } | |
4c4b4cd2 PH |
8557 | else |
8558 | dval = dval0; | |
8559 | ||
e9bb382b | 8560 | rtype = alloc_type_copy (type); |
14f9c5c9 | 8561 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
8562 | INIT_CPLUS_SPECIFIC (rtype); |
8563 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
8564 | TYPE_FIELDS (rtype) = |
8565 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
8566 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 8567 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
8568 | TYPE_NAME (rtype) = ada_type_name (type); |
8569 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 8570 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
8571 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
8572 | ||
4c4b4cd2 PH |
8573 | branch_type = to_fixed_variant_branch_type |
8574 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 8575 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
8576 | TYPE_FIELD_BITPOS (type, variant_field) |
8577 | / TARGET_CHAR_BIT), | |
d2e4a39e | 8578 | cond_offset_target (address, |
4c4b4cd2 PH |
8579 | TYPE_FIELD_BITPOS (type, variant_field) |
8580 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 8581 | if (branch_type == NULL) |
14f9c5c9 | 8582 | { |
4c4b4cd2 | 8583 | int f; |
5b4ee69b | 8584 | |
4c4b4cd2 PH |
8585 | for (f = variant_field + 1; f < nfields; f += 1) |
8586 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 8587 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
8588 | } |
8589 | else | |
8590 | { | |
4c4b4cd2 PH |
8591 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
8592 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
8593 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 8594 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 8595 | } |
4c4b4cd2 | 8596 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 8597 | |
4c4b4cd2 | 8598 | value_free_to_mark (mark); |
14f9c5c9 AS |
8599 | return rtype; |
8600 | } | |
8601 | ||
8602 | /* An ordinary record type (with fixed-length fields) that describes | |
8603 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
8604 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
8605 | should be in DVAL, a record value; it may be NULL if the object |
8606 | at ADDR itself contains any necessary discriminant values. | |
8607 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
8608 | values from the record are needed. Except in the case that DVAL, | |
8609 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
8610 | unchecked) is replaced by a particular branch of the variant. | |
8611 | ||
8612 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
8613 | is questionable and may be removed. It can arise during the | |
8614 | processing of an unconstrained-array-of-record type where all the | |
8615 | variant branches have exactly the same size. This is because in | |
8616 | such cases, the compiler does not bother to use the XVS convention | |
8617 | when encoding the record. I am currently dubious of this | |
8618 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 8619 | |
d2e4a39e | 8620 | static struct type * |
fc1a4b47 | 8621 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8622 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 8623 | { |
d2e4a39e | 8624 | struct type *templ_type; |
14f9c5c9 | 8625 | |
876cecd0 | 8626 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
8627 | return type0; |
8628 | ||
d2e4a39e | 8629 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
8630 | |
8631 | if (templ_type != NULL) | |
8632 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
8633 | else if (variant_field_index (type0) >= 0) |
8634 | { | |
8635 | if (dval == NULL && valaddr == NULL && address == 0) | |
8636 | return type0; | |
8637 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
8638 | dval); | |
8639 | } | |
14f9c5c9 AS |
8640 | else |
8641 | { | |
876cecd0 | 8642 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
8643 | return type0; |
8644 | } | |
8645 | ||
8646 | } | |
8647 | ||
8648 | /* An ordinary record type (with fixed-length fields) that describes | |
8649 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
8650 | union type. Any necessary discriminants' values should be in DVAL, | |
8651 | a record value. That is, this routine selects the appropriate | |
8652 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 8653 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 8654 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 8655 | |
d2e4a39e | 8656 | static struct type * |
fc1a4b47 | 8657 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 8658 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
8659 | { |
8660 | int which; | |
d2e4a39e AS |
8661 | struct type *templ_type; |
8662 | struct type *var_type; | |
14f9c5c9 AS |
8663 | |
8664 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
8665 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 8666 | else |
14f9c5c9 AS |
8667 | var_type = var_type0; |
8668 | ||
8669 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
8670 | ||
8671 | if (templ_type != NULL) | |
8672 | var_type = templ_type; | |
8673 | ||
b1f33ddd JB |
8674 | if (is_unchecked_variant (var_type, value_type (dval))) |
8675 | return var_type0; | |
d2e4a39e AS |
8676 | which = |
8677 | ada_which_variant_applies (var_type, | |
0fd88904 | 8678 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
8679 | |
8680 | if (which < 0) | |
e9bb382b | 8681 | return empty_record (var_type); |
14f9c5c9 | 8682 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 8683 | return to_fixed_record_type |
d2e4a39e AS |
8684 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
8685 | valaddr, address, dval); | |
4c4b4cd2 | 8686 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
8687 | return |
8688 | to_fixed_record_type | |
8689 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
8690 | else |
8691 | return TYPE_FIELD_TYPE (var_type, which); | |
8692 | } | |
8693 | ||
8908fca5 JB |
8694 | /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if |
8695 | ENCODING_TYPE, a type following the GNAT conventions for discrete | |
8696 | type encodings, only carries redundant information. */ | |
8697 | ||
8698 | static int | |
8699 | ada_is_redundant_range_encoding (struct type *range_type, | |
8700 | struct type *encoding_type) | |
8701 | { | |
8702 | struct type *fixed_range_type; | |
108d56a4 | 8703 | const char *bounds_str; |
8908fca5 JB |
8704 | int n; |
8705 | LONGEST lo, hi; | |
8706 | ||
8707 | gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE); | |
8708 | ||
005e2509 JB |
8709 | if (TYPE_CODE (get_base_type (range_type)) |
8710 | != TYPE_CODE (get_base_type (encoding_type))) | |
8711 | { | |
8712 | /* The compiler probably used a simple base type to describe | |
8713 | the range type instead of the range's actual base type, | |
8714 | expecting us to get the real base type from the encoding | |
8715 | anyway. In this situation, the encoding cannot be ignored | |
8716 | as redundant. */ | |
8717 | return 0; | |
8718 | } | |
8719 | ||
8908fca5 JB |
8720 | if (is_dynamic_type (range_type)) |
8721 | return 0; | |
8722 | ||
8723 | if (TYPE_NAME (encoding_type) == NULL) | |
8724 | return 0; | |
8725 | ||
8726 | bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_"); | |
8727 | if (bounds_str == NULL) | |
8728 | return 0; | |
8729 | ||
8730 | n = 8; /* Skip "___XDLU_". */ | |
8731 | if (!ada_scan_number (bounds_str, n, &lo, &n)) | |
8732 | return 0; | |
8733 | if (TYPE_LOW_BOUND (range_type) != lo) | |
8734 | return 0; | |
8735 | ||
8736 | n += 2; /* Skip the "__" separator between the two bounds. */ | |
8737 | if (!ada_scan_number (bounds_str, n, &hi, &n)) | |
8738 | return 0; | |
8739 | if (TYPE_HIGH_BOUND (range_type) != hi) | |
8740 | return 0; | |
8741 | ||
8742 | return 1; | |
8743 | } | |
8744 | ||
8745 | /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE, | |
8746 | a type following the GNAT encoding for describing array type | |
8747 | indices, only carries redundant information. */ | |
8748 | ||
8749 | static int | |
8750 | ada_is_redundant_index_type_desc (struct type *array_type, | |
8751 | struct type *desc_type) | |
8752 | { | |
8753 | struct type *this_layer = check_typedef (array_type); | |
8754 | int i; | |
8755 | ||
8756 | for (i = 0; i < TYPE_NFIELDS (desc_type); i++) | |
8757 | { | |
8758 | if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer), | |
8759 | TYPE_FIELD_TYPE (desc_type, i))) | |
8760 | return 0; | |
8761 | this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer)); | |
8762 | } | |
8763 | ||
8764 | return 1; | |
8765 | } | |
8766 | ||
14f9c5c9 AS |
8767 | /* Assuming that TYPE0 is an array type describing the type of a value |
8768 | at ADDR, and that DVAL describes a record containing any | |
8769 | discriminants used in TYPE0, returns a type for the value that | |
8770 | contains no dynamic components (that is, no components whose sizes | |
8771 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
8772 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 8773 | varsize_limit. */ |
14f9c5c9 | 8774 | |
d2e4a39e AS |
8775 | static struct type * |
8776 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 8777 | int ignore_too_big) |
14f9c5c9 | 8778 | { |
d2e4a39e AS |
8779 | struct type *index_type_desc; |
8780 | struct type *result; | |
ad82864c | 8781 | int constrained_packed_array_p; |
931e5bc3 | 8782 | static const char *xa_suffix = "___XA"; |
14f9c5c9 | 8783 | |
b0dd7688 | 8784 | type0 = ada_check_typedef (type0); |
284614f0 | 8785 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 8786 | return type0; |
14f9c5c9 | 8787 | |
ad82864c JB |
8788 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
8789 | if (constrained_packed_array_p) | |
8790 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 8791 | |
931e5bc3 JG |
8792 | index_type_desc = ada_find_parallel_type (type0, xa_suffix); |
8793 | ||
8794 | /* As mentioned in exp_dbug.ads, for non bit-packed arrays an | |
8795 | encoding suffixed with 'P' may still be generated. If so, | |
8796 | it should be used to find the XA type. */ | |
8797 | ||
8798 | if (index_type_desc == NULL) | |
8799 | { | |
1da0522e | 8800 | const char *type_name = ada_type_name (type0); |
931e5bc3 | 8801 | |
1da0522e | 8802 | if (type_name != NULL) |
931e5bc3 | 8803 | { |
1da0522e | 8804 | const int len = strlen (type_name); |
931e5bc3 JG |
8805 | char *name = (char *) alloca (len + strlen (xa_suffix)); |
8806 | ||
1da0522e | 8807 | if (type_name[len - 1] == 'P') |
931e5bc3 | 8808 | { |
1da0522e | 8809 | strcpy (name, type_name); |
931e5bc3 JG |
8810 | strcpy (name + len - 1, xa_suffix); |
8811 | index_type_desc = ada_find_parallel_type_with_name (type0, name); | |
8812 | } | |
8813 | } | |
8814 | } | |
8815 | ||
28c85d6c | 8816 | ada_fixup_array_indexes_type (index_type_desc); |
8908fca5 JB |
8817 | if (index_type_desc != NULL |
8818 | && ada_is_redundant_index_type_desc (type0, index_type_desc)) | |
8819 | { | |
8820 | /* Ignore this ___XA parallel type, as it does not bring any | |
8821 | useful information. This allows us to avoid creating fixed | |
8822 | versions of the array's index types, which would be identical | |
8823 | to the original ones. This, in turn, can also help avoid | |
8824 | the creation of fixed versions of the array itself. */ | |
8825 | index_type_desc = NULL; | |
8826 | } | |
8827 | ||
14f9c5c9 AS |
8828 | if (index_type_desc == NULL) |
8829 | { | |
61ee279c | 8830 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 8831 | |
14f9c5c9 | 8832 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
8833 | depend on the contents of the array in properly constructed |
8834 | debugging data. */ | |
529cad9c PH |
8835 | /* Create a fixed version of the array element type. |
8836 | We're not providing the address of an element here, | |
e1d5a0d2 | 8837 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8838 | the conversion. This should not be a problem, since arrays of |
8839 | unconstrained objects are not allowed. In particular, all | |
8840 | the elements of an array of a tagged type should all be of | |
8841 | the same type specified in the debugging info. No need to | |
8842 | consult the object tag. */ | |
1ed6ede0 | 8843 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 8844 | |
284614f0 JB |
8845 | /* Make sure we always create a new array type when dealing with |
8846 | packed array types, since we're going to fix-up the array | |
8847 | type length and element bitsize a little further down. */ | |
ad82864c | 8848 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 8849 | result = type0; |
14f9c5c9 | 8850 | else |
e9bb382b | 8851 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 8852 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
8853 | } |
8854 | else | |
8855 | { | |
8856 | int i; | |
8857 | struct type *elt_type0; | |
8858 | ||
8859 | elt_type0 = type0; | |
8860 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 8861 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
8862 | |
8863 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
8864 | depend on the contents of the array in properly constructed |
8865 | debugging data. */ | |
529cad9c PH |
8866 | /* Create a fixed version of the array element type. |
8867 | We're not providing the address of an element here, | |
e1d5a0d2 | 8868 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
8869 | the conversion. This should not be a problem, since arrays of |
8870 | unconstrained objects are not allowed. In particular, all | |
8871 | the elements of an array of a tagged type should all be of | |
8872 | the same type specified in the debugging info. No need to | |
8873 | consult the object tag. */ | |
1ed6ede0 JB |
8874 | result = |
8875 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
8876 | |
8877 | elt_type0 = type0; | |
14f9c5c9 | 8878 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
8879 | { |
8880 | struct type *range_type = | |
28c85d6c | 8881 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 8882 | |
e9bb382b | 8883 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 8884 | result, range_type); |
1ce677a4 | 8885 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 8886 | } |
d2e4a39e | 8887 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 8888 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
8889 | } |
8890 | ||
2e6fda7d JB |
8891 | /* We want to preserve the type name. This can be useful when |
8892 | trying to get the type name of a value that has already been | |
8893 | printed (for instance, if the user did "print VAR; whatis $". */ | |
8894 | TYPE_NAME (result) = TYPE_NAME (type0); | |
8895 | ||
ad82864c | 8896 | if (constrained_packed_array_p) |
284614f0 JB |
8897 | { |
8898 | /* So far, the resulting type has been created as if the original | |
8899 | type was a regular (non-packed) array type. As a result, the | |
8900 | bitsize of the array elements needs to be set again, and the array | |
8901 | length needs to be recomputed based on that bitsize. */ | |
8902 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
8903 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
8904 | ||
8905 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
8906 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
8907 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
8908 | TYPE_LENGTH (result)++; | |
8909 | } | |
8910 | ||
876cecd0 | 8911 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 8912 | return result; |
d2e4a39e | 8913 | } |
14f9c5c9 AS |
8914 | |
8915 | ||
8916 | /* A standard type (containing no dynamically sized components) | |
8917 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
8918 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 8919 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
8920 | ADDRESS or in VALADDR contains these discriminants. |
8921 | ||
1ed6ede0 JB |
8922 | If CHECK_TAG is not null, in the case of tagged types, this function |
8923 | attempts to locate the object's tag and use it to compute the actual | |
8924 | type. However, when ADDRESS is null, we cannot use it to determine the | |
8925 | location of the tag, and therefore compute the tagged type's actual type. | |
8926 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 8927 | |
f192137b JB |
8928 | static struct type * |
8929 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 8930 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 8931 | { |
61ee279c | 8932 | type = ada_check_typedef (type); |
d2e4a39e AS |
8933 | switch (TYPE_CODE (type)) |
8934 | { | |
8935 | default: | |
14f9c5c9 | 8936 | return type; |
d2e4a39e | 8937 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 8938 | { |
76a01679 | 8939 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
8940 | struct type *fixed_record_type = |
8941 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 8942 | |
529cad9c PH |
8943 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
8944 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 8945 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
8946 | type (the parent part of the record may have dynamic fields |
8947 | and the way the location of _tag is expressed may depend on | |
8948 | them). */ | |
529cad9c | 8949 | |
1ed6ede0 | 8950 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 | 8951 | { |
b50d69b5 JG |
8952 | struct value *tag = |
8953 | value_tag_from_contents_and_address | |
8954 | (fixed_record_type, | |
8955 | valaddr, | |
8956 | address); | |
8957 | struct type *real_type = type_from_tag (tag); | |
8958 | struct value *obj = | |
8959 | value_from_contents_and_address (fixed_record_type, | |
8960 | valaddr, | |
8961 | address); | |
9f1f738a | 8962 | fixed_record_type = value_type (obj); |
76a01679 | 8963 | if (real_type != NULL) |
b50d69b5 JG |
8964 | return to_fixed_record_type |
8965 | (real_type, NULL, | |
8966 | value_address (ada_tag_value_at_base_address (obj)), NULL); | |
76a01679 | 8967 | } |
4af88198 JB |
8968 | |
8969 | /* Check to see if there is a parallel ___XVZ variable. | |
8970 | If there is, then it provides the actual size of our type. */ | |
8971 | else if (ada_type_name (fixed_record_type) != NULL) | |
8972 | { | |
0d5cff50 | 8973 | const char *name = ada_type_name (fixed_record_type); |
224c3ddb SM |
8974 | char *xvz_name |
8975 | = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
4af88198 JB |
8976 | LONGEST size; |
8977 | ||
88c15c34 | 8978 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
edb0c9cb PA |
8979 | if (get_int_var_value (xvz_name, size) |
8980 | && TYPE_LENGTH (fixed_record_type) != size) | |
4af88198 JB |
8981 | { |
8982 | fixed_record_type = copy_type (fixed_record_type); | |
8983 | TYPE_LENGTH (fixed_record_type) = size; | |
8984 | ||
8985 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
8986 | observed this when the debugging info is STABS, and | |
8987 | apparently it is something that is hard to fix. | |
8988 | ||
8989 | In practice, we don't need the actual type definition | |
8990 | at all, because the presence of the XVZ variable allows us | |
8991 | to assume that there must be a XVS type as well, which we | |
8992 | should be able to use later, when we need the actual type | |
8993 | definition. | |
8994 | ||
8995 | In the meantime, pretend that the "fixed" type we are | |
8996 | returning is NOT a stub, because this can cause trouble | |
8997 | when using this type to create new types targeting it. | |
8998 | Indeed, the associated creation routines often check | |
8999 | whether the target type is a stub and will try to replace | |
0963b4bd | 9000 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
9001 | might cause the new type to have the wrong size too. |
9002 | Consider the case of an array, for instance, where the size | |
9003 | of the array is computed from the number of elements in | |
9004 | our array multiplied by the size of its element. */ | |
9005 | TYPE_STUB (fixed_record_type) = 0; | |
9006 | } | |
9007 | } | |
1ed6ede0 | 9008 | return fixed_record_type; |
4c4b4cd2 | 9009 | } |
d2e4a39e | 9010 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 9011 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
9012 | case TYPE_CODE_UNION: |
9013 | if (dval == NULL) | |
4c4b4cd2 | 9014 | return type; |
d2e4a39e | 9015 | else |
4c4b4cd2 | 9016 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 9017 | } |
14f9c5c9 AS |
9018 | } |
9019 | ||
f192137b JB |
9020 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
9021 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
9022 | |
9023 | The typedef layer needs be preserved in order to differentiate between | |
9024 | arrays and array pointers when both types are implemented using the same | |
9025 | fat pointer. In the array pointer case, the pointer is encoded as | |
9026 | a typedef of the pointer type. For instance, considering: | |
9027 | ||
9028 | type String_Access is access String; | |
9029 | S1 : String_Access := null; | |
9030 | ||
9031 | To the debugger, S1 is defined as a typedef of type String. But | |
9032 | to the user, it is a pointer. So if the user tries to print S1, | |
9033 | we should not dereference the array, but print the array address | |
9034 | instead. | |
9035 | ||
9036 | If we didn't preserve the typedef layer, we would lose the fact that | |
9037 | the type is to be presented as a pointer (needs de-reference before | |
9038 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
9039 | |
9040 | struct type * | |
9041 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
9042 | CORE_ADDR address, struct value *dval, int check_tag) | |
9043 | ||
9044 | { | |
9045 | struct type *fixed_type = | |
9046 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
9047 | ||
96dbd2c1 JB |
9048 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
9049 | then preserve the typedef layer. | |
9050 | ||
9051 | Implementation note: We can only check the main-type portion of | |
9052 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
9053 | from TYPE now returns a type that has the same instance flags | |
9054 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
9055 | target type is a "struct", then the typedef elimination will return | |
9056 | a "const" version of the target type. See check_typedef for more | |
9057 | details about how the typedef layer elimination is done. | |
9058 | ||
9059 | brobecker/2010-11-19: It seems to me that the only case where it is | |
9060 | useful to preserve the typedef layer is when dealing with fat pointers. | |
9061 | Perhaps, we could add a check for that and preserve the typedef layer | |
9062 | only in that situation. But this seems unecessary so far, probably | |
9063 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
9064 | */ | |
f192137b | 9065 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 9066 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 9067 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
9068 | return type; |
9069 | ||
9070 | return fixed_type; | |
9071 | } | |
9072 | ||
14f9c5c9 | 9073 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 9074 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 9075 | |
d2e4a39e AS |
9076 | static struct type * |
9077 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 9078 | { |
d2e4a39e | 9079 | struct type *type; |
14f9c5c9 AS |
9080 | |
9081 | if (type0 == NULL) | |
9082 | return NULL; | |
9083 | ||
876cecd0 | 9084 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
9085 | return type0; |
9086 | ||
61ee279c | 9087 | type0 = ada_check_typedef (type0); |
d2e4a39e | 9088 | |
14f9c5c9 AS |
9089 | switch (TYPE_CODE (type0)) |
9090 | { | |
9091 | default: | |
9092 | return type0; | |
9093 | case TYPE_CODE_STRUCT: | |
9094 | type = dynamic_template_type (type0); | |
d2e4a39e | 9095 | if (type != NULL) |
4c4b4cd2 PH |
9096 | return template_to_static_fixed_type (type); |
9097 | else | |
9098 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9099 | case TYPE_CODE_UNION: |
9100 | type = ada_find_parallel_type (type0, "___XVU"); | |
9101 | if (type != NULL) | |
4c4b4cd2 PH |
9102 | return template_to_static_fixed_type (type); |
9103 | else | |
9104 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
9105 | } |
9106 | } | |
9107 | ||
4c4b4cd2 PH |
9108 | /* A static approximation of TYPE with all type wrappers removed. */ |
9109 | ||
d2e4a39e AS |
9110 | static struct type * |
9111 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
9112 | { |
9113 | if (ada_is_aligner_type (type)) | |
9114 | { | |
61ee279c | 9115 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 9116 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 9117 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
9118 | |
9119 | return static_unwrap_type (type1); | |
9120 | } | |
d2e4a39e | 9121 | else |
14f9c5c9 | 9122 | { |
d2e4a39e | 9123 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 9124 | |
d2e4a39e | 9125 | if (raw_real_type == type) |
4c4b4cd2 | 9126 | return type; |
14f9c5c9 | 9127 | else |
4c4b4cd2 | 9128 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
9129 | } |
9130 | } | |
9131 | ||
9132 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 9133 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
9134 | type Foo; |
9135 | type FooP is access Foo; | |
9136 | V: FooP; | |
9137 | type Foo is array ...; | |
4c4b4cd2 | 9138 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
9139 | cross-references to such types, we instead substitute for FooP a |
9140 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 9141 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
9142 | |
9143 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
9144 | exists, otherwise TYPE. */ |
9145 | ||
d2e4a39e | 9146 | struct type * |
61ee279c | 9147 | ada_check_typedef (struct type *type) |
14f9c5c9 | 9148 | { |
727e3d2e JB |
9149 | if (type == NULL) |
9150 | return NULL; | |
9151 | ||
720d1a40 JB |
9152 | /* If our type is a typedef type of a fat pointer, then we're done. |
9153 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
9154 | what allows us to distinguish between fat pointers that represent | |
9155 | array types, and fat pointers that represent array access types | |
9156 | (in both cases, the compiler implements them as fat pointers). */ | |
9157 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
9158 | && is_thick_pntr (ada_typedef_target_type (type))) | |
9159 | return type; | |
9160 | ||
f168693b | 9161 | type = check_typedef (type); |
14f9c5c9 | 9162 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
529cad9c | 9163 | || !TYPE_STUB (type) |
14f9c5c9 AS |
9164 | || TYPE_TAG_NAME (type) == NULL) |
9165 | return type; | |
d2e4a39e | 9166 | else |
14f9c5c9 | 9167 | { |
0d5cff50 | 9168 | const char *name = TYPE_TAG_NAME (type); |
d2e4a39e | 9169 | struct type *type1 = ada_find_any_type (name); |
5b4ee69b | 9170 | |
05e522ef JB |
9171 | if (type1 == NULL) |
9172 | return type; | |
9173 | ||
9174 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
9175 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
9176 | types, only for the typedef-to-array types). If that's the case, |
9177 | strip the typedef layer. */ | |
9178 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
9179 | type1 = ada_check_typedef (type1); | |
9180 | ||
9181 | return type1; | |
14f9c5c9 AS |
9182 | } |
9183 | } | |
9184 | ||
9185 | /* A value representing the data at VALADDR/ADDRESS as described by | |
9186 | type TYPE0, but with a standard (static-sized) type that correctly | |
9187 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
9188 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 9189 | creation of struct values]. */ |
14f9c5c9 | 9190 | |
4c4b4cd2 PH |
9191 | static struct value * |
9192 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
9193 | struct value *val0) | |
14f9c5c9 | 9194 | { |
1ed6ede0 | 9195 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 9196 | |
14f9c5c9 AS |
9197 | if (type == type0 && val0 != NULL) |
9198 | return val0; | |
d2e4a39e | 9199 | else |
4c4b4cd2 PH |
9200 | return value_from_contents_and_address (type, 0, address); |
9201 | } | |
9202 | ||
9203 | /* A value representing VAL, but with a standard (static-sized) type | |
9204 | that correctly describes it. Does not necessarily create a new | |
9205 | value. */ | |
9206 | ||
0c3acc09 | 9207 | struct value * |
4c4b4cd2 PH |
9208 | ada_to_fixed_value (struct value *val) |
9209 | { | |
c48db5ca JB |
9210 | val = unwrap_value (val); |
9211 | val = ada_to_fixed_value_create (value_type (val), | |
9212 | value_address (val), | |
9213 | val); | |
9214 | return val; | |
14f9c5c9 | 9215 | } |
d2e4a39e | 9216 | \f |
14f9c5c9 | 9217 | |
14f9c5c9 AS |
9218 | /* Attributes */ |
9219 | ||
4c4b4cd2 PH |
9220 | /* Table mapping attribute numbers to names. |
9221 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 9222 | |
d2e4a39e | 9223 | static const char *attribute_names[] = { |
14f9c5c9 AS |
9224 | "<?>", |
9225 | ||
d2e4a39e | 9226 | "first", |
14f9c5c9 AS |
9227 | "last", |
9228 | "length", | |
9229 | "image", | |
14f9c5c9 AS |
9230 | "max", |
9231 | "min", | |
4c4b4cd2 PH |
9232 | "modulus", |
9233 | "pos", | |
9234 | "size", | |
9235 | "tag", | |
