]>
Commit | Line | Data |
---|---|---|
197e01b6 | 1 | /* Ada language support routines for GDB, the GNU debugger. Copyright (C) |
10a2c479 | 2 | |
ae6a3a4c TJB |
3 | 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
14f9c5c9 | 5 | |
a9762ec7 | 6 | This file is part of GDB. |
14f9c5c9 | 7 | |
a9762ec7 JB |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
14f9c5c9 | 12 | |
a9762ec7 JB |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
14f9c5c9 | 17 | |
a9762ec7 JB |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
14f9c5c9 | 20 | |
96d887e8 | 21 | |
4c4b4cd2 | 22 | #include "defs.h" |
14f9c5c9 | 23 | #include <stdio.h> |
0c30c098 | 24 | #include "gdb_string.h" |
14f9c5c9 AS |
25 | #include <ctype.h> |
26 | #include <stdarg.h> | |
27 | #include "demangle.h" | |
4c4b4cd2 PH |
28 | #include "gdb_regex.h" |
29 | #include "frame.h" | |
14f9c5c9 AS |
30 | #include "symtab.h" |
31 | #include "gdbtypes.h" | |
32 | #include "gdbcmd.h" | |
33 | #include "expression.h" | |
34 | #include "parser-defs.h" | |
35 | #include "language.h" | |
36 | #include "c-lang.h" | |
37 | #include "inferior.h" | |
38 | #include "symfile.h" | |
39 | #include "objfiles.h" | |
40 | #include "breakpoint.h" | |
41 | #include "gdbcore.h" | |
4c4b4cd2 PH |
42 | #include "hashtab.h" |
43 | #include "gdb_obstack.h" | |
14f9c5c9 | 44 | #include "ada-lang.h" |
4c4b4cd2 PH |
45 | #include "completer.h" |
46 | #include "gdb_stat.h" | |
47 | #ifdef UI_OUT | |
14f9c5c9 | 48 | #include "ui-out.h" |
4c4b4cd2 | 49 | #endif |
fe898f56 | 50 | #include "block.h" |
04714b91 | 51 | #include "infcall.h" |
de4f826b | 52 | #include "dictionary.h" |
60250e8b | 53 | #include "exceptions.h" |
f7f9143b JB |
54 | #include "annotate.h" |
55 | #include "valprint.h" | |
9bbc9174 | 56 | #include "source.h" |
0259addd | 57 | #include "observer.h" |
2ba95b9b | 58 | #include "vec.h" |
692465f1 | 59 | #include "stack.h" |
14f9c5c9 | 60 | |
ccefe4c4 | 61 | #include "psymtab.h" |
40bc484c | 62 | #include "value.h" |
956a9fb9 | 63 | #include "mi/mi-common.h" |
9ac4176b | 64 | #include "arch-utils.h" |
28010a5d | 65 | #include "exceptions.h" |
ccefe4c4 | 66 | |
4c4b4cd2 | 67 | /* Define whether or not the C operator '/' truncates towards zero for |
0963b4bd | 68 | differently signed operands (truncation direction is undefined in C). |
4c4b4cd2 PH |
69 | Copied from valarith.c. */ |
70 | ||
71 | #ifndef TRUNCATION_TOWARDS_ZERO | |
72 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
73 | #endif | |
74 | ||
d2e4a39e | 75 | static struct type *desc_base_type (struct type *); |
14f9c5c9 | 76 | |
d2e4a39e | 77 | static struct type *desc_bounds_type (struct type *); |
14f9c5c9 | 78 | |
d2e4a39e | 79 | static struct value *desc_bounds (struct value *); |
14f9c5c9 | 80 | |
d2e4a39e | 81 | static int fat_pntr_bounds_bitpos (struct type *); |
14f9c5c9 | 82 | |
d2e4a39e | 83 | static int fat_pntr_bounds_bitsize (struct type *); |
14f9c5c9 | 84 | |
556bdfd4 | 85 | static struct type *desc_data_target_type (struct type *); |
14f9c5c9 | 86 | |
d2e4a39e | 87 | static struct value *desc_data (struct value *); |
14f9c5c9 | 88 | |
d2e4a39e | 89 | static int fat_pntr_data_bitpos (struct type *); |
14f9c5c9 | 90 | |
d2e4a39e | 91 | static int fat_pntr_data_bitsize (struct type *); |
14f9c5c9 | 92 | |
d2e4a39e | 93 | static struct value *desc_one_bound (struct value *, int, int); |
14f9c5c9 | 94 | |
d2e4a39e | 95 | static int desc_bound_bitpos (struct type *, int, int); |
14f9c5c9 | 96 | |
d2e4a39e | 97 | static int desc_bound_bitsize (struct type *, int, int); |
14f9c5c9 | 98 | |
d2e4a39e | 99 | static struct type *desc_index_type (struct type *, int); |
14f9c5c9 | 100 | |
d2e4a39e | 101 | static int desc_arity (struct type *); |
14f9c5c9 | 102 | |
d2e4a39e | 103 | static int ada_type_match (struct type *, struct type *, int); |
14f9c5c9 | 104 | |
d2e4a39e | 105 | static int ada_args_match (struct symbol *, struct value **, int); |
14f9c5c9 | 106 | |
40658b94 PH |
107 | static int full_match (const char *, const char *); |
108 | ||
40bc484c | 109 | static struct value *make_array_descriptor (struct type *, struct value *); |
14f9c5c9 | 110 | |
4c4b4cd2 | 111 | static void ada_add_block_symbols (struct obstack *, |
76a01679 | 112 | struct block *, const char *, |
2570f2b7 | 113 | domain_enum, struct objfile *, int); |
14f9c5c9 | 114 | |
4c4b4cd2 | 115 | static int is_nonfunction (struct ada_symbol_info *, int); |
14f9c5c9 | 116 | |
76a01679 | 117 | static void add_defn_to_vec (struct obstack *, struct symbol *, |
2570f2b7 | 118 | struct block *); |
14f9c5c9 | 119 | |
4c4b4cd2 PH |
120 | static int num_defns_collected (struct obstack *); |
121 | ||
122 | static struct ada_symbol_info *defns_collected (struct obstack *, int); | |
14f9c5c9 | 123 | |
4c4b4cd2 | 124 | static struct value *resolve_subexp (struct expression **, int *, int, |
76a01679 | 125 | struct type *); |
14f9c5c9 | 126 | |
d2e4a39e | 127 | static void replace_operator_with_call (struct expression **, int, int, int, |
4c4b4cd2 | 128 | struct symbol *, struct block *); |
14f9c5c9 | 129 | |
d2e4a39e | 130 | static int possible_user_operator_p (enum exp_opcode, struct value **); |
14f9c5c9 | 131 | |
4c4b4cd2 PH |
132 | static char *ada_op_name (enum exp_opcode); |
133 | ||
134 | static const char *ada_decoded_op_name (enum exp_opcode); | |
14f9c5c9 | 135 | |
d2e4a39e | 136 | static int numeric_type_p (struct type *); |
14f9c5c9 | 137 | |
d2e4a39e | 138 | static int integer_type_p (struct type *); |
14f9c5c9 | 139 | |
d2e4a39e | 140 | static int scalar_type_p (struct type *); |
14f9c5c9 | 141 | |
d2e4a39e | 142 | static int discrete_type_p (struct type *); |
14f9c5c9 | 143 | |
aeb5907d JB |
144 | static enum ada_renaming_category parse_old_style_renaming (struct type *, |
145 | const char **, | |
146 | int *, | |
147 | const char **); | |
148 | ||
149 | static struct symbol *find_old_style_renaming_symbol (const char *, | |
150 | struct block *); | |
151 | ||
4c4b4cd2 | 152 | static struct type *ada_lookup_struct_elt_type (struct type *, char *, |
76a01679 | 153 | int, int, int *); |
4c4b4cd2 | 154 | |
d2e4a39e | 155 | static struct value *evaluate_subexp_type (struct expression *, int *); |
14f9c5c9 | 156 | |
b4ba55a1 JB |
157 | static struct type *ada_find_parallel_type_with_name (struct type *, |
158 | const char *); | |
159 | ||
d2e4a39e | 160 | static int is_dynamic_field (struct type *, int); |
14f9c5c9 | 161 | |
10a2c479 | 162 | static struct type *to_fixed_variant_branch_type (struct type *, |
fc1a4b47 | 163 | const gdb_byte *, |
4c4b4cd2 PH |
164 | CORE_ADDR, struct value *); |
165 | ||
166 | static struct type *to_fixed_array_type (struct type *, struct value *, int); | |
14f9c5c9 | 167 | |
28c85d6c | 168 | static struct type *to_fixed_range_type (struct type *, struct value *); |
14f9c5c9 | 169 | |
d2e4a39e | 170 | static struct type *to_static_fixed_type (struct type *); |
f192137b | 171 | static struct type *static_unwrap_type (struct type *type); |
14f9c5c9 | 172 | |
d2e4a39e | 173 | static struct value *unwrap_value (struct value *); |
14f9c5c9 | 174 | |
ad82864c | 175 | static struct type *constrained_packed_array_type (struct type *, long *); |
14f9c5c9 | 176 | |
ad82864c | 177 | static struct type *decode_constrained_packed_array_type (struct type *); |
14f9c5c9 | 178 | |
ad82864c JB |
179 | static long decode_packed_array_bitsize (struct type *); |
180 | ||
181 | static struct value *decode_constrained_packed_array (struct value *); | |
182 | ||
183 | static int ada_is_packed_array_type (struct type *); | |
184 | ||
185 | static int ada_is_unconstrained_packed_array_type (struct type *); | |
14f9c5c9 | 186 | |
d2e4a39e | 187 | static struct value *value_subscript_packed (struct value *, int, |
4c4b4cd2 | 188 | struct value **); |
14f9c5c9 | 189 | |
50810684 | 190 | static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); |
52ce6436 | 191 | |
4c4b4cd2 PH |
192 | static struct value *coerce_unspec_val_to_type (struct value *, |
193 | struct type *); | |
14f9c5c9 | 194 | |
d2e4a39e | 195 | static struct value *get_var_value (char *, char *); |
14f9c5c9 | 196 | |
d2e4a39e | 197 | static int lesseq_defined_than (struct symbol *, struct symbol *); |
14f9c5c9 | 198 | |
d2e4a39e | 199 | static int equiv_types (struct type *, struct type *); |
14f9c5c9 | 200 | |
d2e4a39e | 201 | static int is_name_suffix (const char *); |
14f9c5c9 | 202 | |
73589123 PH |
203 | static int advance_wild_match (const char **, const char *, int); |
204 | ||
205 | static int wild_match (const char *, const char *); | |
14f9c5c9 | 206 | |
d2e4a39e | 207 | static struct value *ada_coerce_ref (struct value *); |
14f9c5c9 | 208 | |
4c4b4cd2 PH |
209 | static LONGEST pos_atr (struct value *); |
210 | ||
3cb382c9 | 211 | static struct value *value_pos_atr (struct type *, struct value *); |
14f9c5c9 | 212 | |
d2e4a39e | 213 | static struct value *value_val_atr (struct type *, struct value *); |
14f9c5c9 | 214 | |
4c4b4cd2 PH |
215 | static struct symbol *standard_lookup (const char *, const struct block *, |
216 | domain_enum); | |
14f9c5c9 | 217 | |
4c4b4cd2 PH |
218 | static struct value *ada_search_struct_field (char *, struct value *, int, |
219 | struct type *); | |
220 | ||
221 | static struct value *ada_value_primitive_field (struct value *, int, int, | |
222 | struct type *); | |
223 | ||
76a01679 | 224 | static int find_struct_field (char *, struct type *, int, |
52ce6436 | 225 | struct type **, int *, int *, int *, int *); |
4c4b4cd2 PH |
226 | |
227 | static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, | |
228 | struct value *); | |
229 | ||
4c4b4cd2 PH |
230 | static int ada_resolve_function (struct ada_symbol_info *, int, |
231 | struct value **, int, const char *, | |
232 | struct type *); | |
233 | ||
4c4b4cd2 PH |
234 | static int ada_is_direct_array_type (struct type *); |
235 | ||
72d5681a PH |
236 | static void ada_language_arch_info (struct gdbarch *, |
237 | struct language_arch_info *); | |
714e53ab PH |
238 | |
239 | static void check_size (const struct type *); | |
52ce6436 PH |
240 | |
241 | static struct value *ada_index_struct_field (int, struct value *, int, | |
242 | struct type *); | |
243 | ||
244 | static struct value *assign_aggregate (struct value *, struct value *, | |
0963b4bd MS |
245 | struct expression *, |
246 | int *, enum noside); | |
52ce6436 PH |
247 | |
248 | static void aggregate_assign_from_choices (struct value *, struct value *, | |
249 | struct expression *, | |
250 | int *, LONGEST *, int *, | |
251 | int, LONGEST, LONGEST); | |
252 | ||
253 | static void aggregate_assign_positional (struct value *, struct value *, | |
254 | struct expression *, | |
255 | int *, LONGEST *, int *, int, | |
256 | LONGEST, LONGEST); | |
257 | ||
258 | ||
259 | static void aggregate_assign_others (struct value *, struct value *, | |
260 | struct expression *, | |
261 | int *, LONGEST *, int, LONGEST, LONGEST); | |
262 | ||
263 | ||
264 | static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); | |
265 | ||
266 | ||
267 | static struct value *ada_evaluate_subexp (struct type *, struct expression *, | |
268 | int *, enum noside); | |
269 | ||
270 | static void ada_forward_operator_length (struct expression *, int, int *, | |
271 | int *); | |
4c4b4cd2 PH |
272 | \f |
273 | ||
76a01679 | 274 | |
4c4b4cd2 | 275 | /* Maximum-sized dynamic type. */ |
14f9c5c9 AS |
276 | static unsigned int varsize_limit; |
277 | ||
4c4b4cd2 PH |
278 | /* FIXME: brobecker/2003-09-17: No longer a const because it is |
279 | returned by a function that does not return a const char *. */ | |
280 | static char *ada_completer_word_break_characters = | |
281 | #ifdef VMS | |
282 | " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; | |
283 | #else | |
14f9c5c9 | 284 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; |
4c4b4cd2 | 285 | #endif |
14f9c5c9 | 286 | |
4c4b4cd2 | 287 | /* The name of the symbol to use to get the name of the main subprogram. */ |
76a01679 | 288 | static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] |
4c4b4cd2 | 289 | = "__gnat_ada_main_program_name"; |
14f9c5c9 | 290 | |
4c4b4cd2 PH |
291 | /* Limit on the number of warnings to raise per expression evaluation. */ |
292 | static int warning_limit = 2; | |
293 | ||
294 | /* Number of warning messages issued; reset to 0 by cleanups after | |
295 | expression evaluation. */ | |
296 | static int warnings_issued = 0; | |
297 | ||
298 | static const char *known_runtime_file_name_patterns[] = { | |
299 | ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL | |
300 | }; | |
301 | ||
302 | static const char *known_auxiliary_function_name_patterns[] = { | |
303 | ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL | |
304 | }; | |
305 | ||
306 | /* Space for allocating results of ada_lookup_symbol_list. */ | |
307 | static struct obstack symbol_list_obstack; | |
308 | ||
e802dbe0 JB |
309 | /* Inferior-specific data. */ |
310 | ||
311 | /* Per-inferior data for this module. */ | |
312 | ||
313 | struct ada_inferior_data | |
314 | { | |
315 | /* The ada__tags__type_specific_data type, which is used when decoding | |
316 | tagged types. With older versions of GNAT, this type was directly | |
317 | accessible through a component ("tsd") in the object tag. But this | |
318 | is no longer the case, so we cache it for each inferior. */ | |
319 | struct type *tsd_type; | |
320 | }; | |
321 | ||
322 | /* Our key to this module's inferior data. */ | |
323 | static const struct inferior_data *ada_inferior_data; | |
324 | ||
325 | /* A cleanup routine for our inferior data. */ | |
326 | static void | |
327 | ada_inferior_data_cleanup (struct inferior *inf, void *arg) | |
328 | { | |
329 | struct ada_inferior_data *data; | |
330 | ||
331 | data = inferior_data (inf, ada_inferior_data); | |
332 | if (data != NULL) | |
333 | xfree (data); | |
334 | } | |
335 | ||
336 | /* Return our inferior data for the given inferior (INF). | |
337 | ||
338 | This function always returns a valid pointer to an allocated | |
339 | ada_inferior_data structure. If INF's inferior data has not | |
340 | been previously set, this functions creates a new one with all | |
341 | fields set to zero, sets INF's inferior to it, and then returns | |
342 | a pointer to that newly allocated ada_inferior_data. */ | |
343 | ||
344 | static struct ada_inferior_data * | |
345 | get_ada_inferior_data (struct inferior *inf) | |
346 | { | |
347 | struct ada_inferior_data *data; | |
348 | ||
349 | data = inferior_data (inf, ada_inferior_data); | |
350 | if (data == NULL) | |
351 | { | |
352 | data = XZALLOC (struct ada_inferior_data); | |
353 | set_inferior_data (inf, ada_inferior_data, data); | |
354 | } | |
355 | ||
356 | return data; | |
357 | } | |
358 | ||
359 | /* Perform all necessary cleanups regarding our module's inferior data | |
360 | that is required after the inferior INF just exited. */ | |
361 | ||
362 | static void | |
363 | ada_inferior_exit (struct inferior *inf) | |
364 | { | |
365 | ada_inferior_data_cleanup (inf, NULL); | |
366 | set_inferior_data (inf, ada_inferior_data, NULL); | |
367 | } | |
368 | ||
4c4b4cd2 PH |
369 | /* Utilities */ |
370 | ||
720d1a40 | 371 | /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after |
eed9788b | 372 | all typedef layers have been peeled. Otherwise, return TYPE. |
720d1a40 JB |
373 | |
374 | Normally, we really expect a typedef type to only have 1 typedef layer. | |
375 | In other words, we really expect the target type of a typedef type to be | |
376 | a non-typedef type. This is particularly true for Ada units, because | |
377 | the language does not have a typedef vs not-typedef distinction. | |
378 | In that respect, the Ada compiler has been trying to eliminate as many | |
379 | typedef definitions in the debugging information, since they generally | |
380 | do not bring any extra information (we still use typedef under certain | |
381 | circumstances related mostly to the GNAT encoding). | |
382 | ||
383 | Unfortunately, we have seen situations where the debugging information | |
384 | generated by the compiler leads to such multiple typedef layers. For | |
385 | instance, consider the following example with stabs: | |
386 | ||
387 | .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] | |
388 | .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 | |
389 | ||
390 | This is an error in the debugging information which causes type | |
391 | pck__float_array___XUP to be defined twice, and the second time, | |
392 | it is defined as a typedef of a typedef. | |
393 | ||
394 | This is on the fringe of legality as far as debugging information is | |
395 | concerned, and certainly unexpected. But it is easy to handle these | |
396 | situations correctly, so we can afford to be lenient in this case. */ | |
397 | ||
398 | static struct type * | |
399 | ada_typedef_target_type (struct type *type) | |
400 | { | |
401 | while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
402 | type = TYPE_TARGET_TYPE (type); | |
403 | return type; | |
404 | } | |
405 | ||
41d27058 JB |
406 | /* Given DECODED_NAME a string holding a symbol name in its |
407 | decoded form (ie using the Ada dotted notation), returns | |
408 | its unqualified name. */ | |
409 | ||
410 | static const char * | |
411 | ada_unqualified_name (const char *decoded_name) | |
412 | { | |
413 | const char *result = strrchr (decoded_name, '.'); | |
414 | ||
415 | if (result != NULL) | |
416 | result++; /* Skip the dot... */ | |
417 | else | |
418 | result = decoded_name; | |
419 | ||
420 | return result; | |
421 | } | |
422 | ||
423 | /* Return a string starting with '<', followed by STR, and '>'. | |
424 | The result is good until the next call. */ | |
425 | ||
426 | static char * | |
427 | add_angle_brackets (const char *str) | |
428 | { | |
429 | static char *result = NULL; | |
430 | ||
431 | xfree (result); | |
88c15c34 | 432 | result = xstrprintf ("<%s>", str); |
41d27058 JB |
433 | return result; |
434 | } | |
96d887e8 | 435 | |
4c4b4cd2 PH |
436 | static char * |
437 | ada_get_gdb_completer_word_break_characters (void) | |
438 | { | |
439 | return ada_completer_word_break_characters; | |
440 | } | |
441 | ||
e79af960 JB |
442 | /* Print an array element index using the Ada syntax. */ |
443 | ||
444 | static void | |
445 | ada_print_array_index (struct value *index_value, struct ui_file *stream, | |
79a45b7d | 446 | const struct value_print_options *options) |
e79af960 | 447 | { |
79a45b7d | 448 | LA_VALUE_PRINT (index_value, stream, options); |
e79af960 JB |
449 | fprintf_filtered (stream, " => "); |
450 | } | |
451 | ||
f27cf670 | 452 | /* Assuming VECT points to an array of *SIZE objects of size |
14f9c5c9 | 453 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, |
f27cf670 | 454 | updating *SIZE as necessary and returning the (new) array. */ |
14f9c5c9 | 455 | |
f27cf670 AS |
456 | void * |
457 | grow_vect (void *vect, size_t *size, size_t min_size, int element_size) | |
14f9c5c9 | 458 | { |
d2e4a39e AS |
459 | if (*size < min_size) |
460 | { | |
461 | *size *= 2; | |
462 | if (*size < min_size) | |
4c4b4cd2 | 463 | *size = min_size; |
f27cf670 | 464 | vect = xrealloc (vect, *size * element_size); |
d2e4a39e | 465 | } |
f27cf670 | 466 | return vect; |
14f9c5c9 AS |
467 | } |
468 | ||
469 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
4c4b4cd2 | 470 | suffix of FIELD_NAME beginning "___". */ |
14f9c5c9 AS |
471 | |
472 | static int | |
ebf56fd3 | 473 | field_name_match (const char *field_name, const char *target) |
14f9c5c9 AS |
474 | { |
475 | int len = strlen (target); | |
5b4ee69b | 476 | |
d2e4a39e | 477 | return |
4c4b4cd2 PH |
478 | (strncmp (field_name, target, len) == 0 |
479 | && (field_name[len] == '\0' | |
480 | || (strncmp (field_name + len, "___", 3) == 0 | |
76a01679 JB |
481 | && strcmp (field_name + strlen (field_name) - 6, |
482 | "___XVN") != 0))); | |
14f9c5c9 AS |
483 | } |
484 | ||
485 | ||
872c8b51 JB |
486 | /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to |
487 | a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, | |
488 | and return its index. This function also handles fields whose name | |
489 | have ___ suffixes because the compiler sometimes alters their name | |
490 | by adding such a suffix to represent fields with certain constraints. | |
491 | If the field could not be found, return a negative number if | |
492 | MAYBE_MISSING is set. Otherwise raise an error. */ | |
4c4b4cd2 PH |
493 | |
494 | int | |
495 | ada_get_field_index (const struct type *type, const char *field_name, | |
496 | int maybe_missing) | |
497 | { | |
498 | int fieldno; | |
872c8b51 JB |
499 | struct type *struct_type = check_typedef ((struct type *) type); |
500 | ||
501 | for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) | |
502 | if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) | |
4c4b4cd2 PH |
503 | return fieldno; |
504 | ||
505 | if (!maybe_missing) | |
323e0a4a | 506 | error (_("Unable to find field %s in struct %s. Aborting"), |
872c8b51 | 507 | field_name, TYPE_NAME (struct_type)); |
4c4b4cd2 PH |
508 | |
509 | return -1; | |
510 | } | |
511 | ||
512 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
14f9c5c9 AS |
513 | |
514 | int | |
d2e4a39e | 515 | ada_name_prefix_len (const char *name) |
14f9c5c9 AS |
516 | { |
517 | if (name == NULL) | |
518 | return 0; | |
d2e4a39e | 519 | else |
14f9c5c9 | 520 | { |
d2e4a39e | 521 | const char *p = strstr (name, "___"); |
5b4ee69b | 522 | |
14f9c5c9 | 523 | if (p == NULL) |
4c4b4cd2 | 524 | return strlen (name); |
14f9c5c9 | 525 | else |
4c4b4cd2 | 526 | return p - name; |
14f9c5c9 AS |
527 | } |
528 | } | |
529 | ||
4c4b4cd2 PH |
530 | /* Return non-zero if SUFFIX is a suffix of STR. |
531 | Return zero if STR is null. */ | |
532 | ||
14f9c5c9 | 533 | static int |
d2e4a39e | 534 | is_suffix (const char *str, const char *suffix) |
14f9c5c9 AS |
535 | { |
536 | int len1, len2; | |
5b4ee69b | 537 | |
14f9c5c9 AS |
538 | if (str == NULL) |
539 | return 0; | |
540 | len1 = strlen (str); | |
541 | len2 = strlen (suffix); | |
4c4b4cd2 | 542 | return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); |
14f9c5c9 AS |
543 | } |
544 | ||
4c4b4cd2 PH |
545 | /* The contents of value VAL, treated as a value of type TYPE. The |
546 | result is an lval in memory if VAL is. */ | |
14f9c5c9 | 547 | |
d2e4a39e | 548 | static struct value * |
4c4b4cd2 | 549 | coerce_unspec_val_to_type (struct value *val, struct type *type) |
14f9c5c9 | 550 | { |
61ee279c | 551 | type = ada_check_typedef (type); |
df407dfe | 552 | if (value_type (val) == type) |
4c4b4cd2 | 553 | return val; |
d2e4a39e | 554 | else |
14f9c5c9 | 555 | { |
4c4b4cd2 PH |
556 | struct value *result; |
557 | ||
558 | /* Make sure that the object size is not unreasonable before | |
559 | trying to allocate some memory for it. */ | |
714e53ab | 560 | check_size (type); |
4c4b4cd2 | 561 | |
41e8491f JK |
562 | if (value_lazy (val) |
563 | || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) | |
564 | result = allocate_value_lazy (type); | |
565 | else | |
566 | { | |
567 | result = allocate_value (type); | |
568 | memcpy (value_contents_raw (result), value_contents (val), | |
569 | TYPE_LENGTH (type)); | |
570 | } | |
74bcbdf3 | 571 | set_value_component_location (result, val); |
9bbda503 AC |
572 | set_value_bitsize (result, value_bitsize (val)); |
573 | set_value_bitpos (result, value_bitpos (val)); | |
42ae5230 | 574 | set_value_address (result, value_address (val)); |
14f9c5c9 AS |
575 | return result; |
576 | } | |
577 | } | |
578 | ||
fc1a4b47 AC |
579 | static const gdb_byte * |
580 | cond_offset_host (const gdb_byte *valaddr, long offset) | |
14f9c5c9 AS |
581 | { |
582 | if (valaddr == NULL) | |
583 | return NULL; | |
584 | else | |
585 | return valaddr + offset; | |
586 | } | |
587 | ||
588 | static CORE_ADDR | |
ebf56fd3 | 589 | cond_offset_target (CORE_ADDR address, long offset) |
14f9c5c9 AS |
590 | { |
591 | if (address == 0) | |
592 | return 0; | |
d2e4a39e | 593 | else |
14f9c5c9 AS |
594 | return address + offset; |
595 | } | |
596 | ||
4c4b4cd2 PH |
597 | /* Issue a warning (as for the definition of warning in utils.c, but |
598 | with exactly one argument rather than ...), unless the limit on the | |
599 | number of warnings has passed during the evaluation of the current | |
600 | expression. */ | |
a2249542 | 601 | |
77109804 AC |
602 | /* FIXME: cagney/2004-10-10: This function is mimicking the behavior |
603 | provided by "complaint". */ | |
a0b31db1 | 604 | static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); |
77109804 | 605 | |
14f9c5c9 | 606 | static void |
a2249542 | 607 | lim_warning (const char *format, ...) |
14f9c5c9 | 608 | { |
a2249542 | 609 | va_list args; |
a2249542 | 610 | |
5b4ee69b | 611 | va_start (args, format); |
4c4b4cd2 PH |
612 | warnings_issued += 1; |
613 | if (warnings_issued <= warning_limit) | |
a2249542 MK |
614 | vwarning (format, args); |
615 | ||
616 | va_end (args); | |
4c4b4cd2 PH |
617 | } |
618 | ||
714e53ab PH |
