]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
(Ada) Cleanup code by using ada_is_access_to_unconstrained_array call.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
39e7af3e 544/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 545
39e7af3e 546static std::string
41d27058
JB
547add_angle_brackets (const char *str)
548{
39e7af3e 549 return string_printf ("<%s>", str);
41d27058 550}
96d887e8 551
67cb5b2d 552static const char *
4c4b4cd2
PH
553ada_get_gdb_completer_word_break_characters (void)
554{
555 return ada_completer_word_break_characters;
556}
557
e79af960
JB
558/* Print an array element index using the Ada syntax. */
559
560static void
561ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 562 const struct value_print_options *options)
e79af960 563{
79a45b7d 564 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
565 fprintf_filtered (stream, " => ");
566}
567
f27cf670 568/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 570 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 571
f27cf670
AS
572void *
573grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 574{
d2e4a39e
AS
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
4c4b4cd2 579 *size = min_size;
f27cf670 580 vect = xrealloc (vect, *size * element_size);
d2e4a39e 581 }
f27cf670 582 return vect;
14f9c5c9
AS
583}
584
585/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 586 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
587
588static int
ebf56fd3 589field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
590{
591 int len = strlen (target);
5b4ee69b 592
d2e4a39e 593 return
4c4b4cd2
PH
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
61012eef 596 || (startswith (field_name + len, "___")
76a01679
JB
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
14f9c5c9
AS
599}
600
601
872c8b51
JB
602/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
609
610int
611ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613{
614 int fieldno;
872c8b51
JB
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
619 return fieldno;
620
621 if (!maybe_missing)
323e0a4a 622 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 623 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
624
625 return -1;
626}
627
628/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
629
630int
d2e4a39e 631ada_name_prefix_len (const char *name)
14f9c5c9
AS
632{
633 if (name == NULL)
634 return 0;
d2e4a39e 635 else
14f9c5c9 636 {
d2e4a39e 637 const char *p = strstr (name, "___");
5b4ee69b 638
14f9c5c9 639 if (p == NULL)
4c4b4cd2 640 return strlen (name);
14f9c5c9 641 else
4c4b4cd2 642 return p - name;
14f9c5c9
AS
643 }
644}
645
4c4b4cd2
PH
646/* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
14f9c5c9 649static int
d2e4a39e 650is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
651{
652 int len1, len2;
5b4ee69b 653
14f9c5c9
AS
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
4c4b4cd2 658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
659}
660
4c4b4cd2
PH
661/* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
14f9c5c9 663
d2e4a39e 664static struct value *
4c4b4cd2 665coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 666{
61ee279c 667 type = ada_check_typedef (type);
df407dfe 668 if (value_type (val) == type)
4c4b4cd2 669 return val;
d2e4a39e 670 else
14f9c5c9 671 {
4c4b4cd2
PH
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
c1b5a1a6 676 ada_ensure_varsize_limit (type);
4c4b4cd2 677
41e8491f
JK
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
9a0dc9e3 684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 685 }
74bcbdf3 686 set_value_component_location (result, val);
9bbda503
AC
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
42ae5230 689 set_value_address (result, value_address (val));
14f9c5c9
AS
690 return result;
691 }
692}
693
fc1a4b47
AC
694static const gdb_byte *
695cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
696{
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701}
702
703static CORE_ADDR
ebf56fd3 704cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
705{
706 if (address == 0)
707 return 0;
d2e4a39e 708 else
14f9c5c9
AS
709 return address + offset;
710}
711
4c4b4cd2
PH
712/* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
a2249542 716
77109804
AC
717/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
a0b31db1 719static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 720
14f9c5c9 721static void
a2249542 722lim_warning (const char *format, ...)
14f9c5c9 723{
a2249542 724 va_list args;
a2249542 725
5b4ee69b 726 va_start (args, format);
4c4b4cd2
PH
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
a2249542
MK
729 vwarning (format, args);
730
731 va_end (args);
4c4b4cd2
PH
732}
733
714e53ab
PH
734/* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
c1b5a1a6
JB
738void
739ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
740{
741 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 742 error (_("object size is larger than varsize-limit"));
714e53ab
PH
743}
744
0963b4bd 745/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 746static LONGEST
c3e5cd34 747max_of_size (int size)
4c4b4cd2 748{
76a01679 749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 750
76a01679 751 return top_bit | (top_bit - 1);
4c4b4cd2
PH
752}
753
0963b4bd 754/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756min_of_size (int size)
4c4b4cd2 757{
c3e5cd34 758 return -max_of_size (size) - 1;
4c4b4cd2
PH
759}
760
0963b4bd 761/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 762static ULONGEST
c3e5cd34 763umax_of_size (int size)
4c4b4cd2 764{
76a01679 765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 766
76a01679 767 return top_bit | (top_bit - 1);
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
771static LONGEST
772max_of_type (struct type *t)
4c4b4cd2 773{
c3e5cd34
PH
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778}
779
0963b4bd 780/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782min_of_type (struct type *t)
783{
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
788}
789
790/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_HIGH_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return max_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
808 }
809}
810
14e75d8e 811/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
812LONGEST
813ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 814{
c3345124 815 type = resolve_dynamic_type (type, NULL, 0);
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
e83e4e24 911 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
e83e4e24 934 return main_program_name.get ();
96d887e8
PH
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939}
14f9c5c9 940\f
4c4b4cd2 941 /* Symbols */
d2e4a39e 942
4c4b4cd2
PH
943/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
14f9c5c9 945
d2e4a39e
AS
946const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
14f9c5c9
AS
969};
970
b5ec771e
PA
971/* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
4c4b4cd2 975
b5ec771e
PA
976static char *
977ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 978{
4c4b4cd2
PH
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
d2e4a39e 981 const char *p;
14f9c5c9 982 int k;
d2e4a39e 983
4c4b4cd2 984 if (decoded == NULL)
14f9c5c9
AS
985 return NULL;
986
4c4b4cd2
PH
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
14f9c5c9
AS
989
990 k = 0;
4c4b4cd2 991 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 992 {
cdc7bb92 993 if (*p == '.')
4c4b4cd2
PH
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
14f9c5c9 998 else if (*p == '"')
4c4b4cd2
PH
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1265e4aa 1003 mapping->encoded != NULL
61012eef 1004 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
b5ec771e
PA
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
4c4b4cd2
PH
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
d2e4a39e 1017 else
4c4b4cd2
PH
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
14f9c5c9
AS
1022 }
1023
4c4b4cd2
PH
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
14f9c5c9
AS
1026}
1027
b5ec771e
PA
1028/* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031char *
1032ada_encode (const char *decoded)
1033{
1034 return ada_encode_1 (decoded, true);
1035}
1036
14f9c5c9 1037/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
d2e4a39e
AS
1041char *
1042ada_fold_name (const char *name)
14f9c5c9 1043{
d2e4a39e 1044 static char *fold_buffer = NULL;
14f9c5c9
AS
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
d2e4a39e 1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1049
1050 if (name[0] == '\'')
1051 {
d2e4a39e
AS
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1054 }
1055 else
1056 {
1057 int i;
5b4ee69b 1058
14f9c5c9 1059 for (i = 0; i <= len; i += 1)
4c4b4cd2 1060 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1061 }
1062
1063 return fold_buffer;
1064}
1065
529cad9c
PH
1066/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068static int
1069is_lower_alphanum (const char c)
1070{
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072}
1073
c90092fe
JB
1074/* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
29480c32
JB
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
c90092fe 1081
29480c32
JB
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086static void
1087ada_remove_trailing_digits (const char *encoded, int *len)
1088{
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
5b4ee69b 1092
29480c32
JB
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
61012eef 1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1100 *len = i - 2;
61012eef 1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1102 *len = i - 1;
1103 }
1104}
1105
1106/* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109static void
1110ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111{
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
0963b4bd 1117 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126}
1127
69fadcdf
JB
1128/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130static void
1131ada_remove_Xbn_suffix (const char *encoded, int *len)
1132{
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146}
1147
29480c32
JB
1148/* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
14f9c5c9 1151
4c4b4cd2 1152 The resulting string is valid until the next call of ada_decode.
29480c32 1153 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1154 is returned. */
1155
1156const char *
1157ada_decode (const char *encoded)
14f9c5c9
AS
1158{
1159 int i, j;
1160 int len0;
d2e4a39e 1161 const char *p;
4c4b4cd2 1162 char *decoded;
14f9c5c9 1163 int at_start_name;
4c4b4cd2
PH
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
d2e4a39e 1166
0d81f350
JG
1167 /* With function descriptors on PPC64, the value of a symbol named
1168 ".FN", if it exists, is the entry point of the function "FN". */
1169 if (encoded[0] == '.')
1170 encoded += 1;
1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2817 {
2818 int src_offset;
2819
2820 if (is_scalar_type (check_typedef (value_type (component))))
2821 src_offset
2822 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2823 else
2824 src_offset = 0;
2825 move_bits (value_contents_writeable (container) + offset_in_container,
2826 value_bitpos (container) + bit_offset_in_container,
2827 value_contents (val), src_offset, bits, 1);
2828 }
52ce6436 2829 else
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2831 value_bitpos (container) + bit_offset_in_container,
50810684 2832 value_contents (val), 0, bits, 0);
7c512744
JB
2833}
2834
736ade86
XR
2835/* Determine if TYPE is an access to an unconstrained array. */
2836
d91e9ea8 2837bool
736ade86
XR
2838ada_is_access_to_unconstrained_array (struct type *type)
2839{
2840 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2841 && is_thick_pntr (ada_typedef_target_type (type)));
2842}
2843
4c4b4cd2
PH
2844/* The value of the element of array ARR at the ARITY indices given in IND.
2845 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2846 thereto. */
2847
d2e4a39e
AS
2848struct value *
2849ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2850{
2851 int k;
d2e4a39e
AS
2852 struct value *elt;
2853 struct type *elt_type;
14f9c5c9
AS
2854
2855 elt = ada_coerce_to_simple_array (arr);
2856
df407dfe 2857 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2858 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2859 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2860 return value_subscript_packed (elt, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
b9c50e9a
XR
2864 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2865
14f9c5c9 2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2867 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2868
2497b498 2869 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2870
2871 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2872 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2873 {
2874 /* The element is a typedef to an unconstrained array,
2875 except that the value_subscript call stripped the
2876 typedef layer. The typedef layer is GNAT's way to
2877 specify that the element is, at the source level, an
2878 access to the unconstrained array, rather than the
2879 unconstrained array. So, we need to restore that
2880 typedef layer, which we can do by forcing the element's
2881 type back to its original type. Otherwise, the returned
2882 value is going to be printed as the array, rather
2883 than as an access. Another symptom of the same issue
2884 would be that an expression trying to dereference the
2885 element would also be improperly rejected. */
2886 deprecated_set_value_type (elt, saved_elt_type);
2887 }
2888
2889 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2890 }
b9c50e9a 2891
14f9c5c9
AS
2892 return elt;
2893}
2894
deede10c
JB
2895/* Assuming ARR is a pointer to a GDB array, the value of the element
2896 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2897 Does not read the entire array into memory.
2898
2899 Note: Unlike what one would expect, this function is used instead of
2900 ada_value_subscript for basically all non-packed array types. The reason
2901 for this is that a side effect of doing our own pointer arithmetics instead
2902 of relying on value_subscript is that there is no implicit typedef peeling.
2903 This is important for arrays of array accesses, where it allows us to
2904 preserve the fact that the array's element is an array access, where the
2905 access part os encoded in a typedef layer. */
14f9c5c9 2906
2c0b251b 2907static struct value *
deede10c 2908ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2909{
2910 int k;
919e6dbe 2911 struct value *array_ind = ada_value_ind (arr);
deede10c 2912 struct type *type
919e6dbe
PMR
2913 = check_typedef (value_enclosing_type (array_ind));
2914
2915 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2916 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2917 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2918
2919 for (k = 0; k < arity; k += 1)
2920 {
2921 LONGEST lwb, upb;
aa715135 2922 struct value *lwb_value;
14f9c5c9
AS
2923
2924 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2925 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2926 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2927 value_copy (arr));
14f9c5c9 2928 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2929 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2930 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2931 type = TYPE_TARGET_TYPE (type);
2932 }
2933
2934 return value_ind (arr);
2935}
2936
0b5d8877 2937/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2938 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2939 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2940 this array is LOW, as per Ada rules. */
0b5d8877 2941static struct value *
f5938064
JG
2942ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2943 int low, int high)
0b5d8877 2944{
b0dd7688 2945 struct type *type0 = ada_check_typedef (type);
aa715135 2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2947 struct type *index_type
aa715135 2948 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2949 struct type *slice_type = create_array_type_with_stride
2950 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2951 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2952 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2953 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2954 LONGEST base_low_pos, low_pos;
2955 CORE_ADDR base;
2956
2957 if (!discrete_position (base_index_type, low, &low_pos)
2958 || !discrete_position (base_index_type, base_low, &base_low_pos))
2959 {
2960 warning (_("unable to get positions in slice, use bounds instead"));
2961 low_pos = low;
2962 base_low_pos = base_low;
2963 }
5b4ee69b 2964
aa715135
JG
2965 base = value_as_address (array_ptr)
2966 + ((low_pos - base_low_pos)
2967 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2968 return value_at_lazy (slice_type, base);
0b5d8877
PH
2969}
2970
2971
2972static struct value *
2973ada_value_slice (struct value *array, int low, int high)
2974{
b0dd7688 2975 struct type *type = ada_check_typedef (value_type (array));
aa715135 2976 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2977 struct type *index_type
2978 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2979 struct type *slice_type = create_array_type_with_stride
2980 (NULL, TYPE_TARGET_TYPE (type), index_type,
2981 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2982 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2983 LONGEST low_pos, high_pos;
5b4ee69b 2984
aa715135
JG
2985 if (!discrete_position (base_index_type, low, &low_pos)
2986 || !discrete_position (base_index_type, high, &high_pos))
2987 {
2988 warning (_("unable to get positions in slice, use bounds instead"));
2989 low_pos = low;
2990 high_pos = high;
2991 }
2992
2993 return value_cast (slice_type,
2994 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2995}
2996
14f9c5c9
AS
2997/* If type is a record type in the form of a standard GNAT array
2998 descriptor, returns the number of dimensions for type. If arr is a
2999 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 3000 type designation. Otherwise, returns 0. */
14f9c5c9
AS
3001
3002int
d2e4a39e 3003ada_array_arity (struct type *type)
14f9c5c9
AS
3004{
3005 int arity;
3006
3007 if (type == NULL)
3008 return 0;
3009
3010 type = desc_base_type (type);
3011
3012 arity = 0;
d2e4a39e 3013 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 3014 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
3015 else
3016 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 3017 {
4c4b4cd2 3018 arity += 1;
61ee279c 3019 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 3020 }
d2e4a39e 3021
14f9c5c9
AS
3022 return arity;
3023}
3024
3025/* If TYPE is a record type in the form of a standard GNAT array
3026 descriptor or a simple array type, returns the element type for
3027 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 3028 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 3029
d2e4a39e
AS
3030struct type *
3031ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3032{
3033 type = desc_base_type (type);
3034
d2e4a39e 3035 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3036 {
3037 int k;
d2e4a39e 3038 struct type *p_array_type;
14f9c5c9 3039
556bdfd4 3040 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3041
3042 k = ada_array_arity (type);
3043 if (k == 0)
4c4b4cd2 3044 return NULL;
d2e4a39e 3045
4c4b4cd2 3046 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3047 if (nindices >= 0 && k > nindices)
4c4b4cd2 3048 k = nindices;
d2e4a39e 3049 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3050 {
61ee279c 3051 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3052 k -= 1;
3053 }
14f9c5c9
AS
3054 return p_array_type;
3055 }
3056 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3057 {
3058 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3059 {
3060 type = TYPE_TARGET_TYPE (type);
3061 nindices -= 1;
3062 }
14f9c5c9
AS
3063 return type;
3064 }
3065
3066 return NULL;
3067}
3068
4c4b4cd2 3069/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3070 Does not examine memory. Throws an error if N is invalid or TYPE
3071 is not an array type. NAME is the name of the Ada attribute being
3072 evaluated ('range, 'first, 'last, or 'length); it is used in building
3073 the error message. */
14f9c5c9 3074
1eea4ebd
UW
3075static struct type *
3076ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3077{
4c4b4cd2
PH
3078 struct type *result_type;
3079
14f9c5c9
AS
3080 type = desc_base_type (type);
3081
1eea4ebd
UW
3082 if (n < 0 || n > ada_array_arity (type))
3083 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3084
4c4b4cd2 3085 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3086 {
3087 int i;
3088
3089 for (i = 1; i < n; i += 1)
4c4b4cd2 3090 type = TYPE_TARGET_TYPE (type);
262452ec 3091 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3092 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3093 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3094 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3095 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3096 result_type = NULL;
14f9c5c9 3097 }
d2e4a39e 3098 else
1eea4ebd
UW
3099 {
3100 result_type = desc_index_type (desc_bounds_type (type), n);
3101 if (result_type == NULL)
3102 error (_("attempt to take bound of something that is not an array"));
3103 }
3104
3105 return result_type;
14f9c5c9
AS
3106}
3107
3108/* Given that arr is an array type, returns the lower bound of the
3109 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3110 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3111 array-descriptor type. It works for other arrays with bounds supplied
3112 by run-time quantities other than discriminants. */
14f9c5c9 3113
abb68b3e 3114static LONGEST
fb5e3d5c 3115ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3116{
8a48ac95 3117 struct type *type, *index_type_desc, *index_type;
1ce677a4 3118 int i;
262452ec
JK
3119
3120 gdb_assert (which == 0 || which == 1);
14f9c5c9 3121
ad82864c
JB
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3124
4c4b4cd2 3125 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3126 return (LONGEST) - which;
14f9c5c9
AS
3127
3128 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3129 type = TYPE_TARGET_TYPE (arr_type);
3130 else
3131 type = arr_type;
3132
bafffb51
JB
3133 if (TYPE_FIXED_INSTANCE (type))
3134 {
3135 /* The array has already been fixed, so we do not need to
3136 check the parallel ___XA type again. That encoding has
3137 already been applied, so ignore it now. */
3138 index_type_desc = NULL;
3139 }
3140 else
3141 {
3142 index_type_desc = ada_find_parallel_type (type, "___XA");
3143 ada_fixup_array_indexes_type (index_type_desc);
3144 }
3145
262452ec 3146 if (index_type_desc != NULL)
28c85d6c
JB
3147 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3148 NULL);
262452ec 3149 else
8a48ac95
JB
3150 {
3151 struct type *elt_type = check_typedef (type);
3152
3153 for (i = 1; i < n; i++)
3154 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3155
3156 index_type = TYPE_INDEX_TYPE (elt_type);
3157 }
262452ec 3158
43bbcdc2
PH
3159 return
3160 (LONGEST) (which == 0
3161 ? ada_discrete_type_low_bound (index_type)
3162 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3163}
3164
3165/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3166 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3167 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3168 supplied by run-time quantities other than discriminants. */
14f9c5c9 3169
1eea4ebd 3170static LONGEST
4dc81987 3171ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3172{
eb479039
JB
3173 struct type *arr_type;
3174
3175 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3176 arr = value_ind (arr);
3177 arr_type = value_enclosing_type (arr);
14f9c5c9 3178
ad82864c
JB
3179 if (ada_is_constrained_packed_array_type (arr_type))
3180 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3181 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3182 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3183 else
1eea4ebd 3184 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3185}
3186
3187/* Given that arr is an array value, returns the length of the
3188 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3189 supplied by run-time quantities other than discriminants.
3190 Does not work for arrays indexed by enumeration types with representation
3191 clauses at the moment. */
14f9c5c9 3192
1eea4ebd 3193static LONGEST
d2e4a39e 3194ada_array_length (struct value *arr, int n)
14f9c5c9 3195{
aa715135
JG
3196 struct type *arr_type, *index_type;
3197 int low, high;
eb479039
JB
3198
3199 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3200 arr = value_ind (arr);
3201 arr_type = value_enclosing_type (arr);
14f9c5c9 3202
ad82864c
JB
3203 if (ada_is_constrained_packed_array_type (arr_type))
3204 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3205
4c4b4cd2 3206 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3207 {
3208 low = ada_array_bound_from_type (arr_type, n, 0);
3209 high = ada_array_bound_from_type (arr_type, n, 1);
3210 }
14f9c5c9 3211 else
aa715135
JG
3212 {
3213 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3214 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3215 }
3216
f168693b 3217 arr_type = check_typedef (arr_type);
7150d33c 3218 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3219 if (index_type != NULL)
3220 {
3221 struct type *base_type;
3222 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3223 base_type = TYPE_TARGET_TYPE (index_type);
3224 else
3225 base_type = index_type;
3226
3227 low = pos_atr (value_from_longest (base_type, low));
3228 high = pos_atr (value_from_longest (base_type, high));
3229 }
3230 return high - low + 1;
4c4b4cd2
PH
3231}
3232
3233/* An empty array whose type is that of ARR_TYPE (an array type),
3234 with bounds LOW to LOW-1. */
3235
3236static struct value *
3237empty_array (struct type *arr_type, int low)
3238{
b0dd7688 3239 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3240 struct type *index_type
3241 = create_static_range_type
3242 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3243 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3244
0b5d8877 3245 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3246}
14f9c5c9 3247\f
d2e4a39e 3248
4c4b4cd2 3249 /* Name resolution */
14f9c5c9 3250
4c4b4cd2
PH
3251/* The "decoded" name for the user-definable Ada operator corresponding
3252 to OP. */
14f9c5c9 3253
d2e4a39e 3254static const char *
4c4b4cd2 3255ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3256{
3257 int i;
3258
4c4b4cd2 3259 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3260 {
3261 if (ada_opname_table[i].op == op)
4c4b4cd2 3262 return ada_opname_table[i].decoded;
14f9c5c9 3263 }
323e0a4a 3264 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3265}
3266
3267
4c4b4cd2
PH
3268/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3269 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3270 undefined namespace) and converts operators that are
3271 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3272 non-null, it provides a preferred result type [at the moment, only
3273 type void has any effect---causing procedures to be preferred over
3274 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3275 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3276
4c4b4cd2 3277static void
e9d9f57e 3278resolve (expression_up *expp, int void_context_p)
14f9c5c9 3279{
30b15541
UW
3280 struct type *context_type = NULL;
3281 int pc = 0;
3282
3283 if (void_context_p)
3284 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3285
3286 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3287}
3288
4c4b4cd2
PH
3289/* Resolve the operator of the subexpression beginning at
3290 position *POS of *EXPP. "Resolving" consists of replacing
3291 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3292 with their resolutions, replacing built-in operators with
3293 function calls to user-defined operators, where appropriate, and,
3294 when DEPROCEDURE_P is non-zero, converting function-valued variables
3295 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3296 are as in ada_resolve, above. */
14f9c5c9 3297
d2e4a39e 3298static struct value *
e9d9f57e 3299resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3300 struct type *context_type)
14f9c5c9
AS
3301{
3302 int pc = *pos;
3303 int i;
4c4b4cd2 3304 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3305 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3306 struct value **argvec; /* Vector of operand types (alloca'ed). */
3307 int nargs; /* Number of operands. */
52ce6436 3308 int oplen;
14f9c5c9
AS
3309
3310 argvec = NULL;
3311 nargs = 0;
e9d9f57e 3312 exp = expp->get ();
14f9c5c9 3313
52ce6436
PH
3314 /* Pass one: resolve operands, saving their types and updating *pos,
3315 if needed. */
14f9c5c9
AS
3316 switch (op)
3317 {
4c4b4cd2
PH
3318 case OP_FUNCALL:
3319 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3320 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3321 *pos += 7;
4c4b4cd2
PH
3322 else
3323 {
3324 *pos += 3;
3325 resolve_subexp (expp, pos, 0, NULL);
3326 }
3327 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3328 break;
3329
14f9c5c9 3330 case UNOP_ADDR:
4c4b4cd2
PH
3331 *pos += 1;
3332 resolve_subexp (expp, pos, 0, NULL);
3333 break;
3334
52ce6436
PH
3335 case UNOP_QUAL:
3336 *pos += 3;
17466c1a 3337 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3338 break;
3339
52ce6436 3340 case OP_ATR_MODULUS:
4c4b4cd2
PH
3341 case OP_ATR_SIZE:
3342 case OP_ATR_TAG:
4c4b4cd2
PH
3343 case OP_ATR_FIRST:
3344 case OP_ATR_LAST:
3345 case OP_ATR_LENGTH:
3346 case OP_ATR_POS:
3347 case OP_ATR_VAL:
4c4b4cd2
PH
3348 case OP_ATR_MIN:
3349 case OP_ATR_MAX:
52ce6436
PH
3350 case TERNOP_IN_RANGE:
3351 case BINOP_IN_BOUNDS:
3352 case UNOP_IN_RANGE:
3353 case OP_AGGREGATE:
3354 case OP_OTHERS:
3355 case OP_CHOICES:
3356 case OP_POSITIONAL:
3357 case OP_DISCRETE_RANGE:
3358 case OP_NAME:
3359 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3360 *pos += oplen;
14f9c5c9
AS
3361 break;
3362
3363 case BINOP_ASSIGN:
3364 {
4c4b4cd2
PH
3365 struct value *arg1;
3366
3367 *pos += 1;
3368 arg1 = resolve_subexp (expp, pos, 0, NULL);
3369 if (arg1 == NULL)
3370 resolve_subexp (expp, pos, 1, NULL);
3371 else
df407dfe 3372 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3373 break;
14f9c5c9
AS
3374 }
3375
4c4b4cd2 3376 case UNOP_CAST:
4c4b4cd2
PH
3377 *pos += 3;
3378 nargs = 1;
3379 break;
14f9c5c9 3380
4c4b4cd2
PH
3381 case BINOP_ADD:
3382 case BINOP_SUB:
3383 case BINOP_MUL:
3384 case BINOP_DIV:
3385 case BINOP_REM:
3386 case BINOP_MOD:
3387 case BINOP_EXP:
3388 case BINOP_CONCAT:
3389 case BINOP_LOGICAL_AND:
3390 case BINOP_LOGICAL_OR:
3391 case BINOP_BITWISE_AND:
3392 case BINOP_BITWISE_IOR:
3393 case BINOP_BITWISE_XOR:
14f9c5c9 3394
4c4b4cd2
PH
3395 case BINOP_EQUAL:
3396 case BINOP_NOTEQUAL:
3397 case BINOP_LESS:
3398 case BINOP_GTR:
3399 case BINOP_LEQ:
3400 case BINOP_GEQ:
14f9c5c9 3401
4c4b4cd2
PH
3402 case BINOP_REPEAT:
3403 case BINOP_SUBSCRIPT:
3404 case BINOP_COMMA:
40c8aaa9
JB
3405 *pos += 1;
3406 nargs = 2;
3407 break;
14f9c5c9 3408
4c4b4cd2
PH
3409 case UNOP_NEG:
3410 case UNOP_PLUS:
3411 case UNOP_LOGICAL_NOT:
3412 case UNOP_ABS:
3413 case UNOP_IND:
3414 *pos += 1;
3415 nargs = 1;
3416 break;
14f9c5c9 3417
4c4b4cd2 3418 case OP_LONG:
edd079d9 3419 case OP_FLOAT:
4c4b4cd2 3420 case OP_VAR_VALUE:
74ea4be4 3421 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3422 *pos += 4;
3423 break;
14f9c5c9 3424
4c4b4cd2
PH
3425 case OP_TYPE:
3426 case OP_BOOL:
3427 case OP_LAST:
4c4b4cd2
PH
3428 case OP_INTERNALVAR:
3429 *pos += 3;
3430 break;
14f9c5c9 3431
4c4b4cd2
PH
3432 case UNOP_MEMVAL:
3433 *pos += 3;
3434 nargs = 1;
3435 break;
3436
67f3407f
DJ
3437 case OP_REGISTER:
3438 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3439 break;
3440
4c4b4cd2
PH
3441 case STRUCTOP_STRUCT:
3442 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3443 nargs = 1;
3444 break;
3445
4c4b4cd2 3446 case TERNOP_SLICE:
4c4b4cd2
PH
3447 *pos += 1;
3448 nargs = 3;
3449 break;
3450
52ce6436 3451 case OP_STRING:
14f9c5c9 3452 break;
4c4b4cd2
PH
3453
3454 default:
323e0a4a 3455 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3456 }
3457
8d749320 3458 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3459 for (i = 0; i < nargs; i += 1)
3460 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3461 argvec[i] = NULL;
e9d9f57e 3462 exp = expp->get ();
4c4b4cd2
PH
3463
3464 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3465 switch (op)
3466 {
3467 default:
3468 break;
3469
14f9c5c9 3470 case OP_VAR_VALUE:
4c4b4cd2 3471 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3472 {
54d343a2 3473 std::vector<struct block_symbol> candidates;
76a01679
JB
3474 int n_candidates;
3475
3476 n_candidates =
3477 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3478 (exp->elts[pc + 2].symbol),
3479 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3480 &candidates);
76a01679
JB
3481
3482 if (n_candidates > 1)
3483 {
3484 /* Types tend to get re-introduced locally, so if there
3485 are any local symbols that are not types, first filter
3486 out all types. */
3487 int j;
3488 for (j = 0; j < n_candidates; j += 1)
d12307c1 3489 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3490 {
3491 case LOC_REGISTER:
3492 case LOC_ARG:
3493 case LOC_REF_ARG:
76a01679
JB
3494 case LOC_REGPARM_ADDR:
3495 case LOC_LOCAL:
76a01679 3496 case LOC_COMPUTED:
76a01679
JB
3497 goto FoundNonType;
3498 default:
3499 break;
3500 }
3501 FoundNonType:
3502 if (j < n_candidates)
3503 {
3504 j = 0;
3505 while (j < n_candidates)
3506 {
d12307c1 3507 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3508 {
3509 candidates[j] = candidates[n_candidates - 1];
3510 n_candidates -= 1;
3511 }
3512 else
3513 j += 1;
3514 }
3515 }
3516 }
3517
3518 if (n_candidates == 0)
323e0a4a 3519 error (_("No definition found for %s"),
76a01679
JB
3520 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3521 else if (n_candidates == 1)
3522 i = 0;
3523 else if (deprocedure_p
54d343a2 3524 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3525 {
06d5cf63 3526 i = ada_resolve_function
54d343a2 3527 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3528 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3529 context_type);
76a01679 3530 if (i < 0)
323e0a4a 3531 error (_("Could not find a match for %s"),
76a01679
JB
3532 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3533 }
3534 else
3535 {
323e0a4a 3536 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3537 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3538 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3539 i = 0;
3540 }
3541
3542 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3543 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3544 innermost_block.update (candidates[i]);
76a01679
JB
3545 }
3546
3547 if (deprocedure_p
3548 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3549 == TYPE_CODE_FUNC))
3550 {
424da6cf 3551 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3552 exp->elts[pc + 2].symbol,
3553 exp->elts[pc + 1].block);
e9d9f57e 3554 exp = expp->get ();
76a01679 3555 }
14f9c5c9
AS
3556 break;
3557
3558 case OP_FUNCALL:
3559 {
4c4b4cd2 3560 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3561 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3562 {
54d343a2 3563 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3564 int n_candidates;
3565
3566 n_candidates =
76a01679
JB
3567 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3568 (exp->elts[pc + 5].symbol),
3569 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3570 &candidates);
ec6a20c2 3571
4c4b4cd2
PH
3572 if (n_candidates == 1)
3573 i = 0;
3574 else
3575 {
06d5cf63 3576 i = ada_resolve_function
54d343a2 3577 (candidates.data (), n_candidates,
06d5cf63
JB
3578 argvec, nargs,
3579 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3580 context_type);
4c4b4cd2 3581 if (i < 0)
323e0a4a 3582 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3583 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3584 }
3585
3586 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3587 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3588 innermost_block.update (candidates[i]);
4c4b4cd2 3589 }
14f9c5c9
AS
3590 }
3591 break;
3592 case BINOP_ADD:
3593 case BINOP_SUB:
3594 case BINOP_MUL:
3595 case BINOP_DIV:
3596 case BINOP_REM:
3597 case BINOP_MOD:
3598 case BINOP_CONCAT:
3599 case BINOP_BITWISE_AND:
3600 case BINOP_BITWISE_IOR:
3601 case BINOP_BITWISE_XOR:
3602 case BINOP_EQUAL:
3603 case BINOP_NOTEQUAL:
3604 case BINOP_LESS:
3605 case BINOP_GTR:
3606 case BINOP_LEQ:
3607 case BINOP_GEQ:
3608 case BINOP_EXP:
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3614 {
54d343a2 3615 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3616 int n_candidates;
3617
3618 n_candidates =
b5ec771e 3619 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3620 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3621 &candidates);
ec6a20c2 3622
54d343a2
TT
3623 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3624 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3625 if (i < 0)
3626 break;
3627
d12307c1
PMR
3628 replace_operator_with_call (expp, pc, nargs, 1,
3629 candidates[i].symbol,
3630 candidates[i].block);
e9d9f57e 3631 exp = expp->get ();
4c4b4cd2 3632 }
14f9c5c9 3633 break;
4c4b4cd2
PH
3634
3635 case OP_TYPE:
b3dbf008 3636 case OP_REGISTER:
4c4b4cd2 3637 return NULL;
14f9c5c9
AS
3638 }
3639
3640 *pos = pc;
ced9779b
JB
3641 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3642 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3643 exp->elts[pc + 1].objfile,
3644 exp->elts[pc + 2].msymbol);
3645 else
3646 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3647}
3648
3649/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3650 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3651 a non-pointer. */
14f9c5c9 3652/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3653 liberal. */
14f9c5c9
AS
3654
3655static int
4dc81987 3656ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3657{
61ee279c
PH
3658 ftype = ada_check_typedef (ftype);
3659 atype = ada_check_typedef (atype);
14f9c5c9
AS
3660
3661 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3662 ftype = TYPE_TARGET_TYPE (ftype);
3663 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3664 atype = TYPE_TARGET_TYPE (atype);
3665
d2e4a39e 3666 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3667 {
3668 default:
5b3d5b7d 3669 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3670 case TYPE_CODE_PTR:
3671 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3672 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3673 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3674 else
1265e4aa
JB
3675 return (may_deref
3676 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3677 case TYPE_CODE_INT:
3678 case TYPE_CODE_ENUM:
3679 case TYPE_CODE_RANGE:
3680 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3681 {
3682 case TYPE_CODE_INT:
3683 case TYPE_CODE_ENUM:
3684 case TYPE_CODE_RANGE:
3685 return 1;
3686 default:
3687 return 0;
3688 }
14f9c5c9
AS
3689
3690 case TYPE_CODE_ARRAY:
d2e4a39e 3691 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3692 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3693
3694 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3695 if (ada_is_array_descriptor_type (ftype))
3696 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3697 || ada_is_array_descriptor_type (atype));
14f9c5c9 3698 else
4c4b4cd2
PH
3699 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3700 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3701
3702 case TYPE_CODE_UNION:
3703 case TYPE_CODE_FLT:
3704 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3705 }
3706}
3707
3708/* Return non-zero if the formals of FUNC "sufficiently match" the
3709 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3710 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3711 argument function. */
14f9c5c9
AS
3712
3713static int
d2e4a39e 3714ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3715{
3716 int i;
d2e4a39e 3717 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3718
1265e4aa
JB
3719 if (SYMBOL_CLASS (func) == LOC_CONST
3720 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3721 return (n_actuals == 0);
3722 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3723 return 0;
3724
3725 if (TYPE_NFIELDS (func_type) != n_actuals)
3726 return 0;
3727
3728 for (i = 0; i < n_actuals; i += 1)
3729 {
4c4b4cd2 3730 if (actuals[i] == NULL)
76a01679
JB
3731 return 0;
3732 else
3733 {
5b4ee69b
MS
3734 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3735 i));
df407dfe 3736 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3737
76a01679
JB
3738 if (!ada_type_match (ftype, atype, 1))
3739 return 0;
3740 }
14f9c5c9
AS
3741 }
3742 return 1;
3743}
3744
3745/* False iff function type FUNC_TYPE definitely does not produce a value
3746 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3747 FUNC_TYPE is not a valid function type with a non-null return type
3748 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3749
3750static int
d2e4a39e 3751return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3752{
d2e4a39e 3753 struct type *return_type;
14f9c5c9
AS
3754
3755 if (func_type == NULL)
3756 return 1;
3757
4c4b4cd2 3758 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3759 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3760 else
18af8284 3761 return_type = get_base_type (func_type);
14f9c5c9
AS
3762 if (return_type == NULL)
3763 return 1;
3764
18af8284 3765 context_type = get_base_type (context_type);
14f9c5c9
AS
3766
3767 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3768 return context_type == NULL || return_type == context_type;
3769 else if (context_type == NULL)
3770 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3771 else
3772 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3773}
3774
3775
4c4b4cd2 3776/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3777 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3778 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3779 that returns that type, then eliminate matches that don't. If
3780 CONTEXT_TYPE is void and there is at least one match that does not
3781 return void, eliminate all matches that do.
3782
14f9c5c9
AS
3783 Asks the user if there is more than one match remaining. Returns -1
3784 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3785 solely for messages. May re-arrange and modify SYMS in
3786 the process; the index returned is for the modified vector. */
14f9c5c9 3787
4c4b4cd2 3788static int
d12307c1 3789ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3790 int nsyms, struct value **args, int nargs,
3791 const char *name, struct type *context_type)
14f9c5c9 3792{
30b15541 3793 int fallback;
14f9c5c9 3794 int k;
4c4b4cd2 3795 int m; /* Number of hits */
14f9c5c9 3796
d2e4a39e 3797 m = 0;
30b15541
UW
3798 /* In the first pass of the loop, we only accept functions matching
3799 context_type. If none are found, we add a second pass of the loop
3800 where every function is accepted. */
3801 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3802 {
3803 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3804 {
d12307c1 3805 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3806
d12307c1 3807 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3808 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3809 {
3810 syms[m] = syms[k];
3811 m += 1;
3812 }
3813 }
14f9c5c9
AS
3814 }
3815
dc5c8746
PMR
3816 /* If we got multiple matches, ask the user which one to use. Don't do this
3817 interactive thing during completion, though, as the purpose of the
3818 completion is providing a list of all possible matches. Prompting the
3819 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3820 if (m == 0)
3821 return -1;
dc5c8746 3822 else if (m > 1 && !parse_completion)
14f9c5c9 3823 {
323e0a4a 3824 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3825 user_select_syms (syms, m, 1);
14f9c5c9
AS
3826 return 0;
3827 }
3828 return 0;
3829}
3830
4c4b4cd2
PH
3831/* Returns true (non-zero) iff decoded name N0 should appear before N1
3832 in a listing of choices during disambiguation (see sort_choices, below).
3833 The idea is that overloadings of a subprogram name from the
3834 same package should sort in their source order. We settle for ordering
3835 such symbols by their trailing number (__N or $N). */
3836
14f9c5c9 3837static int
0d5cff50 3838encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3839{
3840 if (N1 == NULL)
3841 return 0;
3842 else if (N0 == NULL)
3843 return 1;
3844 else
3845 {
3846 int k0, k1;
5b4ee69b 3847
d2e4a39e 3848 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3849 ;
d2e4a39e 3850 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3851 ;
d2e4a39e 3852 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3853 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3854 {
3855 int n0, n1;
5b4ee69b 3856
4c4b4cd2
PH
3857 n0 = k0;
3858 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3859 n0 -= 1;
3860 n1 = k1;
3861 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3862 n1 -= 1;
3863 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3864 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3865 }
14f9c5c9
AS
3866 return (strcmp (N0, N1) < 0);
3867 }
3868}
d2e4a39e 3869
4c4b4cd2
PH
3870/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3871 encoded names. */
3872
d2e4a39e 3873static void
d12307c1 3874sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3875{
4c4b4cd2 3876 int i;
5b4ee69b 3877
d2e4a39e 3878 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3879 {
d12307c1 3880 struct block_symbol sym = syms[i];
14f9c5c9
AS
3881 int j;
3882
d2e4a39e 3883 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3884 {
d12307c1
PMR
3885 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3886 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3887 break;
3888 syms[j + 1] = syms[j];
3889 }
d2e4a39e 3890 syms[j + 1] = sym;
14f9c5c9
AS
3891 }
3892}
3893
d72413e6
PMR
3894/* Whether GDB should display formals and return types for functions in the
3895 overloads selection menu. */
3896static int print_signatures = 1;
3897
3898/* Print the signature for SYM on STREAM according to the FLAGS options. For
3899 all but functions, the signature is just the name of the symbol. For
3900 functions, this is the name of the function, the list of types for formals
3901 and the return type (if any). */
3902
3903static void
3904ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3905 const struct type_print_options *flags)
3906{
3907 struct type *type = SYMBOL_TYPE (sym);
3908
3909 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3910 if (!print_signatures
3911 || type == NULL
3912 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3913 return;
3914
3915 if (TYPE_NFIELDS (type) > 0)
3916 {
3917 int i;
3918
3919 fprintf_filtered (stream, " (");
3920 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3921 {
3922 if (i > 0)
3923 fprintf_filtered (stream, "; ");
3924 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3925 flags);
3926 }
3927 fprintf_filtered (stream, ")");
3928 }
3929 if (TYPE_TARGET_TYPE (type) != NULL
3930 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3931 {
3932 fprintf_filtered (stream, " return ");
3933 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3934 }
3935}
3936
4c4b4cd2
PH
3937/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3938 by asking the user (if necessary), returning the number selected,
3939 and setting the first elements of SYMS items. Error if no symbols
3940 selected. */
14f9c5c9
AS
3941
3942/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3943 to be re-integrated one of these days. */
14f9c5c9
AS
3944
3945int
d12307c1 3946user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3947{
3948 int i;
8d749320 3949 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3950 int n_chosen;
3951 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3952 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3953
3954 if (max_results < 1)
323e0a4a 3955 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3956 if (nsyms <= 1)
3957 return nsyms;
3958
717d2f5a
JB
3959 if (select_mode == multiple_symbols_cancel)
3960 error (_("\
3961canceled because the command is ambiguous\n\
3962See set/show multiple-symbol."));
3963
3964 /* If select_mode is "all", then return all possible symbols.
3965 Only do that if more than one symbol can be selected, of course.
3966 Otherwise, display the menu as usual. */
3967 if (select_mode == multiple_symbols_all && max_results > 1)
3968 return nsyms;
3969
323e0a4a 3970 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3971 if (max_results > 1)
323e0a4a 3972 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3973
4c4b4cd2 3974 sort_choices (syms, nsyms);
14f9c5c9
AS
3975
3976 for (i = 0; i < nsyms; i += 1)
3977 {
d12307c1 3978 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3979 continue;
3980
d12307c1 3981 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3982 {
76a01679 3983 struct symtab_and_line sal =
d12307c1 3984 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3985
d72413e6
PMR
3986 printf_unfiltered ("[%d] ", i + first_choice);
3987 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3988 &type_print_raw_options);
323e0a4a 3989 if (sal.symtab == NULL)
d72413e6 3990 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3991 sal.line);
3992 else
d72413e6 3993 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3994 symtab_to_filename_for_display (sal.symtab),
3995 sal.line);
4c4b4cd2
PH
3996 continue;
3997 }
d2e4a39e 3998 else
4c4b4cd2
PH
3999 {
4000 int is_enumeral =
d12307c1
PMR
4001 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
4002 && SYMBOL_TYPE (syms[i].symbol) != NULL
4003 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
4004 struct symtab *symtab = NULL;
4005
d12307c1
PMR
4006 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
4007 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 4008
d12307c1 4009 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
4010 {
4011 printf_unfiltered ("[%d] ", i + first_choice);
4012 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4013 &type_print_raw_options);
4014 printf_unfiltered (_(" at %s:%d\n"),
4015 symtab_to_filename_for_display (symtab),
4016 SYMBOL_LINE (syms[i].symbol));
4017 }
76a01679 4018 else if (is_enumeral
d12307c1 4019 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 4020 {
a3f17187 4021 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 4022 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 4023 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 4024 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 4025 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 4026 }
d72413e6
PMR
4027 else
4028 {
4029 printf_unfiltered ("[%d] ", i + first_choice);
4030 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4031 &type_print_raw_options);
4032
4033 if (symtab != NULL)
4034 printf_unfiltered (is_enumeral
4035 ? _(" in %s (enumeral)\n")
4036 : _(" at %s:?\n"),
4037 symtab_to_filename_for_display (symtab));
4038 else
4039 printf_unfiltered (is_enumeral
4040 ? _(" (enumeral)\n")
4041 : _(" at ?\n"));
4042 }
4c4b4cd2 4043 }
14f9c5c9 4044 }
d2e4a39e 4045
14f9c5c9 4046 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4047 "overload-choice");
14f9c5c9
AS
4048
4049 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4050 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4051
4052 return n_chosen;
4053}
4054
4055/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4056 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4057 order in CHOICES[0 .. N-1], and return N.