14f9c5c9 | 9236 | "val", |
14f9c5c9 AS |
9237 | 0 |
9238 | }; | |
9239 | ||
d2e4a39e | 9240 | const char * |
4c4b4cd2 | 9241 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 9242 | { |
4c4b4cd2 PH |
9243 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
9244 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
9245 | else |
9246 | return attribute_names[0]; | |
9247 | } | |
9248 | ||
4c4b4cd2 | 9249 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 9250 | |
4c4b4cd2 PH |
9251 | static LONGEST |
9252 | pos_atr (struct value *arg) | |
14f9c5c9 | 9253 | { |
24209737 PH |
9254 | struct value *val = coerce_ref (arg); |
9255 | struct type *type = value_type (val); | |
aa715135 | 9256 | LONGEST result; |
14f9c5c9 | 9257 | |
d2e4a39e | 9258 | if (!discrete_type_p (type)) |
323e0a4a | 9259 | error (_("'POS only defined on discrete types")); |
14f9c5c9 | 9260 | |
aa715135 JG |
9261 | if (!discrete_position (type, value_as_long (val), &result)) |
9262 | error (_("enumeration value is invalid: can't find 'POS")); | |
14f9c5c9 | 9263 | |
aa715135 | 9264 | return result; |
4c4b4cd2 PH |
9265 | } |
9266 | ||
9267 | static struct value * | |
3cb382c9 | 9268 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 9269 | { |
3cb382c9 | 9270 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
9271 | } |
9272 | ||
4c4b4cd2 | 9273 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 9274 | |
d2e4a39e AS |
9275 | static struct value * |
9276 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 9277 | { |
d2e4a39e | 9278 | if (!discrete_type_p (type)) |
323e0a4a | 9279 | error (_("'VAL only defined on discrete types")); |
df407dfe | 9280 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 9281 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
9282 | |
9283 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
9284 | { | |
9285 | long pos = value_as_long (arg); | |
5b4ee69b | 9286 | |
14f9c5c9 | 9287 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 9288 | error (_("argument to 'VAL out of range")); |
14e75d8e | 9289 | return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); |
14f9c5c9 AS |
9290 | } |
9291 | else | |
9292 | return value_from_longest (type, value_as_long (arg)); | |
9293 | } | |
14f9c5c9 | 9294 | \f |
d2e4a39e | 9295 | |
4c4b4cd2 | 9296 | /* Evaluation */ |
14f9c5c9 | 9297 | |
4c4b4cd2 PH |
9298 | /* True if TYPE appears to be an Ada character type. |
9299 | [At the moment, this is true only for Character and Wide_Character; | |
9300 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 9301 | |
d2e4a39e AS |
9302 | int |
9303 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 9304 | { |
7b9f71f2 JB |
9305 | const char *name; |
9306 | ||
9307 | /* If the type code says it's a character, then assume it really is, | |
9308 | and don't check any further. */ | |
9309 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
9310 | return 1; | |
9311 | ||
9312 | /* Otherwise, assume it's a character type iff it is a discrete type | |
9313 | with a known character type name. */ | |
9314 | name = ada_type_name (type); | |
9315 | return (name != NULL | |
9316 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
9317 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
9318 | && (strcmp (name, "character") == 0 | |
9319 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 9320 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 9321 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
9322 | } |
9323 | ||
4c4b4cd2 | 9324 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
9325 | |
9326 | int | |
ebf56fd3 | 9327 | ada_is_string_type (struct type *type) |
14f9c5c9 | 9328 | { |
61ee279c | 9329 | type = ada_check_typedef (type); |
d2e4a39e | 9330 | if (type != NULL |
14f9c5c9 | 9331 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
9332 | && (ada_is_simple_array_type (type) |
9333 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
9334 | && ada_array_arity (type) == 1) |
9335 | { | |
9336 | struct type *elttype = ada_array_element_type (type, 1); | |
9337 | ||
9338 | return ada_is_character_type (elttype); | |
9339 | } | |
d2e4a39e | 9340 | else |
14f9c5c9 AS |
9341 | return 0; |
9342 | } | |
9343 | ||
5bf03f13 JB |
9344 | /* The compiler sometimes provides a parallel XVS type for a given |
9345 | PAD type. Normally, it is safe to follow the PAD type directly, | |
9346 | but older versions of the compiler have a bug that causes the offset | |
9347 | of its "F" field to be wrong. Following that field in that case | |
9348 | would lead to incorrect results, but this can be worked around | |
9349 | by ignoring the PAD type and using the associated XVS type instead. | |
9350 | ||
9351 | Set to True if the debugger should trust the contents of PAD types. | |
9352 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
9353 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
9354 | |
9355 | /* True if TYPE is a struct type introduced by the compiler to force the | |
9356 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 9357 | distinctive name. */ |
14f9c5c9 AS |
9358 | |
9359 | int | |
ebf56fd3 | 9360 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 9361 | { |
61ee279c | 9362 | type = ada_check_typedef (type); |
714e53ab | 9363 | |
5bf03f13 | 9364 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
9365 | return 0; |
9366 | ||
14f9c5c9 | 9367 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
9368 | && TYPE_NFIELDS (type) == 1 |
9369 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
9370 | } |
9371 | ||
9372 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 9373 | the parallel type. */ |
14f9c5c9 | 9374 | |
d2e4a39e AS |
9375 | struct type * |
9376 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 9377 | { |
d2e4a39e AS |
9378 | struct type *real_type_namer; |
9379 | struct type *raw_real_type; | |
14f9c5c9 AS |
9380 | |
9381 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
9382 | return raw_type; | |
9383 | ||
284614f0 JB |
9384 | if (ada_is_aligner_type (raw_type)) |
9385 | /* The encoding specifies that we should always use the aligner type. | |
9386 | So, even if this aligner type has an associated XVS type, we should | |
9387 | simply ignore it. | |
9388 | ||
9389 | According to the compiler gurus, an XVS type parallel to an aligner | |
9390 | type may exist because of a stabs limitation. In stabs, aligner | |
9391 | types are empty because the field has a variable-sized type, and | |
9392 | thus cannot actually be used as an aligner type. As a result, | |
9393 | we need the associated parallel XVS type to decode the type. | |
9394 | Since the policy in the compiler is to not change the internal | |
9395 | representation based on the debugging info format, we sometimes | |
9396 | end up having a redundant XVS type parallel to the aligner type. */ | |
9397 | return raw_type; | |
9398 | ||
14f9c5c9 | 9399 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 9400 | if (real_type_namer == NULL |
14f9c5c9 AS |
9401 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
9402 | || TYPE_NFIELDS (real_type_namer) != 1) | |
9403 | return raw_type; | |
9404 | ||
f80d3ff2 JB |
9405 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
9406 | { | |
9407 | /* This is an older encoding form where the base type needs to be | |
9408 | looked up by name. We prefer the newer enconding because it is | |
9409 | more efficient. */ | |
9410 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
9411 | if (raw_real_type == NULL) | |
9412 | return raw_type; | |
9413 | else | |
9414 | return raw_real_type; | |
9415 | } | |
9416 | ||
9417 | /* The field in our XVS type is a reference to the base type. */ | |
9418 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 9419 | } |
14f9c5c9 | 9420 | |
4c4b4cd2 | 9421 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 9422 | |
d2e4a39e AS |
9423 | struct type * |
9424 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
9425 | { |
9426 | if (ada_is_aligner_type (type)) | |
9427 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
9428 | else | |
9429 | return ada_get_base_type (type); | |
9430 | } | |
9431 | ||
9432 | ||
9433 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 9434 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 9435 | |
fc1a4b47 AC |
9436 | const gdb_byte * |
9437 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 9438 | { |
d2e4a39e | 9439 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 9440 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
9441 | valaddr + |
9442 | TYPE_FIELD_BITPOS (type, | |
9443 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
9444 | else |
9445 | return valaddr; | |
9446 | } | |
9447 | ||
4c4b4cd2 PH |
9448 | |
9449 | ||
14f9c5c9 | 9450 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 9451 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
9452 | const char * |
9453 | ada_enum_name (const char *name) | |
14f9c5c9 | 9454 | { |
4c4b4cd2 PH |
9455 | static char *result; |
9456 | static size_t result_len = 0; | |
e6a959d6 | 9457 | const char *tmp; |
14f9c5c9 | 9458 | |
4c4b4cd2 PH |
9459 | /* First, unqualify the enumeration name: |
9460 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 9461 | all the preceding characters, the unqualified name starts |
76a01679 | 9462 | right after that dot. |
4c4b4cd2 | 9463 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
9464 | translates dots into "__". Search forward for double underscores, |
9465 | but stop searching when we hit an overloading suffix, which is | |
9466 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 9467 | |
c3e5cd34 PH |
9468 | tmp = strrchr (name, '.'); |
9469 | if (tmp != NULL) | |
4c4b4cd2 PH |
9470 | name = tmp + 1; |
9471 | else | |
14f9c5c9 | 9472 | { |
4c4b4cd2 PH |
9473 | while ((tmp = strstr (name, "__")) != NULL) |
9474 | { | |
9475 | if (isdigit (tmp[2])) | |
9476 | break; | |
9477 | else | |
9478 | name = tmp + 2; | |
9479 | } | |
14f9c5c9 AS |
9480 | } |
9481 | ||
9482 | if (name[0] == 'Q') | |
9483 | { | |
14f9c5c9 | 9484 | int v; |
5b4ee69b | 9485 | |
14f9c5c9 | 9486 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
9487 | { |
9488 | if (sscanf (name + 2, "%x", &v) != 1) | |
9489 | return name; | |
9490 | } | |
14f9c5c9 | 9491 | else |
4c4b4cd2 | 9492 | return name; |
14f9c5c9 | 9493 | |
4c4b4cd2 | 9494 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 9495 | if (isascii (v) && isprint (v)) |
88c15c34 | 9496 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 9497 | else if (name[1] == 'U') |
88c15c34 | 9498 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 9499 | else |
88c15c34 | 9500 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
9501 | |
9502 | return result; | |
9503 | } | |
d2e4a39e | 9504 | else |
4c4b4cd2 | 9505 | { |
c3e5cd34 PH |
9506 | tmp = strstr (name, "__"); |
9507 | if (tmp == NULL) | |
9508 | tmp = strstr (name, "$"); | |
9509 | if (tmp != NULL) | |
4c4b4cd2 PH |
9510 | { |
9511 | GROW_VECT (result, result_len, tmp - name + 1); | |
9512 | strncpy (result, name, tmp - name); | |
9513 | result[tmp - name] = '\0'; | |
9514 | return result; | |
9515 | } | |
9516 | ||
9517 | return name; | |
9518 | } | |
14f9c5c9 AS |
9519 | } |
9520 | ||
14f9c5c9 AS |
9521 | /* Evaluate the subexpression of EXP starting at *POS as for |
9522 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 9523 | expression. */ |
14f9c5c9 | 9524 | |
d2e4a39e AS |
9525 | static struct value * |
9526 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 9527 | { |
4b27a620 | 9528 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
9529 | } |
9530 | ||
9531 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 9532 | value it wraps. */ |
14f9c5c9 | 9533 | |
d2e4a39e AS |
9534 | static struct value * |
9535 | unwrap_value (struct value *val) | |
14f9c5c9 | 9536 | { |
df407dfe | 9537 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 9538 | |
14f9c5c9 AS |
9539 | if (ada_is_aligner_type (type)) |
9540 | { | |
de4d072f | 9541 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 9542 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 9543 | |
14f9c5c9 | 9544 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 9545 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
9546 | |
9547 | return unwrap_value (v); | |
9548 | } | |
d2e4a39e | 9549 | else |
14f9c5c9 | 9550 | { |
d2e4a39e | 9551 | struct type *raw_real_type = |
61ee279c | 9552 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 9553 | |
5bf03f13 JB |
9554 | /* If there is no parallel XVS or XVE type, then the value is |
9555 | already unwrapped. Return it without further modification. */ | |
9556 | if ((type == raw_real_type) | |
9557 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
9558 | return val; | |
14f9c5c9 | 9559 | |
d2e4a39e | 9560 | return |
4c4b4cd2 PH |
9561 | coerce_unspec_val_to_type |
9562 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 9563 | value_address (val), |
1ed6ede0 | 9564 | NULL, 1)); |
14f9c5c9 AS |
9565 | } |
9566 | } | |
d2e4a39e AS |
9567 | |
9568 | static struct value * | |
9569 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
9570 | { |
9571 | LONGEST val; | |
9572 | ||
df407dfe | 9573 | if (type == value_type (arg)) |
14f9c5c9 | 9574 | return arg; |
df407dfe | 9575 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 9576 | val = ada_float_to_fixed (type, |
df407dfe | 9577 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9578 | value_as_long (arg))); |
d2e4a39e | 9579 | else |
14f9c5c9 | 9580 | { |
a53b7a21 | 9581 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 9582 | |
14f9c5c9 AS |
9583 | val = ada_float_to_fixed (type, argd); |
9584 | } | |
9585 | ||
9586 | return value_from_longest (type, val); | |
9587 | } | |
9588 | ||
d2e4a39e | 9589 | static struct value * |
a53b7a21 | 9590 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 9591 | { |
df407dfe | 9592 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 9593 | value_as_long (arg)); |
5b4ee69b | 9594 | |
a53b7a21 | 9595 | return value_from_double (type, val); |
14f9c5c9 AS |
9596 | } |
9597 | ||
d99dcf51 JB |
9598 | /* Given two array types T1 and T2, return nonzero iff both arrays |
9599 | contain the same number of elements. */ | |
9600 | ||
9601 | static int | |
9602 | ada_same_array_size_p (struct type *t1, struct type *t2) | |
9603 | { | |
9604 | LONGEST lo1, hi1, lo2, hi2; | |
9605 | ||
9606 | /* Get the array bounds in order to verify that the size of | |
9607 | the two arrays match. */ | |
9608 | if (!get_array_bounds (t1, &lo1, &hi1) | |
9609 | || !get_array_bounds (t2, &lo2, &hi2)) | |
9610 | error (_("unable to determine array bounds")); | |
9611 | ||
9612 | /* To make things easier for size comparison, normalize a bit | |
9613 | the case of empty arrays by making sure that the difference | |
9614 | between upper bound and lower bound is always -1. */ | |
9615 | if (lo1 > hi1) | |
9616 | hi1 = lo1 - 1; | |
9617 | if (lo2 > hi2) | |
9618 | hi2 = lo2 - 1; | |
9619 | ||
9620 | return (hi1 - lo1 == hi2 - lo2); | |
9621 | } | |
9622 | ||
9623 | /* Assuming that VAL is an array of integrals, and TYPE represents | |
9624 | an array with the same number of elements, but with wider integral | |
9625 | elements, return an array "casted" to TYPE. In practice, this | |
9626 | means that the returned array is built by casting each element | |
9627 | of the original array into TYPE's (wider) element type. */ | |
9628 | ||
9629 | static struct value * | |
9630 | ada_promote_array_of_integrals (struct type *type, struct value *val) | |
9631 | { | |
9632 | struct type *elt_type = TYPE_TARGET_TYPE (type); | |
9633 | LONGEST lo, hi; | |
9634 | struct value *res; | |
9635 | LONGEST i; | |
9636 | ||
9637 | /* Verify that both val and type are arrays of scalars, and | |
9638 | that the size of val's elements is smaller than the size | |
9639 | of type's element. */ | |
9640 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); | |
9641 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); | |
9642 | gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); | |
9643 | gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); | |
9644 | gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) | |
9645 | > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); | |
9646 | ||
9647 | if (!get_array_bounds (type, &lo, &hi)) | |
9648 | error (_("unable to determine array bounds")); | |
9649 | ||
9650 | res = allocate_value (type); | |
9651 | ||
9652 | /* Promote each array element. */ | |
9653 | for (i = 0; i < hi - lo + 1; i++) | |
9654 | { | |
9655 | struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); | |
9656 | ||
9657 | memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), | |
9658 | value_contents_all (elt), TYPE_LENGTH (elt_type)); | |
9659 | } | |
9660 | ||
9661 | return res; | |
9662 | } | |
9663 | ||
4c4b4cd2 PH |
9664 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
9665 | return the converted value. */ | |
9666 | ||
d2e4a39e AS |
9667 | static struct value * |
9668 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 9669 | { |
df407dfe | 9670 | struct type *type2 = value_type (val); |
5b4ee69b | 9671 | |
14f9c5c9 AS |
9672 | if (type == type2) |
9673 | return val; | |
9674 | ||
61ee279c PH |
9675 | type2 = ada_check_typedef (type2); |
9676 | type = ada_check_typedef (type); | |
14f9c5c9 | 9677 | |
d2e4a39e AS |
9678 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
9679 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
9680 | { |
9681 | val = ada_value_ind (val); | |
df407dfe | 9682 | type2 = value_type (val); |
14f9c5c9 AS |
9683 | } |
9684 | ||
d2e4a39e | 9685 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
9686 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
9687 | { | |
d99dcf51 JB |
9688 | if (!ada_same_array_size_p (type, type2)) |
9689 | error (_("cannot assign arrays of different length")); | |
9690 | ||
9691 | if (is_integral_type (TYPE_TARGET_TYPE (type)) | |
9692 | && is_integral_type (TYPE_TARGET_TYPE (type2)) | |
9693 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9694 | < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
9695 | { | |
9696 | /* Allow implicit promotion of the array elements to | |
9697 | a wider type. */ | |
9698 | return ada_promote_array_of_integrals (type, val); | |
9699 | } | |
9700 | ||
9701 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
9702 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) | |
323e0a4a | 9703 | error (_("Incompatible types in assignment")); |
04624583 | 9704 | deprecated_set_value_type (val, type); |
14f9c5c9 | 9705 | } |
d2e4a39e | 9706 | return val; |
14f9c5c9 AS |
9707 | } |
9708 | ||
4c4b4cd2 PH |
9709 | static struct value * |
9710 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
9711 | { | |
9712 | struct value *val; | |
9713 | struct type *type1, *type2; | |
9714 | LONGEST v, v1, v2; | |
9715 | ||
994b9211 AC |
9716 | arg1 = coerce_ref (arg1); |
9717 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
9718 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
9719 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 9720 | |
76a01679 JB |
9721 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
9722 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
9723 | return value_binop (arg1, arg2, op); |
9724 | ||
76a01679 | 9725 | switch (op) |
4c4b4cd2 PH |
9726 | { |
9727 | case BINOP_MOD: | |
9728 | case BINOP_DIV: | |
9729 | case BINOP_REM: | |
9730 | break; | |
9731 | default: | |
9732 | return value_binop (arg1, arg2, op); | |
9733 | } | |
9734 | ||
9735 | v2 = value_as_long (arg2); | |
9736 | if (v2 == 0) | |
323e0a4a | 9737 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
9738 | |
9739 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
9740 | return value_binop (arg1, arg2, op); | |
9741 | ||
9742 | v1 = value_as_long (arg1); | |
9743 | switch (op) | |
9744 | { | |
9745 | case BINOP_DIV: | |
9746 | v = v1 / v2; | |
76a01679 JB |
9747 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
9748 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
9749 | break; |
9750 | case BINOP_REM: | |
9751 | v = v1 % v2; | |
76a01679 JB |
9752 | if (v * v1 < 0) |
9753 | v -= v2; | |
4c4b4cd2 PH |
9754 | break; |
9755 | default: | |
9756 | /* Should not reach this point. */ | |
9757 | v = 0; | |
9758 | } | |
9759 | ||
9760 | val = allocate_value (type1); | |
990a07ab | 9761 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
9762 | TYPE_LENGTH (value_type (val)), |
9763 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
9764 | return val; |
9765 | } | |
9766 | ||
9767 | static int | |
9768 | ada_value_equal (struct value *arg1, struct value *arg2) | |
9769 | { | |
df407dfe AC |
9770 | if (ada_is_direct_array_type (value_type (arg1)) |
9771 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 9772 | { |
f58b38bf JB |
9773 | /* Automatically dereference any array reference before |
9774 | we attempt to perform the comparison. */ | |
9775 | arg1 = ada_coerce_ref (arg1); | |
9776 | arg2 = ada_coerce_ref (arg2); | |
9777 | ||
4c4b4cd2 PH |
9778 | arg1 = ada_coerce_to_simple_array (arg1); |
9779 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
9780 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
9781 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 9782 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 9783 | /* FIXME: The following works only for types whose |
76a01679 JB |
9784 | representations use all bits (no padding or undefined bits) |
9785 | and do not have user-defined equality. */ | |
9786 | return | |
df407dfe | 9787 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 9788 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 9789 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
9790 | } |
9791 | return value_equal (arg1, arg2); | |
9792 | } | |
9793 | ||
52ce6436 PH |
9794 | /* Total number of component associations in the aggregate starting at |
9795 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 9796 | OP_AGGREGATE. */ |
52ce6436 PH |
9797 | |
9798 | static int | |
9799 | num_component_specs (struct expression *exp, int pc) | |
9800 | { | |
9801 | int n, m, i; | |
5b4ee69b | 9802 | |
52ce6436 PH |
9803 | m = exp->elts[pc + 1].longconst; |
9804 | pc += 3; | |
9805 | n = 0; | |
9806 | for (i = 0; i < m; i += 1) | |
9807 | { | |
9808 | switch (exp->elts[pc].opcode) | |
9809 | { | |
9810 | default: | |
9811 | n += 1; | |
9812 | break; | |
9813 | case OP_CHOICES: | |
9814 | n += exp->elts[pc + 1].longconst; | |
9815 | break; | |
9816 | } | |
9817 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
9818 | } | |
9819 | return n; | |
9820 | } | |
9821 | ||
9822 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
9823 | component of LHS (a simple array or a record), updating *POS past | |
9824 | the expression, assuming that LHS is contained in CONTAINER. Does | |
9825 | not modify the inferior's memory, nor does it modify LHS (unless | |
9826 | LHS == CONTAINER). */ | |
9827 | ||
9828 | static void | |
9829 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
9830 | struct expression *exp, int *pos) | |
9831 | { | |
9832 | struct value *mark = value_mark (); | |
9833 | struct value *elt; | |
5b4ee69b | 9834 | |
52ce6436 PH |
9835 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
9836 | { | |
22601c15 UW |
9837 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
9838 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 9839 | |
52ce6436 PH |
9840 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
9841 | } | |
9842 | else | |
9843 | { | |
9844 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
c48db5ca | 9845 | elt = ada_to_fixed_value (elt); |
52ce6436 PH |
9846 | } |
9847 | ||
9848 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
9849 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
9850 | else | |
9851 | value_assign_to_component (container, elt, | |
9852 | ada_evaluate_subexp (NULL, exp, pos, | |
9853 | EVAL_NORMAL)); | |
9854 | ||
9855 | value_free_to_mark (mark); | |
9856 | } | |
9857 | ||
9858 | /* Assuming that LHS represents an lvalue having a record or array | |
9859 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
9860 | of that aggregate's value to LHS, advancing *POS past the | |
9861 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
9862 | lvalue containing LHS (possibly LHS itself). Does not modify | |
9863 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 9864 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
9865 | |
9866 | static struct value * | |
9867 | assign_aggregate (struct value *container, | |
9868 | struct value *lhs, struct expression *exp, | |
9869 | int *pos, enum noside noside) | |
9870 | { | |
9871 | struct type *lhs_type; | |
9872 | int n = exp->elts[*pos+1].longconst; | |
9873 | LONGEST low_index, high_index; | |
9874 | int num_specs; | |
9875 | LONGEST *indices; | |
9876 | int max_indices, num_indices; | |
52ce6436 | 9877 | int i; |
52ce6436 PH |
9878 | |
9879 | *pos += 3; | |
9880 | if (noside != EVAL_NORMAL) | |
9881 | { | |
52ce6436 PH |
9882 | for (i = 0; i < n; i += 1) |
9883 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
9884 | return container; | |
9885 | } | |
9886 | ||
9887 | container = ada_coerce_ref (container); | |
9888 | if (ada_is_direct_array_type (value_type (container))) | |
9889 | container = ada_coerce_to_simple_array (container); | |
9890 | lhs = ada_coerce_ref (lhs); | |
9891 | if (!deprecated_value_modifiable (lhs)) | |
9892 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
9893 | ||
9894 | lhs_type = value_type (lhs); | |
9895 | if (ada_is_direct_array_type (lhs_type)) | |
9896 | { | |
9897 | lhs = ada_coerce_to_simple_array (lhs); | |
9898 | lhs_type = value_type (lhs); | |
9899 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
9900 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
52ce6436 PH |
9901 | } |
9902 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
9903 | { | |
9904 | low_index = 0; | |
9905 | high_index = num_visible_fields (lhs_type) - 1; | |
52ce6436 PH |
9906 | } |
9907 | else | |
9908 | error (_("Left-hand side must be array or record.")); | |
9909 | ||
9910 | num_specs = num_component_specs (exp, *pos - 3); | |
9911 | max_indices = 4 * num_specs + 4; | |
8d749320 | 9912 | indices = XALLOCAVEC (LONGEST, max_indices); |
52ce6436 PH |
9913 | indices[0] = indices[1] = low_index - 1; |
9914 | indices[2] = indices[3] = high_index + 1; | |
9915 | num_indices = 4; | |
9916 | ||
9917 | for (i = 0; i < n; i += 1) | |
9918 | { | |
9919 | switch (exp->elts[*pos].opcode) | |
9920 | { | |
1fbf5ada JB |
9921 | case OP_CHOICES: |
9922 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
9923 | &num_indices, max_indices, | |
9924 | low_index, high_index); | |
9925 | break; | |
9926 | case OP_POSITIONAL: | |
9927 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
52ce6436 PH |
9928 | &num_indices, max_indices, |
9929 | low_index, high_index); | |
1fbf5ada JB |
9930 | break; |
9931 | case OP_OTHERS: | |
9932 | if (i != n-1) | |
9933 | error (_("Misplaced 'others' clause")); | |
9934 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
9935 | num_indices, low_index, high_index); | |
9936 | break; | |
9937 | default: | |
9938 | error (_("Internal error: bad aggregate clause")); | |
52ce6436 PH |
9939 | } |
9940 | } | |
9941 | ||
9942 | return container; | |
9943 | } | |
9944 | ||
9945 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
9946 | construct at *POS, updating *POS past the construct, given that | |
9947 | the positions are relative to lower bound LOW, where HIGH is the | |
9948 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
9949 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 9950 | assign_aggregate. */ |
52ce6436 PH |
9951 | static void |
9952 | aggregate_assign_positional (struct value *container, | |
9953 | struct value *lhs, struct expression *exp, | |
9954 | int *pos, LONGEST *indices, int *num_indices, | |
9955 | int max_indices, LONGEST low, LONGEST high) | |
9956 | { | |
9957 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
9958 | ||
9959 | if (ind - 1 == high) | |
e1d5a0d2 | 9960 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
9961 | if (ind <= high) |
9962 | { | |
9963 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
9964 | *pos += 3; | |
9965 | assign_component (container, lhs, ind, exp, pos); | |
9966 | } | |
9967 | else | |
9968 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9969 | } | |
9970 | ||
9971 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
9972 | construct at *POS, updating *POS past the construct, given that | |
9973 | the allowable indices are LOW..HIGH. Record the indices assigned | |
9974 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 9975 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
9976 | static void |
9977 | aggregate_assign_from_choices (struct value *container, | |
9978 | struct value *lhs, struct expression *exp, | |
9979 | int *pos, LONGEST *indices, int *num_indices, | |
9980 | int max_indices, LONGEST low, LONGEST high) | |
9981 | { | |
9982 | int j; | |
9983 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
9984 | int choice_pos, expr_pc; | |
9985 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