619 | /* Issue an error if the size of an object of type T is unreasonable, |
620 | i.e. if it would be a bad idea to allocate a value of this type in | |
621 | GDB. */ | |
622 | ||
623 | static void | |
624 | check_size (const struct type *type) | |
625 | { | |
626 | if (TYPE_LENGTH (type) > varsize_limit) | |
323e0a4a | 627 | error (_("object size is larger than varsize-limit")); |
714e53ab PH |
628 | } |
629 | ||
0963b4bd | 630 | /* Maximum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 631 | static LONGEST |
c3e5cd34 | 632 | max_of_size (int size) |
4c4b4cd2 | 633 | { |
76a01679 | 634 | LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); |
5b4ee69b | 635 | |
76a01679 | 636 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
637 | } |
638 | ||
0963b4bd | 639 | /* Minimum value of a SIZE-byte signed integer type. */ |
4c4b4cd2 | 640 | static LONGEST |
c3e5cd34 | 641 | min_of_size (int size) |
4c4b4cd2 | 642 | { |
c3e5cd34 | 643 | return -max_of_size (size) - 1; |
4c4b4cd2 PH |
644 | } |
645 | ||
0963b4bd | 646 | /* Maximum value of a SIZE-byte unsigned integer type. */ |
4c4b4cd2 | 647 | static ULONGEST |
c3e5cd34 | 648 | umax_of_size (int size) |
4c4b4cd2 | 649 | { |
76a01679 | 650 | ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); |
5b4ee69b | 651 | |
76a01679 | 652 | return top_bit | (top_bit - 1); |
4c4b4cd2 PH |
653 | } |
654 | ||
0963b4bd | 655 | /* Maximum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
656 | static LONGEST |
657 | max_of_type (struct type *t) | |
4c4b4cd2 | 658 | { |
c3e5cd34 PH |
659 | if (TYPE_UNSIGNED (t)) |
660 | return (LONGEST) umax_of_size (TYPE_LENGTH (t)); | |
661 | else | |
662 | return max_of_size (TYPE_LENGTH (t)); | |
663 | } | |
664 | ||
0963b4bd | 665 | /* Minimum value of integral type T, as a signed quantity. */ |
c3e5cd34 PH |
666 | static LONGEST |
667 | min_of_type (struct type *t) | |
668 | { | |
669 | if (TYPE_UNSIGNED (t)) | |
670 | return 0; | |
671 | else | |
672 | return min_of_size (TYPE_LENGTH (t)); | |
4c4b4cd2 PH |
673 | } |
674 | ||
675 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
676 | LONGEST |
677 | ada_discrete_type_high_bound (struct type *type) | |
4c4b4cd2 | 678 | { |
76a01679 | 679 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
680 | { |
681 | case TYPE_CODE_RANGE: | |
690cc4eb | 682 | return TYPE_HIGH_BOUND (type); |
4c4b4cd2 | 683 | case TYPE_CODE_ENUM: |
690cc4eb PH |
684 | return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1); |
685 | case TYPE_CODE_BOOL: | |
686 | return 1; | |
687 | case TYPE_CODE_CHAR: | |
76a01679 | 688 | case TYPE_CODE_INT: |
690cc4eb | 689 | return max_of_type (type); |
4c4b4cd2 | 690 | default: |
43bbcdc2 | 691 | error (_("Unexpected type in ada_discrete_type_high_bound.")); |
4c4b4cd2 PH |
692 | } |
693 | } | |
694 | ||
695 | /* The largest value in the domain of TYPE, a discrete type, as an integer. */ | |
43bbcdc2 PH |
696 | LONGEST |
697 | ada_discrete_type_low_bound (struct type *type) | |
4c4b4cd2 | 698 | { |
76a01679 | 699 | switch (TYPE_CODE (type)) |
4c4b4cd2 PH |
700 | { |
701 | case TYPE_CODE_RANGE: | |
690cc4eb | 702 | return TYPE_LOW_BOUND (type); |
4c4b4cd2 | 703 | case TYPE_CODE_ENUM: |
690cc4eb PH |
704 | return TYPE_FIELD_BITPOS (type, 0); |
705 | case TYPE_CODE_BOOL: | |
706 | return 0; | |
707 | case TYPE_CODE_CHAR: | |
76a01679 | 708 | case TYPE_CODE_INT: |
690cc4eb | 709 | return min_of_type (type); |
4c4b4cd2 | 710 | default: |
43bbcdc2 | 711 | error (_("Unexpected type in ada_discrete_type_low_bound.")); |
4c4b4cd2 PH |
712 | } |
713 | } | |
714 | ||
715 | /* The identity on non-range types. For range types, the underlying | |
76a01679 | 716 | non-range scalar type. */ |
4c4b4cd2 PH |
717 | |
718 | static struct type * | |
18af8284 | 719 | get_base_type (struct type *type) |
4c4b4cd2 PH |
720 | { |
721 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) | |
722 | { | |
76a01679 JB |
723 | if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) |
724 | return type; | |
4c4b4cd2 PH |
725 | type = TYPE_TARGET_TYPE (type); |
726 | } | |
727 | return type; | |
14f9c5c9 | 728 | } |
4c4b4cd2 | 729 | \f |
76a01679 | 730 | |
4c4b4cd2 | 731 | /* Language Selection */ |
14f9c5c9 AS |
732 | |
733 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
ccefe4c4 | 734 | (the main program is in Ada iif the adainit symbol is found). */ |
d2e4a39e | 735 | |
14f9c5c9 | 736 | enum language |
ccefe4c4 | 737 | ada_update_initial_language (enum language lang) |
14f9c5c9 | 738 | { |
d2e4a39e | 739 | if (lookup_minimal_symbol ("adainit", (const char *) NULL, |
4c4b4cd2 PH |
740 | (struct objfile *) NULL) != NULL) |
741 | return language_ada; | |
14f9c5c9 AS |
742 | |
743 | return lang; | |
744 | } | |
96d887e8 PH |
745 | |
746 | /* If the main procedure is written in Ada, then return its name. | |
747 | The result is good until the next call. Return NULL if the main | |
748 | procedure doesn't appear to be in Ada. */ | |
749 | ||
750 | char * | |
751 | ada_main_name (void) | |
752 | { | |
753 | struct minimal_symbol *msym; | |
f9bc20b9 | 754 | static char *main_program_name = NULL; |
6c038f32 | 755 | |
96d887e8 PH |
756 | /* For Ada, the name of the main procedure is stored in a specific |
757 | string constant, generated by the binder. Look for that symbol, | |
758 | extract its address, and then read that string. If we didn't find | |
759 | that string, then most probably the main procedure is not written | |
760 | in Ada. */ | |
761 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
762 | ||
763 | if (msym != NULL) | |
764 | { | |
f9bc20b9 JB |
765 | CORE_ADDR main_program_name_addr; |
766 | int err_code; | |
767 | ||
96d887e8 PH |
768 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); |
769 | if (main_program_name_addr == 0) | |
323e0a4a | 770 | error (_("Invalid address for Ada main program name.")); |
96d887e8 | 771 | |
f9bc20b9 JB |
772 | xfree (main_program_name); |
773 | target_read_string (main_program_name_addr, &main_program_name, | |
774 | 1024, &err_code); | |
775 | ||
776 | if (err_code != 0) | |
777 | return NULL; | |
96d887e8 PH |
778 | return main_program_name; |
779 | } | |
780 | ||
781 | /* The main procedure doesn't seem to be in Ada. */ | |
782 | return NULL; | |
783 | } | |
14f9c5c9 | 784 | \f |
4c4b4cd2 | 785 | /* Symbols */ |
d2e4a39e | 786 | |
4c4b4cd2 PH |
787 | /* Table of Ada operators and their GNAT-encoded names. Last entry is pair |
788 | of NULLs. */ | |
14f9c5c9 | 789 | |
d2e4a39e AS |
790 | const struct ada_opname_map ada_opname_table[] = { |
791 | {"Oadd", "\"+\"", BINOP_ADD}, | |
792 | {"Osubtract", "\"-\"", BINOP_SUB}, | |
793 | {"Omultiply", "\"*\"", BINOP_MUL}, | |
794 | {"Odivide", "\"/\"", BINOP_DIV}, | |
795 | {"Omod", "\"mod\"", BINOP_MOD}, | |
796 | {"Orem", "\"rem\"", BINOP_REM}, | |
797 | {"Oexpon", "\"**\"", BINOP_EXP}, | |
798 | {"Olt", "\"<\"", BINOP_LESS}, | |
799 | {"Ole", "\"<=\"", BINOP_LEQ}, | |
800 | {"Ogt", "\">\"", BINOP_GTR}, | |
801 | {"Oge", "\">=\"", BINOP_GEQ}, | |
802 | {"Oeq", "\"=\"", BINOP_EQUAL}, | |
803 | {"One", "\"/=\"", BINOP_NOTEQUAL}, | |
804 | {"Oand", "\"and\"", BINOP_BITWISE_AND}, | |
805 | {"Oor", "\"or\"", BINOP_BITWISE_IOR}, | |
806 | {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, | |
807 | {"Oconcat", "\"&\"", BINOP_CONCAT}, | |
808 | {"Oabs", "\"abs\"", UNOP_ABS}, | |
809 | {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, | |
810 | {"Oadd", "\"+\"", UNOP_PLUS}, | |
811 | {"Osubtract", "\"-\"", UNOP_NEG}, | |
812 | {NULL, NULL} | |
14f9c5c9 AS |
813 | }; |
814 | ||
4c4b4cd2 PH |
815 | /* The "encoded" form of DECODED, according to GNAT conventions. |
816 | The result is valid until the next call to ada_encode. */ | |
817 | ||
14f9c5c9 | 818 | char * |
4c4b4cd2 | 819 | ada_encode (const char *decoded) |
14f9c5c9 | 820 | { |
4c4b4cd2 PH |
821 | static char *encoding_buffer = NULL; |
822 | static size_t encoding_buffer_size = 0; | |
d2e4a39e | 823 | const char *p; |
14f9c5c9 | 824 | int k; |
d2e4a39e | 825 | |
4c4b4cd2 | 826 | if (decoded == NULL) |
14f9c5c9 AS |
827 | return NULL; |
828 | ||
4c4b4cd2 PH |
829 | GROW_VECT (encoding_buffer, encoding_buffer_size, |
830 | 2 * strlen (decoded) + 10); | |
14f9c5c9 AS |
831 | |
832 | k = 0; | |
4c4b4cd2 | 833 | for (p = decoded; *p != '\0'; p += 1) |
14f9c5c9 | 834 | { |
cdc7bb92 | 835 | if (*p == '.') |
4c4b4cd2 PH |
836 | { |
837 | encoding_buffer[k] = encoding_buffer[k + 1] = '_'; | |
838 | k += 2; | |
839 | } | |
14f9c5c9 | 840 | else if (*p == '"') |
4c4b4cd2 PH |
841 | { |
842 | const struct ada_opname_map *mapping; | |
843 | ||
844 | for (mapping = ada_opname_table; | |
1265e4aa JB |
845 | mapping->encoded != NULL |
846 | && strncmp (mapping->decoded, p, | |
847 | strlen (mapping->decoded)) != 0; mapping += 1) | |
4c4b4cd2 PH |
848 | ; |
849 | if (mapping->encoded == NULL) | |
323e0a4a | 850 | error (_("invalid Ada operator name: %s"), p); |
4c4b4cd2 PH |
851 | strcpy (encoding_buffer + k, mapping->encoded); |
852 | k += strlen (mapping->encoded); | |
853 | break; | |
854 | } | |
d2e4a39e | 855 | else |
4c4b4cd2 PH |
856 | { |
857 | encoding_buffer[k] = *p; | |
858 | k += 1; | |
859 | } | |
14f9c5c9 AS |
860 | } |
861 | ||
4c4b4cd2 PH |
862 | encoding_buffer[k] = '\0'; |
863 | return encoding_buffer; | |
14f9c5c9 AS |
864 | } |
865 | ||
866 | /* Return NAME folded to lower case, or, if surrounded by single | |
4c4b4cd2 PH |
867 | quotes, unfolded, but with the quotes stripped away. Result good |
868 | to next call. */ | |
869 | ||
d2e4a39e AS |
870 | char * |
871 | ada_fold_name (const char *name) | |
14f9c5c9 | 872 | { |
d2e4a39e | 873 | static char *fold_buffer = NULL; |
14f9c5c9 AS |
874 | static size_t fold_buffer_size = 0; |
875 | ||
876 | int len = strlen (name); | |
d2e4a39e | 877 | GROW_VECT (fold_buffer, fold_buffer_size, len + 1); |
14f9c5c9 AS |
878 | |
879 | if (name[0] == '\'') | |
880 | { | |
d2e4a39e AS |
881 | strncpy (fold_buffer, name + 1, len - 2); |
882 | fold_buffer[len - 2] = '\000'; | |
14f9c5c9 AS |
883 | } |
884 | else | |
885 | { | |
886 | int i; | |
5b4ee69b | 887 | |
14f9c5c9 | 888 | for (i = 0; i <= len; i += 1) |
4c4b4cd2 | 889 | fold_buffer[i] = tolower (name[i]); |
14f9c5c9 AS |
890 | } |
891 | ||
892 | return fold_buffer; | |
893 | } | |
894 | ||
529cad9c PH |
895 | /* Return nonzero if C is either a digit or a lowercase alphabet character. */ |
896 | ||
897 | static int | |
898 | is_lower_alphanum (const char c) | |
899 | { | |
900 | return (isdigit (c) || (isalpha (c) && islower (c))); | |
901 | } | |
902 | ||
c90092fe JB |
903 | /* ENCODED is the linkage name of a symbol and LEN contains its length. |
904 | This function saves in LEN the length of that same symbol name but | |
905 | without either of these suffixes: | |
29480c32 JB |
906 | . .{DIGIT}+ |
907 | . ${DIGIT}+ | |
908 | . ___{DIGIT}+ | |
909 | . __{DIGIT}+. | |
c90092fe | 910 | |
29480c32 JB |
911 | These are suffixes introduced by the compiler for entities such as |
912 | nested subprogram for instance, in order to avoid name clashes. | |
913 | They do not serve any purpose for the debugger. */ | |
914 | ||
915 | static void | |
916 | ada_remove_trailing_digits (const char *encoded, int *len) | |
917 | { | |
918 | if (*len > 1 && isdigit (encoded[*len - 1])) | |
919 | { | |
920 | int i = *len - 2; | |
5b4ee69b | 921 | |
29480c32 JB |
922 | while (i > 0 && isdigit (encoded[i])) |
923 | i--; | |
924 | if (i >= 0 && encoded[i] == '.') | |
925 | *len = i; | |
926 | else if (i >= 0 && encoded[i] == '$') | |
927 | *len = i; | |
928 | else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) | |
929 | *len = i - 2; | |
930 | else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) | |
931 | *len = i - 1; | |
932 | } | |
933 | } | |
934 | ||
935 | /* Remove the suffix introduced by the compiler for protected object | |
936 | subprograms. */ | |
937 | ||
938 | static void | |
939 | ada_remove_po_subprogram_suffix (const char *encoded, int *len) | |
940 | { | |
941 | /* Remove trailing N. */ | |
942 | ||
943 | /* Protected entry subprograms are broken into two | |
944 | separate subprograms: The first one is unprotected, and has | |
945 | a 'N' suffix; the second is the protected version, and has | |
0963b4bd | 946 | the 'P' suffix. The second calls the first one after handling |
29480c32 JB |
947 | the protection. Since the P subprograms are internally generated, |
948 | we leave these names undecoded, giving the user a clue that this | |
949 | entity is internal. */ | |
950 | ||
951 | if (*len > 1 | |
952 | && encoded[*len - 1] == 'N' | |
953 | && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) | |
954 | *len = *len - 1; | |
955 | } | |
956 | ||
69fadcdf JB |
957 | /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ |
958 | ||
959 | static void | |
960 | ada_remove_Xbn_suffix (const char *encoded, int *len) | |
961 | { | |
962 | int i = *len - 1; | |
963 | ||
964 | while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) | |
965 | i--; | |
966 | ||
967 | if (encoded[i] != 'X') | |
968 | return; | |
969 | ||
970 | if (i == 0) | |
971 | return; | |
972 | ||
973 | if (isalnum (encoded[i-1])) | |
974 | *len = i; | |
975 | } | |
976 | ||
29480c32 JB |
977 | /* If ENCODED follows the GNAT entity encoding conventions, then return |
978 | the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is | |
979 | replaced by ENCODED. | |
14f9c5c9 | 980 | |
4c4b4cd2 | 981 | The resulting string is valid until the next call of ada_decode. |
29480c32 | 982 | If the string is unchanged by decoding, the original string pointer |
4c4b4cd2 PH |
983 | is returned. */ |
984 | ||
985 | const char * | |
986 | ada_decode (const char *encoded) | |
14f9c5c9 AS |
987 | { |
988 | int i, j; | |
989 | int len0; | |
d2e4a39e | 990 | const char *p; |
4c4b4cd2 | 991 | char *decoded; |
14f9c5c9 | 992 | int at_start_name; |
4c4b4cd2 PH |
993 | static char *decoding_buffer = NULL; |
994 | static size_t decoding_buffer_size = 0; | |
d2e4a39e | 995 | |
29480c32 JB |
996 | /* The name of the Ada main procedure starts with "_ada_". |
997 | This prefix is not part of the decoded name, so skip this part | |
998 | if we see this prefix. */ | |
4c4b4cd2 PH |
999 | if (strncmp (encoded, "_ada_", 5) == 0) |
1000 | encoded += 5; | |
14f9c5c9 | 1001 | |
29480c32 JB |
1002 | /* If the name starts with '_', then it is not a properly encoded |
1003 | name, so do not attempt to decode it. Similarly, if the name | |
1004 | starts with '<', the name should not be decoded. */ | |
4c4b4cd2 | 1005 | if (encoded[0] == '_' || encoded[0] == '<') |
14f9c5c9 AS |
1006 | goto Suppress; |
1007 | ||
4c4b4cd2 | 1008 | len0 = strlen (encoded); |
4c4b4cd2 | 1009 | |
29480c32 JB |
1010 | ada_remove_trailing_digits (encoded, &len0); |
1011 | ada_remove_po_subprogram_suffix (encoded, &len0); | |
529cad9c | 1012 | |
4c4b4cd2 PH |
1013 | /* Remove the ___X.* suffix if present. Do not forget to verify that |
1014 | the suffix is located before the current "end" of ENCODED. We want | |
1015 | to avoid re-matching parts of ENCODED that have previously been | |
1016 | marked as discarded (by decrementing LEN0). */ | |
1017 | p = strstr (encoded, "___"); | |
1018 | if (p != NULL && p - encoded < len0 - 3) | |
14f9c5c9 AS |
1019 | { |
1020 | if (p[3] == 'X') | |
4c4b4cd2 | 1021 | len0 = p - encoded; |
14f9c5c9 | 1022 | else |
4c4b4cd2 | 1023 | goto Suppress; |
14f9c5c9 | 1024 | } |
4c4b4cd2 | 1025 | |
29480c32 JB |
1026 | /* Remove any trailing TKB suffix. It tells us that this symbol |
1027 | is for the body of a task, but that information does not actually | |
1028 | appear in the decoded name. */ | |
1029 | ||
4c4b4cd2 | 1030 | if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) |
14f9c5c9 | 1031 | len0 -= 3; |
76a01679 | 1032 | |
a10967fa JB |
1033 | /* Remove any trailing TB suffix. The TB suffix is slightly different |
1034 | from the TKB suffix because it is used for non-anonymous task | |
1035 | bodies. */ | |
1036 | ||
1037 | if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) | |
1038 | len0 -= 2; | |
1039 | ||
29480c32 JB |
1040 | /* Remove trailing "B" suffixes. */ |
1041 | /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ | |
1042 | ||
4c4b4cd2 | 1043 | if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) |
14f9c5c9 AS |
1044 | len0 -= 1; |
1045 | ||
4c4b4cd2 | 1046 | /* Make decoded big enough for possible expansion by operator name. */ |
29480c32 | 1047 | |
4c4b4cd2 PH |
1048 | GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); |
1049 | decoded = decoding_buffer; | |
14f9c5c9 | 1050 | |
29480c32 JB |
1051 | /* Remove trailing __{digit}+ or trailing ${digit}+. */ |
1052 | ||
4c4b4cd2 | 1053 | if (len0 > 1 && isdigit (encoded[len0 - 1])) |
d2e4a39e | 1054 | { |
4c4b4cd2 PH |
1055 | i = len0 - 2; |
1056 | while ((i >= 0 && isdigit (encoded[i])) | |
1057 | || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) | |
1058 | i -= 1; | |
1059 | if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') | |
1060 | len0 = i - 1; | |
1061 | else if (encoded[i] == '$') | |
1062 | len0 = i; | |
d2e4a39e | 1063 | } |
14f9c5c9 | 1064 | |
29480c32 JB |
1065 | /* The first few characters that are not alphabetic are not part |
1066 | of any encoding we use, so we can copy them over verbatim. */ | |
1067 | ||
4c4b4cd2 PH |
1068 | for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) |
1069 | decoded[j] = encoded[i]; | |
14f9c5c9 AS |
1070 | |
1071 | at_start_name = 1; | |
1072 | while (i < len0) | |
1073 | { | |
29480c32 | 1074 | /* Is this a symbol function? */ |
4c4b4cd2 PH |
1075 | if (at_start_name && encoded[i] == 'O') |
1076 | { | |
1077 | int k; | |
5b4ee69b | 1078 | |
4c4b4cd2 PH |
1079 | for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) |
1080 | { | |
1081 | int op_len = strlen (ada_opname_table[k].encoded); | |
06d5cf63 JB |
1082 | if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, |
1083 | op_len - 1) == 0) | |
1084 | && !isalnum (encoded[i + op_len])) | |
4c4b4cd2 PH |
1085 | { |
1086 | strcpy (decoded + j, ada_opname_table[k].decoded); | |
1087 | at_start_name = 0; | |
1088 | i += op_len; | |
1089 | j += strlen (ada_opname_table[k].decoded); | |
1090 | break; | |
1091 | } | |
1092 | } | |
1093 | if (ada_opname_table[k].encoded != NULL) | |
1094 | continue; | |
1095 | } | |
14f9c5c9 AS |
1096 | at_start_name = 0; |
1097 | ||
529cad9c PH |
1098 | /* Replace "TK__" with "__", which will eventually be translated |
1099 | into "." (just below). */ | |
1100 | ||
4c4b4cd2 PH |
1101 | if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) |
1102 | i += 2; | |
529cad9c | 1103 | |
29480c32 JB |
1104 | /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually |
1105 | be translated into "." (just below). These are internal names | |
1106 | generated for anonymous blocks inside which our symbol is nested. */ | |
1107 | ||
1108 | if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' | |
1109 | && encoded [i+2] == 'B' && encoded [i+3] == '_' | |
1110 | && isdigit (encoded [i+4])) | |
1111 | { | |
1112 | int k = i + 5; | |
1113 | ||
1114 | while (k < len0 && isdigit (encoded[k])) | |
1115 | k++; /* Skip any extra digit. */ | |
1116 | ||
1117 | /* Double-check that the "__B_{DIGITS}+" sequence we found | |
1118 | is indeed followed by "__". */ | |
1119 | if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') | |
1120 | i = k; | |
1121 | } | |
1122 | ||
529cad9c PH |
1123 | /* Remove _E{DIGITS}+[sb] */ |
1124 | ||
1125 | /* Just as for protected object subprograms, there are 2 categories | |
0963b4bd | 1126 | of subprograms created by the compiler for each entry. The first |
529cad9c PH |
1127 | one implements the actual entry code, and has a suffix following |
1128 | the convention above; the second one implements the barrier and | |
1129 | uses the same convention as above, except that the 'E' is replaced | |
1130 | by a 'B'. | |
1131 | ||
1132 | Just as above, we do not decode the name of barrier functions | |
1133 | to give the user a clue that the code he is debugging has been | |
1134 | internally generated. */ | |
1135 | ||
1136 | if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' | |
1137 | && isdigit (encoded[i+2])) | |
1138 | { | |
1139 | int k = i + 3; | |
1140 | ||
1141 | while (k < len0 && isdigit (encoded[k])) | |
1142 | k++; | |
1143 | ||
1144 | if (k < len0 | |
1145 | && (encoded[k] == 'b' || encoded[k] == 's')) | |
1146 | { | |
1147 | k++; | |
1148 | /* Just as an extra precaution, make sure that if this | |
1149 | suffix is followed by anything else, it is a '_'. | |
1150 | Otherwise, we matched this sequence by accident. */ | |
1151 | if (k == len0 | |
1152 | || (k < len0 && encoded[k] == '_')) | |
1153 | i = k; | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | /* Remove trailing "N" in [a-z0-9]+N__. The N is added by | |
1158 | the GNAT front-end in protected object subprograms. */ | |
1159 | ||
1160 | if (i < len0 + 3 | |
1161 | && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') | |
1162 | { | |
1163 | /* Backtrack a bit up until we reach either the begining of | |
1164 | the encoded name, or "__". Make sure that we only find | |
1165 | digits or lowercase characters. */ | |
1166 | const char *ptr = encoded + i - 1; | |
1167 | ||
1168 | while (ptr >= encoded && is_lower_alphanum (ptr[0])) | |
1169 | ptr--; | |
1170 | if (ptr < encoded | |
1171 | || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) | |
1172 | i++; | |
1173 | } | |
1174 | ||
4c4b4cd2 PH |
1175 | if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) |
1176 | { | |
29480c32 JB |
1177 | /* This is a X[bn]* sequence not separated from the previous |
1178 | part of the name with a non-alpha-numeric character (in other | |
1179 | words, immediately following an alpha-numeric character), then | |
1180 | verify that it is placed at the end of the encoded name. If | |
1181 | not, then the encoding is not valid and we should abort the | |
1182 | decoding. Otherwise, just skip it, it is used in body-nested | |
1183 | package names. */ | |
4c4b4cd2 PH |
1184 | do |
1185 | i += 1; | |
1186 | while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); | |
1187 | if (i < len0) | |
1188 | goto Suppress; | |
1189 | } | |
cdc7bb92 | 1190 | else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') |
4c4b4cd2 | 1191 | { |
29480c32 | 1192 | /* Replace '__' by '.'. */ |
4c4b4cd2 PH |
1193 | decoded[j] = '.'; |
1194 | at_start_name = 1; | |
1195 | i += 2; | |
1196 | j += 1; | |
1197 | } | |
14f9c5c9 | 1198 | else |
4c4b4cd2 | 1199 | { |
29480c32 JB |
1200 | /* It's a character part of the decoded name, so just copy it |
1201 | over. */ | |
4c4b4cd2 PH |
1202 | decoded[j] = encoded[i]; |
1203 | i += 1; | |
1204 | j += 1; | |
1205 | } | |
14f9c5c9 | 1206 | } |
4c4b4cd2 | 1207 | decoded[j] = '\000'; |
14f9c5c9 | 1208 | |
29480c32 JB |
1209 | /* Decoded names should never contain any uppercase character. |
1210 | Double-check this, and abort the decoding if we find one. */ | |
1211 | ||
4c4b4cd2 PH |
1212 | for (i = 0; decoded[i] != '\0'; i += 1) |
1213 | if (isupper (decoded[i]) || decoded[i] == ' ') | |
14f9c5c9 AS |
1214 | goto Suppress; |
1215 | ||
4c4b4cd2 PH |
1216 | if (strcmp (decoded, encoded) == 0) |
1217 | return encoded; | |
1218 | else | |
1219 | return decoded; | |
14f9c5c9 AS |
1220 | |
1221 | Suppress: | |
4c4b4cd2 PH |
1222 | GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); |
1223 | decoded = decoding_buffer; | |
1224 | if (encoded[0] == '<') | |
1225 | strcpy (decoded, encoded); | |
14f9c5c9 | 1226 | else |
88c15c34 | 1227 | xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); |
4c4b4cd2 PH |
1228 | return decoded; |
1229 | ||
1230 | } | |
1231 | ||
1232 | /* Table for keeping permanent unique copies of decoded names. Once | |
1233 | allocated, names in this table are never released. While this is a | |
1234 | storage leak, it should not be significant unless there are massive | |
1235 | changes in the set of decoded names in successive versions of a | |
1236 | symbol table loaded during a single session. */ | |
1237 | static struct htab *decoded_names_store; | |
1238 | ||
1239 | /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it | |
1240 | in the language-specific part of GSYMBOL, if it has not been | |
1241 | previously computed. Tries to save the decoded name in the same | |
1242 | obstack as GSYMBOL, if possible, and otherwise on the heap (so that, | |
1243 | in any case, the decoded symbol has a lifetime at least that of | |
0963b4bd | 1244 | GSYMBOL). |
4c4b4cd2 PH |
1245 | The GSYMBOL parameter is "mutable" in the C++ sense: logically |
1246 | const, but nevertheless modified to a semantically equivalent form | |
0963b4bd | 1247 | when a decoded name is cached in it. */ |
4c4b4cd2 | 1248 | |
76a01679 JB |
1249 | char * |
1250 | ada_decode_symbol (const struct general_symbol_info *gsymbol) | |
4c4b4cd2 | 1251 | { |
76a01679 | 1252 | char **resultp = |
afa16725 | 1253 | (char **) &gsymbol->language_specific.mangled_lang.demangled_name; |
5b4ee69b | 1254 | |
4c4b4cd2 PH |
1255 | if (*resultp == NULL) |
1256 | { | |
1257 | const char *decoded = ada_decode (gsymbol->name); | |