4058
4059 The user types choices as a sequence of numbers on one line
4060 separated by blanks, encoding them as follows:
4061
4c4b4cd2 4062 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4063 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4064 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4065
4c4b4cd2 4066 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4067
4068 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4069 prompts (for use with the -f switch). */
14f9c5c9
AS
4070
4071int
d2e4a39e 4072get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4073 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4074{
d2e4a39e 4075 char *args;
a121b7c1 4076 const char *prompt;
14f9c5c9
AS
4077 int n_chosen;
4078 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4079
14f9c5c9
AS
4080 prompt = getenv ("PS2");
4081 if (prompt == NULL)
0bcd0149 4082 prompt = "> ";
14f9c5c9 4083
89fbedf3 4084 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4085
14f9c5c9 4086 if (args == NULL)
323e0a4a 4087 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4088
4089 n_chosen = 0;
76a01679 4090
4c4b4cd2
PH
4091 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4092 order, as given in args. Choices are validated. */
14f9c5c9
AS
4093 while (1)
4094 {
d2e4a39e 4095 char *args2;
14f9c5c9
AS
4096 int choice, j;
4097
0fcd72ba 4098 args = skip_spaces (args);
14f9c5c9 4099 if (*args == '\0' && n_chosen == 0)
323e0a4a 4100 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4101 else if (*args == '\0')
4c4b4cd2 4102 break;
14f9c5c9
AS
4103
4104 choice = strtol (args, &args2, 10);
d2e4a39e 4105 if (args == args2 || choice < 0
4c4b4cd2 4106 || choice > n_choices + first_choice - 1)
323e0a4a 4107 error (_("Argument must be choice number"));
14f9c5c9
AS
4108 args = args2;
4109
d2e4a39e 4110 if (choice == 0)
323e0a4a 4111 error (_("cancelled"));
14f9c5c9
AS
4112
4113 if (choice < first_choice)
4c4b4cd2
PH
4114 {
4115 n_chosen = n_choices;
4116 for (j = 0; j < n_choices; j += 1)
4117 choices[j] = j;
4118 break;
4119 }
14f9c5c9
AS
4120 choice -= first_choice;
4121
d2e4a39e 4122 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4123 {
4124 }
14f9c5c9
AS
4125
4126 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4127 {
4128 int k;
5b4ee69b 4129
4c4b4cd2
PH
4130 for (k = n_chosen - 1; k > j; k -= 1)
4131 choices[k + 1] = choices[k];
4132 choices[j + 1] = choice;
4133 n_chosen += 1;
4134 }
14f9c5c9
AS
4135 }
4136
4137 if (n_chosen > max_results)
323e0a4a 4138 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4139
14f9c5c9
AS
4140 return n_chosen;
4141}
4142
4c4b4cd2
PH
4143/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4144 on the function identified by SYM and BLOCK, and taking NARGS
4145 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4146
4147static void
e9d9f57e 4148replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4149 int oplen, struct symbol *sym,
270140bd 4150 const struct block *block)
14f9c5c9
AS
4151{
4152 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4153 symbol, -oplen for operator being replaced). */
d2e4a39e 4154 struct expression *newexp = (struct expression *)
8c1a34e7 4155 xzalloc (sizeof (struct expression)
4c4b4cd2 4156 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4157 struct expression *exp = expp->get ();
14f9c5c9
AS
4158
4159 newexp->nelts = exp->nelts + 7 - oplen;
4160 newexp->language_defn = exp->language_defn;
3489610d 4161 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4162 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4163 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4164 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4165
4166 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4167 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4168
4169 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4170 newexp->elts[pc + 4].block = block;
4171 newexp->elts[pc + 5].symbol = sym;
4172
e9d9f57e 4173 expp->reset (newexp);
d2e4a39e 4174}
14f9c5c9
AS
4175
4176/* Type-class predicates */
4177
4c4b4cd2
PH
4178/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4179 or FLOAT). */
14f9c5c9
AS
4180
4181static int
d2e4a39e 4182numeric_type_p (struct type *type)
14f9c5c9
AS
4183{
4184 if (type == NULL)
4185 return 0;
d2e4a39e
AS
4186 else
4187 {
4188 switch (TYPE_CODE (type))
4c4b4cd2
PH
4189 {
4190 case TYPE_CODE_INT:
4191 case TYPE_CODE_FLT:
4192 return 1;
4193 case TYPE_CODE_RANGE:
4194 return (type == TYPE_TARGET_TYPE (type)
4195 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4196 default:
4197 return 0;
4198 }
d2e4a39e 4199 }
14f9c5c9
AS
4200}
4201
4c4b4cd2 4202/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4203
4204static int
d2e4a39e 4205integer_type_p (struct type *type)
14f9c5c9
AS
4206{
4207 if (type == NULL)
4208 return 0;
d2e4a39e
AS
4209 else
4210 {
4211 switch (TYPE_CODE (type))
4c4b4cd2
PH
4212 {
4213 case TYPE_CODE_INT:
4214 return 1;
4215 case TYPE_CODE_RANGE:
4216 return (type == TYPE_TARGET_TYPE (type)
4217 || integer_type_p (TYPE_TARGET_TYPE (type)));
4218 default:
4219 return 0;
4220 }
d2e4a39e 4221 }
14f9c5c9
AS
4222}
4223
4c4b4cd2 4224/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4225
4226static int
d2e4a39e 4227scalar_type_p (struct type *type)
14f9c5c9
AS
4228{
4229 if (type == NULL)
4230 return 0;
d2e4a39e
AS
4231 else
4232 {
4233 switch (TYPE_CODE (type))
4c4b4cd2
PH
4234 {
4235 case TYPE_CODE_INT:
4236 case TYPE_CODE_RANGE:
4237 case TYPE_CODE_ENUM:
4238 case TYPE_CODE_FLT:
4239 return 1;
4240 default:
4241 return 0;
4242 }
d2e4a39e 4243 }
14f9c5c9
AS
4244}
4245
4c4b4cd2 4246/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4247
4248static int
d2e4a39e 4249discrete_type_p (struct type *type)
14f9c5c9
AS
4250{
4251 if (type == NULL)
4252 return 0;
d2e4a39e
AS
4253 else
4254 {
4255 switch (TYPE_CODE (type))
4c4b4cd2
PH
4256 {
4257 case TYPE_CODE_INT:
4258 case TYPE_CODE_RANGE:
4259 case TYPE_CODE_ENUM:
872f0337 4260 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4261 return 1;
4262 default:
4263 return 0;
4264 }
d2e4a39e 4265 }
14f9c5c9
AS
4266}
4267
4c4b4cd2
PH
4268/* Returns non-zero if OP with operands in the vector ARGS could be
4269 a user-defined function. Errs on the side of pre-defined operators
4270 (i.e., result 0). */
14f9c5c9
AS
4271
4272static int
d2e4a39e 4273possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4274{
76a01679 4275 struct type *type0 =
df407dfe 4276 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4277 struct type *type1 =
df407dfe 4278 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4279
4c4b4cd2
PH
4280 if (type0 == NULL)
4281 return 0;
4282
14f9c5c9
AS
4283 switch (op)
4284 {
4285 default:
4286 return 0;
4287
4288 case BINOP_ADD:
4289 case BINOP_SUB:
4290 case BINOP_MUL:
4291 case BINOP_DIV:
d2e4a39e 4292 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4293
4294 case BINOP_REM:
4295 case BINOP_MOD:
4296 case BINOP_BITWISE_AND:
4297 case BINOP_BITWISE_IOR:
4298 case BINOP_BITWISE_XOR:
d2e4a39e 4299 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4300
4301 case BINOP_EQUAL:
4302 case BINOP_NOTEQUAL:
4303 case BINOP_LESS:
4304 case BINOP_GTR:
4305 case BINOP_LEQ:
4306 case BINOP_GEQ:
d2e4a39e 4307 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4308
4309 case BINOP_CONCAT:
ee90b9ab 4310 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4311
4312 case BINOP_EXP:
d2e4a39e 4313 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4314
4315 case UNOP_NEG:
4316 case UNOP_PLUS:
4317 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4318 case UNOP_ABS:
4319 return (!numeric_type_p (type0));
14f9c5c9
AS
4320
4321 }
4322}
4323\f
4c4b4cd2 4324 /* Renaming */
14f9c5c9 4325
aeb5907d
JB
4326/* NOTES:
4327
4328 1. In the following, we assume that a renaming type's name may
4329 have an ___XD suffix. It would be nice if this went away at some
4330 point.
4331 2. We handle both the (old) purely type-based representation of
4332 renamings and the (new) variable-based encoding. At some point,
4333 it is devoutly to be hoped that the former goes away
4334 (FIXME: hilfinger-2007-07-09).
4335 3. Subprogram renamings are not implemented, although the XRS
4336 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4337
4338/* If SYM encodes a renaming,
4339
4340 <renaming> renames <renamed entity>,
4341
4342 sets *LEN to the length of the renamed entity's name,
4343 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4344 the string describing the subcomponent selected from the renamed
0963b4bd 4345 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4346 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4347 are undefined). Otherwise, returns a value indicating the category
4348 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4349 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4350 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4351 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4352 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4353 may be NULL, in which case they are not assigned.
4354
4355 [Currently, however, GCC does not generate subprogram renamings.] */
4356
4357enum ada_renaming_category
4358ada_parse_renaming (struct symbol *sym,
4359 const char **renamed_entity, int *len,
4360 const char **renaming_expr)
4361{
4362 enum ada_renaming_category kind;
4363 const char *info;
4364 const char *suffix;
4365
4366 if (sym == NULL)
4367 return ADA_NOT_RENAMING;
4368 switch (SYMBOL_CLASS (sym))
14f9c5c9 4369 {
aeb5907d
JB
4370 default:
4371 return ADA_NOT_RENAMING;
4372 case LOC_TYPEDEF:
4373 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4374 renamed_entity, len, renaming_expr);
4375 case LOC_LOCAL:
4376 case LOC_STATIC:
4377 case LOC_COMPUTED:
4378 case LOC_OPTIMIZED_OUT:
4379 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4380 if (info == NULL)
4381 return ADA_NOT_RENAMING;
4382 switch (info[5])
4383 {
4384 case '_':
4385 kind = ADA_OBJECT_RENAMING;
4386 info += 6;
4387 break;
4388 case 'E':
4389 kind = ADA_EXCEPTION_RENAMING;
4390 info += 7;
4391 break;
4392 case 'P':
4393 kind = ADA_PACKAGE_RENAMING;
4394 info += 7;
4395 break;
4396 case 'S':
4397 kind = ADA_SUBPROGRAM_RENAMING;
4398 info += 7;
4399 break;
4400 default:
4401 return ADA_NOT_RENAMING;
4402 }
14f9c5c9 4403 }
4c4b4cd2 4404
aeb5907d
JB
4405 if (renamed_entity != NULL)
4406 *renamed_entity = info;
4407 suffix = strstr (info, "___XE");
4408 if (suffix == NULL || suffix == info)
4409 return ADA_NOT_RENAMING;
4410 if (len != NULL)
4411 *len = strlen (info) - strlen (suffix);
4412 suffix += 5;
4413 if (renaming_expr != NULL)
4414 *renaming_expr = suffix;
4415 return kind;
4416}
4417
4418/* Assuming TYPE encodes a renaming according to the old encoding in
4419 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4420 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4421 ADA_NOT_RENAMING otherwise. */
4422static enum ada_renaming_category
4423parse_old_style_renaming (struct type *type,
4424 const char **renamed_entity, int *len,
4425 const char **renaming_expr)
4426{
4427 enum ada_renaming_category kind;
4428 const char *name;
4429 const char *info;
4430 const char *suffix;
14f9c5c9 4431
aeb5907d
JB
4432 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4433 || TYPE_NFIELDS (type) != 1)
4434 return ADA_NOT_RENAMING;
14f9c5c9 4435
a737d952 4436 name = TYPE_NAME (type);
aeb5907d
JB
4437 if (name == NULL)
4438 return ADA_NOT_RENAMING;
4439
4440 name = strstr (name, "___XR");
4441 if (name == NULL)
4442 return ADA_NOT_RENAMING;
4443 switch (name[5])
4444 {
4445 case '\0':
4446 case '_':
4447 kind = ADA_OBJECT_RENAMING;
4448 break;
4449 case 'E':
4450 kind = ADA_EXCEPTION_RENAMING;
4451 break;
4452 case 'P':
4453 kind = ADA_PACKAGE_RENAMING;
4454 break;
4455 case 'S':
4456 kind = ADA_SUBPROGRAM_RENAMING;
4457 break;
4458 default:
4459 return ADA_NOT_RENAMING;
4460 }
14f9c5c9 4461
aeb5907d
JB
4462 info = TYPE_FIELD_NAME (type, 0);
4463 if (info == NULL)
4464 return ADA_NOT_RENAMING;
4465 if (renamed_entity != NULL)
4466 *renamed_entity = info;
4467 suffix = strstr (info, "___XE");
4468 if (renaming_expr != NULL)
4469 *renaming_expr = suffix + 5;
4470 if (suffix == NULL || suffix == info)
4471 return ADA_NOT_RENAMING;
4472 if (len != NULL)
4473 *len = suffix - info;
4474 return kind;
a5ee536b
JB
4475}
4476
4477/* Compute the value of the given RENAMING_SYM, which is expected to
4478 be a symbol encoding a renaming expression. BLOCK is the block
4479 used to evaluate the renaming. */
52ce6436 4480
a5ee536b
JB
4481static struct value *
4482ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4483 const struct block *block)
a5ee536b 4484{
bbc13ae3 4485 const char *sym_name;
a5ee536b 4486
bbc13ae3 4487 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4488 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4489 return evaluate_expression (expr.get ());
a5ee536b 4490}
14f9c5c9 4491\f
d2e4a39e 4492
4c4b4cd2 4493 /* Evaluation: Function Calls */
14f9c5c9 4494
4c4b4cd2 4495/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4496 lvalues, and otherwise has the side-effect of allocating memory
4497 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4498
d2e4a39e 4499static struct value *
40bc484c 4500ensure_lval (struct value *val)
14f9c5c9 4501{
40bc484c
JB
4502 if (VALUE_LVAL (val) == not_lval
4503 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4504 {
df407dfe 4505 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4506 const CORE_ADDR addr =
4507 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4508
a84a8a0d 4509 VALUE_LVAL (val) = lval_memory;
1a088441 4510 set_value_address (val, addr);
40bc484c 4511 write_memory (addr, value_contents (val), len);
c3e5cd34 4512 }
14f9c5c9
AS
4513
4514 return val;
4515}
4516
4517/* Return the value ACTUAL, converted to be an appropriate value for a
4518 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4519 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4520 values not residing in memory, updating it as needed. */
14f9c5c9 4521
a93c0eb6 4522struct value *
40bc484c 4523ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4524{
df407dfe 4525 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4526 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4527 struct type *formal_target =
4528 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4529 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4530 struct type *actual_target =
4531 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4532 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4533
4c4b4cd2 4534 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4535 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4536 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4537 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4538 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4539 {
a84a8a0d 4540 struct value *result;
5b4ee69b 4541
14f9c5c9 4542 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4543 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4544 result = desc_data (actual);
cb923fcc 4545 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4546 {
4547 if (VALUE_LVAL (actual) != lval_memory)
4548 {
4549 struct value *val;
5b4ee69b 4550
df407dfe 4551 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4552 val = allocate_value (actual_type);
990a07ab 4553 memcpy ((char *) value_contents_raw (val),
0fd88904 4554 (char *) value_contents (actual),
4c4b4cd2 4555 TYPE_LENGTH (actual_type));
40bc484c 4556 actual = ensure_lval (val);
4c4b4cd2 4557 }
a84a8a0d 4558 result = value_addr (actual);
4c4b4cd2 4559 }
a84a8a0d
JB
4560 else
4561 return actual;
b1af9e97 4562 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4563 }
4564 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4565 return ada_value_ind (actual);
8344af1e
JB
4566 else if (ada_is_aligner_type (formal_type))
4567 {
4568 /* We need to turn this parameter into an aligner type
4569 as well. */
4570 struct value *aligner = allocate_value (formal_type);
4571 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4572
4573 value_assign_to_component (aligner, component, actual);
4574 return aligner;
4575 }
14f9c5c9
AS
4576
4577 return actual;
4578}
4579
438c98a1
JB
4580/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4581 type TYPE. This is usually an inefficient no-op except on some targets
4582 (such as AVR) where the representation of a pointer and an address
4583 differs. */
4584
4585static CORE_ADDR
4586value_pointer (struct value *value, struct type *type)
4587{
4588 struct gdbarch *gdbarch = get_type_arch (type);
4589 unsigned len = TYPE_LENGTH (type);
224c3ddb 4590 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4591 CORE_ADDR addr;
4592
4593 addr = value_address (value);
4594 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4595 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4596 return addr;
4597}
4598
14f9c5c9 4599
4c4b4cd2
PH
4600/* Push a descriptor of type TYPE for array value ARR on the stack at
4601 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4602 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4603 to-descriptor type rather than a descriptor type), a struct value *
4604 representing a pointer to this descriptor. */
14f9c5c9 4605
d2e4a39e 4606static struct value *
40bc484c 4607make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4608{
d2e4a39e
AS
4609 struct type *bounds_type = desc_bounds_type (type);
4610 struct type *desc_type = desc_base_type (type);
4611 struct value *descriptor = allocate_value (desc_type);
4612 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4613 int i;
d2e4a39e 4614
0963b4bd
MS
4615 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4616 i > 0; i -= 1)
14f9c5c9 4617 {
19f220c3
JK
4618 modify_field (value_type (bounds), value_contents_writeable (bounds),
4619 ada_array_bound (arr, i, 0),
4620 desc_bound_bitpos (bounds_type, i, 0),
4621 desc_bound_bitsize (bounds_type, i, 0));
4622 modify_field (value_type (bounds), value_contents_writeable (bounds),
4623 ada_array_bound (arr, i, 1),
4624 desc_bound_bitpos (bounds_type, i, 1),
4625 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4626 }
d2e4a39e 4627
40bc484c 4628 bounds = ensure_lval (bounds);
d2e4a39e 4629
19f220c3
JK
4630 modify_field (value_type (descriptor),
4631 value_contents_writeable (descriptor),
4632 value_pointer (ensure_lval (arr),
4633 TYPE_FIELD_TYPE (desc_type, 0)),
4634 fat_pntr_data_bitpos (desc_type),
4635 fat_pntr_data_bitsize (desc_type));
4636
4637 modify_field (value_type (descriptor),
4638 value_contents_writeable (descriptor),
4639 value_pointer (bounds,
4640 TYPE_FIELD_TYPE (desc_type, 1)),
4641 fat_pntr_bounds_bitpos (desc_type),
4642 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4643
40bc484c 4644 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4645
4646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4647 return value_addr (descriptor);
4648 else
4649 return descriptor;
4650}
14f9c5c9 4651\f
3d9434b5
JB
4652 /* Symbol Cache Module */
4653
3d9434b5 4654/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4655 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4656 on the type of entity being printed, the cache can make it as much
4657 as an order of magnitude faster than without it.
4658
4659 The descriptive type DWARF extension has significantly reduced
4660 the need for this cache, at least when DWARF is being used. However,
4661 even in this case, some expensive name-based symbol searches are still
4662 sometimes necessary - to find an XVZ variable, mostly. */
4663
ee01b665 4664/* Initialize the contents of SYM_CACHE. */
3d9434b5 4665
ee01b665
JB
4666static void
4667ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4668{
4669 obstack_init (&sym_cache->cache_space);
4670 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4671}
3d9434b5 4672
ee01b665
JB
4673/* Free the memory used by SYM_CACHE. */
4674
4675static void
4676ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4677{
ee01b665
JB
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 xfree (sym_cache);
4680}
3d9434b5 4681
ee01b665
JB
4682/* Return the symbol cache associated to the given program space PSPACE.
4683 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4684
ee01b665
JB
4685static struct ada_symbol_cache *
4686ada_get_symbol_cache (struct program_space *pspace)
4687{
4688 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4689
66c168ae 4690 if (pspace_data->sym_cache == NULL)
ee01b665 4691 {
66c168ae
JB
4692 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4693 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4694 }
4695
66c168ae 4696 return pspace_data->sym_cache;
ee01b665 4697}
3d9434b5
JB
4698
4699/* Clear all entries from the symbol cache. */
4700
4701static void
4702ada_clear_symbol_cache (void)
4703{
ee01b665
JB
4704 struct ada_symbol_cache *sym_cache
4705 = ada_get_symbol_cache (current_program_space);
4706
4707 obstack_free (&sym_cache->cache_space, NULL);
4708 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4709}
4710
fe978cb0 4711/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4712 Return it if found, or NULL otherwise. */
4713
4714static struct cache_entry **
fe978cb0 4715find_entry (const char *name, domain_enum domain)
3d9434b5 4716{
ee01b665
JB
4717 struct ada_symbol_cache *sym_cache
4718 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4719 int h = msymbol_hash (name) % HASH_SIZE;
4720 struct cache_entry **e;
4721
ee01b665 4722 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4723 {
fe978cb0 4724 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4725 return e;
4726 }
4727 return NULL;
4728}
4729
fe978cb0 4730/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4731 Return 1 if found, 0 otherwise.
4732
4733 If an entry was found and SYM is not NULL, set *SYM to the entry's
4734 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4735
96d887e8 4736static int
fe978cb0 4737lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4738 struct symbol **sym, const struct block **block)
96d887e8 4739{
fe978cb0 4740 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4741
4742 if (e == NULL)
4743 return 0;
4744 if (sym != NULL)
4745 *sym = (*e)->sym;
4746 if (block != NULL)
4747 *block = (*e)->block;
4748 return 1;
96d887e8
PH
4749}
4750
3d9434b5 4751/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4752 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4753
96d887e8 4754static void
fe978cb0 4755cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4756 const struct block *block)
96d887e8 4757{
ee01b665
JB
4758 struct ada_symbol_cache *sym_cache
4759 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4760 int h;
4761 char *copy;
4762 struct cache_entry *e;
4763
1994afbf
DE
4764 /* Symbols for builtin types don't have a block.
4765 For now don't cache such symbols. */
4766 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4767 return;
4768
3d9434b5
JB
4769 /* If the symbol is a local symbol, then do not cache it, as a search
4770 for that symbol depends on the context. To determine whether
4771 the symbol is local or not, we check the block where we found it
4772 against the global and static blocks of its associated symtab. */
4773 if (sym
08be3fe3 4774 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4775 GLOBAL_BLOCK) != block
08be3fe3 4776 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4777 STATIC_BLOCK) != block)
3d9434b5
JB
4778 return;
4779
4780 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4781 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4782 e->next = sym_cache->root[h];
4783 sym_cache->root[h] = e;
224c3ddb
SM
4784 e->name = copy
4785 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4786 strcpy (copy, name);
4787 e->sym = sym;
fe978cb0 4788 e->domain = domain;
3d9434b5 4789 e->block = block;
96d887e8 4790}
4c4b4cd2
PH
4791\f
4792 /* Symbol Lookup */
4793
b5ec771e
PA
4794/* Return the symbol name match type that should be used used when
4795 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4796
4797 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4798 for Ada lookups. */
c0431670 4799
b5ec771e
PA
4800static symbol_name_match_type
4801name_match_type_from_name (const char *lookup_name)
c0431670 4802{
b5ec771e
PA
4803 return (strstr (lookup_name, "__") == NULL
4804 ? symbol_name_match_type::WILD
4805 : symbol_name_match_type::FULL);
c0431670
JB
4806}
4807
4c4b4cd2
PH
4808/* Return the result of a standard (literal, C-like) lookup of NAME in
4809 given DOMAIN, visible from lexical block BLOCK. */
4810
4811static struct symbol *
4812standard_lookup (const char *name, const struct block *block,
4813 domain_enum domain)
4814{
acbd605d 4815 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4816 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4817
d12307c1
PMR
4818 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4819 return sym.symbol;
2570f2b7 4820 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4821 cache_symbol (name, domain, sym.symbol, sym.block);
4822 return sym.symbol;
4c4b4cd2
PH
4823}
4824
4825
4826/* Non-zero iff there is at least one non-function/non-enumeral symbol
4827 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4828 since they contend in overloading in the same way. */
4829static int
d12307c1 4830is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4831{
4832 int i;
4833
4834 for (i = 0; i < n; i += 1)
d12307c1
PMR
4835 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4836 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4837 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4838 return 1;
4839
4840 return 0;
4841}
4842
4843/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4844 struct types. Otherwise, they may not. */
14f9c5c9
AS
4845
4846static int
d2e4a39e 4847equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4848{
d2e4a39e 4849 if (type0 == type1)
14f9c5c9 4850 return 1;
d2e4a39e 4851 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4852 || TYPE_CODE (type0) != TYPE_CODE (type1))
4853 return 0;
d2e4a39e 4854 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4855 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4856 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4857 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4858 return 1;
d2e4a39e 4859
14f9c5c9
AS
4860 return 0;
4861}
4862
4863/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4864 no more defined than that of SYM1. */
14f9c5c9
AS
4865
4866static int
d2e4a39e 4867lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4868{
4869 if (sym0 == sym1)
4870 return 1;
176620f1 4871 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4872 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4873 return 0;
4874
d2e4a39e 4875 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4876 {
4877 case LOC_UNDEF:
4878 return 1;
4879 case LOC_TYPEDEF:
4880 {
4c4b4cd2
PH
4881 struct type *type0 = SYMBOL_TYPE (sym0);
4882 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4883 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4884 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4885 int len0 = strlen (name0);
5b4ee69b 4886
4c4b4cd2
PH
4887 return
4888 TYPE_CODE (type0) == TYPE_CODE (type1)
4889 && (equiv_types (type0, type1)
4890 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4891 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4892 }
4893 case LOC_CONST:
4894 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4895 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4896 default:
4897 return 0;
14f9c5c9
AS
4898 }
4899}
4900
d12307c1 4901/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4902 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4903
4904static void
76a01679
JB
4905add_defn_to_vec (struct obstack *obstackp,
4906 struct symbol *sym,
f0c5f9b2 4907 const struct block *block)
14f9c5c9
AS
4908{
4909 int i;
d12307c1 4910 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4911
529cad9c
PH
4912 /* Do not try to complete stub types, as the debugger is probably
4913 already scanning all symbols matching a certain name at the
4914 time when this function is called. Trying to replace the stub
4915 type by its associated full type will cause us to restart a scan
4916 which may lead to an infinite recursion. Instead, the client
4917 collecting the matching symbols will end up collecting several
4918 matches, with at least one of them complete. It can then filter
4919 out the stub ones if needed. */
4920
4c4b4cd2
PH
4921 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4922 {
d12307c1 4923 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4924 return;
d12307c1 4925 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4926 {
d12307c1 4927 prevDefns[i].symbol = sym;
4c4b4cd2 4928 prevDefns[i].block = block;
4c4b4cd2 4929 return;
76a01679 4930 }
4c4b4cd2
PH
4931 }
4932
4933 {
d12307c1 4934 struct block_symbol info;
4c4b4cd2 4935
d12307c1 4936 info.symbol = sym;
4c4b4cd2 4937 info.block = block;
d12307c1 4938 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4939 }
4940}
4941
d12307c1
PMR
4942/* Number of block_symbol structures currently collected in current vector in
4943 OBSTACKP. */
4c4b4cd2 4944
76a01679
JB
4945static int
4946num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4947{
d12307c1 4948 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4949}
4950
d12307c1
PMR
4951/* Vector of block_symbol structures currently collected in current vector in
4952 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4953
d12307c1 4954static struct block_symbol *
4c4b4cd2
PH
4955defns_collected (struct obstack *obstackp, int finish)
4956{
4957 if (finish)
224c3ddb 4958 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4959 else
d12307c1 4960 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4961}
4962
7c7b6655
TT
4963/* Return a bound minimal symbol matching NAME according to Ada
4964 decoding rules. Returns an invalid symbol if there is no such
4965 minimal symbol. Names prefixed with "standard__" are handled
4966 specially: "standard__" is first stripped off, and only static and
4967 global symbols are searched. */
4c4b4cd2 4968
7c7b6655 4969struct bound_minimal_symbol
96d887e8 4970ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4971{
7c7b6655 4972 struct bound_minimal_symbol result;
4c4b4cd2 4973 struct objfile *objfile;
96d887e8 4974 struct minimal_symbol *msymbol;
4c4b4cd2 4975
7c7b6655
TT
4976 memset (&result, 0, sizeof (result));
4977
b5ec771e
PA
4978 symbol_name_match_type match_type = name_match_type_from_name (name);
4979 lookup_name_info lookup_name (name, match_type);
4980
4981 symbol_name_matcher_ftype *match_name
4982 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4983
96d887e8
PH
4984 ALL_MSYMBOLS (objfile, msymbol)
4985 {
b5ec771e 4986 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4987 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4988 {
4989 result.minsym = msymbol;
4990 result.objfile = objfile;
4991 break;
4992 }
96d887e8 4993 }
4c4b4cd2 4994
7c7b6655 4995 return result;
96d887e8 4996}
4c4b4cd2 4997
96d887e8
PH
4998/* For all subprograms that statically enclose the subprogram of the
4999 selected frame, add symbols matching identifier NAME in DOMAIN
5000 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
5001 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
5002 with a wildcard prefix. */
4c4b4cd2 5003
96d887e8
PH
5004static void
5005add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
5006 const lookup_name_info &lookup_name,
5007 domain_enum domain)
96d887e8 5008{
96d887e8 5009}
14f9c5c9 5010
96d887e8
PH
5011/* True if TYPE is definitely an artificial type supplied to a symbol
5012 for which no debugging information was given in the symbol file. */
14f9c5c9 5013
96d887e8
PH
5014static int
5015is_nondebugging_type (struct type *type)
5016{
0d5cff50 5017 const char *name = ada_type_name (type);
5b4ee69b 5018
96d887e8
PH
5019 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5020}
4c4b4cd2 5021
8f17729f
JB
5022/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5023 that are deemed "identical" for practical purposes.
5024
5025 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5026 types and that their number of enumerals is identical (in other
5027 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5028
5029static int
5030ada_identical_enum_types_p (struct type *type1, struct type *type2)
5031{
5032 int i;
5033
5034 /* The heuristic we use here is fairly conservative. We consider
5035 that 2 enumerate types are identical if they have the same
5036 number of enumerals and that all enumerals have the same
5037 underlying value and name. */
5038
5039 /* All enums in the type should have an identical underlying value. */
5040 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5041 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5042 return 0;
5043
5044 /* All enumerals should also have the same name (modulo any numerical
5045 suffix). */
5046 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5047 {
0d5cff50
DE
5048 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5049 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5050 int len_1 = strlen (name_1);
5051 int len_2 = strlen (name_2);
5052
5053 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5054 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5055 if (len_1 != len_2
5056 || strncmp (TYPE_FIELD_NAME (type1, i),
5057 TYPE_FIELD_NAME (type2, i),
5058 len_1) != 0)
5059 return 0;
5060 }
5061
5062 return 1;
5063}
5064
5065/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5066 that are deemed "identical" for practical purposes. Sometimes,
5067 enumerals are not strictly identical, but their types are so similar
5068 that they can be considered identical.
5069
5070 For instance, consider the following code:
5071
5072 type Color is (Black, Red, Green, Blue, White);
5073 type RGB_Color is new Color range Red .. Blue;
5074
5075 Type RGB_Color is a subrange of an implicit type which is a copy
5076 of type Color. If we call that implicit type RGB_ColorB ("B" is
5077 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5078 As a result, when an expression references any of the enumeral
5079 by name (Eg. "print green"), the expression is technically
5080 ambiguous and the user should be asked to disambiguate. But
5081 doing so would only hinder the user, since it wouldn't matter
5082 what choice he makes, the outcome would always be the same.
5083 So, for practical purposes, we consider them as the same. */
5084
5085static int
54d343a2 5086symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5087{
5088 int i;
5089
5090 /* Before performing a thorough comparison check of each type,
5091 we perform a series of inexpensive checks. We expect that these
5092 checks will quickly fail in the vast majority of cases, and thus
5093 help prevent the unnecessary use of a more expensive comparison.
5094 Said comparison also expects us to make some of these checks
5095 (see ada_identical_enum_types_p). */
5096
5097 /* Quick check: All symbols should have an enum type. */
54d343a2 5098 for (i = 0; i < syms.size (); i++)
d12307c1 5099 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5100 return 0;
5101
5102 /* Quick check: They should all have the same value. */
54d343a2 5103 for (i = 1; i < syms.size (); i++)
d12307c1 5104 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5105 return 0;
5106
5107 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5108 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5109 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5110 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5111 return 0;
5112
5113 /* All the sanity checks passed, so we might have a set of
5114 identical enumeration types. Perform a more complete
5115 comparison of the type of each symbol. */
54d343a2 5116 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5117 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5118 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5119 return 0;
5120
5121 return 1;
5122}
5123
54d343a2 5124/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5125 duplicate other symbols in the list (The only case I know of where
5126 this happens is when object files containing stabs-in-ecoff are
5127 linked with files containing ordinary ecoff debugging symbols (or no
5128 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5129 Returns the number of items in the modified list. */
4c4b4cd2 5130
96d887e8 5131static int
54d343a2 5132remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5133{
5134 int i, j;
4c4b4cd2 5135
8f17729f
JB
5136 /* We should never be called with less than 2 symbols, as there
5137 cannot be any extra symbol in that case. But it's easy to
5138 handle, since we have nothing to do in that case. */
54d343a2
TT
5139 if (syms->size () < 2)
5140 return syms->size ();
8f17729f 5141
96d887e8 5142 i = 0;
54d343a2 5143 while (i < syms->size ())
96d887e8 5144 {
a35ddb44 5145 int remove_p = 0;
339c13b6
JB
5146
5147 /* If two symbols have the same name and one of them is a stub type,
5148 the get rid of the stub. */
5149
54d343a2
TT
5150 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5151 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5152 {
54d343a2 5153 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5154 {
5155 if (j != i
54d343a2
TT
5156 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5157 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5158 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5159 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5160 remove_p = 1;
339c13b6
JB
5161 }
5162 }
5163
5164 /* Two symbols with the same name, same class and same address
5165 should be identical. */
5166
54d343a2
TT
5167 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5168 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5169 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5170 {
54d343a2 5171 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5172 {
5173 if (i != j
54d343a2
TT
5174 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5175 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5176 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5177 && SYMBOL_CLASS ((*syms)[i].symbol)
5178 == SYMBOL_CLASS ((*syms)[j].symbol)
5179 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5180 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5181 remove_p = 1;
4c4b4cd2 5182 }
4c4b4cd2 5183 }
339c13b6 5184
a35ddb44 5185 if (remove_p)
54d343a2 5186 syms->erase (syms->begin () + i);
339c13b6 5187
96d887e8 5188 i += 1;
14f9c5c9 5189 }
8f17729f
JB
5190
5191 /* If all the remaining symbols are identical enumerals, then
5192 just keep the first one and discard the rest.
5193
5194 Unlike what we did previously, we do not discard any entry
5195 unless they are ALL identical. This is because the symbol
5196 comparison is not a strict comparison, but rather a practical
5197 comparison. If all symbols are considered identical, then
5198 we can just go ahead and use the first one and discard the rest.
5199 But if we cannot reduce the list to a single element, we have
5200 to ask the user to disambiguate anyways. And if we have to
5201 present a multiple-choice menu, it's less confusing if the list
5202 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5203 if (symbols_are_identical_enums (*syms))
5204 syms->resize (1);
8f17729f 5205
54d343a2 5206 return syms->size ();
14f9c5c9
AS
5207}
5208
96d887e8
PH
5209/* Given a type that corresponds to a renaming entity, use the type name
5210 to extract the scope (package name or function name, fully qualified,
5211 and following the GNAT encoding convention) where this renaming has been
49d83361 5212 defined. */
4c4b4cd2 5213
49d83361 5214static std::string
96d887e8 5215xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5216{
96d887e8 5217 /* The renaming types adhere to the following convention:
0963b4bd 5218 <scope>__<rename>___<XR extension>.
96d887e8
PH
5219 So, to extract the scope, we search for the "___XR" extension,
5220 and then backtrack until we find the first "__". */
76a01679 5221
a737d952 5222 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5223 const char *suffix = strstr (name, "___XR");
5224 const char *last;
14f9c5c9 5225
96d887e8
PH
5226 /* Now, backtrack a bit until we find the first "__". Start looking
5227 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5228
96d887e8
PH
5229 for (last = suffix - 3; last > name; last--)
5230 if (last[0] == '_' && last[1] == '_')
5231 break;
76a01679 5232
96d887e8 5233 /* Make a copy of scope and return it. */
49d83361 5234 return std::string (name, last);
4c4b4cd2
PH
5235}
5236
96d887e8 5237/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5238
96d887e8
PH
5239static int
5240is_package_name (const char *name)
4c4b4cd2 5241{
96d887e8
PH
5242 /* Here, We take advantage of the fact that no symbols are generated
5243 for packages, while symbols are generated for each function.
5244 So the condition for NAME represent a package becomes equivalent
5245 to NAME not existing in our list of symbols. There is only one
5246 small complication with library-level functions (see below). */
4c4b4cd2 5247
96d887e8
PH
5248 /* If it is a function that has not been defined at library level,
5249 then we should be able to look it up in the symbols. */
5250 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5251 return 0;
14f9c5c9 5252
96d887e8
PH
5253 /* Library-level function names start with "_ada_". See if function
5254 "_ada_" followed by NAME can be found. */
14f9c5c9 5255
96d887e8 5256 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5257 functions names cannot contain "__" in them. */
96d887e8
PH
5258 if (strstr (name, "__") != NULL)
5259 return 0;
4c4b4cd2 5260
528e1572 5261 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5262
528e1572 5263 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5264}
14f9c5c9 5265
96d887e8 5266/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5267 not visible from FUNCTION_NAME. */
14f9c5c9 5268
96d887e8 5269static int
0d5cff50 5270old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5271{
aeb5907d
JB
5272 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5273 return 0;
5274
49d83361 5275 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5276
96d887e8 5277 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5278 if (is_package_name (scope.c_str ()))
5279 return 0;
14f9c5c9 5280
96d887e8
PH
5281 /* Check that the rename is in the current function scope by checking
5282 that its name starts with SCOPE. */
76a01679 5283
96d887e8
PH
5284 /* If the function name starts with "_ada_", it means that it is
5285 a library-level function. Strip this prefix before doing the
5286 comparison, as the encoding for the renaming does not contain
5287 this prefix. */
61012eef 5288 if (startswith (function_name, "_ada_"))
96d887e8 5289 function_name += 5;
f26caa11 5290
49d83361 5291 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5292}
5293
aeb5907d
JB
5294/* Remove entries from SYMS that corresponds to a renaming entity that
5295 is not visible from the function associated with CURRENT_BLOCK or
5296 that is superfluous due to the presence of more specific renaming
5297 information. Places surviving symbols in the initial entries of
5298 SYMS and returns the number of surviving symbols.
96d887e8
PH
5299
5300 Rationale:
aeb5907d
JB
5301 First, in cases where an object renaming is implemented as a
5302 reference variable, GNAT may produce both the actual reference
5303 variable and the renaming encoding. In this case, we discard the
5304 latter.
5305
5306 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5307 entity. Unfortunately, STABS currently does not support the definition
5308 of types that are local to a given lexical block, so all renamings types
5309 are emitted at library level. As a consequence, if an application
5310 contains two renaming entities using the same name, and a user tries to
5311 print the value of one of these entities, the result of the ada symbol
5312 lookup will also contain the wrong renaming type.
f26caa11 5313
96d887e8
PH
5314 This function partially covers for this limitation by attempting to
5315 remove from the SYMS list renaming symbols that should be visible
5316 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5317 method with the current information available. The implementation
5318 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5319
5320 - When the user tries to print a rename in a function while there
5321 is another rename entity defined in a package: Normally, the
5322 rename in the function has precedence over the rename in the
5323 package, so the latter should be removed from the list. This is
5324 currently not the case.
5325
5326 - This function will incorrectly remove valid renames if
5327 the CURRENT_BLOCK corresponds to a function which symbol name
5328 has been changed by an "Export" pragma. As a consequence,
5329 the user will be unable to print such rename entities. */
4c4b4cd2 5330
14f9c5c9 5331static int
54d343a2
TT
5332remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5333 const struct block *current_block)
4c4b4cd2
PH
5334{
5335 struct symbol *current_function;
0d5cff50 5336 const char *current_function_name;
4c4b4cd2 5337 int i;
aeb5907d
JB
5338 int is_new_style_renaming;
5339
5340 /* If there is both a renaming foo___XR... encoded as a variable and
5341 a simple variable foo in the same block, discard the latter.
0963b4bd 5342 First, zero out such symbols, then compress. */
aeb5907d 5343 is_new_style_renaming = 0;
54d343a2 5344 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5345 {
54d343a2
TT
5346 struct symbol *sym = (*syms)[i].symbol;
5347 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5348 const char *name;
5349 const char *suffix;
5350
5351 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5352 continue;
5353 name = SYMBOL_LINKAGE_NAME (sym);
5354 suffix = strstr (name, "___XR");
5355
5356 if (suffix != NULL)
5357 {
5358 int name_len = suffix - name;
5359 int j;
5b4ee69b 5360
aeb5907d 5361 is_new_style_renaming = 1;
54d343a2
TT
5362 for (j = 0; j < syms->size (); j += 1)
5363 if (i != j && (*syms)[j].symbol != NULL
5364 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5365 name_len) == 0
54d343a2
TT
5366 && block == (*syms)[j].block)
5367 (*syms)[j].symbol = NULL;
aeb5907d
JB
5368 }
5369 }
5370 if (is_new_style_renaming)
5371 {
5372 int j, k;
5373
54d343a2
TT
5374 for (j = k = 0; j < syms->size (); j += 1)
5375 if ((*syms)[j].symbol != NULL)
aeb5907d 5376 {
54d343a2 5377 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5378 k += 1;
5379 }
5380 return k;
5381 }
4c4b4cd2
PH
5382
5383 /* Extract the function name associated to CURRENT_BLOCK.
5384 Abort if unable to do so. */
76a01679 5385
4c4b4cd2 5386 if (current_block == NULL)
54d343a2 5387 return syms->size ();
76a01679 5388
7f0df278 5389 current_function = block_linkage_function (current_block);
4c4b4cd2 5390 if (current_function == NULL)
54d343a2 5391 return syms->size ();
4c4b4cd2
PH
5392
5393 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5394 if (current_function_name == NULL)
54d343a2 5395 return syms->size ();
4c4b4cd2
PH
5396
5397 /* Check each of the symbols, and remove it from the list if it is
5398 a type corresponding to a renaming that is out of the scope of
5399 the current block. */
5400
5401 i = 0;
54d343a2 5402 while (i < syms->size ())
4c4b4cd2 5403 {
54d343a2 5404 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5405 == ADA_OBJECT_RENAMING
54d343a2
TT
5406 && old_renaming_is_invisible ((*syms)[i].symbol,
5407 current_function_name))
5408 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5409 else
5410 i += 1;
5411 }
5412
54d343a2 5413 return syms->size ();
4c4b4cd2
PH
5414}
5415
339c13b6
JB
5416/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5417 whose name and domain match NAME and DOMAIN respectively.
5418 If no match was found, then extend the search to "enclosing"
5419 routines (in other words, if we're inside a nested function,
5420 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5421 If WILD_MATCH_P is nonzero, perform the naming matching in
5422 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5423
5424 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5425
5426static void
b5ec771e
PA
5427ada_add_local_symbols (struct obstack *obstackp,
5428 const lookup_name_info &lookup_name,
5429 const struct block *block, domain_enum domain)
339c13b6
JB
5430{
5431 int block_depth = 0;
5432
5433 while (block != NULL)
5434 {
5435 block_depth += 1;
b5ec771e 5436 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5437
5438 /* If we found a non-function match, assume that's the one. */
5439 if (is_nonfunction (defns_collected (obstackp, 0),
5440 num_defns_collected (obstackp)))
5441 return;
5442
5443 block = BLOCK_SUPERBLOCK (block);
5444 }
5445
5446 /* If no luck so far, try to find NAME as a local symbol in some lexically
5447 enclosing subprogram. */
5448 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5449 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5450}
5451
ccefe4c4 5452/* An object of this type is used as the user_data argument when
40658b94 5453 calling the map_matching_symbols method. */
ccefe4c4 5454
40658b94 5455struct match_data
ccefe4c4 5456{
40658b94 5457 struct objfile *objfile;
ccefe4c4 5458 struct obstack *obstackp;
40658b94
PH
5459 struct symbol *arg_sym;
5460 int found_sym;
ccefe4c4
TT
5461};
5462
22cee43f 5463/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5464 to a list of symbols. DATA0 is a pointer to a struct match_data *
5465 containing the obstack that collects the symbol list, the file that SYM
5466 must come from, a flag indicating whether a non-argument symbol has
5467 been found in the current block, and the last argument symbol
5468 passed in SYM within the current block (if any). When SYM is null,
5469 marking the end of a block, the argument symbol is added if no
5470 other has been found. */
ccefe4c4 5471
40658b94
PH
5472static int
5473aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5474{
40658b94
PH
5475 struct match_data *data = (struct match_data *) data0;
5476
5477 if (sym == NULL)
5478 {
5479 if (!data->found_sym && data->arg_sym != NULL)
5480 add_defn_to_vec (data->obstackp,
5481 fixup_symbol_section (data->arg_sym, data->objfile),
5482 block);
5483 data->found_sym = 0;
5484 data->arg_sym = NULL;
5485 }
5486 else
5487 {
5488 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5489 return 0;
5490 else if (SYMBOL_IS_ARGUMENT (sym))
5491 data->arg_sym = sym;
5492 else
5493 {
5494 data->found_sym = 1;
5495 add_defn_to_vec (data->obstackp,
5496 fixup_symbol_section (sym, data->objfile),
5497 block);
5498 }
5499 }
5500 return 0;
5501}
5502
b5ec771e
PA
5503/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5504 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5505 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5506
5507static int
5508ada_add_block_renamings (struct obstack *obstackp,
5509 const struct block *block,
b5ec771e
PA
5510 const lookup_name_info &lookup_name,
5511 domain_enum domain)
22cee43f
PMR
5512{
5513 struct using_direct *renaming;
5514 int defns_mark = num_defns_collected (obstackp);
5515
b5ec771e
PA
5516 symbol_name_matcher_ftype *name_match
5517 = ada_get_symbol_name_matcher (lookup_name);
5518
22cee43f
PMR
5519 for (renaming = block_using (block);
5520 renaming != NULL;
5521 renaming = renaming->next)
5522 {
5523 const char *r_name;
22cee43f
PMR
5524
5525 /* Avoid infinite recursions: skip this renaming if we are actually
5526 already traversing it.
5527
5528 Currently, symbol lookup in Ada don't use the namespace machinery from
5529 C++/Fortran support: skip namespace imports that use them. */
5530 if (renaming->searched
5531 || (renaming->import_src != NULL
5532 && renaming->import_src[0] != '\0')
5533 || (renaming->import_dest != NULL
5534 && renaming->import_dest[0] != '\0'))
5535 continue;
5536 renaming->searched = 1;
5537
5538 /* TODO: here, we perform another name-based symbol lookup, which can
5539 pull its own multiple overloads. In theory, we should be able to do
5540 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5541 not a simple name. But in order to do this, we would need to enhance
5542 the DWARF reader to associate a symbol to this renaming, instead of a
5543 name. So, for now, we do something simpler: re-use the C++/Fortran
5544 namespace machinery. */
5545 r_name = (renaming->alias != NULL
5546 ? renaming->alias
5547 : renaming->declaration);
b5ec771e
PA
5548 if (name_match (r_name, lookup_name, NULL))
5549 {
5550 lookup_name_info decl_lookup_name (renaming->declaration,
5551 lookup_name.match_type ());
5552 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5553 1, NULL);
5554 }
22cee43f
PMR
5555 renaming->searched = 0;
5556 }
5557 return num_defns_collected (obstackp) != defns_mark;
5558}
5559
db230ce3
JB
5560/* Implements compare_names, but only applying the comparision using
5561 the given CASING. */
5b4ee69b 5562
40658b94 5563static int
db230ce3
JB
5564compare_names_with_case (const char *string1, const char *string2,
5565 enum case_sensitivity casing)
40658b94
PH
5566{
5567 while (*string1 != '\0' && *string2 != '\0')
5568 {
db230ce3
JB
5569 char c1, c2;
5570
40658b94
PH
5571 if (isspace (*string1) || isspace (*string2))
5572 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5573
5574 if (casing == case_sensitive_off)
5575 {
5576 c1 = tolower (*string1);
5577 c2 = tolower (*string2);
5578 }
5579 else
5580 {
5581 c1 = *string1;
5582 c2 = *string2;
5583 }
5584 if (c1 != c2)
40658b94 5585 break;
db230ce3 5586
40658b94
PH
5587 string1 += 1;
5588 string2 += 1;
5589 }
db230ce3 5590
40658b94
PH
5591 switch (*string1)
5592 {
5593 case '(':
5594 return strcmp_iw_ordered (string1, string2);
5595 case '_':
5596 if (*string2 == '\0')
5597 {
052874e8 5598 if (is_name_suffix (string1))
40658b94
PH
5599 return 0;
5600 else
1a1d5513 5601 return 1;
40658b94 5602 }
dbb8534f 5603 /* FALLTHROUGH */
40658b94
PH
5604 default:
5605 if (*string2 == '(')
5606 return strcmp_iw_ordered (string1, string2);
5607 else
db230ce3
JB
5608 {
5609 if (casing == case_sensitive_off)
5610 return tolower (*string1) - tolower (*string2);
5611 else
5612 return *string1 - *string2;
5613 }
40658b94 5614 }
ccefe4c4
TT
5615}
5616
db230ce3
JB
5617/* Compare STRING1 to STRING2, with results as for strcmp.