9986 | ||
9987 | choice_pos = *pos += 3; | |
9988 | ||
9989 | for (j = 0; j < n_choices; j += 1) | |
9990 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9991 | expr_pc = *pos; | |
9992 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
9993 | ||
9994 | for (j = 0; j < n_choices; j += 1) | |
9995 | { | |
9996 | LONGEST lower, upper; | |
9997 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 9998 | |
52ce6436 PH |
9999 | if (op == OP_DISCRETE_RANGE) |
10000 | { | |
10001 | choice_pos += 1; | |
10002 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10003 | EVAL_NORMAL)); | |
10004 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
10005 | EVAL_NORMAL)); | |
10006 | } | |
10007 | else if (is_array) | |
10008 | { | |
10009 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
10010 | EVAL_NORMAL)); | |
10011 | upper = lower; | |
10012 | } | |
10013 | else | |
10014 | { | |
10015 | int ind; | |
0d5cff50 | 10016 | const char *name; |
5b4ee69b | 10017 | |
52ce6436 PH |
10018 | switch (op) |
10019 | { | |
10020 | case OP_NAME: | |
10021 | name = &exp->elts[choice_pos + 2].string; | |
10022 | break; | |
10023 | case OP_VAR_VALUE: | |
10024 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
10025 | break; | |
10026 | default: | |
10027 | error (_("Invalid record component association.")); | |
10028 | } | |
10029 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
10030 | ind = 0; | |
10031 | if (! find_struct_field (name, value_type (lhs), 0, | |
10032 | NULL, NULL, NULL, NULL, &ind)) | |
10033 | error (_("Unknown component name: %s."), name); | |
10034 | lower = upper = ind; | |
10035 | } | |
10036 | ||
10037 | if (lower <= upper && (lower < low || upper > high)) | |
10038 | error (_("Index in component association out of bounds.")); | |
10039 | ||
10040 | add_component_interval (lower, upper, indices, num_indices, | |
10041 | max_indices); | |
10042 | while (lower <= upper) | |
10043 | { | |
10044 | int pos1; | |
5b4ee69b | 10045 | |
52ce6436 PH |
10046 | pos1 = expr_pc; |
10047 | assign_component (container, lhs, lower, exp, &pos1); | |
10048 | lower += 1; | |
10049 | } | |
10050 | } | |
10051 | } | |
10052 | ||
10053 | /* Assign the value of the expression in the OP_OTHERS construct in | |
10054 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
10055 | have not been previously assigned. The index intervals already assigned | |
10056 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 10057 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
10058 | static void |
10059 | aggregate_assign_others (struct value *container, | |
10060 | struct value *lhs, struct expression *exp, | |
10061 | int *pos, LONGEST *indices, int num_indices, | |
10062 | LONGEST low, LONGEST high) | |
10063 | { | |
10064 | int i; | |
5ce64950 | 10065 | int expr_pc = *pos + 1; |
52ce6436 PH |
10066 | |
10067 | for (i = 0; i < num_indices - 2; i += 2) | |
10068 | { | |
10069 | LONGEST ind; | |
5b4ee69b | 10070 | |
52ce6436 PH |
10071 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
10072 | { | |
5ce64950 | 10073 | int localpos; |
5b4ee69b | 10074 | |
5ce64950 MS |
10075 | localpos = expr_pc; |
10076 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
10077 | } |
10078 | } | |
10079 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
10080 | } | |
10081 | ||
10082 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
10083 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
10084 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
10085 | MAX_SIZE. The resulting intervals do not overlap. */ | |
10086 | static void | |
10087 | add_component_interval (LONGEST low, LONGEST high, | |
10088 | LONGEST* indices, int *size, int max_size) | |
10089 | { | |
10090 | int i, j; | |
5b4ee69b | 10091 | |
52ce6436 PH |
10092 | for (i = 0; i < *size; i += 2) { |
10093 | if (high >= indices[i] && low <= indices[i + 1]) | |
10094 | { | |
10095 | int kh; | |
5b4ee69b | 10096 | |
52ce6436 PH |
10097 | for (kh = i + 2; kh < *size; kh += 2) |
10098 | if (high < indices[kh]) | |
10099 | break; | |
10100 | if (low < indices[i]) | |
10101 | indices[i] = low; | |
10102 | indices[i + 1] = indices[kh - 1]; | |
10103 | if (high > indices[i + 1]) | |
10104 | indices[i + 1] = high; | |
10105 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
10106 | *size -= kh - i - 2; | |
10107 | return; | |
10108 | } | |
10109 | else if (high < indices[i]) | |
10110 | break; | |
10111 | } | |
10112 | ||
10113 | if (*size == max_size) | |
10114 | error (_("Internal error: miscounted aggregate components.")); | |
10115 | *size += 2; | |
10116 | for (j = *size-1; j >= i+2; j -= 1) | |
10117 | indices[j] = indices[j - 2]; | |
10118 | indices[i] = low; | |
10119 | indices[i + 1] = high; | |
10120 | } | |
10121 | ||
6e48bd2c JB |
10122 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
10123 | is different. */ | |
10124 | ||
10125 | static struct value * | |
10126 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
10127 | { | |
10128 | if (type == ada_check_typedef (value_type (arg2))) | |
10129 | return arg2; | |
10130 | ||
10131 | if (ada_is_fixed_point_type (type)) | |
10132 | return (cast_to_fixed (type, arg2)); | |
10133 | ||
10134 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 10135 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
10136 | |
10137 | return value_cast (type, arg2); | |
10138 | } | |
10139 | ||
284614f0 JB |
10140 | /* Evaluating Ada expressions, and printing their result. |
10141 | ------------------------------------------------------ | |
10142 | ||
21649b50 JB |
10143 | 1. Introduction: |
10144 | ---------------- | |
10145 | ||
284614f0 JB |
10146 | We usually evaluate an Ada expression in order to print its value. |
10147 | We also evaluate an expression in order to print its type, which | |
10148 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
10149 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
10150 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
10151 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
10152 | similar. | |
10153 | ||
10154 | Evaluating expressions is a little more complicated for Ada entities | |
10155 | than it is for entities in languages such as C. The main reason for | |
10156 | this is that Ada provides types whose definition might be dynamic. | |
10157 | One example of such types is variant records. Or another example | |
10158 | would be an array whose bounds can only be known at run time. | |
10159 | ||
10160 | The following description is a general guide as to what should be | |
10161 | done (and what should NOT be done) in order to evaluate an expression | |
10162 | involving such types, and when. This does not cover how the semantic | |
10163 | information is encoded by GNAT as this is covered separatly. For the | |
10164 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
10165 | in the GNAT sources. | |
10166 | ||
10167 | Ideally, we should embed each part of this description next to its | |
10168 | associated code. Unfortunately, the amount of code is so vast right | |
10169 | now that it's hard to see whether the code handling a particular | |
10170 | situation might be duplicated or not. One day, when the code is | |
10171 | cleaned up, this guide might become redundant with the comments | |
10172 | inserted in the code, and we might want to remove it. | |
10173 | ||
21649b50 JB |
10174 | 2. ``Fixing'' an Entity, the Simple Case: |
10175 | ----------------------------------------- | |
10176 | ||
284614f0 JB |
10177 | When evaluating Ada expressions, the tricky issue is that they may |
10178 | reference entities whose type contents and size are not statically | |
10179 | known. Consider for instance a variant record: | |
10180 | ||
10181 | type Rec (Empty : Boolean := True) is record | |
10182 | case Empty is | |
10183 | when True => null; | |
10184 | when False => Value : Integer; | |
10185 | end case; | |
10186 | end record; | |
10187 | Yes : Rec := (Empty => False, Value => 1); | |
10188 | No : Rec := (empty => True); | |
10189 | ||
10190 | The size and contents of that record depends on the value of the | |
10191 | descriminant (Rec.Empty). At this point, neither the debugging | |
10192 | information nor the associated type structure in GDB are able to | |
10193 | express such dynamic types. So what the debugger does is to create | |
10194 | "fixed" versions of the type that applies to the specific object. | |
10195 | We also informally refer to this opperation as "fixing" an object, | |
10196 | which means creating its associated fixed type. | |
10197 | ||
10198 | Example: when printing the value of variable "Yes" above, its fixed | |
10199 | type would look like this: | |
10200 | ||
10201 | type Rec is record | |
10202 | Empty : Boolean; | |
10203 | Value : Integer; | |
10204 | end record; | |
10205 | ||
10206 | On the other hand, if we printed the value of "No", its fixed type | |
10207 | would become: | |
10208 | ||
10209 | type Rec is record | |
10210 | Empty : Boolean; | |
10211 | end record; | |
10212 | ||
10213 | Things become a little more complicated when trying to fix an entity | |
10214 | with a dynamic type that directly contains another dynamic type, | |
10215 | such as an array of variant records, for instance. There are | |
10216 | two possible cases: Arrays, and records. | |
10217 | ||
21649b50 JB |
10218 | 3. ``Fixing'' Arrays: |
10219 | --------------------- | |
10220 | ||
10221 | The type structure in GDB describes an array in terms of its bounds, | |
10222 | and the type of its elements. By design, all elements in the array | |
10223 | have the same type and we cannot represent an array of variant elements | |
10224 | using the current type structure in GDB. When fixing an array, | |
10225 | we cannot fix the array element, as we would potentially need one | |
10226 | fixed type per element of the array. As a result, the best we can do | |
10227 | when fixing an array is to produce an array whose bounds and size | |
10228 | are correct (allowing us to read it from memory), but without having | |
10229 | touched its element type. Fixing each element will be done later, | |
10230 | when (if) necessary. | |
10231 | ||
10232 | Arrays are a little simpler to handle than records, because the same | |
10233 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 10234 | the amount of space actually used by each element differs from element |
21649b50 | 10235 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
10236 | |
10237 | type Rec_Array is array (1 .. 2) of Rec; | |
10238 | ||
1b536f04 JB |
10239 | The actual amount of memory occupied by each element might be different |
10240 | from element to element, depending on the value of their discriminant. | |
21649b50 | 10241 | But the amount of space reserved for each element in the array remains |
1b536f04 | 10242 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
10243 | the debugging information available, from which we can then determine |
10244 | the array size (we multiply the number of elements of the array by | |
10245 | the size of each element). | |
10246 | ||
10247 | The simplest case is when we have an array of a constrained element | |
10248 | type. For instance, consider the following type declarations: | |
10249 | ||
10250 | type Bounded_String (Max_Size : Integer) is | |
10251 | Length : Integer; | |
10252 | Buffer : String (1 .. Max_Size); | |
10253 | end record; | |
10254 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
10255 | ||
10256 | In this case, the compiler describes the array as an array of | |
10257 | variable-size elements (identified by its XVS suffix) for which | |
10258 | the size can be read in the parallel XVZ variable. | |
10259 | ||
10260 | In the case of an array of an unconstrained element type, the compiler | |
10261 | wraps the array element inside a private PAD type. This type should not | |
10262 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
10263 | that we also use the adjective "aligner" in our code to designate |
10264 | these wrapper types. | |
10265 | ||
1b536f04 | 10266 | In some cases, the size allocated for each element is statically |
21649b50 JB |
10267 | known. In that case, the PAD type already has the correct size, |
10268 | and the array element should remain unfixed. | |
10269 | ||
10270 | But there are cases when this size is not statically known. | |
10271 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
10272 | |
10273 | type Dynamic is array (1 .. Five) of Integer; | |
10274 | type Wrapper (Has_Length : Boolean := False) is record | |
10275 | Data : Dynamic; | |
10276 | case Has_Length is | |
10277 | when True => Length : Integer; | |
10278 | when False => null; | |
10279 | end case; | |
10280 | end record; | |
10281 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
10282 | ||
10283 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
10284 | Data => (others => 17), | |
10285 | Length => 1)); | |
10286 | ||
10287 | ||
10288 | The debugging info would describe variable Hello as being an | |
10289 | array of a PAD type. The size of that PAD type is not statically | |
10290 | known, but can be determined using a parallel XVZ variable. | |
10291 | In that case, a copy of the PAD type with the correct size should | |
10292 | be used for the fixed array. | |
10293 | ||
21649b50 JB |
10294 | 3. ``Fixing'' record type objects: |
10295 | ---------------------------------- | |
10296 | ||
10297 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
10298 | record types. In this case, in order to compute the associated |
10299 | fixed type, we need to determine the size and offset of each of | |
10300 | its components. This, in turn, requires us to compute the fixed | |
10301 | type of each of these components. | |
10302 | ||
10303 | Consider for instance the example: | |
10304 | ||
10305 | type Bounded_String (Max_Size : Natural) is record | |
10306 | Str : String (1 .. Max_Size); | |
10307 | Length : Natural; | |
10308 | end record; | |
10309 | My_String : Bounded_String (Max_Size => 10); | |
10310 | ||
10311 | In that case, the position of field "Length" depends on the size | |
10312 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 10313 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
10314 | we need to fix the type of field Str. Therefore, fixing a variant |
10315 | record requires us to fix each of its components. | |
10316 | ||
10317 | However, if a component does not have a dynamic size, the component | |
10318 | should not be fixed. In particular, fields that use a PAD type | |
10319 | should not fixed. Here is an example where this might happen | |
10320 | (assuming type Rec above): | |
10321 | ||
10322 | type Container (Big : Boolean) is record | |
10323 | First : Rec; | |
10324 | After : Integer; | |
10325 | case Big is | |
10326 | when True => Another : Integer; | |
10327 | when False => null; | |
10328 | end case; | |
10329 | end record; | |
10330 | My_Container : Container := (Big => False, | |
10331 | First => (Empty => True), | |
10332 | After => 42); | |
10333 | ||
10334 | In that example, the compiler creates a PAD type for component First, | |
10335 | whose size is constant, and then positions the component After just | |
10336 | right after it. The offset of component After is therefore constant | |
10337 | in this case. | |
10338 | ||
10339 | The debugger computes the position of each field based on an algorithm | |
10340 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
10341 | preceding it. Let's now imagine that the user is trying to print |
10342 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
10343 | end up computing the offset of field After based on the size of the |
10344 | fixed version of field First. And since in our example First has | |
10345 | only one actual field, the size of the fixed type is actually smaller | |
10346 | than the amount of space allocated to that field, and thus we would | |
10347 | compute the wrong offset of field After. | |
10348 | ||
21649b50 JB |
10349 | To make things more complicated, we need to watch out for dynamic |
10350 | components of variant records (identified by the ___XVL suffix in | |
10351 | the component name). Even if the target type is a PAD type, the size | |
10352 | of that type might not be statically known. So the PAD type needs | |
10353 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
10354 | we might end up with the wrong size for our component. This can be | |
10355 | observed with the following type declarations: | |
284614f0 JB |
10356 | |
10357 | type Octal is new Integer range 0 .. 7; | |
10358 | type Octal_Array is array (Positive range <>) of Octal; | |
10359 | pragma Pack (Octal_Array); | |
10360 | ||
10361 | type Octal_Buffer (Size : Positive) is record | |
10362 | Buffer : Octal_Array (1 .. Size); | |
10363 | Length : Integer; | |
10364 | end record; | |
10365 | ||
10366 | In that case, Buffer is a PAD type whose size is unset and needs | |
10367 | to be computed by fixing the unwrapped type. | |
10368 | ||
21649b50 JB |
10369 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
10370 | ---------------------------------------------------------- | |
10371 | ||
10372 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
10373 | thus far, be actually fixed? |
10374 | ||
10375 | The answer is: Only when referencing that element. For instance | |
10376 | when selecting one component of a record, this specific component | |
10377 | should be fixed at that point in time. Or when printing the value | |
10378 | of a record, each component should be fixed before its value gets | |
10379 | printed. Similarly for arrays, the element of the array should be | |
10380 | fixed when printing each element of the array, or when extracting | |
10381 | one element out of that array. On the other hand, fixing should | |
10382 | not be performed on the elements when taking a slice of an array! | |
10383 | ||
10384 | Note that one of the side-effects of miscomputing the offset and | |
10385 | size of each field is that we end up also miscomputing the size | |
10386 | of the containing type. This can have adverse results when computing | |
10387 | the value of an entity. GDB fetches the value of an entity based | |
10388 | on the size of its type, and thus a wrong size causes GDB to fetch | |
10389 | the wrong amount of memory. In the case where the computed size is | |
10390 | too small, GDB fetches too little data to print the value of our | |
10391 | entiry. Results in this case as unpredicatble, as we usually read | |
10392 | past the buffer containing the data =:-o. */ | |
10393 | ||
10394 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
10395 | for the Ada language. */ | |
10396 | ||
52ce6436 | 10397 | static struct value * |
ebf56fd3 | 10398 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 10399 | int *pos, enum noside noside) |
14f9c5c9 AS |
10400 | { |
10401 | enum exp_opcode op; | |
b5385fc0 | 10402 | int tem; |
14f9c5c9 | 10403 | int pc; |
5ec18f2b | 10404 | int preeval_pos; |
14f9c5c9 AS |
10405 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; |
10406 | struct type *type; | |
52ce6436 | 10407 | int nargs, oplen; |
d2e4a39e | 10408 | struct value **argvec; |
14f9c5c9 | 10409 | |
d2e4a39e AS |
10410 | pc = *pos; |
10411 | *pos += 1; | |
14f9c5c9 AS |
10412 | op = exp->elts[pc].opcode; |
10413 | ||
d2e4a39e | 10414 | switch (op) |
14f9c5c9 AS |
10415 | { |
10416 | default: | |
10417 | *pos -= 1; | |
6e48bd2c | 10418 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
ca1f964d JG |
10419 | |
10420 | if (noside == EVAL_NORMAL) | |
10421 | arg1 = unwrap_value (arg1); | |
6e48bd2c JB |
10422 | |
10423 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
10424 | then we need to perform the conversion manually, because | |
10425 | evaluate_subexp_standard doesn't do it. This conversion is | |
10426 | necessary in Ada because the different kinds of float/fixed | |
10427 | types in Ada have different representations. | |
10428 | ||
10429 | Similarly, we need to perform the conversion from OP_LONG | |
10430 | ourselves. */ | |
10431 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
10432 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
10433 | ||
10434 | return arg1; | |
4c4b4cd2 PH |
10435 | |
10436 | case OP_STRING: | |
10437 | { | |
76a01679 | 10438 | struct value *result; |
5b4ee69b | 10439 | |
76a01679 JB |
10440 | *pos -= 1; |
10441 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10442 | /* The result type will have code OP_STRING, bashed there from | |
10443 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
10444 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
10445 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 10446 | return result; |
4c4b4cd2 | 10447 | } |
14f9c5c9 AS |
10448 | |
10449 | case UNOP_CAST: | |
10450 | (*pos) += 2; | |
10451 | type = exp->elts[pc + 1].type; | |
10452 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
10453 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10454 | goto nosideret; |
6e48bd2c | 10455 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
10456 | return arg1; |
10457 | ||
4c4b4cd2 PH |
10458 | case UNOP_QUAL: |
10459 | (*pos) += 2; | |
10460 | type = exp->elts[pc + 1].type; | |
10461 | return ada_evaluate_subexp (type, exp, pos, noside); | |
10462 | ||
14f9c5c9 AS |
10463 | case BINOP_ASSIGN: |
10464 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
10465 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
10466 | { | |
10467 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
10468 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
10469 | return arg1; | |
10470 | return ada_value_assign (arg1, arg1); | |
10471 | } | |
003f3813 JB |
10472 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
10473 | except if the lhs of our assignment is a convenience variable. | |
10474 | In the case of assigning to a convenience variable, the lhs | |
10475 | should be exactly the result of the evaluation of the rhs. */ | |
10476 | type = value_type (arg1); | |
10477 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
10478 | type = NULL; | |
10479 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 10480 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 10481 | return arg1; |
df407dfe AC |
10482 | if (ada_is_fixed_point_type (value_type (arg1))) |
10483 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
10484 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 10485 | error |
323e0a4a | 10486 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 10487 | else |
df407dfe | 10488 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 10489 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
10490 | |
10491 | case BINOP_ADD: | |
10492 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10493 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10494 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10495 | goto nosideret; |
2ac8a782 JB |
10496 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10497 | return (value_from_longest | |
10498 | (value_type (arg1), | |
10499 | value_as_long (arg1) + value_as_long (arg2))); | |
c40cc657 JB |
10500 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10501 | return (value_from_longest | |
10502 | (value_type (arg2), | |
10503 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
10504 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10505 | || ada_is_fixed_point_type (value_type (arg2))) | |
10506 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 10507 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
10508 | /* Do the addition, and cast the result to the type of the first |
10509 | argument. We cannot cast the result to a reference type, so if | |
10510 | ARG1 is a reference type, find its underlying type. */ | |
10511 | type = value_type (arg1); | |
10512 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10513 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10514 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10515 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
10516 | |
10517 | case BINOP_SUB: | |
10518 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10519 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
10520 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10521 | goto nosideret; |
2ac8a782 JB |
10522 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
10523 | return (value_from_longest | |
10524 | (value_type (arg1), | |
10525 | value_as_long (arg1) - value_as_long (arg2))); | |
c40cc657 JB |
10526 | if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR) |
10527 | return (value_from_longest | |
10528 | (value_type (arg2), | |
10529 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
10530 | if ((ada_is_fixed_point_type (value_type (arg1)) |
10531 | || ada_is_fixed_point_type (value_type (arg2))) | |
10532 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
10533 | error (_("Operands of fixed-point subtraction " |
10534 | "must have the same type")); | |
b7789565 JB |
10535 | /* Do the substraction, and cast the result to the type of the first |
10536 | argument. We cannot cast the result to a reference type, so if | |
10537 | ARG1 is a reference type, find its underlying type. */ | |
10538 | type = value_type (arg1); | |
10539 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
10540 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 10541 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 10542 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
10543 | |
10544 | case BINOP_MUL: | |
10545 | case BINOP_DIV: | |
e1578042 JB |
10546 | case BINOP_REM: |
10547 | case BINOP_MOD: | |
14f9c5c9 AS |
10548 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10549 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10550 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10551 | goto nosideret; |
e1578042 | 10552 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
10553 | { |
10554 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10555 | return value_zero (value_type (arg1), not_lval); | |
10556 | } | |
14f9c5c9 | 10557 | else |
4c4b4cd2 | 10558 | { |
a53b7a21 | 10559 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 10560 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 10561 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 10562 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 10563 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 10564 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
10565 | return ada_value_binop (arg1, arg2, op); |
10566 | } | |
10567 | ||
4c4b4cd2 PH |
10568 | case BINOP_EQUAL: |
10569 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 10570 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 10571 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 10572 | if (noside == EVAL_SKIP) |
76a01679 | 10573 | goto nosideret; |
4c4b4cd2 | 10574 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10575 | tem = 0; |
4c4b4cd2 | 10576 | else |
f44316fa UW |
10577 | { |
10578 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
10579 | tem = ada_value_equal (arg1, arg2); | |
10580 | } | |
4c4b4cd2 | 10581 | if (op == BINOP_NOTEQUAL) |
76a01679 | 10582 | tem = !tem; |
fbb06eb1 UW |
10583 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10584 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
10585 | |
10586 | case UNOP_NEG: | |
10587 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10588 | if (noside == EVAL_SKIP) | |
10589 | goto nosideret; | |
df407dfe AC |
10590 | else if (ada_is_fixed_point_type (value_type (arg1))) |
10591 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 10592 | else |
f44316fa UW |
10593 | { |
10594 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
10595 | return value_neg (arg1); | |
10596 | } | |
4c4b4cd2 | 10597 | |
2330c6c6 JB |
10598 | case BINOP_LOGICAL_AND: |
10599 | case BINOP_LOGICAL_OR: | |
10600 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
10601 | { |
10602 | struct value *val; | |
10603 | ||
10604 | *pos -= 1; | |
10605 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
10606 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10607 | return value_cast (type, val); | |
000d5124 | 10608 | } |
2330c6c6 JB |
10609 | |
10610 | case BINOP_BITWISE_AND: | |
10611 | case BINOP_BITWISE_IOR: | |
10612 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
10613 | { |
10614 | struct value *val; | |
10615 | ||
10616 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
10617 | *pos = pc; | |
10618 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10619 | ||
10620 | return value_cast (value_type (arg1), val); | |
10621 | } | |
2330c6c6 | 10622 | |
14f9c5c9 AS |
10623 | case OP_VAR_VALUE: |
10624 | *pos -= 1; | |
6799def4 | 10625 | |
14f9c5c9 | 10626 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
10627 | { |
10628 | *pos += 4; | |
10629 | goto nosideret; | |
10630 | } | |
da5c522f JB |
10631 | |
10632 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
10633 | /* Only encountered when an unresolved symbol occurs in a |
10634 | context other than a function call, in which case, it is | |
52ce6436 | 10635 | invalid. */ |