5b4ee69b | 1258 | |
714835d5 | 1259 | if (gsymbol->obj_section != NULL) |
76a01679 | 1260 | { |
714835d5 | 1261 | struct objfile *objf = gsymbol->obj_section->objfile; |
5b4ee69b | 1262 | |
714835d5 UW |
1263 | *resultp = obsavestring (decoded, strlen (decoded), |
1264 | &objf->objfile_obstack); | |
76a01679 | 1265 | } |
4c4b4cd2 | 1266 | /* Sometimes, we can't find a corresponding objfile, in which |
76a01679 JB |
1267 | case, we put the result on the heap. Since we only decode |
1268 | when needed, we hope this usually does not cause a | |
1269 | significant memory leak (FIXME). */ | |
4c4b4cd2 | 1270 | if (*resultp == NULL) |
76a01679 JB |
1271 | { |
1272 | char **slot = (char **) htab_find_slot (decoded_names_store, | |
1273 | decoded, INSERT); | |
5b4ee69b | 1274 | |
76a01679 JB |
1275 | if (*slot == NULL) |
1276 | *slot = xstrdup (decoded); | |
1277 | *resultp = *slot; | |
1278 | } | |
4c4b4cd2 | 1279 | } |
14f9c5c9 | 1280 | |
4c4b4cd2 PH |
1281 | return *resultp; |
1282 | } | |
76a01679 | 1283 | |
2c0b251b | 1284 | static char * |
76a01679 | 1285 | ada_la_decode (const char *encoded, int options) |
4c4b4cd2 PH |
1286 | { |
1287 | return xstrdup (ada_decode (encoded)); | |
14f9c5c9 AS |
1288 | } |
1289 | ||
1290 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
4c4b4cd2 PH |
1291 | suffixes that encode debugging information or leading _ada_ on |
1292 | SYM_NAME (see is_name_suffix commentary for the debugging | |
1293 | information that is ignored). If WILD, then NAME need only match a | |
1294 | suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
1295 | either argument is NULL. */ | |
14f9c5c9 | 1296 | |
2c0b251b | 1297 | static int |
40658b94 | 1298 | match_name (const char *sym_name, const char *name, int wild) |
14f9c5c9 AS |
1299 | { |
1300 | if (sym_name == NULL || name == NULL) | |
1301 | return 0; | |
1302 | else if (wild) | |
73589123 | 1303 | return wild_match (sym_name, name) == 0; |
d2e4a39e AS |
1304 | else |
1305 | { | |
1306 | int len_name = strlen (name); | |
5b4ee69b | 1307 | |
4c4b4cd2 PH |
1308 | return (strncmp (sym_name, name, len_name) == 0 |
1309 | && is_name_suffix (sym_name + len_name)) | |
1310 | || (strncmp (sym_name, "_ada_", 5) == 0 | |
1311 | && strncmp (sym_name + 5, name, len_name) == 0 | |
1312 | && is_name_suffix (sym_name + len_name + 5)); | |
d2e4a39e | 1313 | } |
14f9c5c9 | 1314 | } |
14f9c5c9 | 1315 | \f |
d2e4a39e | 1316 | |
4c4b4cd2 | 1317 | /* Arrays */ |
14f9c5c9 | 1318 | |
28c85d6c JB |
1319 | /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure |
1320 | generated by the GNAT compiler to describe the index type used | |
1321 | for each dimension of an array, check whether it follows the latest | |
1322 | known encoding. If not, fix it up to conform to the latest encoding. | |
1323 | Otherwise, do nothing. This function also does nothing if | |
1324 | INDEX_DESC_TYPE is NULL. | |
1325 | ||
1326 | The GNAT encoding used to describle the array index type evolved a bit. | |
1327 | Initially, the information would be provided through the name of each | |
1328 | field of the structure type only, while the type of these fields was | |
1329 | described as unspecified and irrelevant. The debugger was then expected | |
1330 | to perform a global type lookup using the name of that field in order | |
1331 | to get access to the full index type description. Because these global | |
1332 | lookups can be very expensive, the encoding was later enhanced to make | |
1333 | the global lookup unnecessary by defining the field type as being | |
1334 | the full index type description. | |
1335 | ||
1336 | The purpose of this routine is to allow us to support older versions | |
1337 | of the compiler by detecting the use of the older encoding, and by | |
1338 | fixing up the INDEX_DESC_TYPE to follow the new one (at this point, | |
1339 | we essentially replace each field's meaningless type by the associated | |
1340 | index subtype). */ | |
1341 | ||
1342 | void | |
1343 | ada_fixup_array_indexes_type (struct type *index_desc_type) | |
1344 | { | |
1345 | int i; | |
1346 | ||
1347 | if (index_desc_type == NULL) | |
1348 | return; | |
1349 | gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); | |
1350 | ||
1351 | /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient | |
1352 | to check one field only, no need to check them all). If not, return | |
1353 | now. | |
1354 | ||
1355 | If our INDEX_DESC_TYPE was generated using the older encoding, | |
1356 | the field type should be a meaningless integer type whose name | |
1357 | is not equal to the field name. */ | |
1358 | if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL | |
1359 | && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), | |
1360 | TYPE_FIELD_NAME (index_desc_type, 0)) == 0) | |
1361 | return; | |
1362 | ||
1363 | /* Fixup each field of INDEX_DESC_TYPE. */ | |
1364 | for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) | |
1365 | { | |
1366 | char *name = TYPE_FIELD_NAME (index_desc_type, i); | |
1367 | struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); | |
1368 | ||
1369 | if (raw_type) | |
1370 | TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; | |
1371 | } | |
1372 | } | |
1373 | ||
4c4b4cd2 | 1374 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ |
14f9c5c9 | 1375 | |
d2e4a39e AS |
1376 | static char *bound_name[] = { |
1377 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
14f9c5c9 AS |
1378 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" |
1379 | }; | |
1380 | ||
1381 | /* Maximum number of array dimensions we are prepared to handle. */ | |
1382 | ||
4c4b4cd2 | 1383 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) |
14f9c5c9 | 1384 | |
14f9c5c9 | 1385 | |
4c4b4cd2 PH |
1386 | /* The desc_* routines return primitive portions of array descriptors |
1387 | (fat pointers). */ | |
14f9c5c9 AS |
1388 | |
1389 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
4c4b4cd2 PH |
1390 | level of indirection, if needed. */ |
1391 | ||
d2e4a39e AS |
1392 | static struct type * |
1393 | desc_base_type (struct type *type) | |
14f9c5c9 AS |
1394 | { |
1395 | if (type == NULL) | |
1396 | return NULL; | |
61ee279c | 1397 | type = ada_check_typedef (type); |
720d1a40 JB |
1398 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
1399 | type = ada_typedef_target_type (type); | |
1400 | ||
1265e4aa JB |
1401 | if (type != NULL |
1402 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1403 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
61ee279c | 1404 | return ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 AS |
1405 | else |
1406 | return type; | |
1407 | } | |
1408 | ||
4c4b4cd2 PH |
1409 | /* True iff TYPE indicates a "thin" array pointer type. */ |
1410 | ||
14f9c5c9 | 1411 | static int |
d2e4a39e | 1412 | is_thin_pntr (struct type *type) |
14f9c5c9 | 1413 | { |
d2e4a39e | 1414 | return |
14f9c5c9 AS |
1415 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") |
1416 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
1417 | } | |
1418 | ||
4c4b4cd2 PH |
1419 | /* The descriptor type for thin pointer type TYPE. */ |
1420 | ||
d2e4a39e AS |
1421 | static struct type * |
1422 | thin_descriptor_type (struct type *type) | |
14f9c5c9 | 1423 | { |
d2e4a39e | 1424 | struct type *base_type = desc_base_type (type); |
5b4ee69b | 1425 | |
14f9c5c9 AS |
1426 | if (base_type == NULL) |
1427 | return NULL; | |
1428 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
1429 | return base_type; | |
d2e4a39e | 1430 | else |
14f9c5c9 | 1431 | { |
d2e4a39e | 1432 | struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); |
5b4ee69b | 1433 | |
14f9c5c9 | 1434 | if (alt_type == NULL) |
4c4b4cd2 | 1435 | return base_type; |
14f9c5c9 | 1436 | else |
4c4b4cd2 | 1437 | return alt_type; |
14f9c5c9 AS |
1438 | } |
1439 | } | |
1440 | ||
4c4b4cd2 PH |
1441 | /* A pointer to the array data for thin-pointer value VAL. */ |
1442 | ||
d2e4a39e AS |
1443 | static struct value * |
1444 | thin_data_pntr (struct value *val) | |
14f9c5c9 | 1445 | { |
828292f2 | 1446 | struct type *type = ada_check_typedef (value_type (val)); |
556bdfd4 | 1447 | struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); |
5b4ee69b | 1448 | |
556bdfd4 UW |
1449 | data_type = lookup_pointer_type (data_type); |
1450 | ||
14f9c5c9 | 1451 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
556bdfd4 | 1452 | return value_cast (data_type, value_copy (val)); |
d2e4a39e | 1453 | else |
42ae5230 | 1454 | return value_from_longest (data_type, value_address (val)); |
14f9c5c9 AS |
1455 | } |
1456 | ||
4c4b4cd2 PH |
1457 | /* True iff TYPE indicates a "thick" array pointer type. */ |
1458 | ||
14f9c5c9 | 1459 | static int |
d2e4a39e | 1460 | is_thick_pntr (struct type *type) |
14f9c5c9 AS |
1461 | { |
1462 | type = desc_base_type (type); | |
1463 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4c4b4cd2 | 1464 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); |
14f9c5c9 AS |
1465 | } |
1466 | ||
4c4b4cd2 PH |
1467 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
1468 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
76a01679 | 1469 | |
d2e4a39e AS |
1470 | static struct type * |
1471 | desc_bounds_type (struct type *type) | |
14f9c5c9 | 1472 | { |
d2e4a39e | 1473 | struct type *r; |
14f9c5c9 AS |
1474 | |
1475 | type = desc_base_type (type); | |
1476 | ||
1477 | if (type == NULL) | |
1478 | return NULL; | |
1479 | else if (is_thin_pntr (type)) | |
1480 | { | |
1481 | type = thin_descriptor_type (type); | |
1482 | if (type == NULL) | |
4c4b4cd2 | 1483 | return NULL; |
14f9c5c9 AS |
1484 | r = lookup_struct_elt_type (type, "BOUNDS", 1); |
1485 | if (r != NULL) | |
61ee279c | 1486 | return ada_check_typedef (r); |
14f9c5c9 AS |
1487 | } |
1488 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1489 | { | |
1490 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
1491 | if (r != NULL) | |
61ee279c | 1492 | return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); |
14f9c5c9 AS |
1493 | } |
1494 | return NULL; | |
1495 | } | |
1496 | ||
1497 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
4c4b4cd2 PH |
1498 | one, a pointer to its bounds data. Otherwise NULL. */ |
1499 | ||
d2e4a39e AS |
1500 | static struct value * |
1501 | desc_bounds (struct value *arr) | |
14f9c5c9 | 1502 | { |
df407dfe | 1503 | struct type *type = ada_check_typedef (value_type (arr)); |
5b4ee69b | 1504 | |
d2e4a39e | 1505 | if (is_thin_pntr (type)) |
14f9c5c9 | 1506 | { |
d2e4a39e | 1507 | struct type *bounds_type = |
4c4b4cd2 | 1508 | desc_bounds_type (thin_descriptor_type (type)); |
14f9c5c9 AS |
1509 | LONGEST addr; |
1510 | ||
4cdfadb1 | 1511 | if (bounds_type == NULL) |
323e0a4a | 1512 | error (_("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1513 | |
1514 | /* NOTE: The following calculation is not really kosher, but | |
d2e4a39e | 1515 | since desc_type is an XVE-encoded type (and shouldn't be), |
4c4b4cd2 | 1516 | the correct calculation is a real pain. FIXME (and fix GCC). */ |
14f9c5c9 | 1517 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
4c4b4cd2 | 1518 | addr = value_as_long (arr); |
d2e4a39e | 1519 | else |
42ae5230 | 1520 | addr = value_address (arr); |
14f9c5c9 | 1521 | |
d2e4a39e | 1522 | return |
4c4b4cd2 PH |
1523 | value_from_longest (lookup_pointer_type (bounds_type), |
1524 | addr - TYPE_LENGTH (bounds_type)); | |
14f9c5c9 AS |
1525 | } |
1526 | ||
1527 | else if (is_thick_pntr (type)) | |
05e522ef JB |
1528 | { |
1529 | struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
1530 | _("Bad GNAT array descriptor")); | |
1531 | struct type *p_bounds_type = value_type (p_bounds); | |
1532 | ||
1533 | if (p_bounds_type | |
1534 | && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) | |
1535 | { | |
1536 | struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); | |
1537 | ||
1538 | if (TYPE_STUB (target_type)) | |
1539 | p_bounds = value_cast (lookup_pointer_type | |
1540 | (ada_check_typedef (target_type)), | |
1541 | p_bounds); | |
1542 | } | |
1543 | else | |
1544 | error (_("Bad GNAT array descriptor")); | |
1545 | ||
1546 | return p_bounds; | |
1547 | } | |
14f9c5c9 AS |
1548 | else |
1549 | return NULL; | |
1550 | } | |
1551 | ||
4c4b4cd2 PH |
1552 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit |
1553 | position of the field containing the address of the bounds data. */ | |
1554 | ||
14f9c5c9 | 1555 | static int |
d2e4a39e | 1556 | fat_pntr_bounds_bitpos (struct type *type) |
14f9c5c9 AS |
1557 | { |
1558 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
1559 | } | |
1560 | ||
1561 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1562 | size of the field containing the address of the bounds data. */ |
1563 | ||
14f9c5c9 | 1564 | static int |
d2e4a39e | 1565 | fat_pntr_bounds_bitsize (struct type *type) |
14f9c5c9 AS |
1566 | { |
1567 | type = desc_base_type (type); | |
1568 | ||
d2e4a39e | 1569 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) |
14f9c5c9 AS |
1570 | return TYPE_FIELD_BITSIZE (type, 1); |
1571 | else | |
61ee279c | 1572 | return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); |
14f9c5c9 AS |
1573 | } |
1574 | ||
4c4b4cd2 | 1575 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a |
556bdfd4 UW |
1576 | pointer to one, the type of its array data (a array-with-no-bounds type); |
1577 | otherwise, NULL. Use ada_type_of_array to get an array type with bounds | |
1578 | data. */ | |
4c4b4cd2 | 1579 | |
d2e4a39e | 1580 | static struct type * |
556bdfd4 | 1581 | desc_data_target_type (struct type *type) |
14f9c5c9 AS |
1582 | { |
1583 | type = desc_base_type (type); | |
1584 | ||
4c4b4cd2 | 1585 | /* NOTE: The following is bogus; see comment in desc_bounds. */ |
14f9c5c9 | 1586 | if (is_thin_pntr (type)) |
556bdfd4 | 1587 | return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); |
14f9c5c9 | 1588 | else if (is_thick_pntr (type)) |
556bdfd4 UW |
1589 | { |
1590 | struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); | |
1591 | ||
1592 | if (data_type | |
1593 | && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) | |
05e522ef | 1594 | return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); |
556bdfd4 UW |
1595 | } |
1596 | ||
1597 | return NULL; | |
14f9c5c9 AS |
1598 | } |
1599 | ||
1600 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
1601 | its array data. */ | |
4c4b4cd2 | 1602 | |
d2e4a39e AS |
1603 | static struct value * |
1604 | desc_data (struct value *arr) | |
14f9c5c9 | 1605 | { |
df407dfe | 1606 | struct type *type = value_type (arr); |
5b4ee69b | 1607 | |
14f9c5c9 AS |
1608 | if (is_thin_pntr (type)) |
1609 | return thin_data_pntr (arr); | |
1610 | else if (is_thick_pntr (type)) | |
d2e4a39e | 1611 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, |
323e0a4a | 1612 | _("Bad GNAT array descriptor")); |
14f9c5c9 AS |
1613 | else |
1614 | return NULL; | |
1615 | } | |
1616 | ||
1617 | ||
1618 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1619 | position of the field containing the address of the data. */ |
1620 | ||
14f9c5c9 | 1621 | static int |
d2e4a39e | 1622 | fat_pntr_data_bitpos (struct type *type) |
14f9c5c9 AS |
1623 | { |
1624 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
1625 | } | |
1626 | ||
1627 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
4c4b4cd2 PH |
1628 | size of the field containing the address of the data. */ |
1629 | ||
14f9c5c9 | 1630 | static int |
d2e4a39e | 1631 | fat_pntr_data_bitsize (struct type *type) |
14f9c5c9 AS |
1632 | { |
1633 | type = desc_base_type (type); | |
1634 | ||
1635 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
1636 | return TYPE_FIELD_BITSIZE (type, 0); | |
d2e4a39e | 1637 | else |
14f9c5c9 AS |
1638 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); |
1639 | } | |
1640 | ||
4c4b4cd2 | 1641 | /* If BOUNDS is an array-bounds structure (or pointer to one), return |
14f9c5c9 | 1642 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper |
4c4b4cd2 PH |
1643 | bound, if WHICH is 1. The first bound is I=1. */ |
1644 | ||
d2e4a39e AS |
1645 | static struct value * |
1646 | desc_one_bound (struct value *bounds, int i, int which) | |
14f9c5c9 | 1647 | { |
d2e4a39e | 1648 | return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, |
323e0a4a | 1649 | _("Bad GNAT array descriptor bounds")); |
14f9c5c9 AS |
1650 | } |
1651 | ||
1652 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
1653 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1654 | bound, if WHICH is 1. The first bound is I=1. */ |
1655 | ||
14f9c5c9 | 1656 | static int |
d2e4a39e | 1657 | desc_bound_bitpos (struct type *type, int i, int which) |
14f9c5c9 | 1658 | { |
d2e4a39e | 1659 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); |
14f9c5c9 AS |
1660 | } |
1661 | ||
1662 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
1663 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
4c4b4cd2 PH |
1664 | bound, if WHICH is 1. The first bound is I=1. */ |
1665 | ||
76a01679 | 1666 | static int |
d2e4a39e | 1667 | desc_bound_bitsize (struct type *type, int i, int which) |
14f9c5c9 AS |
1668 | { |
1669 | type = desc_base_type (type); | |
1670 | ||
d2e4a39e AS |
1671 | if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) |
1672 | return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); | |
1673 | else | |
1674 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); | |
14f9c5c9 AS |
1675 | } |
1676 | ||
1677 | /* If TYPE is the type of an array-bounds structure, the type of its | |
4c4b4cd2 PH |
1678 | Ith bound (numbering from 1). Otherwise, NULL. */ |
1679 | ||
d2e4a39e AS |
1680 | static struct type * |
1681 | desc_index_type (struct type *type, int i) | |
14f9c5c9 AS |
1682 | { |
1683 | type = desc_base_type (type); | |
1684 | ||
1685 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
d2e4a39e AS |
1686 | return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); |
1687 | else | |
14f9c5c9 AS |
1688 | return NULL; |
1689 | } | |
1690 | ||
4c4b4cd2 PH |
1691 | /* The number of index positions in the array-bounds type TYPE. |
1692 | Return 0 if TYPE is NULL. */ | |
1693 | ||
14f9c5c9 | 1694 | static int |
d2e4a39e | 1695 | desc_arity (struct type *type) |
14f9c5c9 AS |
1696 | { |
1697 | type = desc_base_type (type); | |
1698 | ||
1699 | if (type != NULL) | |
1700 | return TYPE_NFIELDS (type) / 2; | |
1701 | return 0; | |
1702 | } | |
1703 | ||
4c4b4cd2 PH |
1704 | /* Non-zero iff TYPE is a simple array type (not a pointer to one) or |
1705 | an array descriptor type (representing an unconstrained array | |
1706 | type). */ | |
1707 | ||
76a01679 JB |
1708 | static int |
1709 | ada_is_direct_array_type (struct type *type) | |
4c4b4cd2 PH |
1710 | { |
1711 | if (type == NULL) | |
1712 | return 0; | |
61ee279c | 1713 | type = ada_check_typedef (type); |
4c4b4cd2 | 1714 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
76a01679 | 1715 | || ada_is_array_descriptor_type (type)); |
4c4b4cd2 PH |
1716 | } |
1717 | ||
52ce6436 | 1718 | /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer |
0963b4bd | 1719 | * to one. */ |
52ce6436 | 1720 | |
2c0b251b | 1721 | static int |
52ce6436 PH |
1722 | ada_is_array_type (struct type *type) |
1723 | { | |
1724 | while (type != NULL | |
1725 | && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1726 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1727 | type = TYPE_TARGET_TYPE (type); | |
1728 | return ada_is_direct_array_type (type); | |
1729 | } | |
1730 | ||
4c4b4cd2 | 1731 | /* Non-zero iff TYPE is a simple array type or pointer to one. */ |
14f9c5c9 | 1732 | |
14f9c5c9 | 1733 | int |
4c4b4cd2 | 1734 | ada_is_simple_array_type (struct type *type) |
14f9c5c9 AS |
1735 | { |
1736 | if (type == NULL) | |
1737 | return 0; | |
61ee279c | 1738 | type = ada_check_typedef (type); |
14f9c5c9 | 1739 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY |
4c4b4cd2 | 1740 | || (TYPE_CODE (type) == TYPE_CODE_PTR |
b0dd7688 JB |
1741 | && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) |
1742 | == TYPE_CODE_ARRAY)); | |
14f9c5c9 AS |
1743 | } |
1744 | ||
4c4b4cd2 PH |
1745 | /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ |
1746 | ||
14f9c5c9 | 1747 | int |
4c4b4cd2 | 1748 | ada_is_array_descriptor_type (struct type *type) |
14f9c5c9 | 1749 | { |
556bdfd4 | 1750 | struct type *data_type = desc_data_target_type (type); |
14f9c5c9 AS |
1751 | |
1752 | if (type == NULL) | |
1753 | return 0; | |
61ee279c | 1754 | type = ada_check_typedef (type); |
556bdfd4 UW |
1755 | return (data_type != NULL |
1756 | && TYPE_CODE (data_type) == TYPE_CODE_ARRAY | |
1757 | && desc_arity (desc_bounds_type (type)) > 0); | |
14f9c5c9 AS |
1758 | } |
1759 | ||
1760 | /* Non-zero iff type is a partially mal-formed GNAT array | |
4c4b4cd2 | 1761 | descriptor. FIXME: This is to compensate for some problems with |
14f9c5c9 | 1762 | debugging output from GNAT. Re-examine periodically to see if it |
4c4b4cd2 PH |
1763 | is still needed. */ |
1764 | ||
14f9c5c9 | 1765 | int |
ebf56fd3 | 1766 | ada_is_bogus_array_descriptor (struct type *type) |
14f9c5c9 | 1767 | { |
d2e4a39e | 1768 | return |
14f9c5c9 AS |
1769 | type != NULL |
1770 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1771 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
4c4b4cd2 PH |
1772 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) |
1773 | && !ada_is_array_descriptor_type (type); | |
14f9c5c9 AS |
1774 | } |
1775 | ||
1776 | ||
4c4b4cd2 | 1777 | /* If ARR has a record type in the form of a standard GNAT array descriptor, |
14f9c5c9 | 1778 | (fat pointer) returns the type of the array data described---specifically, |
4c4b4cd2 | 1779 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled |
14f9c5c9 | 1780 | in from the descriptor; otherwise, they are left unspecified. If |
4c4b4cd2 PH |
1781 | the ARR denotes a null array descriptor and BOUNDS is non-zero, |
1782 | returns NULL. The result is simply the type of ARR if ARR is not | |
14f9c5c9 | 1783 | a descriptor. */ |
d2e4a39e AS |
1784 | struct type * |
1785 | ada_type_of_array (struct value *arr, int bounds) | |
14f9c5c9 | 1786 | { |
ad82864c JB |
1787 | if (ada_is_constrained_packed_array_type (value_type (arr))) |
1788 | return decode_constrained_packed_array_type (value_type (arr)); | |
14f9c5c9 | 1789 | |
df407dfe AC |
1790 | if (!ada_is_array_descriptor_type (value_type (arr))) |
1791 | return value_type (arr); | |
d2e4a39e AS |
1792 | |
1793 | if (!bounds) | |
ad82864c JB |
1794 | { |
1795 | struct type *array_type = | |
1796 | ada_check_typedef (desc_data_target_type (value_type (arr))); | |
1797 | ||
1798 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
1799 | TYPE_FIELD_BITSIZE (array_type, 0) = | |
1800 | decode_packed_array_bitsize (value_type (arr)); | |
1801 | ||
1802 | return array_type; | |
1803 | } | |
14f9c5c9 AS |
1804 | else |
1805 | { | |
d2e4a39e | 1806 | struct type *elt_type; |
14f9c5c9 | 1807 | int arity; |
d2e4a39e | 1808 | struct value *descriptor; |
14f9c5c9 | 1809 | |
df407dfe AC |
1810 | elt_type = ada_array_element_type (value_type (arr), -1); |
1811 | arity = ada_array_arity (value_type (arr)); | |
14f9c5c9 | 1812 | |
d2e4a39e | 1813 | if (elt_type == NULL || arity == 0) |
df407dfe | 1814 | return ada_check_typedef (value_type (arr)); |
14f9c5c9 AS |
1815 | |
1816 | descriptor = desc_bounds (arr); | |
d2e4a39e | 1817 | if (value_as_long (descriptor) == 0) |
4c4b4cd2 | 1818 | return NULL; |
d2e4a39e | 1819 | while (arity > 0) |
4c4b4cd2 | 1820 | { |
e9bb382b UW |
1821 | struct type *range_type = alloc_type_copy (value_type (arr)); |
1822 | struct type *array_type = alloc_type_copy (value_type (arr)); | |
4c4b4cd2 PH |
1823 | struct value *low = desc_one_bound (descriptor, arity, 0); |
1824 | struct value *high = desc_one_bound (descriptor, arity, 1); | |
4c4b4cd2 | 1825 | |
5b4ee69b | 1826 | arity -= 1; |
df407dfe | 1827 | create_range_type (range_type, value_type (low), |
529cad9c PH |
1828 | longest_to_int (value_as_long (low)), |
1829 | longest_to_int (value_as_long (high))); | |
4c4b4cd2 | 1830 | elt_type = create_array_type (array_type, elt_type, range_type); |
ad82864c JB |
1831 | |
1832 | if (ada_is_unconstrained_packed_array_type (value_type (arr))) | |
e67ad678 JB |
1833 | { |
1834 | /* We need to store the element packed bitsize, as well as | |
1835 | recompute the array size, because it was previously | |
1836 | computed based on the unpacked element size. */ | |
1837 | LONGEST lo = value_as_long (low); | |
1838 | LONGEST hi = value_as_long (high); | |
1839 | ||
1840 | TYPE_FIELD_BITSIZE (elt_type, 0) = | |
1841 | decode_packed_array_bitsize (value_type (arr)); | |
1842 | /* If the array has no element, then the size is already | |
1843 | zero, and does not need to be recomputed. */ | |
1844 | if (lo < hi) | |
1845 | { | |
1846 | int array_bitsize = | |
1847 | (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); | |
1848 | ||
1849 | TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; | |
1850 | } | |
1851 | } | |
4c4b4cd2 | 1852 | } |
14f9c5c9 AS |
1853 | |