5618 Compatible with strcmp_iw_ordered in that...
5619
5620 strcmp_iw_ordered (STRING1, STRING2) <= 0
5621
5622 ... implies...
5623
5624 compare_names (STRING1, STRING2) <= 0
5625
5626 (they may differ as to what symbols compare equal). */
5627
5628static int
5629compare_names (const char *string1, const char *string2)
5630{
5631 int result;
5632
5633 /* Similar to what strcmp_iw_ordered does, we need to perform
5634 a case-insensitive comparison first, and only resort to
5635 a second, case-sensitive, comparison if the first one was
5636 not sufficient to differentiate the two strings. */
5637
5638 result = compare_names_with_case (string1, string2, case_sensitive_off);
5639 if (result == 0)
5640 result = compare_names_with_case (string1, string2, case_sensitive_on);
5641
5642 return result;
5643}
5644
b5ec771e
PA
5645/* Convenience function to get at the Ada encoded lookup name for
5646 LOOKUP_NAME, as a C string. */
5647
5648static const char *
5649ada_lookup_name (const lookup_name_info &lookup_name)
5650{
5651 return lookup_name.ada ().lookup_name ().c_str ();
5652}
5653
339c13b6 5654/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5655 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5656 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5657 symbols otherwise. */
339c13b6
JB
5658
5659static void
b5ec771e
PA
5660add_nonlocal_symbols (struct obstack *obstackp,
5661 const lookup_name_info &lookup_name,
5662 domain_enum domain, int global)
339c13b6
JB
5663{
5664 struct objfile *objfile;
22cee43f 5665 struct compunit_symtab *cu;
40658b94 5666 struct match_data data;
339c13b6 5667
6475f2fe 5668 memset (&data, 0, sizeof data);
ccefe4c4 5669 data.obstackp = obstackp;
339c13b6 5670
b5ec771e
PA
5671 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5672
ccefe4c4 5673 ALL_OBJFILES (objfile)
40658b94
PH
5674 {
5675 data.objfile = objfile;
5676
5677 if (is_wild_match)
b5ec771e
PA
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
4186eb54 5680 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5681 symbol_name_match_type::WILD,
5682 NULL);
40658b94 5683 else
b5ec771e
PA
5684 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5685 domain, global,
4186eb54 5686 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5687 symbol_name_match_type::FULL,
5688 compare_names);
22cee43f
PMR
5689
5690 ALL_OBJFILE_COMPUNITS (objfile, cu)
5691 {
5692 const struct block *global_block
5693 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5694
b5ec771e
PA
5695 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5696 domain))
22cee43f
PMR
5697 data.found_sym = 1;
5698 }
40658b94
PH
5699 }
5700
5701 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5702 {
b5ec771e
PA
5703 const char *name = ada_lookup_name (lookup_name);
5704 std::string name1 = std::string ("<_ada_") + name + '>';
5705
40658b94
PH
5706 ALL_OBJFILES (objfile)
5707 {
40658b94 5708 data.objfile = objfile;
b5ec771e
PA
5709 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5710 domain, global,
0963b4bd
MS
5711 aux_add_nonlocal_symbols,
5712 &data,
b5ec771e
PA
5713 symbol_name_match_type::FULL,
5714 compare_names);
40658b94
PH
5715 }
5716 }
339c13b6
JB
5717}
5718
b5ec771e
PA
5719/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5720 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5721 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5722
22cee43f
PMR
5723 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5724 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5725 is the one match returned (no other matches in that or
d9680e73 5726 enclosing blocks is returned). If there are any matches in or
22cee43f 5727 surrounding BLOCK, then these alone are returned.
4eeaa230 5728
b5ec771e
PA
5729 Names prefixed with "standard__" are handled specially:
5730 "standard__" is first stripped off (by the lookup_name
5731 constructor), and only static and global symbols are searched.
14f9c5c9 5732
22cee43f
PMR
5733 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5734 to lookup global symbols. */
5735
5736static void
5737ada_add_all_symbols (struct obstack *obstackp,
5738 const struct block *block,
b5ec771e 5739 const lookup_name_info &lookup_name,
22cee43f
PMR
5740 domain_enum domain,
5741 int full_search,
5742 int *made_global_lookup_p)
14f9c5c9
AS
5743{
5744 struct symbol *sym;
14f9c5c9 5745
22cee43f
PMR
5746 if (made_global_lookup_p)
5747 *made_global_lookup_p = 0;
339c13b6
JB
5748
5749 /* Special case: If the user specifies a symbol name inside package
5750 Standard, do a non-wild matching of the symbol name without
5751 the "standard__" prefix. This was primarily introduced in order
5752 to allow the user to specifically access the standard exceptions
5753 using, for instance, Standard.Constraint_Error when Constraint_Error
5754 is ambiguous (due to the user defining its own Constraint_Error
5755 entity inside its program). */
b5ec771e
PA
5756 if (lookup_name.ada ().standard_p ())
5757 block = NULL;
4c4b4cd2 5758
339c13b6 5759 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5760
4eeaa230
DE
5761 if (block != NULL)
5762 {
5763 if (full_search)
b5ec771e 5764 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5765 else
5766 {
5767 /* In the !full_search case we're are being called by
5768 ada_iterate_over_symbols, and we don't want to search
5769 superblocks. */
b5ec771e 5770 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5771 }
22cee43f
PMR
5772 if (num_defns_collected (obstackp) > 0 || !full_search)
5773 return;
4eeaa230 5774 }
d2e4a39e 5775
339c13b6
JB
5776 /* No non-global symbols found. Check our cache to see if we have
5777 already performed this search before. If we have, then return
5778 the same result. */
5779
b5ec771e
PA
5780 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5781 domain, &sym, &block))
4c4b4cd2
PH
5782 {
5783 if (sym != NULL)
b5ec771e 5784 add_defn_to_vec (obstackp, sym, block);
22cee43f 5785 return;
4c4b4cd2 5786 }
14f9c5c9 5787
22cee43f
PMR
5788 if (made_global_lookup_p)
5789 *made_global_lookup_p = 1;
b1eedac9 5790
339c13b6
JB
5791 /* Search symbols from all global blocks. */
5792
b5ec771e 5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5794
4c4b4cd2 5795 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5796 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5797
22cee43f 5798 if (num_defns_collected (obstackp) == 0)
b5ec771e 5799 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5800}
5801
b5ec771e
PA
5802/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5803 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5804 matches.
54d343a2
TT
5805 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5806 found and the blocks and symbol tables (if any) in which they were
5807 found.
22cee43f
PMR
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818static int
b5ec771e
PA
5819ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
22cee43f 5821 domain_enum domain,
54d343a2 5822 std::vector<struct block_symbol> *results,
22cee43f
PMR
5823 int full_search)
5824{
22cee43f
PMR
5825 int syms_from_global_search;
5826 int ndefns;
ec6a20c2 5827 auto_obstack obstack;
22cee43f 5828
ec6a20c2 5829 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5830 domain, full_search, &syms_from_global_search);
14f9c5c9 5831
ec6a20c2
JB
5832 ndefns = num_defns_collected (&obstack);
5833
54d343a2
TT
5834 struct block_symbol *base = defns_collected (&obstack, 1);
5835 for (int i = 0; i < ndefns; ++i)
5836 results->push_back (base[i]);
4c4b4cd2 5837
54d343a2 5838 ndefns = remove_extra_symbols (results);
4c4b4cd2 5839
b1eedac9 5840 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5841 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5842
b1eedac9 5843 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5844 cache_symbol (ada_lookup_name (lookup_name), domain,
5845 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5846
54d343a2 5847 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5848
14f9c5c9
AS
5849 return ndefns;
5850}
5851
b5ec771e 5852/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5853 in global scopes, returning the number of matches, and filling *RESULTS
5854 with (SYM,BLOCK) tuples.
ec6a20c2 5855
4eeaa230
DE
5856 See ada_lookup_symbol_list_worker for further details. */
5857
5858int
b5ec771e 5859ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5860 domain_enum domain,
5861 std::vector<struct block_symbol> *results)
4eeaa230 5862{
b5ec771e
PA
5863 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5864 lookup_name_info lookup_name (name, name_match_type);
5865
5866 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5867}
5868
5869/* Implementation of the la_iterate_over_symbols method. */
5870
5871static void
14bc53a8 5872ada_iterate_over_symbols
b5ec771e
PA
5873 (const struct block *block, const lookup_name_info &name,
5874 domain_enum domain,
14bc53a8 5875 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5876{
5877 int ndefs, i;
54d343a2 5878 std::vector<struct block_symbol> results;
4eeaa230
DE
5879
5880 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5881
4eeaa230
DE
5882 for (i = 0; i < ndefs; ++i)
5883 {
7e41c8db 5884 if (!callback (&results[i]))
4eeaa230
DE
5885 break;
5886 }
5887}
5888
4e5c77fe
JB
5889/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5890 to 1, but choosing the first symbol found if there are multiple
5891 choices.
5892
5e2336be
JB
5893 The result is stored in *INFO, which must be non-NULL.
5894 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5895
5896void
5897ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5898 domain_enum domain,
d12307c1 5899 struct block_symbol *info)
14f9c5c9 5900{
b5ec771e
PA
5901 /* Since we already have an encoded name, wrap it in '<>' to force a
5902 verbatim match. Otherwise, if the name happens to not look like
5903 an encoded name (because it doesn't include a "__"),
5904 ada_lookup_name_info would re-encode/fold it again, and that
5905 would e.g., incorrectly lowercase object renaming names like
5906 "R28b" -> "r28b". */
5907 std::string verbatim = std::string ("<") + name + '>';
5908
5e2336be 5909 gdb_assert (info != NULL);
f98fc17b 5910 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5911}
aeb5907d
JB
5912
5913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5916 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
d12307c1 5919struct block_symbol
aeb5907d 5920ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5921 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5922{
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
54d343a2 5926 std::vector<struct block_symbol> candidates;
f98fc17b 5927 int n_candidates;
f98fc17b
PA
5928
5929 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5930
5931 if (n_candidates == 0)
54d343a2 5932 return {};
f98fc17b
PA
5933
5934 block_symbol info = candidates[0];
5935 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5936 return info;
4c4b4cd2 5937}
14f9c5c9 5938
d12307c1 5939static struct block_symbol
f606139a
DE
5940ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5941 const char *name,
76a01679 5942 const struct block *block,
21b556f4 5943 const domain_enum domain)
4c4b4cd2 5944{
d12307c1 5945 struct block_symbol sym;
04dccad0
JB
5946
5947 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5948 if (sym.symbol != NULL)
04dccad0
JB
5949 return sym;
5950
5951 /* If we haven't found a match at this point, try the primitive
5952 types. In other languages, this search is performed before
5953 searching for global symbols in order to short-circuit that
5954 global-symbol search if it happens that the name corresponds
5955 to a primitive type. But we cannot do the same in Ada, because
5956 it is perfectly legitimate for a program to declare a type which
5957 has the same name as a standard type. If looking up a type in
5958 that situation, we have traditionally ignored the primitive type
5959 in favor of user-defined types. This is why, unlike most other
5960 languages, we search the primitive types this late and only after
5961 having searched the global symbols without success. */
5962
5963 if (domain == VAR_DOMAIN)
5964 {
5965 struct gdbarch *gdbarch;
5966
5967 if (block == NULL)
5968 gdbarch = target_gdbarch ();
5969 else
5970 gdbarch = block_gdbarch (block);
d12307c1
PMR
5971 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5972 if (sym.symbol != NULL)
04dccad0
JB
5973 return sym;
5974 }
5975
d12307c1 5976 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5977}
5978
5979
4c4b4cd2
PH
5980/* True iff STR is a possible encoded suffix of a normal Ada name
5981 that is to be ignored for matching purposes. Suffixes of parallel
5982 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5983 are given by any of the regular expressions:
4c4b4cd2 5984
babe1480
JB
5985 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5986 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5987 TKB [subprogram suffix for task bodies]
babe1480 5988 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5989 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5990
5991 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5992 match is performed. This sequence is used to differentiate homonyms,
5993 is an optional part of a valid name suffix. */
4c4b4cd2 5994
14f9c5c9 5995static int
d2e4a39e 5996is_name_suffix (const char *str)
14f9c5c9
AS
5997{
5998 int k;
4c4b4cd2
PH
5999 const char *matching;
6000 const int len = strlen (str);
6001
babe1480
JB
6002 /* Skip optional leading __[0-9]+. */
6003
4c4b4cd2
PH
6004 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6005 {
babe1480
JB
6006 str += 3;
6007 while (isdigit (str[0]))
6008 str += 1;
4c4b4cd2 6009 }
babe1480
JB
6010
6011 /* [.$][0-9]+ */
4c4b4cd2 6012
babe1480 6013 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6014 {
babe1480 6015 matching = str + 1;
4c4b4cd2
PH
6016 while (isdigit (matching[0]))
6017 matching += 1;
6018 if (matching[0] == '\0')
6019 return 1;
6020 }
6021
6022 /* ___[0-9]+ */
babe1480 6023
4c4b4cd2
PH
6024 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6025 {
6026 matching = str + 3;
6027 while (isdigit (matching[0]))
6028 matching += 1;
6029 if (matching[0] == '\0')
6030 return 1;
6031 }
6032
9ac7f98e
JB
6033 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6034
6035 if (strcmp (str, "TKB") == 0)
6036 return 1;
6037
529cad9c
PH
6038#if 0
6039 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6040 with a N at the end. Unfortunately, the compiler uses the same
6041 convention for other internal types it creates. So treating
529cad9c 6042 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6043 some regressions. For instance, consider the case of an enumerated
6044 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6045 name ends with N.
6046 Having a single character like this as a suffix carrying some
0963b4bd 6047 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6048 to be something like "_N" instead. In the meantime, do not do
6049 the following check. */
6050 /* Protected Object Subprograms */
6051 if (len == 1 && str [0] == 'N')
6052 return 1;
6053#endif
6054
6055 /* _E[0-9]+[bs]$ */
6056 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6057 {
6058 matching = str + 3;
6059 while (isdigit (matching[0]))
6060 matching += 1;
6061 if ((matching[0] == 'b' || matching[0] == 's')
6062 && matching [1] == '\0')
6063 return 1;
6064 }
6065
4c4b4cd2
PH
6066 /* ??? We should not modify STR directly, as we are doing below. This
6067 is fine in this case, but may become problematic later if we find
6068 that this alternative did not work, and want to try matching
6069 another one from the begining of STR. Since we modified it, we
6070 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6071 if (str[0] == 'X')
6072 {
6073 str += 1;
d2e4a39e 6074 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6075 {
6076 if (str[0] != 'n' && str[0] != 'b')
6077 return 0;
6078 str += 1;
6079 }
14f9c5c9 6080 }
babe1480 6081
14f9c5c9
AS
6082 if (str[0] == '\000')
6083 return 1;
babe1480 6084
d2e4a39e 6085 if (str[0] == '_')
14f9c5c9
AS
6086 {
6087 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6088 return 0;
d2e4a39e 6089 if (str[2] == '_')
4c4b4cd2 6090 {
61ee279c
PH
6091 if (strcmp (str + 3, "JM") == 0)
6092 return 1;
6093 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6094 the LJM suffix in favor of the JM one. But we will
6095 still accept LJM as a valid suffix for a reasonable
6096 amount of time, just to allow ourselves to debug programs
6097 compiled using an older version of GNAT. */
4c4b4cd2
PH
6098 if (strcmp (str + 3, "LJM") == 0)
6099 return 1;
6100 if (str[3] != 'X')
6101 return 0;
1265e4aa
JB
6102 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6103 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6104 return 1;
6105 if (str[4] == 'R' && str[5] != 'T')
6106 return 1;
6107 return 0;
6108 }
6109 if (!isdigit (str[2]))
6110 return 0;
6111 for (k = 3; str[k] != '\0'; k += 1)
6112 if (!isdigit (str[k]) && str[k] != '_')
6113 return 0;
14f9c5c9
AS
6114 return 1;
6115 }
4c4b4cd2 6116 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6117 {
4c4b4cd2
PH
6118 for (k = 2; str[k] != '\0'; k += 1)
6119 if (!isdigit (str[k]) && str[k] != '_')
6120 return 0;
14f9c5c9
AS
6121 return 1;
6122 }
6123 return 0;
6124}
d2e4a39e 6125
aeb5907d
JB
6126/* Return non-zero if the string starting at NAME and ending before
6127 NAME_END contains no capital letters. */
529cad9c
PH
6128
6129static int
6130is_valid_name_for_wild_match (const char *name0)
6131{
6132 const char *decoded_name = ada_decode (name0);
6133 int i;
6134
5823c3ef
JB
6135 /* If the decoded name starts with an angle bracket, it means that
6136 NAME0 does not follow the GNAT encoding format. It should then
6137 not be allowed as a possible wild match. */
6138 if (decoded_name[0] == '<')
6139 return 0;
6140
529cad9c
PH
6141 for (i=0; decoded_name[i] != '\0'; i++)
6142 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6143 return 0;
6144
6145 return 1;
6146}
6147
73589123
PH
6148/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6149 that could start a simple name. Assumes that *NAMEP points into
6150 the string beginning at NAME0. */
4c4b4cd2 6151
14f9c5c9 6152static int
73589123 6153advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6154{
73589123 6155 const char *name = *namep;
5b4ee69b 6156
5823c3ef 6157 while (1)
14f9c5c9 6158 {
aa27d0b3 6159 int t0, t1;
73589123
PH
6160
6161 t0 = *name;
6162 if (t0 == '_')
6163 {
6164 t1 = name[1];
6165 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6166 {
6167 name += 1;
61012eef 6168 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6169 break;
6170 else
6171 name += 1;
6172 }
aa27d0b3
JB
6173 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6174 || name[2] == target0))
73589123
PH
6175 {
6176 name += 2;
6177 break;
6178 }
6179 else
6180 return 0;
6181 }
6182 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6183 name += 1;
6184 else
5823c3ef 6185 return 0;
73589123
PH
6186 }
6187
6188 *namep = name;
6189 return 1;
6190}
6191
b5ec771e
PA
6192/* Return true iff NAME encodes a name of the form prefix.PATN.
6193 Ignores any informational suffixes of NAME (i.e., for which
6194 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6195 simple name. */
73589123 6196
b5ec771e 6197static bool
73589123
PH
6198wild_match (const char *name, const char *patn)
6199{
22e048c9 6200 const char *p;
73589123
PH
6201 const char *name0 = name;
6202
6203 while (1)
6204 {
6205 const char *match = name;
6206
6207 if (*name == *patn)
6208 {
6209 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6210 if (*p != *name)
6211 break;
6212 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6213 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6214
6215 if (name[-1] == '_')
6216 name -= 1;
6217 }
6218 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6219 return false;
96d887e8 6220 }
96d887e8
PH
6221}
6222
b5ec771e
PA
6223/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6224 any trailing suffixes that encode debugging information or leading
6225 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6226 information that is ignored). */
40658b94 6227
b5ec771e 6228static bool
c4d840bd
PH
6229full_match (const char *sym_name, const char *search_name)
6230{
b5ec771e
PA
6231 size_t search_name_len = strlen (search_name);
6232
6233 if (strncmp (sym_name, search_name, search_name_len) == 0
6234 && is_name_suffix (sym_name + search_name_len))
6235 return true;
6236
6237 if (startswith (sym_name, "_ada_")
6238 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6239 && is_name_suffix (sym_name + search_name_len + 5))
6240 return true;
c4d840bd 6241
b5ec771e
PA
6242 return false;
6243}
c4d840bd 6244
b5ec771e
PA
6245/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6246 *defn_symbols, updating the list of symbols in OBSTACKP (if
6247 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6248
6249static void
6250ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6251 const struct block *block,
6252 const lookup_name_info &lookup_name,
6253 domain_enum domain, struct objfile *objfile)
96d887e8 6254{
8157b174 6255 struct block_iterator iter;
96d887e8
PH
6256 /* A matching argument symbol, if any. */
6257 struct symbol *arg_sym;
6258 /* Set true when we find a matching non-argument symbol. */
6259 int found_sym;
6260 struct symbol *sym;
6261
6262 arg_sym = NULL;
6263 found_sym = 0;
b5ec771e
PA
6264 for (sym = block_iter_match_first (block, lookup_name, &iter);
6265 sym != NULL;
6266 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6267 {
b5ec771e
PA
6268 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6269 SYMBOL_DOMAIN (sym), domain))
6270 {
6271 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6272 {
6273 if (SYMBOL_IS_ARGUMENT (sym))
6274 arg_sym = sym;
6275 else
6276 {
6277 found_sym = 1;
6278 add_defn_to_vec (obstackp,
6279 fixup_symbol_section (sym, objfile),
6280 block);
6281 }
6282 }
6283 }
96d887e8
PH
6284 }
6285
22cee43f
PMR
6286 /* Handle renamings. */
6287
b5ec771e 6288 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6289 found_sym = 1;
6290
96d887e8
PH
6291 if (!found_sym && arg_sym != NULL)
6292 {
76a01679
JB
6293 add_defn_to_vec (obstackp,
6294 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6295 block);
96d887e8
PH
6296 }
6297
b5ec771e 6298 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6299 {
6300 arg_sym = NULL;
6301 found_sym = 0;
b5ec771e
PA
6302 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6303 const char *name = ada_lookup_name.c_str ();
6304 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6305
6306 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6307 {
4186eb54
KS
6308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6309 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6310 {
6311 int cmp;
6312
6313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6314 if (cmp == 0)
6315 {
61012eef 6316 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6317 if (cmp == 0)
6318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6319 name_len);
6320 }
6321
6322 if (cmp == 0
6323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6324 {
2a2d4dc3
AS
6325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6326 {
6327 if (SYMBOL_IS_ARGUMENT (sym))
6328 arg_sym = sym;
6329 else
6330 {
6331 found_sym = 1;
6332 add_defn_to_vec (obstackp,
6333 fixup_symbol_section (sym, objfile),
6334 block);
6335 }
6336 }
76a01679
JB
6337 }
6338 }
76a01679 6339 }
96d887e8
PH
6340
6341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6342 They aren't parameters, right? */
6343 if (!found_sym && arg_sym != NULL)
6344 {
6345 add_defn_to_vec (obstackp,
76a01679 6346 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6347 block);
96d887e8
PH
6348 }
6349 }
6350}
6351\f
41d27058
JB
6352
6353 /* Symbol Completion */
6354
b5ec771e 6355/* See symtab.h. */
41d27058 6356
b5ec771e
PA
6357bool
6358ada_lookup_name_info::matches
6359 (const char *sym_name,
6360 symbol_name_match_type match_type,
a207cff2 6361 completion_match_result *comp_match_res) const
41d27058 6362{
b5ec771e
PA
6363 bool match = false;
6364 const char *text = m_encoded_name.c_str ();
6365 size_t text_len = m_encoded_name.size ();
41d27058
JB
6366
6367 /* First, test against the fully qualified name of the symbol. */
6368
6369 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6370 match = true;
41d27058 6371
b5ec771e 6372 if (match && !m_encoded_p)
41d27058
JB
6373 {
6374 /* One needed check before declaring a positive match is to verify
6375 that iff we are doing a verbatim match, the decoded version
6376 of the symbol name starts with '<'. Otherwise, this symbol name
6377 is not a suitable completion. */
6378 const char *sym_name_copy = sym_name;
b5ec771e 6379 bool has_angle_bracket;
41d27058
JB
6380
6381 sym_name = ada_decode (sym_name);
6382 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6383 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6384 sym_name = sym_name_copy;
6385 }
6386
b5ec771e 6387 if (match && !m_verbatim_p)
41d27058
JB
6388 {
6389 /* When doing non-verbatim match, another check that needs to
6390 be done is to verify that the potentially matching symbol name
6391 does not include capital letters, because the ada-mode would
6392 not be able to understand these symbol names without the
6393 angle bracket notation. */
6394 const char *tmp;
6395
6396 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6397 if (*tmp != '\0')
b5ec771e 6398 match = false;
41d27058
JB
6399 }
6400
6401 /* Second: Try wild matching... */
6402
b5ec771e 6403 if (!match && m_wild_match_p)
41d27058
JB
6404 {
6405 /* Since we are doing wild matching, this means that TEXT
6406 may represent an unqualified symbol name. We therefore must
6407 also compare TEXT against the unqualified name of the symbol. */
6408 sym_name = ada_unqualified_name (ada_decode (sym_name));
6409
6410 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6411 match = true;
41d27058
JB
6412 }
6413
b5ec771e 6414 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6415
6416 if (!match)
b5ec771e 6417 return false;
41d27058 6418
a207cff2 6419 if (comp_match_res != NULL)
b5ec771e 6420 {
a207cff2 6421 std::string &match_str = comp_match_res->match.storage ();
41d27058 6422
b5ec771e 6423 if (!m_encoded_p)
a207cff2 6424 match_str = ada_decode (sym_name);
b5ec771e
PA
6425 else
6426 {
6427 if (m_verbatim_p)
6428 match_str = add_angle_brackets (sym_name);
6429 else
6430 match_str = sym_name;
41d27058 6431
b5ec771e 6432 }
a207cff2
PA
6433
6434 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6435 }
6436
b5ec771e 6437 return true;
41d27058
JB
6438}
6439
b5ec771e 6440/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6441 WORD is the entire command on which completion is made. */
41d27058 6442
eb3ff9a5
PA
6443static void
6444ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6445 complete_symbol_mode mode,
b5ec771e
PA
6446 symbol_name_match_type name_match_type,
6447 const char *text, const char *word,
eb3ff9a5 6448 enum type_code code)
41d27058 6449{
41d27058 6450 struct symbol *sym;
43f3e411 6451 struct compunit_symtab *s;
41d27058
JB
6452 struct minimal_symbol *msymbol;
6453 struct objfile *objfile;
3977b71f 6454 const struct block *b, *surrounding_static_block = 0;
8157b174 6455 struct block_iterator iter;
41d27058 6456
2f68a895
TT
6457 gdb_assert (code == TYPE_CODE_UNDEF);
6458
1b026119 6459 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6460
6461 /* First, look at the partial symtab symbols. */
14bc53a8 6462 expand_symtabs_matching (NULL,
b5ec771e
PA
6463 lookup_name,
6464 NULL,
14bc53a8
PA
6465 NULL,
6466 ALL_DOMAIN);
41d27058
JB
6467
6468 /* At this point scan through the misc symbol vectors and add each
6469 symbol you find to the list. Eventually we want to ignore
6470 anything that isn't a text symbol (everything else will be
6471 handled by the psymtab code above). */
6472
6473 ALL_MSYMBOLS (objfile, msymbol)
6474 {
6475 QUIT;
b5ec771e 6476
f9d67a22
PA
6477 if (completion_skip_symbol (mode, msymbol))
6478 continue;
6479
d4c2a405
PA
6480 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6481
6482 /* Ada minimal symbols won't have their language set to Ada. If
6483 we let completion_list_add_name compare using the
6484 default/C-like matcher, then when completing e.g., symbols in a
6485 package named "pck", we'd match internal Ada symbols like
6486 "pckS", which are invalid in an Ada expression, unless you wrap
6487 them in '<' '>' to request a verbatim match.
6488
6489 Unfortunately, some Ada encoded names successfully demangle as
6490 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6491 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6492 with the wrong language set. Paper over that issue here. */
6493 if (symbol_language == language_auto
6494 || symbol_language == language_cplus)
6495 symbol_language = language_ada;
6496
b5ec771e 6497 completion_list_add_name (tracker,
d4c2a405 6498 symbol_language,
b5ec771e 6499 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6500 lookup_name, text, word);
41d27058
JB
6501 }
6502
6503 /* Search upwards from currently selected frame (so that we can
6504 complete on local vars. */
6505
6506 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6507 {
6508 if (!BLOCK_SUPERBLOCK (b))
6509 surrounding_static_block = b; /* For elmin of dups */
6510
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
f9d67a22
PA
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
b5ec771e
PA
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
1b026119 6519 lookup_name, text, word);
41d27058
JB
6520 }
6521 }
6522
6523 /* Go through the symtabs and check the externs and statics for
43f3e411 6524 symbols which match. */
41d27058 6525
43f3e411 6526 ALL_COMPUNITS (objfile, s)
41d27058
JB
6527 {
6528 QUIT;
43f3e411 6529 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 {
f9d67a22
PA
6532 if (completion_skip_symbol (mode, sym))
6533 continue;
6534
b5ec771e
PA
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
1b026119 6538 lookup_name, text, word);
41d27058
JB
6539 }
6540 }
6541
43f3e411 6542 ALL_COMPUNITS (objfile, s)
41d27058
JB
6543 {
6544 QUIT;
43f3e411 6545 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6546 /* Don't do this block twice. */
6547 if (b == surrounding_static_block)
6548 continue;
6549 ALL_BLOCK_SYMBOLS (b, iter, sym)
6550 {
f9d67a22
PA
6551 if (completion_skip_symbol (mode, sym))
6552 continue;
6553
b5ec771e
PA
6554 completion_list_add_name (tracker,
6555 SYMBOL_LANGUAGE (sym),
6556 SYMBOL_LINKAGE_NAME (sym),
1b026119 6557 lookup_name, text, word);
41d27058
JB
6558 }
6559 }
41d27058
JB
6560}
6561
963a6417 6562 /* Field Access */
96d887e8 6563
73fb9985
JB
6564/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6565 for tagged types. */
6566
6567static int
6568ada_is_dispatch_table_ptr_type (struct type *type)
6569{
0d5cff50 6570 const char *name;
73fb9985
JB
6571
6572 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6573 return 0;
6574
6575 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6576 if (name == NULL)
6577 return 0;
6578
6579 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6580}
6581
ac4a2da4
JG
6582/* Return non-zero if TYPE is an interface tag. */
6583
6584static int
6585ada_is_interface_tag (struct type *type)
6586{
6587 const char *name = TYPE_NAME (type);
6588
6589 if (name == NULL)
6590 return 0;
6591
6592 return (strcmp (name, "ada__tags__interface_tag") == 0);
6593}
6594
963a6417
PH
6595/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6596 to be invisible to users. */
96d887e8 6597
963a6417
PH
6598int
6599ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6600{
963a6417
PH
6601 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6602 return 1;
ffde82bf 6603
73fb9985
JB
6604 /* Check the name of that field. */
6605 {
6606 const char *name = TYPE_FIELD_NAME (type, field_num);
6607
6608 /* Anonymous field names should not be printed.
6609 brobecker/2007-02-20: I don't think this can actually happen
6610 but we don't want to print the value of annonymous fields anyway. */
6611 if (name == NULL)
6612 return 1;
6613
ffde82bf
JB
6614 /* Normally, fields whose name start with an underscore ("_")
6615 are fields that have been internally generated by the compiler,
6616 and thus should not be printed. The "_parent" field is special,
6617 however: This is a field internally generated by the compiler
6618 for tagged types, and it contains the components inherited from
6619 the parent type. This field should not be printed as is, but
6620 should not be ignored either. */
61012eef 6621 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6622 return 1;
6623 }
6624
ac4a2da4
JG
6625 /* If this is the dispatch table of a tagged type or an interface tag,
6626 then ignore. */
73fb9985 6627 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6628 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6629 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6630 return 1;
6631
6632 /* Not a special field, so it should not be ignored. */
6633 return 0;
963a6417 6634}
96d887e8 6635
963a6417 6636/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6637 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6638
963a6417
PH
6639int
6640ada_is_tagged_type (struct type *type, int refok)
6641{
988f6b3d 6642 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6643}
96d887e8 6644
963a6417 6645/* True iff TYPE represents the type of X'Tag */
96d887e8 6646
963a6417
PH
6647int
6648ada_is_tag_type (struct type *type)
6649{
460efde1
JB
6650 type = ada_check_typedef (type);
6651
963a6417
PH
6652 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6653 return 0;
6654 else
96d887e8 6655 {
963a6417 6656 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6657
963a6417
PH
6658 return (name != NULL
6659 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6660 }
96d887e8
PH
6661}
6662
963a6417 6663/* The type of the tag on VAL. */
76a01679 6664
963a6417
PH
6665struct type *
6666ada_tag_type (struct value *val)
96d887e8 6667{
988f6b3d 6668 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6669}
96d887e8 6670
b50d69b5
JG
6671/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6672 retired at Ada 05). */
6673
6674static int
6675is_ada95_tag (struct value *tag)
6676{
6677 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6678}
6679
963a6417 6680/* The value of the tag on VAL. */
96d887e8 6681
963a6417
PH
6682struct value *
6683ada_value_tag (struct value *val)
6684{
03ee6b2e 6685 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6686}
6687
963a6417
PH
6688/* The value of the tag on the object of type TYPE whose contents are
6689 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6690 ADDRESS. */
96d887e8 6691
963a6417 6692static struct value *
10a2c479 6693value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6694 const gdb_byte *valaddr,
963a6417 6695 CORE_ADDR address)
96d887e8 6696{
b5385fc0 6697 int tag_byte_offset;
963a6417 6698 struct type *tag_type;
5b4ee69b 6699
963a6417 6700 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6701 NULL, NULL, NULL))
96d887e8 6702 {
fc1a4b47 6703 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6704 ? NULL
6705 : valaddr + tag_byte_offset);
963a6417 6706 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6707
963a6417 6708 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6709 }
963a6417
PH
6710 return NULL;
6711}
96d887e8 6712
963a6417
PH
6713static struct type *
6714type_from_tag (struct value *tag)
6715{
6716 const char *type_name = ada_tag_name (tag);
5b4ee69b 6717
963a6417
PH
6718 if (type_name != NULL)
6719 return ada_find_any_type (ada_encode (type_name));
6720 return NULL;
6721}
96d887e8 6722
b50d69b5
JG
6723/* Given a value OBJ of a tagged type, return a value of this
6724 type at the base address of the object. The base address, as
6725 defined in Ada.Tags, it is the address of the primary tag of
6726 the object, and therefore where the field values of its full
6727 view can be fetched. */
6728
6729struct value *
6730ada_tag_value_at_base_address (struct value *obj)
6731{
b50d69b5
JG
6732 struct value *val;
6733 LONGEST offset_to_top = 0;
6734 struct type *ptr_type, *obj_type;
6735 struct value *tag;
6736 CORE_ADDR base_address;
6737
6738 obj_type = value_type (obj);
6739
6740 /* It is the responsability of the caller to deref pointers. */
6741
6742 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6743 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6744 return obj;
6745
6746 tag = ada_value_tag (obj);
6747 if (!tag)
6748 return obj;
6749
6750 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6751
6752 if (is_ada95_tag (tag))
6753 return obj;
6754
08f49010
XR
6755 ptr_type = language_lookup_primitive_type
6756 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6757 ptr_type = lookup_pointer_type (ptr_type);
6758 val = value_cast (ptr_type, tag);
6759 if (!val)
6760 return obj;
6761
6762 /* It is perfectly possible that an exception be raised while
6763 trying to determine the base address, just like for the tag;
6764 see ada_tag_name for more details. We do not print the error
6765 message for the same reason. */
6766
492d29ea 6767 TRY
b50d69b5
JG
6768 {
6769 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6770 }
6771
492d29ea
PA
6772 CATCH (e, RETURN_MASK_ERROR)
6773 {
6774 return obj;
6775 }
6776 END_CATCH
b50d69b5
JG
6777
6778 /* If offset is null, nothing to do. */
6779
6780 if (offset_to_top == 0)
6781 return obj;
6782
6783 /* -1 is a special case in Ada.Tags; however, what should be done
6784 is not quite clear from the documentation. So do nothing for
6785 now. */
6786
6787 if (offset_to_top == -1)
6788 return obj;
6789
08f49010
XR
6790 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6791 from the base address. This was however incompatible with
6792 C++ dispatch table: C++ uses a *negative* value to *add*
6793 to the base address. Ada's convention has therefore been
6794 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6795 use the same convention. Here, we support both cases by
6796 checking the sign of OFFSET_TO_TOP. */
6797
6798 if (offset_to_top > 0)
6799 offset_to_top = -offset_to_top;
6800
6801 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6802 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6803
6804 /* Make sure that we have a proper tag at the new address.
6805 Otherwise, offset_to_top is bogus (which can happen when
6806 the object is not initialized yet). */
6807
6808 if (!tag)
6809 return obj;
6810
6811 obj_type = type_from_tag (tag);
6812
6813 if (!obj_type)
6814 return obj;
6815
6816 return value_from_contents_and_address (obj_type, NULL, base_address);
6817}
6818
1b611343
JB
6819/* Return the "ada__tags__type_specific_data" type. */
6820
6821static struct type *
6822ada_get_tsd_type (struct inferior *inf)
963a6417 6823{
1b611343 6824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6825
1b611343
JB
6826 if (data->tsd_type == 0)
6827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6828 return data->tsd_type;
6829}
529cad9c 6830
1b611343
JB
6831/* Return the TSD (type-specific data) associated to the given TAG.
6832 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6833
1b611343 6834 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6835
1b611343
JB
6836static struct value *
6837ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6838{
4c4b4cd2 6839 struct value *val;
1b611343 6840 struct type *type;
5b4ee69b 6841
1b611343
JB
6842 /* First option: The TSD is simply stored as a field of our TAG.
6843 Only older versions of GNAT would use this format, but we have
6844 to test it first, because there are no visible markers for
6845 the current approach except the absence of that field. */
529cad9c 6846
1b611343
JB
6847 val = ada_value_struct_elt (tag, "tsd", 1);
6848 if (val)
6849 return val;
e802dbe0 6850
1b611343
JB
6851 /* Try the second representation for the dispatch table (in which
6852 there is no explicit 'tsd' field in the referent of the tag pointer,
6853 and instead the tsd pointer is stored just before the dispatch
6854 table. */
e802dbe0 6855
1b611343
JB
6856 type = ada_get_tsd_type (current_inferior());
6857 if (type == NULL)
6858 return NULL;
6859 type = lookup_pointer_type (lookup_pointer_type (type));
6860 val = value_cast (type, tag);
6861 if (val == NULL)
6862 return NULL;
6863 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6864}
6865
1b611343
JB
6866/* Given the TSD of a tag (type-specific data), return a string
6867 containing the name of the associated type.
6868
6869 The returned value is good until the next call. May return NULL
6870 if we are unable to determine the tag name. */
6871
6872static char *
6873ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6874{
529cad9c
PH
6875 static char name[1024];
6876 char *p;
1b611343 6877 struct value *val;
529cad9c 6878
1b611343 6879 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6880 if (val == NULL)
1b611343 6881 return NULL;
4c4b4cd2
PH
6882 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6883 for (p = name; *p != '\0'; p += 1)
6884 if (isalpha (*p))
6885 *p = tolower (*p);
1b611343 6886 return name;
4c4b4cd2
PH
6887}
6888
6889/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6890 a C string.
6891
6892 Return NULL if the TAG is not an Ada tag, or if we were unable to
6893 determine the name of that tag. The result is good until the next
6894 call. */
4c4b4cd2
PH
6895
6896const char *
6897ada_tag_name (struct value *tag)
6898{
1b611343 6899 char *name = NULL;
5b4ee69b 6900
df407dfe 6901 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6902 return NULL;
1b611343
JB
6903
6904 /* It is perfectly possible that an exception be raised while trying
6905 to determine the TAG's name, even under normal circumstances:
6906 The associated variable may be uninitialized or corrupted, for
6907 instance. We do not let any exception propagate past this point.
6908 instead we return NULL.
6909
6910 We also do not print the error message either (which often is very
6911 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6912 the caller print a more meaningful message if necessary. */
492d29ea 6913 TRY
1b611343
JB
6914 {
6915 struct value *tsd = ada_get_tsd_from_tag (tag);
6916
6917 if (tsd != NULL)
6918 name = ada_tag_name_from_tsd (tsd);
6919 }
492d29ea
PA
6920 CATCH (e, RETURN_MASK_ERROR)
6921 {
6922 }
6923 END_CATCH
1b611343
JB
6924
6925 return name;
4c4b4cd2
PH
6926}
6927
6928/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6929
d2e4a39e 6930struct type *
ebf56fd3 6931ada_parent_type (struct type *type)
14f9c5c9
AS
6932{
6933 int i;
6934
61ee279c 6935 type = ada_check_typedef (type);
14f9c5c9
AS
6936
6937 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6938 return NULL;
6939
6940 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6941 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6942 {
6943 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6944
6945 /* If the _parent field is a pointer, then dereference it. */
6946 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6947 parent_type = TYPE_TARGET_TYPE (parent_type);
6948 /* If there is a parallel XVS type, get the actual base type. */
6949 parent_type = ada_get_base_type (parent_type);
6950
6951 return ada_check_typedef (parent_type);
6952 }
14f9c5c9
AS
6953
6954 return NULL;
6955}
6956
4c4b4cd2
PH
6957/* True iff field number FIELD_NUM of structure type TYPE contains the
6958 parent-type (inherited) fields of a derived type. Assumes TYPE is
6959 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6960
6961int
ebf56fd3 6962ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6963{
61ee279c 6964 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6965
4c4b4cd2 6966 return (name != NULL
61012eef
GB
6967 && (startswith (name, "PARENT")
6968 || startswith (name, "_parent")));
14f9c5c9
AS
6969}
6970
4c4b4cd2 6971/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6972 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6973 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6974 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6975 structures. */
14f9c5c9
AS
6976
6977int
ebf56fd3 6978ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6979{
d2e4a39e 6980 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6981
dddc0e16
JB
6982 if (name != NULL && strcmp (name, "RETVAL") == 0)
6983 {
6984 /* This happens in functions with "out" or "in out" parameters
6985 which are passed by copy. For such functions, GNAT describes
6986 the function's return type as being a struct where the return
6987 value is in a field called RETVAL, and where the other "out"
6988 or "in out" parameters are fields of that struct. This is not
6989 a wrapper. */
6990 return 0;
6991 }
6992
d2e4a39e 6993 return (name != NULL
61012eef 6994 && (startswith (name, "PARENT")
4c4b4cd2 6995 || strcmp (name, "REP") == 0
61012eef 6996 || startswith (name, "_parent")
4c4b4cd2 6997 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6998}
6999
4c4b4cd2
PH
7000/* True iff field number FIELD_NUM of structure or union type TYPE
7001 is a variant wrapper. Assumes TYPE is a structure type with at least
7002 FIELD_NUM+1 fields. */
14f9c5c9
AS
7003
7004int
ebf56fd3 7005ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7006{
d2e4a39e 7007 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7008
14f9c5c9 7009 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7010 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7011 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7012 == TYPE_CODE_UNION)));
14f9c5c9
AS
7013}
7014
7015/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7016 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7017 returns the type of the controlling discriminant for the variant.
7018 May return NULL if the type could not be found. */
14f9c5c9 7019
d2e4a39e 7020struct type *
ebf56fd3 7021ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7022{
a121b7c1 7023 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7024
988f6b3d 7025 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
7026}
7027
4c4b4cd2 7028/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7029 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7030 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7031
7032int
ebf56fd3 7033ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7034{
d2e4a39e 7035 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7036
14f9c5c9
AS
7037 return (name != NULL && name[0] == 'O');
7038}
7039
7040/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7041 returns the name of the discriminant controlling the variant.
7042 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7043
a121b7c1 7044const char *
ebf56fd3 7045ada_variant_discrim_name (struct type *type0)
14f9c5c9 7046{
d2e4a39e 7047 static char *result = NULL;
14f9c5c9 7048 static size_t result_len = 0;
d2e4a39e
AS
7049 struct type *type;
7050 const char *name;
7051 const char *discrim_end;
7052 const char *discrim_start;
14f9c5c9
AS
7053
7054 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7055 type = TYPE_TARGET_TYPE (type0);
7056 else
7057 type = type0;
7058
7059 name = ada_type_name (type);
7060
7061 if (name == NULL || name[0] == '\000')
7062 return "";
7063
7064 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7065 discrim_end -= 1)
7066 {
61012eef 7067 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7068 break;
14f9c5c9
AS
7069 }
7070 if (discrim_end == name)
7071 return "";
7072
d2e4a39e 7073 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7074 discrim_start -= 1)
7075 {
d2e4a39e 7076 if (discrim_start == name + 1)
4c4b4cd2 7077 return "";
76a01679 7078 if ((discrim_start > name + 3
61012eef 7079 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7080 || discrim_start[-1] == '.')
7081 break;
14f9c5c9
AS
7082 }
7083
7084 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7085 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7086 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7087 return result;
7088}
7089
4c4b4cd2
PH
7090/* Scan STR for a subtype-encoded number, beginning at position K.
7091 Put the position of the character just past the number scanned in
7092 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7093 Return 1 if there was a valid number at the given position, and 0
7094 otherwise. A "subtype-encoded" number consists of the absolute value
7095 in decimal, followed by the letter 'm' to indicate a negative number.
7096 Assumes 0m does not occur. */
14f9c5c9
AS
7097
7098int
d2e4a39e 7099ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7100{
7101 ULONGEST RU;
7102
d2e4a39e 7103 if (!isdigit (str[k]))
14f9c5c9
AS
7104 return 0;
7105
4c4b4cd2 7106 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7107 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7108 LONGEST. */
14f9c5c9
AS
7109 RU = 0;
7110 while (isdigit (str[k]))
7111 {
d2e4a39e 7112 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7113 k += 1;
7114 }
7115
d2e4a39e 7116 if (str[k] == 'm')
14f9c5c9
AS
7117 {
7118 if (R != NULL)
4c4b4cd2 7119 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7120 k += 1;
7121 }
7122 else if (R != NULL)
7123 *R = (LONGEST) RU;
7124
4c4b4cd2 7125 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7126 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7127 number representable as a LONGEST (although either would probably work
7128 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7129 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7130
7131 if (new_k != NULL)
7132 *new_k = k;
7133 return 1;
7134}
7135
4c4b4cd2
PH
7136/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7137 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7138 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7139
d2e4a39e 7140int
ebf56fd3 7141ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7142{
d2e4a39e 7143 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7144 int p;
7145
7146 p = 0;
7147 while (1)
7148 {
d2e4a39e 7149 switch (name[p])
4c4b4cd2
PH
7150 {
7151 case '\0':
7152 return 0;
7153 case 'S':
7154 {
7155 LONGEST W;
5b4ee69b 7156
4c4b4cd2
PH
7157 if (!ada_scan_number (name, p + 1, &W, &p))
7158 return 0;
7159 if (val == W)
7160 return 1;
7161 break;
7162 }
7163 case 'R':
7164 {
7165 LONGEST L, U;
5b4ee69b 7166
4c4b4cd2
PH
7167 if (!ada_scan_number (name, p + 1, &L, &p)
7168 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7169 return 0;
7170 if (val >= L && val <= U)
7171 return 1;
7172 break;
7173 }
7174 case 'O':
7175 return 1;
7176 default:
7177 return 0;
7178 }
7179 }
7180}
7181
0963b4bd 7182/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7183
7184/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7185 ARG_TYPE, extract and return the value of one of its (non-static)
7186 fields. FIELDNO says which field. Differs from value_primitive_field
7187 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7188
4c4b4cd2 7189static struct value *
d2e4a39e 7190ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7191 struct type *arg_type)
14f9c5c9 7192{
14f9c5c9
AS
7193 struct type *type;
7194
61ee279c 7195 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7196 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7197
4c4b4cd2 7198 /* Handle packed fields. */
14f9c5c9
AS
7199
7200 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7201 {
7202 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7203 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7204
0fd88904 7205 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7206 offset + bit_pos / 8,
7207 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7208 }
7209 else
7210 return value_primitive_field (arg1, offset, fieldno, arg_type);
7211}
7212
52ce6436
PH
7213/* Find field with name NAME in object of type TYPE. If found,
7214 set the following for each argument that is non-null:
7215 - *FIELD_TYPE_P to the field's type;
7216 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7217 an object of that type;
7218 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7219 - *BIT_SIZE_P to its size in bits if the field is packed, and
7220 0 otherwise;
7221 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7222 fields up to but not including the desired field, or by the total
7223 number of fields if not found. A NULL value of NAME never
7224 matches; the function just counts visible fields in this case.