323e0a4a | 10636 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 10637 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
da5c522f JB |
10638 | |
10639 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
4c4b4cd2 | 10640 | { |
0c1f74cf | 10641 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
10642 | /* Check to see if this is a tagged type. We also need to handle |
10643 | the case where the type is a reference to a tagged type, but | |
10644 | we have to be careful to exclude pointers to tagged types. | |
10645 | The latter should be shown as usual (as a pointer), whereas | |
10646 | a reference should mostly be transparent to the user. */ | |
10647 | if (ada_is_tagged_type (type, 0) | |
023db19c | 10648 | || (TYPE_CODE (type) == TYPE_CODE_REF |
31dbc1c5 | 10649 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) |
0d72a7c3 JB |
10650 | { |
10651 | /* Tagged types are a little special in the fact that the real | |
10652 | type is dynamic and can only be determined by inspecting the | |
10653 | object's tag. This means that we need to get the object's | |
10654 | value first (EVAL_NORMAL) and then extract the actual object | |
10655 | type from its tag. | |
10656 | ||
10657 | Note that we cannot skip the final step where we extract | |
10658 | the object type from its tag, because the EVAL_NORMAL phase | |
10659 | results in dynamic components being resolved into fixed ones. | |
10660 | This can cause problems when trying to print the type | |
10661 | description of tagged types whose parent has a dynamic size: | |
10662 | We use the type name of the "_parent" component in order | |
10663 | to print the name of the ancestor type in the type description. | |
10664 | If that component had a dynamic size, the resolution into | |
10665 | a fixed type would result in the loss of that type name, | |
10666 | thus preventing us from printing the name of the ancestor | |
10667 | type in the type description. */ | |
10668 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); | |
10669 | ||
10670 | if (TYPE_CODE (type) != TYPE_CODE_REF) | |
10671 | { | |
10672 | struct type *actual_type; | |
10673 | ||
10674 | actual_type = type_from_tag (ada_value_tag (arg1)); | |
10675 | if (actual_type == NULL) | |
10676 | /* If, for some reason, we were unable to determine | |
10677 | the actual type from the tag, then use the static | |
10678 | approximation that we just computed as a fallback. | |
10679 | This can happen if the debugging information is | |
10680 | incomplete, for instance. */ | |
10681 | actual_type = type; | |
10682 | return value_zero (actual_type, not_lval); | |
10683 | } | |
10684 | else | |
10685 | { | |
10686 | /* In the case of a ref, ada_coerce_ref takes care | |
10687 | of determining the actual type. But the evaluation | |
10688 | should return a ref as it should be valid to ask | |
10689 | for its address; so rebuild a ref after coerce. */ | |
10690 | arg1 = ada_coerce_ref (arg1); | |
a65cfae5 | 10691 | return value_ref (arg1, TYPE_CODE_REF); |
0d72a7c3 JB |
10692 | } |
10693 | } | |
0c1f74cf | 10694 | |
84754697 JB |
10695 | /* Records and unions for which GNAT encodings have been |
10696 | generated need to be statically fixed as well. | |
10697 | Otherwise, non-static fixing produces a type where | |
10698 | all dynamic properties are removed, which prevents "ptype" | |
10699 | from being able to completely describe the type. | |
10700 | For instance, a case statement in a variant record would be | |
10701 | replaced by the relevant components based on the actual | |
10702 | value of the discriminants. */ | |
10703 | if ((TYPE_CODE (type) == TYPE_CODE_STRUCT | |
10704 | && dynamic_template_type (type) != NULL) | |
10705 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
10706 | && ada_find_parallel_type (type, "___XVU") != NULL)) | |
10707 | { | |
10708 | *pos += 4; | |
10709 | return value_zero (to_static_fixed_type (type), not_lval); | |
10710 | } | |
4c4b4cd2 | 10711 | } |
da5c522f JB |
10712 | |
10713 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
10714 | return ada_to_fixed_value (arg1); | |
4c4b4cd2 PH |
10715 | |
10716 | case OP_FUNCALL: | |
10717 | (*pos) += 2; | |
10718 | ||
10719 | /* Allocate arg vector, including space for the function to be | |
10720 | called in argvec[0] and a terminating NULL. */ | |
10721 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
8d749320 | 10722 | argvec = XALLOCAVEC (struct value *, nargs + 2); |
4c4b4cd2 PH |
10723 | |
10724 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 10725 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 10726 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
10727 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
10728 | else | |
10729 | { | |
10730 | for (tem = 0; tem <= nargs; tem += 1) | |
10731 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10732 | argvec[tem] = 0; | |
10733 | ||
10734 | if (noside == EVAL_SKIP) | |
10735 | goto nosideret; | |
10736 | } | |
10737 | ||
ad82864c JB |
10738 | if (ada_is_constrained_packed_array_type |
10739 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 10740 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
10741 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
10742 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
10743 | /* This is a packed array that has already been fixed, and | |
10744 | therefore already coerced to a simple array. Nothing further | |
10745 | to do. */ | |
10746 | ; | |
e6c2c623 PMR |
10747 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF) |
10748 | { | |
10749 | /* Make sure we dereference references so that all the code below | |
10750 | feels like it's really handling the referenced value. Wrapping | |
10751 | types (for alignment) may be there, so make sure we strip them as | |
10752 | well. */ | |
10753 | argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0])); | |
10754 | } | |
10755 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
10756 | && VALUE_LVAL (argvec[0]) == lval_memory) | |
10757 | argvec[0] = value_addr (argvec[0]); | |
4c4b4cd2 | 10758 | |
df407dfe | 10759 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
10760 | |
10761 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
10762 | them. So, if this is an array typedef (encoding use for array |
10763 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
10764 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
10765 | type = ada_typedef_target_type (type); | |
10766 | ||
4c4b4cd2 PH |
10767 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
10768 | { | |
61ee279c | 10769 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
10770 | { |
10771 | case TYPE_CODE_FUNC: | |
61ee279c | 10772 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10773 | break; |
10774 | case TYPE_CODE_ARRAY: | |
10775 | break; | |
10776 | case TYPE_CODE_STRUCT: | |
10777 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
10778 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 10779 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
10780 | break; |
10781 | default: | |
323e0a4a | 10782 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 10783 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
10784 | break; |
10785 | } | |
10786 | } | |
10787 | ||
10788 | switch (TYPE_CODE (type)) | |
10789 | { | |
10790 | case TYPE_CODE_FUNC: | |
10791 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
c8ea1972 | 10792 | { |
7022349d PA |
10793 | if (TYPE_TARGET_TYPE (type) == NULL) |
10794 | error_call_unknown_return_type (NULL); | |
10795 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
c8ea1972 | 10796 | } |
7022349d | 10797 | return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1); |
c8ea1972 PH |
10798 | case TYPE_CODE_INTERNAL_FUNCTION: |
10799 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10800 | /* We don't know anything about what the internal | |
10801 | function might return, but we have to return | |
10802 | something. */ | |
10803 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10804 | not_lval); | |
10805 | else | |
10806 | return call_internal_function (exp->gdbarch, exp->language_defn, | |
10807 | argvec[0], nargs, argvec + 1); | |
10808 | ||
4c4b4cd2 PH |
10809 | case TYPE_CODE_STRUCT: |
10810 | { | |
10811 | int arity; | |
10812 | ||
4c4b4cd2 PH |
10813 | arity = ada_array_arity (type); |
10814 | type = ada_array_element_type (type, nargs); | |
10815 | if (type == NULL) | |
323e0a4a | 10816 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 10817 | if (arity != nargs) |
323e0a4a | 10818 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 10819 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 10820 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10821 | return |
10822 | unwrap_value (ada_value_subscript | |
10823 | (argvec[0], nargs, argvec + 1)); | |
10824 | } | |
10825 | case TYPE_CODE_ARRAY: | |
10826 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10827 | { | |
10828 | type = ada_array_element_type (type, nargs); | |
10829 | if (type == NULL) | |
323e0a4a | 10830 | error (_("element type of array unknown")); |
4c4b4cd2 | 10831 | else |
0a07e705 | 10832 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10833 | } |
10834 | return | |
10835 | unwrap_value (ada_value_subscript | |
10836 | (ada_coerce_to_simple_array (argvec[0]), | |
10837 | nargs, argvec + 1)); | |
10838 | case TYPE_CODE_PTR: /* Pointer to array */ | |
4c4b4cd2 PH |
10839 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
10840 | { | |
deede10c | 10841 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); |
4c4b4cd2 PH |
10842 | type = ada_array_element_type (type, nargs); |
10843 | if (type == NULL) | |
323e0a4a | 10844 | error (_("element type of array unknown")); |
4c4b4cd2 | 10845 | else |
0a07e705 | 10846 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
10847 | } |
10848 | return | |
deede10c JB |
10849 | unwrap_value (ada_value_ptr_subscript (argvec[0], |
10850 | nargs, argvec + 1)); | |
4c4b4cd2 PH |
10851 | |
10852 | default: | |
e1d5a0d2 PH |
10853 | error (_("Attempt to index or call something other than an " |
10854 | "array or function")); | |
4c4b4cd2 PH |
10855 | } |
10856 | ||
10857 | case TERNOP_SLICE: | |
10858 | { | |
10859 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10860 | struct value *low_bound_val = | |
10861 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
10862 | struct value *high_bound_val = |
10863 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10864 | LONGEST low_bound; | |
10865 | LONGEST high_bound; | |
5b4ee69b | 10866 | |
994b9211 AC |
10867 | low_bound_val = coerce_ref (low_bound_val); |
10868 | high_bound_val = coerce_ref (high_bound_val); | |
aa715135 JG |
10869 | low_bound = value_as_long (low_bound_val); |
10870 | high_bound = value_as_long (high_bound_val); | |
963a6417 | 10871 | |
4c4b4cd2 PH |
10872 | if (noside == EVAL_SKIP) |
10873 | goto nosideret; | |
10874 | ||
4c4b4cd2 PH |
10875 | /* If this is a reference to an aligner type, then remove all |
10876 | the aligners. */ | |
df407dfe AC |
10877 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10878 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
10879 | TYPE_TARGET_TYPE (value_type (array)) = | |
10880 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 10881 | |
ad82864c | 10882 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 10883 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
10884 | |
10885 | /* If this is a reference to an array or an array lvalue, | |
10886 | convert to a pointer. */ | |
df407dfe AC |
10887 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
10888 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
10889 | && VALUE_LVAL (array) == lval_memory)) |
10890 | array = value_addr (array); | |
10891 | ||
1265e4aa | 10892 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 10893 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 10894 | (value_type (array)))) |
0b5d8877 | 10895 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
10896 | |
10897 | array = ada_coerce_to_simple_array_ptr (array); | |
10898 | ||
714e53ab PH |
10899 | /* If we have more than one level of pointer indirection, |
10900 | dereference the value until we get only one level. */ | |
df407dfe AC |
10901 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
10902 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
10903 | == TYPE_CODE_PTR)) |
10904 | array = value_ind (array); | |
10905 | ||
10906 | /* Make sure we really do have an array type before going further, | |
10907 | to avoid a SEGV when trying to get the index type or the target | |
10908 | type later down the road if the debug info generated by | |
10909 | the compiler is incorrect or incomplete. */ | |
df407dfe | 10910 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 10911 | error (_("cannot take slice of non-array")); |
714e53ab | 10912 | |
828292f2 JB |
10913 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
10914 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 10915 | { |
828292f2 JB |
10916 | struct type *type0 = ada_check_typedef (value_type (array)); |
10917 | ||
0b5d8877 | 10918 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 10919 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
10920 | else |
10921 | { | |
10922 | struct type *arr_type0 = | |
828292f2 | 10923 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 10924 | |
f5938064 JG |
10925 | return ada_value_slice_from_ptr (array, arr_type0, |
10926 | longest_to_int (low_bound), | |
10927 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
10928 | } |
10929 | } | |
10930 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
10931 | return array; | |
10932 | else if (high_bound < low_bound) | |
df407dfe | 10933 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 10934 | else |
529cad9c PH |
10935 | return ada_value_slice (array, longest_to_int (low_bound), |
10936 | longest_to_int (high_bound)); | |
4c4b4cd2 | 10937 | } |
14f9c5c9 | 10938 | |
4c4b4cd2 PH |
10939 | case UNOP_IN_RANGE: |
10940 | (*pos) += 2; | |
10941 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 10942 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 10943 | |
14f9c5c9 | 10944 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 10945 | goto nosideret; |
14f9c5c9 | 10946 | |
4c4b4cd2 PH |
10947 | switch (TYPE_CODE (type)) |
10948 | { | |
10949 | default: | |
e1d5a0d2 PH |
10950 | lim_warning (_("Membership test incompletely implemented; " |
10951 | "always returns true")); | |
fbb06eb1 UW |
10952 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10953 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
10954 | |
10955 | case TYPE_CODE_RANGE: | |
030b4912 UW |
10956 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
10957 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
10958 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10959 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
10960 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
10961 | return | |
10962 | value_from_longest (type, | |
4c4b4cd2 PH |
10963 | (value_less (arg1, arg3) |
10964 | || value_equal (arg1, arg3)) | |
10965 | && (value_less (arg2, arg1) | |
10966 | || value_equal (arg2, arg1))); | |
10967 | } | |
10968 | ||
10969 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 10970 | (*pos) += 2; |
4c4b4cd2 PH |
10971 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
10972 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 10973 | |
4c4b4cd2 PH |
10974 | if (noside == EVAL_SKIP) |
10975 | goto nosideret; | |
14f9c5c9 | 10976 | |
4c4b4cd2 | 10977 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
10978 | { |
10979 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
10980 | return value_zero (type, not_lval); | |
10981 | } | |
14f9c5c9 | 10982 | |
4c4b4cd2 | 10983 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 10984 | |
1eea4ebd UW |
10985 | type = ada_index_type (value_type (arg2), tem, "range"); |
10986 | if (!type) | |
10987 | type = value_type (arg1); | |
14f9c5c9 | 10988 | |
1eea4ebd UW |
10989 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
10990 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 10991 | |
f44316fa UW |
10992 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
10993 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 10994 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 10995 | return |
fbb06eb1 | 10996 | value_from_longest (type, |
4c4b4cd2 PH |
10997 | (value_less (arg1, arg3) |
10998 | || value_equal (arg1, arg3)) | |
10999 | && (value_less (arg2, arg1) | |
11000 | || value_equal (arg2, arg1))); | |
11001 | ||
11002 | case TERNOP_IN_RANGE: | |
11003 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11004 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11005 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11006 | ||
11007 | if (noside == EVAL_SKIP) | |
11008 | goto nosideret; | |
11009 | ||
f44316fa UW |
11010 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
11011 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 11012 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 11013 | return |
fbb06eb1 | 11014 | value_from_longest (type, |
4c4b4cd2 PH |
11015 | (value_less (arg1, arg3) |
11016 | || value_equal (arg1, arg3)) | |
11017 | && (value_less (arg2, arg1) | |
11018 | || value_equal (arg2, arg1))); | |
11019 | ||
11020 | case OP_ATR_FIRST: | |
11021 | case OP_ATR_LAST: | |
11022 | case OP_ATR_LENGTH: | |
11023 | { | |
76a01679 | 11024 | struct type *type_arg; |
5b4ee69b | 11025 | |
76a01679 JB |
11026 | if (exp->elts[*pos].opcode == OP_TYPE) |
11027 | { | |
11028 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
11029 | arg1 = NULL; | |
5bc23cb3 | 11030 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
11031 | } |
11032 | else | |
11033 | { | |
11034 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11035 | type_arg = NULL; | |
11036 | } | |
11037 | ||
11038 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 11039 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
11040 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
11041 | *pos += 4; | |
11042 | ||
11043 | if (noside == EVAL_SKIP) | |
11044 | goto nosideret; | |
11045 | ||
11046 | if (type_arg == NULL) | |
11047 | { | |
11048 | arg1 = ada_coerce_ref (arg1); | |
11049 | ||
ad82864c | 11050 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
11051 | arg1 = ada_coerce_to_simple_array (arg1); |
11052 | ||
aa4fb036 | 11053 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11054 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11055 | else |
11056 | { | |
11057 | type = ada_index_type (value_type (arg1), tem, | |
11058 | ada_attribute_name (op)); | |
11059 | if (type == NULL) | |
11060 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11061 | } | |
76a01679 JB |
11062 | |
11063 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 11064 | return allocate_value (type); |
76a01679 JB |
11065 | |
11066 | switch (op) | |
11067 | { | |
11068 | default: /* Should never happen. */ | |
323e0a4a | 11069 | error (_("unexpected attribute encountered")); |
76a01679 | 11070 | case OP_ATR_FIRST: |
1eea4ebd UW |
11071 | return value_from_longest |
11072 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 11073 | case OP_ATR_LAST: |
1eea4ebd UW |
11074 | return value_from_longest |
11075 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 11076 | case OP_ATR_LENGTH: |
1eea4ebd UW |
11077 | return value_from_longest |
11078 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
11079 | } |
11080 | } | |
11081 | else if (discrete_type_p (type_arg)) | |
11082 | { | |
11083 | struct type *range_type; | |
0d5cff50 | 11084 | const char *name = ada_type_name (type_arg); |
5b4ee69b | 11085 | |
76a01679 JB |
11086 | range_type = NULL; |
11087 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 11088 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
11089 | if (range_type == NULL) |
11090 | range_type = type_arg; | |
11091 | switch (op) | |
11092 | { | |
11093 | default: | |
323e0a4a | 11094 | error (_("unexpected attribute encountered")); |
76a01679 | 11095 | case OP_ATR_FIRST: |
690cc4eb | 11096 | return value_from_longest |
43bbcdc2 | 11097 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 11098 | case OP_ATR_LAST: |
690cc4eb | 11099 | return value_from_longest |
43bbcdc2 | 11100 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 11101 | case OP_ATR_LENGTH: |
323e0a4a | 11102 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
11103 | } |
11104 | } | |
11105 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 11106 | error (_("unimplemented type attribute")); |
76a01679 JB |
11107 | else |
11108 | { | |
11109 | LONGEST low, high; | |
11110 | ||
ad82864c JB |
11111 | if (ada_is_constrained_packed_array_type (type_arg)) |
11112 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 11113 | |
aa4fb036 | 11114 | if (op == OP_ATR_LENGTH) |
1eea4ebd | 11115 | type = builtin_type (exp->gdbarch)->builtin_int; |
aa4fb036 JB |
11116 | else |
11117 | { | |
11118 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); | |
11119 | if (type == NULL) | |
11120 | type = builtin_type (exp->gdbarch)->builtin_int; | |
11121 | } | |
1eea4ebd | 11122 | |
76a01679 JB |
11123 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
11124 | return allocate_value (type); | |
11125 | ||
11126 | switch (op) | |
11127 | { | |
11128 | default: | |
323e0a4a | 11129 | error (_("unexpected attribute encountered")); |
76a01679 | 11130 | case OP_ATR_FIRST: |
1eea4ebd | 11131 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
11132 | return value_from_longest (type, low); |
11133 | case OP_ATR_LAST: | |
1eea4ebd | 11134 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
11135 | return value_from_longest (type, high); |
11136 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
11137 | low = ada_array_bound_from_type (type_arg, tem, 0); |
11138 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
11139 | return value_from_longest (type, high - low + 1); |
11140 | } | |
11141 | } | |
14f9c5c9 AS |
11142 | } |
11143 | ||
4c4b4cd2 PH |
11144 | case OP_ATR_TAG: |
11145 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11146 | if (noside == EVAL_SKIP) | |
76a01679 | 11147 | goto nosideret; |
4c4b4cd2 PH |
11148 | |
11149 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 11150 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
11151 | |
11152 | return ada_value_tag (arg1); | |
11153 | ||
11154 | case OP_ATR_MIN: | |
11155 | case OP_ATR_MAX: | |
11156 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11157 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11158 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11159 | if (noside == EVAL_SKIP) | |
76a01679 | 11160 | goto nosideret; |
d2e4a39e | 11161 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 11162 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 11163 | else |
f44316fa UW |
11164 | { |
11165 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11166 | return value_binop (arg1, arg2, | |
11167 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
11168 | } | |
14f9c5c9 | 11169 | |
4c4b4cd2 PH |
11170 | case OP_ATR_MODULUS: |
11171 | { | |
31dedfee | 11172 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 11173 | |
5b4ee69b | 11174 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
11175 | if (noside == EVAL_SKIP) |
11176 | goto nosideret; | |
4c4b4cd2 | 11177 | |
76a01679 | 11178 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 11179 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 11180 | |
76a01679 JB |
11181 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
11182 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
11183 | } |
11184 | ||
11185 | ||
11186 | case OP_ATR_POS: | |
11187 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
11188 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11189 | if (noside == EVAL_SKIP) | |
76a01679 | 11190 | goto nosideret; |
3cb382c9 UW |
11191 | type = builtin_type (exp->gdbarch)->builtin_int; |
11192 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
11193 | return value_zero (type, not_lval); | |
14f9c5c9 | 11194 | else |
3cb382c9 | 11195 | return value_pos_atr (type, arg1); |
14f9c5c9 | 11196 | |
4c4b4cd2 PH |
11197 | case OP_ATR_SIZE: |
11198 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
11199 | type = value_type (arg1); |
11200 | ||
11201 | /* If the argument is a reference, then dereference its type, since | |
11202 | the user is really asking for the size of the actual object, | |
11203 | not the size of the pointer. */ | |
11204 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
11205 | type = TYPE_TARGET_TYPE (type); | |
11206 | ||
4c4b4cd2 | 11207 | if (noside == EVAL_SKIP) |
76a01679 | 11208 | goto nosideret; |
4c4b4cd2 | 11209 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 11210 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 11211 | else |
22601c15 | 11212 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 11213 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
11214 | |
11215 | case OP_ATR_VAL: | |
11216 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 11217 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 11218 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 11219 | if (noside == EVAL_SKIP) |
76a01679 | 11220 | goto nosideret; |
4c4b4cd2 | 11221 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11222 | return value_zero (type, not_lval); |
4c4b4cd2 | 11223 | else |
76a01679 | 11224 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
11225 | |
11226 | case BINOP_EXP: | |
11227 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11228 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11229 | if (noside == EVAL_SKIP) | |
11230 | goto nosideret; | |
11231 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 11232 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 11233 | else |
f44316fa UW |
11234 | { |
11235 | /* For integer exponentiation operations, | |
11236 | only promote the first argument. */ | |
11237 | if (is_integral_type (value_type (arg2))) | |
11238 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
11239 | else | |
11240 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
11241 | ||
11242 | return value_binop (arg1, arg2, op); | |
11243 | } | |
4c4b4cd2 PH |
11244 | |
11245 | case UNOP_PLUS: | |
11246 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11247 | if (noside == EVAL_SKIP) | |
11248 | goto nosideret; | |
11249 | else | |
11250 | return arg1; | |
11251 | ||
11252 | case UNOP_ABS: | |
11253 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
11254 | if (noside == EVAL_SKIP) | |
11255 | goto nosideret; | |
f44316fa | 11256 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 11257 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 11258 | return value_neg (arg1); |
14f9c5c9 | 11259 | else |
4c4b4cd2 | 11260 | return arg1; |
14f9c5c9 AS |
11261 | |
11262 | case UNOP_IND: | |
5ec18f2b | 11263 | preeval_pos = *pos; |
6b0d7253 | 11264 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 11265 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 11266 | goto nosideret; |
df407dfe | 11267 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 11268 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
11269 | { |
11270 | if (ada_is_array_descriptor_type (type)) | |
11271 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11272 | { | |
11273 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 11274 | |
4c4b4cd2 | 11275 | if (arrType == NULL) |
323e0a4a | 11276 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 11277 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
11278 | } |
11279 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
11280 | || TYPE_CODE (type) == TYPE_CODE_REF | |
11281 | /* In C you can dereference an array to get the 1st elt. */ | |
11282 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab | 11283 | { |
5ec18f2b JG |
11284 | /* As mentioned in the OP_VAR_VALUE case, tagged types can |
11285 | only be determined by inspecting the object's tag. | |
11286 | This means that we need to evaluate completely the | |
11287 | expression in order to get its type. */ | |
11288 | ||
023db19c JB |
11289 | if ((TYPE_CODE (type) == TYPE_CODE_REF |
11290 | || TYPE_CODE (type) == TYPE_CODE_PTR) | |
5ec18f2b JG |
11291 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)) |
11292 | { | |
11293 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11294 | EVAL_NORMAL); | |
11295 | type = value_type (ada_value_ind (arg1)); | |
11296 | } | |
11297 | else | |
11298 | { | |
11299 | type = to_static_fixed_type | |
11300 | (ada_aligned_type | |
11301 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
11302 | } | |
c1b5a1a6 | 11303 | ada_ensure_varsize_limit (type); |
714e53ab PH |
11304 | return value_zero (type, lval_memory); |
11305 | } | |
4c4b4cd2 | 11306 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
11307 | { |
11308 | /* GDB allows dereferencing an int. */ | |
11309 | if (expect_type == NULL) | |
11310 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
11311 | lval_memory); | |
11312 | else | |
11313 | { | |