1854 | return lookup_pointer_type (elt_type); | |
1855 | } | |
1856 | } | |
1857 | ||
1858 | /* If ARR does not represent an array, returns ARR unchanged. | |
4c4b4cd2 PH |
1859 | Otherwise, returns either a standard GDB array with bounds set |
1860 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1861 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1862 | ||
d2e4a39e AS |
1863 | struct value * |
1864 | ada_coerce_to_simple_array_ptr (struct value *arr) | |
14f9c5c9 | 1865 | { |
df407dfe | 1866 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1867 | { |
d2e4a39e | 1868 | struct type *arrType = ada_type_of_array (arr, 1); |
5b4ee69b | 1869 | |
14f9c5c9 | 1870 | if (arrType == NULL) |
4c4b4cd2 | 1871 | return NULL; |
14f9c5c9 AS |
1872 | return value_cast (arrType, value_copy (desc_data (arr))); |
1873 | } | |
ad82864c JB |
1874 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1875 | return decode_constrained_packed_array (arr); | |
14f9c5c9 AS |
1876 | else |
1877 | return arr; | |
1878 | } | |
1879 | ||
1880 | /* If ARR does not represent an array, returns ARR unchanged. | |
1881 | Otherwise, returns a standard GDB array describing ARR (which may | |
4c4b4cd2 PH |
1882 | be ARR itself if it already is in the proper form). */ |
1883 | ||
720d1a40 | 1884 | struct value * |
d2e4a39e | 1885 | ada_coerce_to_simple_array (struct value *arr) |
14f9c5c9 | 1886 | { |
df407dfe | 1887 | if (ada_is_array_descriptor_type (value_type (arr))) |
14f9c5c9 | 1888 | { |
d2e4a39e | 1889 | struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); |
5b4ee69b | 1890 | |
14f9c5c9 | 1891 | if (arrVal == NULL) |
323e0a4a | 1892 | error (_("Bounds unavailable for null array pointer.")); |
529cad9c | 1893 | check_size (TYPE_TARGET_TYPE (value_type (arrVal))); |
14f9c5c9 AS |
1894 | return value_ind (arrVal); |
1895 | } | |
ad82864c JB |
1896 | else if (ada_is_constrained_packed_array_type (value_type (arr))) |
1897 | return decode_constrained_packed_array (arr); | |
d2e4a39e | 1898 | else |
14f9c5c9 AS |
1899 | return arr; |
1900 | } | |
1901 | ||
1902 | /* If TYPE represents a GNAT array type, return it translated to an | |
1903 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
4c4b4cd2 PH |
1904 | packing). For other types, is the identity. */ |
1905 | ||
d2e4a39e AS |
1906 | struct type * |
1907 | ada_coerce_to_simple_array_type (struct type *type) | |
14f9c5c9 | 1908 | { |
ad82864c JB |
1909 | if (ada_is_constrained_packed_array_type (type)) |
1910 | return decode_constrained_packed_array_type (type); | |
17280b9f UW |
1911 | |
1912 | if (ada_is_array_descriptor_type (type)) | |
556bdfd4 | 1913 | return ada_check_typedef (desc_data_target_type (type)); |
17280b9f UW |
1914 | |
1915 | return type; | |
14f9c5c9 AS |
1916 | } |
1917 | ||
4c4b4cd2 PH |
1918 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ |
1919 | ||
ad82864c JB |
1920 | static int |
1921 | ada_is_packed_array_type (struct type *type) | |
14f9c5c9 AS |
1922 | { |
1923 | if (type == NULL) | |
1924 | return 0; | |
4c4b4cd2 | 1925 | type = desc_base_type (type); |
61ee279c | 1926 | type = ada_check_typedef (type); |
d2e4a39e | 1927 | return |
14f9c5c9 AS |
1928 | ada_type_name (type) != NULL |
1929 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1930 | } | |
1931 | ||
ad82864c JB |
1932 | /* Non-zero iff TYPE represents a standard GNAT constrained |
1933 | packed-array type. */ | |
1934 | ||
1935 | int | |
1936 | ada_is_constrained_packed_array_type (struct type *type) | |
1937 | { | |
1938 | return ada_is_packed_array_type (type) | |
1939 | && !ada_is_array_descriptor_type (type); | |
1940 | } | |
1941 | ||
1942 | /* Non-zero iff TYPE represents an array descriptor for a | |
1943 | unconstrained packed-array type. */ | |
1944 | ||
1945 | static int | |
1946 | ada_is_unconstrained_packed_array_type (struct type *type) | |
1947 | { | |
1948 | return ada_is_packed_array_type (type) | |
1949 | && ada_is_array_descriptor_type (type); | |
1950 | } | |
1951 | ||
1952 | /* Given that TYPE encodes a packed array type (constrained or unconstrained), | |
1953 | return the size of its elements in bits. */ | |
1954 | ||
1955 | static long | |
1956 | decode_packed_array_bitsize (struct type *type) | |
1957 | { | |
720d1a40 | 1958 | char *raw_name; |
ad82864c JB |
1959 | char *tail; |
1960 | long bits; | |
1961 | ||
720d1a40 JB |
1962 | /* Access to arrays implemented as fat pointers are encoded as a typedef |
1963 | of the fat pointer type. We need the name of the fat pointer type | |
1964 | to do the decoding, so strip the typedef layer. */ | |
1965 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1966 | type = ada_typedef_target_type (type); | |
1967 | ||
1968 | raw_name = ada_type_name (ada_check_typedef (type)); | |
ad82864c JB |
1969 | if (!raw_name) |
1970 | raw_name = ada_type_name (desc_base_type (type)); | |
1971 | ||
1972 | if (!raw_name) | |
1973 | return 0; | |
1974 | ||
1975 | tail = strstr (raw_name, "___XP"); | |
720d1a40 | 1976 | gdb_assert (tail != NULL); |
ad82864c JB |
1977 | |
1978 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1979 | { | |
1980 | lim_warning | |
1981 | (_("could not understand bit size information on packed array")); | |
1982 | return 0; | |
1983 | } | |
1984 | ||
1985 | return bits; | |
1986 | } | |
1987 | ||
14f9c5c9 AS |
1988 | /* Given that TYPE is a standard GDB array type with all bounds filled |
1989 | in, and that the element size of its ultimate scalar constituents | |
1990 | (that is, either its elements, or, if it is an array of arrays, its | |
1991 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1992 | but with the bit sizes of its elements (and those of any | |
1993 | constituent arrays) recorded in the BITSIZE components of its | |
4c4b4cd2 PH |
1994 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size |
1995 | in bits. */ | |
1996 | ||
d2e4a39e | 1997 | static struct type * |
ad82864c | 1998 | constrained_packed_array_type (struct type *type, long *elt_bits) |
14f9c5c9 | 1999 | { |
d2e4a39e AS |
2000 | struct type *new_elt_type; |
2001 | struct type *new_type; | |
14f9c5c9 AS |
2002 | LONGEST low_bound, high_bound; |
2003 | ||
61ee279c | 2004 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2005 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) |
2006 | return type; | |
2007 | ||
e9bb382b | 2008 | new_type = alloc_type_copy (type); |
ad82864c JB |
2009 | new_elt_type = |
2010 | constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), | |
2011 | elt_bits); | |
262452ec | 2012 | create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type)); |
14f9c5c9 AS |
2013 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; |
2014 | TYPE_NAME (new_type) = ada_type_name (type); | |
2015 | ||
262452ec | 2016 | if (get_discrete_bounds (TYPE_INDEX_TYPE (type), |
4c4b4cd2 | 2017 | &low_bound, &high_bound) < 0) |
14f9c5c9 AS |
2018 | low_bound = high_bound = 0; |
2019 | if (high_bound < low_bound) | |
2020 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
d2e4a39e | 2021 | else |
14f9c5c9 AS |
2022 | { |
2023 | *elt_bits *= (high_bound - low_bound + 1); | |
d2e4a39e | 2024 | TYPE_LENGTH (new_type) = |
4c4b4cd2 | 2025 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; |
14f9c5c9 AS |
2026 | } |
2027 | ||
876cecd0 | 2028 | TYPE_FIXED_INSTANCE (new_type) = 1; |
14f9c5c9 AS |
2029 | return new_type; |
2030 | } | |
2031 | ||
ad82864c JB |
2032 | /* The array type encoded by TYPE, where |
2033 | ada_is_constrained_packed_array_type (TYPE). */ | |
4c4b4cd2 | 2034 | |
d2e4a39e | 2035 | static struct type * |
ad82864c | 2036 | decode_constrained_packed_array_type (struct type *type) |
d2e4a39e | 2037 | { |
727e3d2e JB |
2038 | char *raw_name = ada_type_name (ada_check_typedef (type)); |
2039 | char *name; | |
2040 | char *tail; | |
d2e4a39e | 2041 | struct type *shadow_type; |
14f9c5c9 | 2042 | long bits; |
14f9c5c9 | 2043 | |
727e3d2e JB |
2044 | if (!raw_name) |
2045 | raw_name = ada_type_name (desc_base_type (type)); | |
2046 | ||
2047 | if (!raw_name) | |
2048 | return NULL; | |
2049 | ||
2050 | name = (char *) alloca (strlen (raw_name) + 1); | |
2051 | tail = strstr (raw_name, "___XP"); | |
4c4b4cd2 PH |
2052 | type = desc_base_type (type); |
2053 | ||
14f9c5c9 AS |
2054 | memcpy (name, raw_name, tail - raw_name); |
2055 | name[tail - raw_name] = '\000'; | |
2056 | ||
b4ba55a1 JB |
2057 | shadow_type = ada_find_parallel_type_with_name (type, name); |
2058 | ||
2059 | if (shadow_type == NULL) | |
14f9c5c9 | 2060 | { |
323e0a4a | 2061 | lim_warning (_("could not find bounds information on packed array")); |
14f9c5c9 AS |
2062 | return NULL; |
2063 | } | |
cb249c71 | 2064 | CHECK_TYPEDEF (shadow_type); |
14f9c5c9 AS |
2065 | |
2066 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
2067 | { | |
0963b4bd MS |
2068 | lim_warning (_("could not understand bounds " |
2069 | "information on packed array")); | |
14f9c5c9 AS |
2070 | return NULL; |
2071 | } | |
d2e4a39e | 2072 | |
ad82864c JB |
2073 | bits = decode_packed_array_bitsize (type); |
2074 | return constrained_packed_array_type (shadow_type, &bits); | |
14f9c5c9 AS |
2075 | } |
2076 | ||
ad82864c JB |
2077 | /* Given that ARR is a struct value *indicating a GNAT constrained packed |
2078 | array, returns a simple array that denotes that array. Its type is a | |
14f9c5c9 AS |
2079 | standard GDB array type except that the BITSIZEs of the array |
2080 | target types are set to the number of bits in each element, and the | |
4c4b4cd2 | 2081 | type length is set appropriately. */ |
14f9c5c9 | 2082 | |
d2e4a39e | 2083 | static struct value * |
ad82864c | 2084 | decode_constrained_packed_array (struct value *arr) |
14f9c5c9 | 2085 | { |
4c4b4cd2 | 2086 | struct type *type; |
14f9c5c9 | 2087 | |
4c4b4cd2 | 2088 | arr = ada_coerce_ref (arr); |
284614f0 JB |
2089 | |
2090 | /* If our value is a pointer, then dererence it. Make sure that | |
2091 | this operation does not cause the target type to be fixed, as | |
2092 | this would indirectly cause this array to be decoded. The rest | |
2093 | of the routine assumes that the array hasn't been decoded yet, | |
2094 | so we use the basic "value_ind" routine to perform the dereferencing, | |
2095 | as opposed to using "ada_value_ind". */ | |
828292f2 | 2096 | if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) |
284614f0 | 2097 | arr = value_ind (arr); |
4c4b4cd2 | 2098 | |
ad82864c | 2099 | type = decode_constrained_packed_array_type (value_type (arr)); |
14f9c5c9 AS |
2100 | if (type == NULL) |
2101 | { | |
323e0a4a | 2102 | error (_("can't unpack array")); |
14f9c5c9 AS |
2103 | return NULL; |
2104 | } | |
61ee279c | 2105 | |
50810684 | 2106 | if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) |
32c9a795 | 2107 | && ada_is_modular_type (value_type (arr))) |
61ee279c PH |
2108 | { |
2109 | /* This is a (right-justified) modular type representing a packed | |
2110 | array with no wrapper. In order to interpret the value through | |
2111 | the (left-justified) packed array type we just built, we must | |
2112 | first left-justify it. */ | |
2113 | int bit_size, bit_pos; | |
2114 | ULONGEST mod; | |
2115 | ||
df407dfe | 2116 | mod = ada_modulus (value_type (arr)) - 1; |
61ee279c PH |
2117 | bit_size = 0; |
2118 | while (mod > 0) | |
2119 | { | |
2120 | bit_size += 1; | |
2121 | mod >>= 1; | |
2122 | } | |
df407dfe | 2123 | bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; |
61ee279c PH |
2124 | arr = ada_value_primitive_packed_val (arr, NULL, |
2125 | bit_pos / HOST_CHAR_BIT, | |
2126 | bit_pos % HOST_CHAR_BIT, | |
2127 | bit_size, | |
2128 | type); | |
2129 | } | |
2130 | ||
4c4b4cd2 | 2131 | return coerce_unspec_val_to_type (arr, type); |
14f9c5c9 AS |
2132 | } |
2133 | ||
2134 | ||
2135 | /* The value of the element of packed array ARR at the ARITY indices | |
4c4b4cd2 | 2136 | given in IND. ARR must be a simple array. */ |
14f9c5c9 | 2137 | |
d2e4a39e AS |
2138 | static struct value * |
2139 | value_subscript_packed (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2140 | { |
2141 | int i; | |
2142 | int bits, elt_off, bit_off; | |
2143 | long elt_total_bit_offset; | |
d2e4a39e AS |
2144 | struct type *elt_type; |
2145 | struct value *v; | |
14f9c5c9 AS |
2146 | |
2147 | bits = 0; | |
2148 | elt_total_bit_offset = 0; | |
df407dfe | 2149 | elt_type = ada_check_typedef (value_type (arr)); |
d2e4a39e | 2150 | for (i = 0; i < arity; i += 1) |
14f9c5c9 | 2151 | { |
d2e4a39e | 2152 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY |
4c4b4cd2 PH |
2153 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) |
2154 | error | |
0963b4bd MS |
2155 | (_("attempt to do packed indexing of " |
2156 | "something other than a packed array")); | |
14f9c5c9 | 2157 | else |
4c4b4cd2 PH |
2158 | { |
2159 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
2160 | LONGEST lowerbound, upperbound; | |
2161 | LONGEST idx; | |
2162 | ||
2163 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
2164 | { | |
323e0a4a | 2165 | lim_warning (_("don't know bounds of array")); |
4c4b4cd2 PH |
2166 | lowerbound = upperbound = 0; |
2167 | } | |
2168 | ||
3cb382c9 | 2169 | idx = pos_atr (ind[i]); |
4c4b4cd2 | 2170 | if (idx < lowerbound || idx > upperbound) |
0963b4bd MS |
2171 | lim_warning (_("packed array index %ld out of bounds"), |
2172 | (long) idx); | |
4c4b4cd2 PH |
2173 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); |
2174 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
61ee279c | 2175 | elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); |
4c4b4cd2 | 2176 | } |
14f9c5c9 AS |
2177 | } |
2178 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
2179 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
d2e4a39e AS |
2180 | |
2181 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
4c4b4cd2 | 2182 | bits, elt_type); |
14f9c5c9 AS |
2183 | return v; |
2184 | } | |
2185 | ||
4c4b4cd2 | 2186 | /* Non-zero iff TYPE includes negative integer values. */ |
14f9c5c9 AS |
2187 | |
2188 | static int | |
d2e4a39e | 2189 | has_negatives (struct type *type) |
14f9c5c9 | 2190 | { |
d2e4a39e AS |
2191 | switch (TYPE_CODE (type)) |
2192 | { | |
2193 | default: | |
2194 | return 0; | |
2195 | case TYPE_CODE_INT: | |
2196 | return !TYPE_UNSIGNED (type); | |
2197 | case TYPE_CODE_RANGE: | |
2198 | return TYPE_LOW_BOUND (type) < 0; | |
2199 | } | |
14f9c5c9 | 2200 | } |
d2e4a39e | 2201 | |
14f9c5c9 AS |
2202 | |
2203 | /* Create a new value of type TYPE from the contents of OBJ starting | |
2204 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
2205 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
0963b4bd | 2206 | assigning through the result will set the field fetched from. |
4c4b4cd2 PH |
2207 | VALADDR is ignored unless OBJ is NULL, in which case, |
2208 | VALADDR+OFFSET must address the start of storage containing the | |
2209 | packed value. The value returned in this case is never an lval. | |
2210 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
14f9c5c9 | 2211 | |
d2e4a39e | 2212 | struct value * |
fc1a4b47 | 2213 | ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, |
a2bd3dcd | 2214 | long offset, int bit_offset, int bit_size, |
4c4b4cd2 | 2215 | struct type *type) |
14f9c5c9 | 2216 | { |
d2e4a39e | 2217 | struct value *v; |
4c4b4cd2 PH |
2218 | int src, /* Index into the source area */ |
2219 | targ, /* Index into the target area */ | |
2220 | srcBitsLeft, /* Number of source bits left to move */ | |
2221 | nsrc, ntarg, /* Number of source and target bytes */ | |
2222 | unusedLS, /* Number of bits in next significant | |
2223 | byte of source that are unused */ | |
2224 | accumSize; /* Number of meaningful bits in accum */ | |
2225 | unsigned char *bytes; /* First byte containing data to unpack */ | |
d2e4a39e | 2226 | unsigned char *unpacked; |
4c4b4cd2 | 2227 | unsigned long accum; /* Staging area for bits being transferred */ |
14f9c5c9 AS |
2228 | unsigned char sign; |
2229 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
4c4b4cd2 PH |
2230 | /* Transmit bytes from least to most significant; delta is the direction |
2231 | the indices move. */ | |
50810684 | 2232 | int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; |
14f9c5c9 | 2233 | |
61ee279c | 2234 | type = ada_check_typedef (type); |
14f9c5c9 AS |
2235 | |
2236 | if (obj == NULL) | |
2237 | { | |
2238 | v = allocate_value (type); | |
d2e4a39e | 2239 | bytes = (unsigned char *) (valaddr + offset); |
14f9c5c9 | 2240 | } |
9214ee5f | 2241 | else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) |
14f9c5c9 AS |
2242 | { |
2243 | v = value_at (type, | |
42ae5230 | 2244 | value_address (obj) + offset); |
d2e4a39e | 2245 | bytes = (unsigned char *) alloca (len); |
42ae5230 | 2246 | read_memory (value_address (v), bytes, len); |
14f9c5c9 | 2247 | } |
d2e4a39e | 2248 | else |
14f9c5c9 AS |
2249 | { |
2250 | v = allocate_value (type); | |
0fd88904 | 2251 | bytes = (unsigned char *) value_contents (obj) + offset; |
14f9c5c9 | 2252 | } |
d2e4a39e AS |
2253 | |
2254 | if (obj != NULL) | |
14f9c5c9 | 2255 | { |
42ae5230 | 2256 | CORE_ADDR new_addr; |
5b4ee69b | 2257 | |
74bcbdf3 | 2258 | set_value_component_location (v, obj); |
42ae5230 | 2259 | new_addr = value_address (obj) + offset; |
9bbda503 AC |
2260 | set_value_bitpos (v, bit_offset + value_bitpos (obj)); |
2261 | set_value_bitsize (v, bit_size); | |
df407dfe | 2262 | if (value_bitpos (v) >= HOST_CHAR_BIT) |
4c4b4cd2 | 2263 | { |
42ae5230 | 2264 | ++new_addr; |
9bbda503 | 2265 | set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); |
4c4b4cd2 | 2266 | } |
42ae5230 | 2267 | set_value_address (v, new_addr); |
14f9c5c9 AS |
2268 | } |
2269 | else | |
9bbda503 | 2270 | set_value_bitsize (v, bit_size); |
0fd88904 | 2271 | unpacked = (unsigned char *) value_contents (v); |
14f9c5c9 AS |
2272 | |
2273 | srcBitsLeft = bit_size; | |
2274 | nsrc = len; | |
2275 | ntarg = TYPE_LENGTH (type); | |
2276 | sign = 0; | |
2277 | if (bit_size == 0) | |
2278 | { | |
2279 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
2280 | return v; | |
2281 | } | |
50810684 | 2282 | else if (gdbarch_bits_big_endian (get_type_arch (type))) |
14f9c5c9 | 2283 | { |
d2e4a39e | 2284 | src = len - 1; |
1265e4aa JB |
2285 | if (has_negatives (type) |
2286 | && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) | |
4c4b4cd2 | 2287 | sign = ~0; |
d2e4a39e AS |
2288 | |
2289 | unusedLS = | |
4c4b4cd2 PH |
2290 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) |
2291 | % HOST_CHAR_BIT; | |
14f9c5c9 AS |
2292 | |
2293 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
2294 | { |
2295 | case TYPE_CODE_ARRAY: | |
2296 | case TYPE_CODE_UNION: | |
2297 | case TYPE_CODE_STRUCT: | |
2298 | /* Non-scalar values must be aligned at a byte boundary... */ | |
2299 | accumSize = | |
2300 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
2301 | /* ... And are placed at the beginning (most-significant) bytes | |
2302 | of the target. */ | |
529cad9c | 2303 | targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; |
0056e4d5 | 2304 | ntarg = targ + 1; |
4c4b4cd2 PH |
2305 | break; |
2306 | default: | |
2307 | accumSize = 0; | |
2308 | targ = TYPE_LENGTH (type) - 1; | |
2309 | break; | |
2310 | } | |
14f9c5c9 | 2311 | } |
d2e4a39e | 2312 | else |
14f9c5c9 AS |
2313 | { |
2314 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
2315 | ||
2316 | src = targ = 0; | |
2317 | unusedLS = bit_offset; | |
2318 | accumSize = 0; | |
2319 | ||
d2e4a39e | 2320 | if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) |
4c4b4cd2 | 2321 | sign = ~0; |
14f9c5c9 | 2322 | } |
d2e4a39e | 2323 | |
14f9c5c9 AS |
2324 | accum = 0; |
2325 | while (nsrc > 0) | |
2326 | { | |
2327 | /* Mask for removing bits of the next source byte that are not | |
4c4b4cd2 | 2328 | part of the value. */ |
d2e4a39e | 2329 | unsigned int unusedMSMask = |
4c4b4cd2 PH |
2330 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - |
2331 | 1; | |
2332 | /* Sign-extend bits for this byte. */ | |
14f9c5c9 | 2333 | unsigned int signMask = sign & ~unusedMSMask; |
5b4ee69b | 2334 | |
d2e4a39e | 2335 | accum |= |
4c4b4cd2 | 2336 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; |
14f9c5c9 | 2337 | accumSize += HOST_CHAR_BIT - unusedLS; |
d2e4a39e | 2338 | if (accumSize >= HOST_CHAR_BIT) |
4c4b4cd2 PH |
2339 | { |
2340 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2341 | accumSize -= HOST_CHAR_BIT; | |
2342 | accum >>= HOST_CHAR_BIT; | |
2343 | ntarg -= 1; | |
2344 | targ += delta; | |
2345 | } | |
14f9c5c9 AS |
2346 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; |
2347 | unusedLS = 0; | |
2348 | nsrc -= 1; | |
2349 | src += delta; | |
2350 | } | |
2351 | while (ntarg > 0) | |
2352 | { | |
2353 | accum |= sign << accumSize; | |
2354 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
2355 | accumSize -= HOST_CHAR_BIT; | |
2356 | accum >>= HOST_CHAR_BIT; | |
2357 | ntarg -= 1; | |
2358 | targ += delta; | |
2359 | } | |
2360 | ||
2361 | return v; | |
2362 | } | |
d2e4a39e | 2363 | |
14f9c5c9 AS |
2364 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to |
2365 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
4c4b4cd2 | 2366 | not overlap. */ |
14f9c5c9 | 2367 | static void |
fc1a4b47 | 2368 | move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, |
50810684 | 2369 | int src_offset, int n, int bits_big_endian_p) |
14f9c5c9 AS |
2370 | { |
2371 | unsigned int accum, mask; | |
2372 | int accum_bits, chunk_size; | |
2373 | ||
2374 | target += targ_offset / HOST_CHAR_BIT; | |
2375 | targ_offset %= HOST_CHAR_BIT; | |
2376 | source += src_offset / HOST_CHAR_BIT; | |
2377 | src_offset %= HOST_CHAR_BIT; | |
50810684 | 2378 | if (bits_big_endian_p) |
14f9c5c9 AS |
2379 | { |
2380 | accum = (unsigned char) *source; | |
2381 | source += 1; | |
2382 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2383 | ||
d2e4a39e | 2384 | while (n > 0) |
4c4b4cd2 PH |
2385 | { |
2386 | int unused_right; | |
5b4ee69b | 2387 | |
4c4b4cd2 PH |
2388 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; |
2389 | accum_bits += HOST_CHAR_BIT; | |
2390 | source += 1; | |
2391 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2392 | if (chunk_size > n) | |
2393 | chunk_size = n; | |
2394 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
2395 | mask = ((1 << chunk_size) - 1) << unused_right; | |
2396 | *target = | |
2397 | (*target & ~mask) | |
2398 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
2399 | n -= chunk_size; | |
2400 | accum_bits -= chunk_size; | |
2401 | target += 1; | |
2402 | targ_offset = 0; | |
2403 | } | |
14f9c5c9 AS |
2404 | } |
2405 | else | |
2406 | { | |
2407 | accum = (unsigned char) *source >> src_offset; | |
2408 | source += 1; | |
2409 | accum_bits = HOST_CHAR_BIT - src_offset; | |
2410 | ||
d2e4a39e | 2411 | while (n > 0) |
4c4b4cd2 PH |
2412 | { |
2413 | accum = accum + ((unsigned char) *source << accum_bits); | |
2414 | accum_bits += HOST_CHAR_BIT; | |
2415 | source += 1; | |
2416 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
2417 | if (chunk_size > n) | |
2418 | chunk_size = n; | |
2419 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
2420 | *target = (*target & ~mask) | ((accum << targ_offset) & mask); | |
2421 | n -= chunk_size; | |
2422 | accum_bits -= chunk_size; | |
2423 | accum >>= chunk_size; | |
2424 | target += 1; | |
2425 | targ_offset = 0; | |
2426 | } | |
14f9c5c9 AS |
2427 | } |
2428 | } | |
2429 | ||
14f9c5c9 AS |
2430 | /* Store the contents of FROMVAL into the location of TOVAL. |
2431 | Return a new value with the location of TOVAL and contents of | |
2432 | FROMVAL. Handles assignment into packed fields that have | |
4c4b4cd2 | 2433 | floating-point or non-scalar types. */ |
14f9c5c9 | 2434 | |
d2e4a39e AS |
2435 | static struct value * |
2436 | ada_value_assign (struct value *toval, struct value *fromval) | |
14f9c5c9 | 2437 | { |
df407dfe AC |
2438 | struct type *type = value_type (toval); |
2439 | int bits = value_bitsize (toval); | |
14f9c5c9 | 2440 | |
52ce6436 PH |
2441 | toval = ada_coerce_ref (toval); |
2442 | fromval = ada_coerce_ref (fromval); | |
2443 | ||
2444 | if (ada_is_direct_array_type (value_type (toval))) | |
2445 | toval = ada_coerce_to_simple_array (toval); | |
2446 | if (ada_is_direct_array_type (value_type (fromval))) | |
2447 | fromval = ada_coerce_to_simple_array (fromval); | |
2448 | ||
88e3b34b | 2449 | if (!deprecated_value_modifiable (toval)) |
323e0a4a | 2450 | error (_("Left operand of assignment is not a modifiable lvalue.")); |
14f9c5c9 | 2451 | |
d2e4a39e | 2452 | if (VALUE_LVAL (toval) == lval_memory |
14f9c5c9 | 2453 | && bits > 0 |
d2e4a39e | 2454 | && (TYPE_CODE (type) == TYPE_CODE_FLT |
4c4b4cd2 | 2455 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) |
14f9c5c9 | 2456 | { |
df407dfe AC |
2457 | int len = (value_bitpos (toval) |
2458 | + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
aced2898 | 2459 | int from_size; |
d2e4a39e AS |
2460 | char *buffer = (char *) alloca (len); |
2461 | struct value *val; | |
42ae5230 | 2462 | CORE_ADDR to_addr = value_address (toval); |
14f9c5c9 AS |
2463 | |