7225
828d5846
XR
7226 Notice that we need to handle when a tagged record hierarchy
7227 has some components with the same name, like in this scenario:
7228
7229 type Top_T is tagged record
7230 N : Integer := 1;
7231 U : Integer := 974;
7232 A : Integer := 48;
7233 end record;
7234
7235 type Middle_T is new Top.Top_T with record
7236 N : Character := 'a';
7237 C : Integer := 3;
7238 end record;
7239
7240 type Bottom_T is new Middle.Middle_T with record
7241 N : Float := 4.0;
7242 C : Character := '5';
7243 X : Integer := 6;
7244 A : Character := 'J';
7245 end record;
7246
7247 Let's say we now have a variable declared and initialized as follow:
7248
7249 TC : Top_A := new Bottom_T;
7250
7251 And then we use this variable to call this function
7252
7253 procedure Assign (Obj: in out Top_T; TV : Integer);
7254
7255 as follow:
7256
7257 Assign (Top_T (B), 12);
7258
7259 Now, we're in the debugger, and we're inside that procedure
7260 then and we want to print the value of obj.c:
7261
7262 Usually, the tagged record or one of the parent type owns the
7263 component to print and there's no issue but in this particular
7264 case, what does it mean to ask for Obj.C? Since the actual
7265 type for object is type Bottom_T, it could mean two things: type
7266 component C from the Middle_T view, but also component C from
7267 Bottom_T. So in that "undefined" case, when the component is
7268 not found in the non-resolved type (which includes all the
7269 components of the parent type), then resolve it and see if we
7270 get better luck once expanded.
7271
7272 In the case of homonyms in the derived tagged type, we don't
7273 guaranty anything, and pick the one that's easiest for us
7274 to program.
7275
0963b4bd 7276 Returns 1 if found, 0 otherwise. */
52ce6436 7277
4c4b4cd2 7278static int
0d5cff50 7279find_struct_field (const char *name, struct type *type, int offset,
76a01679 7280 struct type **field_type_p,
52ce6436
PH
7281 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7282 int *index_p)
4c4b4cd2
PH
7283{
7284 int i;
828d5846 7285 int parent_offset = -1;
4c4b4cd2 7286
61ee279c 7287 type = ada_check_typedef (type);
76a01679 7288
52ce6436
PH
7289 if (field_type_p != NULL)
7290 *field_type_p = NULL;
7291 if (byte_offset_p != NULL)
d5d6fca5 7292 *byte_offset_p = 0;
52ce6436
PH
7293 if (bit_offset_p != NULL)
7294 *bit_offset_p = 0;
7295 if (bit_size_p != NULL)
7296 *bit_size_p = 0;
7297
7298 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7299 {
7300 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7301 int fld_offset = offset + bit_pos / 8;
0d5cff50 7302 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7303
4c4b4cd2
PH
7304 if (t_field_name == NULL)
7305 continue;
7306
828d5846
XR
7307 else if (ada_is_parent_field (type, i))
7308 {
7309 /* This is a field pointing us to the parent type of a tagged
7310 type. As hinted in this function's documentation, we give
7311 preference to fields in the current record first, so what
7312 we do here is just record the index of this field before
7313 we skip it. If it turns out we couldn't find our field
7314 in the current record, then we'll get back to it and search
7315 inside it whether the field might exist in the parent. */
7316
7317 parent_offset = i;
7318 continue;
7319 }
7320
52ce6436 7321 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7322 {
7323 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7324
52ce6436
PH
7325 if (field_type_p != NULL)
7326 *field_type_p = TYPE_FIELD_TYPE (type, i);
7327 if (byte_offset_p != NULL)
7328 *byte_offset_p = fld_offset;
7329 if (bit_offset_p != NULL)
7330 *bit_offset_p = bit_pos % 8;
7331 if (bit_size_p != NULL)
7332 *bit_size_p = bit_size;
76a01679
JB
7333 return 1;
7334 }
4c4b4cd2
PH
7335 else if (ada_is_wrapper_field (type, i))
7336 {
52ce6436
PH
7337 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7338 field_type_p, byte_offset_p, bit_offset_p,
7339 bit_size_p, index_p))
76a01679
JB
7340 return 1;
7341 }
4c4b4cd2
PH
7342 else if (ada_is_variant_part (type, i))
7343 {
52ce6436
PH
7344 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7345 fixed type?? */
4c4b4cd2 7346 int j;
52ce6436
PH
7347 struct type *field_type
7348 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7349
52ce6436 7350 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7351 {
76a01679
JB
7352 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7353 fld_offset
7354 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 field_type_p, byte_offset_p,
52ce6436 7356 bit_offset_p, bit_size_p, index_p))
76a01679 7357 return 1;
4c4b4cd2
PH
7358 }
7359 }
52ce6436
PH
7360 else if (index_p != NULL)
7361 *index_p += 1;
4c4b4cd2 7362 }
828d5846
XR
7363
7364 /* Field not found so far. If this is a tagged type which
7365 has a parent, try finding that field in the parent now. */
7366
7367 if (parent_offset != -1)
7368 {
7369 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7370 int fld_offset = offset + bit_pos / 8;
7371
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7373 fld_offset, field_type_p, byte_offset_p,
7374 bit_offset_p, bit_size_p, index_p))
7375 return 1;
7376 }
7377
4c4b4cd2
PH
7378 return 0;
7379}
7380
0963b4bd 7381/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7382
52ce6436
PH
7383static int
7384num_visible_fields (struct type *type)
7385{
7386 int n;
5b4ee69b 7387
52ce6436
PH
7388 n = 0;
7389 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7390 return n;
7391}
14f9c5c9 7392
4c4b4cd2 7393/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7394 and search in it assuming it has (class) type TYPE.
7395 If found, return value, else return NULL.
7396
828d5846
XR
7397 Searches recursively through wrapper fields (e.g., '_parent').
7398
7399 In the case of homonyms in the tagged types, please refer to the
7400 long explanation in find_struct_field's function documentation. */
14f9c5c9 7401
4c4b4cd2 7402static struct value *
108d56a4 7403ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7404 struct type *type)
14f9c5c9
AS
7405{
7406 int i;
828d5846 7407 int parent_offset = -1;
14f9c5c9 7408
5b4ee69b 7409 type = ada_check_typedef (type);
52ce6436 7410 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7411 {
0d5cff50 7412 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7413
7414 if (t_field_name == NULL)
4c4b4cd2 7415 continue;
14f9c5c9 7416
828d5846
XR
7417 else if (ada_is_parent_field (type, i))
7418 {
7419 /* This is a field pointing us to the parent type of a tagged
7420 type. As hinted in this function's documentation, we give
7421 preference to fields in the current record first, so what
7422 we do here is just record the index of this field before
7423 we skip it. If it turns out we couldn't find our field
7424 in the current record, then we'll get back to it and search
7425 inside it whether the field might exist in the parent. */
7426
7427 parent_offset = i;
7428 continue;
7429 }
7430
14f9c5c9 7431 else if (field_name_match (t_field_name, name))
4c4b4cd2 7432 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7433
7434 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7435 {
0963b4bd 7436 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7437 ada_search_struct_field (name, arg,
7438 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7439 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7440
4c4b4cd2
PH
7441 if (v != NULL)
7442 return v;
7443 }
14f9c5c9
AS
7444
7445 else if (ada_is_variant_part (type, i))
4c4b4cd2 7446 {
0963b4bd 7447 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7448 int j;
5b4ee69b
MS
7449 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7450 i));
4c4b4cd2
PH
7451 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7452
52ce6436 7453 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7454 {
0963b4bd
MS
7455 struct value *v = ada_search_struct_field /* Force line
7456 break. */
06d5cf63
JB
7457 (name, arg,
7458 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7459 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7460
4c4b4cd2
PH
7461 if (v != NULL)
7462 return v;
7463 }
7464 }
14f9c5c9 7465 }
828d5846
XR
7466
7467 /* Field not found so far. If this is a tagged type which
7468 has a parent, try finding that field in the parent now. */
7469
7470 if (parent_offset != -1)
7471 {
7472 struct value *v = ada_search_struct_field (
7473 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7474 TYPE_FIELD_TYPE (type, parent_offset));
7475
7476 if (v != NULL)
7477 return v;
7478 }
7479
14f9c5c9
AS
7480 return NULL;
7481}
d2e4a39e 7482
52ce6436
PH
7483static struct value *ada_index_struct_field_1 (int *, struct value *,
7484 int, struct type *);
7485
7486
7487/* Return field #INDEX in ARG, where the index is that returned by
7488 * find_struct_field through its INDEX_P argument. Adjust the address
7489 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7490 * If found, return value, else return NULL. */
52ce6436
PH
7491
7492static struct value *
7493ada_index_struct_field (int index, struct value *arg, int offset,
7494 struct type *type)
7495{
7496 return ada_index_struct_field_1 (&index, arg, offset, type);
7497}
7498
7499
7500/* Auxiliary function for ada_index_struct_field. Like
7501 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7502 * *INDEX_P. */
52ce6436
PH
7503
7504static struct value *
7505ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7506 struct type *type)
7507{
7508 int i;
7509 type = ada_check_typedef (type);
7510
7511 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7512 {
7513 if (TYPE_FIELD_NAME (type, i) == NULL)
7514 continue;
7515 else if (ada_is_wrapper_field (type, i))
7516 {
0963b4bd 7517 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7518 ada_index_struct_field_1 (index_p, arg,
7519 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7520 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7521
52ce6436
PH
7522 if (v != NULL)
7523 return v;
7524 }
7525
7526 else if (ada_is_variant_part (type, i))
7527 {
7528 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7529 find_struct_field. */
52ce6436
PH
7530 error (_("Cannot assign this kind of variant record"));
7531 }
7532 else if (*index_p == 0)
7533 return ada_value_primitive_field (arg, offset, i, type);
7534 else
7535 *index_p -= 1;
7536 }
7537 return NULL;
7538}
7539
4c4b4cd2
PH
7540/* Given ARG, a value of type (pointer or reference to a)*
7541 structure/union, extract the component named NAME from the ultimate
7542 target structure/union and return it as a value with its
f5938064 7543 appropriate type.
14f9c5c9 7544
4c4b4cd2
PH
7545 The routine searches for NAME among all members of the structure itself
7546 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7547 (e.g., '_parent').
7548
03ee6b2e
PH
7549 If NO_ERR, then simply return NULL in case of error, rather than
7550 calling error. */
14f9c5c9 7551
d2e4a39e 7552struct value *
a121b7c1 7553ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7554{
4c4b4cd2 7555 struct type *t, *t1;
d2e4a39e 7556 struct value *v;
14f9c5c9 7557
4c4b4cd2 7558 v = NULL;
df407dfe 7559 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7560 if (TYPE_CODE (t) == TYPE_CODE_REF)
7561 {
7562 t1 = TYPE_TARGET_TYPE (t);
7563 if (t1 == NULL)
03ee6b2e 7564 goto BadValue;
61ee279c 7565 t1 = ada_check_typedef (t1);
4c4b4cd2 7566 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7567 {
994b9211 7568 arg = coerce_ref (arg);
76a01679
JB
7569 t = t1;
7570 }
4c4b4cd2 7571 }
14f9c5c9 7572
4c4b4cd2
PH
7573 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7574 {
7575 t1 = TYPE_TARGET_TYPE (t);
7576 if (t1 == NULL)
03ee6b2e 7577 goto BadValue;
61ee279c 7578 t1 = ada_check_typedef (t1);
4c4b4cd2 7579 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7580 {
7581 arg = value_ind (arg);
7582 t = t1;
7583 }
4c4b4cd2 7584 else
76a01679 7585 break;
4c4b4cd2 7586 }
14f9c5c9 7587
4c4b4cd2 7588 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7589 goto BadValue;
14f9c5c9 7590
4c4b4cd2
PH
7591 if (t1 == t)
7592 v = ada_search_struct_field (name, arg, 0, t);
7593 else
7594 {
7595 int bit_offset, bit_size, byte_offset;
7596 struct type *field_type;
7597 CORE_ADDR address;
7598
76a01679 7599 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7600 address = value_address (ada_value_ind (arg));
4c4b4cd2 7601 else
b50d69b5 7602 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7603
828d5846
XR
7604 /* Check to see if this is a tagged type. We also need to handle
7605 the case where the type is a reference to a tagged type, but
7606 we have to be careful to exclude pointers to tagged types.
7607 The latter should be shown as usual (as a pointer), whereas
7608 a reference should mostly be transparent to the user. */
7609
7610 if (ada_is_tagged_type (t1, 0)
7611 || (TYPE_CODE (t1) == TYPE_CODE_REF
7612 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7613 {
7614 /* We first try to find the searched field in the current type.
7615 If not found then let's look in the fixed type. */
7616
7617 if (!find_struct_field (name, t1, 0,
7618 &field_type, &byte_offset, &bit_offset,
7619 &bit_size, NULL))
7620 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7621 address, NULL, 1);
7622 }
7623 else
7624 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7625 address, NULL, 1);
7626
76a01679
JB
7627 if (find_struct_field (name, t1, 0,
7628 &field_type, &byte_offset, &bit_offset,
52ce6436 7629 &bit_size, NULL))
76a01679
JB
7630 {
7631 if (bit_size != 0)
7632 {
714e53ab
PH
7633 if (TYPE_CODE (t) == TYPE_CODE_REF)
7634 arg = ada_coerce_ref (arg);
7635 else
7636 arg = ada_value_ind (arg);
76a01679
JB
7637 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7638 bit_offset, bit_size,
7639 field_type);
7640 }
7641 else
f5938064 7642 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7643 }
7644 }
7645
03ee6b2e
PH
7646 if (v != NULL || no_err)
7647 return v;
7648 else
323e0a4a 7649 error (_("There is no member named %s."), name);
14f9c5c9 7650
03ee6b2e
PH
7651 BadValue:
7652 if (no_err)
7653 return NULL;
7654 else
0963b4bd
MS
7655 error (_("Attempt to extract a component of "
7656 "a value that is not a record."));
14f9c5c9
AS
7657}
7658
3b4de39c 7659/* Return a string representation of type TYPE. */
99bbb428 7660
3b4de39c 7661static std::string
99bbb428
PA
7662type_as_string (struct type *type)
7663{
d7e74731 7664 string_file tmp_stream;
99bbb428 7665
d7e74731 7666 type_print (type, "", &tmp_stream, -1);
99bbb428 7667
d7e74731 7668 return std::move (tmp_stream.string ());
99bbb428
PA
7669}
7670
14f9c5c9 7671/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7672 If DISPP is non-null, add its byte displacement from the beginning of a
7673 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7674 work for packed fields).
7675
7676 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7677 followed by "___".
14f9c5c9 7678
0963b4bd 7679 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7680 be a (pointer or reference)+ to a struct or union, and the
7681 ultimate target type will be searched.
14f9c5c9
AS
7682
7683 Looks recursively into variant clauses and parent types.
7684
828d5846
XR
7685 In the case of homonyms in the tagged types, please refer to the
7686 long explanation in find_struct_field's function documentation.
7687
4c4b4cd2
PH
7688 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7689 TYPE is not a type of the right kind. */
14f9c5c9 7690
4c4b4cd2 7691static struct type *
a121b7c1 7692ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7693 int noerr)
14f9c5c9
AS
7694{
7695 int i;
828d5846 7696 int parent_offset = -1;
14f9c5c9
AS
7697
7698 if (name == NULL)
7699 goto BadName;
7700
76a01679 7701 if (refok && type != NULL)
4c4b4cd2
PH
7702 while (1)
7703 {
61ee279c 7704 type = ada_check_typedef (type);
76a01679
JB
7705 if (TYPE_CODE (type) != TYPE_CODE_PTR
7706 && TYPE_CODE (type) != TYPE_CODE_REF)
7707 break;
7708 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7709 }
14f9c5c9 7710
76a01679 7711 if (type == NULL
1265e4aa
JB
7712 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7713 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7714 {
4c4b4cd2 7715 if (noerr)
76a01679 7716 return NULL;
99bbb428 7717
3b4de39c
PA
7718 error (_("Type %s is not a structure or union type"),
7719 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7720 }
7721
7722 type = to_static_fixed_type (type);
7723
7724 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7725 {
0d5cff50 7726 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7727 struct type *t;
d2e4a39e 7728
14f9c5c9 7729 if (t_field_name == NULL)
4c4b4cd2 7730 continue;
14f9c5c9 7731
828d5846
XR
7732 else if (ada_is_parent_field (type, i))
7733 {
7734 /* This is a field pointing us to the parent type of a tagged
7735 type. As hinted in this function's documentation, we give
7736 preference to fields in the current record first, so what
7737 we do here is just record the index of this field before
7738 we skip it. If it turns out we couldn't find our field
7739 in the current record, then we'll get back to it and search
7740 inside it whether the field might exist in the parent. */
7741
7742 parent_offset = i;
7743 continue;
7744 }
7745
14f9c5c9 7746 else if (field_name_match (t_field_name, name))
988f6b3d 7747 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7748
7749 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7750 {
4c4b4cd2 7751 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7752 0, 1);
4c4b4cd2 7753 if (t != NULL)
988f6b3d 7754 return t;
4c4b4cd2 7755 }
14f9c5c9
AS
7756
7757 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7758 {
7759 int j;
5b4ee69b
MS
7760 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7761 i));
4c4b4cd2
PH
7762
7763 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7764 {
b1f33ddd
JB
7765 /* FIXME pnh 2008/01/26: We check for a field that is
7766 NOT wrapped in a struct, since the compiler sometimes
7767 generates these for unchecked variant types. Revisit
0963b4bd 7768 if the compiler changes this practice. */
0d5cff50 7769 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7770
b1f33ddd
JB
7771 if (v_field_name != NULL
7772 && field_name_match (v_field_name, name))
460efde1 7773 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7774 else
0963b4bd
MS
7775 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7776 j),
988f6b3d 7777 name, 0, 1);
b1f33ddd 7778
4c4b4cd2 7779 if (t != NULL)
988f6b3d 7780 return t;
4c4b4cd2
PH
7781 }
7782 }
14f9c5c9
AS
7783
7784 }
7785
828d5846
XR
7786 /* Field not found so far. If this is a tagged type which
7787 has a parent, try finding that field in the parent now. */
7788
7789 if (parent_offset != -1)
7790 {
7791 struct type *t;
7792
7793 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7794 name, 0, 1);
7795 if (t != NULL)
7796 return t;
7797 }
7798
14f9c5c9 7799BadName:
d2e4a39e 7800 if (!noerr)
14f9c5c9 7801 {
2b2798cc 7802 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7803
7804 error (_("Type %s has no component named %s"),
3b4de39c 7805 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7806 }
7807
7808 return NULL;
7809}
7810
b1f33ddd
JB
7811/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7812 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7813 represents an unchecked union (that is, the variant part of a
0963b4bd 7814 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7815
7816static int
7817is_unchecked_variant (struct type *var_type, struct type *outer_type)
7818{
a121b7c1 7819 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7820
988f6b3d 7821 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7822}
7823
7824
14f9c5c9
AS
7825/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7826 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7827 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7828 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7829
d2e4a39e 7830int
ebf56fd3 7831ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7832 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7833{
7834 int others_clause;
7835 int i;
a121b7c1 7836 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7837 struct value *outer;
7838 struct value *discrim;
14f9c5c9
AS
7839 LONGEST discrim_val;
7840
012370f6
TT
7841 /* Using plain value_from_contents_and_address here causes problems
7842 because we will end up trying to resolve a type that is currently
7843 being constructed. */
7844 outer = value_from_contents_and_address_unresolved (outer_type,
7845 outer_valaddr, 0);
0c281816
JB
7846 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7847 if (discrim == NULL)
14f9c5c9 7848 return -1;
0c281816 7849 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7850
7851 others_clause = -1;
7852 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7853 {
7854 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7855 others_clause = i;
14f9c5c9 7856 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7857 return i;
14f9c5c9
AS
7858 }
7859
7860 return others_clause;
7861}
d2e4a39e 7862\f
14f9c5c9
AS
7863
7864
4c4b4cd2 7865 /* Dynamic-Sized Records */
14f9c5c9
AS
7866
7867/* Strategy: The type ostensibly attached to a value with dynamic size
7868 (i.e., a size that is not statically recorded in the debugging
7869 data) does not accurately reflect the size or layout of the value.
7870 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7871 conventional types that are constructed on the fly. */
14f9c5c9
AS
7872
7873/* There is a subtle and tricky problem here. In general, we cannot
7874 determine the size of dynamic records without its data. However,
7875 the 'struct value' data structure, which GDB uses to represent
7876 quantities in the inferior process (the target), requires the size
7877 of the type at the time of its allocation in order to reserve space
7878 for GDB's internal copy of the data. That's why the
7879 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7880 rather than struct value*s.
14f9c5c9
AS
7881
7882 However, GDB's internal history variables ($1, $2, etc.) are
7883 struct value*s containing internal copies of the data that are not, in
7884 general, the same as the data at their corresponding addresses in
7885 the target. Fortunately, the types we give to these values are all
7886 conventional, fixed-size types (as per the strategy described
7887 above), so that we don't usually have to perform the
7888 'to_fixed_xxx_type' conversions to look at their values.
7889 Unfortunately, there is one exception: if one of the internal
7890 history variables is an array whose elements are unconstrained
7891 records, then we will need to create distinct fixed types for each
7892 element selected. */
7893
7894/* The upshot of all of this is that many routines take a (type, host
7895 address, target address) triple as arguments to represent a value.
7896 The host address, if non-null, is supposed to contain an internal
7897 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7898 target at the target address. */
14f9c5c9
AS
7899
7900/* Assuming that VAL0 represents a pointer value, the result of
7901 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7902 dynamic-sized types. */
14f9c5c9 7903
d2e4a39e
AS
7904struct value *
7905ada_value_ind (struct value *val0)
14f9c5c9 7906{
c48db5ca 7907 struct value *val = value_ind (val0);
5b4ee69b 7908
b50d69b5
JG
7909 if (ada_is_tagged_type (value_type (val), 0))
7910 val = ada_tag_value_at_base_address (val);
7911
4c4b4cd2 7912 return ada_to_fixed_value (val);
14f9c5c9
AS
7913}
7914
7915/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7916 qualifiers on VAL0. */
7917
d2e4a39e
AS
7918static struct value *
7919ada_coerce_ref (struct value *val0)
7920{
df407dfe 7921 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7922 {
7923 struct value *val = val0;
5b4ee69b 7924
994b9211 7925 val = coerce_ref (val);
b50d69b5
JG
7926
7927 if (ada_is_tagged_type (value_type (val), 0))
7928 val = ada_tag_value_at_base_address (val);
7929
4c4b4cd2 7930 return ada_to_fixed_value (val);
d2e4a39e
AS
7931 }
7932 else
14f9c5c9
AS
7933 return val0;
7934}
7935
7936/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7937 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7938
7939static unsigned int
ebf56fd3 7940align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7941{
7942 return (off + alignment - 1) & ~(alignment - 1);
7943}
7944
4c4b4cd2 7945/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7946
7947static unsigned int
ebf56fd3 7948field_alignment (struct type *type, int f)
14f9c5c9 7949{
d2e4a39e 7950 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7951 int len;
14f9c5c9
AS
7952 int align_offset;
7953
64a1bf19
JB
7954 /* The field name should never be null, unless the debugging information
7955 is somehow malformed. In this case, we assume the field does not
7956 require any alignment. */
7957 if (name == NULL)
7958 return 1;
7959
7960 len = strlen (name);
7961
4c4b4cd2
PH
7962 if (!isdigit (name[len - 1]))
7963 return 1;
14f9c5c9 7964
d2e4a39e 7965 if (isdigit (name[len - 2]))
14f9c5c9
AS
7966 align_offset = len - 2;
7967 else
7968 align_offset = len - 1;
7969
61012eef 7970 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7971 return TARGET_CHAR_BIT;
7972
4c4b4cd2
PH
7973 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7974}
7975
852dff6c 7976/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7977
852dff6c
JB
7978static struct symbol *
7979ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7980{
7981 struct symbol *sym;
7982
7983 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7984 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7985 return sym;
7986
4186eb54
KS
7987 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7988 return sym;
14f9c5c9
AS
7989}
7990
dddfab26
UW
7991/* Find a type named NAME. Ignores ambiguity. This routine will look
7992 solely for types defined by debug info, it will not search the GDB
7993 primitive types. */
4c4b4cd2 7994
852dff6c 7995static struct type *
ebf56fd3 7996ada_find_any_type (const char *name)
14f9c5c9 7997{
852dff6c 7998 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7999
14f9c5c9 8000 if (sym != NULL)
dddfab26 8001 return SYMBOL_TYPE (sym);
14f9c5c9 8002
dddfab26 8003 return NULL;
14f9c5c9
AS
8004}
8005
739593e0
JB
8006/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8007 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8008 symbol, in which case it is returned. Otherwise, this looks for
8009 symbols whose name is that of NAME_SYM suffixed with "___XR".
8010 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
8011
8012struct symbol *
270140bd 8013ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 8014{
739593e0 8015 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
8016 struct symbol *sym;
8017
739593e0
JB
8018 if (strstr (name, "___XR") != NULL)
8019 return name_sym;
8020
aeb5907d
JB
8021 sym = find_old_style_renaming_symbol (name, block);
8022
8023 if (sym != NULL)
8024 return sym;
8025
0963b4bd 8026 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 8027 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
8028 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8029 return sym;
8030 else
8031 return NULL;
8032}
8033
8034static struct symbol *
270140bd 8035find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 8036{
7f0df278 8037 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8038 char *rename;
8039
8040 if (function_sym != NULL)
8041 {
8042 /* If the symbol is defined inside a function, NAME is not fully
8043 qualified. This means we need to prepend the function name
8044 as well as adding the ``___XR'' suffix to build the name of
8045 the associated renaming symbol. */
0d5cff50 8046 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8047 /* Function names sometimes contain suffixes used
8048 for instance to qualify nested subprograms. When building
8049 the XR type name, we need to make sure that this suffix is
8050 not included. So do not include any suffix in the function
8051 name length below. */
69fadcdf 8052 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8053 const int rename_len = function_name_len + 2 /* "__" */
8054 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8055
529cad9c 8056 /* Strip the suffix if necessary. */
69fadcdf
JB
8057 ada_remove_trailing_digits (function_name, &function_name_len);
8058 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8059 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8060
4c4b4cd2
PH
8061 /* Library-level functions are a special case, as GNAT adds
8062 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8063 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8064 have this prefix, so we need to skip this prefix if present. */
8065 if (function_name_len > 5 /* "_ada_" */
8066 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8067 {
8068 function_name += 5;
8069 function_name_len -= 5;
8070 }
4c4b4cd2
PH
8071
8072 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8073 strncpy (rename, function_name, function_name_len);
8074 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8075 "__%s___XR", name);
4c4b4cd2
PH
8076 }
8077 else
8078 {
8079 const int rename_len = strlen (name) + 6;
5b4ee69b 8080
4c4b4cd2 8081 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8082 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8083 }
8084
852dff6c 8085 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8086}
8087
14f9c5c9 8088/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8089 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8090 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8091 otherwise return 0. */
8092
14f9c5c9 8093int
d2e4a39e 8094ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8095{
8096 if (type1 == NULL)
8097 return 1;
8098 else if (type0 == NULL)
8099 return 0;
8100 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8101 return 1;
8102 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8103 return 0;
4c4b4cd2
PH
8104 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8105 return 1;
ad82864c 8106 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8107 return 1;
4c4b4cd2
PH
8108 else if (ada_is_array_descriptor_type (type0)
8109 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8110 return 1;
aeb5907d
JB
8111 else
8112 {
a737d952
TT
8113 const char *type0_name = TYPE_NAME (type0);
8114 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8115
8116 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8117 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8118 return 1;
8119 }
14f9c5c9
AS
8120 return 0;
8121}
8122
e86ca25f
TT
8123/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8124 null. */
4c4b4cd2 8125
0d5cff50 8126const char *
d2e4a39e 8127ada_type_name (struct type *type)
14f9c5c9 8128{
d2e4a39e 8129 if (type == NULL)
14f9c5c9 8130 return NULL;
e86ca25f 8131 return TYPE_NAME (type);
14f9c5c9
AS
8132}
8133
b4ba55a1
JB
8134/* Search the list of "descriptive" types associated to TYPE for a type
8135 whose name is NAME. */
8136
8137static struct type *
8138find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8139{
931e5bc3 8140 struct type *result, *tmp;
b4ba55a1 8141
c6044dd1
JB
8142 if (ada_ignore_descriptive_types_p)
8143 return NULL;
8144
b4ba55a1
JB
8145 /* If there no descriptive-type info, then there is no parallel type
8146 to be found. */
8147 if (!HAVE_GNAT_AUX_INFO (type))
8148 return NULL;
8149
8150 result = TYPE_DESCRIPTIVE_TYPE (type);
8151 while (result != NULL)
8152 {
0d5cff50 8153 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8154
8155 if (result_name == NULL)
8156 {
8157 warning (_("unexpected null name on descriptive type"));
8158 return NULL;
8159 }
8160
8161 /* If the names match, stop. */
8162 if (strcmp (result_name, name) == 0)
8163 break;
8164
8165 /* Otherwise, look at the next item on the list, if any. */
8166 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8167 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8168 else
8169 tmp = NULL;
8170
8171 /* If not found either, try after having resolved the typedef. */
8172 if (tmp != NULL)
8173 result = tmp;
b4ba55a1 8174 else
931e5bc3 8175 {
f168693b 8176 result = check_typedef (result);
931e5bc3
JG
8177 if (HAVE_GNAT_AUX_INFO (result))
8178 result = TYPE_DESCRIPTIVE_TYPE (result);
8179 else
8180 result = NULL;
8181 }
b4ba55a1
JB
8182 }
8183
8184 /* If we didn't find a match, see whether this is a packed array. With
8185 older compilers, the descriptive type information is either absent or
8186 irrelevant when it comes to packed arrays so the above lookup fails.
8187 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8188 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8189 return ada_find_any_type (name);
8190
8191 return result;
8192}
8193
8194/* Find a parallel type to TYPE with the specified NAME, using the
8195 descriptive type taken from the debugging information, if available,
8196 and otherwise using the (slower) name-based method. */
8197
8198static struct type *
8199ada_find_parallel_type_with_name (struct type *type, const char *name)
8200{
8201 struct type *result = NULL;
8202
8203 if (HAVE_GNAT_AUX_INFO (type))
8204 result = find_parallel_type_by_descriptive_type (type, name);
8205 else
8206 result = ada_find_any_type (name);
8207
8208 return result;
8209}
8210
8211/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8212 SUFFIX to the name of TYPE. */
14f9c5c9 8213
d2e4a39e 8214struct type *
ebf56fd3 8215ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8216{
0d5cff50 8217 char *name;
fe978cb0 8218 const char *type_name = ada_type_name (type);
14f9c5c9 8219 int len;
d2e4a39e 8220
fe978cb0 8221 if (type_name == NULL)
14f9c5c9
AS
8222 return NULL;
8223
fe978cb0 8224 len = strlen (type_name);
14f9c5c9 8225
b4ba55a1 8226 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8227
fe978cb0 8228 strcpy (name, type_name);
14f9c5c9
AS
8229 strcpy (name + len, suffix);
8230
b4ba55a1 8231 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8232}
8233
14f9c5c9 8234/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8235 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8236
d2e4a39e
AS
8237static struct type *
8238dynamic_template_type (struct type *type)
14f9c5c9 8239{
61ee279c 8240 type = ada_check_typedef (type);
14f9c5c9
AS
8241
8242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8243 || ada_type_name (type) == NULL)
14f9c5c9 8244 return NULL;
d2e4a39e 8245 else
14f9c5c9
AS
8246 {
8247 int len = strlen (ada_type_name (type));
5b4ee69b 8248
4c4b4cd2
PH
8249 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8250 return type;
14f9c5c9 8251 else
4c4b4cd2 8252 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8253 }
8254}
8255
8256/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8257 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8258
d2e4a39e
AS
8259static int
8260is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8261{
8262 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8263
d2e4a39e 8264 return name != NULL
14f9c5c9
AS
8265 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8266 && strstr (name, "___XVL") != NULL;
8267}
8268
4c4b4cd2
PH
8269/* The index of the variant field of TYPE, or -1 if TYPE does not
8270 represent a variant record type. */
14f9c5c9 8271
d2e4a39e 8272static int
4c4b4cd2 8273variant_field_index (struct type *type)
14f9c5c9
AS
8274{
8275 int f;
8276
4c4b4cd2
PH
8277 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8278 return -1;
8279
8280 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8281 {
8282 if (ada_is_variant_part (type, f))
8283 return f;
8284 }
8285 return -1;
14f9c5c9
AS
8286}
8287
4c4b4cd2
PH
8288/* A record type with no fields. */
8289
d2e4a39e 8290static struct type *
fe978cb0 8291empty_record (struct type *templ)
14f9c5c9 8292{
fe978cb0 8293 struct type *type = alloc_type_copy (templ);
5b4ee69b 8294
14f9c5c9
AS
8295 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8296 TYPE_NFIELDS (type) = 0;
8297 TYPE_FIELDS (type) = NULL;
b1f33ddd 8298 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8299 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8300 TYPE_LENGTH (type) = 0;
8301 return type;
8302}
8303
8304/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8305 the value of type TYPE at VALADDR or ADDRESS (see comments at
8306 the beginning of this section) VAL according to GNAT conventions.
8307 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8308 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8309 an outer-level type (i.e., as opposed to a branch of a variant.) A
8310 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8311 of the variant.
14f9c5c9 8312
4c4b4cd2
PH
8313 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8314 length are not statically known are discarded. As a consequence,
8315 VALADDR, ADDRESS and DVAL0 are ignored.
8316
8317 NOTE: Limitations: For now, we assume that dynamic fields and
8318 variants occupy whole numbers of bytes. However, they need not be
8319 byte-aligned. */
8320
8321struct type *
10a2c479 8322ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8323 const gdb_byte *valaddr,
4c4b4cd2
PH
8324 CORE_ADDR address, struct value *dval0,
8325 int keep_dynamic_fields)
14f9c5c9 8326{
d2e4a39e
AS
8327 struct value *mark = value_mark ();
8328 struct value *dval;
8329 struct type *rtype;
14f9c5c9 8330 int nfields, bit_len;
4c4b4cd2 8331 int variant_field;
14f9c5c9 8332 long off;
d94e4f4f 8333 int fld_bit_len;
14f9c5c9
AS
8334 int f;
8335
4c4b4cd2
PH
8336 /* Compute the number of fields in this record type that are going
8337 to be processed: unless keep_dynamic_fields, this includes only
8338 fields whose position and length are static will be processed. */
8339 if (keep_dynamic_fields)
8340 nfields = TYPE_NFIELDS (type);
8341 else
8342 {
8343 nfields = 0;
76a01679 8344 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8345 && !ada_is_variant_part (type, nfields)
8346 && !is_dynamic_field (type, nfields))
8347 nfields++;
8348 }
8349
e9bb382b 8350 rtype = alloc_type_copy (type);
14f9c5c9
AS
8351 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8352 INIT_CPLUS_SPECIFIC (rtype);
8353 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8354 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8355 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8356 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8357 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8358 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8359
d2e4a39e
AS
8360 off = 0;
8361 bit_len = 0;
4c4b4cd2
PH
8362 variant_field = -1;
8363
14f9c5c9
AS
8364 for (f = 0; f < nfields; f += 1)
8365 {
6c038f32
PH
8366 off = align_value (off, field_alignment (type, f))
8367 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8368 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8369 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8370
d2e4a39e 8371 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8372 {
8373 variant_field = f;
d94e4f4f 8374 fld_bit_len = 0;
4c4b4cd2 8375 }
14f9c5c9 8376 else if (is_dynamic_field (type, f))
4c4b4cd2 8377 {
284614f0
JB
8378 const gdb_byte *field_valaddr = valaddr;
8379 CORE_ADDR field_address = address;
8380 struct type *field_type =
8381 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8382
4c4b4cd2 8383 if (dval0 == NULL)
b5304971
JG
8384 {
8385 /* rtype's length is computed based on the run-time
8386 value of discriminants. If the discriminants are not
8387 initialized, the type size may be completely bogus and
0963b4bd 8388 GDB may fail to allocate a value for it. So check the
b5304971 8389 size first before creating the value. */
c1b5a1a6 8390 ada_ensure_varsize_limit (rtype);
012370f6
TT
8391 /* Using plain value_from_contents_and_address here
8392 causes problems because we will end up trying to
8393 resolve a type that is currently being
8394 constructed. */
8395 dval = value_from_contents_and_address_unresolved (rtype,
8396 valaddr,
8397 address);
9f1f738a 8398 rtype = value_type (dval);
b5304971 8399 }
4c4b4cd2
PH
8400 else
8401 dval = dval0;
8402
284614f0
JB
8403 /* If the type referenced by this field is an aligner type, we need
8404 to unwrap that aligner type, because its size might not be set.
8405 Keeping the aligner type would cause us to compute the wrong
8406 size for this field, impacting the offset of the all the fields
8407 that follow this one. */
8408 if (ada_is_aligner_type (field_type))
8409 {
8410 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8411
8412 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8413 field_address = cond_offset_target (field_address, field_offset);
8414 field_type = ada_aligned_type (field_type);
8415 }
8416
8417 field_valaddr = cond_offset_host (field_valaddr,
8418 off / TARGET_CHAR_BIT);
8419 field_address = cond_offset_target (field_address,
8420 off / TARGET_CHAR_BIT);
8421
8422 /* Get the fixed type of the field. Note that, in this case,
8423 we do not want to get the real type out of the tag: if
8424 the current field is the parent part of a tagged record,
8425 we will get the tag of the object. Clearly wrong: the real
8426 type of the parent is not the real type of the child. We
8427 would end up in an infinite loop. */
8428 field_type = ada_get_base_type (field_type);
8429 field_type = ada_to_fixed_type (field_type, field_valaddr,
8430 field_address, dval, 0);
27f2a97b
JB
8431 /* If the field size is already larger than the maximum
8432 object size, then the record itself will necessarily
8433 be larger than the maximum object size. We need to make
8434 this check now, because the size might be so ridiculously
8435 large (due to an uninitialized variable in the inferior)
8436 that it would cause an overflow when adding it to the
8437 record size. */
c1b5a1a6 8438 ada_ensure_varsize_limit (field_type);
284614f0
JB
8439
8440 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8441 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8442 /* The multiplication can potentially overflow. But because
8443 the field length has been size-checked just above, and
8444 assuming that the maximum size is a reasonable value,
8445 an overflow should not happen in practice. So rather than
8446 adding overflow recovery code to this already complex code,
8447 we just assume that it's not going to happen. */
d94e4f4f 8448 fld_bit_len =
4c4b4cd2
PH
8449 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8450 }
14f9c5c9 8451 else
4c4b4cd2 8452 {
5ded5331
JB
8453 /* Note: If this field's type is a typedef, it is important
8454 to preserve the typedef layer.
8455
8456 Otherwise, we might be transforming a typedef to a fat
8457 pointer (encoding a pointer to an unconstrained array),
8458 into a basic fat pointer (encoding an unconstrained
8459 array). As both types are implemented using the same
8460 structure, the typedef is the only clue which allows us
8461 to distinguish between the two options. Stripping it
8462 would prevent us from printing this field appropriately. */
8463 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8464 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8465 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8466 fld_bit_len =
4c4b4cd2
PH
8467 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8468 else
5ded5331
JB
8469 {
8470 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8471
8472 /* We need to be careful of typedefs when computing
8473 the length of our field. If this is a typedef,
8474 get the length of the target type, not the length
8475 of the typedef. */
8476 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8477 field_type = ada_typedef_target_type (field_type);
8478
8479 fld_bit_len =
8480 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8481 }
4c4b4cd2 8482 }
14f9c5c9 8483 if (off + fld_bit_len > bit_len)
4c4b4cd2 8484 bit_len = off + fld_bit_len;
d94e4f4f 8485 off += fld_bit_len;
4c4b4cd2
PH
8486 TYPE_LENGTH (rtype) =
8487 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8488 }
4c4b4cd2
PH
8489
8490 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8491 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8492 the record. This can happen in the presence of representation
8493 clauses. */
8494 if (variant_field >= 0)
8495 {
8496 struct type *branch_type;
8497
8498 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8499
8500 if (dval0 == NULL)
9f1f738a 8501 {
012370f6
TT
8502 /* Using plain value_from_contents_and_address here causes
8503 problems because we will end up trying to resolve a type
8504 that is currently being constructed. */
8505 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8506 address);
9f1f738a
SA
8507 rtype = value_type (dval);
8508 }
4c4b4cd2
PH
8509 else
8510 dval = dval0;
8511
8512 branch_type =
8513 to_fixed_variant_branch_type
8514 (TYPE_FIELD_TYPE (type, variant_field),
8515 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8516 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8517 if (branch_type == NULL)
8518 {
8519 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8520 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8521 TYPE_NFIELDS (rtype) -= 1;
8522 }
8523 else
8524 {
8525 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8526 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8527 fld_bit_len =
8528 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8529 TARGET_CHAR_BIT;
8530 if (off + fld_bit_len > bit_len)
8531 bit_len = off + fld_bit_len;
8532 TYPE_LENGTH (rtype) =
8533 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8534 }
8535 }
8536
714e53ab
PH
8537 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8538 should contain the alignment of that record, which should be a strictly
8539 positive value. If null or negative, then something is wrong, most
8540 probably in the debug info. In that case, we don't round up the size
0963b4bd 8541 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8542 the current RTYPE length might be good enough for our purposes. */
8543 if (TYPE_LENGTH (type) <= 0)
8544 {
323e0a4a
AC
8545 if (TYPE_NAME (rtype))
8546 warning (_("Invalid type size for `%s' detected: %d."),
8547 TYPE_NAME (rtype), TYPE_LENGTH (type));
8548 else
8549 warning (_("Invalid type size for <unnamed> detected: %d."),
8550 TYPE_LENGTH (type));
714e53ab
PH
8551 }
8552 else
8553 {
8554 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8555 TYPE_LENGTH (type));
8556 }
14f9c5c9
AS
8557
8558 value_free_to_mark (mark);
d2e4a39e 8559 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8560 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8561 return rtype;
8562}
8563
4c4b4cd2
PH
8564/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8565 of 1. */
14f9c5c9 8566
d2e4a39e 8567static struct type *
fc1a4b47 8568template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8569 CORE_ADDR address, struct value *dval0)
8570{
8571 return ada_template_to_fixed_record_type_1 (type, valaddr,
8572 address, dval0, 1);
8573}
8574
8575/* An ordinary record type in which ___XVL-convention fields and
8576 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8577 static approximations, containing all possible fields. Uses
8578 no runtime values. Useless for use in values, but that's OK,
8579 since the results are used only for type determinations. Works on both
8580 structs and unions. Representation note: to save space, we memorize
8581 the result of this function in the TYPE_TARGET_TYPE of the
8582 template type. */
8583
8584static struct type *
8585template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8586{
8587 struct type *type;
8588 int nfields;
8589 int f;
8590
9e195661
PMR
8591 /* No need no do anything if the input type is already fixed. */
8592 if (TYPE_FIXED_INSTANCE (type0))
8593 return type0;
8594
8595 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8596 if (TYPE_TARGET_TYPE (type0) != NULL)
8597 return TYPE_TARGET_TYPE (type0);
8598
9e195661 8599 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8600 type = type0;
9e195661
PMR
8601 nfields = TYPE_NFIELDS (type0);
8602
8603 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8604 recompute all over next time. */
8605 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8606
8607 for (f = 0; f < nfields; f += 1)
8608 {
460efde1 8609 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8610 struct type *new_type;
14f9c5c9 8611
4c4b4cd2 8612 if (is_dynamic_field (type0, f))
460efde1
JB
8613 {
8614 field_type = ada_check_typedef (field_type);
8615 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8616 }
14f9c5c9 8617 else
f192137b 8618 new_type = static_unwrap_type (field_type);
9e195661
PMR
8619
8620 if (new_type != field_type)
8621 {
8622 /* Clone TYPE0 only the first time we get a new field type. */
8623 if (type == type0)
8624 {
8625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8626 TYPE_CODE (type) = TYPE_CODE (type0);
8627 INIT_CPLUS_SPECIFIC (type);
8628 TYPE_NFIELDS (type) = nfields;
8629 TYPE_FIELDS (type) = (struct field *)
8630 TYPE_ALLOC (type, nfields * sizeof (struct field));
8631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8632 sizeof (struct field) * nfields);
8633 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8634 TYPE_FIXED_INSTANCE (type) = 1;
8635 TYPE_LENGTH (type) = 0;
8636 }
8637 TYPE_FIELD_TYPE (type, f) = new_type;
8638 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8639 }
14f9c5c9 8640 }
9e195661 8641
14f9c5c9
AS
8642 return type;
8643}
8644
4c4b4cd2 8645/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8646 whose address in memory is ADDRESS, returns a revision of TYPE,
8647 which should be a non-dynamic-sized record, in which the variant
8648 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8649 for discriminant values in DVAL0, which can be NULL if the record
8650 contains the necessary discriminant values. */
8651
d2e4a39e 8652static struct type *
fc1a4b47 8653to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8654 CORE_ADDR address, struct value *dval0)
14f9c5c9 8655{
d2e4a39e 8656 struct value *mark = value_mark ();
4c4b4cd2 8657 struct value *dval;
d2e4a39e 8658 struct type *rtype;
14f9c5c9
AS
8659 struct type *branch_type;
8660 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8661 int variant_field = variant_field_index (type);
14f9c5c9 8662
4c4b4cd2 8663 if (variant_field == -1)
14f9c5c9
AS
8664 return type;
8665
4c4b4cd2 8666 if (dval0 == NULL)
9f1f738a
SA
8667 {
8668 dval = value_from_contents_and_address (type, valaddr, address);
8669 type = value_type (dval);
8670 }
4c4b4cd2
PH
8671 else
8672 dval = dval0;
8673
e9bb382b 8674 rtype = alloc_type_copy (type);
14f9c5c9 8675 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8676 INIT_CPLUS_SPECIFIC (rtype);
8677 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8678 TYPE_FIELDS (rtype) =
8679 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8680 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8681 sizeof (struct field) * nfields);
14f9c5c9 8682 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8683 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8684 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8685
4c4b4cd2
PH
8686 branch_type = to_fixed_variant_branch_type
8687 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8688 cond_offset_host (valaddr,
4c4b4cd2
PH
8689 TYPE_FIELD_BITPOS (type, variant_field)
8690 / TARGET_CHAR_BIT),
d2e4a39e 8691 cond_offset_target (address,
4c4b4cd2
PH
8692 TYPE_FIELD_BITPOS (type, variant_field)
8693 / TARGET_CHAR_BIT), dval);
d2e4a39e 8694 if (branch_type == NULL)
14f9c5c9 8695 {
4c4b4cd2 8696 int f;
5b4ee69b 8697
4c4b4cd2
PH
8698 for (f = variant_field + 1; f < nfields; f += 1)
8699 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8700 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8701 }
8702 else
8703 {
4c4b4cd2
PH
8704 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8705 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8706 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8707 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8708 }
4c4b4cd2 8709 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8710
4c4b4cd2 8711 value_free_to_mark (mark);
14f9c5c9
AS
8712 return rtype;
8713}
8714
8715/* An ordinary record type (with fixed-length fields) that describes
8716 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8717 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8718 should be in DVAL, a record value; it may be NULL if the object
8719 at ADDR itself contains any necessary discriminant values.