11314 | expect_type = | |
11315 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
11316 | return value_zero (expect_type, lval_memory); | |
11317 | } | |
11318 | } | |
4c4b4cd2 | 11319 | else |
323e0a4a | 11320 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 11321 | } |
0963b4bd | 11322 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 11323 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 11324 | |
96967637 JB |
11325 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
11326 | /* GDB allows dereferencing an int. If we were given | |
11327 | the expect_type, then use that as the target type. | |
11328 | Otherwise, assume that the target type is an int. */ | |
11329 | { | |
11330 | if (expect_type != NULL) | |
11331 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
11332 | arg1)); | |
11333 | else | |
11334 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
11335 | (CORE_ADDR) value_as_address (arg1)); | |
11336 | } | |
6b0d7253 | 11337 | |
4c4b4cd2 PH |
11338 | if (ada_is_array_descriptor_type (type)) |
11339 | /* GDB allows dereferencing GNAT array descriptors. */ | |
11340 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 11341 | else |
4c4b4cd2 | 11342 | return ada_value_ind (arg1); |
14f9c5c9 AS |
11343 | |
11344 | case STRUCTOP_STRUCT: | |
11345 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
11346 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
5ec18f2b | 11347 | preeval_pos = *pos; |
14f9c5c9 AS |
11348 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
11349 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11350 | goto nosideret; |
14f9c5c9 | 11351 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 11352 | { |
df407dfe | 11353 | struct type *type1 = value_type (arg1); |
5b4ee69b | 11354 | |
76a01679 JB |
11355 | if (ada_is_tagged_type (type1, 1)) |
11356 | { | |
11357 | type = ada_lookup_struct_elt_type (type1, | |
11358 | &exp->elts[pc + 2].string, | |
988f6b3d | 11359 | 1, 1); |
5ec18f2b JG |
11360 | |
11361 | /* If the field is not found, check if it exists in the | |
11362 | extension of this object's type. This means that we | |
11363 | need to evaluate completely the expression. */ | |
11364 | ||
76a01679 | 11365 | if (type == NULL) |
5ec18f2b JG |
11366 | { |
11367 | arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos, | |
11368 | EVAL_NORMAL); | |
11369 | arg1 = ada_value_struct_elt (arg1, | |
11370 | &exp->elts[pc + 2].string, | |
11371 | 0); | |
11372 | arg1 = unwrap_value (arg1); | |
11373 | type = value_type (ada_to_fixed_value (arg1)); | |
11374 | } | |
76a01679 JB |
11375 | } |
11376 | else | |
11377 | type = | |
11378 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
988f6b3d | 11379 | 0); |
76a01679 JB |
11380 | |
11381 | return value_zero (ada_aligned_type (type), lval_memory); | |
11382 | } | |
14f9c5c9 | 11383 | else |
a579cd9a MW |
11384 | { |
11385 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); | |
11386 | arg1 = unwrap_value (arg1); | |
11387 | return ada_to_fixed_value (arg1); | |
11388 | } | |
284614f0 | 11389 | |
14f9c5c9 | 11390 | case OP_TYPE: |
4c4b4cd2 PH |
11391 | /* The value is not supposed to be used. This is here to make it |
11392 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
11393 | (*pos) += 2; |
11394 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 11395 | goto nosideret; |
14f9c5c9 | 11396 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 11397 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 11398 | else |
323e0a4a | 11399 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
11400 | |
11401 | case OP_AGGREGATE: | |
11402 | case OP_CHOICES: | |
11403 | case OP_OTHERS: | |
11404 | case OP_DISCRETE_RANGE: | |
11405 | case OP_POSITIONAL: | |
11406 | case OP_NAME: | |
11407 | if (noside == EVAL_NORMAL) | |
11408 | switch (op) | |
11409 | { | |
11410 | case OP_NAME: | |
11411 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 11412 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
11413 | case OP_AGGREGATE: |
11414 | error (_("Aggregates only allowed on the right of an assignment")); | |
11415 | default: | |
0963b4bd MS |
11416 | internal_error (__FILE__, __LINE__, |
11417 | _("aggregate apparently mangled")); | |
52ce6436 PH |
11418 | } |
11419 | ||
11420 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11421 | *pos += oplen - 1; | |
11422 | for (tem = 0; tem < nargs; tem += 1) | |
11423 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
11424 | goto nosideret; | |
14f9c5c9 AS |
11425 | } |
11426 | ||
11427 | nosideret: | |
22601c15 | 11428 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 11429 | } |
14f9c5c9 | 11430 | \f |
d2e4a39e | 11431 | |
4c4b4cd2 | 11432 | /* Fixed point */ |
14f9c5c9 AS |
11433 | |
11434 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
11435 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 11436 | Otherwise, return NULL. */ |
14f9c5c9 | 11437 | |
d2e4a39e | 11438 | static const char * |
ebf56fd3 | 11439 | fixed_type_info (struct type *type) |
14f9c5c9 | 11440 | { |
d2e4a39e | 11441 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
11442 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
11443 | ||
d2e4a39e AS |
11444 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
11445 | { | |
14f9c5c9 | 11446 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 11447 | |
14f9c5c9 | 11448 | if (tail == NULL) |
4c4b4cd2 | 11449 | return NULL; |
d2e4a39e | 11450 | else |
4c4b4cd2 | 11451 | return tail + 5; |
14f9c5c9 AS |
11452 | } |
11453 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
11454 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
11455 | else | |
11456 | return NULL; | |
11457 | } | |
11458 | ||
4c4b4cd2 | 11459 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
11460 | |
11461 | int | |
ebf56fd3 | 11462 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
11463 | { |
11464 | return fixed_type_info (type) != NULL; | |
11465 | } | |
11466 | ||
4c4b4cd2 PH |
11467 | /* Return non-zero iff TYPE represents a System.Address type. */ |
11468 | ||
11469 | int | |
11470 | ada_is_system_address_type (struct type *type) | |
11471 | { | |
11472 | return (TYPE_NAME (type) | |
11473 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
11474 | } | |
11475 | ||
14f9c5c9 AS |
11476 | /* Assuming that TYPE is the representation of an Ada fixed-point |
11477 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 11478 | delta cannot be determined. */ |
14f9c5c9 AS |
11479 | |
11480 | DOUBLEST | |
ebf56fd3 | 11481 | ada_delta (struct type *type) |
14f9c5c9 AS |
11482 | { |
11483 | const char *encoding = fixed_type_info (type); | |
facc390f | 11484 | DOUBLEST num, den; |
14f9c5c9 | 11485 | |
facc390f JB |
11486 | /* Strictly speaking, num and den are encoded as integer. However, |
11487 | they may not fit into a long, and they will have to be converted | |
11488 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11489 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11490 | &num, &den) < 2) | |
14f9c5c9 | 11491 | return -1.0; |
d2e4a39e | 11492 | else |
facc390f | 11493 | return num / den; |
14f9c5c9 AS |
11494 | } |
11495 | ||
11496 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 11497 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
11498 | |
11499 | static DOUBLEST | |
ebf56fd3 | 11500 | scaling_factor (struct type *type) |
14f9c5c9 AS |
11501 | { |
11502 | const char *encoding = fixed_type_info (type); | |
facc390f | 11503 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 11504 | int n; |
d2e4a39e | 11505 | |
facc390f JB |
11506 | /* Strictly speaking, num's and den's are encoded as integer. However, |
11507 | they may not fit into a long, and they will have to be converted | |
11508 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
11509 | n = sscanf (encoding, | |
11510 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
11511 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
11512 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
11513 | |
11514 | if (n < 2) | |
11515 | return 1.0; | |
11516 | else if (n == 4) | |
facc390f | 11517 | return num1 / den1; |
d2e4a39e | 11518 | else |
facc390f | 11519 | return num0 / den0; |
14f9c5c9 AS |
11520 | } |
11521 | ||
11522 | ||
11523 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 11524 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
11525 | |
11526 | DOUBLEST | |
ebf56fd3 | 11527 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 11528 | { |
d2e4a39e | 11529 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
11530 | } |
11531 | ||
4c4b4cd2 PH |
11532 | /* The representation of a fixed-point value of type TYPE |
11533 | corresponding to the value X. */ | |
14f9c5c9 AS |
11534 | |
11535 | LONGEST | |
ebf56fd3 | 11536 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
11537 | { |
11538 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
11539 | } | |
11540 | ||
14f9c5c9 | 11541 | \f |
d2e4a39e | 11542 | |
4c4b4cd2 | 11543 | /* Range types */ |
14f9c5c9 AS |
11544 | |
11545 | /* Scan STR beginning at position K for a discriminant name, and | |
11546 | return the value of that discriminant field of DVAL in *PX. If | |
11547 | PNEW_K is not null, put the position of the character beyond the | |
11548 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 11549 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
11550 | |
11551 | static int | |
108d56a4 | 11552 | scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 11553 | int *pnew_k) |
14f9c5c9 AS |
11554 | { |
11555 | static char *bound_buffer = NULL; | |
11556 | static size_t bound_buffer_len = 0; | |
5da1a4d3 | 11557 | const char *pstart, *pend, *bound; |
d2e4a39e | 11558 | struct value *bound_val; |
14f9c5c9 AS |
11559 | |
11560 | if (dval == NULL || str == NULL || str[k] == '\0') | |
11561 | return 0; | |
11562 | ||
5da1a4d3 SM |
11563 | pstart = str + k; |
11564 | pend = strstr (pstart, "__"); | |
14f9c5c9 AS |
11565 | if (pend == NULL) |
11566 | { | |
5da1a4d3 | 11567 | bound = pstart; |
14f9c5c9 AS |
11568 | k += strlen (bound); |
11569 | } | |
d2e4a39e | 11570 | else |
14f9c5c9 | 11571 | { |
5da1a4d3 SM |
11572 | int len = pend - pstart; |
11573 | ||
11574 | /* Strip __ and beyond. */ | |
11575 | GROW_VECT (bound_buffer, bound_buffer_len, len + 1); | |
11576 | strncpy (bound_buffer, pstart, len); | |
11577 | bound_buffer[len] = '\0'; | |
11578 | ||
14f9c5c9 | 11579 | bound = bound_buffer; |
d2e4a39e | 11580 | k = pend - str; |
14f9c5c9 | 11581 | } |
d2e4a39e | 11582 | |
df407dfe | 11583 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
11584 | if (bound_val == NULL) |
11585 | return 0; | |
11586 | ||
11587 | *px = value_as_long (bound_val); | |
11588 | if (pnew_k != NULL) | |
11589 | *pnew_k = k; | |
11590 | return 1; | |
11591 | } | |
11592 | ||
11593 | /* Value of variable named NAME in the current environment. If | |
11594 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
11595 | otherwise causes an error with message ERR_MSG. */ |
11596 | ||
d2e4a39e | 11597 | static struct value * |
edb0c9cb | 11598 | get_var_value (const char *name, const char *err_msg) |
14f9c5c9 | 11599 | { |
d12307c1 | 11600 | struct block_symbol *syms; |
14f9c5c9 AS |
11601 | int nsyms; |
11602 | ||
4c4b4cd2 | 11603 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
4eeaa230 | 11604 | &syms); |
14f9c5c9 AS |
11605 | |
11606 | if (nsyms != 1) | |
11607 | { | |
11608 | if (err_msg == NULL) | |
4c4b4cd2 | 11609 | return 0; |
14f9c5c9 | 11610 | else |
8a3fe4f8 | 11611 | error (("%s"), err_msg); |
14f9c5c9 AS |
11612 | } |
11613 | ||
d12307c1 | 11614 | return value_of_variable (syms[0].symbol, syms[0].block); |
14f9c5c9 | 11615 | } |
d2e4a39e | 11616 | |
edb0c9cb PA |
11617 | /* Value of integer variable named NAME in the current environment. |
11618 | If no such variable is found, returns false. Otherwise, sets VALUE | |
11619 | to the variable's value and returns true. */ | |
4c4b4cd2 | 11620 | |
edb0c9cb PA |
11621 | bool |
11622 | get_int_var_value (const char *name, LONGEST &value) | |
14f9c5c9 | 11623 | { |
4c4b4cd2 | 11624 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 11625 | |
14f9c5c9 | 11626 | if (var_val == 0) |
edb0c9cb PA |
11627 | return false; |
11628 | ||
11629 | value = value_as_long (var_val); | |
11630 | return true; | |
14f9c5c9 | 11631 | } |
d2e4a39e | 11632 | |
14f9c5c9 AS |
11633 | |
11634 | /* Return a range type whose base type is that of the range type named | |
11635 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 11636 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
11637 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
11638 | corresponding range type from debug information; fall back to using it | |
11639 | if symbol lookup fails. If a new type must be created, allocate it | |
11640 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
11641 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 11642 | |
d2e4a39e | 11643 | static struct type * |
28c85d6c | 11644 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 11645 | { |
0d5cff50 | 11646 | const char *name; |
14f9c5c9 | 11647 | struct type *base_type; |
108d56a4 | 11648 | const char *subtype_info; |
14f9c5c9 | 11649 | |
28c85d6c JB |
11650 | gdb_assert (raw_type != NULL); |
11651 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 11652 | |
1ce677a4 | 11653 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
11654 | base_type = TYPE_TARGET_TYPE (raw_type); |
11655 | else | |
11656 | base_type = raw_type; | |
11657 | ||
28c85d6c | 11658 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
11659 | subtype_info = strstr (name, "___XD"); |
11660 | if (subtype_info == NULL) | |
690cc4eb | 11661 | { |
43bbcdc2 PH |
11662 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
11663 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 11664 | |
690cc4eb PH |
11665 | if (L < INT_MIN || U > INT_MAX) |
11666 | return raw_type; | |
11667 | else | |
0c9c3474 SA |
11668 | return create_static_range_type (alloc_type_copy (raw_type), raw_type, |
11669 | L, U); | |
690cc4eb | 11670 | } |
14f9c5c9 AS |
11671 | else |
11672 | { | |
11673 | static char *name_buf = NULL; | |
11674 | static size_t name_len = 0; | |
11675 | int prefix_len = subtype_info - name; | |
11676 | LONGEST L, U; | |
11677 | struct type *type; | |
108d56a4 | 11678 | const char *bounds_str; |
14f9c5c9 AS |
11679 | int n; |
11680 | ||
11681 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
11682 | strncpy (name_buf, name, prefix_len); | |
11683 | name_buf[prefix_len] = '\0'; | |
11684 | ||
11685 | subtype_info += 5; | |
11686 | bounds_str = strchr (subtype_info, '_'); | |
11687 | n = 1; | |
11688 | ||
d2e4a39e | 11689 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
11690 | { |
11691 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
11692 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
11693 | return raw_type; | |
11694 | if (bounds_str[n] == '_') | |
11695 | n += 2; | |
0963b4bd | 11696 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
11697 | n += 1; |
11698 | subtype_info += 1; | |
11699 | } | |
d2e4a39e | 11700 | else |
4c4b4cd2 | 11701 | { |
4c4b4cd2 | 11702 | strcpy (name_buf + prefix_len, "___L"); |
edb0c9cb | 11703 | if (!get_int_var_value (name_buf, L)) |
4c4b4cd2 | 11704 | { |
323e0a4a | 11705 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
11706 | L = 1; |
11707 | } | |
11708 | } | |
14f9c5c9 | 11709 | |
d2e4a39e | 11710 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
11711 | { |
11712 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
11713 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
11714 | return raw_type; | |
11715 | } | |
d2e4a39e | 11716 | else |
4c4b4cd2 | 11717 | { |
4c4b4cd2 | 11718 | strcpy (name_buf + prefix_len, "___U"); |
edb0c9cb | 11719 | if (!get_int_var_value (name_buf, U)) |
4c4b4cd2 | 11720 | { |
323e0a4a | 11721 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
11722 | U = L; |
11723 | } | |
11724 | } | |
14f9c5c9 | 11725 | |
0c9c3474 SA |
11726 | type = create_static_range_type (alloc_type_copy (raw_type), |
11727 | base_type, L, U); | |
d2e4a39e | 11728 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
11729 | return type; |
11730 | } | |
11731 | } | |
11732 | ||
4c4b4cd2 PH |
11733 | /* True iff NAME is the name of a range type. */ |
11734 | ||
14f9c5c9 | 11735 | int |
d2e4a39e | 11736 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
11737 | { |
11738 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 11739 | } |
14f9c5c9 | 11740 | \f |
d2e4a39e | 11741 | |
4c4b4cd2 PH |
11742 | /* Modular types */ |
11743 | ||
11744 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 11745 | |
14f9c5c9 | 11746 | int |
d2e4a39e | 11747 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 11748 | { |
18af8284 | 11749 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
11750 | |
11751 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 11752 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 11753 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
11754 | } |
11755 | ||
4c4b4cd2 PH |
11756 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
11757 | ||
61ee279c | 11758 | ULONGEST |
0056e4d5 | 11759 | ada_modulus (struct type *type) |
14f9c5c9 | 11760 | { |
43bbcdc2 | 11761 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 11762 | } |
d2e4a39e | 11763 | \f |
f7f9143b JB |
11764 | |
11765 | /* Ada exception catchpoint support: | |
11766 | --------------------------------- | |
11767 | ||
11768 | We support 3 kinds of exception catchpoints: | |
11769 | . catchpoints on Ada exceptions | |
11770 | . catchpoints on unhandled Ada exceptions | |
11771 | . catchpoints on failed assertions | |
11772 | ||
11773 | Exceptions raised during failed assertions, or unhandled exceptions | |
11774 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
11775 | However, we can easily differentiate these two special cases, and having | |
11776 | the option to distinguish these two cases from the rest can be useful | |
11777 | to zero-in on certain situations. | |
11778 | ||
11779 | Exception catchpoints are a specialized form of breakpoint, | |
11780 | since they rely on inserting breakpoints inside known routines | |
11781 | of the GNAT runtime. The implementation therefore uses a standard | |
11782 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
11783 | of breakpoint_ops. | |
11784 | ||
0259addd JB |
11785 | Support in the runtime for exception catchpoints have been changed |
11786 | a few times already, and these changes affect the implementation | |
11787 | of these catchpoints. In order to be able to support several | |
11788 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 11789 | the runtime variant used by the program being debugged. */ |
f7f9143b | 11790 | |
82eacd52 JB |
11791 | /* Ada's standard exceptions. |
11792 | ||
11793 | The Ada 83 standard also defined Numeric_Error. But there so many | |
11794 | situations where it was unclear from the Ada 83 Reference Manual | |
11795 | (RM) whether Constraint_Error or Numeric_Error should be raised, | |
11796 | that the ARG (Ada Rapporteur Group) eventually issued a Binding | |
11797 | Interpretation saying that anytime the RM says that Numeric_Error | |
11798 | should be raised, the implementation may raise Constraint_Error. | |
11799 | Ada 95 went one step further and pretty much removed Numeric_Error | |
11800 | from the list of standard exceptions (it made it a renaming of | |
11801 | Constraint_Error, to help preserve compatibility when compiling | |
11802 | an Ada83 compiler). As such, we do not include Numeric_Error from | |
11803 | this list of standard exceptions. */ | |
3d0b0fa3 | 11804 | |
a121b7c1 | 11805 | static const char *standard_exc[] = { |
3d0b0fa3 JB |
11806 | "constraint_error", |
11807 | "program_error", | |
11808 | "storage_error", | |
11809 | "tasking_error" | |
11810 | }; | |
11811 | ||
0259addd JB |
11812 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
11813 | ||
11814 | /* A structure that describes how to support exception catchpoints | |
11815 | for a given executable. */ | |
11816 | ||
11817 | struct exception_support_info | |
11818 | { | |
11819 | /* The name of the symbol to break on in order to insert | |
11820 | a catchpoint on exceptions. */ | |
11821 | const char *catch_exception_sym; | |
11822 | ||
11823 | /* The name of the symbol to break on in order to insert | |
11824 | a catchpoint on unhandled exceptions. */ | |
11825 | const char *catch_exception_unhandled_sym; | |
11826 | ||
11827 | /* The name of the symbol to break on in order to insert | |
11828 | a catchpoint on failed assertions. */ | |
11829 | const char *catch_assert_sym; | |
11830 | ||
11831 | /* Assuming that the inferior just triggered an unhandled exception | |
11832 | catchpoint, this function is responsible for returning the address | |
11833 | in inferior memory where the name of that exception is stored. | |
11834 | Return zero if the address could not be computed. */ | |
11835 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
11836 | }; | |
11837 | ||
11838 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
11839 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
11840 | ||
11841 | /* The following exception support info structure describes how to | |
11842 | implement exception catchpoints with the latest version of the | |
11843 | Ada runtime (as of 2007-03-06). */ | |
11844 | ||
11845 | static const struct exception_support_info default_exception_support_info = | |
11846 | { | |
11847 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
11848 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11849 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
11850 | ada_unhandled_exception_name_addr | |
11851 | }; | |
11852 | ||
11853 | /* The following exception support info structure describes how to | |
11854 | implement exception catchpoints with a slightly older version | |
11855 | of the Ada runtime. */ | |
11856 | ||
11857 | static const struct exception_support_info exception_support_info_fallback = | |
11858 | { | |
11859 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
11860 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
11861 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
11862 | ada_unhandled_exception_name_addr_from_raise | |
11863 | }; | |
11864 | ||
f17011e0 JB |
11865 | /* Return nonzero if we can detect the exception support routines |
11866 | described in EINFO. | |
11867 | ||
11868 | This function errors out if an abnormal situation is detected | |
11869 | (for instance, if we find the exception support routines, but | |
11870 | that support is found to be incomplete). */ | |
11871 | ||
11872 | static int | |
11873 | ada_has_this_exception_support (const struct exception_support_info *einfo) | |
11874 | { | |
11875 | struct symbol *sym; | |
11876 | ||
11877 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11878 | that should be compiled with debugging information. As a result, we | |
11879 | expect to find that symbol in the symtabs. */ | |
11880 | ||
11881 | sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); | |
11882 | if (sym == NULL) | |
a6af7abe JB |
11883 | { |
11884 | /* Perhaps we did not find our symbol because the Ada runtime was | |
11885 | compiled without debugging info, or simply stripped of it. | |
11886 | It happens on some GNU/Linux distributions for instance, where | |
11887 | users have to install a separate debug package in order to get | |
11888 | the runtime's debugging info. In that situation, let the user | |
11889 | know why we cannot insert an Ada exception catchpoint. | |
11890 | ||
11891 | Note: Just for the purpose of inserting our Ada exception | |
11892 | catchpoint, we could rely purely on the associated minimal symbol. | |
11893 | But we would be operating in degraded mode anyway, since we are | |
11894 | still lacking the debugging info needed later on to extract | |
11895 | the name of the exception being raised (this name is printed in | |
11896 | the catchpoint message, and is also used when trying to catch | |
11897 | a specific exception). We do not handle this case for now. */ | |
3b7344d5 | 11898 | struct bound_minimal_symbol msym |
1c8e84b0 JB |
11899 | = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); |
11900 | ||
3b7344d5 | 11901 | if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline) |
a6af7abe JB |
11902 | error (_("Your Ada runtime appears to be missing some debugging " |
11903 | "information.\nCannot insert Ada exception catchpoint " | |
11904 | "in this configuration.")); | |
11905 | ||
11906 | return 0; | |
11907 | } | |
f17011e0 JB |
11908 | |
11909 | /* Make sure that the symbol we found corresponds to a function. */ | |
11910 | ||
11911 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11912 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11913 | SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); | |
11914 | ||
11915 | return 1; | |
11916 | } | |
11917 | ||
0259addd JB |
11918 | /* Inspect the Ada runtime and determine which exception info structure |
11919 | should be used to provide support for exception catchpoints. | |
11920 | ||
3eecfa55 JB |
11921 | This function will always set the per-inferior exception_info, |
11922 | or raise an error. */ | |
0259addd JB |
11923 | |
11924 | static void | |
11925 | ada_exception_support_info_sniffer (void) | |
11926 | { | |
3eecfa55 | 11927 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
0259addd JB |
11928 | |
11929 | /* If the exception info is already known, then no need to recompute it. */ | |
3eecfa55 | 11930 | if (data->exception_info != NULL) |
0259addd JB |
11931 | return; |
11932 | ||
11933 | /* Check the latest (default) exception support info. */ | |
f17011e0 | 11934 | if (ada_has_this_exception_support (&default_exception_support_info)) |
0259addd | 11935 | { |
3eecfa55 | 11936 | data->exception_info = &default_exception_support_info; |
0259addd JB |
11937 | return; |
11938 | } | |
11939 | ||
11940 | /* Try our fallback exception suport info. */ | |
f17011e0 | 11941 | if (ada_has_this_exception_support (&exception_support_info_fallback)) |
0259addd | 11942 | { |
3eecfa55 | 11943 | data->exception_info = &exception_support_info_fallback; |
0259addd JB |
11944 | return; |
11945 | } | |
11946 | ||
11947 | /* Sometimes, it is normal for us to not be able to find the routine | |
11948 | we are looking for. This happens when the program is linked with | |
11949 | the shared version of the GNAT runtime, and the program has not been | |
11950 | started yet. Inform the user of these two possible causes if | |
11951 | applicable. */ | |
11952 | ||
ccefe4c4 | 11953 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
11954 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
11955 | ||
11956 | /* If the symbol does not exist, then check that the program is | |
11957 | already started, to make sure that shared libraries have been | |
11958 | loaded. If it is not started, this may mean that the symbol is | |
11959 | in a shared library. */ | |
11960 | ||
11961 | if (ptid_get_pid (inferior_ptid) == 0) | |
11962 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
11963 | ||
11964 | /* At this point, we know that we are debugging an Ada program and | |
11965 | that the inferior has been started, but we still are not able to | |
0963b4bd | 11966 | find the run-time symbols. That can mean that we are in |
0259addd JB |
11967 | configurable run time mode, or that a-except as been optimized |
11968 | out by the linker... In any case, at this point it is not worth | |
11969 | supporting this feature. */ | |
11970 | ||
7dda8cff | 11971 | error (_("Cannot insert Ada exception catchpoints in this configuration.")); |
0259addd JB |
11972 | } |
11973 | ||
f7f9143b JB |
11974 | /* True iff FRAME is very likely to be that of a function that is |
11975 | part of the runtime system. This is all very heuristic, but is | |
11976 | intended to be used as advice as to what frames are uninteresting | |
11977 | to most users. */ | |
11978 | ||
11979 | static int | |
11980 | is_known_support_routine (struct frame_info *frame) | |
11981 | { | |
55b87a52 | 11982 | char *func_name; |
692465f1 | 11983 | enum language func_lang; |
f7f9143b | 11984 | int i; |
f35a17b5 | 11985 | const char *fullname; |
f7f9143b | 11986 | |
4ed6b5be JB |
11987 | /* If this code does not have any debugging information (no symtab), |
11988 | This cannot be any user code. */ | |
f7f9143b | 11989 | |
51abb421 | 11990 | symtab_and_line sal = find_frame_sal (frame); |
f7f9143b JB |
11991 | if (sal.symtab == NULL) |
11992 | return 1; | |
11993 | ||
4ed6b5be JB |
11994 | /* If there is a symtab, but the associated source file cannot be |
11995 | located, then assume this is not user code: Selecting a frame | |
11996 | for which we cannot display the code would not be very helpful | |
11997 | for the user. This should also take care of case such as VxWorks | |
11998 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 11999 | |
f35a17b5 JK |
12000 | fullname = symtab_to_fullname (sal.symtab); |
12001 | if (access (fullname, R_OK) != 0) | |
f7f9143b JB |
12002 | return 1; |
12003 | ||
4ed6b5be JB |