2464 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
4c4b4cd2 | 2465 | fromval = value_cast (type, fromval); |
14f9c5c9 | 2466 | |
52ce6436 | 2467 | read_memory (to_addr, buffer, len); |
aced2898 PH |
2468 | from_size = value_bitsize (fromval); |
2469 | if (from_size == 0) | |
2470 | from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; | |
50810684 | 2471 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
df407dfe | 2472 | move_bits (buffer, value_bitpos (toval), |
50810684 | 2473 | value_contents (fromval), from_size - bits, bits, 1); |
14f9c5c9 | 2474 | else |
50810684 UW |
2475 | move_bits (buffer, value_bitpos (toval), |
2476 | value_contents (fromval), 0, bits, 0); | |
52ce6436 | 2477 | write_memory (to_addr, buffer, len); |
8cebebb9 PP |
2478 | observer_notify_memory_changed (to_addr, len, buffer); |
2479 | ||
14f9c5c9 | 2480 | val = value_copy (toval); |
0fd88904 | 2481 | memcpy (value_contents_raw (val), value_contents (fromval), |
4c4b4cd2 | 2482 | TYPE_LENGTH (type)); |
04624583 | 2483 | deprecated_set_value_type (val, type); |
d2e4a39e | 2484 | |
14f9c5c9 AS |
2485 | return val; |
2486 | } | |
2487 | ||
2488 | return value_assign (toval, fromval); | |
2489 | } | |
2490 | ||
2491 | ||
52ce6436 PH |
2492 | /* Given that COMPONENT is a memory lvalue that is part of the lvalue |
2493 | * CONTAINER, assign the contents of VAL to COMPONENTS's place in | |
2494 | * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not | |
2495 | * COMPONENT, and not the inferior's memory. The current contents | |
2496 | * of COMPONENT are ignored. */ | |
2497 | static void | |
2498 | value_assign_to_component (struct value *container, struct value *component, | |
2499 | struct value *val) | |
2500 | { | |
2501 | LONGEST offset_in_container = | |
42ae5230 | 2502 | (LONGEST) (value_address (component) - value_address (container)); |
52ce6436 PH |
2503 | int bit_offset_in_container = |
2504 | value_bitpos (component) - value_bitpos (container); | |
2505 | int bits; | |
2506 | ||
2507 | val = value_cast (value_type (component), val); | |
2508 | ||
2509 | if (value_bitsize (component) == 0) | |
2510 | bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); | |
2511 | else | |
2512 | bits = value_bitsize (component); | |
2513 | ||
50810684 | 2514 | if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) |
52ce6436 PH |
2515 | move_bits (value_contents_writeable (container) + offset_in_container, |
2516 | value_bitpos (container) + bit_offset_in_container, | |
2517 | value_contents (val), | |
2518 | TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, | |
50810684 | 2519 | bits, 1); |
52ce6436 PH |
2520 | else |
2521 | move_bits (value_contents_writeable (container) + offset_in_container, | |
2522 | value_bitpos (container) + bit_offset_in_container, | |
50810684 | 2523 | value_contents (val), 0, bits, 0); |
52ce6436 PH |
2524 | } |
2525 | ||
4c4b4cd2 PH |
2526 | /* The value of the element of array ARR at the ARITY indices given in IND. |
2527 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
14f9c5c9 AS |
2528 | thereto. */ |
2529 | ||
d2e4a39e AS |
2530 | struct value * |
2531 | ada_value_subscript (struct value *arr, int arity, struct value **ind) | |
14f9c5c9 AS |
2532 | { |
2533 | int k; | |
d2e4a39e AS |
2534 | struct value *elt; |
2535 | struct type *elt_type; | |
14f9c5c9 AS |
2536 | |
2537 | elt = ada_coerce_to_simple_array (arr); | |
2538 | ||
df407dfe | 2539 | elt_type = ada_check_typedef (value_type (elt)); |
d2e4a39e | 2540 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
2541 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) |
2542 | return value_subscript_packed (elt, arity, ind); | |
2543 | ||
2544 | for (k = 0; k < arity; k += 1) | |
2545 | { | |
2546 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2547 | error (_("too many subscripts (%d expected)"), k); |
2497b498 | 2548 | elt = value_subscript (elt, pos_atr (ind[k])); |
14f9c5c9 AS |
2549 | } |
2550 | return elt; | |
2551 | } | |
2552 | ||
2553 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
2554 | value of the element of *ARR at the ARITY indices given in | |
4c4b4cd2 | 2555 | IND. Does not read the entire array into memory. */ |
14f9c5c9 | 2556 | |
2c0b251b | 2557 | static struct value * |
d2e4a39e | 2558 | ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, |
4c4b4cd2 | 2559 | struct value **ind) |
14f9c5c9 AS |
2560 | { |
2561 | int k; | |
2562 | ||
2563 | for (k = 0; k < arity; k += 1) | |
2564 | { | |
2565 | LONGEST lwb, upb; | |
14f9c5c9 AS |
2566 | |
2567 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
323e0a4a | 2568 | error (_("too many subscripts (%d expected)"), k); |
d2e4a39e | 2569 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), |
4c4b4cd2 | 2570 | value_copy (arr)); |
14f9c5c9 | 2571 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); |
2497b498 | 2572 | arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); |
14f9c5c9 AS |
2573 | type = TYPE_TARGET_TYPE (type); |
2574 | } | |
2575 | ||
2576 | return value_ind (arr); | |
2577 | } | |
2578 | ||
0b5d8877 | 2579 | /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the |
f5938064 JG |
2580 | actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 |
2581 | elements starting at index LOW. The lower bound of this array is LOW, as | |
0963b4bd | 2582 | per Ada rules. */ |
0b5d8877 | 2583 | static struct value * |
f5938064 JG |
2584 | ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, |
2585 | int low, int high) | |
0b5d8877 | 2586 | { |
b0dd7688 | 2587 | struct type *type0 = ada_check_typedef (type); |
6c038f32 | 2588 | CORE_ADDR base = value_as_address (array_ptr) |
b0dd7688 JB |
2589 | + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) |
2590 | * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); | |
6c038f32 | 2591 | struct type *index_type = |
b0dd7688 | 2592 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), |
0b5d8877 | 2593 | low, high); |
6c038f32 | 2594 | struct type *slice_type = |
b0dd7688 | 2595 | create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); |
5b4ee69b | 2596 | |
f5938064 | 2597 | return value_at_lazy (slice_type, base); |
0b5d8877 PH |
2598 | } |
2599 | ||
2600 | ||
2601 | static struct value * | |
2602 | ada_value_slice (struct value *array, int low, int high) | |
2603 | { | |
b0dd7688 | 2604 | struct type *type = ada_check_typedef (value_type (array)); |
6c038f32 | 2605 | struct type *index_type = |
0b5d8877 | 2606 | create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); |
6c038f32 | 2607 | struct type *slice_type = |
0b5d8877 | 2608 | create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); |
5b4ee69b | 2609 | |
6c038f32 | 2610 | return value_cast (slice_type, value_slice (array, low, high - low + 1)); |
0b5d8877 PH |
2611 | } |
2612 | ||
14f9c5c9 AS |
2613 | /* If type is a record type in the form of a standard GNAT array |
2614 | descriptor, returns the number of dimensions for type. If arr is a | |
2615 | simple array, returns the number of "array of"s that prefix its | |
4c4b4cd2 | 2616 | type designation. Otherwise, returns 0. */ |
14f9c5c9 AS |
2617 | |
2618 | int | |
d2e4a39e | 2619 | ada_array_arity (struct type *type) |
14f9c5c9 AS |
2620 | { |
2621 | int arity; | |
2622 | ||
2623 | if (type == NULL) | |
2624 | return 0; | |
2625 | ||
2626 | type = desc_base_type (type); | |
2627 | ||
2628 | arity = 0; | |
d2e4a39e | 2629 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 | 2630 | return desc_arity (desc_bounds_type (type)); |
d2e4a39e AS |
2631 | else |
2632 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 | 2633 | { |
4c4b4cd2 | 2634 | arity += 1; |
61ee279c | 2635 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
14f9c5c9 | 2636 | } |
d2e4a39e | 2637 | |
14f9c5c9 AS |
2638 | return arity; |
2639 | } | |
2640 | ||
2641 | /* If TYPE is a record type in the form of a standard GNAT array | |
2642 | descriptor or a simple array type, returns the element type for | |
2643 | TYPE after indexing by NINDICES indices, or by all indices if | |
4c4b4cd2 | 2644 | NINDICES is -1. Otherwise, returns NULL. */ |
14f9c5c9 | 2645 | |
d2e4a39e AS |
2646 | struct type * |
2647 | ada_array_element_type (struct type *type, int nindices) | |
14f9c5c9 AS |
2648 | { |
2649 | type = desc_base_type (type); | |
2650 | ||
d2e4a39e | 2651 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) |
14f9c5c9 AS |
2652 | { |
2653 | int k; | |
d2e4a39e | 2654 | struct type *p_array_type; |
14f9c5c9 | 2655 | |
556bdfd4 | 2656 | p_array_type = desc_data_target_type (type); |
14f9c5c9 AS |
2657 | |
2658 | k = ada_array_arity (type); | |
2659 | if (k == 0) | |
4c4b4cd2 | 2660 | return NULL; |
d2e4a39e | 2661 | |
4c4b4cd2 | 2662 | /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ |
14f9c5c9 | 2663 | if (nindices >= 0 && k > nindices) |
4c4b4cd2 | 2664 | k = nindices; |
d2e4a39e | 2665 | while (k > 0 && p_array_type != NULL) |
4c4b4cd2 | 2666 | { |
61ee279c | 2667 | p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); |
4c4b4cd2 PH |
2668 | k -= 1; |
2669 | } | |
14f9c5c9 AS |
2670 | return p_array_type; |
2671 | } | |
2672 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
2673 | { | |
2674 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
4c4b4cd2 PH |
2675 | { |
2676 | type = TYPE_TARGET_TYPE (type); | |
2677 | nindices -= 1; | |
2678 | } | |
14f9c5c9 AS |
2679 | return type; |
2680 | } | |
2681 | ||
2682 | return NULL; | |
2683 | } | |
2684 | ||
4c4b4cd2 | 2685 | /* The type of nth index in arrays of given type (n numbering from 1). |
dd19d49e UW |
2686 | Does not examine memory. Throws an error if N is invalid or TYPE |
2687 | is not an array type. NAME is the name of the Ada attribute being | |
2688 | evaluated ('range, 'first, 'last, or 'length); it is used in building | |
2689 | the error message. */ | |
14f9c5c9 | 2690 | |
1eea4ebd UW |
2691 | static struct type * |
2692 | ada_index_type (struct type *type, int n, const char *name) | |
14f9c5c9 | 2693 | { |
4c4b4cd2 PH |
2694 | struct type *result_type; |
2695 | ||
14f9c5c9 AS |
2696 | type = desc_base_type (type); |
2697 | ||
1eea4ebd UW |
2698 | if (n < 0 || n > ada_array_arity (type)) |
2699 | error (_("invalid dimension number to '%s"), name); | |
14f9c5c9 | 2700 | |
4c4b4cd2 | 2701 | if (ada_is_simple_array_type (type)) |
14f9c5c9 AS |
2702 | { |
2703 | int i; | |
2704 | ||
2705 | for (i = 1; i < n; i += 1) | |
4c4b4cd2 | 2706 | type = TYPE_TARGET_TYPE (type); |
262452ec | 2707 | result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); |
4c4b4cd2 PH |
2708 | /* FIXME: The stabs type r(0,0);bound;bound in an array type |
2709 | has a target type of TYPE_CODE_UNDEF. We compensate here, but | |
76a01679 | 2710 | perhaps stabsread.c would make more sense. */ |
1eea4ebd UW |
2711 | if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) |
2712 | result_type = NULL; | |
14f9c5c9 | 2713 | } |
d2e4a39e | 2714 | else |
1eea4ebd UW |
2715 | { |
2716 | result_type = desc_index_type (desc_bounds_type (type), n); | |
2717 | if (result_type == NULL) | |
2718 | error (_("attempt to take bound of something that is not an array")); | |
2719 | } | |
2720 | ||
2721 | return result_type; | |
14f9c5c9 AS |
2722 | } |
2723 | ||
2724 | /* Given that arr is an array type, returns the lower bound of the | |
2725 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
4c4b4cd2 | 2726 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an |
1eea4ebd UW |
2727 | array-descriptor type. It works for other arrays with bounds supplied |
2728 | by run-time quantities other than discriminants. */ | |
14f9c5c9 | 2729 | |
abb68b3e | 2730 | static LONGEST |
1eea4ebd | 2731 | ada_array_bound_from_type (struct type * arr_type, int n, int which) |
14f9c5c9 | 2732 | { |
1ce677a4 | 2733 | struct type *type, *elt_type, *index_type_desc, *index_type; |
1ce677a4 | 2734 | int i; |
262452ec JK |
2735 | |
2736 | gdb_assert (which == 0 || which == 1); | |
14f9c5c9 | 2737 | |
ad82864c JB |
2738 | if (ada_is_constrained_packed_array_type (arr_type)) |
2739 | arr_type = decode_constrained_packed_array_type (arr_type); | |
14f9c5c9 | 2740 | |
4c4b4cd2 | 2741 | if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2742 | return (LONGEST) - which; |
14f9c5c9 AS |
2743 | |
2744 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
2745 | type = TYPE_TARGET_TYPE (arr_type); | |
2746 | else | |
2747 | type = arr_type; | |
2748 | ||
1ce677a4 UW |
2749 | elt_type = type; |
2750 | for (i = n; i > 1; i--) | |
2751 | elt_type = TYPE_TARGET_TYPE (type); | |
2752 | ||
14f9c5c9 | 2753 | index_type_desc = ada_find_parallel_type (type, "___XA"); |
28c85d6c | 2754 | ada_fixup_array_indexes_type (index_type_desc); |
262452ec | 2755 | if (index_type_desc != NULL) |
28c85d6c JB |
2756 | index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), |
2757 | NULL); | |
262452ec | 2758 | else |
1ce677a4 | 2759 | index_type = TYPE_INDEX_TYPE (elt_type); |
262452ec | 2760 | |
43bbcdc2 PH |
2761 | return |
2762 | (LONGEST) (which == 0 | |
2763 | ? ada_discrete_type_low_bound (index_type) | |
2764 | : ada_discrete_type_high_bound (index_type)); | |
14f9c5c9 AS |
2765 | } |
2766 | ||
2767 | /* Given that arr is an array value, returns the lower bound of the | |
abb68b3e JB |
2768 | nth index (numbering from 1) if WHICH is 0, and the upper bound if |
2769 | WHICH is 1. This routine will also work for arrays with bounds | |
4c4b4cd2 | 2770 | supplied by run-time quantities other than discriminants. */ |
14f9c5c9 | 2771 | |
1eea4ebd | 2772 | static LONGEST |
4dc81987 | 2773 | ada_array_bound (struct value *arr, int n, int which) |
14f9c5c9 | 2774 | { |
df407dfe | 2775 | struct type *arr_type = value_type (arr); |
14f9c5c9 | 2776 | |
ad82864c JB |
2777 | if (ada_is_constrained_packed_array_type (arr_type)) |
2778 | return ada_array_bound (decode_constrained_packed_array (arr), n, which); | |
4c4b4cd2 | 2779 | else if (ada_is_simple_array_type (arr_type)) |
1eea4ebd | 2780 | return ada_array_bound_from_type (arr_type, n, which); |
14f9c5c9 | 2781 | else |
1eea4ebd | 2782 | return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); |
14f9c5c9 AS |
2783 | } |
2784 | ||
2785 | /* Given that arr is an array value, returns the length of the | |
2786 | nth index. This routine will also work for arrays with bounds | |
4c4b4cd2 PH |
2787 | supplied by run-time quantities other than discriminants. |
2788 | Does not work for arrays indexed by enumeration types with representation | |
2789 | clauses at the moment. */ | |
14f9c5c9 | 2790 | |
1eea4ebd | 2791 | static LONGEST |
d2e4a39e | 2792 | ada_array_length (struct value *arr, int n) |
14f9c5c9 | 2793 | { |
df407dfe | 2794 | struct type *arr_type = ada_check_typedef (value_type (arr)); |
14f9c5c9 | 2795 | |
ad82864c JB |
2796 | if (ada_is_constrained_packed_array_type (arr_type)) |
2797 | return ada_array_length (decode_constrained_packed_array (arr), n); | |
14f9c5c9 | 2798 | |
4c4b4cd2 | 2799 | if (ada_is_simple_array_type (arr_type)) |
1eea4ebd UW |
2800 | return (ada_array_bound_from_type (arr_type, n, 1) |
2801 | - ada_array_bound_from_type (arr_type, n, 0) + 1); | |
14f9c5c9 | 2802 | else |
1eea4ebd UW |
2803 | return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) |
2804 | - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); | |
4c4b4cd2 PH |
2805 | } |
2806 | ||
2807 | /* An empty array whose type is that of ARR_TYPE (an array type), | |
2808 | with bounds LOW to LOW-1. */ | |
2809 | ||
2810 | static struct value * | |
2811 | empty_array (struct type *arr_type, int low) | |
2812 | { | |
b0dd7688 | 2813 | struct type *arr_type0 = ada_check_typedef (arr_type); |
6c038f32 | 2814 | struct type *index_type = |
b0dd7688 | 2815 | create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), |
0b5d8877 | 2816 | low, low - 1); |
b0dd7688 | 2817 | struct type *elt_type = ada_array_element_type (arr_type0, 1); |
5b4ee69b | 2818 | |
0b5d8877 | 2819 | return allocate_value (create_array_type (NULL, elt_type, index_type)); |
14f9c5c9 | 2820 | } |
14f9c5c9 | 2821 | \f |
d2e4a39e | 2822 | |
4c4b4cd2 | 2823 | /* Name resolution */ |
14f9c5c9 | 2824 | |
4c4b4cd2 PH |
2825 | /* The "decoded" name for the user-definable Ada operator corresponding |
2826 | to OP. */ | |
14f9c5c9 | 2827 | |
d2e4a39e | 2828 | static const char * |
4c4b4cd2 | 2829 | ada_decoded_op_name (enum exp_opcode op) |
14f9c5c9 AS |
2830 | { |
2831 | int i; | |
2832 | ||
4c4b4cd2 | 2833 | for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) |
14f9c5c9 AS |
2834 | { |
2835 | if (ada_opname_table[i].op == op) | |
4c4b4cd2 | 2836 | return ada_opname_table[i].decoded; |
14f9c5c9 | 2837 | } |
323e0a4a | 2838 | error (_("Could not find operator name for opcode")); |
14f9c5c9 AS |
2839 | } |
2840 | ||
2841 | ||
4c4b4cd2 PH |
2842 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol |
2843 | references (marked by OP_VAR_VALUE nodes in which the symbol has an | |
2844 | undefined namespace) and converts operators that are | |
2845 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
14f9c5c9 AS |
2846 | non-null, it provides a preferred result type [at the moment, only |
2847 | type void has any effect---causing procedures to be preferred over | |
2848 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
4c4b4cd2 | 2849 | return type is preferred. May change (expand) *EXP. */ |
14f9c5c9 | 2850 | |
4c4b4cd2 PH |
2851 | static void |
2852 | resolve (struct expression **expp, int void_context_p) | |
14f9c5c9 | 2853 | { |
30b15541 UW |
2854 | struct type *context_type = NULL; |
2855 | int pc = 0; | |
2856 | ||
2857 | if (void_context_p) | |
2858 | context_type = builtin_type ((*expp)->gdbarch)->builtin_void; | |
2859 | ||
2860 | resolve_subexp (expp, &pc, 1, context_type); | |
14f9c5c9 AS |
2861 | } |
2862 | ||
4c4b4cd2 PH |
2863 | /* Resolve the operator of the subexpression beginning at |
2864 | position *POS of *EXPP. "Resolving" consists of replacing | |
2865 | the symbols that have undefined namespaces in OP_VAR_VALUE nodes | |
2866 | with their resolutions, replacing built-in operators with | |
2867 | function calls to user-defined operators, where appropriate, and, | |
2868 | when DEPROCEDURE_P is non-zero, converting function-valued variables | |
2869 | into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions | |
2870 | are as in ada_resolve, above. */ | |
14f9c5c9 | 2871 | |
d2e4a39e | 2872 | static struct value * |
4c4b4cd2 | 2873 | resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, |
76a01679 | 2874 | struct type *context_type) |
14f9c5c9 AS |
2875 | { |
2876 | int pc = *pos; | |
2877 | int i; | |
4c4b4cd2 | 2878 | struct expression *exp; /* Convenience: == *expp. */ |
14f9c5c9 | 2879 | enum exp_opcode op = (*expp)->elts[pc].opcode; |
4c4b4cd2 PH |
2880 | struct value **argvec; /* Vector of operand types (alloca'ed). */ |
2881 | int nargs; /* Number of operands. */ | |
52ce6436 | 2882 | int oplen; |
14f9c5c9 AS |
2883 | |
2884 | argvec = NULL; | |
2885 | nargs = 0; | |
2886 | exp = *expp; | |
2887 | ||
52ce6436 PH |
2888 | /* Pass one: resolve operands, saving their types and updating *pos, |
2889 | if needed. */ | |
14f9c5c9 AS |
2890 | switch (op) |
2891 | { | |
4c4b4cd2 PH |
2892 | case OP_FUNCALL: |
2893 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE | |
76a01679 JB |
2894 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
2895 | *pos += 7; | |
4c4b4cd2 PH |
2896 | else |
2897 | { | |
2898 | *pos += 3; | |
2899 | resolve_subexp (expp, pos, 0, NULL); | |
2900 | } | |
2901 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
14f9c5c9 AS |
2902 | break; |
2903 | ||
14f9c5c9 | 2904 | case UNOP_ADDR: |
4c4b4cd2 PH |
2905 | *pos += 1; |
2906 | resolve_subexp (expp, pos, 0, NULL); | |
2907 | break; | |
2908 | ||
52ce6436 PH |
2909 | case UNOP_QUAL: |
2910 | *pos += 3; | |
17466c1a | 2911 | resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); |
4c4b4cd2 PH |
2912 | break; |
2913 | ||
52ce6436 | 2914 | case OP_ATR_MODULUS: |
4c4b4cd2 PH |
2915 | case OP_ATR_SIZE: |
2916 | case OP_ATR_TAG: | |
4c4b4cd2 PH |
2917 | case OP_ATR_FIRST: |
2918 | case OP_ATR_LAST: | |
2919 | case OP_ATR_LENGTH: | |
2920 | case OP_ATR_POS: | |
2921 | case OP_ATR_VAL: | |
4c4b4cd2 PH |
2922 | case OP_ATR_MIN: |
2923 | case OP_ATR_MAX: | |
52ce6436 PH |
2924 | case TERNOP_IN_RANGE: |
2925 | case BINOP_IN_BOUNDS: | |
2926 | case UNOP_IN_RANGE: | |
2927 | case OP_AGGREGATE: | |
2928 | case OP_OTHERS: | |
2929 | case OP_CHOICES: | |
2930 | case OP_POSITIONAL: | |
2931 | case OP_DISCRETE_RANGE: | |
2932 | case OP_NAME: | |
2933 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
2934 | *pos += oplen; | |
14f9c5c9 AS |
2935 | break; |
2936 | ||
2937 | case BINOP_ASSIGN: | |
2938 | { | |
4c4b4cd2 PH |
2939 | struct value *arg1; |
2940 | ||
2941 | *pos += 1; | |
2942 | arg1 = resolve_subexp (expp, pos, 0, NULL); | |
2943 | if (arg1 == NULL) | |
2944 | resolve_subexp (expp, pos, 1, NULL); | |
2945 | else | |
df407dfe | 2946 | resolve_subexp (expp, pos, 1, value_type (arg1)); |
4c4b4cd2 | 2947 | break; |
14f9c5c9 AS |
2948 | } |
2949 | ||
4c4b4cd2 | 2950 | case UNOP_CAST: |
4c4b4cd2 PH |
2951 | *pos += 3; |
2952 | nargs = 1; | |
2953 | break; | |
14f9c5c9 | 2954 | |
4c4b4cd2 PH |
2955 | case BINOP_ADD: |
2956 | case BINOP_SUB: | |
2957 | case BINOP_MUL: | |
2958 | case BINOP_DIV: | |
2959 | case BINOP_REM: | |
2960 | case BINOP_MOD: | |
2961 | case BINOP_EXP: | |
2962 | case BINOP_CONCAT: | |
2963 | case BINOP_LOGICAL_AND: | |
2964 | case BINOP_LOGICAL_OR: | |
2965 | case BINOP_BITWISE_AND: | |
2966 | case BINOP_BITWISE_IOR: | |
2967 | case BINOP_BITWISE_XOR: | |
14f9c5c9 | 2968 | |
4c4b4cd2 PH |
2969 | case BINOP_EQUAL: |
2970 | case BINOP_NOTEQUAL: | |
2971 | case BINOP_LESS: | |
2972 | case BINOP_GTR: | |
2973 | case BINOP_LEQ: | |
2974 | case BINOP_GEQ: | |
14f9c5c9 | 2975 | |
4c4b4cd2 PH |
2976 | case BINOP_REPEAT: |
2977 | case BINOP_SUBSCRIPT: | |
2978 | case BINOP_COMMA: | |
40c8aaa9 JB |
2979 | *pos += 1; |
2980 | nargs = 2; | |
2981 | break; | |
14f9c5c9 | 2982 | |
4c4b4cd2 PH |
2983 | case UNOP_NEG: |
2984 | case UNOP_PLUS: | |
2985 | case UNOP_LOGICAL_NOT: | |
2986 | case UNOP_ABS: | |
2987 | case UNOP_IND: | |
2988 | *pos += 1; | |
2989 | nargs = 1; | |
2990 | break; | |
14f9c5c9 | 2991 | |
4c4b4cd2 PH |
2992 | case OP_LONG: |
2993 | case OP_DOUBLE: | |
2994 | case OP_VAR_VALUE: | |
2995 | *pos += 4; | |
2996 | break; | |
14f9c5c9 | 2997 | |
4c4b4cd2 PH |
2998 | case OP_TYPE: |
2999 | case OP_BOOL: | |
3000 | case OP_LAST: | |
4c4b4cd2 PH |
3001 | case OP_INTERNALVAR: |
3002 | *pos += 3; | |
3003 | break; | |
14f9c5c9 | 3004 | |
4c4b4cd2 PH |
3005 | case UNOP_MEMVAL: |
3006 | *pos += 3; | |
3007 | nargs = 1; | |
3008 | break; | |
3009 | ||
67f3407f DJ |
3010 | case OP_REGISTER: |
3011 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3012 | break; | |
3013 | ||
4c4b4cd2 PH |
3014 | case STRUCTOP_STRUCT: |
3015 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
3016 | nargs = 1; | |
3017 | break; | |
3018 | ||
4c4b4cd2 | 3019 | case TERNOP_SLICE: |
4c4b4cd2 PH |
3020 | *pos += 1; |
3021 | nargs = 3; | |
3022 | break; | |
3023 | ||
52ce6436 | 3024 | case OP_STRING: |
14f9c5c9 | 3025 | break; |
4c4b4cd2 PH |
3026 | |
3027 | default: | |
323e0a4a | 3028 | error (_("Unexpected operator during name resolution")); |
14f9c5c9 AS |
3029 | } |
3030 | ||
76a01679 | 3031 | argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); |
4c4b4cd2 PH |
3032 | for (i = 0; i < nargs; i += 1) |
3033 | argvec[i] = resolve_subexp (expp, pos, 1, NULL); | |
3034 | argvec[i] = NULL; | |
3035 | exp = *expp; | |
3036 | ||
3037 | /* Pass two: perform any resolution on principal operator. */ | |
14f9c5c9 AS |
3038 | switch (op) |
3039 | { | |
3040 | default: | |
3041 | break; | |
3042 | ||
14f9c5c9 | 3043 | case OP_VAR_VALUE: |
4c4b4cd2 | 3044 | if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) |
76a01679 JB |
3045 | { |
3046 | struct ada_symbol_info *candidates; | |
3047 | int n_candidates; | |
3048 | ||
3049 | n_candidates = | |
3050 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME | |
3051 | (exp->elts[pc + 2].symbol), | |
3052 | exp->elts[pc + 1].block, VAR_DOMAIN, | |
3053 | &candidates); | |
3054 | ||
3055 | if (n_candidates > 1) | |
3056 | { | |
3057 | /* Types tend to get re-introduced locally, so if there | |
3058 | are any local symbols that are not types, first filter | |
3059 | out all types. */ | |
3060 | int j; | |
3061 | for (j = 0; j < n_candidates; j += 1) | |
3062 | switch (SYMBOL_CLASS (candidates[j].sym)) | |
3063 | { | |
3064 | case LOC_REGISTER: | |
3065 | case LOC_ARG: | |
3066 | case LOC_REF_ARG: | |
76a01679 JB |
3067 | case LOC_REGPARM_ADDR: |
3068 | case LOC_LOCAL: | |
76a01679 | 3069 | case LOC_COMPUTED: |
76a01679 JB |
3070 | goto FoundNonType; |
3071 | default: | |
3072 | break; | |
3073 | } | |
3074 | FoundNonType: | |
3075 | if (j < n_candidates) | |
3076 | { | |
3077 | j = 0; | |
3078 | while (j < n_candidates) | |
3079 | { | |
3080 | if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) | |
3081 | { | |
3082 | candidates[j] = candidates[n_candidates - 1]; | |