8720 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8721 values from the record are needed. Except in the case that DVAL,
8722 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8723 unchecked) is replaced by a particular branch of the variant.
8724
8725 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8726 is questionable and may be removed. It can arise during the
8727 processing of an unconstrained-array-of-record type where all the
8728 variant branches have exactly the same size. This is because in
8729 such cases, the compiler does not bother to use the XVS convention
8730 when encoding the record. I am currently dubious of this
8731 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8732
d2e4a39e 8733static struct type *
fc1a4b47 8734to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8735 CORE_ADDR address, struct value *dval)
14f9c5c9 8736{
d2e4a39e 8737 struct type *templ_type;
14f9c5c9 8738
876cecd0 8739 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8740 return type0;
8741
d2e4a39e 8742 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8743
8744 if (templ_type != NULL)
8745 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8746 else if (variant_field_index (type0) >= 0)
8747 {
8748 if (dval == NULL && valaddr == NULL && address == 0)
8749 return type0;
8750 return to_record_with_fixed_variant_part (type0, valaddr, address,
8751 dval);
8752 }
14f9c5c9
AS
8753 else
8754 {
876cecd0 8755 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8756 return type0;
8757 }
8758
8759}
8760
8761/* An ordinary record type (with fixed-length fields) that describes
8762 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8763 union type. Any necessary discriminants' values should be in DVAL,
8764 a record value. That is, this routine selects the appropriate
8765 branch of the union at ADDR according to the discriminant value
b1f33ddd 8766 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8767 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8768
d2e4a39e 8769static struct type *
fc1a4b47 8770to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8771 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8772{
8773 int which;
d2e4a39e
AS
8774 struct type *templ_type;
8775 struct type *var_type;
14f9c5c9
AS
8776
8777 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8778 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8779 else
14f9c5c9
AS
8780 var_type = var_type0;
8781
8782 templ_type = ada_find_parallel_type (var_type, "___XVU");
8783
8784 if (templ_type != NULL)
8785 var_type = templ_type;
8786
b1f33ddd
JB
8787 if (is_unchecked_variant (var_type, value_type (dval)))
8788 return var_type0;
d2e4a39e
AS
8789 which =
8790 ada_which_variant_applies (var_type,
0fd88904 8791 value_type (dval), value_contents (dval));
14f9c5c9
AS
8792
8793 if (which < 0)
e9bb382b 8794 return empty_record (var_type);
14f9c5c9 8795 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8796 return to_fixed_record_type
d2e4a39e
AS
8797 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8798 valaddr, address, dval);
4c4b4cd2 8799 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8800 return
8801 to_fixed_record_type
8802 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8803 else
8804 return TYPE_FIELD_TYPE (var_type, which);
8805}
8806
8908fca5
JB
8807/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8808 ENCODING_TYPE, a type following the GNAT conventions for discrete
8809 type encodings, only carries redundant information. */
8810
8811static int
8812ada_is_redundant_range_encoding (struct type *range_type,
8813 struct type *encoding_type)
8814{
108d56a4 8815 const char *bounds_str;
8908fca5
JB
8816 int n;
8817 LONGEST lo, hi;
8818
8819 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8820
005e2509
JB
8821 if (TYPE_CODE (get_base_type (range_type))
8822 != TYPE_CODE (get_base_type (encoding_type)))
8823 {
8824 /* The compiler probably used a simple base type to describe
8825 the range type instead of the range's actual base type,
8826 expecting us to get the real base type from the encoding
8827 anyway. In this situation, the encoding cannot be ignored
8828 as redundant. */
8829 return 0;
8830 }
8831
8908fca5
JB
8832 if (is_dynamic_type (range_type))
8833 return 0;
8834
8835 if (TYPE_NAME (encoding_type) == NULL)
8836 return 0;
8837
8838 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8839 if (bounds_str == NULL)
8840 return 0;
8841
8842 n = 8; /* Skip "___XDLU_". */
8843 if (!ada_scan_number (bounds_str, n, &lo, &n))
8844 return 0;
8845 if (TYPE_LOW_BOUND (range_type) != lo)
8846 return 0;
8847
8848 n += 2; /* Skip the "__" separator between the two bounds. */
8849 if (!ada_scan_number (bounds_str, n, &hi, &n))
8850 return 0;
8851 if (TYPE_HIGH_BOUND (range_type) != hi)
8852 return 0;
8853
8854 return 1;
8855}
8856
8857/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8858 a type following the GNAT encoding for describing array type
8859 indices, only carries redundant information. */
8860
8861static int
8862ada_is_redundant_index_type_desc (struct type *array_type,
8863 struct type *desc_type)
8864{
8865 struct type *this_layer = check_typedef (array_type);
8866 int i;
8867
8868 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8869 {
8870 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8871 TYPE_FIELD_TYPE (desc_type, i)))
8872 return 0;
8873 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8874 }
8875
8876 return 1;
8877}
8878
14f9c5c9
AS
8879/* Assuming that TYPE0 is an array type describing the type of a value
8880 at ADDR, and that DVAL describes a record containing any
8881 discriminants used in TYPE0, returns a type for the value that
8882 contains no dynamic components (that is, no components whose sizes
8883 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8884 true, gives an error message if the resulting type's size is over
4c4b4cd2 8885 varsize_limit. */
14f9c5c9 8886
d2e4a39e
AS
8887static struct type *
8888to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8889 int ignore_too_big)
14f9c5c9 8890{
d2e4a39e
AS
8891 struct type *index_type_desc;
8892 struct type *result;
ad82864c 8893 int constrained_packed_array_p;
931e5bc3 8894 static const char *xa_suffix = "___XA";
14f9c5c9 8895
b0dd7688 8896 type0 = ada_check_typedef (type0);
284614f0 8897 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8898 return type0;
14f9c5c9 8899
ad82864c
JB
8900 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8901 if (constrained_packed_array_p)
8902 type0 = decode_constrained_packed_array_type (type0);
284614f0 8903
931e5bc3
JG
8904 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8905
8906 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8907 encoding suffixed with 'P' may still be generated. If so,
8908 it should be used to find the XA type. */
8909
8910 if (index_type_desc == NULL)
8911 {
1da0522e 8912 const char *type_name = ada_type_name (type0);
931e5bc3 8913
1da0522e 8914 if (type_name != NULL)
931e5bc3 8915 {
1da0522e 8916 const int len = strlen (type_name);
931e5bc3
JG
8917 char *name = (char *) alloca (len + strlen (xa_suffix));
8918
1da0522e 8919 if (type_name[len - 1] == 'P')
931e5bc3 8920 {
1da0522e 8921 strcpy (name, type_name);
931e5bc3
JG
8922 strcpy (name + len - 1, xa_suffix);
8923 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8924 }
8925 }
8926 }
8927
28c85d6c 8928 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8929 if (index_type_desc != NULL
8930 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8931 {
8932 /* Ignore this ___XA parallel type, as it does not bring any
8933 useful information. This allows us to avoid creating fixed
8934 versions of the array's index types, which would be identical
8935 to the original ones. This, in turn, can also help avoid
8936 the creation of fixed versions of the array itself. */
8937 index_type_desc = NULL;
8938 }
8939
14f9c5c9
AS
8940 if (index_type_desc == NULL)
8941 {
61ee279c 8942 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8943
14f9c5c9 8944 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8945 depend on the contents of the array in properly constructed
8946 debugging data. */
529cad9c
PH
8947 /* Create a fixed version of the array element type.
8948 We're not providing the address of an element here,
e1d5a0d2 8949 and thus the actual object value cannot be inspected to do
529cad9c
PH
8950 the conversion. This should not be a problem, since arrays of
8951 unconstrained objects are not allowed. In particular, all
8952 the elements of an array of a tagged type should all be of
8953 the same type specified in the debugging info. No need to
8954 consult the object tag. */
1ed6ede0 8955 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8956
284614f0
JB
8957 /* Make sure we always create a new array type when dealing with
8958 packed array types, since we're going to fix-up the array
8959 type length and element bitsize a little further down. */
ad82864c 8960 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8961 result = type0;
14f9c5c9 8962 else
e9bb382b 8963 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8964 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8965 }
8966 else
8967 {
8968 int i;
8969 struct type *elt_type0;
8970
8971 elt_type0 = type0;
8972 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8973 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8974
8975 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8976 depend on the contents of the array in properly constructed
8977 debugging data. */
529cad9c
PH
8978 /* Create a fixed version of the array element type.
8979 We're not providing the address of an element here,
e1d5a0d2 8980 and thus the actual object value cannot be inspected to do
529cad9c
PH
8981 the conversion. This should not be a problem, since arrays of
8982 unconstrained objects are not allowed. In particular, all
8983 the elements of an array of a tagged type should all be of
8984 the same type specified in the debugging info. No need to
8985 consult the object tag. */
1ed6ede0
JB
8986 result =
8987 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8988
8989 elt_type0 = type0;
14f9c5c9 8990 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8991 {
8992 struct type *range_type =
28c85d6c 8993 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8994
e9bb382b 8995 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8996 result, range_type);
1ce677a4 8997 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8998 }
d2e4a39e 8999 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 9000 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
9001 }
9002
2e6fda7d
JB
9003 /* We want to preserve the type name. This can be useful when
9004 trying to get the type name of a value that has already been
9005 printed (for instance, if the user did "print VAR; whatis $". */
9006 TYPE_NAME (result) = TYPE_NAME (type0);
9007
ad82864c 9008 if (constrained_packed_array_p)
284614f0
JB
9009 {
9010 /* So far, the resulting type has been created as if the original
9011 type was a regular (non-packed) array type. As a result, the
9012 bitsize of the array elements needs to be set again, and the array
9013 length needs to be recomputed based on that bitsize. */
9014 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9015 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9016
9017 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9018 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9019 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9020 TYPE_LENGTH (result)++;
9021 }
9022
876cecd0 9023 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 9024 return result;
d2e4a39e 9025}
14f9c5c9
AS
9026
9027
9028/* A standard type (containing no dynamically sized components)
9029 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9030 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 9031 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
9032 ADDRESS or in VALADDR contains these discriminants.
9033
1ed6ede0
JB
9034 If CHECK_TAG is not null, in the case of tagged types, this function
9035 attempts to locate the object's tag and use it to compute the actual
9036 type. However, when ADDRESS is null, we cannot use it to determine the
9037 location of the tag, and therefore compute the tagged type's actual type.
9038 So we return the tagged type without consulting the tag. */
529cad9c 9039
f192137b
JB
9040static struct type *
9041ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9042 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9043{
61ee279c 9044 type = ada_check_typedef (type);
d2e4a39e
AS
9045 switch (TYPE_CODE (type))
9046 {
9047 default:
14f9c5c9 9048 return type;
d2e4a39e 9049 case TYPE_CODE_STRUCT:
4c4b4cd2 9050 {
76a01679 9051 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9052 struct type *fixed_record_type =
9053 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9054
529cad9c
PH
9055 /* If STATIC_TYPE is a tagged type and we know the object's address,
9056 then we can determine its tag, and compute the object's actual
0963b4bd 9057 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9058 type (the parent part of the record may have dynamic fields
9059 and the way the location of _tag is expressed may depend on
9060 them). */
529cad9c 9061
1ed6ede0 9062 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9063 {
b50d69b5
JG
9064 struct value *tag =
9065 value_tag_from_contents_and_address
9066 (fixed_record_type,
9067 valaddr,
9068 address);
9069 struct type *real_type = type_from_tag (tag);
9070 struct value *obj =
9071 value_from_contents_and_address (fixed_record_type,
9072 valaddr,
9073 address);
9f1f738a 9074 fixed_record_type = value_type (obj);
76a01679 9075 if (real_type != NULL)
b50d69b5
JG
9076 return to_fixed_record_type
9077 (real_type, NULL,
9078 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9079 }
4af88198
JB
9080
9081 /* Check to see if there is a parallel ___XVZ variable.
9082 If there is, then it provides the actual size of our type. */
9083 else if (ada_type_name (fixed_record_type) != NULL)
9084 {
0d5cff50 9085 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9086 char *xvz_name
9087 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9088 bool xvz_found = false;
4af88198
JB
9089 LONGEST size;
9090
88c15c34 9091 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9092 TRY
9093 {
9094 xvz_found = get_int_var_value (xvz_name, size);
9095 }
9096 CATCH (except, RETURN_MASK_ERROR)
9097 {
9098 /* We found the variable, but somehow failed to read
9099 its value. Rethrow the same error, but with a little
9100 bit more information, to help the user understand
9101 what went wrong (Eg: the variable might have been
9102 optimized out). */
9103 throw_error (except.error,
9104 _("unable to read value of %s (%s)"),
9105 xvz_name, except.message);
9106 }
9107 END_CATCH
9108
9109 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9110 {
9111 fixed_record_type = copy_type (fixed_record_type);
9112 TYPE_LENGTH (fixed_record_type) = size;
9113
9114 /* The FIXED_RECORD_TYPE may have be a stub. We have
9115 observed this when the debugging info is STABS, and
9116 apparently it is something that is hard to fix.
9117
9118 In practice, we don't need the actual type definition
9119 at all, because the presence of the XVZ variable allows us
9120 to assume that there must be a XVS type as well, which we
9121 should be able to use later, when we need the actual type
9122 definition.
9123
9124 In the meantime, pretend that the "fixed" type we are
9125 returning is NOT a stub, because this can cause trouble
9126 when using this type to create new types targeting it.
9127 Indeed, the associated creation routines often check
9128 whether the target type is a stub and will try to replace
0963b4bd 9129 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9130 might cause the new type to have the wrong size too.
9131 Consider the case of an array, for instance, where the size
9132 of the array is computed from the number of elements in
9133 our array multiplied by the size of its element. */
9134 TYPE_STUB (fixed_record_type) = 0;
9135 }
9136 }
1ed6ede0 9137 return fixed_record_type;
4c4b4cd2 9138 }
d2e4a39e 9139 case TYPE_CODE_ARRAY:
4c4b4cd2 9140 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9141 case TYPE_CODE_UNION:
9142 if (dval == NULL)
4c4b4cd2 9143 return type;
d2e4a39e 9144 else
4c4b4cd2 9145 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9146 }
14f9c5c9
AS
9147}
9148
f192137b
JB
9149/* The same as ada_to_fixed_type_1, except that it preserves the type
9150 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9151
9152 The typedef layer needs be preserved in order to differentiate between
9153 arrays and array pointers when both types are implemented using the same
9154 fat pointer. In the array pointer case, the pointer is encoded as
9155 a typedef of the pointer type. For instance, considering:
9156
9157 type String_Access is access String;
9158 S1 : String_Access := null;
9159
9160 To the debugger, S1 is defined as a typedef of type String. But
9161 to the user, it is a pointer. So if the user tries to print S1,
9162 we should not dereference the array, but print the array address
9163 instead.
9164
9165 If we didn't preserve the typedef layer, we would lose the fact that
9166 the type is to be presented as a pointer (needs de-reference before
9167 being printed). And we would also use the source-level type name. */
f192137b
JB
9168
9169struct type *
9170ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9171 CORE_ADDR address, struct value *dval, int check_tag)
9172
9173{
9174 struct type *fixed_type =
9175 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9176
96dbd2c1
JB
9177 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9178 then preserve the typedef layer.
9179
9180 Implementation note: We can only check the main-type portion of
9181 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9182 from TYPE now returns a type that has the same instance flags
9183 as TYPE. For instance, if TYPE is a "typedef const", and its
9184 target type is a "struct", then the typedef elimination will return
9185 a "const" version of the target type. See check_typedef for more
9186 details about how the typedef layer elimination is done.
9187
9188 brobecker/2010-11-19: It seems to me that the only case where it is
9189 useful to preserve the typedef layer is when dealing with fat pointers.
9190 Perhaps, we could add a check for that and preserve the typedef layer
9191 only in that situation. But this seems unecessary so far, probably
9192 because we call check_typedef/ada_check_typedef pretty much everywhere.
9193 */
f192137b 9194 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9195 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9196 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9197 return type;
9198
9199 return fixed_type;
9200}
9201
14f9c5c9 9202/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9203 TYPE0, but based on no runtime data. */
14f9c5c9 9204
d2e4a39e
AS
9205static struct type *
9206to_static_fixed_type (struct type *type0)
14f9c5c9 9207{
d2e4a39e 9208 struct type *type;
14f9c5c9
AS
9209
9210 if (type0 == NULL)
9211 return NULL;
9212
876cecd0 9213 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9214 return type0;
9215
61ee279c 9216 type0 = ada_check_typedef (type0);
d2e4a39e 9217
14f9c5c9
AS
9218 switch (TYPE_CODE (type0))
9219 {
9220 default:
9221 return type0;
9222 case TYPE_CODE_STRUCT:
9223 type = dynamic_template_type (type0);
d2e4a39e 9224 if (type != NULL)
4c4b4cd2
PH
9225 return template_to_static_fixed_type (type);
9226 else
9227 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9228 case TYPE_CODE_UNION:
9229 type = ada_find_parallel_type (type0, "___XVU");
9230 if (type != NULL)
4c4b4cd2
PH
9231 return template_to_static_fixed_type (type);
9232 else
9233 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9234 }
9235}
9236
4c4b4cd2
PH
9237/* A static approximation of TYPE with all type wrappers removed. */
9238
d2e4a39e
AS
9239static struct type *
9240static_unwrap_type (struct type *type)
14f9c5c9
AS
9241{
9242 if (ada_is_aligner_type (type))
9243 {
61ee279c 9244 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9245 if (ada_type_name (type1) == NULL)
4c4b4cd2 9246 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9247
9248 return static_unwrap_type (type1);
9249 }
d2e4a39e 9250 else
14f9c5c9 9251 {
d2e4a39e 9252 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9253
d2e4a39e 9254 if (raw_real_type == type)
4c4b4cd2 9255 return type;
14f9c5c9 9256 else
4c4b4cd2 9257 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9258 }
9259}
9260
9261/* In some cases, incomplete and private types require
4c4b4cd2 9262 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9263 type Foo;
9264 type FooP is access Foo;
9265 V: FooP;
9266 type Foo is array ...;
4c4b4cd2 9267 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9268 cross-references to such types, we instead substitute for FooP a
9269 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9270 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9271
9272/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9273 exists, otherwise TYPE. */
9274
d2e4a39e 9275struct type *
61ee279c 9276ada_check_typedef (struct type *type)
14f9c5c9 9277{
727e3d2e
JB
9278 if (type == NULL)
9279 return NULL;
9280
736ade86
XR
9281 /* If our type is an access to an unconstrained array, which is encoded
9282 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9283 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9284 what allows us to distinguish between fat pointers that represent
9285 array types, and fat pointers that represent array access types
9286 (in both cases, the compiler implements them as fat pointers). */
736ade86 9287 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9288 return type;
9289
f168693b 9290 type = check_typedef (type);
14f9c5c9 9291 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9292 || !TYPE_STUB (type)
e86ca25f 9293 || TYPE_NAME (type) == NULL)
14f9c5c9 9294 return type;
d2e4a39e 9295 else
14f9c5c9 9296 {
e86ca25f 9297 const char *name = TYPE_NAME (type);
d2e4a39e 9298 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9299
05e522ef
JB
9300 if (type1 == NULL)
9301 return type;
9302
9303 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9304 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9305 types, only for the typedef-to-array types). If that's the case,
9306 strip the typedef layer. */
9307 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9308 type1 = ada_check_typedef (type1);
9309
9310 return type1;
14f9c5c9
AS
9311 }
9312}
9313
9314/* A value representing the data at VALADDR/ADDRESS as described by
9315 type TYPE0, but with a standard (static-sized) type that correctly
9316 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9317 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9318 creation of struct values]. */
14f9c5c9 9319
4c4b4cd2
PH
9320static struct value *
9321ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9322 struct value *val0)
14f9c5c9 9323{
1ed6ede0 9324 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9325
14f9c5c9
AS
9326 if (type == type0 && val0 != NULL)
9327 return val0;
cc0e770c
JB
9328
9329 if (VALUE_LVAL (val0) != lval_memory)
9330 {
9331 /* Our value does not live in memory; it could be a convenience
9332 variable, for instance. Create a not_lval value using val0's
9333 contents. */
9334 return value_from_contents (type, value_contents (val0));
9335 }
9336
9337 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9338}
9339
9340/* A value representing VAL, but with a standard (static-sized) type
9341 that correctly describes it. Does not necessarily create a new
9342 value. */
9343
0c3acc09 9344struct value *
4c4b4cd2
PH
9345ada_to_fixed_value (struct value *val)
9346{
c48db5ca 9347 val = unwrap_value (val);
d8ce9127 9348 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9349 return val;
14f9c5c9 9350}
d2e4a39e 9351\f
14f9c5c9 9352
14f9c5c9
AS
9353/* Attributes */
9354
4c4b4cd2
PH
9355/* Table mapping attribute numbers to names.
9356 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9357
d2e4a39e 9358static const char *attribute_names[] = {
14f9c5c9
AS
9359 "<?>",
9360
d2e4a39e 9361 "first",
14f9c5c9
AS
9362 "last",
9363 "length",
9364 "image",
14f9c5c9
AS
9365 "max",
9366 "min",
4c4b4cd2
PH
9367 "modulus",
9368 "pos",
9369 "size",
9370 "tag",
14f9c5c9 9371 "val",
14f9c5c9
AS
9372 0
9373};
9374
d2e4a39e 9375const char *
4c4b4cd2 9376ada_attribute_name (enum exp_opcode n)
14f9c5c9 9377{
4c4b4cd2
PH
9378 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9379 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9380 else
9381 return attribute_names[0];
9382}
9383
4c4b4cd2 9384/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9385
4c4b4cd2
PH
9386static LONGEST
9387pos_atr (struct value *arg)
14f9c5c9 9388{
24209737
PH
9389 struct value *val = coerce_ref (arg);
9390 struct type *type = value_type (val);
aa715135 9391 LONGEST result;
14f9c5c9 9392
d2e4a39e 9393 if (!discrete_type_p (type))
323e0a4a 9394 error (_("'POS only defined on discrete types"));
14f9c5c9 9395
aa715135
JG
9396 if (!discrete_position (type, value_as_long (val), &result))
9397 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9398
aa715135 9399 return result;
4c4b4cd2
PH
9400}
9401
9402static struct value *
3cb382c9 9403value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9404{
3cb382c9 9405 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9406}
9407
4c4b4cd2 9408/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9409
d2e4a39e
AS
9410static struct value *
9411value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9412{
d2e4a39e 9413 if (!discrete_type_p (type))
323e0a4a 9414 error (_("'VAL only defined on discrete types"));
df407dfe 9415 if (!integer_type_p (value_type (arg)))
323e0a4a 9416 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9417
9418 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9419 {
9420 long pos = value_as_long (arg);
5b4ee69b 9421
14f9c5c9 9422 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9423 error (_("argument to 'VAL out of range"));
14e75d8e 9424 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9425 }
9426 else
9427 return value_from_longest (type, value_as_long (arg));
9428}
14f9c5c9 9429\f
d2e4a39e 9430
4c4b4cd2 9431 /* Evaluation */
14f9c5c9 9432
4c4b4cd2
PH
9433/* True if TYPE appears to be an Ada character type.
9434 [At the moment, this is true only for Character and Wide_Character;
9435 It is a heuristic test that could stand improvement]. */
14f9c5c9 9436
d2e4a39e
AS
9437int
9438ada_is_character_type (struct type *type)
14f9c5c9 9439{
7b9f71f2
JB
9440 const char *name;
9441
9442 /* If the type code says it's a character, then assume it really is,
9443 and don't check any further. */
9444 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9445 return 1;
9446
9447 /* Otherwise, assume it's a character type iff it is a discrete type
9448 with a known character type name. */
9449 name = ada_type_name (type);
9450 return (name != NULL
9451 && (TYPE_CODE (type) == TYPE_CODE_INT
9452 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9453 && (strcmp (name, "character") == 0
9454 || strcmp (name, "wide_character") == 0
5a517ebd 9455 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9456 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9457}
9458
4c4b4cd2 9459/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9460
9461int
ebf56fd3 9462ada_is_string_type (struct type *type)
14f9c5c9 9463{
61ee279c 9464 type = ada_check_typedef (type);
d2e4a39e 9465 if (type != NULL
14f9c5c9 9466 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9467 && (ada_is_simple_array_type (type)
9468 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9469 && ada_array_arity (type) == 1)
9470 {
9471 struct type *elttype = ada_array_element_type (type, 1);
9472
9473 return ada_is_character_type (elttype);
9474 }
d2e4a39e 9475 else
14f9c5c9
AS
9476 return 0;
9477}
9478
5bf03f13
JB
9479/* The compiler sometimes provides a parallel XVS type for a given
9480 PAD type. Normally, it is safe to follow the PAD type directly,
9481 but older versions of the compiler have a bug that causes the offset
9482 of its "F" field to be wrong. Following that field in that case
9483 would lead to incorrect results, but this can be worked around
9484 by ignoring the PAD type and using the associated XVS type instead.
9485
9486 Set to True if the debugger should trust the contents of PAD types.
9487 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9488static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9489
9490/* True if TYPE is a struct type introduced by the compiler to force the
9491 alignment of a value. Such types have a single field with a
4c4b4cd2 9492 distinctive name. */
14f9c5c9
AS
9493
9494int
ebf56fd3 9495ada_is_aligner_type (struct type *type)
14f9c5c9 9496{
61ee279c 9497 type = ada_check_typedef (type);
714e53ab 9498
5bf03f13 9499 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9500 return 0;
9501
14f9c5c9 9502 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9503 && TYPE_NFIELDS (type) == 1
9504 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9505}
9506
9507/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9508 the parallel type. */
14f9c5c9 9509
d2e4a39e
AS
9510struct type *
9511ada_get_base_type (struct type *raw_type)
14f9c5c9 9512{
d2e4a39e
AS
9513 struct type *real_type_namer;
9514 struct type *raw_real_type;
14f9c5c9
AS
9515
9516 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9517 return raw_type;
9518
284614f0
JB
9519 if (ada_is_aligner_type (raw_type))
9520 /* The encoding specifies that we should always use the aligner type.
9521 So, even if this aligner type has an associated XVS type, we should
9522 simply ignore it.
9523
9524 According to the compiler gurus, an XVS type parallel to an aligner
9525 type may exist because of a stabs limitation. In stabs, aligner
9526 types are empty because the field has a variable-sized type, and
9527 thus cannot actually be used as an aligner type. As a result,
9528 we need the associated parallel XVS type to decode the type.
9529 Since the policy in the compiler is to not change the internal
9530 representation based on the debugging info format, we sometimes
9531 end up having a redundant XVS type parallel to the aligner type. */
9532 return raw_type;
9533
14f9c5c9 9534 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9535 if (real_type_namer == NULL
14f9c5c9
AS
9536 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9537 || TYPE_NFIELDS (real_type_namer) != 1)
9538 return raw_type;
9539
f80d3ff2
JB
9540 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9541 {
9542 /* This is an older encoding form where the base type needs to be
9543 looked up by name. We prefer the newer enconding because it is
9544 more efficient. */
9545 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9546 if (raw_real_type == NULL)
9547 return raw_type;
9548 else
9549 return raw_real_type;
9550 }
9551
9552 /* The field in our XVS type is a reference to the base type. */
9553 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9554}
14f9c5c9 9555
4c4b4cd2 9556/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9557
d2e4a39e
AS
9558struct type *
9559ada_aligned_type (struct type *type)
14f9c5c9
AS
9560{
9561 if (ada_is_aligner_type (type))
9562 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9563 else
9564 return ada_get_base_type (type);
9565}
9566
9567
9568/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9569 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9570
fc1a4b47
AC
9571const gdb_byte *
9572ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9573{
d2e4a39e 9574 if (ada_is_aligner_type (type))
14f9c5c9 9575 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9576 valaddr +
9577 TYPE_FIELD_BITPOS (type,
9578 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9579 else
9580 return valaddr;
9581}
9582
4c4b4cd2
PH
9583
9584
14f9c5c9 9585/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9586 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9587const char *
9588ada_enum_name (const char *name)
14f9c5c9 9589{
4c4b4cd2
PH
9590 static char *result;
9591 static size_t result_len = 0;
e6a959d6 9592 const char *tmp;
14f9c5c9 9593
4c4b4cd2
PH
9594 /* First, unqualify the enumeration name:
9595 1. Search for the last '.' character. If we find one, then skip
177b42fe 9596 all the preceding characters, the unqualified name starts
76a01679 9597 right after that dot.
4c4b4cd2 9598 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9599 translates dots into "__". Search forward for double underscores,
9600 but stop searching when we hit an overloading suffix, which is
9601 of the form "__" followed by digits. */
4c4b4cd2 9602
c3e5cd34
PH
9603 tmp = strrchr (name, '.');
9604 if (tmp != NULL)
4c4b4cd2
PH
9605 name = tmp + 1;
9606 else
14f9c5c9 9607 {
4c4b4cd2
PH
9608 while ((tmp = strstr (name, "__")) != NULL)
9609 {
9610 if (isdigit (tmp[2]))
9611 break;
9612 else
9613 name = tmp + 2;
9614 }
14f9c5c9
AS
9615 }
9616
9617 if (name[0] == 'Q')
9618 {
14f9c5c9 9619 int v;
5b4ee69b 9620
14f9c5c9 9621 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9622 {
9623 if (sscanf (name + 2, "%x", &v) != 1)
9624 return name;
9625 }
14f9c5c9 9626 else
4c4b4cd2 9627 return name;
14f9c5c9 9628
4c4b4cd2 9629 GROW_VECT (result, result_len, 16);
14f9c5c9 9630 if (isascii (v) && isprint (v))
88c15c34 9631 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9632 else if (name[1] == 'U')
88c15c34 9633 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9634 else
88c15c34 9635 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9636
9637 return result;
9638 }
d2e4a39e 9639 else
4c4b4cd2 9640 {
c3e5cd34
PH
9641 tmp = strstr (name, "__");
9642 if (tmp == NULL)
9643 tmp = strstr (name, "$");
9644 if (tmp != NULL)
4c4b4cd2
PH
9645 {
9646 GROW_VECT (result, result_len, tmp - name + 1);
9647 strncpy (result, name, tmp - name);
9648 result[tmp - name] = '\0';
9649 return result;
9650 }
9651
9652 return name;
9653 }
14f9c5c9
AS
9654}
9655
14f9c5c9
AS
9656/* Evaluate the subexpression of EXP starting at *POS as for
9657 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9658 expression. */
14f9c5c9 9659
d2e4a39e
AS
9660static struct value *
9661evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9662{
4b27a620 9663 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9664}
9665
9666/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9667 value it wraps. */
14f9c5c9 9668
d2e4a39e
AS
9669static struct value *
9670unwrap_value (struct value *val)
14f9c5c9 9671{
df407dfe 9672 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9673
14f9c5c9
AS
9674 if (ada_is_aligner_type (type))
9675 {
de4d072f 9676 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9677 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9678
14f9c5c9 9679 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9680 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9681
9682 return unwrap_value (v);
9683 }
d2e4a39e 9684 else
14f9c5c9 9685 {
d2e4a39e 9686 struct type *raw_real_type =
61ee279c 9687 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9688
5bf03f13
JB
9689 /* If there is no parallel XVS or XVE type, then the value is
9690 already unwrapped. Return it without further modification. */
9691 if ((type == raw_real_type)
9692 && ada_find_parallel_type (type, "___XVE") == NULL)
9693 return val;
14f9c5c9 9694
d2e4a39e 9695 return
4c4b4cd2
PH
9696 coerce_unspec_val_to_type
9697 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9698 value_address (val),
1ed6ede0 9699 NULL, 1));
14f9c5c9
AS
9700 }
9701}
d2e4a39e
AS
9702
9703static struct value *
50eff16b 9704cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9705{
50eff16b
UW
9706 struct value *scale = ada_scaling_factor (value_type (arg));
9707 arg = value_cast (value_type (scale), arg);
14f9c5c9 9708
50eff16b
UW
9709 arg = value_binop (arg, scale, BINOP_MUL);
9710 return value_cast (type, arg);
14f9c5c9
AS
9711}
9712
d2e4a39e 9713static struct value *
50eff16b 9714cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9715{
50eff16b
UW
9716 if (type == value_type (arg))
9717 return arg;
5b4ee69b 9718
50eff16b
UW
9719 struct value *scale = ada_scaling_factor (type);
9720 if (ada_is_fixed_point_type (value_type (arg)))
9721 arg = cast_from_fixed (value_type (scale), arg);
9722 else
9723 arg = value_cast (value_type (scale), arg);
9724
9725 arg = value_binop (arg, scale, BINOP_DIV);
9726 return value_cast (type, arg);
14f9c5c9
AS
9727}
9728
d99dcf51
JB
9729/* Given two array types T1 and T2, return nonzero iff both arrays
9730 contain the same number of elements. */
9731
9732static int
9733ada_same_array_size_p (struct type *t1, struct type *t2)
9734{
9735 LONGEST lo1, hi1, lo2, hi2;
9736
9737 /* Get the array bounds in order to verify that the size of
9738 the two arrays match. */
9739 if (!get_array_bounds (t1, &lo1, &hi1)
9740 || !get_array_bounds (t2, &lo2, &hi2))
9741 error (_("unable to determine array bounds"));
9742
9743 /* To make things easier for size comparison, normalize a bit
9744 the case of empty arrays by making sure that the difference
9745 between upper bound and lower bound is always -1. */
9746 if (lo1 > hi1)
9747 hi1 = lo1 - 1;
9748 if (lo2 > hi2)
9749 hi2 = lo2 - 1;
9750
9751 return (hi1 - lo1 == hi2 - lo2);
9752}
9753
9754/* Assuming that VAL is an array of integrals, and TYPE represents
9755 an array with the same number of elements, but with wider integral
9756 elements, return an array "casted" to TYPE. In practice, this
9757 means that the returned array is built by casting each element
9758 of the original array into TYPE's (wider) element type. */
9759
9760static struct value *
9761ada_promote_array_of_integrals (struct type *type, struct value *val)
9762{
9763 struct type *elt_type = TYPE_TARGET_TYPE (type);
9764 LONGEST lo, hi;
9765 struct value *res;
9766 LONGEST i;
9767
9768 /* Verify that both val and type are arrays of scalars, and
9769 that the size of val's elements is smaller than the size
9770 of type's element. */
9771 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9772 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9773 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9774 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9775 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9776 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9777
9778 if (!get_array_bounds (type, &lo, &hi))
9779 error (_("unable to determine array bounds"));
9780
9781 res = allocate_value (type);
9782
9783 /* Promote each array element. */
9784 for (i = 0; i < hi - lo + 1; i++)
9785 {
9786 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9787
9788 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9789 value_contents_all (elt), TYPE_LENGTH (elt_type));
9790 }
9791
9792 return res;
9793}
9794
4c4b4cd2
PH
9795/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9796 return the converted value. */
9797
d2e4a39e
AS
9798static struct value *
9799coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9800{
df407dfe 9801 struct type *type2 = value_type (val);
5b4ee69b 9802
14f9c5c9
AS
9803 if (type == type2)
9804 return val;
9805
61ee279c
PH
9806 type2 = ada_check_typedef (type2);
9807 type = ada_check_typedef (type);
14f9c5c9 9808
d2e4a39e
AS
9809 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9810 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9811 {
9812 val = ada_value_ind (val);
df407dfe 9813 type2 = value_type (val);
14f9c5c9
AS
9814 }
9815
d2e4a39e 9816 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9817 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9818 {
d99dcf51
JB
9819 if (!ada_same_array_size_p (type, type2))
9820 error (_("cannot assign arrays of different length"));
9821
9822 if (is_integral_type (TYPE_TARGET_TYPE (type))
9823 && is_integral_type (TYPE_TARGET_TYPE (type2))
9824 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9825 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9826 {
9827 /* Allow implicit promotion of the array elements to
9828 a wider type. */
9829 return ada_promote_array_of_integrals (type, val);
9830 }
9831
9832 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9833 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9834 error (_("Incompatible types in assignment"));
04624583 9835 deprecated_set_value_type (val, type);
14f9c5c9 9836 }
d2e4a39e 9837 return val;
14f9c5c9
AS
9838}
9839
4c4b4cd2
PH
9840static struct value *
9841ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9842{
9843 struct value *val;
9844 struct type *type1, *type2;
9845 LONGEST v, v1, v2;
9846
994b9211
AC
9847 arg1 = coerce_ref (arg1);
9848 arg2 = coerce_ref (arg2);
18af8284
JB
9849 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9850 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9851
76a01679
JB
9852 if (TYPE_CODE (type1) != TYPE_CODE_INT
9853 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9854 return value_binop (arg1, arg2, op);
9855
76a01679 9856 switch (op)
4c4b4cd2
PH
9857 {
9858 case BINOP_MOD:
9859 case BINOP_DIV:
9860 case BINOP_REM:
9861 break;
9862 default:
9863 return value_binop (arg1, arg2, op);
9864 }
9865
9866 v2 = value_as_long (arg2);
9867 if (v2 == 0)
323e0a4a 9868 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9869
9870 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9871 return value_binop (arg1, arg2, op);
9872
9873 v1 = value_as_long (arg1);
9874 switch (op)
9875 {
9876 case BINOP_DIV:
9877 v = v1 / v2;
76a01679
JB
9878 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9879 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9880 break;
9881 case BINOP_REM:
9882 v = v1 % v2;
76a01679
JB
9883 if (v * v1 < 0)
9884 v -= v2;
4c4b4cd2
PH
9885 break;
9886 default:
9887 /* Should not reach this point. */
9888 v = 0;
9889 }
9890
9891 val = allocate_value (type1);
990a07ab 9892 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9893 TYPE_LENGTH (value_type (val)),
9894 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9895 return val;
9896}
9897
9898static int
9899ada_value_equal (struct value *arg1, struct value *arg2)
9900{
df407dfe
AC
9901 if (ada_is_direct_array_type (value_type (arg1))
9902 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9903 {
79e8fcaa
JB
9904 struct type *arg1_type, *arg2_type;
9905
f58b38bf
JB
9906 /* Automatically dereference any array reference before
9907 we attempt to perform the comparison. */
9908 arg1 = ada_coerce_ref (arg1);
9909 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9910
4c4b4cd2
PH
9911 arg1 = ada_coerce_to_simple_array (arg1);
9912 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9913
9914 arg1_type = ada_check_typedef (value_type (arg1));
9915 arg2_type = ada_check_typedef (value_type (arg2));
9916
9917 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9918 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9919 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9920 /* FIXME: The following works only for types whose
76a01679
JB
9921 representations use all bits (no padding or undefined bits)
9922 and do not have user-defined equality. */
79e8fcaa
JB
9923 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9924 && memcmp (value_contents (arg1), value_contents (arg2),
9925 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9926 }
9927 return value_equal (arg1, arg2);
9928}
9929
52ce6436
PH
9930/* Total number of component associations in the aggregate starting at
9931 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9932 OP_AGGREGATE. */
52ce6436
PH
9933
9934static int
9935num_component_specs (struct expression *exp, int pc)
9936{
9937 int n, m, i;
5b4ee69b 9938
52ce6436
PH
9939 m = exp->elts[pc + 1].longconst;
9940 pc += 3;
9941 n = 0;
9942 for (i = 0; i < m; i += 1)
9943 {
9944 switch (exp->elts[pc].opcode)
9945 {
9946 default:
9947 n += 1;
9948 break;
9949 case OP_CHOICES:
9950 n += exp->elts[pc + 1].longconst;
9951 break;
9952 }
9953 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9954 }
9955 return n;
9956}
9957
9958/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9959 component of LHS (a simple array or a record), updating *POS past
9960 the expression, assuming that LHS is contained in CONTAINER. Does
9961 not modify the inferior's memory, nor does it modify LHS (unless
9962 LHS == CONTAINER). */
9963
9964static void
9965assign_component (struct value *container, struct value *lhs, LONGEST index,
9966 struct expression *exp, int *pos)
9967{
9968 struct value *mark = value_mark ();
9969 struct value *elt;
0e2da9f0 9970 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9971
0e2da9f0 9972 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9973 {
22601c15
UW
9974 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9975 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9976
52ce6436
PH
9977 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9978 }
9979 else
9980 {
9981 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9982 elt = ada_to_fixed_value (elt);
52ce6436
PH
9983 }
9984
9985 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9986 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9987 else
9988 value_assign_to_component (container, elt,
9989 ada_evaluate_subexp (NULL, exp, pos,
9990 EVAL_NORMAL));
9991
9992 value_free_to_mark (mark);
9993}
9994
9995/* Assuming that LHS represents an lvalue having a record or array
9996 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9997 of that aggregate's value to LHS, advancing *POS past the
9998 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9999 lvalue containing LHS (possibly LHS itself). Does not modify
10000 the inferior's memory, nor does it modify the contents of
0963b4bd 10001 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
10002
10003static struct value *
10004assign_aggregate (struct value *container,
10005 struct value *lhs, struct expression *exp,
10006 int *pos, enum noside noside)
10007{
10008 struct type *lhs_type;
10009 int n = exp->elts[*pos+1].longconst;
10010 LONGEST low_index, high_index;
10011 int num_specs;
10012 LONGEST *indices;
10013 int max_indices, num_indices;
52ce6436 10014 int i;
52ce6436
PH
10015
10016 *pos += 3;
10017 if (noside != EVAL_NORMAL)
10018 {
52ce6436
PH
10019 for (i = 0; i < n; i += 1)
10020 ada_evaluate_subexp (NULL, exp, pos, noside);
10021 return container;
10022 }
10023
10024 container = ada_coerce_ref (container);
10025 if (ada_is_direct_array_type (value_type (container)))
10026 container = ada_coerce_to_simple_array (container);
10027 lhs = ada_coerce_ref (lhs);
10028 if (!deprecated_value_modifiable (lhs))
10029 error (_("Left operand of assignment is not a modifiable lvalue."));
10030
0e2da9f0 10031 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10032 if (ada_is_direct_array_type (lhs_type))
10033 {
10034 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10035 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10036 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10037 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10038 }
10039 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10040 {
10041 low_index = 0;
10042 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10043 }
10044 else
10045 error (_("Left-hand side must be array or record."));
10046
10047 num_specs = num_component_specs (exp, *pos - 3);
10048 max_indices = 4 * num_specs + 4;
8d749320 10049 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10050 indices[0] = indices[1] = low_index - 1;
10051 indices[2] = indices[3] = high_index + 1;
10052 num_indices = 4;
10053
10054 for (i = 0; i < n; i += 1)
10055 {
10056 switch (exp->elts[*pos].opcode)
10057 {
1fbf5ada
JB
10058 case OP_CHOICES:
10059 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10060 &num_indices, max_indices,
10061 low_index, high_index);
10062 break;
10063 case OP_POSITIONAL:
10064 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10065 &num_indices, max_indices,
10066 low_index, high_index);
1fbf5ada
JB
10067 break;
10068 case OP_OTHERS:
10069 if (i != n-1)
10070 error (_("Misplaced 'others' clause"));
10071 aggregate_assign_others (container, lhs, exp, pos, indices,
10072 num_indices, low_index, high_index);
10073 break;
10074 default:
10075 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10076 }
10077 }
10078
10079 return container;
10080}
10081
10082/* Assign into the component of LHS indexed by the OP_POSITIONAL
10083 construct at *POS, updating *POS past the construct, given that
10084 the positions are relative to lower bound LOW, where HIGH is the
10085 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10086 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10087 assign_aggregate. */
52ce6436
PH
10088static void
10089aggregate_assign_positional (struct value *container,
10090 struct value *lhs, struct expression *exp,
10091 int *pos, LONGEST *indices, int *num_indices,
10092 int max_indices, LONGEST low, LONGEST high)
10093{
10094 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10095
10096 if (ind - 1 == high)
e1d5a0d2 10097 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10098 if (ind <= high)
10099 {
10100 add_component_interval (ind, ind, indices, num_indices, max_indices);
10101 *pos += 3;
10102 assign_component (container, lhs, ind, exp, pos);
10103 }
10104 else
10105 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10106}
10107
10108/* Assign into the components of LHS indexed by the OP_CHOICES
10109 construct at *POS, updating *POS past the construct, given that
10110 the allowable indices are LOW..HIGH. Record the indices assigned
10111 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10112 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10113static void
10114aggregate_assign_from_choices (struct value *container,
10115 struct value *lhs, struct expression *exp,
10116 int *pos, LONGEST *indices, int *num_indices,
10117 int max_indices, LONGEST low, LONGEST high)
10118{
10119 int j;
10120 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10121 int choice_pos, expr_pc;
10122 int is_array = ada_is_direct_array_type (value_type (lhs));
10123
10124 choice_pos = *pos += 3;
10125
10126 for (j = 0; j < n_choices; j += 1)
10127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10128 expr_pc = *pos;
10129 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10130
10131 for (j = 0; j < n_choices; j += 1)
10132 {
10133 LONGEST lower, upper;
10134 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10135
52ce6436
PH
10136 if (op == OP_DISCRETE_RANGE)
10137 {
10138 choice_pos += 1;
10139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10140 EVAL_NORMAL));
10141 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10142 EVAL_NORMAL));
10143 }
10144 else if (is_array)
10145 {
10146 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10147 EVAL_NORMAL));
10148 upper = lower;
10149 }
10150 else
10151 {
10152 int ind;
0d5cff50 10153 const char *name;
5b4ee69b 10154
52ce6436
PH
10155 switch (op)
10156 {
10157 case OP_NAME:
10158 name = &exp->elts[choice_pos + 2].string;
10159 break;
10160 case OP_VAR_VALUE:
10161 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10162 break;
10163 default:
10164 error (_("Invalid record component association."));
10165 }
10166 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10167 ind = 0;
10168 if (! find_struct_field (name, value_type (lhs), 0,
10169 NULL, NULL, NULL, NULL, &ind))
10170 error (_("Unknown component name: %s."), name);
10171 lower = upper = ind;
10172 }
10173
10174 if (lower <= upper && (lower < low || upper > high))
10175 error (_("Index in component association out of bounds."));
10176
10177 add_component_interval (lower, upper, indices, num_indices,
10178 max_indices);
10179 while (lower <= upper)
10180 {
10181 int pos1;
5b4ee69b 10182
52ce6436
PH
10183 pos1 = expr_pc;
10184 assign_component (container, lhs, lower, exp, &pos1);
10185 lower += 1;
10186 }
10187 }
10188}
10189
10190/* Assign the value of the expression in the OP_OTHERS construct in
10191 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10192 have not been previously assigned. The index intervals already assigned
10193 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10194 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10195static void
10196aggregate_assign_others (struct value *container,
10197 struct value *lhs, struct expression *exp,
10198 int *pos, LONGEST *indices, int num_indices,
10199 LONGEST low, LONGEST high)
10200{
10201 int i;
5ce64950 10202 int expr_pc = *pos + 1;
52ce6436
PH
10203
10204 for (i = 0; i < num_indices - 2; i += 2)
10205 {
10206 LONGEST ind;
5b4ee69b 10207
52ce6436
PH
10208 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10209 {
5ce64950 10210 int localpos;
5b4ee69b 10211
5ce64950
MS
10212 localpos = expr_pc;
10213 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10214 }
10215 }
10216 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10217}
10218
10219/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10220 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10221 modifying *SIZE as needed. It is an error if *SIZE exceeds
10222 MAX_SIZE. The resulting intervals do not overlap. */
10223static void
10224add_component_interval (LONGEST low, LONGEST high,
10225 LONGEST* indices, int *size, int max_size)
10226{
10227 int i, j;
5b4ee69b 10228
52ce6436
PH
10229 for (i = 0; i < *size; i += 2) {
10230 if (high >= indices[i] && low <= indices[i + 1])
10231 {
10232 int kh;
5b4ee69b 10233
52ce6436
PH
10234 for (kh = i + 2; kh < *size; kh += 2)
10235 if (high < indices[kh])
10236 break;
10237 if (low < indices[i])
10238 indices[i] = low;
10239 indices[i + 1] = indices[kh - 1];
10240 if (high > indices[i + 1])
10241 indices[i + 1] = high;
10242 memcpy (indices + i + 2, indices + kh, *size - kh);
10243 *size -= kh - i - 2;
10244 return;
10245 }
10246 else if (high < indices[i])
10247 break;
10248 }
10249
10250 if (*size == max_size)
10251 error (_("Internal error: miscounted aggregate components."));
10252 *size += 2;
10253 for (j = *size-1; j >= i+2; j -= 1)
10254 indices[j] = indices[j - 2];
10255 indices[i] = low;
10256 indices[i + 1] = high;
10257}
10258
6e48bd2c
JB
10259/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10260 is different. */
10261
10262static struct value *
b7e22850 10263ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10264{
10265 if (type == ada_check_typedef (value_type (arg2)))
10266 return arg2;
10267
10268 if (ada_is_fixed_point_type (type))
95f39a5b 10269 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10270
10271 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10272 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10273
10274 return value_cast (type, arg2);
10275}
10276
284614f0
JB
10277/* Evaluating Ada expressions, and printing their result.