12004 | /* Check the unit filename againt the Ada runtime file naming. |
12005 | We also check the name of the objfile against the name of some | |
12006 | known system libraries that sometimes come with debugging info | |
12007 | too. */ | |
12008 | ||
f7f9143b JB |
12009 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
12010 | { | |
12011 | re_comp (known_runtime_file_name_patterns[i]); | |
f69c91ad | 12012 | if (re_exec (lbasename (sal.symtab->filename))) |
f7f9143b | 12013 | return 1; |
eb822aa6 DE |
12014 | if (SYMTAB_OBJFILE (sal.symtab) != NULL |
12015 | && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab)))) | |
4ed6b5be | 12016 | return 1; |
f7f9143b JB |
12017 | } |
12018 | ||
4ed6b5be | 12019 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 12020 | |
e9e07ba6 | 12021 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
12022 | if (func_name == NULL) |
12023 | return 1; | |
12024 | ||
12025 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
12026 | { | |
12027 | re_comp (known_auxiliary_function_name_patterns[i]); | |
12028 | if (re_exec (func_name)) | |
55b87a52 KS |
12029 | { |
12030 | xfree (func_name); | |
12031 | return 1; | |
12032 | } | |
f7f9143b JB |
12033 | } |
12034 | ||
55b87a52 | 12035 | xfree (func_name); |
f7f9143b JB |
12036 | return 0; |
12037 | } | |
12038 | ||
12039 | /* Find the first frame that contains debugging information and that is not | |
12040 | part of the Ada run-time, starting from FI and moving upward. */ | |
12041 | ||
0ef643c8 | 12042 | void |
f7f9143b JB |
12043 | ada_find_printable_frame (struct frame_info *fi) |
12044 | { | |
12045 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
12046 | { | |
12047 | if (!is_known_support_routine (fi)) | |
12048 | { | |
12049 | select_frame (fi); | |
12050 | break; | |
12051 | } | |
12052 | } | |
12053 | ||
12054 | } | |
12055 | ||
12056 | /* Assuming that the inferior just triggered an unhandled exception | |
12057 | catchpoint, return the address in inferior memory where the name | |
12058 | of the exception is stored. | |
12059 | ||
12060 | Return zero if the address could not be computed. */ | |
12061 | ||
12062 | static CORE_ADDR | |
12063 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
12064 | { |
12065 | return parse_and_eval_address ("e.full_name"); | |
12066 | } | |
12067 | ||
12068 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
12069 | should be used when the inferior uses an older version of the runtime, | |
12070 | where the exception name needs to be extracted from a specific frame | |
12071 | several frames up in the callstack. */ | |
12072 | ||
12073 | static CORE_ADDR | |
12074 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
12075 | { |
12076 | int frame_level; | |
12077 | struct frame_info *fi; | |
3eecfa55 | 12078 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
55b87a52 | 12079 | struct cleanup *old_chain; |
f7f9143b JB |
12080 | |
12081 | /* To determine the name of this exception, we need to select | |
12082 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
12083 | at least 3 levels up, so we simply skip the first 3 frames | |
12084 | without checking the name of their associated function. */ | |
12085 | fi = get_current_frame (); | |
12086 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
12087 | if (fi != NULL) | |
12088 | fi = get_prev_frame (fi); | |
12089 | ||
55b87a52 | 12090 | old_chain = make_cleanup (null_cleanup, NULL); |
f7f9143b JB |
12091 | while (fi != NULL) |
12092 | { | |
55b87a52 | 12093 | char *func_name; |
692465f1 JB |
12094 | enum language func_lang; |
12095 | ||
e9e07ba6 | 12096 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
55b87a52 KS |
12097 | if (func_name != NULL) |
12098 | { | |
12099 | make_cleanup (xfree, func_name); | |
12100 | ||
12101 | if (strcmp (func_name, | |
12102 | data->exception_info->catch_exception_sym) == 0) | |
12103 | break; /* We found the frame we were looking for... */ | |
12104 | fi = get_prev_frame (fi); | |
12105 | } | |
f7f9143b | 12106 | } |
55b87a52 | 12107 | do_cleanups (old_chain); |
f7f9143b JB |
12108 | |
12109 | if (fi == NULL) | |
12110 | return 0; | |
12111 | ||
12112 | select_frame (fi); | |
12113 | return parse_and_eval_address ("id.full_name"); | |
12114 | } | |
12115 | ||
12116 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
12117 | (of any type), return the address in inferior memory where the name | |
12118 | of the exception is stored, if applicable. | |
12119 | ||
45db7c09 PA |
12120 | Assumes the selected frame is the current frame. |
12121 | ||
f7f9143b JB |
12122 | Return zero if the address could not be computed, or if not relevant. */ |
12123 | ||
12124 | static CORE_ADDR | |
761269c8 | 12125 | ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12126 | struct breakpoint *b) |
12127 | { | |
3eecfa55 JB |
12128 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12129 | ||
f7f9143b JB |
12130 | switch (ex) |
12131 | { | |
761269c8 | 12132 | case ada_catch_exception: |
f7f9143b JB |
12133 | return (parse_and_eval_address ("e.full_name")); |
12134 | break; | |
12135 | ||
761269c8 | 12136 | case ada_catch_exception_unhandled: |
3eecfa55 | 12137 | return data->exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
12138 | break; |
12139 | ||
761269c8 | 12140 | case ada_catch_assert: |
f7f9143b JB |
12141 | return 0; /* Exception name is not relevant in this case. */ |
12142 | break; | |
12143 | ||
12144 | default: | |
12145 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12146 | break; | |
12147 | } | |
12148 | ||
12149 | return 0; /* Should never be reached. */ | |
12150 | } | |
12151 | ||
12152 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
12153 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
12154 | When an error is intercepted, a warning with the error message is printed, | |
12155 | and zero is returned. */ | |
12156 | ||
12157 | static CORE_ADDR | |
761269c8 | 12158 | ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12159 | struct breakpoint *b) |
12160 | { | |
f7f9143b JB |
12161 | CORE_ADDR result = 0; |
12162 | ||
492d29ea | 12163 | TRY |
f7f9143b JB |
12164 | { |
12165 | result = ada_exception_name_addr_1 (ex, b); | |
12166 | } | |
12167 | ||
492d29ea | 12168 | CATCH (e, RETURN_MASK_ERROR) |
f7f9143b JB |
12169 | { |
12170 | warning (_("failed to get exception name: %s"), e.message); | |
12171 | return 0; | |
12172 | } | |
492d29ea | 12173 | END_CATCH |
f7f9143b JB |
12174 | |
12175 | return result; | |
12176 | } | |
12177 | ||
28010a5d PA |
12178 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
12179 | ||
12180 | /* Ada catchpoints. | |
12181 | ||
12182 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
12183 | stop the target on every exception the program throws. When a user | |
12184 | specifies the name of a specific exception, we translate this | |
12185 | request into a condition expression (in text form), and then parse | |
12186 | it into an expression stored in each of the catchpoint's locations. | |
12187 | We then use this condition to check whether the exception that was | |
12188 | raised is the one the user is interested in. If not, then the | |
12189 | target is resumed again. We store the name of the requested | |
12190 | exception, in order to be able to re-set the condition expression | |
12191 | when symbols change. */ | |
12192 | ||
12193 | /* An instance of this type is used to represent an Ada catchpoint | |
5625a286 | 12194 | breakpoint location. */ |
28010a5d | 12195 | |
5625a286 | 12196 | class ada_catchpoint_location : public bp_location |
28010a5d | 12197 | { |
5625a286 PA |
12198 | public: |
12199 | ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner) | |
12200 | : bp_location (ops, owner) | |
12201 | {} | |
28010a5d PA |
12202 | |
12203 | /* The condition that checks whether the exception that was raised | |
12204 | is the specific exception the user specified on catchpoint | |
12205 | creation. */ | |
4d01a485 | 12206 | expression_up excep_cond_expr; |
28010a5d PA |
12207 | }; |
12208 | ||
12209 | /* Implement the DTOR method in the bp_location_ops structure for all | |
12210 | Ada exception catchpoint kinds. */ | |
12211 | ||
12212 | static void | |
12213 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
12214 | { | |
12215 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
12216 | ||
4d01a485 | 12217 | al->excep_cond_expr.reset (); |
28010a5d PA |
12218 | } |
12219 | ||
12220 | /* The vtable to be used in Ada catchpoint locations. */ | |
12221 | ||
12222 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
12223 | { | |
12224 | ada_catchpoint_location_dtor | |
12225 | }; | |
12226 | ||
c1fc2657 | 12227 | /* An instance of this type is used to represent an Ada catchpoint. */ |
28010a5d | 12228 | |
c1fc2657 | 12229 | struct ada_catchpoint : public breakpoint |
28010a5d | 12230 | { |
c1fc2657 | 12231 | ~ada_catchpoint () override; |
28010a5d PA |
12232 | |
12233 | /* The name of the specific exception the user specified. */ | |
12234 | char *excep_string; | |
12235 | }; | |
12236 | ||
12237 | /* Parse the exception condition string in the context of each of the | |
12238 | catchpoint's locations, and store them for later evaluation. */ | |
12239 | ||
12240 | static void | |
12241 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
12242 | { | |
12243 | struct cleanup *old_chain; | |
12244 | struct bp_location *bl; | |
12245 | char *cond_string; | |
12246 | ||
12247 | /* Nothing to do if there's no specific exception to catch. */ | |
12248 | if (c->excep_string == NULL) | |
12249 | return; | |
12250 | ||
12251 | /* Same if there are no locations... */ | |
c1fc2657 | 12252 | if (c->loc == NULL) |
28010a5d PA |
12253 | return; |
12254 | ||
12255 | /* Compute the condition expression in text form, from the specific | |
12256 | expection we want to catch. */ | |
12257 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
12258 | old_chain = make_cleanup (xfree, cond_string); | |
12259 | ||
12260 | /* Iterate over all the catchpoint's locations, and parse an | |
12261 | expression for each. */ | |
c1fc2657 | 12262 | for (bl = c->loc; bl != NULL; bl = bl->next) |
28010a5d PA |
12263 | { |
12264 | struct ada_catchpoint_location *ada_loc | |
12265 | = (struct ada_catchpoint_location *) bl; | |
4d01a485 | 12266 | expression_up exp; |
28010a5d PA |
12267 | |
12268 | if (!bl->shlib_disabled) | |
12269 | { | |
bbc13ae3 | 12270 | const char *s; |
28010a5d PA |
12271 | |
12272 | s = cond_string; | |
492d29ea | 12273 | TRY |
28010a5d | 12274 | { |
036e657b JB |
12275 | exp = parse_exp_1 (&s, bl->address, |
12276 | block_for_pc (bl->address), | |
12277 | 0); | |
28010a5d | 12278 | } |
492d29ea | 12279 | CATCH (e, RETURN_MASK_ERROR) |
849f2b52 JB |
12280 | { |
12281 | warning (_("failed to reevaluate internal exception condition " | |
12282 | "for catchpoint %d: %s"), | |
c1fc2657 | 12283 | c->number, e.message); |
849f2b52 | 12284 | } |
492d29ea | 12285 | END_CATCH |
28010a5d PA |
12286 | } |
12287 | ||
b22e99fd | 12288 | ada_loc->excep_cond_expr = std::move (exp); |
28010a5d PA |
12289 | } |
12290 | ||
12291 | do_cleanups (old_chain); | |
12292 | } | |
12293 | ||
c1fc2657 | 12294 | /* ada_catchpoint destructor. */ |
28010a5d | 12295 | |
c1fc2657 | 12296 | ada_catchpoint::~ada_catchpoint () |
28010a5d | 12297 | { |
c1fc2657 | 12298 | xfree (this->excep_string); |
28010a5d PA |
12299 | } |
12300 | ||
12301 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
12302 | structure for all exception catchpoint kinds. */ | |
12303 | ||
12304 | static struct bp_location * | |
761269c8 | 12305 | allocate_location_exception (enum ada_exception_catchpoint_kind ex, |
28010a5d PA |
12306 | struct breakpoint *self) |
12307 | { | |
5625a286 | 12308 | return new ada_catchpoint_location (&ada_catchpoint_location_ops, self); |
28010a5d PA |
12309 | } |
12310 | ||
12311 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
12312 | exception catchpoint kinds. */ | |
12313 | ||
12314 | static void | |
761269c8 | 12315 | re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) |
28010a5d PA |
12316 | { |
12317 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
12318 | ||
12319 | /* Call the base class's method. This updates the catchpoint's | |
12320 | locations. */ | |
2060206e | 12321 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
12322 | |
12323 | /* Reparse the exception conditional expressions. One for each | |
12324 | location. */ | |
12325 | create_excep_cond_exprs (c); | |
12326 | } | |
12327 | ||
12328 | /* Returns true if we should stop for this breakpoint hit. If the | |
12329 | user specified a specific exception, we only want to cause a stop | |
12330 | if the program thrown that exception. */ | |
12331 | ||
12332 | static int | |
12333 | should_stop_exception (const struct bp_location *bl) | |
12334 | { | |
12335 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
12336 | const struct ada_catchpoint_location *ada_loc | |
12337 | = (const struct ada_catchpoint_location *) bl; | |
28010a5d PA |
12338 | int stop; |
12339 | ||
12340 | /* With no specific exception, should always stop. */ | |
12341 | if (c->excep_string == NULL) | |
12342 | return 1; | |
12343 | ||
12344 | if (ada_loc->excep_cond_expr == NULL) | |
12345 | { | |
12346 | /* We will have a NULL expression if back when we were creating | |
12347 | the expressions, this location's had failed to parse. */ | |
12348 | return 1; | |
12349 | } | |
12350 | ||
12351 | stop = 1; | |
492d29ea | 12352 | TRY |
28010a5d PA |
12353 | { |
12354 | struct value *mark; | |
12355 | ||
12356 | mark = value_mark (); | |
4d01a485 | 12357 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ())); |
28010a5d PA |
12358 | value_free_to_mark (mark); |
12359 | } | |
492d29ea PA |
12360 | CATCH (ex, RETURN_MASK_ALL) |
12361 | { | |
12362 | exception_fprintf (gdb_stderr, ex, | |
12363 | _("Error in testing exception condition:\n")); | |
12364 | } | |
12365 | END_CATCH | |
12366 | ||
28010a5d PA |
12367 | return stop; |
12368 | } | |
12369 | ||
12370 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
12371 | for all exception catchpoint kinds. */ | |
12372 | ||
12373 | static void | |
761269c8 | 12374 | check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
28010a5d PA |
12375 | { |
12376 | bs->stop = should_stop_exception (bs->bp_location_at); | |
12377 | } | |
12378 | ||
f7f9143b JB |
12379 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
12380 | for all exception catchpoint kinds. */ | |
12381 | ||
12382 | static enum print_stop_action | |
761269c8 | 12383 | print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 12384 | { |
79a45e25 | 12385 | struct ui_out *uiout = current_uiout; |
348d480f PA |
12386 | struct breakpoint *b = bs->breakpoint_at; |
12387 | ||
956a9fb9 | 12388 | annotate_catchpoint (b->number); |
f7f9143b | 12389 | |
112e8700 | 12390 | if (uiout->is_mi_like_p ()) |
f7f9143b | 12391 | { |
112e8700 | 12392 | uiout->field_string ("reason", |
956a9fb9 | 12393 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); |
112e8700 | 12394 | uiout->field_string ("disp", bpdisp_text (b->disposition)); |
f7f9143b JB |
12395 | } |
12396 | ||
112e8700 SM |
12397 | uiout->text (b->disposition == disp_del |
12398 | ? "\nTemporary catchpoint " : "\nCatchpoint "); | |
12399 | uiout->field_int ("bkptno", b->number); | |
12400 | uiout->text (", "); | |
f7f9143b | 12401 | |
45db7c09 PA |
12402 | /* ada_exception_name_addr relies on the selected frame being the |
12403 | current frame. Need to do this here because this function may be | |
12404 | called more than once when printing a stop, and below, we'll | |
12405 | select the first frame past the Ada run-time (see | |
12406 | ada_find_printable_frame). */ | |
12407 | select_frame (get_current_frame ()); | |
12408 | ||
f7f9143b JB |
12409 | switch (ex) |
12410 | { | |
761269c8 JB |
12411 | case ada_catch_exception: |
12412 | case ada_catch_exception_unhandled: | |
956a9fb9 JB |
12413 | { |
12414 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
12415 | char exception_name[256]; | |
12416 | ||
12417 | if (addr != 0) | |
12418 | { | |
c714b426 PA |
12419 | read_memory (addr, (gdb_byte *) exception_name, |
12420 | sizeof (exception_name) - 1); | |
956a9fb9 JB |
12421 | exception_name [sizeof (exception_name) - 1] = '\0'; |
12422 | } | |
12423 | else | |
12424 | { | |
12425 | /* For some reason, we were unable to read the exception | |
12426 | name. This could happen if the Runtime was compiled | |
12427 | without debugging info, for instance. In that case, | |
12428 | just replace the exception name by the generic string | |
12429 | "exception" - it will read as "an exception" in the | |
12430 | notification we are about to print. */ | |
967cff16 | 12431 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
12432 | } |
12433 | /* In the case of unhandled exception breakpoints, we print | |
12434 | the exception name as "unhandled EXCEPTION_NAME", to make | |
12435 | it clearer to the user which kind of catchpoint just got | |
12436 | hit. We used ui_out_text to make sure that this extra | |
12437 | info does not pollute the exception name in the MI case. */ | |
761269c8 | 12438 | if (ex == ada_catch_exception_unhandled) |
112e8700 SM |
12439 | uiout->text ("unhandled "); |
12440 | uiout->field_string ("exception-name", exception_name); | |
956a9fb9 JB |
12441 | } |
12442 | break; | |
761269c8 | 12443 | case ada_catch_assert: |
956a9fb9 JB |
12444 | /* In this case, the name of the exception is not really |
12445 | important. Just print "failed assertion" to make it clearer | |
12446 | that his program just hit an assertion-failure catchpoint. | |
12447 | We used ui_out_text because this info does not belong in | |
12448 | the MI output. */ | |
112e8700 | 12449 | uiout->text ("failed assertion"); |
956a9fb9 | 12450 | break; |
f7f9143b | 12451 | } |
112e8700 | 12452 | uiout->text (" at "); |
956a9fb9 | 12453 | ada_find_printable_frame (get_current_frame ()); |
f7f9143b JB |
12454 | |
12455 | return PRINT_SRC_AND_LOC; | |
12456 | } | |
12457 | ||
12458 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
12459 | for all exception catchpoint kinds. */ | |
12460 | ||
12461 | static void | |
761269c8 | 12462 | print_one_exception (enum ada_exception_catchpoint_kind ex, |
a6d9a66e | 12463 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12464 | { |
79a45e25 | 12465 | struct ui_out *uiout = current_uiout; |
28010a5d | 12466 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
12467 | struct value_print_options opts; |
12468 | ||
12469 | get_user_print_options (&opts); | |
12470 | if (opts.addressprint) | |
f7f9143b JB |
12471 | { |
12472 | annotate_field (4); | |
112e8700 | 12473 | uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
12474 | } |
12475 | ||
12476 | annotate_field (5); | |
a6d9a66e | 12477 | *last_loc = b->loc; |
f7f9143b JB |
12478 | switch (ex) |
12479 | { | |
761269c8 | 12480 | case ada_catch_exception: |
28010a5d | 12481 | if (c->excep_string != NULL) |
f7f9143b | 12482 | { |
28010a5d PA |
12483 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
12484 | ||
112e8700 | 12485 | uiout->field_string ("what", msg); |
f7f9143b JB |
12486 | xfree (msg); |
12487 | } | |
12488 | else | |
112e8700 | 12489 | uiout->field_string ("what", "all Ada exceptions"); |
f7f9143b JB |
12490 | |
12491 | break; | |
12492 | ||
761269c8 | 12493 | case ada_catch_exception_unhandled: |
112e8700 | 12494 | uiout->field_string ("what", "unhandled Ada exceptions"); |
f7f9143b JB |
12495 | break; |
12496 | ||
761269c8 | 12497 | case ada_catch_assert: |
112e8700 | 12498 | uiout->field_string ("what", "failed Ada assertions"); |
f7f9143b JB |
12499 | break; |
12500 | ||
12501 | default: | |
12502 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12503 | break; | |
12504 | } | |
12505 | } | |
12506 | ||
12507 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
12508 | for all exception catchpoint kinds. */ | |
12509 | ||
12510 | static void | |
761269c8 | 12511 | print_mention_exception (enum ada_exception_catchpoint_kind ex, |
f7f9143b JB |
12512 | struct breakpoint *b) |
12513 | { | |
28010a5d | 12514 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 12515 | struct ui_out *uiout = current_uiout; |
28010a5d | 12516 | |
112e8700 | 12517 | uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ") |
00eb2c4a | 12518 | : _("Catchpoint ")); |
112e8700 SM |
12519 | uiout->field_int ("bkptno", b->number); |
12520 | uiout->text (": "); | |
00eb2c4a | 12521 | |
f7f9143b JB |
12522 | switch (ex) |
12523 | { | |
761269c8 | 12524 | case ada_catch_exception: |
28010a5d | 12525 | if (c->excep_string != NULL) |
00eb2c4a JB |
12526 | { |
12527 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
12528 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
12529 | ||
112e8700 | 12530 | uiout->text (info); |
00eb2c4a JB |
12531 | do_cleanups (old_chain); |
12532 | } | |
f7f9143b | 12533 | else |
112e8700 | 12534 | uiout->text (_("all Ada exceptions")); |
f7f9143b JB |
12535 | break; |
12536 | ||
761269c8 | 12537 | case ada_catch_exception_unhandled: |
112e8700 | 12538 | uiout->text (_("unhandled Ada exceptions")); |
f7f9143b JB |
12539 | break; |
12540 | ||
761269c8 | 12541 | case ada_catch_assert: |
112e8700 | 12542 | uiout->text (_("failed Ada assertions")); |
f7f9143b JB |
12543 | break; |
12544 | ||
12545 | default: | |
12546 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12547 | break; | |
12548 | } | |
12549 | } | |
12550 | ||
6149aea9 PA |
12551 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
12552 | for all exception catchpoint kinds. */ | |
12553 | ||
12554 | static void | |
761269c8 | 12555 | print_recreate_exception (enum ada_exception_catchpoint_kind ex, |
6149aea9 PA |
12556 | struct breakpoint *b, struct ui_file *fp) |
12557 | { | |
28010a5d PA |
12558 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
12559 | ||
6149aea9 PA |
12560 | switch (ex) |
12561 | { | |
761269c8 | 12562 | case ada_catch_exception: |
6149aea9 | 12563 | fprintf_filtered (fp, "catch exception"); |
28010a5d PA |
12564 | if (c->excep_string != NULL) |
12565 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
12566 | break; |
12567 | ||
761269c8 | 12568 | case ada_catch_exception_unhandled: |
78076abc | 12569 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
12570 | break; |
12571 | ||
761269c8 | 12572 | case ada_catch_assert: |
6149aea9 PA |
12573 | fprintf_filtered (fp, "catch assert"); |
12574 | break; | |
12575 | ||
12576 | default: | |
12577 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
12578 | } | |
d9b3f62e | 12579 | print_recreate_thread (b, fp); |
6149aea9 PA |
12580 | } |
12581 | ||
f7f9143b JB |
12582 | /* Virtual table for "catch exception" breakpoints. */ |
12583 | ||
28010a5d PA |
12584 | static struct bp_location * |
12585 | allocate_location_catch_exception (struct breakpoint *self) | |
12586 | { | |
761269c8 | 12587 | return allocate_location_exception (ada_catch_exception, self); |
28010a5d PA |
12588 | } |
12589 | ||
12590 | static void | |
12591 | re_set_catch_exception (struct breakpoint *b) | |
12592 | { | |
761269c8 | 12593 | re_set_exception (ada_catch_exception, b); |
28010a5d PA |
12594 | } |
12595 | ||
12596 | static void | |
12597 | check_status_catch_exception (bpstat bs) | |
12598 | { | |
761269c8 | 12599 | check_status_exception (ada_catch_exception, bs); |
28010a5d PA |
12600 | } |
12601 | ||
f7f9143b | 12602 | static enum print_stop_action |
348d480f | 12603 | print_it_catch_exception (bpstat bs) |
f7f9143b | 12604 | { |
761269c8 | 12605 | return print_it_exception (ada_catch_exception, bs); |
f7f9143b JB |
12606 | } |
12607 | ||
12608 | static void | |
a6d9a66e | 12609 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12610 | { |
761269c8 | 12611 | print_one_exception (ada_catch_exception, b, last_loc); |
f7f9143b JB |
12612 | } |
12613 | ||
12614 | static void | |
12615 | print_mention_catch_exception (struct breakpoint *b) | |
12616 | { | |
761269c8 | 12617 | print_mention_exception (ada_catch_exception, b); |
f7f9143b JB |
12618 | } |
12619 | ||
6149aea9 PA |
12620 | static void |
12621 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
12622 | { | |
761269c8 | 12623 | print_recreate_exception (ada_catch_exception, b, fp); |
6149aea9 PA |
12624 | } |
12625 | ||
2060206e | 12626 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
12627 | |
12628 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
12629 | ||
28010a5d PA |
12630 | static struct bp_location * |
12631 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
12632 | { | |
761269c8 | 12633 | return allocate_location_exception (ada_catch_exception_unhandled, self); |
28010a5d PA |
12634 | } |
12635 | ||
12636 | static void | |
12637 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
12638 | { | |
761269c8 | 12639 | re_set_exception (ada_catch_exception_unhandled, b); |
28010a5d PA |
12640 | } |
12641 | ||
12642 | static void | |
12643 | check_status_catch_exception_unhandled (bpstat bs) | |
12644 | { | |
761269c8 | 12645 | check_status_exception (ada_catch_exception_unhandled, bs); |
28010a5d PA |
12646 | } |
12647 | ||
f7f9143b | 12648 | static enum print_stop_action |
348d480f | 12649 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 12650 | { |
761269c8 | 12651 | return print_it_exception (ada_catch_exception_unhandled, bs); |
f7f9143b JB |
12652 | } |
12653 | ||
12654 | static void | |
a6d9a66e UW |
12655 | print_one_catch_exception_unhandled (struct breakpoint *b, |
12656 | struct bp_location **last_loc) | |
f7f9143b | 12657 | { |
761269c8 | 12658 | print_one_exception (ada_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
12659 | } |
12660 | ||
12661 | static void | |
12662 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
12663 | { | |
761269c8 | 12664 | print_mention_exception (ada_catch_exception_unhandled, b); |
f7f9143b JB |
12665 | } |
12666 | ||
6149aea9 PA |
12667 | static void |
12668 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
12669 | struct ui_file *fp) | |
12670 | { | |
761269c8 | 12671 | print_recreate_exception (ada_catch_exception_unhandled, b, fp); |
6149aea9 PA |
12672 | } |
12673 | ||
2060206e | 12674 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
12675 | |
12676 | /* Virtual table for "catch assert" breakpoints. */ | |
12677 | ||
28010a5d PA |
12678 | static struct bp_location * |
12679 | allocate_location_catch_assert (struct breakpoint *self) | |
12680 | { | |
761269c8 | 12681 | return allocate_location_exception (ada_catch_assert, self); |
28010a5d PA |
12682 | } |
12683 | ||
12684 | static void | |
12685 | re_set_catch_assert (struct breakpoint *b) | |
12686 | { | |
761269c8 | 12687 | re_set_exception (ada_catch_assert, b); |
28010a5d PA |
12688 | } |
12689 | ||
12690 | static void | |
12691 | check_status_catch_assert (bpstat bs) | |
12692 | { | |
761269c8 | 12693 | check_status_exception (ada_catch_assert, bs); |
28010a5d PA |
12694 | } |
12695 | ||
f7f9143b | 12696 | static enum print_stop_action |
348d480f | 12697 | print_it_catch_assert (bpstat bs) |
f7f9143b | 12698 | { |
761269c8 | 12699 | return print_it_exception (ada_catch_assert, bs); |
f7f9143b JB |
12700 | } |
12701 | ||
12702 | static void | |
a6d9a66e | 12703 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 12704 | { |
761269c8 | 12705 | print_one_exception (ada_catch_assert, b, last_loc); |
f7f9143b JB |
12706 | } |
12707 | ||
12708 | static void | |
12709 | print_mention_catch_assert (struct breakpoint *b) | |
12710 | { | |
761269c8 | 12711 | print_mention_exception (ada_catch_assert, b); |
f7f9143b JB |
12712 | } |
12713 | ||
6149aea9 PA |
12714 | static void |
12715 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
12716 | { | |
761269c8 | 12717 | print_recreate_exception (ada_catch_assert, b, fp); |
6149aea9 PA |
12718 | } |
12719 | ||
2060206e | 12720 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 12721 | |
f7f9143b JB |
12722 | /* Return a newly allocated copy of the first space-separated token |
12723 | in ARGSP, and then adjust ARGSP to point immediately after that | |
12724 | token. | |
12725 | ||
12726 | Return NULL if ARGPS does not contain any more tokens. */ | |
12727 | ||
12728 | static char * | |
a121b7c1 | 12729 | ada_get_next_arg (const char **argsp) |
f7f9143b | 12730 | { |
a121b7c1 PA |
12731 | const char *args = *argsp; |
12732 | const char *end; | |
f7f9143b JB |
12733 | char *result; |
12734 | ||
f1735a53 | 12735 | args = skip_spaces (args); |
f7f9143b JB |
12736 | if (args[0] == '\0') |
12737 | return NULL; /* No more arguments. */ | |
12738 | ||
12739 | /* Find the end of the current argument. */ | |
12740 | ||
f1735a53 | 12741 | end = skip_to_space (args); |
f7f9143b JB |
12742 | |
12743 | /* Adjust ARGSP to point to the start of the next argument. */ | |
12744 | ||
12745 | *argsp = end; | |
12746 | ||
12747 | /* Make a copy of the current argument and return it. */ | |
12748 | ||
224c3ddb | 12749 | result = (char *) xmalloc (end - args + 1); |
f7f9143b JB |
12750 | strncpy (result, args, end - args); |
12751 | result[end - args] = '\0'; | |
12752 | ||
12753 | return result; | |
12754 | } | |
12755 | ||