3083 | n_candidates -= 1; | |
3084 | } | |
3085 | else | |
3086 | j += 1; | |
3087 | } | |
3088 | } | |
3089 | } | |
3090 | ||
3091 | if (n_candidates == 0) | |
323e0a4a | 3092 | error (_("No definition found for %s"), |
76a01679 JB |
3093 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3094 | else if (n_candidates == 1) | |
3095 | i = 0; | |
3096 | else if (deprocedure_p | |
3097 | && !is_nonfunction (candidates, n_candidates)) | |
3098 | { | |
06d5cf63 JB |
3099 | i = ada_resolve_function |
3100 | (candidates, n_candidates, NULL, 0, | |
3101 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), | |
3102 | context_type); | |
76a01679 | 3103 | if (i < 0) |
323e0a4a | 3104 | error (_("Could not find a match for %s"), |
76a01679 JB |
3105 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3106 | } | |
3107 | else | |
3108 | { | |
323e0a4a | 3109 | printf_filtered (_("Multiple matches for %s\n"), |
76a01679 JB |
3110 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
3111 | user_select_syms (candidates, n_candidates, 1); | |
3112 | i = 0; | |
3113 | } | |
3114 | ||
3115 | exp->elts[pc + 1].block = candidates[i].block; | |
3116 | exp->elts[pc + 2].symbol = candidates[i].sym; | |
1265e4aa JB |
3117 | if (innermost_block == NULL |
3118 | || contained_in (candidates[i].block, innermost_block)) | |
76a01679 JB |
3119 | innermost_block = candidates[i].block; |
3120 | } | |
3121 | ||
3122 | if (deprocedure_p | |
3123 | && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) | |
3124 | == TYPE_CODE_FUNC)) | |
3125 | { | |
3126 | replace_operator_with_call (expp, pc, 0, 0, | |
3127 | exp->elts[pc + 2].symbol, | |
3128 | exp->elts[pc + 1].block); | |
3129 | exp = *expp; | |
3130 | } | |
14f9c5c9 AS |
3131 | break; |
3132 | ||
3133 | case OP_FUNCALL: | |
3134 | { | |
4c4b4cd2 | 3135 | if (exp->elts[pc + 3].opcode == OP_VAR_VALUE |
76a01679 | 3136 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
4c4b4cd2 PH |
3137 | { |
3138 | struct ada_symbol_info *candidates; | |
3139 | int n_candidates; | |
3140 | ||
3141 | n_candidates = | |
76a01679 JB |
3142 | ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME |
3143 | (exp->elts[pc + 5].symbol), | |
3144 | exp->elts[pc + 4].block, VAR_DOMAIN, | |
3145 | &candidates); | |
4c4b4cd2 PH |
3146 | if (n_candidates == 1) |
3147 | i = 0; | |
3148 | else | |
3149 | { | |
06d5cf63 JB |
3150 | i = ada_resolve_function |
3151 | (candidates, n_candidates, | |
3152 | argvec, nargs, | |
3153 | SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), | |
3154 | context_type); | |
4c4b4cd2 | 3155 | if (i < 0) |
323e0a4a | 3156 | error (_("Could not find a match for %s"), |
4c4b4cd2 PH |
3157 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
3158 | } | |
3159 | ||
3160 | exp->elts[pc + 4].block = candidates[i].block; | |
3161 | exp->elts[pc + 5].symbol = candidates[i].sym; | |
1265e4aa JB |
3162 | if (innermost_block == NULL |
3163 | || contained_in (candidates[i].block, innermost_block)) | |
4c4b4cd2 PH |
3164 | innermost_block = candidates[i].block; |
3165 | } | |
14f9c5c9 AS |
3166 | } |
3167 | break; | |
3168 | case BINOP_ADD: | |
3169 | case BINOP_SUB: | |
3170 | case BINOP_MUL: | |
3171 | case BINOP_DIV: | |
3172 | case BINOP_REM: | |
3173 | case BINOP_MOD: | |
3174 | case BINOP_CONCAT: | |
3175 | case BINOP_BITWISE_AND: | |
3176 | case BINOP_BITWISE_IOR: | |
3177 | case BINOP_BITWISE_XOR: | |
3178 | case BINOP_EQUAL: | |
3179 | case BINOP_NOTEQUAL: | |
3180 | case BINOP_LESS: | |
3181 | case BINOP_GTR: | |
3182 | case BINOP_LEQ: | |
3183 | case BINOP_GEQ: | |
3184 | case BINOP_EXP: | |
3185 | case UNOP_NEG: | |
3186 | case UNOP_PLUS: | |
3187 | case UNOP_LOGICAL_NOT: | |
3188 | case UNOP_ABS: | |
3189 | if (possible_user_operator_p (op, argvec)) | |
4c4b4cd2 PH |
3190 | { |
3191 | struct ada_symbol_info *candidates; | |
3192 | int n_candidates; | |
3193 | ||
3194 | n_candidates = | |
3195 | ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), | |
3196 | (struct block *) NULL, VAR_DOMAIN, | |
3197 | &candidates); | |
3198 | i = ada_resolve_function (candidates, n_candidates, argvec, nargs, | |
76a01679 | 3199 | ada_decoded_op_name (op), NULL); |
4c4b4cd2 PH |
3200 | if (i < 0) |
3201 | break; | |
3202 | ||
76a01679 JB |
3203 | replace_operator_with_call (expp, pc, nargs, 1, |
3204 | candidates[i].sym, candidates[i].block); | |
4c4b4cd2 PH |
3205 | exp = *expp; |
3206 | } | |
14f9c5c9 | 3207 | break; |
4c4b4cd2 PH |
3208 | |
3209 | case OP_TYPE: | |
b3dbf008 | 3210 | case OP_REGISTER: |
4c4b4cd2 | 3211 | return NULL; |
14f9c5c9 AS |
3212 | } |
3213 | ||
3214 | *pos = pc; | |
3215 | return evaluate_subexp_type (exp, pos); | |
3216 | } | |
3217 | ||
3218 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
4c4b4cd2 | 3219 | MAY_DEREF is non-zero, the formal may be a pointer and the actual |
5b3d5b7d | 3220 | a non-pointer. */ |
14f9c5c9 | 3221 | /* The term "match" here is rather loose. The match is heuristic and |
5b3d5b7d | 3222 | liberal. */ |
14f9c5c9 AS |
3223 | |
3224 | static int | |
4dc81987 | 3225 | ada_type_match (struct type *ftype, struct type *atype, int may_deref) |
14f9c5c9 | 3226 | { |
61ee279c PH |
3227 | ftype = ada_check_typedef (ftype); |
3228 | atype = ada_check_typedef (atype); | |
14f9c5c9 AS |
3229 | |
3230 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
3231 | ftype = TYPE_TARGET_TYPE (ftype); | |
3232 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
3233 | atype = TYPE_TARGET_TYPE (atype); | |
3234 | ||
d2e4a39e | 3235 | switch (TYPE_CODE (ftype)) |
14f9c5c9 AS |
3236 | { |
3237 | default: | |
5b3d5b7d | 3238 | return TYPE_CODE (ftype) == TYPE_CODE (atype); |
14f9c5c9 AS |
3239 | case TYPE_CODE_PTR: |
3240 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
4c4b4cd2 PH |
3241 | return ada_type_match (TYPE_TARGET_TYPE (ftype), |
3242 | TYPE_TARGET_TYPE (atype), 0); | |
d2e4a39e | 3243 | else |
1265e4aa JB |
3244 | return (may_deref |
3245 | && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
14f9c5c9 AS |
3246 | case TYPE_CODE_INT: |
3247 | case TYPE_CODE_ENUM: | |
3248 | case TYPE_CODE_RANGE: | |
3249 | switch (TYPE_CODE (atype)) | |
4c4b4cd2 PH |
3250 | { |
3251 | case TYPE_CODE_INT: | |
3252 | case TYPE_CODE_ENUM: | |
3253 | case TYPE_CODE_RANGE: | |
3254 | return 1; | |
3255 | default: | |
3256 | return 0; | |
3257 | } | |
14f9c5c9 AS |
3258 | |
3259 | case TYPE_CODE_ARRAY: | |
d2e4a39e | 3260 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY |
4c4b4cd2 | 3261 | || ada_is_array_descriptor_type (atype)); |
14f9c5c9 AS |
3262 | |
3263 | case TYPE_CODE_STRUCT: | |
4c4b4cd2 PH |
3264 | if (ada_is_array_descriptor_type (ftype)) |
3265 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
3266 | || ada_is_array_descriptor_type (atype)); | |
14f9c5c9 | 3267 | else |
4c4b4cd2 PH |
3268 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT |
3269 | && !ada_is_array_descriptor_type (atype)); | |
14f9c5c9 AS |
3270 | |
3271 | case TYPE_CODE_UNION: | |
3272 | case TYPE_CODE_FLT: | |
3273 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
3274 | } | |
3275 | } | |
3276 | ||
3277 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
3278 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
3279 | may also be an enumeral, in which case it is treated as a 0- | |
4c4b4cd2 | 3280 | argument function. */ |
14f9c5c9 AS |
3281 | |
3282 | static int | |
d2e4a39e | 3283 | ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) |
14f9c5c9 AS |
3284 | { |
3285 | int i; | |
d2e4a39e | 3286 | struct type *func_type = SYMBOL_TYPE (func); |
14f9c5c9 | 3287 | |
1265e4aa JB |
3288 | if (SYMBOL_CLASS (func) == LOC_CONST |
3289 | && TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
14f9c5c9 AS |
3290 | return (n_actuals == 0); |
3291 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
3292 | return 0; | |
3293 | ||
3294 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
3295 | return 0; | |
3296 | ||
3297 | for (i = 0; i < n_actuals; i += 1) | |
3298 | { | |
4c4b4cd2 | 3299 | if (actuals[i] == NULL) |
76a01679 JB |
3300 | return 0; |
3301 | else | |
3302 | { | |
5b4ee69b MS |
3303 | struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, |
3304 | i)); | |
df407dfe | 3305 | struct type *atype = ada_check_typedef (value_type (actuals[i])); |
4c4b4cd2 | 3306 | |
76a01679 JB |
3307 | if (!ada_type_match (ftype, atype, 1)) |
3308 | return 0; | |
3309 | } | |
14f9c5c9 AS |
3310 | } |
3311 | return 1; | |
3312 | } | |
3313 | ||
3314 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
3315 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
3316 | FUNC_TYPE is not a valid function type with a non-null return type | |
3317 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
3318 | ||
3319 | static int | |
d2e4a39e | 3320 | return_match (struct type *func_type, struct type *context_type) |
14f9c5c9 | 3321 | { |
d2e4a39e | 3322 | struct type *return_type; |
14f9c5c9 AS |
3323 | |
3324 | if (func_type == NULL) | |
3325 | return 1; | |
3326 | ||
4c4b4cd2 | 3327 | if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) |
18af8284 | 3328 | return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); |
4c4b4cd2 | 3329 | else |
18af8284 | 3330 | return_type = get_base_type (func_type); |
14f9c5c9 AS |
3331 | if (return_type == NULL) |
3332 | return 1; | |
3333 | ||
18af8284 | 3334 | context_type = get_base_type (context_type); |
14f9c5c9 AS |
3335 | |
3336 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
3337 | return context_type == NULL || return_type == context_type; | |
3338 | else if (context_type == NULL) | |
3339 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
3340 | else | |
3341 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
3342 | } | |
3343 | ||
3344 | ||
4c4b4cd2 | 3345 | /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the |
14f9c5c9 | 3346 | function (if any) that matches the types of the NARGS arguments in |
4c4b4cd2 PH |
3347 | ARGS. If CONTEXT_TYPE is non-null and there is at least one match |
3348 | that returns that type, then eliminate matches that don't. If | |
3349 | CONTEXT_TYPE is void and there is at least one match that does not | |
3350 | return void, eliminate all matches that do. | |
3351 | ||
14f9c5c9 AS |
3352 | Asks the user if there is more than one match remaining. Returns -1 |
3353 | if there is no such symbol or none is selected. NAME is used | |
4c4b4cd2 PH |
3354 | solely for messages. May re-arrange and modify SYMS in |
3355 | the process; the index returned is for the modified vector. */ | |
14f9c5c9 | 3356 | |
4c4b4cd2 PH |
3357 | static int |
3358 | ada_resolve_function (struct ada_symbol_info syms[], | |
3359 | int nsyms, struct value **args, int nargs, | |
3360 | const char *name, struct type *context_type) | |
14f9c5c9 | 3361 | { |
30b15541 | 3362 | int fallback; |
14f9c5c9 | 3363 | int k; |
4c4b4cd2 | 3364 | int m; /* Number of hits */ |
14f9c5c9 | 3365 | |
d2e4a39e | 3366 | m = 0; |
30b15541 UW |
3367 | /* In the first pass of the loop, we only accept functions matching |
3368 | context_type. If none are found, we add a second pass of the loop | |
3369 | where every function is accepted. */ | |
3370 | for (fallback = 0; m == 0 && fallback < 2; fallback++) | |
14f9c5c9 AS |
3371 | { |
3372 | for (k = 0; k < nsyms; k += 1) | |
4c4b4cd2 | 3373 | { |
61ee279c | 3374 | struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); |
4c4b4cd2 PH |
3375 | |
3376 | if (ada_args_match (syms[k].sym, args, nargs) | |
30b15541 | 3377 | && (fallback || return_match (type, context_type))) |
4c4b4cd2 PH |
3378 | { |
3379 | syms[m] = syms[k]; | |
3380 | m += 1; | |
3381 | } | |
3382 | } | |
14f9c5c9 AS |
3383 | } |
3384 | ||
3385 | if (m == 0) | |
3386 | return -1; | |
3387 | else if (m > 1) | |
3388 | { | |
323e0a4a | 3389 | printf_filtered (_("Multiple matches for %s\n"), name); |
4c4b4cd2 | 3390 | user_select_syms (syms, m, 1); |
14f9c5c9 AS |
3391 | return 0; |
3392 | } | |
3393 | return 0; | |
3394 | } | |
3395 | ||
4c4b4cd2 PH |
3396 | /* Returns true (non-zero) iff decoded name N0 should appear before N1 |
3397 | in a listing of choices during disambiguation (see sort_choices, below). | |
3398 | The idea is that overloadings of a subprogram name from the | |
3399 | same package should sort in their source order. We settle for ordering | |
3400 | such symbols by their trailing number (__N or $N). */ | |
3401 | ||
14f9c5c9 | 3402 | static int |
4c4b4cd2 | 3403 | encoded_ordered_before (char *N0, char *N1) |
14f9c5c9 AS |
3404 | { |
3405 | if (N1 == NULL) | |
3406 | return 0; | |
3407 | else if (N0 == NULL) | |
3408 | return 1; | |
3409 | else | |
3410 | { | |
3411 | int k0, k1; | |
5b4ee69b | 3412 | |
d2e4a39e | 3413 | for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) |
4c4b4cd2 | 3414 | ; |
d2e4a39e | 3415 | for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) |
4c4b4cd2 | 3416 | ; |
d2e4a39e | 3417 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' |
4c4b4cd2 PH |
3418 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') |
3419 | { | |
3420 | int n0, n1; | |
5b4ee69b | 3421 | |
4c4b4cd2 PH |
3422 | n0 = k0; |
3423 | while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') | |
3424 | n0 -= 1; | |
3425 | n1 = k1; | |
3426 | while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') | |
3427 | n1 -= 1; | |
3428 | if (n0 == n1 && strncmp (N0, N1, n0) == 0) | |
3429 | return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); | |
3430 | } | |
14f9c5c9 AS |
3431 | return (strcmp (N0, N1) < 0); |
3432 | } | |
3433 | } | |
d2e4a39e | 3434 | |
4c4b4cd2 PH |
3435 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the |
3436 | encoded names. */ | |
3437 | ||
d2e4a39e | 3438 | static void |
4c4b4cd2 | 3439 | sort_choices (struct ada_symbol_info syms[], int nsyms) |
14f9c5c9 | 3440 | { |
4c4b4cd2 | 3441 | int i; |
5b4ee69b | 3442 | |
d2e4a39e | 3443 | for (i = 1; i < nsyms; i += 1) |
14f9c5c9 | 3444 | { |
4c4b4cd2 | 3445 | struct ada_symbol_info sym = syms[i]; |
14f9c5c9 AS |
3446 | int j; |
3447 | ||
d2e4a39e | 3448 | for (j = i - 1; j >= 0; j -= 1) |
4c4b4cd2 PH |
3449 | { |
3450 | if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), | |
3451 | SYMBOL_LINKAGE_NAME (sym.sym))) | |
3452 | break; | |
3453 | syms[j + 1] = syms[j]; | |
3454 | } | |
d2e4a39e | 3455 | syms[j + 1] = sym; |
14f9c5c9 AS |
3456 | } |
3457 | } | |
3458 | ||
4c4b4cd2 PH |
3459 | /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 |
3460 | by asking the user (if necessary), returning the number selected, | |
3461 | and setting the first elements of SYMS items. Error if no symbols | |
3462 | selected. */ | |
14f9c5c9 AS |
3463 | |
3464 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
4c4b4cd2 | 3465 | to be re-integrated one of these days. */ |
14f9c5c9 AS |
3466 | |
3467 | int | |
4c4b4cd2 | 3468 | user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) |
14f9c5c9 AS |
3469 | { |
3470 | int i; | |
d2e4a39e | 3471 | int *chosen = (int *) alloca (sizeof (int) * nsyms); |
14f9c5c9 AS |
3472 | int n_chosen; |
3473 | int first_choice = (max_results == 1) ? 1 : 2; | |
717d2f5a | 3474 | const char *select_mode = multiple_symbols_select_mode (); |
14f9c5c9 AS |
3475 | |
3476 | if (max_results < 1) | |
323e0a4a | 3477 | error (_("Request to select 0 symbols!")); |
14f9c5c9 AS |
3478 | if (nsyms <= 1) |
3479 | return nsyms; | |
3480 | ||
717d2f5a JB |
3481 | if (select_mode == multiple_symbols_cancel) |
3482 | error (_("\ | |
3483 | canceled because the command is ambiguous\n\ | |
3484 | See set/show multiple-symbol.")); | |
3485 | ||
3486 | /* If select_mode is "all", then return all possible symbols. | |
3487 | Only do that if more than one symbol can be selected, of course. | |
3488 | Otherwise, display the menu as usual. */ | |
3489 | if (select_mode == multiple_symbols_all && max_results > 1) | |
3490 | return nsyms; | |
3491 | ||
323e0a4a | 3492 | printf_unfiltered (_("[0] cancel\n")); |
14f9c5c9 | 3493 | if (max_results > 1) |
323e0a4a | 3494 | printf_unfiltered (_("[1] all\n")); |
14f9c5c9 | 3495 | |
4c4b4cd2 | 3496 | sort_choices (syms, nsyms); |
14f9c5c9 AS |
3497 | |
3498 | for (i = 0; i < nsyms; i += 1) | |
3499 | { | |
4c4b4cd2 PH |
3500 | if (syms[i].sym == NULL) |
3501 | continue; | |
3502 | ||
3503 | if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) | |
3504 | { | |
76a01679 JB |
3505 | struct symtab_and_line sal = |
3506 | find_function_start_sal (syms[i].sym, 1); | |
5b4ee69b | 3507 | |
323e0a4a AC |
3508 | if (sal.symtab == NULL) |
3509 | printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), | |
3510 | i + first_choice, | |
3511 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3512 | sal.line); | |
3513 | else | |
3514 | printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, | |
3515 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3516 | sal.symtab->filename, sal.line); | |
4c4b4cd2 PH |
3517 | continue; |
3518 | } | |
d2e4a39e | 3519 | else |
4c4b4cd2 PH |
3520 | { |
3521 | int is_enumeral = | |
3522 | (SYMBOL_CLASS (syms[i].sym) == LOC_CONST | |
3523 | && SYMBOL_TYPE (syms[i].sym) != NULL | |
3524 | && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); | |
6f38eac8 | 3525 | struct symtab *symtab = syms[i].sym->symtab; |
4c4b4cd2 PH |
3526 | |
3527 | if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) | |
323e0a4a | 3528 | printf_unfiltered (_("[%d] %s at %s:%d\n"), |
4c4b4cd2 PH |
3529 | i + first_choice, |
3530 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3531 | symtab->filename, SYMBOL_LINE (syms[i].sym)); | |
76a01679 JB |
3532 | else if (is_enumeral |
3533 | && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) | |
4c4b4cd2 | 3534 | { |
a3f17187 | 3535 | printf_unfiltered (("[%d] "), i + first_choice); |
76a01679 JB |
3536 | ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, |
3537 | gdb_stdout, -1, 0); | |
323e0a4a | 3538 | printf_unfiltered (_("'(%s) (enumeral)\n"), |
4c4b4cd2 PH |
3539 | SYMBOL_PRINT_NAME (syms[i].sym)); |
3540 | } | |
3541 | else if (symtab != NULL) | |
3542 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3543 | ? _("[%d] %s in %s (enumeral)\n") |
3544 | : _("[%d] %s at %s:?\n"), | |
4c4b4cd2 PH |
3545 | i + first_choice, |
3546 | SYMBOL_PRINT_NAME (syms[i].sym), | |
3547 | symtab->filename); | |
3548 | else | |
3549 | printf_unfiltered (is_enumeral | |
323e0a4a AC |
3550 | ? _("[%d] %s (enumeral)\n") |
3551 | : _("[%d] %s at ?\n"), | |
4c4b4cd2 PH |
3552 | i + first_choice, |
3553 | SYMBOL_PRINT_NAME (syms[i].sym)); | |
3554 | } | |
14f9c5c9 | 3555 | } |
d2e4a39e | 3556 | |
14f9c5c9 | 3557 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, |
4c4b4cd2 | 3558 | "overload-choice"); |
14f9c5c9 AS |
3559 | |
3560 | for (i = 0; i < n_chosen; i += 1) | |
4c4b4cd2 | 3561 | syms[i] = syms[chosen[i]]; |
14f9c5c9 AS |
3562 | |
3563 | return n_chosen; | |
3564 | } | |
3565 | ||
3566 | /* Read and validate a set of numeric choices from the user in the | |
4c4b4cd2 | 3567 | range 0 .. N_CHOICES-1. Place the results in increasing |
14f9c5c9 AS |
3568 | order in CHOICES[0 .. N-1], and return N. |
3569 | ||
3570 | The user types choices as a sequence of numbers on one line | |
3571 | separated by blanks, encoding them as follows: | |
3572 | ||
4c4b4cd2 | 3573 | + A choice of 0 means to cancel the selection, throwing an error. |
14f9c5c9 AS |
3574 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. |
3575 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
3576 | ||
4c4b4cd2 | 3577 | The user is not allowed to choose more than MAX_RESULTS values. |
14f9c5c9 AS |
3578 | |
3579 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
4c4b4cd2 | 3580 | prompts (for use with the -f switch). */ |
14f9c5c9 AS |
3581 | |
3582 | int | |
d2e4a39e | 3583 | get_selections (int *choices, int n_choices, int max_results, |
4c4b4cd2 | 3584 | int is_all_choice, char *annotation_suffix) |
14f9c5c9 | 3585 | { |
d2e4a39e | 3586 | char *args; |
0bcd0149 | 3587 | char *prompt; |
14f9c5c9 AS |
3588 | int n_chosen; |
3589 | int first_choice = is_all_choice ? 2 : 1; | |
d2e4a39e | 3590 | |
14f9c5c9 AS |
3591 | prompt = getenv ("PS2"); |
3592 | if (prompt == NULL) | |
0bcd0149 | 3593 | prompt = "> "; |
14f9c5c9 | 3594 | |
0bcd0149 | 3595 | args = command_line_input (prompt, 0, annotation_suffix); |
d2e4a39e | 3596 | |
14f9c5c9 | 3597 | if (args == NULL) |
323e0a4a | 3598 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 AS |
3599 | |
3600 | n_chosen = 0; | |
76a01679 | 3601 | |
4c4b4cd2 PH |
3602 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending |
3603 | order, as given in args. Choices are validated. */ | |
14f9c5c9 AS |
3604 | while (1) |
3605 | { | |
d2e4a39e | 3606 | char *args2; |
14f9c5c9 AS |
3607 | int choice, j; |
3608 | ||
3609 | while (isspace (*args)) | |
4c4b4cd2 | 3610 | args += 1; |
14f9c5c9 | 3611 | if (*args == '\0' && n_chosen == 0) |
323e0a4a | 3612 | error_no_arg (_("one or more choice numbers")); |
14f9c5c9 | 3613 | else if (*args == '\0') |
4c4b4cd2 | 3614 | break; |
14f9c5c9 AS |
3615 | |
3616 | choice = strtol (args, &args2, 10); | |
d2e4a39e | 3617 | if (args == args2 || choice < 0 |
4c4b4cd2 | 3618 | || choice > n_choices + first_choice - 1) |
323e0a4a | 3619 | error (_("Argument must be choice number")); |
14f9c5c9 AS |
3620 | args = args2; |
3621 | ||
d2e4a39e | 3622 | if (choice == 0) |
323e0a4a | 3623 | error (_("cancelled")); |
14f9c5c9 AS |
3624 | |
3625 | if (choice < first_choice) | |
4c4b4cd2 PH |
3626 | { |
3627 | n_chosen = n_choices; | |
3628 | for (j = 0; j < n_choices; j += 1) | |
3629 | choices[j] = j; | |
3630 | break; | |
3631 | } | |
14f9c5c9 AS |
3632 | choice -= first_choice; |
3633 | ||
d2e4a39e | 3634 | for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) |
4c4b4cd2 PH |
3635 | { |
3636 | } | |
14f9c5c9 AS |
3637 | |
3638 | if (j < 0 || choice != choices[j]) | |
4c4b4cd2 PH |
3639 | { |
3640 | int k; | |
5b4ee69b | 3641 | |
4c4b4cd2 PH |
3642 | for (k = n_chosen - 1; k > j; k -= 1) |
3643 | choices[k + 1] = choices[k]; | |
3644 | choices[j + 1] = choice; | |
3645 | n_chosen += 1; | |
3646 | } | |
14f9c5c9 AS |
3647 | } |
3648 | ||
3649 | if (n_chosen > max_results) | |
323e0a4a | 3650 | error (_("Select no more than %d of the above"), max_results); |
d2e4a39e | 3651 | |
14f9c5c9 AS |
3652 | return n_chosen; |
3653 | } | |
3654 | ||
4c4b4cd2 PH |
3655 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call |
3656 | on the function identified by SYM and BLOCK, and taking NARGS | |
3657 | arguments. Update *EXPP as needed to hold more space. */ | |
14f9c5c9 AS |
3658 | |
3659 | static void | |
d2e4a39e | 3660 | replace_operator_with_call (struct expression **expp, int pc, int nargs, |
4c4b4cd2 PH |
3661 | int oplen, struct symbol *sym, |
3662 | struct block *block) | |
14f9c5c9 AS |
3663 | { |
3664 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
4c4b4cd2 | 3665 | symbol, -oplen for operator being replaced). */ |
d2e4a39e | 3666 | struct expression *newexp = (struct expression *) |
8c1a34e7 | 3667 | xzalloc (sizeof (struct expression) |
4c4b4cd2 | 3668 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); |
d2e4a39e | 3669 | struct expression *exp = *expp; |
14f9c5c9 AS |
3670 | |
3671 | newexp->nelts = exp->nelts + 7 - oplen; | |
3672 | newexp->language_defn = exp->language_defn; | |
3489610d | 3673 | newexp->gdbarch = exp->gdbarch; |
14f9c5c9 | 3674 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); |
d2e4a39e | 3675 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, |
4c4b4cd2 | 3676 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); |
14f9c5c9 AS |
3677 | |
3678 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
3679 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
3680 | ||
3681 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
3682 | newexp->elts[pc + 4].block = block; | |
3683 | newexp->elts[pc + 5].symbol = sym; | |
3684 | ||
3685 | *expp = newexp; | |
aacb1f0a | 3686 | xfree (exp); |
d2e4a39e | 3687 | } |
14f9c5c9 AS |
3688 | |
3689 | /* Type-class predicates */ | |
3690 | ||
4c4b4cd2 PH |
3691 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), |
3692 | or FLOAT). */ | |
14f9c5c9 AS |
3693 | |
3694 | static int | |
d2e4a39e | 3695 | numeric_type_p (struct type *type) |
14f9c5c9 AS |
3696 | { |
3697 | if (type == NULL) | |
3698 | return 0; | |
d2e4a39e AS |
3699 | else |
3700 | { | |
3701 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3702 | { |
3703 | case TYPE_CODE_INT: | |
3704 | case TYPE_CODE_FLT: | |
3705 | return 1; | |
3706 | case TYPE_CODE_RANGE: | |
3707 | return (type == TYPE_TARGET_TYPE (type) | |
3708 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
3709 | default: | |
3710 | return 0; | |
3711 | } | |
d2e4a39e | 3712 | } |
14f9c5c9 AS |
3713 | } |
3714 | ||
4c4b4cd2 | 3715 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ |
14f9c5c9 AS |
3716 | |
3717 | static int | |
d2e4a39e | 3718 | integer_type_p (struct type *type) |
14f9c5c9 AS |
3719 | { |
3720 | if (type == NULL) | |
3721 | return 0; | |
d2e4a39e AS |
3722 | else |
3723 | { | |
3724 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3725 | { |