10278 ------------------------------------------------------
10279
21649b50
JB
10280 1. Introduction:
10281 ----------------
10282
284614f0
JB
10283 We usually evaluate an Ada expression in order to print its value.
10284 We also evaluate an expression in order to print its type, which
10285 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10286 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10287 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10288 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10289 similar.
10290
10291 Evaluating expressions is a little more complicated for Ada entities
10292 than it is for entities in languages such as C. The main reason for
10293 this is that Ada provides types whose definition might be dynamic.
10294 One example of such types is variant records. Or another example
10295 would be an array whose bounds can only be known at run time.
10296
10297 The following description is a general guide as to what should be
10298 done (and what should NOT be done) in order to evaluate an expression
10299 involving such types, and when. This does not cover how the semantic
10300 information is encoded by GNAT as this is covered separatly. For the
10301 document used as the reference for the GNAT encoding, see exp_dbug.ads
10302 in the GNAT sources.
10303
10304 Ideally, we should embed each part of this description next to its
10305 associated code. Unfortunately, the amount of code is so vast right
10306 now that it's hard to see whether the code handling a particular
10307 situation might be duplicated or not. One day, when the code is
10308 cleaned up, this guide might become redundant with the comments
10309 inserted in the code, and we might want to remove it.
10310
21649b50
JB
10311 2. ``Fixing'' an Entity, the Simple Case:
10312 -----------------------------------------
10313
284614f0
JB
10314 When evaluating Ada expressions, the tricky issue is that they may
10315 reference entities whose type contents and size are not statically
10316 known. Consider for instance a variant record:
10317
10318 type Rec (Empty : Boolean := True) is record
10319 case Empty is
10320 when True => null;
10321 when False => Value : Integer;
10322 end case;
10323 end record;
10324 Yes : Rec := (Empty => False, Value => 1);
10325 No : Rec := (empty => True);
10326
10327 The size and contents of that record depends on the value of the
10328 descriminant (Rec.Empty). At this point, neither the debugging
10329 information nor the associated type structure in GDB are able to
10330 express such dynamic types. So what the debugger does is to create
10331 "fixed" versions of the type that applies to the specific object.
10332 We also informally refer to this opperation as "fixing" an object,
10333 which means creating its associated fixed type.
10334
10335 Example: when printing the value of variable "Yes" above, its fixed
10336 type would look like this:
10337
10338 type Rec is record
10339 Empty : Boolean;
10340 Value : Integer;
10341 end record;
10342
10343 On the other hand, if we printed the value of "No", its fixed type
10344 would become:
10345
10346 type Rec is record
10347 Empty : Boolean;
10348 end record;
10349
10350 Things become a little more complicated when trying to fix an entity
10351 with a dynamic type that directly contains another dynamic type,
10352 such as an array of variant records, for instance. There are
10353 two possible cases: Arrays, and records.
10354
21649b50
JB
10355 3. ``Fixing'' Arrays:
10356 ---------------------
10357
10358 The type structure in GDB describes an array in terms of its bounds,
10359 and the type of its elements. By design, all elements in the array
10360 have the same type and we cannot represent an array of variant elements
10361 using the current type structure in GDB. When fixing an array,
10362 we cannot fix the array element, as we would potentially need one
10363 fixed type per element of the array. As a result, the best we can do
10364 when fixing an array is to produce an array whose bounds and size
10365 are correct (allowing us to read it from memory), but without having
10366 touched its element type. Fixing each element will be done later,
10367 when (if) necessary.
10368
10369 Arrays are a little simpler to handle than records, because the same
10370 amount of memory is allocated for each element of the array, even if
1b536f04 10371 the amount of space actually used by each element differs from element
21649b50 10372 to element. Consider for instance the following array of type Rec:
284614f0
JB
10373
10374 type Rec_Array is array (1 .. 2) of Rec;
10375
1b536f04
JB
10376 The actual amount of memory occupied by each element might be different
10377 from element to element, depending on the value of their discriminant.
21649b50 10378 But the amount of space reserved for each element in the array remains
1b536f04 10379 fixed regardless. So we simply need to compute that size using
21649b50
JB
10380 the debugging information available, from which we can then determine
10381 the array size (we multiply the number of elements of the array by
10382 the size of each element).
10383
10384 The simplest case is when we have an array of a constrained element
10385 type. For instance, consider the following type declarations:
10386
10387 type Bounded_String (Max_Size : Integer) is
10388 Length : Integer;
10389 Buffer : String (1 .. Max_Size);
10390 end record;
10391 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10392
10393 In this case, the compiler describes the array as an array of
10394 variable-size elements (identified by its XVS suffix) for which
10395 the size can be read in the parallel XVZ variable.
10396
10397 In the case of an array of an unconstrained element type, the compiler
10398 wraps the array element inside a private PAD type. This type should not
10399 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10400 that we also use the adjective "aligner" in our code to designate
10401 these wrapper types.
10402
1b536f04 10403 In some cases, the size allocated for each element is statically
21649b50
JB
10404 known. In that case, the PAD type already has the correct size,
10405 and the array element should remain unfixed.
10406
10407 But there are cases when this size is not statically known.
10408 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10409
10410 type Dynamic is array (1 .. Five) of Integer;
10411 type Wrapper (Has_Length : Boolean := False) is record
10412 Data : Dynamic;
10413 case Has_Length is
10414 when True => Length : Integer;
10415 when False => null;
10416 end case;
10417 end record;
10418 type Wrapper_Array is array (1 .. 2) of Wrapper;
10419
10420 Hello : Wrapper_Array := (others => (Has_Length => True,
10421 Data => (others => 17),
10422 Length => 1));
10423
10424
10425 The debugging info would describe variable Hello as being an
10426 array of a PAD type. The size of that PAD type is not statically
10427 known, but can be determined using a parallel XVZ variable.
10428 In that case, a copy of the PAD type with the correct size should
10429 be used for the fixed array.
10430
21649b50
JB
10431 3. ``Fixing'' record type objects:
10432 ----------------------------------
10433
10434 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10435 record types. In this case, in order to compute the associated
10436 fixed type, we need to determine the size and offset of each of
10437 its components. This, in turn, requires us to compute the fixed
10438 type of each of these components.
10439
10440 Consider for instance the example:
10441
10442 type Bounded_String (Max_Size : Natural) is record
10443 Str : String (1 .. Max_Size);
10444 Length : Natural;
10445 end record;
10446 My_String : Bounded_String (Max_Size => 10);
10447
10448 In that case, the position of field "Length" depends on the size
10449 of field Str, which itself depends on the value of the Max_Size
21649b50 10450 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10451 we need to fix the type of field Str. Therefore, fixing a variant
10452 record requires us to fix each of its components.
10453
10454 However, if a component does not have a dynamic size, the component
10455 should not be fixed. In particular, fields that use a PAD type
10456 should not fixed. Here is an example where this might happen
10457 (assuming type Rec above):
10458
10459 type Container (Big : Boolean) is record
10460 First : Rec;
10461 After : Integer;
10462 case Big is
10463 when True => Another : Integer;
10464 when False => null;
10465 end case;
10466 end record;
10467 My_Container : Container := (Big => False,
10468 First => (Empty => True),
10469 After => 42);
10470
10471 In that example, the compiler creates a PAD type for component First,
10472 whose size is constant, and then positions the component After just
10473 right after it. The offset of component After is therefore constant
10474 in this case.
10475
10476 The debugger computes the position of each field based on an algorithm
10477 that uses, among other things, the actual position and size of the field
21649b50
JB
10478 preceding it. Let's now imagine that the user is trying to print
10479 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10480 end up computing the offset of field After based on the size of the
10481 fixed version of field First. And since in our example First has
10482 only one actual field, the size of the fixed type is actually smaller
10483 than the amount of space allocated to that field, and thus we would
10484 compute the wrong offset of field After.
10485
21649b50
JB
10486 To make things more complicated, we need to watch out for dynamic
10487 components of variant records (identified by the ___XVL suffix in
10488 the component name). Even if the target type is a PAD type, the size
10489 of that type might not be statically known. So the PAD type needs
10490 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10491 we might end up with the wrong size for our component. This can be
10492 observed with the following type declarations:
284614f0
JB
10493
10494 type Octal is new Integer range 0 .. 7;
10495 type Octal_Array is array (Positive range <>) of Octal;
10496 pragma Pack (Octal_Array);
10497
10498 type Octal_Buffer (Size : Positive) is record
10499 Buffer : Octal_Array (1 .. Size);
10500 Length : Integer;
10501 end record;
10502
10503 In that case, Buffer is a PAD type whose size is unset and needs
10504 to be computed by fixing the unwrapped type.
10505
21649b50
JB
10506 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10507 ----------------------------------------------------------
10508
10509 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10510 thus far, be actually fixed?
10511
10512 The answer is: Only when referencing that element. For instance
10513 when selecting one component of a record, this specific component
10514 should be fixed at that point in time. Or when printing the value
10515 of a record, each component should be fixed before its value gets
10516 printed. Similarly for arrays, the element of the array should be
10517 fixed when printing each element of the array, or when extracting
10518 one element out of that array. On the other hand, fixing should
10519 not be performed on the elements when taking a slice of an array!
10520
31432a67 10521 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10522 size of each field is that we end up also miscomputing the size
10523 of the containing type. This can have adverse results when computing
10524 the value of an entity. GDB fetches the value of an entity based
10525 on the size of its type, and thus a wrong size causes GDB to fetch
10526 the wrong amount of memory. In the case where the computed size is
10527 too small, GDB fetches too little data to print the value of our
31432a67 10528 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10529 past the buffer containing the data =:-o. */
10530
ced9779b
JB
10531/* Evaluate a subexpression of EXP, at index *POS, and return a value
10532 for that subexpression cast to TO_TYPE. Advance *POS over the
10533 subexpression. */
10534
10535static value *
10536ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10537 enum noside noside, struct type *to_type)
10538{
10539 int pc = *pos;
10540
10541 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10542 || exp->elts[pc].opcode == OP_VAR_VALUE)
10543 {
10544 (*pos) += 4;
10545
10546 value *val;
10547 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10548 {
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 return value_zero (to_type, not_lval);
10551
10552 val = evaluate_var_msym_value (noside,
10553 exp->elts[pc + 1].objfile,
10554 exp->elts[pc + 2].msymbol);
10555 }
10556 else
10557 val = evaluate_var_value (noside,
10558 exp->elts[pc + 1].block,
10559 exp->elts[pc + 2].symbol);
10560
10561 if (noside == EVAL_SKIP)
10562 return eval_skip_value (exp);
10563
10564 val = ada_value_cast (to_type, val);
10565
10566 /* Follow the Ada language semantics that do not allow taking
10567 an address of the result of a cast (view conversion in Ada). */
10568 if (VALUE_LVAL (val) == lval_memory)
10569 {
10570 if (value_lazy (val))
10571 value_fetch_lazy (val);
10572 VALUE_LVAL (val) = not_lval;
10573 }
10574 return val;
10575 }
10576
10577 value *val = evaluate_subexp (to_type, exp, pos, noside);
10578 if (noside == EVAL_SKIP)
10579 return eval_skip_value (exp);
10580 return ada_value_cast (to_type, val);
10581}
10582
284614f0
JB
10583/* Implement the evaluate_exp routine in the exp_descriptor structure
10584 for the Ada language. */
10585
52ce6436 10586static struct value *
ebf56fd3 10587ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10588 int *pos, enum noside noside)
14f9c5c9
AS
10589{
10590 enum exp_opcode op;
b5385fc0 10591 int tem;
14f9c5c9 10592 int pc;
5ec18f2b 10593 int preeval_pos;
14f9c5c9
AS
10594 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10595 struct type *type;
52ce6436 10596 int nargs, oplen;
d2e4a39e 10597 struct value **argvec;
14f9c5c9 10598
d2e4a39e
AS
10599 pc = *pos;
10600 *pos += 1;
14f9c5c9
AS
10601 op = exp->elts[pc].opcode;
10602
d2e4a39e 10603 switch (op)
14f9c5c9
AS
10604 {
10605 default:
10606 *pos -= 1;
6e48bd2c 10607 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10608
10609 if (noside == EVAL_NORMAL)
10610 arg1 = unwrap_value (arg1);
6e48bd2c 10611
edd079d9 10612 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10613 then we need to perform the conversion manually, because
10614 evaluate_subexp_standard doesn't do it. This conversion is
10615 necessary in Ada because the different kinds of float/fixed
10616 types in Ada have different representations.
10617
10618 Similarly, we need to perform the conversion from OP_LONG
10619 ourselves. */
edd079d9 10620 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10621 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10622
10623 return arg1;
4c4b4cd2
PH
10624
10625 case OP_STRING:
10626 {
76a01679 10627 struct value *result;
5b4ee69b 10628
76a01679
JB
10629 *pos -= 1;
10630 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10631 /* The result type will have code OP_STRING, bashed there from
10632 OP_ARRAY. Bash it back. */
df407dfe
AC
10633 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10634 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10635 return result;
4c4b4cd2 10636 }
14f9c5c9
AS
10637
10638 case UNOP_CAST:
10639 (*pos) += 2;
10640 type = exp->elts[pc + 1].type;
ced9779b 10641 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10642
4c4b4cd2
PH
10643 case UNOP_QUAL:
10644 (*pos) += 2;
10645 type = exp->elts[pc + 1].type;
10646 return ada_evaluate_subexp (type, exp, pos, noside);
10647
14f9c5c9
AS
10648 case BINOP_ASSIGN:
10649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10650 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10651 {
10652 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10653 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10654 return arg1;
10655 return ada_value_assign (arg1, arg1);
10656 }
003f3813
JB
10657 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10658 except if the lhs of our assignment is a convenience variable.
10659 In the case of assigning to a convenience variable, the lhs
10660 should be exactly the result of the evaluation of the rhs. */
10661 type = value_type (arg1);
10662 if (VALUE_LVAL (arg1) == lval_internalvar)
10663 type = NULL;
10664 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10665 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10666 return arg1;
df407dfe
AC
10667 if (ada_is_fixed_point_type (value_type (arg1)))
10668 arg2 = cast_to_fixed (value_type (arg1), arg2);
10669 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10670 error
323e0a4a 10671 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10672 else
df407dfe 10673 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10674 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10675
10676 case BINOP_ADD:
10677 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10678 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10679 if (noside == EVAL_SKIP)
4c4b4cd2 10680 goto nosideret;
2ac8a782
JB
10681 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10682 return (value_from_longest
10683 (value_type (arg1),
10684 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10685 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10686 return (value_from_longest
10687 (value_type (arg2),
10688 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10689 if ((ada_is_fixed_point_type (value_type (arg1))
10690 || ada_is_fixed_point_type (value_type (arg2)))
10691 && value_type (arg1) != value_type (arg2))
323e0a4a 10692 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10693 /* Do the addition, and cast the result to the type of the first
10694 argument. We cannot cast the result to a reference type, so if
10695 ARG1 is a reference type, find its underlying type. */
10696 type = value_type (arg1);
10697 while (TYPE_CODE (type) == TYPE_CODE_REF)
10698 type = TYPE_TARGET_TYPE (type);
f44316fa 10699 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10700 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10701
10702 case BINOP_SUB:
10703 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10704 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10705 if (noside == EVAL_SKIP)
4c4b4cd2 10706 goto nosideret;
2ac8a782
JB
10707 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10708 return (value_from_longest
10709 (value_type (arg1),
10710 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10711 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10712 return (value_from_longest
10713 (value_type (arg2),
10714 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10715 if ((ada_is_fixed_point_type (value_type (arg1))
10716 || ada_is_fixed_point_type (value_type (arg2)))
10717 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10718 error (_("Operands of fixed-point subtraction "
10719 "must have the same type"));
b7789565
JB
10720 /* Do the substraction, and cast the result to the type of the first
10721 argument. We cannot cast the result to a reference type, so if
10722 ARG1 is a reference type, find its underlying type. */
10723 type = value_type (arg1);
10724 while (TYPE_CODE (type) == TYPE_CODE_REF)
10725 type = TYPE_TARGET_TYPE (type);
f44316fa 10726 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10727 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10728
10729 case BINOP_MUL:
10730 case BINOP_DIV:
e1578042
JB
10731 case BINOP_REM:
10732 case BINOP_MOD:
14f9c5c9
AS
10733 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10734 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
4c4b4cd2 10736 goto nosideret;
e1578042 10737 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10738 {
10739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10740 return value_zero (value_type (arg1), not_lval);
10741 }
14f9c5c9 10742 else
4c4b4cd2 10743 {
a53b7a21 10744 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10745 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10746 arg1 = cast_from_fixed (type, arg1);
df407dfe 10747 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10748 arg2 = cast_from_fixed (type, arg2);
f44316fa 10749 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10750 return ada_value_binop (arg1, arg2, op);
10751 }
10752
4c4b4cd2
PH
10753 case BINOP_EQUAL:
10754 case BINOP_NOTEQUAL:
14f9c5c9 10755 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10756 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10757 if (noside == EVAL_SKIP)
76a01679 10758 goto nosideret;
4c4b4cd2 10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10760 tem = 0;
4c4b4cd2 10761 else
f44316fa
UW
10762 {
10763 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10764 tem = ada_value_equal (arg1, arg2);
10765 }
4c4b4cd2 10766 if (op == BINOP_NOTEQUAL)
76a01679 10767 tem = !tem;
fbb06eb1
UW
10768 type = language_bool_type (exp->language_defn, exp->gdbarch);
10769 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10770
10771 case UNOP_NEG:
10772 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10773 if (noside == EVAL_SKIP)
10774 goto nosideret;
df407dfe
AC
10775 else if (ada_is_fixed_point_type (value_type (arg1)))
10776 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10777 else
f44316fa
UW
10778 {
10779 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10780 return value_neg (arg1);
10781 }
4c4b4cd2 10782
2330c6c6
JB
10783 case BINOP_LOGICAL_AND:
10784 case BINOP_LOGICAL_OR:
10785 case UNOP_LOGICAL_NOT:
000d5124
JB
10786 {
10787 struct value *val;
10788
10789 *pos -= 1;
10790 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10791 type = language_bool_type (exp->language_defn, exp->gdbarch);
10792 return value_cast (type, val);
000d5124 10793 }
2330c6c6
JB
10794
10795 case BINOP_BITWISE_AND:
10796 case BINOP_BITWISE_IOR:
10797 case BINOP_BITWISE_XOR:
000d5124
JB
10798 {
10799 struct value *val;
10800
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10802 *pos = pc;
10803 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10804
10805 return value_cast (value_type (arg1), val);
10806 }
2330c6c6 10807
14f9c5c9
AS
10808 case OP_VAR_VALUE:
10809 *pos -= 1;
6799def4 10810
14f9c5c9 10811 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10812 {
10813 *pos += 4;
10814 goto nosideret;
10815 }
da5c522f
JB
10816
10817 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10818 /* Only encountered when an unresolved symbol occurs in a
10819 context other than a function call, in which case, it is
52ce6436 10820 invalid. */
323e0a4a 10821 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10822 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10823
10824 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10825 {
0c1f74cf 10826 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10827 /* Check to see if this is a tagged type. We also need to handle
10828 the case where the type is a reference to a tagged type, but
10829 we have to be careful to exclude pointers to tagged types.
10830 The latter should be shown as usual (as a pointer), whereas
10831 a reference should mostly be transparent to the user. */
10832 if (ada_is_tagged_type (type, 0)
023db19c 10833 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10834 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10835 {
10836 /* Tagged types are a little special in the fact that the real
10837 type is dynamic and can only be determined by inspecting the
10838 object's tag. This means that we need to get the object's
10839 value first (EVAL_NORMAL) and then extract the actual object
10840 type from its tag.
10841
10842 Note that we cannot skip the final step where we extract
10843 the object type from its tag, because the EVAL_NORMAL phase
10844 results in dynamic components being resolved into fixed ones.
10845 This can cause problems when trying to print the type
10846 description of tagged types whose parent has a dynamic size:
10847 We use the type name of the "_parent" component in order
10848 to print the name of the ancestor type in the type description.
10849 If that component had a dynamic size, the resolution into
10850 a fixed type would result in the loss of that type name,
10851 thus preventing us from printing the name of the ancestor
10852 type in the type description. */
10853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10854
10855 if (TYPE_CODE (type) != TYPE_CODE_REF)
10856 {
10857 struct type *actual_type;
10858
10859 actual_type = type_from_tag (ada_value_tag (arg1));
10860 if (actual_type == NULL)
10861 /* If, for some reason, we were unable to determine
10862 the actual type from the tag, then use the static
10863 approximation that we just computed as a fallback.
10864 This can happen if the debugging information is
10865 incomplete, for instance. */
10866 actual_type = type;
10867 return value_zero (actual_type, not_lval);
10868 }
10869 else
10870 {
10871 /* In the case of a ref, ada_coerce_ref takes care
10872 of determining the actual type. But the evaluation
10873 should return a ref as it should be valid to ask
10874 for its address; so rebuild a ref after coerce. */
10875 arg1 = ada_coerce_ref (arg1);
a65cfae5 10876 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10877 }
10878 }
0c1f74cf 10879
84754697
JB
10880 /* Records and unions for which GNAT encodings have been
10881 generated need to be statically fixed as well.
10882 Otherwise, non-static fixing produces a type where
10883 all dynamic properties are removed, which prevents "ptype"
10884 from being able to completely describe the type.
10885 For instance, a case statement in a variant record would be
10886 replaced by the relevant components based on the actual
10887 value of the discriminants. */
10888 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10889 && dynamic_template_type (type) != NULL)
10890 || (TYPE_CODE (type) == TYPE_CODE_UNION
10891 && ada_find_parallel_type (type, "___XVU") != NULL))
10892 {
10893 *pos += 4;
10894 return value_zero (to_static_fixed_type (type), not_lval);
10895 }
4c4b4cd2 10896 }
da5c522f
JB
10897
10898 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10899 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10900
10901 case OP_FUNCALL:
10902 (*pos) += 2;
10903
10904 /* Allocate arg vector, including space for the function to be
10905 called in argvec[0] and a terminating NULL. */
10906 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10907 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10908
10909 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10910 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10911 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10912 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10913 else
10914 {
10915 for (tem = 0; tem <= nargs; tem += 1)
10916 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10917 argvec[tem] = 0;
10918
10919 if (noside == EVAL_SKIP)
10920 goto nosideret;
10921 }
10922
ad82864c
JB
10923 if (ada_is_constrained_packed_array_type
10924 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10925 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10926 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10927 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10928 /* This is a packed array that has already been fixed, and
10929 therefore already coerced to a simple array. Nothing further
10930 to do. */
10931 ;
e6c2c623
PMR
10932 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10933 {
10934 /* Make sure we dereference references so that all the code below
10935 feels like it's really handling the referenced value. Wrapping
10936 types (for alignment) may be there, so make sure we strip them as
10937 well. */
10938 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10939 }
10940 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10941 && VALUE_LVAL (argvec[0]) == lval_memory)
10942 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10943
df407dfe 10944 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10945
10946 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10947 them. So, if this is an array typedef (encoding use for array
10948 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10949 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10950 type = ada_typedef_target_type (type);
10951
4c4b4cd2
PH
10952 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10953 {
61ee279c 10954 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10955 {
10956 case TYPE_CODE_FUNC:
61ee279c 10957 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10958 break;
10959 case TYPE_CODE_ARRAY:
10960 break;
10961 case TYPE_CODE_STRUCT:
10962 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10963 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10964 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10965 break;
10966 default:
323e0a4a 10967 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10968 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10969 break;
10970 }
10971 }
10972
10973 switch (TYPE_CODE (type))
10974 {
10975 case TYPE_CODE_FUNC:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10977 {
7022349d
PA
10978 if (TYPE_TARGET_TYPE (type) == NULL)
10979 error_call_unknown_return_type (NULL);
10980 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10981 }
7022349d 10982 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10983 case TYPE_CODE_INTERNAL_FUNCTION:
10984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10985 /* We don't know anything about what the internal
10986 function might return, but we have to return
10987 something. */
10988 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10989 not_lval);
10990 else
10991 return call_internal_function (exp->gdbarch, exp->language_defn,
10992 argvec[0], nargs, argvec + 1);
10993
4c4b4cd2
PH
10994 case TYPE_CODE_STRUCT:
10995 {
10996 int arity;
10997
4c4b4cd2
PH
10998 arity = ada_array_arity (type);
10999 type = ada_array_element_type (type, nargs);
11000 if (type == NULL)
323e0a4a 11001 error (_("cannot subscript or call a record"));
4c4b4cd2 11002 if (arity != nargs)
323e0a4a 11003 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 11004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 11005 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11006 return
11007 unwrap_value (ada_value_subscript
11008 (argvec[0], nargs, argvec + 1));
11009 }
11010 case TYPE_CODE_ARRAY:
11011 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11012 {
11013 type = ada_array_element_type (type, nargs);
11014 if (type == NULL)
323e0a4a 11015 error (_("element type of array unknown"));
4c4b4cd2 11016 else
0a07e705 11017 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11018 }
11019 return
11020 unwrap_value (ada_value_subscript
11021 (ada_coerce_to_simple_array (argvec[0]),
11022 nargs, argvec + 1));
11023 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
11024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11025 {
deede10c 11026 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
11027 type = ada_array_element_type (type, nargs);
11028 if (type == NULL)
323e0a4a 11029 error (_("element type of array unknown"));
4c4b4cd2 11030 else
0a07e705 11031 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
11032 }
11033 return
deede10c
JB
11034 unwrap_value (ada_value_ptr_subscript (argvec[0],
11035 nargs, argvec + 1));
4c4b4cd2
PH
11036
11037 default:
e1d5a0d2
PH
11038 error (_("Attempt to index or call something other than an "
11039 "array or function"));
4c4b4cd2
PH
11040 }
11041
11042 case TERNOP_SLICE:
11043 {
11044 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11045 struct value *low_bound_val =
11046 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11047 struct value *high_bound_val =
11048 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11049 LONGEST low_bound;
11050 LONGEST high_bound;
5b4ee69b 11051
994b9211
AC
11052 low_bound_val = coerce_ref (low_bound_val);
11053 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11054 low_bound = value_as_long (low_bound_val);
11055 high_bound = value_as_long (high_bound_val);
963a6417 11056
4c4b4cd2
PH
11057 if (noside == EVAL_SKIP)
11058 goto nosideret;
11059
4c4b4cd2
PH
11060 /* If this is a reference to an aligner type, then remove all
11061 the aligners. */
df407dfe
AC
11062 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11063 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11064 TYPE_TARGET_TYPE (value_type (array)) =
11065 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11066
ad82864c 11067 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11068 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11069
11070 /* If this is a reference to an array or an array lvalue,
11071 convert to a pointer. */
df407dfe
AC
11072 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11073 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11074 && VALUE_LVAL (array) == lval_memory))
11075 array = value_addr (array);
11076
1265e4aa 11077 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11078 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11079 (value_type (array))))
0b5d8877 11080 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11081
11082 array = ada_coerce_to_simple_array_ptr (array);
11083
714e53ab
PH
11084 /* If we have more than one level of pointer indirection,
11085 dereference the value until we get only one level. */
df407dfe
AC
11086 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11087 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11088 == TYPE_CODE_PTR))
11089 array = value_ind (array);
11090
11091 /* Make sure we really do have an array type before going further,
11092 to avoid a SEGV when trying to get the index type or the target
11093 type later down the road if the debug info generated by
11094 the compiler is incorrect or incomplete. */
df407dfe 11095 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11096 error (_("cannot take slice of non-array"));
714e53ab 11097
828292f2
JB
11098 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11099 == TYPE_CODE_PTR)
4c4b4cd2 11100 {
828292f2
JB
11101 struct type *type0 = ada_check_typedef (value_type (array));
11102
0b5d8877 11103 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11104 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11105 else
11106 {
11107 struct type *arr_type0 =
828292f2 11108 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11109
f5938064
JG
11110 return ada_value_slice_from_ptr (array, arr_type0,
11111 longest_to_int (low_bound),
11112 longest_to_int (high_bound));
4c4b4cd2
PH
11113 }
11114 }
11115 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 return array;
11117 else if (high_bound < low_bound)
df407dfe 11118 return empty_array (value_type (array), low_bound);
4c4b4cd2 11119 else
529cad9c
PH
11120 return ada_value_slice (array, longest_to_int (low_bound),
11121 longest_to_int (high_bound));
4c4b4cd2 11122 }
14f9c5c9 11123
4c4b4cd2
PH
11124 case UNOP_IN_RANGE:
11125 (*pos) += 2;
11126 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11127 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11128
14f9c5c9 11129 if (noside == EVAL_SKIP)
4c4b4cd2 11130 goto nosideret;
14f9c5c9 11131
4c4b4cd2
PH
11132 switch (TYPE_CODE (type))
11133 {
11134 default:
e1d5a0d2
PH
11135 lim_warning (_("Membership test incompletely implemented; "
11136 "always returns true"));
fbb06eb1
UW
11137 type = language_bool_type (exp->language_defn, exp->gdbarch);
11138 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11139
11140 case TYPE_CODE_RANGE:
030b4912
UW
11141 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11142 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11144 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11145 type = language_bool_type (exp->language_defn, exp->gdbarch);
11146 return
11147 value_from_longest (type,
4c4b4cd2
PH
11148 (value_less (arg1, arg3)
11149 || value_equal (arg1, arg3))
11150 && (value_less (arg2, arg1)
11151 || value_equal (arg2, arg1)));
11152 }
11153
11154 case BINOP_IN_BOUNDS:
14f9c5c9 11155 (*pos) += 2;
4c4b4cd2
PH
11156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11158
4c4b4cd2
PH
11159 if (noside == EVAL_SKIP)
11160 goto nosideret;
14f9c5c9 11161
4c4b4cd2 11162 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11163 {
11164 type = language_bool_type (exp->language_defn, exp->gdbarch);
11165 return value_zero (type, not_lval);
11166 }
14f9c5c9 11167
4c4b4cd2 11168 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11169
1eea4ebd
UW
11170 type = ada_index_type (value_type (arg2), tem, "range");
11171 if (!type)
11172 type = value_type (arg1);
14f9c5c9 11173
1eea4ebd
UW
11174 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11175 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11176
f44316fa
UW
11177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11179 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11180 return
fbb06eb1 11181 value_from_longest (type,
4c4b4cd2
PH
11182 (value_less (arg1, arg3)
11183 || value_equal (arg1, arg3))
11184 && (value_less (arg2, arg1)
11185 || value_equal (arg2, arg1)));
11186
11187 case TERNOP_IN_RANGE:
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11191
11192 if (noside == EVAL_SKIP)
11193 goto nosideret;
11194
f44316fa
UW
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11197 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11198 return
fbb06eb1 11199 value_from_longest (type,
4c4b4cd2
PH
11200 (value_less (arg1, arg3)
11201 || value_equal (arg1, arg3))
11202 && (value_less (arg2, arg1)
11203 || value_equal (arg2, arg1)));
11204
11205 case OP_ATR_FIRST:
11206 case OP_ATR_LAST:
11207 case OP_ATR_LENGTH:
11208 {
76a01679 11209 struct type *type_arg;
5b4ee69b 11210
76a01679
JB
11211 if (exp->elts[*pos].opcode == OP_TYPE)
11212 {
11213 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11214 arg1 = NULL;
5bc23cb3 11215 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11216 }
11217 else
11218 {
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 type_arg = NULL;
11221 }
11222
11223 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11224 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11225 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11226 *pos += 4;
11227
11228 if (noside == EVAL_SKIP)
11229 goto nosideret;
11230
11231 if (type_arg == NULL)
11232 {
11233 arg1 = ada_coerce_ref (arg1);
11234
ad82864c 11235 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11236 arg1 = ada_coerce_to_simple_array (arg1);
11237
aa4fb036 11238 if (op == OP_ATR_LENGTH)
1eea4ebd 11239 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11240 else
11241 {
11242 type = ada_index_type (value_type (arg1), tem,
11243 ada_attribute_name (op));
11244 if (type == NULL)
11245 type = builtin_type (exp->gdbarch)->builtin_int;
11246 }
76a01679
JB
11247
11248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11249 return allocate_value (type);
76a01679
JB
11250
11251 switch (op)
11252 {
11253 default: /* Should never happen. */
323e0a4a 11254 error (_("unexpected attribute encountered"));
76a01679 11255 case OP_ATR_FIRST:
1eea4ebd
UW
11256 return value_from_longest
11257 (type, ada_array_bound (arg1, tem, 0));
76a01679 11258 case OP_ATR_LAST:
1eea4ebd
UW
11259 return value_from_longest
11260 (type, ada_array_bound (arg1, tem, 1));
76a01679 11261 case OP_ATR_LENGTH:
1eea4ebd
UW
11262 return value_from_longest
11263 (type, ada_array_length (arg1, tem));
76a01679
JB
11264 }
11265 }
11266 else if (discrete_type_p (type_arg))
11267 {
11268 struct type *range_type;
0d5cff50 11269 const char *name = ada_type_name (type_arg);
5b4ee69b 11270
76a01679
JB
11271 range_type = NULL;
11272 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11273 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11274 if (range_type == NULL)
11275 range_type = type_arg;
11276 switch (op)
11277 {
11278 default:
323e0a4a 11279 error (_("unexpected attribute encountered"));
76a01679 11280 case OP_ATR_FIRST:
690cc4eb 11281 return value_from_longest
43bbcdc2 11282 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11283 case OP_ATR_LAST:
690cc4eb 11284 return value_from_longest
43bbcdc2 11285 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11286 case OP_ATR_LENGTH:
323e0a4a 11287 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11288 }
11289 }
11290 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11291 error (_("unimplemented type attribute"));
76a01679
JB
11292 else
11293 {
11294 LONGEST low, high;
11295
ad82864c
JB
11296 if (ada_is_constrained_packed_array_type (type_arg))
11297 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11298
aa4fb036 11299 if (op == OP_ATR_LENGTH)
1eea4ebd 11300 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11301 else
11302 {
11303 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11304 if (type == NULL)
11305 type = builtin_type (exp->gdbarch)->builtin_int;
11306 }
1eea4ebd 11307
76a01679
JB
11308 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11309 return allocate_value (type);
11310
11311 switch (op)
11312 {
11313 default:
323e0a4a 11314 error (_("unexpected attribute encountered"));
76a01679 11315 case OP_ATR_FIRST:
1eea4ebd 11316 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11317 return value_from_longest (type, low);
11318 case OP_ATR_LAST:
1eea4ebd 11319 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11320 return value_from_longest (type, high);
11321 case OP_ATR_LENGTH:
1eea4ebd
UW
11322 low = ada_array_bound_from_type (type_arg, tem, 0);
11323 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11324 return value_from_longest (type, high - low + 1);
11325 }
11326 }
14f9c5c9
AS
11327 }
11328
4c4b4cd2
PH
11329 case OP_ATR_TAG:
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
76a01679 11332 goto nosideret;
4c4b4cd2
PH
11333
11334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11335 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11336
11337 return ada_value_tag (arg1);
11338
11339 case OP_ATR_MIN:
11340 case OP_ATR_MAX:
11341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11343 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 if (noside == EVAL_SKIP)
76a01679 11345 goto nosideret;
d2e4a39e 11346 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11347 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11348 else
f44316fa
UW
11349 {
11350 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11351 return value_binop (arg1, arg2,
11352 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11353 }
14f9c5c9 11354
4c4b4cd2
PH
11355 case OP_ATR_MODULUS:
11356 {
31dedfee 11357 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11358
5b4ee69b 11359 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11360 if (noside == EVAL_SKIP)
11361 goto nosideret;
4c4b4cd2 11362
76a01679 11363 if (!ada_is_modular_type (type_arg))
323e0a4a 11364 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11365
76a01679
JB
11366 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11367 ada_modulus (type_arg));
4c4b4cd2
PH
11368 }
11369
11370
11371 case OP_ATR_POS:
11372 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11374 if (noside == EVAL_SKIP)
76a01679 11375 goto nosideret;
3cb382c9
UW
11376 type = builtin_type (exp->gdbarch)->builtin_int;
11377 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11378 return value_zero (type, not_lval);
14f9c5c9 11379 else
3cb382c9 11380 return value_pos_atr (type, arg1);
14f9c5c9 11381
4c4b4cd2
PH
11382 case OP_ATR_SIZE:
11383 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11384 type = value_type (arg1);
11385
11386 /* If the argument is a reference, then dereference its type, since
11387 the user is really asking for the size of the actual object,
11388 not the size of the pointer. */
11389 if (TYPE_CODE (type) == TYPE_CODE_REF)
11390 type = TYPE_TARGET_TYPE (type);
11391
4c4b4cd2 11392 if (noside == EVAL_SKIP)
76a01679 11393 goto nosideret;
4c4b4cd2 11394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11395 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11396 else
22601c15 11397 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11398 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11399
11400 case OP_ATR_VAL:
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11403 type = exp->elts[pc + 2].type;
14f9c5c9 11404 if (noside == EVAL_SKIP)
76a01679 11405 goto nosideret;
4c4b4cd2 11406 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11407 return value_zero (type, not_lval);
4c4b4cd2 11408 else
76a01679 11409 return value_val_atr (type, arg1);
4c4b4cd2
PH
11410
11411 case BINOP_EXP:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11414 if (noside == EVAL_SKIP)
11415 goto nosideret;
11416 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11417 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11418 else
f44316fa
UW
11419 {
11420 /* For integer exponentiation operations,
11421 only promote the first argument. */
11422 if (is_integral_type (value_type (arg2)))
11423 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11424 else
11425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11426
11427 return value_binop (arg1, arg2, op);
11428 }
4c4b4cd2
PH
11429
11430 case UNOP_PLUS:
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 if (noside == EVAL_SKIP)
11433 goto nosideret;
11434 else
11435 return arg1;
11436
11437 case UNOP_ABS:
11438 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11439 if (noside == EVAL_SKIP)
11440 goto nosideret;
f44316fa 11441 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11442 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11443 return value_neg (arg1);
14f9c5c9 11444 else
4c4b4cd2 11445 return arg1;
14f9c5c9
AS
11446
11447 case UNOP_IND:
5ec18f2b 11448 preeval_pos = *pos;
6b0d7253 11449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11450 if (noside == EVAL_SKIP)
4c4b4cd2 11451 goto nosideret;
df407dfe 11452 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11453 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11454 {
11455 if (ada_is_array_descriptor_type (type))
11456 /* GDB allows dereferencing GNAT array descriptors. */
11457 {
11458 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11459
4c4b4cd2 11460 if (arrType == NULL)
323e0a4a 11461 error (_("Attempt to dereference null array pointer."));
00a4c844 11462 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11463 }
11464 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11465 || TYPE_CODE (type) == TYPE_CODE_REF
11466 /* In C you can dereference an array to get the 1st elt. */
11467 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11468 {
5ec18f2b
JG
11469 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11470 only be determined by inspecting the object's tag.
11471 This means that we need to evaluate completely the
11472 expression in order to get its type. */
11473
023db19c
JB
11474 if ((TYPE_CODE (type) == TYPE_CODE_REF
11475 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11476 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11477 {
11478 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11479 EVAL_NORMAL);
11480 type = value_type (ada_value_ind (arg1));
11481 }
11482 else
11483 {
11484 type = to_static_fixed_type
11485 (ada_aligned_type
11486 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11487 }
c1b5a1a6 11488 ada_ensure_varsize_limit (type);
714e53ab
PH
11489 return value_zero (type, lval_memory);
11490 }
4c4b4cd2 11491 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11492 {
11493 /* GDB allows dereferencing an int. */
11494 if (expect_type == NULL)
11495 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11496 lval_memory);
11497 else
11498 {
11499 expect_type =
11500 to_static_fixed_type (ada_aligned_type (expect_type));
11501 return value_zero (expect_type, lval_memory);
11502 }
11503 }
4c4b4cd2 11504 else
323e0a4a 11505 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11506 }
0963b4bd 11507 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11508 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11509
96967637
JB
11510 if (TYPE_CODE (type) == TYPE_CODE_INT)
11511 /* GDB allows dereferencing an int. If we were given
11512 the expect_type, then use that as the target type.
11513 Otherwise, assume that the target type is an int. */
11514 {
11515 if (expect_type != NULL)
11516 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11517 arg1));
11518 else
11519 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11520 (CORE_ADDR) value_as_address (arg1));
11521 }
6b0d7253 11522
4c4b4cd2
PH
11523 if (ada_is_array_descriptor_type (type))
11524 /* GDB allows dereferencing GNAT array descriptors. */
11525 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11526 else
4c4b4cd2 11527 return ada_value_ind (arg1);
14f9c5c9
AS
11528
11529 case STRUCTOP_STRUCT:
11530 tem = longest_to_int (exp->elts[pc + 1].longconst);
11531 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11532 preeval_pos = *pos;
14f9c5c9
AS
11533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11534 if (noside == EVAL_SKIP)
4c4b4cd2 11535 goto nosideret;
14f9c5c9 11536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11537 {
df407dfe 11538 struct type *type1 = value_type (arg1);
5b4ee69b 11539
76a01679
JB
11540 if (ada_is_tagged_type (type1, 1))
11541 {
11542 type = ada_lookup_struct_elt_type (type1,
11543 &exp->elts[pc + 2].string,
988f6b3d 11544 1, 1);
5ec18f2b
JG
11545
11546 /* If the field is not found, check if it exists in the
11547 extension of this object's type. This means that we
11548 need to evaluate completely the expression. */
11549
76a01679 11550 if (type == NULL)
5ec18f2b
JG
11551 {
11552 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11553 EVAL_NORMAL);
11554 arg1 = ada_value_struct_elt (arg1,
11555 &exp->elts[pc + 2].string,
11556 0);
11557 arg1 = unwrap_value (arg1);
11558 type = value_type (ada_to_fixed_value (arg1));
11559 }
76a01679
JB
11560 }
11561 else
11562 type =
11563 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11564 0);
76a01679
JB
11565
11566 return value_zero (ada_aligned_type (type), lval_memory);
11567 }
14f9c5c9 11568 else
a579cd9a
MW
11569 {
11570 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11571 arg1 = unwrap_value (arg1);
11572 return ada_to_fixed_value (arg1);
11573 }
284614f0 11574
14f9c5c9 11575 case OP_TYPE:
4c4b4cd2
PH
11576 /* The value is not supposed to be used. This is here to make it
11577 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11578 (*pos) += 2;
11579 if (noside == EVAL_SKIP)
4c4b4cd2 11580 goto nosideret;
14f9c5c9 11581 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11582 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11583 else
323e0a4a 11584 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11585
11586 case OP_AGGREGATE:
11587 case OP_CHOICES:
11588 case OP_OTHERS:
11589 case OP_DISCRETE_RANGE:
11590 case OP_POSITIONAL:
11591 case OP_NAME:
11592 if (noside == EVAL_NORMAL)
11593 switch (op)
11594 {
11595 case OP_NAME:
11596 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11597 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11598 case OP_AGGREGATE:
11599 error (_("Aggregates only allowed on the right of an assignment"));
11600 default:
0963b4bd
MS
11601 internal_error (__FILE__, __LINE__,
11602 _("aggregate apparently mangled"));
52ce6436
PH
11603 }
11604
11605 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11606 *pos += oplen - 1;
11607 for (tem = 0; tem < nargs; tem += 1)
11608 ada_evaluate_subexp (NULL, exp, pos, noside);
11609 goto nosideret;
14f9c5c9
AS
11610 }
11611
11612nosideret:
ced9779b 11613 return eval_skip_value (exp);
14f9c5c9 11614}
14f9c5c9 11615\f
d2e4a39e 11616
4c4b4cd2 11617 /* Fixed point */
14f9c5c9
AS
11618
11619/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11620 type name that encodes the 'small and 'delta information.