12756 | /* Split the arguments specified in a "catch exception" command. | |
12757 | Set EX to the appropriate catchpoint type. | |
28010a5d | 12758 | Set EXCEP_STRING to the name of the specific exception if |
5845583d JB |
12759 | specified by the user. |
12760 | If a condition is found at the end of the arguments, the condition | |
12761 | expression is stored in COND_STRING (memory must be deallocated | |
12762 | after use). Otherwise COND_STRING is set to NULL. */ | |
f7f9143b JB |
12763 | |
12764 | static void | |
a121b7c1 | 12765 | catch_ada_exception_command_split (const char *args, |
761269c8 | 12766 | enum ada_exception_catchpoint_kind *ex, |
5845583d JB |
12767 | char **excep_string, |
12768 | char **cond_string) | |
f7f9143b JB |
12769 | { |
12770 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
12771 | char *exception_name; | |
5845583d | 12772 | char *cond = NULL; |
f7f9143b JB |
12773 | |
12774 | exception_name = ada_get_next_arg (&args); | |
5845583d JB |
12775 | if (exception_name != NULL && strcmp (exception_name, "if") == 0) |
12776 | { | |
12777 | /* This is not an exception name; this is the start of a condition | |
12778 | expression for a catchpoint on all exceptions. So, "un-get" | |
12779 | this token, and set exception_name to NULL. */ | |
12780 | xfree (exception_name); | |
12781 | exception_name = NULL; | |
12782 | args -= 2; | |
12783 | } | |
f7f9143b JB |
12784 | make_cleanup (xfree, exception_name); |
12785 | ||
5845583d | 12786 | /* Check to see if we have a condition. */ |
f7f9143b | 12787 | |
f1735a53 | 12788 | args = skip_spaces (args); |
61012eef | 12789 | if (startswith (args, "if") |
5845583d JB |
12790 | && (isspace (args[2]) || args[2] == '\0')) |
12791 | { | |
12792 | args += 2; | |
f1735a53 | 12793 | args = skip_spaces (args); |
5845583d JB |
12794 | |
12795 | if (args[0] == '\0') | |
12796 | error (_("Condition missing after `if' keyword")); | |
12797 | cond = xstrdup (args); | |
12798 | make_cleanup (xfree, cond); | |
12799 | ||
12800 | args += strlen (args); | |
12801 | } | |
12802 | ||
12803 | /* Check that we do not have any more arguments. Anything else | |
12804 | is unexpected. */ | |
f7f9143b JB |
12805 | |
12806 | if (args[0] != '\0') | |
12807 | error (_("Junk at end of expression")); | |
12808 | ||
12809 | discard_cleanups (old_chain); | |
12810 | ||
12811 | if (exception_name == NULL) | |
12812 | { | |
12813 | /* Catch all exceptions. */ | |
761269c8 | 12814 | *ex = ada_catch_exception; |
28010a5d | 12815 | *excep_string = NULL; |
f7f9143b JB |
12816 | } |
12817 | else if (strcmp (exception_name, "unhandled") == 0) | |
12818 | { | |
12819 | /* Catch unhandled exceptions. */ | |
761269c8 | 12820 | *ex = ada_catch_exception_unhandled; |
28010a5d | 12821 | *excep_string = NULL; |
f7f9143b JB |
12822 | } |
12823 | else | |
12824 | { | |
12825 | /* Catch a specific exception. */ | |
761269c8 | 12826 | *ex = ada_catch_exception; |
28010a5d | 12827 | *excep_string = exception_name; |
f7f9143b | 12828 | } |
5845583d | 12829 | *cond_string = cond; |
f7f9143b JB |
12830 | } |
12831 | ||
12832 | /* Return the name of the symbol on which we should break in order to | |
12833 | implement a catchpoint of the EX kind. */ | |
12834 | ||
12835 | static const char * | |
761269c8 | 12836 | ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) |
f7f9143b | 12837 | { |
3eecfa55 JB |
12838 | struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); |
12839 | ||
12840 | gdb_assert (data->exception_info != NULL); | |
0259addd | 12841 | |
f7f9143b JB |
12842 | switch (ex) |
12843 | { | |
761269c8 | 12844 | case ada_catch_exception: |
3eecfa55 | 12845 | return (data->exception_info->catch_exception_sym); |
f7f9143b | 12846 | break; |
761269c8 | 12847 | case ada_catch_exception_unhandled: |
3eecfa55 | 12848 | return (data->exception_info->catch_exception_unhandled_sym); |
f7f9143b | 12849 | break; |
761269c8 | 12850 | case ada_catch_assert: |
3eecfa55 | 12851 | return (data->exception_info->catch_assert_sym); |
f7f9143b JB |
12852 | break; |
12853 | default: | |
12854 | internal_error (__FILE__, __LINE__, | |
12855 | _("unexpected catchpoint kind (%d)"), ex); | |
12856 | } | |
12857 | } | |
12858 | ||
12859 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
12860 | of the EX kind. */ | |
12861 | ||
c0a91b2b | 12862 | static const struct breakpoint_ops * |
761269c8 | 12863 | ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) |
f7f9143b JB |
12864 | { |
12865 | switch (ex) | |
12866 | { | |
761269c8 | 12867 | case ada_catch_exception: |
f7f9143b JB |
12868 | return (&catch_exception_breakpoint_ops); |
12869 | break; | |
761269c8 | 12870 | case ada_catch_exception_unhandled: |
f7f9143b JB |
12871 | return (&catch_exception_unhandled_breakpoint_ops); |
12872 | break; | |
761269c8 | 12873 | case ada_catch_assert: |
f7f9143b JB |
12874 | return (&catch_assert_breakpoint_ops); |
12875 | break; | |
12876 | default: | |
12877 | internal_error (__FILE__, __LINE__, | |
12878 | _("unexpected catchpoint kind (%d)"), ex); | |
12879 | } | |
12880 | } | |
12881 | ||
12882 | /* Return the condition that will be used to match the current exception | |
12883 | being raised with the exception that the user wants to catch. This | |
12884 | assumes that this condition is used when the inferior just triggered | |
12885 | an exception catchpoint. | |
12886 | ||
12887 | The string returned is a newly allocated string that needs to be | |
12888 | deallocated later. */ | |
12889 | ||
12890 | static char * | |
28010a5d | 12891 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 12892 | { |
3d0b0fa3 JB |
12893 | int i; |
12894 | ||
0963b4bd | 12895 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 12896 | runtime units that have been compiled without debugging info; if |
28010a5d | 12897 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
12898 | exception (e.g. "constraint_error") then, during the evaluation |
12899 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 12900 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
12901 | may then be set only on user-defined exceptions which have the |
12902 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
12903 | ||
12904 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 12905 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
12906 | exception constraint_error" is rewritten into "catch exception |
12907 | standard.constraint_error". | |
12908 | ||
12909 | If an exception named contraint_error is defined in another package of | |
12910 | the inferior program, then the only way to specify this exception as a | |
12911 | breakpoint condition is to use its fully-qualified named: | |
12912 | e.g. my_package.constraint_error. */ | |
12913 | ||
12914 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
12915 | { | |
28010a5d | 12916 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
12917 | { |
12918 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 12919 | excep_string); |
3d0b0fa3 JB |
12920 | } |
12921 | } | |
28010a5d | 12922 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
12923 | } |
12924 | ||
12925 | /* Return the symtab_and_line that should be used to insert an exception | |
12926 | catchpoint of the TYPE kind. | |
12927 | ||
28010a5d PA |
12928 | EXCEP_STRING should contain the name of a specific exception that |
12929 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 12930 | |
28010a5d PA |
12931 | ADDR_STRING returns the name of the function where the real |
12932 | breakpoint that implements the catchpoints is set, depending on the | |
12933 | type of catchpoint we need to create. */ | |
f7f9143b JB |
12934 | |
12935 | static struct symtab_and_line | |
761269c8 | 12936 | ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 12937 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
12938 | { |
12939 | const char *sym_name; | |
12940 | struct symbol *sym; | |
f7f9143b | 12941 | |
0259addd JB |
12942 | /* First, find out which exception support info to use. */ |
12943 | ada_exception_support_info_sniffer (); | |
12944 | ||
12945 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b | 12946 | the Ada exceptions requested by the user. */ |
f7f9143b JB |
12947 | sym_name = ada_exception_sym_name (ex); |
12948 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
12949 | ||
f17011e0 JB |
12950 | /* We can assume that SYM is not NULL at this stage. If the symbol |
12951 | did not exist, ada_exception_support_info_sniffer would have | |
12952 | raised an exception. | |
f7f9143b | 12953 | |
f17011e0 JB |
12954 | Also, ada_exception_support_info_sniffer should have already |
12955 | verified that SYM is a function symbol. */ | |
12956 | gdb_assert (sym != NULL); | |
12957 | gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); | |
f7f9143b JB |
12958 | |
12959 | /* Set ADDR_STRING. */ | |
f7f9143b JB |
12960 | *addr_string = xstrdup (sym_name); |
12961 | ||
f7f9143b | 12962 | /* Set OPS. */ |
4b9eee8c | 12963 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b | 12964 | |
f17011e0 | 12965 | return find_function_start_sal (sym, 1); |
f7f9143b JB |
12966 | } |
12967 | ||
b4a5b78b | 12968 | /* Create an Ada exception catchpoint. |
f7f9143b | 12969 | |
b4a5b78b | 12970 | EX_KIND is the kind of exception catchpoint to be created. |
5845583d | 12971 | |
2df4d1d5 JB |
12972 | If EXCEPT_STRING is NULL, this catchpoint is expected to trigger |
12973 | for all exceptions. Otherwise, EXCEPT_STRING indicates the name | |
12974 | of the exception to which this catchpoint applies. When not NULL, | |
12975 | the string must be allocated on the heap, and its deallocation | |
12976 | is no longer the responsibility of the caller. | |
12977 | ||
12978 | COND_STRING, if not NULL, is the catchpoint condition. This string | |
12979 | must be allocated on the heap, and its deallocation is no longer | |
12980 | the responsibility of the caller. | |
f7f9143b | 12981 | |
b4a5b78b JB |
12982 | TEMPFLAG, if nonzero, means that the underlying breakpoint |
12983 | should be temporary. | |
28010a5d | 12984 | |
b4a5b78b | 12985 | FROM_TTY is the usual argument passed to all commands implementations. */ |
28010a5d | 12986 | |
349774ef | 12987 | void |
28010a5d | 12988 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, |
761269c8 | 12989 | enum ada_exception_catchpoint_kind ex_kind, |
28010a5d | 12990 | char *excep_string, |
5845583d | 12991 | char *cond_string, |
28010a5d | 12992 | int tempflag, |
349774ef | 12993 | int disabled, |
28010a5d PA |
12994 | int from_tty) |
12995 | { | |
b4a5b78b JB |
12996 | char *addr_string = NULL; |
12997 | const struct breakpoint_ops *ops = NULL; | |
12998 | struct symtab_and_line sal | |
12999 | = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); | |
28010a5d | 13000 | |
b270e6f9 TT |
13001 | std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ()); |
13002 | init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string, | |
349774ef | 13003 | ops, tempflag, disabled, from_tty); |
28010a5d | 13004 | c->excep_string = excep_string; |
b270e6f9 | 13005 | create_excep_cond_exprs (c.get ()); |
5845583d | 13006 | if (cond_string != NULL) |
b270e6f9 TT |
13007 | set_breakpoint_condition (c.get (), cond_string, from_tty); |
13008 | install_breakpoint (0, std::move (c), 1); | |
f7f9143b JB |
13009 | } |
13010 | ||
9ac4176b PA |
13011 | /* Implement the "catch exception" command. */ |
13012 | ||
13013 | static void | |
a121b7c1 | 13014 | catch_ada_exception_command (char *arg_entry, int from_tty, |
9ac4176b PA |
13015 | struct cmd_list_element *command) |
13016 | { | |
a121b7c1 | 13017 | const char *arg = arg_entry; |
9ac4176b PA |
13018 | struct gdbarch *gdbarch = get_current_arch (); |
13019 | int tempflag; | |
761269c8 | 13020 | enum ada_exception_catchpoint_kind ex_kind; |
28010a5d | 13021 | char *excep_string = NULL; |
5845583d | 13022 | char *cond_string = NULL; |
9ac4176b PA |
13023 | |
13024 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13025 | ||
13026 | if (!arg) | |
13027 | arg = ""; | |
b4a5b78b JB |
13028 | catch_ada_exception_command_split (arg, &ex_kind, &excep_string, |
13029 | &cond_string); | |
13030 | create_ada_exception_catchpoint (gdbarch, ex_kind, | |
13031 | excep_string, cond_string, | |
349774ef JB |
13032 | tempflag, 1 /* enabled */, |
13033 | from_tty); | |
9ac4176b PA |
13034 | } |
13035 | ||
b4a5b78b | 13036 | /* Split the arguments specified in a "catch assert" command. |
5845583d | 13037 | |
b4a5b78b JB |
13038 | ARGS contains the command's arguments (or the empty string if |
13039 | no arguments were passed). | |
5845583d JB |
13040 | |
13041 | If ARGS contains a condition, set COND_STRING to that condition | |
b4a5b78b | 13042 | (the memory needs to be deallocated after use). */ |
5845583d | 13043 | |
b4a5b78b | 13044 | static void |
a121b7c1 | 13045 | catch_ada_assert_command_split (const char *args, char **cond_string) |
f7f9143b | 13046 | { |
f1735a53 | 13047 | args = skip_spaces (args); |
f7f9143b | 13048 | |
5845583d | 13049 | /* Check whether a condition was provided. */ |
61012eef | 13050 | if (startswith (args, "if") |
5845583d | 13051 | && (isspace (args[2]) || args[2] == '\0')) |
f7f9143b | 13052 | { |
5845583d | 13053 | args += 2; |
f1735a53 | 13054 | args = skip_spaces (args); |
5845583d JB |
13055 | if (args[0] == '\0') |
13056 | error (_("condition missing after `if' keyword")); | |
13057 | *cond_string = xstrdup (args); | |
f7f9143b JB |
13058 | } |
13059 | ||
5845583d JB |
13060 | /* Otherwise, there should be no other argument at the end of |
13061 | the command. */ | |
13062 | else if (args[0] != '\0') | |
13063 | error (_("Junk at end of arguments.")); | |
f7f9143b JB |
13064 | } |
13065 | ||
9ac4176b PA |
13066 | /* Implement the "catch assert" command. */ |
13067 | ||
13068 | static void | |
a121b7c1 | 13069 | catch_assert_command (char *arg_entry, int from_tty, |
9ac4176b PA |
13070 | struct cmd_list_element *command) |
13071 | { | |
a121b7c1 | 13072 | const char *arg = arg_entry; |
9ac4176b PA |
13073 | struct gdbarch *gdbarch = get_current_arch (); |
13074 | int tempflag; | |
5845583d | 13075 | char *cond_string = NULL; |
9ac4176b PA |
13076 | |
13077 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
13078 | ||
13079 | if (!arg) | |
13080 | arg = ""; | |
b4a5b78b | 13081 | catch_ada_assert_command_split (arg, &cond_string); |
761269c8 | 13082 | create_ada_exception_catchpoint (gdbarch, ada_catch_assert, |
b4a5b78b | 13083 | NULL, cond_string, |
349774ef JB |
13084 | tempflag, 1 /* enabled */, |
13085 | from_tty); | |
9ac4176b | 13086 | } |
778865d3 JB |
13087 | |
13088 | /* Return non-zero if the symbol SYM is an Ada exception object. */ | |
13089 | ||
13090 | static int | |
13091 | ada_is_exception_sym (struct symbol *sym) | |
13092 | { | |
13093 | const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
13094 | ||
13095 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
13096 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
13097 | && SYMBOL_CLASS (sym) != LOC_CONST | |
13098 | && SYMBOL_CLASS (sym) != LOC_UNRESOLVED | |
13099 | && type_name != NULL && strcmp (type_name, "exception") == 0); | |
13100 | } | |
13101 | ||
13102 | /* Given a global symbol SYM, return non-zero iff SYM is a non-standard | |
13103 | Ada exception object. This matches all exceptions except the ones | |
13104 | defined by the Ada language. */ | |
13105 | ||
13106 | static int | |
13107 | ada_is_non_standard_exception_sym (struct symbol *sym) | |
13108 | { | |
13109 | int i; | |
13110 | ||
13111 | if (!ada_is_exception_sym (sym)) | |
13112 | return 0; | |
13113 | ||
13114 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13115 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) | |
13116 | return 0; /* A standard exception. */ | |
13117 | ||
13118 | /* Numeric_Error is also a standard exception, so exclude it. | |
13119 | See the STANDARD_EXC description for more details as to why | |
13120 | this exception is not listed in that array. */ | |
13121 | if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) | |
13122 | return 0; | |
13123 | ||
13124 | return 1; | |
13125 | } | |
13126 | ||
13127 | /* A helper function for qsort, comparing two struct ada_exc_info | |
13128 | objects. | |
13129 | ||
13130 | The comparison is determined first by exception name, and then | |
13131 | by exception address. */ | |
13132 | ||
13133 | static int | |
13134 | compare_ada_exception_info (const void *a, const void *b) | |
13135 | { | |
13136 | const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; | |
13137 | const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; | |
13138 | int result; | |
13139 | ||
13140 | result = strcmp (exc_a->name, exc_b->name); | |
13141 | if (result != 0) | |
13142 | return result; | |
13143 | ||
13144 | if (exc_a->addr < exc_b->addr) | |
13145 | return -1; | |
13146 | if (exc_a->addr > exc_b->addr) | |
13147 | return 1; | |
13148 | ||
13149 | return 0; | |
13150 | } | |
13151 | ||
13152 | /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison | |
13153 | routine, but keeping the first SKIP elements untouched. | |
13154 | ||
13155 | All duplicates are also removed. */ | |
13156 | ||
13157 | static void | |
13158 | sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, | |
13159 | int skip) | |
13160 | { | |
13161 | struct ada_exc_info *to_sort | |
13162 | = VEC_address (ada_exc_info, *exceptions) + skip; | |
13163 | int to_sort_len | |
13164 | = VEC_length (ada_exc_info, *exceptions) - skip; | |
13165 | int i, j; | |
13166 | ||
13167 | qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), | |
13168 | compare_ada_exception_info); | |
13169 | ||
13170 | for (i = 1, j = 1; i < to_sort_len; i++) | |
13171 | if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) | |
13172 | to_sort[j++] = to_sort[i]; | |
13173 | to_sort_len = j; | |
13174 | VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); | |
13175 | } | |
13176 | ||
778865d3 JB |
13177 | /* Add all exceptions defined by the Ada standard whose name match |
13178 | a regular expression. | |
13179 | ||
13180 | If PREG is not NULL, then this regexp_t object is used to | |
13181 | perform the symbol name matching. Otherwise, no name-based | |
13182 | filtering is performed. | |
13183 | ||
13184 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13185 | gets pushed. */ | |
13186 | ||
13187 | static void | |
2d7cc5c7 PA |
13188 | ada_add_standard_exceptions (compiled_regex *preg, |
13189 | VEC(ada_exc_info) **exceptions) | |
778865d3 JB |
13190 | { |
13191 | int i; | |
13192 | ||
13193 | for (i = 0; i < ARRAY_SIZE (standard_exc); i++) | |
13194 | { | |
13195 | if (preg == NULL | |
2d7cc5c7 | 13196 | || preg->exec (standard_exc[i], 0, NULL, 0) == 0) |
778865d3 JB |
13197 | { |
13198 | struct bound_minimal_symbol msymbol | |
13199 | = ada_lookup_simple_minsym (standard_exc[i]); | |
13200 | ||
13201 | if (msymbol.minsym != NULL) | |
13202 | { | |
13203 | struct ada_exc_info info | |
77e371c0 | 13204 | = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)}; |
778865d3 JB |
13205 | |
13206 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13207 | } | |
13208 | } | |
13209 | } | |
13210 | } | |
13211 | ||
13212 | /* Add all Ada exceptions defined locally and accessible from the given | |
13213 | FRAME. | |
13214 | ||
13215 | If PREG is not NULL, then this regexp_t object is used to | |
13216 | perform the symbol name matching. Otherwise, no name-based | |
13217 | filtering is performed. | |
13218 | ||
13219 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13220 | gets pushed. */ | |
13221 | ||
13222 | static void | |
2d7cc5c7 PA |
13223 | ada_add_exceptions_from_frame (compiled_regex *preg, |
13224 | struct frame_info *frame, | |
778865d3 JB |
13225 | VEC(ada_exc_info) **exceptions) |
13226 | { | |
3977b71f | 13227 | const struct block *block = get_frame_block (frame, 0); |
778865d3 JB |
13228 | |
13229 | while (block != 0) | |
13230 | { | |
13231 | struct block_iterator iter; | |
13232 | struct symbol *sym; | |
13233 | ||
13234 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
13235 | { | |
13236 | switch (SYMBOL_CLASS (sym)) | |
13237 | { | |
13238 | case LOC_TYPEDEF: | |
13239 | case LOC_BLOCK: | |
13240 | case LOC_CONST: | |
13241 | break; | |
13242 | default: | |
13243 | if (ada_is_exception_sym (sym)) | |
13244 | { | |
13245 | struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), | |
13246 | SYMBOL_VALUE_ADDRESS (sym)}; | |
13247 | ||
13248 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13249 | } | |
13250 | } | |
13251 | } | |
13252 | if (BLOCK_FUNCTION (block) != NULL) | |
13253 | break; | |
13254 | block = BLOCK_SUPERBLOCK (block); | |
13255 | } | |
13256 | } | |
13257 | ||
14bc53a8 PA |
13258 | /* Return true if NAME matches PREG or if PREG is NULL. */ |
13259 | ||
13260 | static bool | |
2d7cc5c7 | 13261 | name_matches_regex (const char *name, compiled_regex *preg) |
14bc53a8 PA |
13262 | { |
13263 | return (preg == NULL | |
2d7cc5c7 | 13264 | || preg->exec (ada_decode (name), 0, NULL, 0) == 0); |
14bc53a8 PA |
13265 | } |
13266 | ||
778865d3 JB |
13267 | /* Add all exceptions defined globally whose name name match |
13268 | a regular expression, excluding standard exceptions. | |
13269 | ||
13270 | The reason we exclude standard exceptions is that they need | |
13271 | to be handled separately: Standard exceptions are defined inside | |
13272 | a runtime unit which is normally not compiled with debugging info, | |
13273 | and thus usually do not show up in our symbol search. However, | |
13274 | if the unit was in fact built with debugging info, we need to | |
13275 | exclude them because they would duplicate the entry we found | |
13276 | during the special loop that specifically searches for those | |
13277 | standard exceptions. | |
13278 | ||
13279 | If PREG is not NULL, then this regexp_t object is used to | |
13280 | perform the symbol name matching. Otherwise, no name-based | |
13281 | filtering is performed. | |
13282 | ||
13283 | EXCEPTIONS is a vector of exceptions to which matching exceptions | |
13284 | gets pushed. */ | |
13285 | ||
13286 | static void | |
2d7cc5c7 PA |
13287 | ada_add_global_exceptions (compiled_regex *preg, |
13288 | VEC(ada_exc_info) **exceptions) | |
778865d3 JB |
13289 | { |
13290 | struct objfile *objfile; | |
43f3e411 | 13291 | struct compunit_symtab *s; |
778865d3 | 13292 | |
14bc53a8 PA |
13293 | /* In Ada, the symbol "search name" is a linkage name, whereas the |
13294 | regular expression used to do the matching refers to the natural | |
13295 | name. So match against the decoded name. */ | |
13296 | expand_symtabs_matching (NULL, | |
13297 | [&] (const char *search_name) | |
13298 | { | |
13299 | const char *decoded = ada_decode (search_name); | |
13300 | return name_matches_regex (decoded, preg); | |
13301 | }, | |
13302 | NULL, | |
13303 | VARIABLES_DOMAIN); | |
778865d3 | 13304 | |
43f3e411 | 13305 | ALL_COMPUNITS (objfile, s) |
778865d3 | 13306 | { |
43f3e411 | 13307 | const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s); |
778865d3 JB |
13308 | int i; |
13309 | ||
13310 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
13311 | { | |
13312 | struct block *b = BLOCKVECTOR_BLOCK (bv, i); | |
13313 | struct block_iterator iter; | |
13314 | struct symbol *sym; | |
13315 | ||
13316 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
13317 | if (ada_is_non_standard_exception_sym (sym) | |
14bc53a8 | 13318 | && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg)) |
778865d3 JB |
13319 | { |
13320 | struct ada_exc_info info | |
13321 | = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; | |
13322 | ||
13323 | VEC_safe_push (ada_exc_info, *exceptions, &info); | |
13324 | } | |
13325 | } | |
13326 | } | |
13327 | } | |
13328 | ||
13329 | /* Implements ada_exceptions_list with the regular expression passed | |
13330 | as a regex_t, rather than a string. | |
13331 | ||
13332 | If not NULL, PREG is used to filter out exceptions whose names | |
13333 | do not match. Otherwise, all exceptions are listed. */ | |
13334 | ||
13335 | static VEC(ada_exc_info) * | |
2d7cc5c7 | 13336 | ada_exceptions_list_1 (compiled_regex *preg) |
778865d3 JB |
13337 | { |
13338 | VEC(ada_exc_info) *result = NULL; | |
13339 | struct cleanup *old_chain | |
13340 | = make_cleanup (VEC_cleanup (ada_exc_info), &result); | |
13341 | int prev_len; | |
13342 | ||
13343 | /* First, list the known standard exceptions. These exceptions | |
13344 | need to be handled separately, as they are usually defined in | |
13345 | runtime units that have been compiled without debugging info. */ | |
13346 | ||
13347 | ada_add_standard_exceptions (preg, &result); | |
13348 | ||
13349 | /* Next, find all exceptions whose scope is local and accessible | |
13350 | from the currently selected frame. */ | |
13351 | ||
13352 | if (has_stack_frames ()) | |
13353 | { | |
13354 | prev_len = VEC_length (ada_exc_info, result); | |
13355 | ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), | |
13356 | &result); | |
13357 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13358 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13359 | } | |
13360 | ||
13361 | /* Add all exceptions whose scope is global. */ | |
13362 | ||
13363 | prev_len = VEC_length (ada_exc_info, result); | |
13364 | ada_add_global_exceptions (preg, &result); | |
13365 | if (VEC_length (ada_exc_info, result) > prev_len) | |
13366 | sort_remove_dups_ada_exceptions_list (&result, prev_len); | |
13367 | ||
13368 | discard_cleanups (old_chain); | |
13369 | return result; | |
13370 | } | |
13371 | ||
13372 | /* Return a vector of ada_exc_info. | |
13373 | ||
13374 | If REGEXP is NULL, all exceptions are included in the result. | |
13375 | Otherwise, it should contain a valid regular expression, | |
13376 | and only the exceptions whose names match that regular expression | |
13377 | are included in the result. | |
13378 | ||
13379 | The exceptions are sorted in the following order: | |
13380 | - Standard exceptions (defined by the Ada language), in | |
13381 | alphabetical order; | |
13382 | - Exceptions only visible from the current frame, in | |
13383 | alphabetical order; | |
13384 | - Exceptions whose scope is global, in alphabetical order. */ | |
13385 | ||
13386 | VEC(ada_exc_info) * | |
13387 | ada_exceptions_list (const char *regexp) | |
13388 | { | |
2d7cc5c7 PA |
13389 | if (regexp == NULL) |
13390 | return ada_exceptions_list_1 (NULL); | |
778865d3 | 13391 | |
2d7cc5c7 PA |
13392 | compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression")); |
13393 | return ada_exceptions_list_1 (®); | |
778865d3 JB |
13394 | } |
13395 | ||
13396 | /* Implement the "info exceptions" command. */ | |
13397 | ||
13398 | static void | |
13399 | info_exceptions_command (char *regexp, int from_tty) | |
13400 | { | |
13401 | VEC(ada_exc_info) *exceptions; | |
13402 | struct cleanup *cleanup; | |
13403 | struct gdbarch *gdbarch = get_current_arch (); | |
13404 | int ix; | |
13405 | struct ada_exc_info *info; | |
13406 | ||
13407 | exceptions = ada_exceptions_list (regexp); | |
13408 | cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); | |
13409 | ||
13410 | if (regexp != NULL) | |
13411 | printf_filtered | |
13412 | (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); | |
13413 | else | |
13414 | printf_filtered (_("All defined Ada exceptions:\n")); | |
13415 | ||
13416 | for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) | |
13417 | printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); | |
13418 | ||
13419 | do_cleanups (cleanup); | |
13420 | } | |
13421 | ||
4c4b4cd2 PH |
13422 | /* Operators */ |
13423 | /* Information about operators given special treatment in functions | |
13424 | below. */ | |
13425 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
13426 | ||
13427 | #define ADA_OPERATORS \ | |
13428 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
13429 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
13430 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
13431 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
13432 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
13433 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
13434 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
13435 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
13436 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
13437 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
13438 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
13439 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
13440 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
13441 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
13442 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
13443 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
13444 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
13445 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
13446 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
13447 | |
13448 | static void | |
554794dc SDJ |
13449 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
13450 | int *argsp) | |
4c4b4cd2 PH |
13451 | { |
13452 | switch (exp->elts[pc - 1].opcode) | |
13453 | { | |