3726 | case TYPE_CODE_INT: | |
3727 | return 1; | |
3728 | case TYPE_CODE_RANGE: | |
3729 | return (type == TYPE_TARGET_TYPE (type) | |
3730 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
3731 | default: | |
3732 | return 0; | |
3733 | } | |
d2e4a39e | 3734 | } |
14f9c5c9 AS |
3735 | } |
3736 | ||
4c4b4cd2 | 3737 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ |
14f9c5c9 AS |
3738 | |
3739 | static int | |
d2e4a39e | 3740 | scalar_type_p (struct type *type) |
14f9c5c9 AS |
3741 | { |
3742 | if (type == NULL) | |
3743 | return 0; | |
d2e4a39e AS |
3744 | else |
3745 | { | |
3746 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3747 | { |
3748 | case TYPE_CODE_INT: | |
3749 | case TYPE_CODE_RANGE: | |
3750 | case TYPE_CODE_ENUM: | |
3751 | case TYPE_CODE_FLT: | |
3752 | return 1; | |
3753 | default: | |
3754 | return 0; | |
3755 | } | |
d2e4a39e | 3756 | } |
14f9c5c9 AS |
3757 | } |
3758 | ||
4c4b4cd2 | 3759 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ |
14f9c5c9 AS |
3760 | |
3761 | static int | |
d2e4a39e | 3762 | discrete_type_p (struct type *type) |
14f9c5c9 AS |
3763 | { |
3764 | if (type == NULL) | |
3765 | return 0; | |
d2e4a39e AS |
3766 | else |
3767 | { | |
3768 | switch (TYPE_CODE (type)) | |
4c4b4cd2 PH |
3769 | { |
3770 | case TYPE_CODE_INT: | |
3771 | case TYPE_CODE_RANGE: | |
3772 | case TYPE_CODE_ENUM: | |
872f0337 | 3773 | case TYPE_CODE_BOOL: |
4c4b4cd2 PH |
3774 | return 1; |
3775 | default: | |
3776 | return 0; | |
3777 | } | |
d2e4a39e | 3778 | } |
14f9c5c9 AS |
3779 | } |
3780 | ||
4c4b4cd2 PH |
3781 | /* Returns non-zero if OP with operands in the vector ARGS could be |
3782 | a user-defined function. Errs on the side of pre-defined operators | |
3783 | (i.e., result 0). */ | |
14f9c5c9 AS |
3784 | |
3785 | static int | |
d2e4a39e | 3786 | possible_user_operator_p (enum exp_opcode op, struct value *args[]) |
14f9c5c9 | 3787 | { |
76a01679 | 3788 | struct type *type0 = |
df407dfe | 3789 | (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); |
d2e4a39e | 3790 | struct type *type1 = |
df407dfe | 3791 | (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); |
d2e4a39e | 3792 | |
4c4b4cd2 PH |
3793 | if (type0 == NULL) |
3794 | return 0; | |
3795 | ||
14f9c5c9 AS |
3796 | switch (op) |
3797 | { | |
3798 | default: | |
3799 | return 0; | |
3800 | ||
3801 | case BINOP_ADD: | |
3802 | case BINOP_SUB: | |
3803 | case BINOP_MUL: | |
3804 | case BINOP_DIV: | |
d2e4a39e | 3805 | return (!(numeric_type_p (type0) && numeric_type_p (type1))); |
14f9c5c9 AS |
3806 | |
3807 | case BINOP_REM: | |
3808 | case BINOP_MOD: | |
3809 | case BINOP_BITWISE_AND: | |
3810 | case BINOP_BITWISE_IOR: | |
3811 | case BINOP_BITWISE_XOR: | |
d2e4a39e | 3812 | return (!(integer_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3813 | |
3814 | case BINOP_EQUAL: | |
3815 | case BINOP_NOTEQUAL: | |
3816 | case BINOP_LESS: | |
3817 | case BINOP_GTR: | |
3818 | case BINOP_LEQ: | |
3819 | case BINOP_GEQ: | |
d2e4a39e | 3820 | return (!(scalar_type_p (type0) && scalar_type_p (type1))); |
14f9c5c9 AS |
3821 | |
3822 | case BINOP_CONCAT: | |
ee90b9ab | 3823 | return !ada_is_array_type (type0) || !ada_is_array_type (type1); |
14f9c5c9 AS |
3824 | |
3825 | case BINOP_EXP: | |
d2e4a39e | 3826 | return (!(numeric_type_p (type0) && integer_type_p (type1))); |
14f9c5c9 AS |
3827 | |
3828 | case UNOP_NEG: | |
3829 | case UNOP_PLUS: | |
3830 | case UNOP_LOGICAL_NOT: | |
d2e4a39e AS |
3831 | case UNOP_ABS: |
3832 | return (!numeric_type_p (type0)); | |
14f9c5c9 AS |
3833 | |
3834 | } | |
3835 | } | |
3836 | \f | |
4c4b4cd2 | 3837 | /* Renaming */ |
14f9c5c9 | 3838 | |
aeb5907d JB |
3839 | /* NOTES: |
3840 | ||
3841 | 1. In the following, we assume that a renaming type's name may | |
3842 | have an ___XD suffix. It would be nice if this went away at some | |
3843 | point. | |
3844 | 2. We handle both the (old) purely type-based representation of | |
3845 | renamings and the (new) variable-based encoding. At some point, | |
3846 | it is devoutly to be hoped that the former goes away | |
3847 | (FIXME: hilfinger-2007-07-09). | |
3848 | 3. Subprogram renamings are not implemented, although the XRS | |
3849 | suffix is recognized (FIXME: hilfinger-2007-07-09). */ | |
3850 | ||
3851 | /* If SYM encodes a renaming, | |
3852 | ||
3853 | <renaming> renames <renamed entity>, | |
3854 | ||
3855 | sets *LEN to the length of the renamed entity's name, | |
3856 | *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to | |
3857 | the string describing the subcomponent selected from the renamed | |
0963b4bd | 3858 | entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming |
aeb5907d JB |
3859 | (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR |
3860 | are undefined). Otherwise, returns a value indicating the category | |
3861 | of entity renamed: an object (ADA_OBJECT_RENAMING), exception | |
3862 | (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or | |
3863 | subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the | |
3864 | strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be | |
3865 | deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR | |
3866 | may be NULL, in which case they are not assigned. | |
3867 | ||
3868 | [Currently, however, GCC does not generate subprogram renamings.] */ | |
3869 | ||
3870 | enum ada_renaming_category | |
3871 | ada_parse_renaming (struct symbol *sym, | |
3872 | const char **renamed_entity, int *len, | |
3873 | const char **renaming_expr) | |
3874 | { | |
3875 | enum ada_renaming_category kind; | |
3876 | const char *info; | |
3877 | const char *suffix; | |
3878 | ||
3879 | if (sym == NULL) | |
3880 | return ADA_NOT_RENAMING; | |
3881 | switch (SYMBOL_CLASS (sym)) | |
14f9c5c9 | 3882 | { |
aeb5907d JB |
3883 | default: |
3884 | return ADA_NOT_RENAMING; | |
3885 | case LOC_TYPEDEF: | |
3886 | return parse_old_style_renaming (SYMBOL_TYPE (sym), | |
3887 | renamed_entity, len, renaming_expr); | |
3888 | case LOC_LOCAL: | |
3889 | case LOC_STATIC: | |
3890 | case LOC_COMPUTED: | |
3891 | case LOC_OPTIMIZED_OUT: | |
3892 | info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); | |
3893 | if (info == NULL) | |
3894 | return ADA_NOT_RENAMING; | |
3895 | switch (info[5]) | |
3896 | { | |
3897 | case '_': | |
3898 | kind = ADA_OBJECT_RENAMING; | |
3899 | info += 6; | |
3900 | break; | |
3901 | case 'E': | |
3902 | kind = ADA_EXCEPTION_RENAMING; | |
3903 | info += 7; | |
3904 | break; | |
3905 | case 'P': | |
3906 | kind = ADA_PACKAGE_RENAMING; | |
3907 | info += 7; | |
3908 | break; | |
3909 | case 'S': | |
3910 | kind = ADA_SUBPROGRAM_RENAMING; | |
3911 | info += 7; | |
3912 | break; | |
3913 | default: | |
3914 | return ADA_NOT_RENAMING; | |
3915 | } | |
14f9c5c9 | 3916 | } |
4c4b4cd2 | 3917 | |
aeb5907d JB |
3918 | if (renamed_entity != NULL) |
3919 | *renamed_entity = info; | |
3920 | suffix = strstr (info, "___XE"); | |
3921 | if (suffix == NULL || suffix == info) | |
3922 | return ADA_NOT_RENAMING; | |
3923 | if (len != NULL) | |
3924 | *len = strlen (info) - strlen (suffix); | |
3925 | suffix += 5; | |
3926 | if (renaming_expr != NULL) | |
3927 | *renaming_expr = suffix; | |
3928 | return kind; | |
3929 | } | |
3930 | ||
3931 | /* Assuming TYPE encodes a renaming according to the old encoding in | |
3932 | exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, | |
3933 | *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns | |
3934 | ADA_NOT_RENAMING otherwise. */ | |
3935 | static enum ada_renaming_category | |
3936 | parse_old_style_renaming (struct type *type, | |
3937 | const char **renamed_entity, int *len, | |
3938 | const char **renaming_expr) | |
3939 | { | |
3940 | enum ada_renaming_category kind; | |
3941 | const char *name; | |
3942 | const char *info; | |
3943 | const char *suffix; | |
14f9c5c9 | 3944 | |
aeb5907d JB |
3945 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM |
3946 | || TYPE_NFIELDS (type) != 1) | |
3947 | return ADA_NOT_RENAMING; | |
14f9c5c9 | 3948 | |
aeb5907d JB |
3949 | name = type_name_no_tag (type); |
3950 | if (name == NULL) | |
3951 | return ADA_NOT_RENAMING; | |
3952 | ||
3953 | name = strstr (name, "___XR"); | |
3954 | if (name == NULL) | |
3955 | return ADA_NOT_RENAMING; | |
3956 | switch (name[5]) | |
3957 | { | |
3958 | case '\0': | |
3959 | case '_': | |
3960 | kind = ADA_OBJECT_RENAMING; | |
3961 | break; | |
3962 | case 'E': | |
3963 | kind = ADA_EXCEPTION_RENAMING; | |
3964 | break; | |
3965 | case 'P': | |
3966 | kind = ADA_PACKAGE_RENAMING; | |
3967 | break; | |
3968 | case 'S': | |
3969 | kind = ADA_SUBPROGRAM_RENAMING; | |
3970 | break; | |
3971 | default: | |
3972 | return ADA_NOT_RENAMING; | |
3973 | } | |
14f9c5c9 | 3974 | |
aeb5907d JB |
3975 | info = TYPE_FIELD_NAME (type, 0); |
3976 | if (info == NULL) | |
3977 | return ADA_NOT_RENAMING; | |
3978 | if (renamed_entity != NULL) | |
3979 | *renamed_entity = info; | |
3980 | suffix = strstr (info, "___XE"); | |
3981 | if (renaming_expr != NULL) | |
3982 | *renaming_expr = suffix + 5; | |
3983 | if (suffix == NULL || suffix == info) | |
3984 | return ADA_NOT_RENAMING; | |
3985 | if (len != NULL) | |
3986 | *len = suffix - info; | |
3987 | return kind; | |
3988 | } | |
52ce6436 | 3989 | |
14f9c5c9 | 3990 | \f |
d2e4a39e | 3991 | |
4c4b4cd2 | 3992 | /* Evaluation: Function Calls */ |
14f9c5c9 | 3993 | |
4c4b4cd2 | 3994 | /* Return an lvalue containing the value VAL. This is the identity on |
40bc484c JB |
3995 | lvalues, and otherwise has the side-effect of allocating memory |
3996 | in the inferior where a copy of the value contents is copied. */ | |
14f9c5c9 | 3997 | |
d2e4a39e | 3998 | static struct value * |
40bc484c | 3999 | ensure_lval (struct value *val) |
14f9c5c9 | 4000 | { |
40bc484c JB |
4001 | if (VALUE_LVAL (val) == not_lval |
4002 | || VALUE_LVAL (val) == lval_internalvar) | |
c3e5cd34 | 4003 | { |
df407dfe | 4004 | int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); |
40bc484c JB |
4005 | const CORE_ADDR addr = |
4006 | value_as_long (value_allocate_space_in_inferior (len)); | |
c3e5cd34 | 4007 | |
40bc484c | 4008 | set_value_address (val, addr); |
a84a8a0d | 4009 | VALUE_LVAL (val) = lval_memory; |
40bc484c | 4010 | write_memory (addr, value_contents (val), len); |
c3e5cd34 | 4011 | } |
14f9c5c9 AS |
4012 | |
4013 | return val; | |
4014 | } | |
4015 | ||
4016 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
4017 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
4018 | allocating any necessary descriptors (fat pointers), or copies of | |
4c4b4cd2 | 4019 | values not residing in memory, updating it as needed. */ |
14f9c5c9 | 4020 | |
a93c0eb6 | 4021 | struct value * |
40bc484c | 4022 | ada_convert_actual (struct value *actual, struct type *formal_type0) |
14f9c5c9 | 4023 | { |
df407dfe | 4024 | struct type *actual_type = ada_check_typedef (value_type (actual)); |
61ee279c | 4025 | struct type *formal_type = ada_check_typedef (formal_type0); |
d2e4a39e AS |
4026 | struct type *formal_target = |
4027 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
61ee279c | 4028 | ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; |
d2e4a39e AS |
4029 | struct type *actual_target = |
4030 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
61ee279c | 4031 | ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; |
14f9c5c9 | 4032 | |
4c4b4cd2 | 4033 | if (ada_is_array_descriptor_type (formal_target) |
14f9c5c9 | 4034 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) |
40bc484c | 4035 | return make_array_descriptor (formal_type, actual); |
a84a8a0d JB |
4036 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR |
4037 | || TYPE_CODE (formal_type) == TYPE_CODE_REF) | |
14f9c5c9 | 4038 | { |
a84a8a0d | 4039 | struct value *result; |
5b4ee69b | 4040 | |
14f9c5c9 | 4041 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY |
4c4b4cd2 | 4042 | && ada_is_array_descriptor_type (actual_target)) |
a84a8a0d | 4043 | result = desc_data (actual); |
14f9c5c9 | 4044 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) |
4c4b4cd2 PH |
4045 | { |
4046 | if (VALUE_LVAL (actual) != lval_memory) | |
4047 | { | |
4048 | struct value *val; | |
5b4ee69b | 4049 | |
df407dfe | 4050 | actual_type = ada_check_typedef (value_type (actual)); |
4c4b4cd2 | 4051 | val = allocate_value (actual_type); |
990a07ab | 4052 | memcpy ((char *) value_contents_raw (val), |
0fd88904 | 4053 | (char *) value_contents (actual), |
4c4b4cd2 | 4054 | TYPE_LENGTH (actual_type)); |
40bc484c | 4055 | actual = ensure_lval (val); |
4c4b4cd2 | 4056 | } |
a84a8a0d | 4057 | result = value_addr (actual); |
4c4b4cd2 | 4058 | } |
a84a8a0d JB |
4059 | else |
4060 | return actual; | |
4061 | return value_cast_pointers (formal_type, result); | |
14f9c5c9 AS |
4062 | } |
4063 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
4064 | return ada_value_ind (actual); | |
4065 | ||
4066 | return actual; | |
4067 | } | |
4068 | ||
438c98a1 JB |
4069 | /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of |
4070 | type TYPE. This is usually an inefficient no-op except on some targets | |
4071 | (such as AVR) where the representation of a pointer and an address | |
4072 | differs. */ | |
4073 | ||
4074 | static CORE_ADDR | |
4075 | value_pointer (struct value *value, struct type *type) | |
4076 | { | |
4077 | struct gdbarch *gdbarch = get_type_arch (type); | |
4078 | unsigned len = TYPE_LENGTH (type); | |
4079 | gdb_byte *buf = alloca (len); | |
4080 | CORE_ADDR addr; | |
4081 | ||
4082 | addr = value_address (value); | |
4083 | gdbarch_address_to_pointer (gdbarch, type, buf, addr); | |
4084 | addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); | |
4085 | return addr; | |
4086 | } | |
4087 | ||
14f9c5c9 | 4088 | |
4c4b4cd2 PH |
4089 | /* Push a descriptor of type TYPE for array value ARR on the stack at |
4090 | *SP, updating *SP to reflect the new descriptor. Return either | |
14f9c5c9 | 4091 | an lvalue representing the new descriptor, or (if TYPE is a pointer- |
4c4b4cd2 PH |
4092 | to-descriptor type rather than a descriptor type), a struct value * |
4093 | representing a pointer to this descriptor. */ | |
14f9c5c9 | 4094 | |
d2e4a39e | 4095 | static struct value * |
40bc484c | 4096 | make_array_descriptor (struct type *type, struct value *arr) |
14f9c5c9 | 4097 | { |
d2e4a39e AS |
4098 | struct type *bounds_type = desc_bounds_type (type); |
4099 | struct type *desc_type = desc_base_type (type); | |
4100 | struct value *descriptor = allocate_value (desc_type); | |
4101 | struct value *bounds = allocate_value (bounds_type); | |
14f9c5c9 | 4102 | int i; |
d2e4a39e | 4103 | |
0963b4bd MS |
4104 | for (i = ada_array_arity (ada_check_typedef (value_type (arr))); |
4105 | i > 0; i -= 1) | |
14f9c5c9 | 4106 | { |
19f220c3 JK |
4107 | modify_field (value_type (bounds), value_contents_writeable (bounds), |
4108 | ada_array_bound (arr, i, 0), | |
4109 | desc_bound_bitpos (bounds_type, i, 0), | |
4110 | desc_bound_bitsize (bounds_type, i, 0)); | |
4111 | modify_field (value_type (bounds), value_contents_writeable (bounds), | |
4112 | ada_array_bound (arr, i, 1), | |
4113 | desc_bound_bitpos (bounds_type, i, 1), | |
4114 | desc_bound_bitsize (bounds_type, i, 1)); | |
14f9c5c9 | 4115 | } |
d2e4a39e | 4116 | |
40bc484c | 4117 | bounds = ensure_lval (bounds); |
d2e4a39e | 4118 | |
19f220c3 JK |
4119 | modify_field (value_type (descriptor), |
4120 | value_contents_writeable (descriptor), | |
4121 | value_pointer (ensure_lval (arr), | |
4122 | TYPE_FIELD_TYPE (desc_type, 0)), | |
4123 | fat_pntr_data_bitpos (desc_type), | |
4124 | fat_pntr_data_bitsize (desc_type)); | |
4125 | ||
4126 | modify_field (value_type (descriptor), | |
4127 | value_contents_writeable (descriptor), | |
4128 | value_pointer (bounds, | |
4129 | TYPE_FIELD_TYPE (desc_type, 1)), | |
4130 | fat_pntr_bounds_bitpos (desc_type), | |
4131 | fat_pntr_bounds_bitsize (desc_type)); | |
14f9c5c9 | 4132 | |
40bc484c | 4133 | descriptor = ensure_lval (descriptor); |
14f9c5c9 AS |
4134 | |
4135 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
4136 | return value_addr (descriptor); | |
4137 | else | |
4138 | return descriptor; | |
4139 | } | |
14f9c5c9 | 4140 | \f |
963a6417 | 4141 | /* Dummy definitions for an experimental caching module that is not |
0963b4bd | 4142 | * used in the public sources. */ |
96d887e8 | 4143 | |
96d887e8 PH |
4144 | static int |
4145 | lookup_cached_symbol (const char *name, domain_enum namespace, | |
2570f2b7 | 4146 | struct symbol **sym, struct block **block) |
96d887e8 PH |
4147 | { |
4148 | return 0; | |
4149 | } | |
4150 | ||
4151 | static void | |
4152 | cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, | |
2570f2b7 | 4153 | struct block *block) |
96d887e8 PH |
4154 | { |
4155 | } | |
4c4b4cd2 PH |
4156 | \f |
4157 | /* Symbol Lookup */ | |
4158 | ||
4159 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
4160 | given DOMAIN, visible from lexical block BLOCK. */ | |
4161 | ||
4162 | static struct symbol * | |
4163 | standard_lookup (const char *name, const struct block *block, | |
4164 | domain_enum domain) | |
4165 | { | |
4166 | struct symbol *sym; | |
4c4b4cd2 | 4167 | |
2570f2b7 | 4168 | if (lookup_cached_symbol (name, domain, &sym, NULL)) |
4c4b4cd2 | 4169 | return sym; |
2570f2b7 UW |
4170 | sym = lookup_symbol_in_language (name, block, domain, language_c, 0); |
4171 | cache_symbol (name, domain, sym, block_found); | |
4c4b4cd2 PH |
4172 | return sym; |
4173 | } | |
4174 | ||
4175 | ||
4176 | /* Non-zero iff there is at least one non-function/non-enumeral symbol | |
4177 | in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, | |
4178 | since they contend in overloading in the same way. */ | |
4179 | static int | |
4180 | is_nonfunction (struct ada_symbol_info syms[], int n) | |
4181 | { | |
4182 | int i; | |
4183 | ||
4184 | for (i = 0; i < n; i += 1) | |
4185 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC | |
4186 | && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM | |
4187 | || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) | |
14f9c5c9 AS |
4188 | return 1; |
4189 | ||
4190 | return 0; | |
4191 | } | |
4192 | ||
4193 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
4c4b4cd2 | 4194 | struct types. Otherwise, they may not. */ |
14f9c5c9 AS |
4195 | |
4196 | static int | |
d2e4a39e | 4197 | equiv_types (struct type *type0, struct type *type1) |
14f9c5c9 | 4198 | { |
d2e4a39e | 4199 | if (type0 == type1) |
14f9c5c9 | 4200 | return 1; |
d2e4a39e | 4201 | if (type0 == NULL || type1 == NULL |
14f9c5c9 AS |
4202 | || TYPE_CODE (type0) != TYPE_CODE (type1)) |
4203 | return 0; | |
d2e4a39e | 4204 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT |
14f9c5c9 AS |
4205 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) |
4206 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
4c4b4cd2 | 4207 | && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) |
14f9c5c9 | 4208 | return 1; |
d2e4a39e | 4209 | |
14f9c5c9 AS |
4210 | return 0; |
4211 | } | |
4212 | ||
4213 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
4c4b4cd2 | 4214 | no more defined than that of SYM1. */ |
14f9c5c9 AS |
4215 | |
4216 | static int | |
d2e4a39e | 4217 | lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) |
14f9c5c9 AS |
4218 | { |
4219 | if (sym0 == sym1) | |
4220 | return 1; | |
176620f1 | 4221 | if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) |
14f9c5c9 AS |
4222 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) |
4223 | return 0; | |
4224 | ||
d2e4a39e | 4225 | switch (SYMBOL_CLASS (sym0)) |
14f9c5c9 AS |
4226 | { |
4227 | case LOC_UNDEF: | |
4228 | return 1; | |
4229 | case LOC_TYPEDEF: | |
4230 | { | |
4c4b4cd2 PH |
4231 | struct type *type0 = SYMBOL_TYPE (sym0); |
4232 | struct type *type1 = SYMBOL_TYPE (sym1); | |
4233 | char *name0 = SYMBOL_LINKAGE_NAME (sym0); | |
4234 | char *name1 = SYMBOL_LINKAGE_NAME (sym1); | |
4235 | int len0 = strlen (name0); | |
5b4ee69b | 4236 | |
4c4b4cd2 PH |
4237 | return |
4238 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
4239 | && (equiv_types (type0, type1) | |
4240 | || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 | |
4241 | && strncmp (name1 + len0, "___XV", 5) == 0)); | |
14f9c5c9 AS |
4242 | } |
4243 | case LOC_CONST: | |
4244 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
4c4b4cd2 | 4245 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); |
d2e4a39e AS |
4246 | default: |
4247 | return 0; | |
14f9c5c9 AS |
4248 | } |
4249 | } | |
4250 | ||
4c4b4cd2 PH |
4251 | /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info |
4252 | records in OBSTACKP. Do nothing if SYM is a duplicate. */ | |
14f9c5c9 AS |
4253 | |
4254 | static void | |
76a01679 JB |
4255 | add_defn_to_vec (struct obstack *obstackp, |
4256 | struct symbol *sym, | |
2570f2b7 | 4257 | struct block *block) |
14f9c5c9 AS |
4258 | { |
4259 | int i; | |
4c4b4cd2 | 4260 | struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); |
14f9c5c9 | 4261 | |
529cad9c PH |
4262 | /* Do not try to complete stub types, as the debugger is probably |
4263 | already scanning all symbols matching a certain name at the | |
4264 | time when this function is called. Trying to replace the stub | |
4265 | type by its associated full type will cause us to restart a scan | |
4266 | which may lead to an infinite recursion. Instead, the client | |
4267 | collecting the matching symbols will end up collecting several | |
4268 | matches, with at least one of them complete. It can then filter | |
4269 | out the stub ones if needed. */ | |
4270 | ||
4c4b4cd2 PH |
4271 | for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) |
4272 | { | |
4273 | if (lesseq_defined_than (sym, prevDefns[i].sym)) | |
4274 | return; | |
4275 | else if (lesseq_defined_than (prevDefns[i].sym, sym)) | |
4276 | { | |
4277 | prevDefns[i].sym = sym; | |
4278 | prevDefns[i].block = block; | |
4c4b4cd2 | 4279 | return; |
76a01679 | 4280 | } |
4c4b4cd2 PH |
4281 | } |
4282 | ||
4283 | { | |
4284 | struct ada_symbol_info info; | |
4285 | ||
4286 | info.sym = sym; | |
4287 | info.block = block; | |
4c4b4cd2 PH |
4288 | obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); |
4289 | } | |
4290 | } | |
4291 | ||
4292 | /* Number of ada_symbol_info structures currently collected in | |
4293 | current vector in *OBSTACKP. */ | |
4294 | ||
76a01679 JB |
4295 | static int |
4296 | num_defns_collected (struct obstack *obstackp) | |
4c4b4cd2 PH |
4297 | { |
4298 | return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); | |
4299 | } | |
4300 | ||
4301 | /* Vector of ada_symbol_info structures currently collected in current | |
4302 | vector in *OBSTACKP. If FINISH, close off the vector and return | |
4303 | its final address. */ | |
4304 | ||
76a01679 | 4305 | static struct ada_symbol_info * |
4c4b4cd2 PH |
4306 | defns_collected (struct obstack *obstackp, int finish) |
4307 | { | |
4308 | if (finish) | |
4309 | return obstack_finish (obstackp); | |
4310 | else | |
4311 | return (struct ada_symbol_info *) obstack_base (obstackp); | |
4312 | } | |
4313 | ||
96d887e8 PH |
4314 | /* Return a minimal symbol matching NAME according to Ada decoding |
4315 | rules. Returns NULL if there is no such minimal symbol. Names | |
4316 | prefixed with "standard__" are handled specially: "standard__" is | |
4317 | first stripped off, and only static and global symbols are searched. */ | |
4c4b4cd2 | 4318 | |
96d887e8 PH |
4319 | struct minimal_symbol * |
4320 | ada_lookup_simple_minsym (const char *name) | |
4c4b4cd2 | 4321 | { |
4c4b4cd2 | 4322 | struct objfile *objfile; |
96d887e8 PH |
4323 | struct minimal_symbol *msymbol; |
4324 | int wild_match; | |
4c4b4cd2 | 4325 | |
96d887e8 | 4326 | if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) |
4c4b4cd2 | 4327 | { |
96d887e8 | 4328 | name += sizeof ("standard__") - 1; |
4c4b4cd2 | 4329 | wild_match = 0; |
4c4b4cd2 PH |
4330 | } |
4331 | else | |
96d887e8 | 4332 | wild_match = (strstr (name, "__") == NULL); |
4c4b4cd2 | 4333 | |
96d887e8 PH |
4334 | ALL_MSYMBOLS (objfile, msymbol) |
4335 | { | |
40658b94 | 4336 | if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match) |
96d887e8 PH |
4337 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) |
4338 | return msymbol; | |
4339 | } | |
4c4b4cd2 | 4340 | |
96d887e8 PH |
4341 | return NULL; |
4342 | } | |
4c4b4cd2 | 4343 | |
96d887e8 PH |
4344 | /* For all subprograms that statically enclose the subprogram of the |
4345 | selected frame, add symbols matching identifier NAME in DOMAIN | |
4346 | and their blocks to the list of data in OBSTACKP, as for | |
4347 | ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
4348 | wildcard prefix. */ | |
4c4b4cd2 | 4349 | |
96d887e8 PH |
4350 | static void |
4351 | add_symbols_from_enclosing_procs (struct obstack *obstackp, | |
76a01679 | 4352 | const char *name, domain_enum namespace, |
96d887e8 PH |
4353 | int wild_match) |
4354 | { | |
96d887e8 | 4355 | } |
14f9c5c9 | 4356 | |
96d887e8 PH |
4357 | /* True if TYPE is definitely an artificial type supplied to a symbol |