4c4b4cd2 11621 Otherwise, return NULL. */
14f9c5c9 11622
d2e4a39e 11623static const char *
ebf56fd3 11624fixed_type_info (struct type *type)
14f9c5c9 11625{
d2e4a39e 11626 const char *name = ada_type_name (type);
14f9c5c9
AS
11627 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11628
d2e4a39e
AS
11629 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11630 {
14f9c5c9 11631 const char *tail = strstr (name, "___XF_");
5b4ee69b 11632
14f9c5c9 11633 if (tail == NULL)
4c4b4cd2 11634 return NULL;
d2e4a39e 11635 else
4c4b4cd2 11636 return tail + 5;
14f9c5c9
AS
11637 }
11638 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11639 return fixed_type_info (TYPE_TARGET_TYPE (type));
11640 else
11641 return NULL;
11642}
11643
4c4b4cd2 11644/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11645
11646int
ebf56fd3 11647ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11648{
11649 return fixed_type_info (type) != NULL;
11650}
11651
4c4b4cd2
PH
11652/* Return non-zero iff TYPE represents a System.Address type. */
11653
11654int
11655ada_is_system_address_type (struct type *type)
11656{
11657 return (TYPE_NAME (type)
11658 && strcmp (TYPE_NAME (type), "system__address") == 0);
11659}
11660
14f9c5c9 11661/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11662 type, return the target floating-point type to be used to represent
11663 of this type during internal computation. */
11664
11665static struct type *
11666ada_scaling_type (struct type *type)
11667{
11668 return builtin_type (get_type_arch (type))->builtin_long_double;
11669}
11670
11671/* Assuming that TYPE is the representation of an Ada fixed-point
11672 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11673 delta cannot be determined. */
14f9c5c9 11674
50eff16b 11675struct value *
ebf56fd3 11676ada_delta (struct type *type)
14f9c5c9
AS
11677{
11678 const char *encoding = fixed_type_info (type);
50eff16b
UW
11679 struct type *scale_type = ada_scaling_type (type);
11680
11681 long long num, den;
11682
11683 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11684 return nullptr;
d2e4a39e 11685 else
50eff16b
UW
11686 return value_binop (value_from_longest (scale_type, num),
11687 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11688}
11689
11690/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11691 factor ('SMALL value) associated with the type. */
14f9c5c9 11692
50eff16b
UW
11693struct value *
11694ada_scaling_factor (struct type *type)
14f9c5c9
AS
11695{
11696 const char *encoding = fixed_type_info (type);
50eff16b
UW
11697 struct type *scale_type = ada_scaling_type (type);
11698
11699 long long num0, den0, num1, den1;
14f9c5c9 11700 int n;
d2e4a39e 11701
50eff16b 11702 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11703 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11704
11705 if (n < 2)
50eff16b 11706 return value_from_longest (scale_type, 1);
14f9c5c9 11707 else if (n == 4)
50eff16b
UW
11708 return value_binop (value_from_longest (scale_type, num1),
11709 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11710 else
50eff16b
UW
11711 return value_binop (value_from_longest (scale_type, num0),
11712 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11713}
11714
14f9c5c9 11715\f
d2e4a39e 11716
4c4b4cd2 11717 /* Range types */
14f9c5c9
AS
11718
11719/* Scan STR beginning at position K for a discriminant name, and
11720 return the value of that discriminant field of DVAL in *PX. If
11721 PNEW_K is not null, put the position of the character beyond the
11722 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11723 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11724
11725static int
108d56a4 11726scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11727 int *pnew_k)
14f9c5c9
AS
11728{
11729 static char *bound_buffer = NULL;
11730 static size_t bound_buffer_len = 0;
5da1a4d3 11731 const char *pstart, *pend, *bound;
d2e4a39e 11732 struct value *bound_val;
14f9c5c9
AS
11733
11734 if (dval == NULL || str == NULL || str[k] == '\0')
11735 return 0;
11736
5da1a4d3
SM
11737 pstart = str + k;
11738 pend = strstr (pstart, "__");
14f9c5c9
AS
11739 if (pend == NULL)
11740 {
5da1a4d3 11741 bound = pstart;
14f9c5c9
AS
11742 k += strlen (bound);
11743 }
d2e4a39e 11744 else
14f9c5c9 11745 {
5da1a4d3
SM
11746 int len = pend - pstart;
11747
11748 /* Strip __ and beyond. */
11749 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11750 strncpy (bound_buffer, pstart, len);
11751 bound_buffer[len] = '\0';
11752
14f9c5c9 11753 bound = bound_buffer;
d2e4a39e 11754 k = pend - str;
14f9c5c9 11755 }
d2e4a39e 11756
df407dfe 11757 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11758 if (bound_val == NULL)
11759 return 0;
11760
11761 *px = value_as_long (bound_val);
11762 if (pnew_k != NULL)
11763 *pnew_k = k;
11764 return 1;
11765}
11766
11767/* Value of variable named NAME in the current environment. If
11768 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11769 otherwise causes an error with message ERR_MSG. */
11770
d2e4a39e 11771static struct value *
edb0c9cb 11772get_var_value (const char *name, const char *err_msg)
14f9c5c9 11773{
b5ec771e 11774 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11775
54d343a2 11776 std::vector<struct block_symbol> syms;
b5ec771e
PA
11777 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11778 get_selected_block (0),
11779 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11780
11781 if (nsyms != 1)
11782 {
11783 if (err_msg == NULL)
4c4b4cd2 11784 return 0;
14f9c5c9 11785 else
8a3fe4f8 11786 error (("%s"), err_msg);
14f9c5c9
AS
11787 }
11788
54d343a2 11789 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11790}
d2e4a39e 11791
edb0c9cb
PA
11792/* Value of integer variable named NAME in the current environment.
11793 If no such variable is found, returns false. Otherwise, sets VALUE
11794 to the variable's value and returns true. */
4c4b4cd2 11795
edb0c9cb
PA
11796bool
11797get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11798{
4c4b4cd2 11799 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11800
14f9c5c9 11801 if (var_val == 0)
edb0c9cb
PA
11802 return false;
11803
11804 value = value_as_long (var_val);
11805 return true;
14f9c5c9 11806}
d2e4a39e 11807
14f9c5c9
AS
11808
11809/* Return a range type whose base type is that of the range type named
11810 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11811 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11812 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11813 corresponding range type from debug information; fall back to using it
11814 if symbol lookup fails. If a new type must be created, allocate it
11815 like ORIG_TYPE was. The bounds information, in general, is encoded
11816 in NAME, the base type given in the named range type. */
14f9c5c9 11817
d2e4a39e 11818static struct type *
28c85d6c 11819to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11820{
0d5cff50 11821 const char *name;
14f9c5c9 11822 struct type *base_type;
108d56a4 11823 const char *subtype_info;
14f9c5c9 11824
28c85d6c
JB
11825 gdb_assert (raw_type != NULL);
11826 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11827
1ce677a4 11828 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11829 base_type = TYPE_TARGET_TYPE (raw_type);
11830 else
11831 base_type = raw_type;
11832
28c85d6c 11833 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11834 subtype_info = strstr (name, "___XD");
11835 if (subtype_info == NULL)
690cc4eb 11836 {
43bbcdc2
PH
11837 LONGEST L = ada_discrete_type_low_bound (raw_type);
11838 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11839
690cc4eb
PH
11840 if (L < INT_MIN || U > INT_MAX)
11841 return raw_type;
11842 else
0c9c3474
SA
11843 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11844 L, U);
690cc4eb 11845 }
14f9c5c9
AS
11846 else
11847 {
11848 static char *name_buf = NULL;
11849 static size_t name_len = 0;
11850 int prefix_len = subtype_info - name;
11851 LONGEST L, U;
11852 struct type *type;
108d56a4 11853 const char *bounds_str;
14f9c5c9
AS
11854 int n;
11855
11856 GROW_VECT (name_buf, name_len, prefix_len + 5);
11857 strncpy (name_buf, name, prefix_len);
11858 name_buf[prefix_len] = '\0';
11859
11860 subtype_info += 5;
11861 bounds_str = strchr (subtype_info, '_');
11862 n = 1;
11863
d2e4a39e 11864 if (*subtype_info == 'L')
4c4b4cd2
PH
11865 {
11866 if (!ada_scan_number (bounds_str, n, &L, &n)
11867 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11868 return raw_type;
11869 if (bounds_str[n] == '_')
11870 n += 2;
0963b4bd 11871 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11872 n += 1;
11873 subtype_info += 1;
11874 }
d2e4a39e 11875 else
4c4b4cd2 11876 {
4c4b4cd2 11877 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11878 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11879 {
323e0a4a 11880 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11881 L = 1;
11882 }
11883 }
14f9c5c9 11884
d2e4a39e 11885 if (*subtype_info == 'U')
4c4b4cd2
PH
11886 {
11887 if (!ada_scan_number (bounds_str, n, &U, &n)
11888 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11889 return raw_type;
11890 }
d2e4a39e 11891 else
4c4b4cd2 11892 {
4c4b4cd2 11893 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11894 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11895 {
323e0a4a 11896 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11897 U = L;
11898 }
11899 }
14f9c5c9 11900
0c9c3474
SA
11901 type = create_static_range_type (alloc_type_copy (raw_type),
11902 base_type, L, U);
f5a91472
JB
11903 /* create_static_range_type alters the resulting type's length
11904 to match the size of the base_type, which is not what we want.
11905 Set it back to the original range type's length. */
11906 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11907 TYPE_NAME (type) = name;
14f9c5c9
AS
11908 return type;
11909 }
11910}
11911
4c4b4cd2
PH
11912/* True iff NAME is the name of a range type. */
11913
14f9c5c9 11914int
d2e4a39e 11915ada_is_range_type_name (const char *name)
14f9c5c9
AS
11916{
11917 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11918}
14f9c5c9 11919\f
d2e4a39e 11920
4c4b4cd2
PH
11921 /* Modular types */
11922
11923/* True iff TYPE is an Ada modular type. */
14f9c5c9 11924
14f9c5c9 11925int
d2e4a39e 11926ada_is_modular_type (struct type *type)
14f9c5c9 11927{
18af8284 11928 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11929
11930 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11931 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11932 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11933}
11934
4c4b4cd2
PH
11935/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11936
61ee279c 11937ULONGEST
0056e4d5 11938ada_modulus (struct type *type)
14f9c5c9 11939{
43bbcdc2 11940 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11941}
d2e4a39e 11942\f
f7f9143b
JB
11943
11944/* Ada exception catchpoint support:
11945 ---------------------------------
11946
11947 We support 3 kinds of exception catchpoints:
11948 . catchpoints on Ada exceptions
11949 . catchpoints on unhandled Ada exceptions
11950 . catchpoints on failed assertions
11951
11952 Exceptions raised during failed assertions, or unhandled exceptions
11953 could perfectly be caught with the general catchpoint on Ada exceptions.
11954 However, we can easily differentiate these two special cases, and having
11955 the option to distinguish these two cases from the rest can be useful
11956 to zero-in on certain situations.
11957
11958 Exception catchpoints are a specialized form of breakpoint,
11959 since they rely on inserting breakpoints inside known routines
11960 of the GNAT runtime. The implementation therefore uses a standard
11961 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11962 of breakpoint_ops.
11963
0259addd
JB
11964 Support in the runtime for exception catchpoints have been changed
11965 a few times already, and these changes affect the implementation
11966 of these catchpoints. In order to be able to support several
11967 variants of the runtime, we use a sniffer that will determine
28010a5d 11968 the runtime variant used by the program being debugged. */
f7f9143b 11969
82eacd52
JB
11970/* Ada's standard exceptions.
11971
11972 The Ada 83 standard also defined Numeric_Error. But there so many
11973 situations where it was unclear from the Ada 83 Reference Manual
11974 (RM) whether Constraint_Error or Numeric_Error should be raised,
11975 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11976 Interpretation saying that anytime the RM says that Numeric_Error
11977 should be raised, the implementation may raise Constraint_Error.
11978 Ada 95 went one step further and pretty much removed Numeric_Error
11979 from the list of standard exceptions (it made it a renaming of
11980 Constraint_Error, to help preserve compatibility when compiling
11981 an Ada83 compiler). As such, we do not include Numeric_Error from
11982 this list of standard exceptions. */
3d0b0fa3 11983
a121b7c1 11984static const char *standard_exc[] = {
3d0b0fa3
JB
11985 "constraint_error",
11986 "program_error",
11987 "storage_error",
11988 "tasking_error"
11989};
11990
0259addd
JB
11991typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11992
11993/* A structure that describes how to support exception catchpoints
11994 for a given executable. */
11995
11996struct exception_support_info
11997{
11998 /* The name of the symbol to break on in order to insert
11999 a catchpoint on exceptions. */
12000 const char *catch_exception_sym;
12001
12002 /* The name of the symbol to break on in order to insert
12003 a catchpoint on unhandled exceptions. */
12004 const char *catch_exception_unhandled_sym;
12005
12006 /* The name of the symbol to break on in order to insert
12007 a catchpoint on failed assertions. */
12008 const char *catch_assert_sym;
12009
9f757bf7
XR
12010 /* The name of the symbol to break on in order to insert
12011 a catchpoint on exception handling. */
12012 const char *catch_handlers_sym;
12013
0259addd
JB
12014 /* Assuming that the inferior just triggered an unhandled exception
12015 catchpoint, this function is responsible for returning the address
12016 in inferior memory where the name of that exception is stored.
12017 Return zero if the address could not be computed. */
12018 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12019};
12020
12021static CORE_ADDR ada_unhandled_exception_name_addr (void);
12022static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12023
12024/* The following exception support info structure describes how to
12025 implement exception catchpoints with the latest version of the
12026 Ada runtime (as of 2007-03-06). */
12027
12028static const struct exception_support_info default_exception_support_info =
12029{
12030 "__gnat_debug_raise_exception", /* catch_exception_sym */
12031 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12032 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 12033 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12034 ada_unhandled_exception_name_addr
12035};
12036
12037/* The following exception support info structure describes how to
12038 implement exception catchpoints with a slightly older version
12039 of the Ada runtime. */
12040
12041static const struct exception_support_info exception_support_info_fallback =
12042{
12043 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12044 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12045 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12046 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12047 ada_unhandled_exception_name_addr_from_raise
12048};
12049
f17011e0
JB
12050/* Return nonzero if we can detect the exception support routines
12051 described in EINFO.
12052
12053 This function errors out if an abnormal situation is detected
12054 (for instance, if we find the exception support routines, but
12055 that support is found to be incomplete). */
12056
12057static int
12058ada_has_this_exception_support (const struct exception_support_info *einfo)
12059{
12060 struct symbol *sym;
12061
12062 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12063 that should be compiled with debugging information. As a result, we
12064 expect to find that symbol in the symtabs. */
12065
12066 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12067 if (sym == NULL)
a6af7abe
JB
12068 {
12069 /* Perhaps we did not find our symbol because the Ada runtime was
12070 compiled without debugging info, or simply stripped of it.
12071 It happens on some GNU/Linux distributions for instance, where
12072 users have to install a separate debug package in order to get
12073 the runtime's debugging info. In that situation, let the user
12074 know why we cannot insert an Ada exception catchpoint.
12075
12076 Note: Just for the purpose of inserting our Ada exception
12077 catchpoint, we could rely purely on the associated minimal symbol.
12078 But we would be operating in degraded mode anyway, since we are
12079 still lacking the debugging info needed later on to extract
12080 the name of the exception being raised (this name is printed in
12081 the catchpoint message, and is also used when trying to catch
12082 a specific exception). We do not handle this case for now. */
3b7344d5 12083 struct bound_minimal_symbol msym
1c8e84b0
JB
12084 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12085
3b7344d5 12086 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12087 error (_("Your Ada runtime appears to be missing some debugging "
12088 "information.\nCannot insert Ada exception catchpoint "
12089 "in this configuration."));
12090
12091 return 0;
12092 }
f17011e0
JB
12093
12094 /* Make sure that the symbol we found corresponds to a function. */
12095
12096 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12097 error (_("Symbol \"%s\" is not a function (class = %d)"),
12098 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12099
12100 return 1;
12101}
12102
0259addd
JB
12103/* Inspect the Ada runtime and determine which exception info structure
12104 should be used to provide support for exception catchpoints.
12105
3eecfa55
JB
12106 This function will always set the per-inferior exception_info,
12107 or raise an error. */
0259addd
JB
12108
12109static void
12110ada_exception_support_info_sniffer (void)
12111{
3eecfa55 12112 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12113
12114 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12115 if (data->exception_info != NULL)
0259addd
JB
12116 return;
12117
12118 /* Check the latest (default) exception support info. */
f17011e0 12119 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12120 {
3eecfa55 12121 data->exception_info = &default_exception_support_info;
0259addd
JB
12122 return;
12123 }
12124
12125 /* Try our fallback exception suport info. */
f17011e0 12126 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12127 {
3eecfa55 12128 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12129 return;
12130 }
12131
12132 /* Sometimes, it is normal for us to not be able to find the routine
12133 we are looking for. This happens when the program is linked with
12134 the shared version of the GNAT runtime, and the program has not been
12135 started yet. Inform the user of these two possible causes if
12136 applicable. */
12137
ccefe4c4 12138 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12139 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12140
12141 /* If the symbol does not exist, then check that the program is
12142 already started, to make sure that shared libraries have been
12143 loaded. If it is not started, this may mean that the symbol is
12144 in a shared library. */
12145
e99b03dc 12146 if (inferior_ptid.pid () == 0)
0259addd
JB
12147 error (_("Unable to insert catchpoint. Try to start the program first."));
12148
12149 /* At this point, we know that we are debugging an Ada program and
12150 that the inferior has been started, but we still are not able to
0963b4bd 12151 find the run-time symbols. That can mean that we are in
0259addd
JB
12152 configurable run time mode, or that a-except as been optimized
12153 out by the linker... In any case, at this point it is not worth
12154 supporting this feature. */
12155
7dda8cff 12156 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12157}
12158
f7f9143b
JB
12159/* True iff FRAME is very likely to be that of a function that is
12160 part of the runtime system. This is all very heuristic, but is
12161 intended to be used as advice as to what frames are uninteresting
12162 to most users. */
12163
12164static int
12165is_known_support_routine (struct frame_info *frame)
12166{
692465f1 12167 enum language func_lang;
f7f9143b 12168 int i;
f35a17b5 12169 const char *fullname;
f7f9143b 12170
4ed6b5be
JB
12171 /* If this code does not have any debugging information (no symtab),
12172 This cannot be any user code. */
f7f9143b 12173
51abb421 12174 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12175 if (sal.symtab == NULL)
12176 return 1;
12177
4ed6b5be
JB
12178 /* If there is a symtab, but the associated source file cannot be
12179 located, then assume this is not user code: Selecting a frame
12180 for which we cannot display the code would not be very helpful
12181 for the user. This should also take care of case such as VxWorks
12182 where the kernel has some debugging info provided for a few units. */
f7f9143b 12183
f35a17b5
JK
12184 fullname = symtab_to_fullname (sal.symtab);
12185 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12186 return 1;
12187
4ed6b5be
JB
12188 /* Check the unit filename againt the Ada runtime file naming.
12189 We also check the name of the objfile against the name of some
12190 known system libraries that sometimes come with debugging info
12191 too. */
12192
f7f9143b
JB
12193 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12194 {
12195 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12196 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12197 return 1;
eb822aa6
DE
12198 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12199 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12200 return 1;
f7f9143b
JB
12201 }
12202
4ed6b5be 12203 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12204
c6dc63a1
TT
12205 gdb::unique_xmalloc_ptr<char> func_name
12206 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12207 if (func_name == NULL)
12208 return 1;
12209
12210 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12211 {
12212 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12213 if (re_exec (func_name.get ()))
12214 return 1;
f7f9143b
JB
12215 }
12216
12217 return 0;
12218}
12219
12220/* Find the first frame that contains debugging information and that is not
12221 part of the Ada run-time, starting from FI and moving upward. */
12222
0ef643c8 12223void
f7f9143b
JB
12224ada_find_printable_frame (struct frame_info *fi)
12225{
12226 for (; fi != NULL; fi = get_prev_frame (fi))
12227 {
12228 if (!is_known_support_routine (fi))
12229 {
12230 select_frame (fi);
12231 break;
12232 }
12233 }
12234
12235}
12236
12237/* Assuming that the inferior just triggered an unhandled exception
12238 catchpoint, return the address in inferior memory where the name
12239 of the exception is stored.
12240
12241 Return zero if the address could not be computed. */
12242
12243static CORE_ADDR
12244ada_unhandled_exception_name_addr (void)
0259addd
JB
12245{
12246 return parse_and_eval_address ("e.full_name");
12247}
12248
12249/* Same as ada_unhandled_exception_name_addr, except that this function
12250 should be used when the inferior uses an older version of the runtime,
12251 where the exception name needs to be extracted from a specific frame
12252 several frames up in the callstack. */
12253
12254static CORE_ADDR
12255ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12256{
12257 int frame_level;
12258 struct frame_info *fi;
3eecfa55 12259 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12260
12261 /* To determine the name of this exception, we need to select
12262 the frame corresponding to RAISE_SYM_NAME. This frame is
12263 at least 3 levels up, so we simply skip the first 3 frames
12264 without checking the name of their associated function. */
12265 fi = get_current_frame ();
12266 for (frame_level = 0; frame_level < 3; frame_level += 1)
12267 if (fi != NULL)
12268 fi = get_prev_frame (fi);
12269
12270 while (fi != NULL)
12271 {
692465f1
JB
12272 enum language func_lang;
12273
c6dc63a1
TT
12274 gdb::unique_xmalloc_ptr<char> func_name
12275 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12276 if (func_name != NULL)
12277 {
c6dc63a1 12278 if (strcmp (func_name.get (),
55b87a52
KS
12279 data->exception_info->catch_exception_sym) == 0)
12280 break; /* We found the frame we were looking for... */
55b87a52 12281 }
fb44b1a7 12282 fi = get_prev_frame (fi);
f7f9143b
JB
12283 }
12284
12285 if (fi == NULL)
12286 return 0;
12287
12288 select_frame (fi);
12289 return parse_and_eval_address ("id.full_name");
12290}
12291
12292/* Assuming the inferior just triggered an Ada exception catchpoint
12293 (of any type), return the address in inferior memory where the name
12294 of the exception is stored, if applicable.
12295
45db7c09
PA
12296 Assumes the selected frame is the current frame.
12297
f7f9143b
JB
12298 Return zero if the address could not be computed, or if not relevant. */
12299
12300static CORE_ADDR
761269c8 12301ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12302 struct breakpoint *b)
12303{
3eecfa55
JB
12304 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12305
f7f9143b
JB
12306 switch (ex)
12307 {
761269c8 12308 case ada_catch_exception:
f7f9143b
JB
12309 return (parse_and_eval_address ("e.full_name"));
12310 break;
12311
761269c8 12312 case ada_catch_exception_unhandled:
3eecfa55 12313 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12314 break;
9f757bf7
XR
12315
12316 case ada_catch_handlers:
12317 return 0; /* The runtimes does not provide access to the exception
12318 name. */
12319 break;
12320
761269c8 12321 case ada_catch_assert:
f7f9143b
JB
12322 return 0; /* Exception name is not relevant in this case. */
12323 break;
12324
12325 default:
12326 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12327 break;
12328 }
12329
12330 return 0; /* Should never be reached. */
12331}
12332
e547c119
JB
12333/* Assuming the inferior is stopped at an exception catchpoint,
12334 return the message which was associated to the exception, if
12335 available. Return NULL if the message could not be retrieved.
12336
e547c119
JB
12337 Note: The exception message can be associated to an exception
12338 either through the use of the Raise_Exception function, or
12339 more simply (Ada 2005 and later), via:
12340
12341 raise Exception_Name with "exception message";
12342
12343 */
12344
6f46ac85 12345static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12346ada_exception_message_1 (void)
12347{
12348 struct value *e_msg_val;
e547c119 12349 int e_msg_len;
e547c119
JB
12350
12351 /* For runtimes that support this feature, the exception message
12352 is passed as an unbounded string argument called "message". */
12353 e_msg_val = parse_and_eval ("message");
12354 if (e_msg_val == NULL)
12355 return NULL; /* Exception message not supported. */
12356
12357 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12358 gdb_assert (e_msg_val != NULL);
12359 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12360
12361 /* If the message string is empty, then treat it as if there was
12362 no exception message. */
12363 if (e_msg_len <= 0)
12364 return NULL;
12365
6f46ac85
TT
12366 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12367 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12368 e_msg.get ()[e_msg_len] = '\0';
e547c119 12369
e547c119
JB
12370 return e_msg;
12371}
12372
12373/* Same as ada_exception_message_1, except that all exceptions are
12374 contained here (returning NULL instead). */
12375
6f46ac85 12376static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12377ada_exception_message (void)
12378{
6f46ac85 12379 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12380
12381 TRY
12382 {
12383 e_msg = ada_exception_message_1 ();
12384 }
12385 CATCH (e, RETURN_MASK_ERROR)
12386 {
6f46ac85 12387 e_msg.reset (nullptr);
e547c119
JB
12388 }
12389 END_CATCH
12390
12391 return e_msg;
12392}
12393
f7f9143b
JB
12394/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12395 any error that ada_exception_name_addr_1 might cause to be thrown.
12396 When an error is intercepted, a warning with the error message is printed,
12397 and zero is returned. */
12398
12399static CORE_ADDR
761269c8 12400ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12401 struct breakpoint *b)
12402{
f7f9143b
JB
12403 CORE_ADDR result = 0;
12404
492d29ea 12405 TRY
f7f9143b
JB
12406 {
12407 result = ada_exception_name_addr_1 (ex, b);
12408 }
12409
492d29ea 12410 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12411 {
12412 warning (_("failed to get exception name: %s"), e.message);
12413 return 0;
12414 }
492d29ea 12415 END_CATCH
f7f9143b
JB
12416
12417 return result;
12418}
12419
cb7de75e 12420static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12421 (const char *excep_string,
12422 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12423
12424/* Ada catchpoints.
12425
12426 In the case of catchpoints on Ada exceptions, the catchpoint will
12427 stop the target on every exception the program throws. When a user
12428 specifies the name of a specific exception, we translate this
12429 request into a condition expression (in text form), and then parse
12430 it into an expression stored in each of the catchpoint's locations.
12431 We then use this condition to check whether the exception that was
12432 raised is the one the user is interested in. If not, then the
12433 target is resumed again. We store the name of the requested
12434 exception, in order to be able to re-set the condition expression
12435 when symbols change. */
12436
12437/* An instance of this type is used to represent an Ada catchpoint
5625a286 12438 breakpoint location. */
28010a5d 12439
5625a286 12440class ada_catchpoint_location : public bp_location
28010a5d 12441{
5625a286
PA
12442public:
12443 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12444 : bp_location (ops, owner)
12445 {}
28010a5d
PA
12446
12447 /* The condition that checks whether the exception that was raised
12448 is the specific exception the user specified on catchpoint
12449 creation. */
4d01a485 12450 expression_up excep_cond_expr;
28010a5d
PA
12451};
12452
12453/* Implement the DTOR method in the bp_location_ops structure for all
12454 Ada exception catchpoint kinds. */
12455
12456static void
12457ada_catchpoint_location_dtor (struct bp_location *bl)
12458{
12459 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12460
4d01a485 12461 al->excep_cond_expr.reset ();
28010a5d
PA
12462}
12463
12464/* The vtable to be used in Ada catchpoint locations. */
12465
12466static const struct bp_location_ops ada_catchpoint_location_ops =
12467{
12468 ada_catchpoint_location_dtor
12469};
12470
c1fc2657 12471/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12472
c1fc2657 12473struct ada_catchpoint : public breakpoint
28010a5d 12474{
28010a5d 12475 /* The name of the specific exception the user specified. */
bc18fbb5 12476 std::string excep_string;
28010a5d
PA
12477};
12478
12479/* Parse the exception condition string in the context of each of the
12480 catchpoint's locations, and store them for later evaluation. */
12481
12482static void
9f757bf7
XR
12483create_excep_cond_exprs (struct ada_catchpoint *c,
12484 enum ada_exception_catchpoint_kind ex)
28010a5d 12485{
28010a5d 12486 struct bp_location *bl;
28010a5d
PA
12487
12488 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12489 if (c->excep_string.empty ())
28010a5d
PA
12490 return;
12491
12492 /* Same if there are no locations... */
c1fc2657 12493 if (c->loc == NULL)
28010a5d
PA
12494 return;
12495
12496 /* Compute the condition expression in text form, from the specific
12497 expection we want to catch. */
cb7de75e 12498 std::string cond_string
bc18fbb5 12499 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12500
12501 /* Iterate over all the catchpoint's locations, and parse an
12502 expression for each. */
c1fc2657 12503 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12504 {
12505 struct ada_catchpoint_location *ada_loc
12506 = (struct ada_catchpoint_location *) bl;
4d01a485 12507 expression_up exp;
28010a5d
PA
12508
12509 if (!bl->shlib_disabled)
12510 {
bbc13ae3 12511 const char *s;
28010a5d 12512
cb7de75e 12513 s = cond_string.c_str ();
492d29ea 12514 TRY
28010a5d 12515 {
036e657b
JB
12516 exp = parse_exp_1 (&s, bl->address,
12517 block_for_pc (bl->address),
12518 0);
28010a5d 12519 }
492d29ea 12520 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12521 {
12522 warning (_("failed to reevaluate internal exception condition "
12523 "for catchpoint %d: %s"),
c1fc2657 12524 c->number, e.message);
849f2b52 12525 }
492d29ea 12526 END_CATCH
28010a5d
PA
12527 }
12528
b22e99fd 12529 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12530 }
28010a5d
PA
12531}
12532
28010a5d
PA
12533/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12534 structure for all exception catchpoint kinds. */
12535
12536static struct bp_location *
761269c8 12537allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12538 struct breakpoint *self)
12539{
5625a286 12540 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12541}
12542
12543/* Implement the RE_SET method in the breakpoint_ops structure for all
12544 exception catchpoint kinds. */
12545
12546static void
761269c8 12547re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12548{
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550
12551 /* Call the base class's method. This updates the catchpoint's
12552 locations. */
2060206e 12553 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12554
12555 /* Reparse the exception conditional expressions. One for each
12556 location. */
9f757bf7 12557 create_excep_cond_exprs (c, ex);
28010a5d
PA
12558}
12559
12560/* Returns true if we should stop for this breakpoint hit. If the
12561 user specified a specific exception, we only want to cause a stop
12562 if the program thrown that exception. */
12563
12564static int
12565should_stop_exception (const struct bp_location *bl)
12566{
12567 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12568 const struct ada_catchpoint_location *ada_loc
12569 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12570 int stop;
12571
12572 /* With no specific exception, should always stop. */
bc18fbb5 12573 if (c->excep_string.empty ())
28010a5d
PA
12574 return 1;
12575
12576 if (ada_loc->excep_cond_expr == NULL)
12577 {
12578 /* We will have a NULL expression if back when we were creating
12579 the expressions, this location's had failed to parse. */
12580 return 1;
12581 }
12582
12583 stop = 1;
492d29ea 12584 TRY
28010a5d
PA
12585 {
12586 struct value *mark;
12587
12588 mark = value_mark ();
4d01a485 12589 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12590 value_free_to_mark (mark);
12591 }
492d29ea
PA
12592 CATCH (ex, RETURN_MASK_ALL)
12593 {
12594 exception_fprintf (gdb_stderr, ex,
12595 _("Error in testing exception condition:\n"));
12596 }
12597 END_CATCH
12598
28010a5d
PA
12599 return stop;
12600}
12601
12602/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12603 for all exception catchpoint kinds. */
12604
12605static void
761269c8 12606check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12607{
12608 bs->stop = should_stop_exception (bs->bp_location_at);
12609}
12610
f7f9143b
JB
12611/* Implement the PRINT_IT method in the breakpoint_ops structure
12612 for all exception catchpoint kinds. */
12613
12614static enum print_stop_action
761269c8 12615print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12616{
79a45e25 12617 struct ui_out *uiout = current_uiout;
348d480f
PA
12618 struct breakpoint *b = bs->breakpoint_at;
12619
956a9fb9 12620 annotate_catchpoint (b->number);
f7f9143b 12621
112e8700 12622 if (uiout->is_mi_like_p ())
f7f9143b 12623 {
112e8700 12624 uiout->field_string ("reason",
956a9fb9 12625 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12626 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12627 }
12628
112e8700
SM
12629 uiout->text (b->disposition == disp_del
12630 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12631 uiout->field_int ("bkptno", b->number);
12632 uiout->text (", ");
f7f9143b 12633
45db7c09
PA
12634 /* ada_exception_name_addr relies on the selected frame being the
12635 current frame. Need to do this here because this function may be
12636 called more than once when printing a stop, and below, we'll
12637 select the first frame past the Ada run-time (see
12638 ada_find_printable_frame). */
12639 select_frame (get_current_frame ());
12640
f7f9143b
JB
12641 switch (ex)
12642 {
761269c8
JB
12643 case ada_catch_exception:
12644 case ada_catch_exception_unhandled:
9f757bf7 12645 case ada_catch_handlers:
956a9fb9
JB
12646 {
12647 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12648 char exception_name[256];
12649
12650 if (addr != 0)
12651 {
c714b426
PA
12652 read_memory (addr, (gdb_byte *) exception_name,
12653 sizeof (exception_name) - 1);
956a9fb9
JB
12654 exception_name [sizeof (exception_name) - 1] = '\0';
12655 }
12656 else
12657 {
12658 /* For some reason, we were unable to read the exception
12659 name. This could happen if the Runtime was compiled
12660 without debugging info, for instance. In that case,
12661 just replace the exception name by the generic string
12662 "exception" - it will read as "an exception" in the
12663 notification we are about to print. */
967cff16 12664 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12665 }
12666 /* In the case of unhandled exception breakpoints, we print
12667 the exception name as "unhandled EXCEPTION_NAME", to make
12668 it clearer to the user which kind of catchpoint just got
12669 hit. We used ui_out_text to make sure that this extra
12670 info does not pollute the exception name in the MI case. */
761269c8 12671 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12672 uiout->text ("unhandled ");
12673 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12674 }
12675 break;
761269c8 12676 case ada_catch_assert:
956a9fb9
JB
12677 /* In this case, the name of the exception is not really
12678 important. Just print "failed assertion" to make it clearer
12679 that his program just hit an assertion-failure catchpoint.
12680 We used ui_out_text because this info does not belong in
12681 the MI output. */
112e8700 12682 uiout->text ("failed assertion");
956a9fb9 12683 break;
f7f9143b 12684 }
e547c119 12685
6f46ac85 12686 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12687 if (exception_message != NULL)
12688 {
e547c119 12689 uiout->text (" (");
6f46ac85 12690 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12691 uiout->text (")");
e547c119
JB
12692 }
12693
112e8700 12694 uiout->text (" at ");
956a9fb9 12695 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12696
12697 return PRINT_SRC_AND_LOC;
12698}
12699
12700/* Implement the PRINT_ONE method in the breakpoint_ops structure
12701 for all exception catchpoint kinds. */
12702
12703static void
761269c8 12704print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12705 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12706{
79a45e25 12707 struct ui_out *uiout = current_uiout;
28010a5d 12708 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12709 struct value_print_options opts;
12710
12711 get_user_print_options (&opts);
12712 if (opts.addressprint)
f7f9143b
JB
12713 {
12714 annotate_field (4);
112e8700 12715 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12716 }
12717
12718 annotate_field (5);
a6d9a66e 12719 *last_loc = b->loc;
f7f9143b
JB
12720 switch (ex)
12721 {
761269c8 12722 case ada_catch_exception:
bc18fbb5 12723 if (!c->excep_string.empty ())
f7f9143b 12724 {
bc18fbb5
TT
12725 std::string msg = string_printf (_("`%s' Ada exception"),
12726 c->excep_string.c_str ());
28010a5d 12727
112e8700 12728 uiout->field_string ("what", msg);
f7f9143b
JB
12729 }
12730 else
112e8700 12731 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12732
12733 break;
12734
761269c8 12735 case ada_catch_exception_unhandled:
112e8700 12736 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12737 break;
12738
9f757bf7 12739 case ada_catch_handlers:
bc18fbb5 12740 if (!c->excep_string.empty ())
9f757bf7
XR
12741 {
12742 uiout->field_fmt ("what",
12743 _("`%s' Ada exception handlers"),
bc18fbb5 12744 c->excep_string.c_str ());
9f757bf7
XR
12745 }
12746 else
12747 uiout->field_string ("what", "all Ada exceptions handlers");
12748 break;
12749
761269c8 12750 case ada_catch_assert:
112e8700 12751 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12752 break;
12753
12754 default:
12755 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12756 break;
12757 }
12758}
12759
12760/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12761 for all exception catchpoint kinds. */
12762
12763static void
761269c8 12764print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12765 struct breakpoint *b)
12766{
28010a5d 12767 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12768 struct ui_out *uiout = current_uiout;
28010a5d 12769
112e8700 12770 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12771 : _("Catchpoint "));
112e8700
SM
12772 uiout->field_int ("bkptno", b->number);
12773 uiout->text (": ");
00eb2c4a 12774
f7f9143b
JB
12775 switch (ex)
12776 {
761269c8 12777 case ada_catch_exception:
bc18fbb5 12778 if (!c->excep_string.empty ())
00eb2c4a 12779 {
862d101a 12780 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12781 c->excep_string.c_str ());
862d101a 12782 uiout->text (info.c_str ());
00eb2c4a 12783 }
f7f9143b 12784 else
112e8700 12785 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12786 break;
12787
761269c8 12788 case ada_catch_exception_unhandled:
112e8700 12789 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12790 break;
9f757bf7
XR
12791
12792 case ada_catch_handlers:
bc18fbb5 12793 if (!c->excep_string.empty ())
9f757bf7
XR
12794 {
12795 std::string info
12796 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12797 c->excep_string.c_str ());
9f757bf7
XR
12798 uiout->text (info.c_str ());
12799 }
12800 else
12801 uiout->text (_("all Ada exceptions handlers"));
12802 break;
12803
761269c8 12804 case ada_catch_assert:
112e8700 12805 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12806 break;
12807
12808 default:
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12810 break;
12811 }
12812}
12813
6149aea9
PA
12814/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12815 for all exception catchpoint kinds. */
12816
12817static void
761269c8 12818print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12819 struct breakpoint *b, struct ui_file *fp)
12820{
28010a5d
PA
12821 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12822
6149aea9
PA
12823 switch (ex)
12824 {
761269c8 12825 case ada_catch_exception:
6149aea9 12826 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12827 if (!c->excep_string.empty ())
12828 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12829 break;
12830
761269c8 12831 case ada_catch_exception_unhandled:
78076abc 12832 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12833 break;
12834
9f757bf7
XR
12835 case ada_catch_handlers:
12836 fprintf_filtered (fp, "catch handlers");
12837 break;
12838
761269c8 12839 case ada_catch_assert:
6149aea9
PA
12840 fprintf_filtered (fp, "catch assert");
12841 break;
12842
12843 default:
12844 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12845 }
d9b3f62e 12846 print_recreate_thread (b, fp);
6149aea9
PA
12847}
12848
f7f9143b
JB
12849/* Virtual table for "catch exception" breakpoints. */
12850
28010a5d
PA
12851static struct bp_location *
12852allocate_location_catch_exception (struct breakpoint *self)
12853{
761269c8 12854 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12855}
12856
12857static void
12858re_set_catch_exception (struct breakpoint *b)
12859{
761269c8 12860 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12861}
12862
12863static void
12864check_status_catch_exception (bpstat bs)
12865{
761269c8 12866 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12867}
12868
f7f9143b 12869static enum print_stop_action
348d480f 12870print_it_catch_exception (bpstat bs)
f7f9143b 12871{
761269c8 12872 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12873}
12874
12875static void
a6d9a66e 12876print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12877{
761269c8 12878 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12879}
12880
12881static void
12882print_mention_catch_exception (struct breakpoint *b)
12883{
761269c8 12884 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12885}
12886
6149aea9
PA
12887static void
12888print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12889{
761269c8 12890 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12891}
12892
2060206e 12893static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12894
12895/* Virtual table for "catch exception unhandled" breakpoints. */
12896
28010a5d
PA
12897static struct bp_location *
12898allocate_location_catch_exception_unhandled (struct breakpoint *self)
12899{
761269c8 12900 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12901}
12902
12903static void
12904re_set_catch_exception_unhandled (struct breakpoint *b)
12905{
761269c8 12906 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12907}
12908
12909static void
12910check_status_catch_exception_unhandled (bpstat bs)
12911{
761269c8 12912 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12913}
12914
f7f9143b 12915static enum print_stop_action
348d480f 12916print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12917{
761269c8 12918 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12919}
12920
12921static void
a6d9a66e
UW
12922print_one_catch_exception_unhandled (struct breakpoint *b,
12923 struct bp_location **last_loc)
f7f9143b 12924{
761269c8 12925 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12926}
12927
12928static void
12929print_mention_catch_exception_unhandled (struct breakpoint *b)
12930{
761269c8 12931 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12932}
12933
6149aea9
PA
12934static void
12935print_recreate_catch_exception_unhandled (struct breakpoint *b,
12936 struct ui_file *fp)
12937{
761269c8 12938 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12939}
12940
2060206e 12941static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12942
12943/* Virtual table for "catch assert" breakpoints. */
12944
28010a5d
PA
12945static struct bp_location *
12946allocate_location_catch_assert (struct breakpoint *self)
12947{
761269c8 12948 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12949}
12950
12951static void
12952re_set_catch_assert (struct breakpoint *b)
12953{
761269c8 12954 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12955}
12956
12957static void
12958check_status_catch_assert (bpstat bs)
12959{
761269c8 12960 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12961}
12962
f7f9143b 12963static enum print_stop_action
348d480f 12964print_it_catch_assert (bpstat bs)
f7f9143b 12965{
761269c8 12966 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12967}
12968
12969static void
a6d9a66e 12970print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12971{
761269c8 12972 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12973}
12974
12975static void
12976print_mention_catch_assert (struct breakpoint *b)
12977{
761269c8 12978 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12979}
12980
6149aea9
PA
12981static void
12982print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12983{
761269c8 12984 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12985}
12986
2060206e 12987static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12988
9f757bf7
XR
12989/* Virtual table for "catch handlers" breakpoints. */
12990
12991static struct bp_location *
12992allocate_location_catch_handlers (struct breakpoint *self)
12993{
12994 return allocate_location_exception (ada_catch_handlers, self);
12995}
12996
12997static void
12998re_set_catch_handlers (struct breakpoint *b)
12999{
13000 re_set_exception (ada_catch_handlers, b);
13001}
13002
13003static void
13004check_status_catch_handlers (bpstat bs)
13005{
13006 check_status_exception (ada_catch_handlers, bs);
13007}
13008
13009static enum print_stop_action
13010print_it_catch_handlers (bpstat bs)
13011{
13012 return print_it_exception (ada_catch_handlers, bs);
13013}
13014
13015static void
13016print_one_catch_handlers (struct breakpoint *b,
13017 struct bp_location **last_loc)
13018{
13019 print_one_exception (ada_catch_handlers, b, last_loc);
13020}
13021
13022static void
13023print_mention_catch_handlers (struct breakpoint *b)
13024{
13025 print_mention_exception (ada_catch_handlers, b);
13026}
13027
13028static void
13029print_recreate_catch_handlers (struct breakpoint *b,
13030 struct ui_file *fp)
13031{
13032 print_recreate_exception (ada_catch_handlers, b, fp);
13033}
13034
13035static struct breakpoint_ops catch_handlers_breakpoint_ops;
13036
f7f9143b
JB
13037/* Split the arguments specified in a "catch exception" command.
13038 Set EX to the appropriate catchpoint type.
28010a5d 13039 Set EXCEP_STRING to the name of the specific exception if
5845583d 13040 specified by the user.
9f757bf7
XR
13041 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13042 "catch handlers" command. False otherwise.
5845583d
JB
13043 If a condition is found at the end of the arguments, the condition
13044 expression is stored in COND_STRING (memory must be deallocated
13045 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13046
13047static void
a121b7c1 13048catch_ada_exception_command_split (const char *args,
9f757bf7 13049 bool is_catch_handlers_cmd,
761269c8 13050 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13051 std::string *excep_string,
13052 std::string *cond_string)
f7f9143b 13053{
bc18fbb5 13054 std::string exception_name;
f7f9143b 13055
bc18fbb5
TT
13056 exception_name = extract_arg (&args);
13057 if (exception_name == "if")
5845583d
JB
13058 {
13059 /* This is not an exception name; this is the start of a condition
13060 expression for a catchpoint on all exceptions. So, "un-get"
13061 this token, and set exception_name to NULL. */
bc18fbb5 13062 exception_name.clear ();
5845583d
JB
13063 args -= 2;
13064 }
f7f9143b 13065
5845583d 13066 /* Check to see if we have a condition. */
f7f9143b 13067
f1735a53 13068 args = skip_spaces (args);
61012eef 13069 if (startswith (args, "if")
5845583d
JB
13070 && (isspace (args[2]) || args[2] == '\0'))
13071 {
13072 args += 2;
f1735a53 13073 args = skip_spaces (args);
5845583d
JB
13074
13075 if (args[0] == '\0')
13076 error (_("Condition missing after `if' keyword"));
bc18fbb5 13077 *cond_string = args;
5845583d
JB
13078
13079 args += strlen (args);
13080 }
13081
13082 /* Check that we do not have any more arguments. Anything else
13083 is unexpected. */
f7f9143b
JB
13084
13085 if (args[0] != '\0')
13086 error (_("Junk at end of expression"));
13087
9f757bf7
XR
13088 if (is_catch_handlers_cmd)
13089 {
13090 /* Catch handling of exceptions. */
13091 *ex = ada_catch_handlers;
13092 *excep_string = exception_name;
13093 }
bc18fbb5 13094 else if (exception_name.empty ())
f7f9143b
JB
13095 {
13096 /* Catch all exceptions. */
761269c8 13097 *ex = ada_catch_exception;
bc18fbb5 13098 excep_string->clear ();
f7f9143b 13099 }
bc18fbb5 13100 else if (exception_name == "unhandled")
f7f9143b
JB
13101 {
13102 /* Catch unhandled exceptions. */
761269c8 13103 *ex = ada_catch_exception_unhandled;
bc18fbb5 13104 excep_string->clear ();
f7f9143b
JB
13105 }
13106 else
13107 {
13108 /* Catch a specific exception. */
761269c8 13109 *ex = ada_catch_exception;
28010a5d 13110 *excep_string = exception_name;
f7f9143b
JB
13111 }
13112}
13113
13114/* Return the name of the symbol on which we should break in order to
13115 implement a catchpoint of the EX kind. */
13116
13117static const char *
761269c8 13118ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13119{
3eecfa55
JB
13120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13121
13122 gdb_assert (data->exception_info != NULL);
0259addd 13123
f7f9143b
JB
13124 switch (ex)
13125 {
761269c8 13126 case ada_catch_exception:
3eecfa55 13127 return (data->exception_info->catch_exception_sym);
f7f9143b 13128 break;
761269c8 13129 case ada_catch_exception_unhandled:
3eecfa55 13130 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13131 break;
761269c8 13132 case ada_catch_assert:
3eecfa55 13133 return (data->exception_info->catch_assert_sym);
f7f9143b 13134 break;
9f757bf7
XR
13135 case ada_catch_handlers:
13136 return (data->exception_info->catch_handlers_sym);
13137 break;
f7f9143b
JB
13138 default:
13139 internal_error (__FILE__, __LINE__,
13140 _("unexpected catchpoint kind (%d)"), ex);
13141 }
13142}
13143
13144/* Return the breakpoint ops "virtual table" used for catchpoints
13145 of the EX kind. */
13146
c0a91b2b 13147static const struct breakpoint_ops *
761269c8 13148ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13149{
13150 switch (ex)
13151 {
761269c8 13152 case ada_catch_exception:
f7f9143b
JB
13153 return (&catch_exception_breakpoint_ops);
13154 break;
761269c8 13155 case ada_catch_exception_unhandled:
f7f9143b
JB
13156 return (&catch_exception_unhandled_breakpoint_ops);
13157 break;
761269c8 13158 case ada_catch_assert:
f7f9143b
JB
13159 return (&catch_assert_breakpoint_ops);
13160 break;
9f757bf7
XR
13161 case ada_catch_handlers:
13162 return (&catch_handlers_breakpoint_ops);
13163 break;
f7f9143b
JB
13164 default:
13165 internal_error (__FILE__, __LINE__,
13166 _("unexpected catchpoint kind (%d)"), ex);
13167 }
13168}
13169
13170/* Return the condition that will be used to match the current exception
13171 being raised with the exception that the user wants to catch. This
13172 assumes that this condition is used when the inferior just triggered
13173 an exception catchpoint.
cb7de75e 13174 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13175
cb7de75e 13176static std::string
9f757bf7
XR
13177ada_exception_catchpoint_cond_string (const char *excep_string,
13178 enum ada_exception_catchpoint_kind ex)
f7f9143b 13179{
3d0b0fa3 13180 int i;
9f757bf7 13181 bool is_standard_exc = false;
cb7de75e 13182 std::string result;
9f757bf7
XR
13183
13184 if (ex == ada_catch_handlers)
13185 {
13186 /* For exception handlers catchpoints, the condition string does
13187 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13188 result = ("long_integer (GNAT_GCC_exception_Access"
13189 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13190 }
13191 else
cb7de75e 13192 result = "long_integer (e)";
3d0b0fa3 13193
0963b4bd 13194 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13195 runtime units that have been compiled without debugging info; if
28010a5d 13196 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13197 exception (e.g. "constraint_error") then, during the evaluation
13198 of the condition expression, the symbol lookup on this name would
0963b4bd 13199 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13200 may then be set only on user-defined exceptions which have the
13201 same not-fully-qualified name (e.g. my_package.constraint_error).