76a01679 | 13454 | default: |
4c4b4cd2 PH |
13455 | operator_length_standard (exp, pc, oplenp, argsp); |
13456 | break; | |
13457 | ||
13458 | #define OP_DEFN(op, len, args, binop) \ | |
13459 | case op: *oplenp = len; *argsp = args; break; | |
13460 | ADA_OPERATORS; | |
13461 | #undef OP_DEFN | |
52ce6436 PH |
13462 | |
13463 | case OP_AGGREGATE: | |
13464 | *oplenp = 3; | |
13465 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
13466 | break; | |
13467 | ||
13468 | case OP_CHOICES: | |
13469 | *oplenp = 3; | |
13470 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
13471 | break; | |
4c4b4cd2 PH |
13472 | } |
13473 | } | |
13474 | ||
c0201579 JK |
13475 | /* Implementation of the exp_descriptor method operator_check. */ |
13476 | ||
13477 | static int | |
13478 | ada_operator_check (struct expression *exp, int pos, | |
13479 | int (*objfile_func) (struct objfile *objfile, void *data), | |
13480 | void *data) | |
13481 | { | |
13482 | const union exp_element *const elts = exp->elts; | |
13483 | struct type *type = NULL; | |
13484 | ||
13485 | switch (elts[pos].opcode) | |
13486 | { | |
13487 | case UNOP_IN_RANGE: | |
13488 | case UNOP_QUAL: | |
13489 | type = elts[pos + 1].type; | |
13490 | break; | |
13491 | ||
13492 | default: | |
13493 | return operator_check_standard (exp, pos, objfile_func, data); | |
13494 | } | |
13495 | ||
13496 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
13497 | ||
13498 | if (type && TYPE_OBJFILE (type) | |
13499 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
13500 | return 1; | |
13501 | ||
13502 | return 0; | |
13503 | } | |
13504 | ||
a121b7c1 | 13505 | static const char * |
4c4b4cd2 PH |
13506 | ada_op_name (enum exp_opcode opcode) |
13507 | { | |
13508 | switch (opcode) | |
13509 | { | |
76a01679 | 13510 | default: |
4c4b4cd2 | 13511 | return op_name_standard (opcode); |
52ce6436 | 13512 | |
4c4b4cd2 PH |
13513 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
13514 | ADA_OPERATORS; | |
13515 | #undef OP_DEFN | |
52ce6436 PH |
13516 | |
13517 | case OP_AGGREGATE: | |
13518 | return "OP_AGGREGATE"; | |
13519 | case OP_CHOICES: | |
13520 | return "OP_CHOICES"; | |
13521 | case OP_NAME: | |
13522 | return "OP_NAME"; | |
4c4b4cd2 PH |
13523 | } |
13524 | } | |
13525 | ||
13526 | /* As for operator_length, but assumes PC is pointing at the first | |
13527 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 13528 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
13529 | |
13530 | static void | |
76a01679 JB |
13531 | ada_forward_operator_length (struct expression *exp, int pc, |
13532 | int *oplenp, int *argsp) | |
4c4b4cd2 | 13533 | { |
76a01679 | 13534 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
13535 | { |
13536 | default: | |
13537 | *oplenp = *argsp = 0; | |
13538 | break; | |
52ce6436 | 13539 | |
4c4b4cd2 PH |
13540 | #define OP_DEFN(op, len, args, binop) \ |
13541 | case op: *oplenp = len; *argsp = args; break; | |
13542 | ADA_OPERATORS; | |
13543 | #undef OP_DEFN | |
52ce6436 PH |
13544 | |
13545 | case OP_AGGREGATE: | |
13546 | *oplenp = 3; | |
13547 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
13548 | break; | |
13549 | ||
13550 | case OP_CHOICES: | |
13551 | *oplenp = 3; | |
13552 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
13553 | break; | |
13554 | ||
13555 | case OP_STRING: | |
13556 | case OP_NAME: | |
13557 | { | |
13558 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 13559 | |
52ce6436 PH |
13560 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
13561 | *argsp = 0; | |
13562 | break; | |
13563 | } | |
4c4b4cd2 PH |
13564 | } |
13565 | } | |
13566 | ||
13567 | static int | |
13568 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
13569 | { | |
13570 | enum exp_opcode op = exp->elts[elt].opcode; | |
13571 | int oplen, nargs; | |
13572 | int pc = elt; | |
13573 | int i; | |
76a01679 | 13574 | |
4c4b4cd2 PH |
13575 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
13576 | ||
76a01679 | 13577 | switch (op) |
4c4b4cd2 | 13578 | { |
76a01679 | 13579 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
13580 | case OP_ATR_FIRST: |
13581 | case OP_ATR_LAST: | |
13582 | case OP_ATR_LENGTH: | |
13583 | case OP_ATR_IMAGE: | |
13584 | case OP_ATR_MAX: | |
13585 | case OP_ATR_MIN: | |
13586 | case OP_ATR_MODULUS: | |
13587 | case OP_ATR_POS: | |
13588 | case OP_ATR_SIZE: | |
13589 | case OP_ATR_TAG: | |
13590 | case OP_ATR_VAL: | |
13591 | break; | |
13592 | ||
13593 | case UNOP_IN_RANGE: | |
13594 | case UNOP_QUAL: | |
323e0a4a AC |
13595 | /* XXX: gdb_sprint_host_address, type_sprint */ |
13596 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
13597 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
13598 | fprintf_filtered (stream, " ("); | |
13599 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
13600 | fprintf_filtered (stream, ")"); | |
13601 | break; | |
13602 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
13603 | fprintf_filtered (stream, " (%d)", |
13604 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
13605 | break; |
13606 | case TERNOP_IN_RANGE: | |
13607 | break; | |
13608 | ||
52ce6436 PH |
13609 | case OP_AGGREGATE: |
13610 | case OP_OTHERS: | |
13611 | case OP_DISCRETE_RANGE: | |
13612 | case OP_POSITIONAL: | |
13613 | case OP_CHOICES: | |
13614 | break; | |
13615 | ||
13616 | case OP_NAME: | |
13617 | case OP_STRING: | |
13618 | { | |
13619 | char *name = &exp->elts[elt + 2].string; | |
13620 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 13621 | |
52ce6436 PH |
13622 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
13623 | break; | |
13624 | } | |
13625 | ||
4c4b4cd2 PH |
13626 | default: |
13627 | return dump_subexp_body_standard (exp, stream, elt); | |
13628 | } | |
13629 | ||
13630 | elt += oplen; | |
13631 | for (i = 0; i < nargs; i += 1) | |
13632 | elt = dump_subexp (exp, stream, elt); | |
13633 | ||
13634 | return elt; | |
13635 | } | |
13636 | ||
13637 | /* The Ada extension of print_subexp (q.v.). */ | |
13638 | ||
76a01679 JB |
13639 | static void |
13640 | ada_print_subexp (struct expression *exp, int *pos, | |
13641 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 13642 | { |
52ce6436 | 13643 | int oplen, nargs, i; |
4c4b4cd2 PH |
13644 | int pc = *pos; |
13645 | enum exp_opcode op = exp->elts[pc].opcode; | |
13646 | ||
13647 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
13648 | ||
52ce6436 | 13649 | *pos += oplen; |
4c4b4cd2 PH |
13650 | switch (op) |
13651 | { | |
13652 | default: | |
52ce6436 | 13653 | *pos -= oplen; |
4c4b4cd2 PH |
13654 | print_subexp_standard (exp, pos, stream, prec); |
13655 | return; | |
13656 | ||
13657 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
13658 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
13659 | return; | |
13660 | ||
13661 | case BINOP_IN_BOUNDS: | |
323e0a4a | 13662 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13663 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13664 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 13665 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13666 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 13667 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
13668 | fprintf_filtered (stream, "(%ld)", |
13669 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
13670 | return; |
13671 | ||
13672 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 13673 | if (prec >= PREC_EQUAL) |
76a01679 | 13674 | fputs_filtered ("(", stream); |
323e0a4a | 13675 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13676 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13677 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
13678 | print_subexp (exp, pos, stream, PREC_EQUAL); |
13679 | fputs_filtered (" .. ", stream); | |
13680 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
13681 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
13682 | fputs_filtered (")", stream); |
13683 | return; | |
4c4b4cd2 PH |
13684 | |
13685 | case OP_ATR_FIRST: | |
13686 | case OP_ATR_LAST: | |
13687 | case OP_ATR_LENGTH: | |
13688 | case OP_ATR_IMAGE: | |
13689 | case OP_ATR_MAX: | |
13690 | case OP_ATR_MIN: | |
13691 | case OP_ATR_MODULUS: | |
13692 | case OP_ATR_POS: | |
13693 | case OP_ATR_SIZE: | |
13694 | case OP_ATR_TAG: | |
13695 | case OP_ATR_VAL: | |
4c4b4cd2 | 13696 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
13697 | { |
13698 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
79d43c61 TT |
13699 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, |
13700 | &type_print_raw_options); | |
76a01679 JB |
13701 | *pos += 3; |
13702 | } | |
4c4b4cd2 | 13703 | else |
76a01679 | 13704 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
13705 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
13706 | if (nargs > 1) | |
76a01679 JB |
13707 | { |
13708 | int tem; | |
5b4ee69b | 13709 | |
76a01679 JB |
13710 | for (tem = 1; tem < nargs; tem += 1) |
13711 | { | |
13712 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
13713 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
13714 | } | |
13715 | fputs_filtered (")", stream); | |
13716 | } | |
4c4b4cd2 | 13717 | return; |
14f9c5c9 | 13718 | |
4c4b4cd2 | 13719 | case UNOP_QUAL: |
4c4b4cd2 PH |
13720 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
13721 | fputs_filtered ("'(", stream); | |
13722 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
13723 | fputs_filtered (")", stream); | |
13724 | return; | |
14f9c5c9 | 13725 | |
4c4b4cd2 | 13726 | case UNOP_IN_RANGE: |
323e0a4a | 13727 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 13728 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 13729 | fputs_filtered (" in ", stream); |
79d43c61 TT |
13730 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, |
13731 | &type_print_raw_options); | |
4c4b4cd2 | 13732 | return; |
52ce6436 PH |
13733 | |
13734 | case OP_DISCRETE_RANGE: | |
13735 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13736 | fputs_filtered ("..", stream); | |
13737 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13738 | return; | |
13739 | ||
13740 | case OP_OTHERS: | |
13741 | fputs_filtered ("others => ", stream); | |
13742 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13743 | return; | |
13744 | ||
13745 | case OP_CHOICES: | |
13746 | for (i = 0; i < nargs-1; i += 1) | |
13747 | { | |
13748 | if (i > 0) | |
13749 | fputs_filtered ("|", stream); | |
13750 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13751 | } | |
13752 | fputs_filtered (" => ", stream); | |
13753 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13754 | return; | |
13755 | ||
13756 | case OP_POSITIONAL: | |
13757 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13758 | return; | |
13759 | ||
13760 | case OP_AGGREGATE: | |
13761 | fputs_filtered ("(", stream); | |
13762 | for (i = 0; i < nargs; i += 1) | |
13763 | { | |
13764 | if (i > 0) | |
13765 | fputs_filtered (", ", stream); | |
13766 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
13767 | } | |
13768 | fputs_filtered (")", stream); | |
13769 | return; | |
4c4b4cd2 PH |
13770 | } |
13771 | } | |
14f9c5c9 AS |
13772 | |
13773 | /* Table mapping opcodes into strings for printing operators | |
13774 | and precedences of the operators. */ | |
13775 | ||
d2e4a39e AS |
13776 | static const struct op_print ada_op_print_tab[] = { |
13777 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
13778 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
13779 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
13780 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
13781 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
13782 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
13783 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
13784 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
13785 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
13786 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
13787 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
13788 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
13789 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
13790 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
13791 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
13792 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
13793 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
13794 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
13795 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
13796 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
13797 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
13798 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
13799 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
13800 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
13801 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
13802 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
13803 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
13804 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
13805 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
13806 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
13807 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
f486487f | 13808 | {NULL, OP_NULL, PREC_SUFFIX, 0} |
14f9c5c9 AS |
13809 | }; |
13810 | \f | |
72d5681a PH |
13811 | enum ada_primitive_types { |
13812 | ada_primitive_type_int, | |
13813 | ada_primitive_type_long, | |
13814 | ada_primitive_type_short, | |
13815 | ada_primitive_type_char, | |
13816 | ada_primitive_type_float, | |
13817 | ada_primitive_type_double, | |
13818 | ada_primitive_type_void, | |
13819 | ada_primitive_type_long_long, | |
13820 | ada_primitive_type_long_double, | |
13821 | ada_primitive_type_natural, | |
13822 | ada_primitive_type_positive, | |
13823 | ada_primitive_type_system_address, | |
13824 | nr_ada_primitive_types | |
13825 | }; | |
6c038f32 PH |
13826 | |
13827 | static void | |
d4a9a881 | 13828 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
13829 | struct language_arch_info *lai) |
13830 | { | |
d4a9a881 | 13831 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 13832 | |
72d5681a | 13833 | lai->primitive_type_vector |
d4a9a881 | 13834 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 13835 | struct type *); |
e9bb382b UW |
13836 | |
13837 | lai->primitive_type_vector [ada_primitive_type_int] | |
13838 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13839 | 0, "integer"); | |
13840 | lai->primitive_type_vector [ada_primitive_type_long] | |
13841 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
13842 | 0, "long_integer"); | |
13843 | lai->primitive_type_vector [ada_primitive_type_short] | |
13844 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
13845 | 0, "short_integer"); | |
13846 | lai->string_char_type | |
13847 | = lai->primitive_type_vector [ada_primitive_type_char] | |
cd7c1778 | 13848 | = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); |
e9bb382b UW |
13849 | lai->primitive_type_vector [ada_primitive_type_float] |
13850 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 13851 | "float", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
13852 | lai->primitive_type_vector [ada_primitive_type_double] |
13853 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 13854 | "long_float", gdbarch_double_format (gdbarch)); |
e9bb382b UW |
13855 | lai->primitive_type_vector [ada_primitive_type_long_long] |
13856 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
13857 | 0, "long_long_integer"); | |
13858 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
5f3bceb6 | 13859 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), |
49f190bc | 13860 | "long_long_float", gdbarch_long_double_format (gdbarch)); |
e9bb382b UW |
13861 | lai->primitive_type_vector [ada_primitive_type_natural] |
13862 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13863 | 0, "natural"); | |
13864 | lai->primitive_type_vector [ada_primitive_type_positive] | |
13865 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
13866 | 0, "positive"); | |
13867 | lai->primitive_type_vector [ada_primitive_type_void] | |
13868 | = builtin->builtin_void; | |
13869 | ||
13870 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
13871 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
13872 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
13873 | = "system__address"; | |
fbb06eb1 | 13874 | |
47e729a8 | 13875 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 13876 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 13877 | } |
6c038f32 PH |
13878 | \f |
13879 | /* Language vector */ | |
13880 | ||
13881 | /* Not really used, but needed in the ada_language_defn. */ | |
13882 | ||
13883 | static void | |
6c7a06a3 | 13884 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 13885 | { |
6c7a06a3 | 13886 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
13887 | } |
13888 | ||
13889 | static int | |
410a0ff2 | 13890 | parse (struct parser_state *ps) |
6c038f32 PH |
13891 | { |
13892 | warnings_issued = 0; | |
410a0ff2 | 13893 | return ada_parse (ps); |
6c038f32 PH |
13894 | } |
13895 | ||
13896 | static const struct exp_descriptor ada_exp_descriptor = { | |
13897 | ada_print_subexp, | |
13898 | ada_operator_length, | |
c0201579 | 13899 | ada_operator_check, |
6c038f32 PH |
13900 | ada_op_name, |
13901 | ada_dump_subexp_body, | |
13902 | ada_evaluate_subexp | |
13903 | }; | |
13904 | ||
1a119f36 | 13905 | /* Implement the "la_get_symbol_name_cmp" language_defn method |
74ccd7f5 JB |
13906 | for Ada. */ |
13907 | ||
1a119f36 JB |
13908 | static symbol_name_cmp_ftype |
13909 | ada_get_symbol_name_cmp (const char *lookup_name) | |
74ccd7f5 JB |
13910 | { |
13911 | if (should_use_wild_match (lookup_name)) | |
13912 | return wild_match; | |
13913 | else | |
13914 | return compare_names; | |
13915 | } | |
13916 | ||
a5ee536b JB |
13917 | /* Implement the "la_read_var_value" language_defn method for Ada. */ |
13918 | ||
13919 | static struct value * | |
63e43d3a PMR |
13920 | ada_read_var_value (struct symbol *var, const struct block *var_block, |
13921 | struct frame_info *frame) | |
a5ee536b | 13922 | { |
3977b71f | 13923 | const struct block *frame_block = NULL; |
a5ee536b JB |
13924 | struct symbol *renaming_sym = NULL; |
13925 | ||
13926 | /* The only case where default_read_var_value is not sufficient | |
13927 | is when VAR is a renaming... */ | |
13928 | if (frame) | |
13929 | frame_block = get_frame_block (frame, NULL); | |
13930 | if (frame_block) | |
13931 | renaming_sym = ada_find_renaming_symbol (var, frame_block); | |
13932 | if (renaming_sym != NULL) | |
13933 | return ada_read_renaming_var_value (renaming_sym, frame_block); | |
13934 | ||
13935 | /* This is a typical case where we expect the default_read_var_value | |
13936 | function to work. */ | |
63e43d3a | 13937 | return default_read_var_value (var, var_block, frame); |
a5ee536b JB |
13938 | } |
13939 | ||
56618e20 TT |
13940 | static const char *ada_extensions[] = |
13941 | { | |
13942 | ".adb", ".ads", ".a", ".ada", ".dg", NULL | |
13943 | }; | |
13944 | ||
47e77640 | 13945 | extern const struct language_defn ada_language_defn = { |
6c038f32 | 13946 | "ada", /* Language name */ |
6abde28f | 13947 | "Ada", |
6c038f32 | 13948 | language_ada, |
6c038f32 | 13949 | range_check_off, |
6c038f32 PH |
13950 | case_sensitive_on, /* Yes, Ada is case-insensitive, but |
13951 | that's not quite what this means. */ | |
6c038f32 | 13952 | array_row_major, |
9a044a89 | 13953 | macro_expansion_no, |
56618e20 | 13954 | ada_extensions, |
6c038f32 PH |
13955 | &ada_exp_descriptor, |
13956 | parse, | |
b3f11165 | 13957 | ada_yyerror, |
6c038f32 PH |
13958 | resolve, |
13959 | ada_printchar, /* Print a character constant */ | |
13960 | ada_printstr, /* Function to print string constant */ | |
13961 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 13962 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 13963 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
13964 | ada_val_print, /* Print a value using appropriate syntax */ |
13965 | ada_value_print, /* Print a top-level value */ | |
a5ee536b | 13966 | ada_read_var_value, /* la_read_var_value */ |
6c038f32 | 13967 | NULL, /* Language specific skip_trampoline */ |
2b2d9e11 | 13968 | NULL, /* name_of_this */ |
6c038f32 PH |
13969 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
13970 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
13971 | ada_la_decode, /* Language specific symbol demangler */ | |
8b302db8 | 13972 | ada_sniff_from_mangled_name, |
0963b4bd MS |
13973 | NULL, /* Language specific |
13974 | class_name_from_physname */ | |
6c038f32 PH |
13975 | ada_op_print_tab, /* expression operators for printing */ |
13976 | 0, /* c-style arrays */ | |
13977 | 1, /* String lower bound */ | |
6c038f32 | 13978 | ada_get_gdb_completer_word_break_characters, |
eb3ff9a5 | 13979 | ada_collect_symbol_completion_matches, |
72d5681a | 13980 | ada_language_arch_info, |
e79af960 | 13981 | ada_print_array_index, |
41f1b697 | 13982 | default_pass_by_reference, |
ae6a3a4c | 13983 | c_get_string, |
43cc5389 | 13984 | c_watch_location_expression, |
1a119f36 | 13985 | ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ |
f8eba3c6 | 13986 | ada_iterate_over_symbols, |
a53b64ea | 13987 | &ada_varobj_ops, |
bb2ec1b3 TT |
13988 | NULL, |
13989 | NULL, | |
6c038f32 PH |
13990 | LANG_MAGIC |
13991 | }; | |
13992 | ||
5bf03f13 JB |
13993 | /* Command-list for the "set/show ada" prefix command. */ |
13994 | static struct cmd_list_element *set_ada_list; | |
13995 | static struct cmd_list_element *show_ada_list; | |
13996 | ||
13997 | /* Implement the "set ada" prefix command. */ | |
13998 | ||
13999 | static void | |
14000 | set_ada_command (char *arg, int from_tty) | |
14001 | { | |
14002 | printf_unfiltered (_(\ | |
14003 | "\"set ada\" must be followed by the name of a setting.\n")); | |
635c7e8a | 14004 | help_list (set_ada_list, "set ada ", all_commands, gdb_stdout); |
5bf03f13 JB |
14005 | } |
14006 | ||
14007 | /* Implement the "show ada" prefix command. */ | |
14008 | ||
14009 | static void | |
14010 | show_ada_command (char *args, int from_tty) | |
14011 | { | |
14012 | cmd_show_list (show_ada_list, from_tty, ""); | |
14013 | } | |
14014 | ||
2060206e PA |
14015 | static void |
14016 | initialize_ada_catchpoint_ops (void) | |
14017 | { | |
14018 | struct breakpoint_ops *ops; | |
14019 | ||
14020 | initialize_breakpoint_ops (); | |
14021 | ||
14022 | ops = &catch_exception_breakpoint_ops; | |
14023 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14024 | ops->allocate_location = allocate_location_catch_exception; |
14025 | ops->re_set = re_set_catch_exception; | |
14026 | ops->check_status = check_status_catch_exception; | |
14027 | ops->print_it = print_it_catch_exception; | |
14028 | ops->print_one = print_one_catch_exception; | |
14029 | ops->print_mention = print_mention_catch_exception; | |
14030 | ops->print_recreate = print_recreate_catch_exception; | |
14031 | ||
14032 | ops = &catch_exception_unhandled_breakpoint_ops; | |
14033 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14034 | ops->allocate_location = allocate_location_catch_exception_unhandled; |
14035 | ops->re_set = re_set_catch_exception_unhandled; | |
14036 | ops->check_status = check_status_catch_exception_unhandled; | |
14037 | ops->print_it = print_it_catch_exception_unhandled; | |
14038 | ops->print_one = print_one_catch_exception_unhandled; | |
14039 | ops->print_mention = print_mention_catch_exception_unhandled; | |
14040 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
14041 | ||
14042 | ops = &catch_assert_breakpoint_ops; | |
14043 | *ops = bkpt_breakpoint_ops; | |
2060206e PA |
14044 | ops->allocate_location = allocate_location_catch_assert; |
14045 | ops->re_set = re_set_catch_assert; | |
14046 | ops->check_status = check_status_catch_assert; | |
14047 | ops->print_it = print_it_catch_assert; | |
14048 | ops->print_one = print_one_catch_assert; | |
14049 | ops->print_mention = print_mention_catch_assert; | |
14050 | ops->print_recreate = print_recreate_catch_assert; | |
14051 | } | |
14052 | ||
3d9434b5 JB |
14053 | /* This module's 'new_objfile' observer. */ |
14054 | ||
14055 | static void | |
14056 | ada_new_objfile_observer (struct objfile *objfile) | |
14057 | { | |
14058 | ada_clear_symbol_cache (); | |
14059 | } | |
14060 | ||
14061 | /* This module's 'free_objfile' observer. */ | |
14062 | ||
14063 | static void | |
14064 | ada_free_objfile_observer (struct objfile *objfile) | |
14065 | { | |
14066 | ada_clear_symbol_cache (); | |
14067 | } | |
14068 | ||
d2e4a39e | 14069 | void |
6c038f32 | 14070 | _initialize_ada_language (void) |
14f9c5c9 | 14071 | { |
2060206e PA |
14072 | initialize_ada_catchpoint_ops (); |
14073 | ||
5bf03f13 JB |
14074 | add_prefix_cmd ("ada", no_class, set_ada_command, |
14075 | _("Prefix command for changing Ada-specfic settings"), | |
14076 | &set_ada_list, "set ada ", 0, &setlist); | |
14077 | ||
14078 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
14079 | _("Generic command for showing Ada-specific settings."), | |
14080 | &show_ada_list, "show ada ", 0, &showlist); | |
14081 | ||
14082 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
14083 | &trust_pad_over_xvs, _("\ | |
14084 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
14085 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
14086 | _("\ | |
14087 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
14088 | should normally trust the contents of PAD types, but certain older versions\n\ | |
14089 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
14090 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
14091 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
14092 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
14093 | this option to \"off\" unless necessary."), | |
14094 | NULL, NULL, &set_ada_list, &show_ada_list); | |
14095 | ||
d72413e6 PMR |
14096 | add_setshow_boolean_cmd ("print-signatures", class_vars, |
14097 | &print_signatures, _("\ | |
14098 | Enable or disable the output of formal and return types for functions in the \ | |
14099 | overloads selection menu"), _("\ | |
14100 | Show whether the output of formal and return types for functions in the \ | |
14101 | overloads selection menu is activated"), | |
14102 | NULL, NULL, NULL, &set_ada_list, &show_ada_list); | |
14103 | ||
9ac4176b PA |
14104 | add_catch_command ("exception", _("\ |
14105 | Catch Ada exceptions, when raised.\n\ | |
14106 | With an argument, catch only exceptions with the given name."), | |
14107 | catch_ada_exception_command, | |
14108 | NULL, | |
14109 | CATCH_PERMANENT, | |
14110 | CATCH_TEMPORARY); | |
14111 | add_catch_command ("assert", _("\ | |
14112 | Catch failed Ada assertions, when raised.\n\ | |
14113 | With an argument, catch only exceptions with the given name."), | |
14114 | catch_assert_command, | |
14115 | NULL, | |
14116 | CATCH_PERMANENT, | |
14117 | CATCH_TEMPORARY); | |
14118 | ||
6c038f32 | 14119 | varsize_limit = 65536; |
6c038f32 | 14120 | |
778865d3 JB |
14121 | add_info ("exceptions", info_exceptions_command, |
14122 | _("\ | |
14123 | List all Ada exception names.\n\ | |
14124 | If a regular expression is passed as an argument, only those matching\n\ | |
14125 | the regular expression are listed.")); | |
14126 | ||
c6044dd1 JB |
14127 | add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd, |
14128 | _("Set Ada maintenance-related variables."), | |
14129 | &maint_set_ada_cmdlist, "maintenance set ada ", | |
14130 | 0/*allow-unknown*/, &maintenance_set_cmdlist); | |
14131 | ||
14132 | add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd, | |
14133 | _("Show Ada maintenance-related variables"), | |
14134 | &maint_show_ada_cmdlist, "maintenance show ada ", | |
14135 | 0/*allow-unknown*/, &maintenance_show_cmdlist); | |
14136 | ||
14137 | add_setshow_boolean_cmd | |
14138 | ("ignore-descriptive-types", class_maintenance, | |
14139 | &ada_ignore_descriptive_types_p, | |
14140 | _("Set whether descriptive types generated by GNAT should be ignored."), | |
14141 | _("Show whether descriptive types generated by GNAT should be ignored."), | |
14142 | _("\ | |
14143 | When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\ | |
14144 | DWARF attribute."), | |
14145 | NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist); | |
14146 | ||
6c038f32 PH |
14147 | obstack_init (&symbol_list_obstack); |
14148 | ||
14149 | decoded_names_store = htab_create_alloc | |
14150 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
14151 | NULL, xcalloc, xfree); | |
6b69afc4 | 14152 | |
3d9434b5 JB |
14153 | /* The ada-lang observers. */ |
14154 | observer_attach_new_objfile (ada_new_objfile_observer); | |
14155 | observer_attach_free_objfile (ada_free_objfile_observer); | |
e802dbe0 | 14156 | observer_attach_inferior_exit (ada_inferior_exit); |
ee01b665 JB |
14157 | |
14158 | /* Setup various context-specific data. */ | |
e802dbe0 | 14159 | ada_inferior_data |
8e260fc0 | 14160 | = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); |
ee01b665 JB |
14161 | ada_pspace_data_handle |
14162 | = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup); | |
14f9c5c9 | 14163 | } |