13202
13203 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13204 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13205 exception constraint_error" is rewritten into "catch exception
13206 standard.constraint_error".
13207
13208 If an exception named contraint_error is defined in another package of
13209 the inferior program, then the only way to specify this exception as a
13210 breakpoint condition is to use its fully-qualified named:
13211 e.g. my_package.constraint_error. */
13212
13213 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13214 {
28010a5d 13215 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13216 {
9f757bf7
XR
13217 is_standard_exc = true;
13218 break;
3d0b0fa3
JB
13219 }
13220 }
9f757bf7 13221
cb7de75e
TT
13222 result += " = ";
13223
9f757bf7 13224 if (is_standard_exc)
cb7de75e 13225 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13226 else
cb7de75e 13227 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13228
9f757bf7 13229 return result;
f7f9143b
JB
13230}
13231
13232/* Return the symtab_and_line that should be used to insert an exception
13233 catchpoint of the TYPE kind.
13234
28010a5d
PA
13235 ADDR_STRING returns the name of the function where the real
13236 breakpoint that implements the catchpoints is set, depending on the
13237 type of catchpoint we need to create. */
f7f9143b
JB
13238
13239static struct symtab_and_line
bc18fbb5 13240ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13241 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13242{
13243 const char *sym_name;
13244 struct symbol *sym;
f7f9143b 13245
0259addd
JB
13246 /* First, find out which exception support info to use. */
13247 ada_exception_support_info_sniffer ();
13248
13249 /* Then lookup the function on which we will break in order to catch
f7f9143b 13250 the Ada exceptions requested by the user. */
f7f9143b
JB
13251 sym_name = ada_exception_sym_name (ex);
13252 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13253
57aff202
JB
13254 if (sym == NULL)
13255 error (_("Catchpoint symbol not found: %s"), sym_name);
13256
13257 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13258 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13259
13260 /* Set ADDR_STRING. */
f7f9143b
JB
13261 *addr_string = xstrdup (sym_name);
13262
f7f9143b 13263 /* Set OPS. */
4b9eee8c 13264 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13265
f17011e0 13266 return find_function_start_sal (sym, 1);
f7f9143b
JB
13267}
13268
b4a5b78b 13269/* Create an Ada exception catchpoint.
f7f9143b 13270
b4a5b78b 13271 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13272
bc18fbb5 13273 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13274 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13275 of the exception to which this catchpoint applies.
2df4d1d5 13276
bc18fbb5 13277 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13278
b4a5b78b
JB
13279 TEMPFLAG, if nonzero, means that the underlying breakpoint
13280 should be temporary.
28010a5d 13281
b4a5b78b 13282 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13283
349774ef 13284void
28010a5d 13285create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13286 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13287 const std::string &excep_string,
56ecd069 13288 const std::string &cond_string,
28010a5d 13289 int tempflag,
349774ef 13290 int disabled,
28010a5d
PA
13291 int from_tty)
13292{
f2fc3015 13293 const char *addr_string = NULL;
b4a5b78b 13294 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13295 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13296
b270e6f9
TT
13297 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13298 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13299 ops, tempflag, disabled, from_tty);
28010a5d 13300 c->excep_string = excep_string;
9f757bf7 13301 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13302 if (!cond_string.empty ())
13303 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13304 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13305}
13306
9ac4176b
PA
13307/* Implement the "catch exception" command. */
13308
13309static void
eb4c3f4a 13310catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13311 struct cmd_list_element *command)
13312{
a121b7c1 13313 const char *arg = arg_entry;
9ac4176b
PA
13314 struct gdbarch *gdbarch = get_current_arch ();
13315 int tempflag;
761269c8 13316 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13317 std::string excep_string;
56ecd069 13318 std::string cond_string;
9ac4176b
PA
13319
13320 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13321
13322 if (!arg)
13323 arg = "";
9f757bf7 13324 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13325 &cond_string);
9f757bf7
XR
13326 create_ada_exception_catchpoint (gdbarch, ex_kind,
13327 excep_string, cond_string,
13328 tempflag, 1 /* enabled */,
13329 from_tty);
13330}
13331
13332/* Implement the "catch handlers" command. */
13333
13334static void
13335catch_ada_handlers_command (const char *arg_entry, int from_tty,
13336 struct cmd_list_element *command)
13337{
13338 const char *arg = arg_entry;
13339 struct gdbarch *gdbarch = get_current_arch ();
13340 int tempflag;
13341 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13342 std::string excep_string;
56ecd069 13343 std::string cond_string;
9f757bf7
XR
13344
13345 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13346
13347 if (!arg)
13348 arg = "";
13349 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13350 &cond_string);
b4a5b78b
JB
13351 create_ada_exception_catchpoint (gdbarch, ex_kind,
13352 excep_string, cond_string,
349774ef
JB
13353 tempflag, 1 /* enabled */,
13354 from_tty);
9ac4176b
PA
13355}
13356
b4a5b78b 13357/* Split the arguments specified in a "catch assert" command.
5845583d 13358
b4a5b78b
JB
13359 ARGS contains the command's arguments (or the empty string if
13360 no arguments were passed).
5845583d
JB
13361
13362 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13363 (the memory needs to be deallocated after use). */
5845583d 13364
b4a5b78b 13365static void
56ecd069 13366catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13367{
f1735a53 13368 args = skip_spaces (args);
f7f9143b 13369
5845583d 13370 /* Check whether a condition was provided. */
61012eef 13371 if (startswith (args, "if")
5845583d 13372 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13373 {
5845583d 13374 args += 2;
f1735a53 13375 args = skip_spaces (args);
5845583d
JB
13376 if (args[0] == '\0')
13377 error (_("condition missing after `if' keyword"));
56ecd069 13378 cond_string.assign (args);
f7f9143b
JB
13379 }
13380
5845583d
JB
13381 /* Otherwise, there should be no other argument at the end of
13382 the command. */
13383 else if (args[0] != '\0')
13384 error (_("Junk at end of arguments."));
f7f9143b
JB
13385}
13386
9ac4176b
PA
13387/* Implement the "catch assert" command. */
13388
13389static void
eb4c3f4a 13390catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13391 struct cmd_list_element *command)
13392{
a121b7c1 13393 const char *arg = arg_entry;
9ac4176b
PA
13394 struct gdbarch *gdbarch = get_current_arch ();
13395 int tempflag;
56ecd069 13396 std::string cond_string;
9ac4176b
PA
13397
13398 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13399
13400 if (!arg)
13401 arg = "";
56ecd069 13402 catch_ada_assert_command_split (arg, cond_string);
761269c8 13403 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13404 "", cond_string,
349774ef
JB
13405 tempflag, 1 /* enabled */,
13406 from_tty);
9ac4176b 13407}
778865d3
JB
13408
13409/* Return non-zero if the symbol SYM is an Ada exception object. */
13410
13411static int
13412ada_is_exception_sym (struct symbol *sym)
13413{
a737d952 13414 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13415
13416 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13417 && SYMBOL_CLASS (sym) != LOC_BLOCK
13418 && SYMBOL_CLASS (sym) != LOC_CONST
13419 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13420 && type_name != NULL && strcmp (type_name, "exception") == 0);
13421}
13422
13423/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13424 Ada exception object. This matches all exceptions except the ones
13425 defined by the Ada language. */
13426
13427static int
13428ada_is_non_standard_exception_sym (struct symbol *sym)
13429{
13430 int i;
13431
13432 if (!ada_is_exception_sym (sym))
13433 return 0;
13434
13435 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13436 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13437 return 0; /* A standard exception. */
13438
13439 /* Numeric_Error is also a standard exception, so exclude it.
13440 See the STANDARD_EXC description for more details as to why
13441 this exception is not listed in that array. */
13442 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13443 return 0;
13444
13445 return 1;
13446}
13447
ab816a27 13448/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13449 objects.
13450
13451 The comparison is determined first by exception name, and then
13452 by exception address. */
13453
ab816a27 13454bool
cc536b21 13455ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13456{
778865d3
JB
13457 int result;
13458
ab816a27
TT
13459 result = strcmp (name, other.name);
13460 if (result < 0)
13461 return true;
13462 if (result == 0 && addr < other.addr)
13463 return true;
13464 return false;
13465}
778865d3 13466
ab816a27 13467bool
cc536b21 13468ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13469{
13470 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13471}
13472
13473/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13474 routine, but keeping the first SKIP elements untouched.
13475
13476 All duplicates are also removed. */
13477
13478static void
ab816a27 13479sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13480 int skip)
13481{
ab816a27
TT
13482 std::sort (exceptions->begin () + skip, exceptions->end ());
13483 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13484 exceptions->end ());
778865d3
JB
13485}
13486
778865d3
JB
13487/* Add all exceptions defined by the Ada standard whose name match
13488 a regular expression.
13489
13490 If PREG is not NULL, then this regexp_t object is used to
13491 perform the symbol name matching. Otherwise, no name-based
13492 filtering is performed.
13493
13494 EXCEPTIONS is a vector of exceptions to which matching exceptions
13495 gets pushed. */
13496
13497static void
2d7cc5c7 13498ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13499 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13500{
13501 int i;
13502
13503 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13504 {
13505 if (preg == NULL
2d7cc5c7 13506 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13507 {
13508 struct bound_minimal_symbol msymbol
13509 = ada_lookup_simple_minsym (standard_exc[i]);
13510
13511 if (msymbol.minsym != NULL)
13512 {
13513 struct ada_exc_info info
77e371c0 13514 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13515
ab816a27 13516 exceptions->push_back (info);
778865d3
JB
13517 }
13518 }
13519 }
13520}
13521
13522/* Add all Ada exceptions defined locally and accessible from the given
13523 FRAME.
13524
13525 If PREG is not NULL, then this regexp_t object is used to
13526 perform the symbol name matching. Otherwise, no name-based
13527 filtering is performed.
13528
13529 EXCEPTIONS is a vector of exceptions to which matching exceptions
13530 gets pushed. */
13531
13532static void
2d7cc5c7
PA
13533ada_add_exceptions_from_frame (compiled_regex *preg,
13534 struct frame_info *frame,
ab816a27 13535 std::vector<ada_exc_info> *exceptions)
778865d3 13536{
3977b71f 13537 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13538
13539 while (block != 0)
13540 {
13541 struct block_iterator iter;
13542 struct symbol *sym;
13543
13544 ALL_BLOCK_SYMBOLS (block, iter, sym)
13545 {
13546 switch (SYMBOL_CLASS (sym))
13547 {
13548 case LOC_TYPEDEF:
13549 case LOC_BLOCK:
13550 case LOC_CONST:
13551 break;
13552 default:
13553 if (ada_is_exception_sym (sym))
13554 {
13555 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13556 SYMBOL_VALUE_ADDRESS (sym)};
13557
ab816a27 13558 exceptions->push_back (info);
778865d3
JB
13559 }
13560 }
13561 }
13562 if (BLOCK_FUNCTION (block) != NULL)
13563 break;
13564 block = BLOCK_SUPERBLOCK (block);
13565 }
13566}
13567
14bc53a8
PA
13568/* Return true if NAME matches PREG or if PREG is NULL. */
13569
13570static bool
2d7cc5c7 13571name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13572{
13573 return (preg == NULL
2d7cc5c7 13574 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13575}
13576
778865d3
JB
13577/* Add all exceptions defined globally whose name name match
13578 a regular expression, excluding standard exceptions.
13579
13580 The reason we exclude standard exceptions is that they need
13581 to be handled separately: Standard exceptions are defined inside
13582 a runtime unit which is normally not compiled with debugging info,
13583 and thus usually do not show up in our symbol search. However,
13584 if the unit was in fact built with debugging info, we need to
13585 exclude them because they would duplicate the entry we found
13586 during the special loop that specifically searches for those
13587 standard exceptions.
13588
13589 If PREG is not NULL, then this regexp_t object is used to
13590 perform the symbol name matching. Otherwise, no name-based
13591 filtering is performed.
13592
13593 EXCEPTIONS is a vector of exceptions to which matching exceptions
13594 gets pushed. */
13595
13596static void
2d7cc5c7 13597ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13598 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13599{
13600 struct objfile *objfile;
43f3e411 13601 struct compunit_symtab *s;
778865d3 13602
14bc53a8
PA
13603 /* In Ada, the symbol "search name" is a linkage name, whereas the
13604 regular expression used to do the matching refers to the natural
13605 name. So match against the decoded name. */
13606 expand_symtabs_matching (NULL,
b5ec771e 13607 lookup_name_info::match_any (),
14bc53a8
PA
13608 [&] (const char *search_name)
13609 {
13610 const char *decoded = ada_decode (search_name);
13611 return name_matches_regex (decoded, preg);
13612 },
13613 NULL,
13614 VARIABLES_DOMAIN);
778865d3 13615
43f3e411 13616 ALL_COMPUNITS (objfile, s)
778865d3 13617 {
43f3e411 13618 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13619 int i;
13620
13621 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13622 {
13623 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13624 struct block_iterator iter;
13625 struct symbol *sym;
13626
13627 ALL_BLOCK_SYMBOLS (b, iter, sym)
13628 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13629 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13630 {
13631 struct ada_exc_info info
13632 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13633
ab816a27 13634 exceptions->push_back (info);
778865d3
JB
13635 }
13636 }
13637 }
13638}
13639
13640/* Implements ada_exceptions_list with the regular expression passed
13641 as a regex_t, rather than a string.
13642
13643 If not NULL, PREG is used to filter out exceptions whose names
13644 do not match. Otherwise, all exceptions are listed. */
13645
ab816a27 13646static std::vector<ada_exc_info>
2d7cc5c7 13647ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13648{
ab816a27 13649 std::vector<ada_exc_info> result;
778865d3
JB
13650 int prev_len;
13651
13652 /* First, list the known standard exceptions. These exceptions
13653 need to be handled separately, as they are usually defined in
13654 runtime units that have been compiled without debugging info. */
13655
13656 ada_add_standard_exceptions (preg, &result);
13657
13658 /* Next, find all exceptions whose scope is local and accessible
13659 from the currently selected frame. */
13660
13661 if (has_stack_frames ())
13662 {
ab816a27 13663 prev_len = result.size ();
778865d3
JB
13664 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13665 &result);
ab816a27 13666 if (result.size () > prev_len)
778865d3
JB
13667 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13668 }
13669
13670 /* Add all exceptions whose scope is global. */
13671
ab816a27 13672 prev_len = result.size ();
778865d3 13673 ada_add_global_exceptions (preg, &result);
ab816a27 13674 if (result.size () > prev_len)
778865d3
JB
13675 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13676
778865d3
JB
13677 return result;
13678}
13679
13680/* Return a vector of ada_exc_info.
13681
13682 If REGEXP is NULL, all exceptions are included in the result.
13683 Otherwise, it should contain a valid regular expression,
13684 and only the exceptions whose names match that regular expression
13685 are included in the result.
13686
13687 The exceptions are sorted in the following order:
13688 - Standard exceptions (defined by the Ada language), in
13689 alphabetical order;
13690 - Exceptions only visible from the current frame, in
13691 alphabetical order;
13692 - Exceptions whose scope is global, in alphabetical order. */
13693
ab816a27 13694std::vector<ada_exc_info>
778865d3
JB
13695ada_exceptions_list (const char *regexp)
13696{
2d7cc5c7
PA
13697 if (regexp == NULL)
13698 return ada_exceptions_list_1 (NULL);
778865d3 13699
2d7cc5c7
PA
13700 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13701 return ada_exceptions_list_1 (&reg);
778865d3
JB
13702}
13703
13704/* Implement the "info exceptions" command. */
13705
13706static void
1d12d88f 13707info_exceptions_command (const char *regexp, int from_tty)
778865d3 13708{
778865d3 13709 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13710
ab816a27 13711 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13712
13713 if (regexp != NULL)
13714 printf_filtered
13715 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13716 else
13717 printf_filtered (_("All defined Ada exceptions:\n"));
13718
ab816a27
TT
13719 for (const ada_exc_info &info : exceptions)
13720 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13721}
13722
4c4b4cd2
PH
13723 /* Operators */
13724/* Information about operators given special treatment in functions
13725 below. */
13726/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13727
13728#define ADA_OPERATORS \
13729 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13730 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13731 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13732 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13733 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13734 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13735 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13736 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13737 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13738 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13739 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13740 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13741 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13742 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13743 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13744 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13745 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13746 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13747 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13748
13749static void
554794dc
SDJ
13750ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13751 int *argsp)
4c4b4cd2
PH
13752{
13753 switch (exp->elts[pc - 1].opcode)
13754 {
76a01679 13755 default:
4c4b4cd2
PH
13756 operator_length_standard (exp, pc, oplenp, argsp);
13757 break;
13758
13759#define OP_DEFN(op, len, args, binop) \
13760 case op: *oplenp = len; *argsp = args; break;
13761 ADA_OPERATORS;
13762#undef OP_DEFN
52ce6436
PH
13763
13764 case OP_AGGREGATE:
13765 *oplenp = 3;
13766 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13767 break;
13768
13769 case OP_CHOICES:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13772 break;
4c4b4cd2
PH
13773 }
13774}
13775
c0201579
JK
13776/* Implementation of the exp_descriptor method operator_check. */
13777
13778static int
13779ada_operator_check (struct expression *exp, int pos,
13780 int (*objfile_func) (struct objfile *objfile, void *data),
13781 void *data)
13782{
13783 const union exp_element *const elts = exp->elts;
13784 struct type *type = NULL;
13785
13786 switch (elts[pos].opcode)
13787 {
13788 case UNOP_IN_RANGE:
13789 case UNOP_QUAL:
13790 type = elts[pos + 1].type;
13791 break;
13792
13793 default:
13794 return operator_check_standard (exp, pos, objfile_func, data);
13795 }
13796
13797 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13798
13799 if (type && TYPE_OBJFILE (type)
13800 && (*objfile_func) (TYPE_OBJFILE (type), data))
13801 return 1;
13802
13803 return 0;
13804}
13805
a121b7c1 13806static const char *
4c4b4cd2
PH
13807ada_op_name (enum exp_opcode opcode)
13808{
13809 switch (opcode)
13810 {
76a01679 13811 default:
4c4b4cd2 13812 return op_name_standard (opcode);
52ce6436 13813
4c4b4cd2
PH
13814#define OP_DEFN(op, len, args, binop) case op: return #op;
13815 ADA_OPERATORS;
13816#undef OP_DEFN
52ce6436
PH
13817
13818 case OP_AGGREGATE:
13819 return "OP_AGGREGATE";
13820 case OP_CHOICES:
13821 return "OP_CHOICES";
13822 case OP_NAME:
13823 return "OP_NAME";
4c4b4cd2
PH
13824 }
13825}
13826
13827/* As for operator_length, but assumes PC is pointing at the first
13828 element of the operator, and gives meaningful results only for the
52ce6436 13829 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13830
13831static void
76a01679
JB
13832ada_forward_operator_length (struct expression *exp, int pc,
13833 int *oplenp, int *argsp)
4c4b4cd2 13834{
76a01679 13835 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13836 {
13837 default:
13838 *oplenp = *argsp = 0;
13839 break;
52ce6436 13840
4c4b4cd2
PH
13841#define OP_DEFN(op, len, args, binop) \
13842 case op: *oplenp = len; *argsp = args; break;
13843 ADA_OPERATORS;
13844#undef OP_DEFN
52ce6436
PH
13845
13846 case OP_AGGREGATE:
13847 *oplenp = 3;
13848 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13849 break;
13850
13851 case OP_CHOICES:
13852 *oplenp = 3;
13853 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13854 break;
13855
13856 case OP_STRING:
13857 case OP_NAME:
13858 {
13859 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13860
52ce6436
PH
13861 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13862 *argsp = 0;
13863 break;
13864 }
4c4b4cd2
PH
13865 }
13866}
13867
13868static int
13869ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13870{
13871 enum exp_opcode op = exp->elts[elt].opcode;
13872 int oplen, nargs;
13873 int pc = elt;
13874 int i;
76a01679 13875
4c4b4cd2
PH
13876 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13877
76a01679 13878 switch (op)
4c4b4cd2 13879 {
76a01679 13880 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13881 case OP_ATR_FIRST:
13882 case OP_ATR_LAST:
13883 case OP_ATR_LENGTH:
13884 case OP_ATR_IMAGE:
13885 case OP_ATR_MAX:
13886 case OP_ATR_MIN:
13887 case OP_ATR_MODULUS:
13888 case OP_ATR_POS:
13889 case OP_ATR_SIZE:
13890 case OP_ATR_TAG:
13891 case OP_ATR_VAL:
13892 break;
13893
13894 case UNOP_IN_RANGE:
13895 case UNOP_QUAL:
323e0a4a
AC
13896 /* XXX: gdb_sprint_host_address, type_sprint */
13897 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13898 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13899 fprintf_filtered (stream, " (");
13900 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13901 fprintf_filtered (stream, ")");
13902 break;
13903 case BINOP_IN_BOUNDS:
52ce6436
PH
13904 fprintf_filtered (stream, " (%d)",
13905 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13906 break;
13907 case TERNOP_IN_RANGE:
13908 break;
13909
52ce6436
PH
13910 case OP_AGGREGATE:
13911 case OP_OTHERS:
13912 case OP_DISCRETE_RANGE:
13913 case OP_POSITIONAL:
13914 case OP_CHOICES:
13915 break;
13916
13917 case OP_NAME:
13918 case OP_STRING:
13919 {
13920 char *name = &exp->elts[elt + 2].string;
13921 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13922
52ce6436
PH
13923 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13924 break;
13925 }
13926
4c4b4cd2
PH
13927 default:
13928 return dump_subexp_body_standard (exp, stream, elt);
13929 }
13930
13931 elt += oplen;
13932 for (i = 0; i < nargs; i += 1)
13933 elt = dump_subexp (exp, stream, elt);
13934
13935 return elt;
13936}
13937
13938/* The Ada extension of print_subexp (q.v.). */
13939
76a01679
JB
13940static void
13941ada_print_subexp (struct expression *exp, int *pos,
13942 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13943{
52ce6436 13944 int oplen, nargs, i;
4c4b4cd2
PH
13945 int pc = *pos;
13946 enum exp_opcode op = exp->elts[pc].opcode;
13947
13948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13949
52ce6436 13950 *pos += oplen;
4c4b4cd2
PH
13951 switch (op)
13952 {
13953 default:
52ce6436 13954 *pos -= oplen;
4c4b4cd2
PH
13955 print_subexp_standard (exp, pos, stream, prec);
13956 return;
13957
13958 case OP_VAR_VALUE:
4c4b4cd2
PH
13959 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13960 return;
13961
13962 case BINOP_IN_BOUNDS:
323e0a4a 13963 /* XXX: sprint_subexp */
4c4b4cd2 13964 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13965 fputs_filtered (" in ", stream);
4c4b4cd2 13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13967 fputs_filtered ("'range", stream);
4c4b4cd2 13968 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13969 fprintf_filtered (stream, "(%ld)",
13970 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13971 return;
13972
13973 case TERNOP_IN_RANGE:
4c4b4cd2 13974 if (prec >= PREC_EQUAL)
76a01679 13975 fputs_filtered ("(", stream);
323e0a4a 13976 /* XXX: sprint_subexp */
4c4b4cd2 13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13978 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13979 print_subexp (exp, pos, stream, PREC_EQUAL);
13980 fputs_filtered (" .. ", stream);
13981 print_subexp (exp, pos, stream, PREC_EQUAL);
13982 if (prec >= PREC_EQUAL)
76a01679
JB
13983 fputs_filtered (")", stream);
13984 return;
4c4b4cd2
PH
13985
13986 case OP_ATR_FIRST:
13987 case OP_ATR_LAST:
13988 case OP_ATR_LENGTH:
13989 case OP_ATR_IMAGE:
13990 case OP_ATR_MAX:
13991 case OP_ATR_MIN:
13992 case OP_ATR_MODULUS:
13993 case OP_ATR_POS:
13994 case OP_ATR_SIZE:
13995 case OP_ATR_TAG:
13996 case OP_ATR_VAL:
4c4b4cd2 13997 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13998 {
13999 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
14000 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14001 &type_print_raw_options);
76a01679
JB
14002 *pos += 3;
14003 }
4c4b4cd2 14004 else
76a01679 14005 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
14006 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14007 if (nargs > 1)
76a01679
JB
14008 {
14009 int tem;
5b4ee69b 14010
76a01679
JB
14011 for (tem = 1; tem < nargs; tem += 1)
14012 {
14013 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14014 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14015 }
14016 fputs_filtered (")", stream);
14017 }
4c4b4cd2 14018 return;
14f9c5c9 14019
4c4b4cd2 14020 case UNOP_QUAL:
4c4b4cd2
PH
14021 type_print (exp->elts[pc + 1].type, "", stream, 0);
14022 fputs_filtered ("'(", stream);
14023 print_subexp (exp, pos, stream, PREC_PREFIX);
14024 fputs_filtered (")", stream);
14025 return;
14f9c5c9 14026
4c4b4cd2 14027 case UNOP_IN_RANGE:
323e0a4a 14028 /* XXX: sprint_subexp */
4c4b4cd2 14029 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 14030 fputs_filtered (" in ", stream);
79d43c61
TT
14031 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14032 &type_print_raw_options);
4c4b4cd2 14033 return;
52ce6436
PH
14034
14035 case OP_DISCRETE_RANGE:
14036 print_subexp (exp, pos, stream, PREC_SUFFIX);
14037 fputs_filtered ("..", stream);
14038 print_subexp (exp, pos, stream, PREC_SUFFIX);
14039 return;
14040
14041 case OP_OTHERS:
14042 fputs_filtered ("others => ", stream);
14043 print_subexp (exp, pos, stream, PREC_SUFFIX);
14044 return;
14045
14046 case OP_CHOICES:
14047 for (i = 0; i < nargs-1; i += 1)
14048 {
14049 if (i > 0)
14050 fputs_filtered ("|", stream);
14051 print_subexp (exp, pos, stream, PREC_SUFFIX);
14052 }
14053 fputs_filtered (" => ", stream);
14054 print_subexp (exp, pos, stream, PREC_SUFFIX);
14055 return;
14056
14057 case OP_POSITIONAL:
14058 print_subexp (exp, pos, stream, PREC_SUFFIX);
14059 return;
14060
14061 case OP_AGGREGATE:
14062 fputs_filtered ("(", stream);
14063 for (i = 0; i < nargs; i += 1)
14064 {
14065 if (i > 0)
14066 fputs_filtered (", ", stream);
14067 print_subexp (exp, pos, stream, PREC_SUFFIX);
14068 }
14069 fputs_filtered (")", stream);
14070 return;
4c4b4cd2
PH
14071 }
14072}
14f9c5c9
AS
14073
14074/* Table mapping opcodes into strings for printing operators
14075 and precedences of the operators. */
14076
d2e4a39e
AS
14077static const struct op_print ada_op_print_tab[] = {
14078 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14079 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14080 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14081 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14082 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14083 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14084 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14085 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14086 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14087 {">=", BINOP_GEQ, PREC_ORDER, 0},
14088 {">", BINOP_GTR, PREC_ORDER, 0},
14089 {"<", BINOP_LESS, PREC_ORDER, 0},
14090 {">>", BINOP_RSH, PREC_SHIFT, 0},
14091 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14092 {"+", BINOP_ADD, PREC_ADD, 0},
14093 {"-", BINOP_SUB, PREC_ADD, 0},
14094 {"&", BINOP_CONCAT, PREC_ADD, 0},
14095 {"*", BINOP_MUL, PREC_MUL, 0},
14096 {"/", BINOP_DIV, PREC_MUL, 0},
14097 {"rem", BINOP_REM, PREC_MUL, 0},
14098 {"mod", BINOP_MOD, PREC_MUL, 0},
14099 {"**", BINOP_EXP, PREC_REPEAT, 0},
14100 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14101 {"-", UNOP_NEG, PREC_PREFIX, 0},
14102 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14103 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14104 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14105 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14106 {".all", UNOP_IND, PREC_SUFFIX, 1},
14107 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14108 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14109 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14110};
14111\f
72d5681a
PH
14112enum ada_primitive_types {
14113 ada_primitive_type_int,
14114 ada_primitive_type_long,
14115 ada_primitive_type_short,
14116 ada_primitive_type_char,
14117 ada_primitive_type_float,
14118 ada_primitive_type_double,
14119 ada_primitive_type_void,
14120 ada_primitive_type_long_long,
14121 ada_primitive_type_long_double,
14122 ada_primitive_type_natural,
14123 ada_primitive_type_positive,
14124 ada_primitive_type_system_address,
08f49010 14125 ada_primitive_type_storage_offset,
72d5681a
PH
14126 nr_ada_primitive_types
14127};
6c038f32
PH
14128
14129static void
d4a9a881 14130ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14131 struct language_arch_info *lai)
14132{
d4a9a881 14133 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14134
72d5681a 14135 lai->primitive_type_vector
d4a9a881 14136 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14137 struct type *);
e9bb382b
UW
14138
14139 lai->primitive_type_vector [ada_primitive_type_int]
14140 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14141 0, "integer");
14142 lai->primitive_type_vector [ada_primitive_type_long]
14143 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14144 0, "long_integer");
14145 lai->primitive_type_vector [ada_primitive_type_short]
14146 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14147 0, "short_integer");
14148 lai->string_char_type
14149 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14150 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14151 lai->primitive_type_vector [ada_primitive_type_float]
14152 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14153 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14154 lai->primitive_type_vector [ada_primitive_type_double]
14155 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14156 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14157 lai->primitive_type_vector [ada_primitive_type_long_long]
14158 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14159 0, "long_long_integer");
14160 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14161 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14162 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14163 lai->primitive_type_vector [ada_primitive_type_natural]
14164 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14165 0, "natural");
14166 lai->primitive_type_vector [ada_primitive_type_positive]
14167 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14168 0, "positive");
14169 lai->primitive_type_vector [ada_primitive_type_void]
14170 = builtin->builtin_void;
14171
14172 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14173 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14174 "void"));
72d5681a
PH
14175 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14176 = "system__address";
fbb06eb1 14177
08f49010
XR
14178 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14179 type. This is a signed integral type whose size is the same as
14180 the size of addresses. */
14181 {
14182 unsigned int addr_length = TYPE_LENGTH
14183 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14184
14185 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14186 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14187 "storage_offset");
14188 }
14189
47e729a8 14190 lai->bool_type_symbol = NULL;
fbb06eb1 14191 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14192}
6c038f32
PH
14193\f
14194 /* Language vector */
14195
14196/* Not really used, but needed in the ada_language_defn. */
14197
14198static void
6c7a06a3 14199emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14200{
6c7a06a3 14201 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14202}
14203
14204static int
410a0ff2 14205parse (struct parser_state *ps)
6c038f32
PH
14206{
14207 warnings_issued = 0;
410a0ff2 14208 return ada_parse (ps);
6c038f32
PH
14209}
14210
14211static const struct exp_descriptor ada_exp_descriptor = {
14212 ada_print_subexp,
14213 ada_operator_length,
c0201579 14214 ada_operator_check,
6c038f32
PH
14215 ada_op_name,
14216 ada_dump_subexp_body,
14217 ada_evaluate_subexp
14218};
14219
b5ec771e
PA
14220/* symbol_name_matcher_ftype adapter for wild_match. */
14221
14222static bool
14223do_wild_match (const char *symbol_search_name,
14224 const lookup_name_info &lookup_name,
a207cff2 14225 completion_match_result *comp_match_res)
b5ec771e
PA
14226{
14227 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14228}
14229
14230/* symbol_name_matcher_ftype adapter for full_match. */
14231
14232static bool
14233do_full_match (const char *symbol_search_name,
14234 const lookup_name_info &lookup_name,
a207cff2 14235 completion_match_result *comp_match_res)
b5ec771e
PA
14236{
14237 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14238}
14239
14240/* Build the Ada lookup name for LOOKUP_NAME. */
14241
14242ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14243{
14244 const std::string &user_name = lookup_name.name ();
14245
14246 if (user_name[0] == '<')
14247 {
14248 if (user_name.back () == '>')
14249 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14250 else
14251 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14252 m_encoded_p = true;
14253 m_verbatim_p = true;
14254 m_wild_match_p = false;
14255 m_standard_p = false;
14256 }
14257 else
14258 {
14259 m_verbatim_p = false;
14260
14261 m_encoded_p = user_name.find ("__") != std::string::npos;
14262
14263 if (!m_encoded_p)
14264 {
14265 const char *folded = ada_fold_name (user_name.c_str ());
14266 const char *encoded = ada_encode_1 (folded, false);
14267 if (encoded != NULL)
14268 m_encoded_name = encoded;
14269 else
14270 m_encoded_name = user_name;
14271 }
14272 else
14273 m_encoded_name = user_name;
14274
14275 /* Handle the 'package Standard' special case. See description
14276 of m_standard_p. */
14277 if (startswith (m_encoded_name.c_str (), "standard__"))
14278 {
14279 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14280 m_standard_p = true;
14281 }
14282 else
14283 m_standard_p = false;
74ccd7f5 14284
b5ec771e
PA
14285 /* If the name contains a ".", then the user is entering a fully
14286 qualified entity name, and the match must not be done in wild
14287 mode. Similarly, if the user wants to complete what looks
14288 like an encoded name, the match must not be done in wild
14289 mode. Also, in the standard__ special case always do
14290 non-wild matching. */
14291 m_wild_match_p
14292 = (lookup_name.match_type () != symbol_name_match_type::FULL
14293 && !m_encoded_p
14294 && !m_standard_p
14295 && user_name.find ('.') == std::string::npos);
14296 }
14297}
14298
14299/* symbol_name_matcher_ftype method for Ada. This only handles
14300 completion mode. */
14301
14302static bool
14303ada_symbol_name_matches (const char *symbol_search_name,
14304 const lookup_name_info &lookup_name,
a207cff2 14305 completion_match_result *comp_match_res)
74ccd7f5 14306{
b5ec771e
PA
14307 return lookup_name.ada ().matches (symbol_search_name,
14308 lookup_name.match_type (),
a207cff2 14309 comp_match_res);
b5ec771e
PA
14310}
14311
de63c46b
PA
14312/* A name matcher that matches the symbol name exactly, with
14313 strcmp. */
14314
14315static bool
14316literal_symbol_name_matcher (const char *symbol_search_name,
14317 const lookup_name_info &lookup_name,
14318 completion_match_result *comp_match_res)
14319{
14320 const std::string &name = lookup_name.name ();
14321
14322 int cmp = (lookup_name.completion_mode ()
14323 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14324 : strcmp (symbol_search_name, name.c_str ()));
14325 if (cmp == 0)
14326 {
14327 if (comp_match_res != NULL)
14328 comp_match_res->set_match (symbol_search_name);
14329 return true;
14330 }
14331 else
14332 return false;
14333}
14334
b5ec771e
PA
14335/* Implement the "la_get_symbol_name_matcher" language_defn method for
14336 Ada. */
14337
14338static symbol_name_matcher_ftype *
14339ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14340{
de63c46b
PA
14341 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14342 return literal_symbol_name_matcher;
14343
b5ec771e
PA
14344 if (lookup_name.completion_mode ())
14345 return ada_symbol_name_matches;
74ccd7f5 14346 else
b5ec771e
PA
14347 {
14348 if (lookup_name.ada ().wild_match_p ())
14349 return do_wild_match;
14350 else
14351 return do_full_match;
14352 }
74ccd7f5
JB
14353}
14354
a5ee536b
JB
14355/* Implement the "la_read_var_value" language_defn method for Ada. */
14356
14357static struct value *
63e43d3a
PMR
14358ada_read_var_value (struct symbol *var, const struct block *var_block,
14359 struct frame_info *frame)
a5ee536b 14360{
3977b71f 14361 const struct block *frame_block = NULL;
a5ee536b
JB
14362 struct symbol *renaming_sym = NULL;
14363
14364 /* The only case where default_read_var_value is not sufficient
14365 is when VAR is a renaming... */
14366 if (frame)
14367 frame_block = get_frame_block (frame, NULL);
14368 if (frame_block)
14369 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14370 if (renaming_sym != NULL)
14371 return ada_read_renaming_var_value (renaming_sym, frame_block);
14372
14373 /* This is a typical case where we expect the default_read_var_value
14374 function to work. */
63e43d3a 14375 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14376}
14377
56618e20
TT
14378static const char *ada_extensions[] =
14379{
14380 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14381};
14382
47e77640 14383extern const struct language_defn ada_language_defn = {
6c038f32 14384 "ada", /* Language name */
6abde28f 14385 "Ada",
6c038f32 14386 language_ada,
6c038f32 14387 range_check_off,
6c038f32
PH
14388 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14389 that's not quite what this means. */
6c038f32 14390 array_row_major,
9a044a89 14391 macro_expansion_no,
56618e20 14392 ada_extensions,
6c038f32
PH
14393 &ada_exp_descriptor,
14394 parse,
6c038f32
PH
14395 resolve,
14396 ada_printchar, /* Print a character constant */
14397 ada_printstr, /* Function to print string constant */
14398 emit_char, /* Function to print single char (not used) */
6c038f32 14399 ada_print_type, /* Print a type using appropriate syntax */
be942545 14400 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14401 ada_val_print, /* Print a value using appropriate syntax */
14402 ada_value_print, /* Print a top-level value */
a5ee536b 14403 ada_read_var_value, /* la_read_var_value */
6c038f32 14404 NULL, /* Language specific skip_trampoline */
2b2d9e11 14405 NULL, /* name_of_this */
59cc4834 14406 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14407 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14408 basic_lookup_transparent_type, /* lookup_transparent_type */
14409 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14410 ada_sniff_from_mangled_name,
0963b4bd
MS
14411 NULL, /* Language specific
14412 class_name_from_physname */
6c038f32
PH
14413 ada_op_print_tab, /* expression operators for printing */
14414 0, /* c-style arrays */
14415 1, /* String lower bound */
6c038f32 14416 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14417 ada_collect_symbol_completion_matches,
72d5681a 14418 ada_language_arch_info,
e79af960 14419 ada_print_array_index,
41f1b697 14420 default_pass_by_reference,
ae6a3a4c 14421 c_get_string,
43cc5389 14422 c_watch_location_expression,
b5ec771e 14423 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14424 ada_iterate_over_symbols,
5ffa0793 14425 default_search_name_hash,
a53b64ea 14426 &ada_varobj_ops,
bb2ec1b3
TT
14427 NULL,
14428 NULL,
6c038f32
PH
14429 LANG_MAGIC
14430};
14431
5bf03f13
JB
14432/* Command-list for the "set/show ada" prefix command. */
14433static struct cmd_list_element *set_ada_list;
14434static struct cmd_list_element *show_ada_list;
14435
14436/* Implement the "set ada" prefix command. */
14437
14438static void
981a3fb3 14439set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14440{
14441 printf_unfiltered (_(\
14442"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14443 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14444}
14445
14446/* Implement the "show ada" prefix command. */
14447
14448static void
981a3fb3 14449show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14450{
14451 cmd_show_list (show_ada_list, from_tty, "");
14452}
14453
2060206e
PA
14454static void
14455initialize_ada_catchpoint_ops (void)
14456{
14457 struct breakpoint_ops *ops;
14458
14459 initialize_breakpoint_ops ();
14460
14461 ops = &catch_exception_breakpoint_ops;
14462 *ops = bkpt_breakpoint_ops;
2060206e
PA
14463 ops->allocate_location = allocate_location_catch_exception;
14464 ops->re_set = re_set_catch_exception;
14465 ops->check_status = check_status_catch_exception;
14466 ops->print_it = print_it_catch_exception;
14467 ops->print_one = print_one_catch_exception;
14468 ops->print_mention = print_mention_catch_exception;
14469 ops->print_recreate = print_recreate_catch_exception;
14470
14471 ops = &catch_exception_unhandled_breakpoint_ops;
14472 *ops = bkpt_breakpoint_ops;
2060206e
PA
14473 ops->allocate_location = allocate_location_catch_exception_unhandled;
14474 ops->re_set = re_set_catch_exception_unhandled;
14475 ops->check_status = check_status_catch_exception_unhandled;
14476 ops->print_it = print_it_catch_exception_unhandled;
14477 ops->print_one = print_one_catch_exception_unhandled;
14478 ops->print_mention = print_mention_catch_exception_unhandled;
14479 ops->print_recreate = print_recreate_catch_exception_unhandled;
14480
14481 ops = &catch_assert_breakpoint_ops;
14482 *ops = bkpt_breakpoint_ops;
2060206e
PA
14483 ops->allocate_location = allocate_location_catch_assert;
14484 ops->re_set = re_set_catch_assert;
14485 ops->check_status = check_status_catch_assert;
14486 ops->print_it = print_it_catch_assert;
14487 ops->print_one = print_one_catch_assert;
14488 ops->print_mention = print_mention_catch_assert;
14489 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14490
14491 ops = &catch_handlers_breakpoint_ops;
14492 *ops = bkpt_breakpoint_ops;
14493 ops->allocate_location = allocate_location_catch_handlers;
14494 ops->re_set = re_set_catch_handlers;
14495 ops->check_status = check_status_catch_handlers;
14496 ops->print_it = print_it_catch_handlers;
14497 ops->print_one = print_one_catch_handlers;
14498 ops->print_mention = print_mention_catch_handlers;
14499 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14500}
14501
3d9434b5
JB
14502/* This module's 'new_objfile' observer. */
14503
14504static void
14505ada_new_objfile_observer (struct objfile *objfile)
14506{
14507 ada_clear_symbol_cache ();
14508}
14509
14510/* This module's 'free_objfile' observer. */
14511
14512static void
14513ada_free_objfile_observer (struct objfile *objfile)
14514{
14515 ada_clear_symbol_cache ();
14516}
14517
d2e4a39e 14518void
6c038f32 14519_initialize_ada_language (void)
14f9c5c9 14520{
2060206e
PA
14521 initialize_ada_catchpoint_ops ();
14522
5bf03f13
JB
14523 add_prefix_cmd ("ada", no_class, set_ada_command,
14524 _("Prefix command for changing Ada-specfic settings"),
14525 &set_ada_list, "set ada ", 0, &setlist);
14526
14527 add_prefix_cmd ("ada", no_class, show_ada_command,
14528 _("Generic command for showing Ada-specific settings."),
14529 &show_ada_list, "show ada ", 0, &showlist);
14530
14531 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14532 &trust_pad_over_xvs, _("\
14533Enable or disable an optimization trusting PAD types over XVS types"), _("\
14534Show whether an optimization trusting PAD types over XVS types is activated"),
14535 _("\
14536This is related to the encoding used by the GNAT compiler. The debugger\n\
14537should normally trust the contents of PAD types, but certain older versions\n\
14538of GNAT have a bug that sometimes causes the information in the PAD type\n\
14539to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14540work around this bug. It is always safe to turn this option \"off\", but\n\
14541this incurs a slight performance penalty, so it is recommended to NOT change\n\
14542this option to \"off\" unless necessary."),
14543 NULL, NULL, &set_ada_list, &show_ada_list);
14544
d72413e6
PMR
14545 add_setshow_boolean_cmd ("print-signatures", class_vars,
14546 &print_signatures, _("\
14547Enable or disable the output of formal and return types for functions in the \
14548overloads selection menu"), _("\
14549Show whether the output of formal and return types for functions in the \
14550overloads selection menu is activated"),
14551 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14552
9ac4176b
PA
14553 add_catch_command ("exception", _("\
14554Catch Ada exceptions, when raised.\n\
14555With an argument, catch only exceptions with the given name."),
14556 catch_ada_exception_command,
14557 NULL,
14558 CATCH_PERMANENT,
14559 CATCH_TEMPORARY);
9f757bf7
XR
14560
14561 add_catch_command ("handlers", _("\
14562Catch Ada exceptions, when handled.\n\
14563With an argument, catch only exceptions with the given name."),
14564 catch_ada_handlers_command,
14565 NULL,
14566 CATCH_PERMANENT,
14567 CATCH_TEMPORARY);
9ac4176b
PA
14568 add_catch_command ("assert", _("\
14569Catch failed Ada assertions, when raised.\n\
14570With an argument, catch only exceptions with the given name."),
14571 catch_assert_command,
14572 NULL,
14573 CATCH_PERMANENT,
14574 CATCH_TEMPORARY);
14575
6c038f32 14576 varsize_limit = 65536;
3fcded8f
JB
14577 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14578 &varsize_limit, _("\
14579Set the maximum number of bytes allowed in a variable-size object."), _("\
14580Show the maximum number of bytes allowed in a variable-size object."), _("\
14581Attempts to access an object whose size is not a compile-time constant\n\
14582and exceeds this limit will cause an error."),
14583 NULL, NULL, &setlist, &showlist);
6c038f32 14584
778865d3
JB
14585 add_info ("exceptions", info_exceptions_command,
14586 _("\
14587List all Ada exception names.\n\
14588If a regular expression is passed as an argument, only those matching\n\
14589the regular expression are listed."));
14590
c6044dd1
JB
14591 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14592 _("Set Ada maintenance-related variables."),
14593 &maint_set_ada_cmdlist, "maintenance set ada ",
14594 0/*allow-unknown*/, &maintenance_set_cmdlist);
14595
14596 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14597 _("Show Ada maintenance-related variables"),
14598 &maint_show_ada_cmdlist, "maintenance show ada ",
14599 0/*allow-unknown*/, &maintenance_show_cmdlist);
14600
14601 add_setshow_boolean_cmd
14602 ("ignore-descriptive-types", class_maintenance,
14603 &ada_ignore_descriptive_types_p,
14604 _("Set whether descriptive types generated by GNAT should be ignored."),
14605 _("Show whether descriptive types generated by GNAT should be ignored."),
14606 _("\
14607When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14608DWARF attribute."),
14609 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14610
459a2e4c
TT
14611 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14612 NULL, xcalloc, xfree);
6b69afc4 14613
3d9434b5 14614 /* The ada-lang observers. */
76727919
TT
14615 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14616 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14617 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14618
14619 /* Setup various context-specific data. */
e802dbe0 14620 ada_inferior_data
8e260fc0 14621 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14622 ada_pspace_data_handle
14623 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14624}