4358 | for which no debugging information was given in the symbol file. */ | |
14f9c5c9 | 4359 | |
96d887e8 PH |
4360 | static int |
4361 | is_nondebugging_type (struct type *type) | |
4362 | { | |
4363 | char *name = ada_type_name (type); | |
5b4ee69b | 4364 | |
96d887e8 PH |
4365 | return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); |
4366 | } | |
4c4b4cd2 | 4367 | |
8f17729f JB |
4368 | /* Return nonzero if TYPE1 and TYPE2 are two enumeration types |
4369 | that are deemed "identical" for practical purposes. | |
4370 | ||
4371 | This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM | |
4372 | types and that their number of enumerals is identical (in other | |
4373 | words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ | |
4374 | ||
4375 | static int | |
4376 | ada_identical_enum_types_p (struct type *type1, struct type *type2) | |
4377 | { | |
4378 | int i; | |
4379 | ||
4380 | /* The heuristic we use here is fairly conservative. We consider | |
4381 | that 2 enumerate types are identical if they have the same | |
4382 | number of enumerals and that all enumerals have the same | |
4383 | underlying value and name. */ | |
4384 | ||
4385 | /* All enums in the type should have an identical underlying value. */ | |
4386 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4387 | if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i)) | |
4388 | return 0; | |
4389 | ||
4390 | /* All enumerals should also have the same name (modulo any numerical | |
4391 | suffix). */ | |
4392 | for (i = 0; i < TYPE_NFIELDS (type1); i++) | |
4393 | { | |
4394 | char *name_1 = TYPE_FIELD_NAME (type1, i); | |
4395 | char *name_2 = TYPE_FIELD_NAME (type2, i); | |
4396 | int len_1 = strlen (name_1); | |
4397 | int len_2 = strlen (name_2); | |
4398 | ||
4399 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); | |
4400 | ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); | |
4401 | if (len_1 != len_2 | |
4402 | || strncmp (TYPE_FIELD_NAME (type1, i), | |
4403 | TYPE_FIELD_NAME (type2, i), | |
4404 | len_1) != 0) | |
4405 | return 0; | |
4406 | } | |
4407 | ||
4408 | return 1; | |
4409 | } | |
4410 | ||
4411 | /* Return nonzero if all the symbols in SYMS are all enumeral symbols | |
4412 | that are deemed "identical" for practical purposes. Sometimes, | |
4413 | enumerals are not strictly identical, but their types are so similar | |
4414 | that they can be considered identical. | |
4415 | ||
4416 | For instance, consider the following code: | |
4417 | ||
4418 | type Color is (Black, Red, Green, Blue, White); | |
4419 | type RGB_Color is new Color range Red .. Blue; | |
4420 | ||
4421 | Type RGB_Color is a subrange of an implicit type which is a copy | |
4422 | of type Color. If we call that implicit type RGB_ColorB ("B" is | |
4423 | for "Base Type"), then type RGB_ColorB is a copy of type Color. | |
4424 | As a result, when an expression references any of the enumeral | |
4425 | by name (Eg. "print green"), the expression is technically | |
4426 | ambiguous and the user should be asked to disambiguate. But | |
4427 | doing so would only hinder the user, since it wouldn't matter | |
4428 | what choice he makes, the outcome would always be the same. | |
4429 | So, for practical purposes, we consider them as the same. */ | |
4430 | ||
4431 | static int | |
4432 | symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) | |
4433 | { | |
4434 | int i; | |
4435 | ||
4436 | /* Before performing a thorough comparison check of each type, | |
4437 | we perform a series of inexpensive checks. We expect that these | |
4438 | checks will quickly fail in the vast majority of cases, and thus | |
4439 | help prevent the unnecessary use of a more expensive comparison. | |
4440 | Said comparison also expects us to make some of these checks | |
4441 | (see ada_identical_enum_types_p). */ | |
4442 | ||
4443 | /* Quick check: All symbols should have an enum type. */ | |
4444 | for (i = 0; i < nsyms; i++) | |
4445 | if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) | |
4446 | return 0; | |
4447 | ||
4448 | /* Quick check: They should all have the same value. */ | |
4449 | for (i = 1; i < nsyms; i++) | |
4450 | if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) | |
4451 | return 0; | |
4452 | ||
4453 | /* Quick check: They should all have the same number of enumerals. */ | |
4454 | for (i = 1; i < nsyms; i++) | |
4455 | if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) | |
4456 | != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) | |
4457 | return 0; | |
4458 | ||
4459 | /* All the sanity checks passed, so we might have a set of | |
4460 | identical enumeration types. Perform a more complete | |
4461 | comparison of the type of each symbol. */ | |
4462 | for (i = 1; i < nsyms; i++) | |
4463 | if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), | |
4464 | SYMBOL_TYPE (syms[0].sym))) | |
4465 | return 0; | |
4466 | ||
4467 | return 1; | |
4468 | } | |
4469 | ||
96d887e8 PH |
4470 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely |
4471 | duplicate other symbols in the list (The only case I know of where | |
4472 | this happens is when object files containing stabs-in-ecoff are | |
4473 | linked with files containing ordinary ecoff debugging symbols (or no | |
4474 | debugging symbols)). Modifies SYMS to squeeze out deleted entries. | |
4475 | Returns the number of items in the modified list. */ | |
4c4b4cd2 | 4476 | |
96d887e8 PH |
4477 | static int |
4478 | remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) | |
4479 | { | |
4480 | int i, j; | |
4c4b4cd2 | 4481 | |
8f17729f JB |
4482 | /* We should never be called with less than 2 symbols, as there |
4483 | cannot be any extra symbol in that case. But it's easy to | |
4484 | handle, since we have nothing to do in that case. */ | |
4485 | if (nsyms < 2) | |
4486 | return nsyms; | |
4487 | ||
96d887e8 PH |
4488 | i = 0; |
4489 | while (i < nsyms) | |
4490 | { | |
339c13b6 JB |
4491 | int remove = 0; |
4492 | ||
4493 | /* If two symbols have the same name and one of them is a stub type, | |
4494 | the get rid of the stub. */ | |
4495 | ||
4496 | if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) | |
4497 | && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) | |
4498 | { | |
4499 | for (j = 0; j < nsyms; j++) | |
4500 | { | |
4501 | if (j != i | |
4502 | && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) | |
4503 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4504 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
4505 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) | |
4506 | remove = 1; | |
4507 | } | |
4508 | } | |
4509 | ||
4510 | /* Two symbols with the same name, same class and same address | |
4511 | should be identical. */ | |
4512 | ||
4513 | else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL | |
96d887e8 PH |
4514 | && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC |
4515 | && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) | |
4516 | { | |
4517 | for (j = 0; j < nsyms; j += 1) | |
4518 | { | |
4519 | if (i != j | |
4520 | && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL | |
4521 | && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), | |
76a01679 | 4522 | SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 |
96d887e8 PH |
4523 | && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) |
4524 | && SYMBOL_VALUE_ADDRESS (syms[i].sym) | |
4525 | == SYMBOL_VALUE_ADDRESS (syms[j].sym)) | |
339c13b6 | 4526 | remove = 1; |
4c4b4cd2 | 4527 | } |
4c4b4cd2 | 4528 | } |
339c13b6 JB |
4529 | |
4530 | if (remove) | |
4531 | { | |
4532 | for (j = i + 1; j < nsyms; j += 1) | |
4533 | syms[j - 1] = syms[j]; | |
4534 | nsyms -= 1; | |
4535 | } | |
4536 | ||
96d887e8 | 4537 | i += 1; |
14f9c5c9 | 4538 | } |
8f17729f JB |
4539 | |
4540 | /* If all the remaining symbols are identical enumerals, then | |
4541 | just keep the first one and discard the rest. | |
4542 | ||
4543 | Unlike what we did previously, we do not discard any entry | |
4544 | unless they are ALL identical. This is because the symbol | |
4545 | comparison is not a strict comparison, but rather a practical | |
4546 | comparison. If all symbols are considered identical, then | |
4547 | we can just go ahead and use the first one and discard the rest. | |
4548 | But if we cannot reduce the list to a single element, we have | |
4549 | to ask the user to disambiguate anyways. And if we have to | |
4550 | present a multiple-choice menu, it's less confusing if the list | |
4551 | isn't missing some choices that were identical and yet distinct. */ | |
4552 | if (symbols_are_identical_enums (syms, nsyms)) | |
4553 | nsyms = 1; | |
4554 | ||
96d887e8 | 4555 | return nsyms; |
14f9c5c9 AS |
4556 | } |
4557 | ||
96d887e8 PH |
4558 | /* Given a type that corresponds to a renaming entity, use the type name |
4559 | to extract the scope (package name or function name, fully qualified, | |
4560 | and following the GNAT encoding convention) where this renaming has been | |
4561 | defined. The string returned needs to be deallocated after use. */ | |
4c4b4cd2 | 4562 | |
96d887e8 PH |
4563 | static char * |
4564 | xget_renaming_scope (struct type *renaming_type) | |
14f9c5c9 | 4565 | { |
96d887e8 | 4566 | /* The renaming types adhere to the following convention: |
0963b4bd | 4567 | <scope>__<rename>___<XR extension>. |
96d887e8 PH |
4568 | So, to extract the scope, we search for the "___XR" extension, |
4569 | and then backtrack until we find the first "__". */ | |
76a01679 | 4570 | |
96d887e8 PH |
4571 | const char *name = type_name_no_tag (renaming_type); |
4572 | char *suffix = strstr (name, "___XR"); | |
4573 | char *last; | |
4574 | int scope_len; | |
4575 | char *scope; | |
14f9c5c9 | 4576 | |
96d887e8 PH |
4577 | /* Now, backtrack a bit until we find the first "__". Start looking |
4578 | at suffix - 3, as the <rename> part is at least one character long. */ | |
14f9c5c9 | 4579 | |
96d887e8 PH |
4580 | for (last = suffix - 3; last > name; last--) |
4581 | if (last[0] == '_' && last[1] == '_') | |
4582 | break; | |
76a01679 | 4583 | |
96d887e8 | 4584 | /* Make a copy of scope and return it. */ |
14f9c5c9 | 4585 | |
96d887e8 PH |
4586 | scope_len = last - name; |
4587 | scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); | |
14f9c5c9 | 4588 | |
96d887e8 PH |
4589 | strncpy (scope, name, scope_len); |
4590 | scope[scope_len] = '\0'; | |
4c4b4cd2 | 4591 | |
96d887e8 | 4592 | return scope; |
4c4b4cd2 PH |
4593 | } |
4594 | ||
96d887e8 | 4595 | /* Return nonzero if NAME corresponds to a package name. */ |
4c4b4cd2 | 4596 | |
96d887e8 PH |
4597 | static int |
4598 | is_package_name (const char *name) | |
4c4b4cd2 | 4599 | { |
96d887e8 PH |
4600 | /* Here, We take advantage of the fact that no symbols are generated |
4601 | for packages, while symbols are generated for each function. | |
4602 | So the condition for NAME represent a package becomes equivalent | |
4603 | to NAME not existing in our list of symbols. There is only one | |
4604 | small complication with library-level functions (see below). */ | |
4c4b4cd2 | 4605 | |
96d887e8 | 4606 | char *fun_name; |
76a01679 | 4607 | |
96d887e8 PH |
4608 | /* If it is a function that has not been defined at library level, |
4609 | then we should be able to look it up in the symbols. */ | |
4610 | if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) | |
4611 | return 0; | |
14f9c5c9 | 4612 | |
96d887e8 PH |
4613 | /* Library-level function names start with "_ada_". See if function |
4614 | "_ada_" followed by NAME can be found. */ | |
14f9c5c9 | 4615 | |
96d887e8 | 4616 | /* Do a quick check that NAME does not contain "__", since library-level |
e1d5a0d2 | 4617 | functions names cannot contain "__" in them. */ |
96d887e8 PH |
4618 | if (strstr (name, "__") != NULL) |
4619 | return 0; | |
4c4b4cd2 | 4620 | |
b435e160 | 4621 | fun_name = xstrprintf ("_ada_%s", name); |
14f9c5c9 | 4622 | |
96d887e8 PH |
4623 | return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); |
4624 | } | |
14f9c5c9 | 4625 | |
96d887e8 | 4626 | /* Return nonzero if SYM corresponds to a renaming entity that is |
aeb5907d | 4627 | not visible from FUNCTION_NAME. */ |
14f9c5c9 | 4628 | |
96d887e8 | 4629 | static int |
aeb5907d | 4630 | old_renaming_is_invisible (const struct symbol *sym, char *function_name) |
96d887e8 | 4631 | { |
aeb5907d JB |
4632 | char *scope; |
4633 | ||
4634 | if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) | |
4635 | return 0; | |
4636 | ||
4637 | scope = xget_renaming_scope (SYMBOL_TYPE (sym)); | |
d2e4a39e | 4638 | |
96d887e8 | 4639 | make_cleanup (xfree, scope); |
14f9c5c9 | 4640 | |
96d887e8 PH |
4641 | /* If the rename has been defined in a package, then it is visible. */ |
4642 | if (is_package_name (scope)) | |
aeb5907d | 4643 | return 0; |
14f9c5c9 | 4644 | |
96d887e8 PH |
4645 | /* Check that the rename is in the current function scope by checking |
4646 | that its name starts with SCOPE. */ | |
76a01679 | 4647 | |
96d887e8 PH |
4648 | /* If the function name starts with "_ada_", it means that it is |
4649 | a library-level function. Strip this prefix before doing the | |
4650 | comparison, as the encoding for the renaming does not contain | |
4651 | this prefix. */ | |
4652 | if (strncmp (function_name, "_ada_", 5) == 0) | |
4653 | function_name += 5; | |
f26caa11 | 4654 | |
aeb5907d | 4655 | return (strncmp (function_name, scope, strlen (scope)) != 0); |
f26caa11 PH |
4656 | } |
4657 | ||
aeb5907d JB |
4658 | /* Remove entries from SYMS that corresponds to a renaming entity that |
4659 | is not visible from the function associated with CURRENT_BLOCK or | |
4660 | that is superfluous due to the presence of more specific renaming | |
4661 | information. Places surviving symbols in the initial entries of | |
4662 | SYMS and returns the number of surviving symbols. | |
96d887e8 PH |
4663 | |
4664 | Rationale: | |
aeb5907d JB |
4665 | First, in cases where an object renaming is implemented as a |
4666 | reference variable, GNAT may produce both the actual reference | |
4667 | variable and the renaming encoding. In this case, we discard the | |
4668 | latter. | |
4669 | ||
4670 | Second, GNAT emits a type following a specified encoding for each renaming | |
96d887e8 PH |
4671 | entity. Unfortunately, STABS currently does not support the definition |
4672 | of types that are local to a given lexical block, so all renamings types | |
4673 | are emitted at library level. As a consequence, if an application | |
4674 | contains two renaming entities using the same name, and a user tries to | |
4675 | print the value of one of these entities, the result of the ada symbol | |
4676 | lookup will also contain the wrong renaming type. | |
f26caa11 | 4677 | |
96d887e8 PH |
4678 | This function partially covers for this limitation by attempting to |
4679 | remove from the SYMS list renaming symbols that should be visible | |
4680 | from CURRENT_BLOCK. However, there does not seem be a 100% reliable | |
4681 | method with the current information available. The implementation | |
4682 | below has a couple of limitations (FIXME: brobecker-2003-05-12): | |
4683 | ||
4684 | - When the user tries to print a rename in a function while there | |
4685 | is another rename entity defined in a package: Normally, the | |
4686 | rename in the function has precedence over the rename in the | |
4687 | package, so the latter should be removed from the list. This is | |
4688 | currently not the case. | |
4689 | ||
4690 | - This function will incorrectly remove valid renames if | |
4691 | the CURRENT_BLOCK corresponds to a function which symbol name | |
4692 | has been changed by an "Export" pragma. As a consequence, | |
4693 | the user will be unable to print such rename entities. */ | |
4c4b4cd2 | 4694 | |
14f9c5c9 | 4695 | static int |
aeb5907d JB |
4696 | remove_irrelevant_renamings (struct ada_symbol_info *syms, |
4697 | int nsyms, const struct block *current_block) | |
4c4b4cd2 PH |
4698 | { |
4699 | struct symbol *current_function; | |
4700 | char *current_function_name; | |
4701 | int i; | |
aeb5907d JB |
4702 | int is_new_style_renaming; |
4703 | ||
4704 | /* If there is both a renaming foo___XR... encoded as a variable and | |
4705 | a simple variable foo in the same block, discard the latter. | |
0963b4bd | 4706 | First, zero out such symbols, then compress. */ |
aeb5907d JB |
4707 | is_new_style_renaming = 0; |
4708 | for (i = 0; i < nsyms; i += 1) | |
4709 | { | |
4710 | struct symbol *sym = syms[i].sym; | |
4711 | struct block *block = syms[i].block; | |
4712 | const char *name; | |
4713 | const char *suffix; | |
4714 | ||
4715 | if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
4716 | continue; | |
4717 | name = SYMBOL_LINKAGE_NAME (sym); | |
4718 | suffix = strstr (name, "___XR"); | |
4719 | ||
4720 | if (suffix != NULL) | |
4721 | { | |
4722 | int name_len = suffix - name; | |
4723 | int j; | |
5b4ee69b | 4724 | |
aeb5907d JB |
4725 | is_new_style_renaming = 1; |
4726 | for (j = 0; j < nsyms; j += 1) | |
4727 | if (i != j && syms[j].sym != NULL | |
4728 | && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), | |
4729 | name_len) == 0 | |
4730 | && block == syms[j].block) | |
4731 | syms[j].sym = NULL; | |
4732 | } | |
4733 | } | |
4734 | if (is_new_style_renaming) | |
4735 | { | |
4736 | int j, k; | |
4737 | ||
4738 | for (j = k = 0; j < nsyms; j += 1) | |
4739 | if (syms[j].sym != NULL) | |
4740 | { | |
4741 | syms[k] = syms[j]; | |
4742 | k += 1; | |
4743 | } | |
4744 | return k; | |
4745 | } | |
4c4b4cd2 PH |
4746 | |
4747 | /* Extract the function name associated to CURRENT_BLOCK. | |
4748 | Abort if unable to do so. */ | |
76a01679 | 4749 | |
4c4b4cd2 PH |
4750 | if (current_block == NULL) |
4751 | return nsyms; | |
76a01679 | 4752 | |
7f0df278 | 4753 | current_function = block_linkage_function (current_block); |
4c4b4cd2 PH |
4754 | if (current_function == NULL) |
4755 | return nsyms; | |
4756 | ||
4757 | current_function_name = SYMBOL_LINKAGE_NAME (current_function); | |
4758 | if (current_function_name == NULL) | |
4759 | return nsyms; | |
4760 | ||
4761 | /* Check each of the symbols, and remove it from the list if it is | |
4762 | a type corresponding to a renaming that is out of the scope of | |
4763 | the current block. */ | |
4764 | ||
4765 | i = 0; | |
4766 | while (i < nsyms) | |
4767 | { | |
aeb5907d JB |
4768 | if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) |
4769 | == ADA_OBJECT_RENAMING | |
4770 | && old_renaming_is_invisible (syms[i].sym, current_function_name)) | |
4c4b4cd2 PH |
4771 | { |
4772 | int j; | |
5b4ee69b | 4773 | |
aeb5907d | 4774 | for (j = i + 1; j < nsyms; j += 1) |
76a01679 | 4775 | syms[j - 1] = syms[j]; |
4c4b4cd2 PH |
4776 | nsyms -= 1; |
4777 | } | |
4778 | else | |
4779 | i += 1; | |
4780 | } | |
4781 | ||
4782 | return nsyms; | |
4783 | } | |
4784 | ||
339c13b6 JB |
4785 | /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) |
4786 | whose name and domain match NAME and DOMAIN respectively. | |
4787 | If no match was found, then extend the search to "enclosing" | |
4788 | routines (in other words, if we're inside a nested function, | |
4789 | search the symbols defined inside the enclosing functions). | |
4790 | ||
4791 | Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ | |
4792 | ||
4793 | static void | |
4794 | ada_add_local_symbols (struct obstack *obstackp, const char *name, | |
4795 | struct block *block, domain_enum domain, | |
4796 | int wild_match) | |
4797 | { | |
4798 | int block_depth = 0; | |
4799 | ||
4800 | while (block != NULL) | |
4801 | { | |
4802 | block_depth += 1; | |
4803 | ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match); | |
4804 | ||
4805 | /* If we found a non-function match, assume that's the one. */ | |
4806 | if (is_nonfunction (defns_collected (obstackp, 0), | |
4807 | num_defns_collected (obstackp))) | |
4808 | return; | |
4809 | ||
4810 | block = BLOCK_SUPERBLOCK (block); | |
4811 | } | |
4812 | ||
4813 | /* If no luck so far, try to find NAME as a local symbol in some lexically | |
4814 | enclosing subprogram. */ | |
4815 | if (num_defns_collected (obstackp) == 0 && block_depth > 2) | |
4816 | add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match); | |
4817 | } | |
4818 | ||
ccefe4c4 | 4819 | /* An object of this type is used as the user_data argument when |
40658b94 | 4820 | calling the map_matching_symbols method. */ |
ccefe4c4 | 4821 | |
40658b94 | 4822 | struct match_data |
ccefe4c4 | 4823 | { |
40658b94 | 4824 | struct objfile *objfile; |
ccefe4c4 | 4825 | struct obstack *obstackp; |
40658b94 PH |
4826 | struct symbol *arg_sym; |
4827 | int found_sym; | |
ccefe4c4 TT |
4828 | }; |
4829 | ||
40658b94 PH |
4830 | /* A callback for add_matching_symbols that adds SYM, found in BLOCK, |
4831 | to a list of symbols. DATA0 is a pointer to a struct match_data * | |
4832 | containing the obstack that collects the symbol list, the file that SYM | |
4833 | must come from, a flag indicating whether a non-argument symbol has | |
4834 | been found in the current block, and the last argument symbol | |
4835 | passed in SYM within the current block (if any). When SYM is null, | |
4836 | marking the end of a block, the argument symbol is added if no | |
4837 | other has been found. */ | |
ccefe4c4 | 4838 | |
40658b94 PH |
4839 | static int |
4840 | aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) | |
ccefe4c4 | 4841 | { |
40658b94 PH |
4842 | struct match_data *data = (struct match_data *) data0; |
4843 | ||
4844 | if (sym == NULL) | |
4845 | { | |
4846 | if (!data->found_sym && data->arg_sym != NULL) | |
4847 | add_defn_to_vec (data->obstackp, | |
4848 | fixup_symbol_section (data->arg_sym, data->objfile), | |
4849 | block); | |
4850 | data->found_sym = 0; | |
4851 | data->arg_sym = NULL; | |
4852 | } | |
4853 | else | |
4854 | { | |
4855 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) | |
4856 | return 0; | |
4857 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
4858 | data->arg_sym = sym; | |
4859 | else | |
4860 | { | |
4861 | data->found_sym = 1; | |
4862 | add_defn_to_vec (data->obstackp, | |
4863 | fixup_symbol_section (sym, data->objfile), | |
4864 | block); | |
4865 | } | |
4866 | } | |
4867 | return 0; | |
4868 | } | |
4869 | ||
4870 | /* Compare STRING1 to STRING2, with results as for strcmp. | |
4871 | Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0 | |
4872 | implies compare_names (STRING1, STRING2) (they may differ as to | |
4873 | what symbols compare equal). */ | |
5b4ee69b | 4874 | |
40658b94 PH |
4875 | static int |
4876 | compare_names (const char *string1, const char *string2) | |
4877 | { | |
4878 | while (*string1 != '\0' && *string2 != '\0') | |
4879 | { | |
4880 | if (isspace (*string1) || isspace (*string2)) | |
4881 | return strcmp_iw_ordered (string1, string2); | |
4882 | if (*string1 != *string2) | |
4883 | break; | |
4884 | string1 += 1; | |
4885 | string2 += 1; | |
4886 | } | |
4887 | switch (*string1) | |
4888 | { | |
4889 | case '(': | |
4890 | return strcmp_iw_ordered (string1, string2); | |
4891 | case '_': | |
4892 | if (*string2 == '\0') | |
4893 | { | |
052874e8 | 4894 | if (is_name_suffix (string1)) |
40658b94 PH |
4895 | return 0; |
4896 | else | |
4897 | return -1; | |
4898 | } | |
dbb8534f | 4899 | /* FALLTHROUGH */ |
40658b94 PH |
4900 | default: |
4901 | if (*string2 == '(') | |
4902 | return strcmp_iw_ordered (string1, string2); | |
4903 | else | |
4904 | return *string1 - *string2; | |
4905 | } | |
ccefe4c4 TT |
4906 | } |
4907 | ||
339c13b6 JB |
4908 | /* Add to OBSTACKP all non-local symbols whose name and domain match |
4909 | NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK | |
4910 | symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ | |
4911 | ||
4912 | static void | |
40658b94 PH |
4913 | add_nonlocal_symbols (struct obstack *obstackp, const char *name, |
4914 | domain_enum domain, int global, | |
4915 | int is_wild_match) | |
339c13b6 JB |
4916 | { |
4917 | struct objfile *objfile; | |
40658b94 | 4918 | struct match_data data; |
339c13b6 | 4919 | |
ccefe4c4 | 4920 | data.obstackp = obstackp; |
40658b94 | 4921 | data.arg_sym = NULL; |
339c13b6 | 4922 | |
ccefe4c4 | 4923 | ALL_OBJFILES (objfile) |
40658b94 PH |
4924 | { |
4925 | data.objfile = objfile; | |
4926 | ||
4927 | if (is_wild_match) | |
4928 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4929 | aux_add_nonlocal_symbols, &data, | |
4930 | wild_match, NULL); | |
4931 | else | |
4932 | objfile->sf->qf->map_matching_symbols (name, domain, objfile, global, | |
4933 | aux_add_nonlocal_symbols, &data, | |
4934 | full_match, compare_names); | |
4935 | } | |
4936 | ||
4937 | if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) | |
4938 | { | |
4939 | ALL_OBJFILES (objfile) | |
4940 | { | |
4941 | char *name1 = alloca (strlen (name) + sizeof ("_ada_")); | |
4942 | strcpy (name1, "_ada_"); | |
4943 | strcpy (name1 + sizeof ("_ada_") - 1, name); | |
4944 | data.objfile = objfile; | |
0963b4bd MS |
4945 | objfile->sf->qf->map_matching_symbols (name1, domain, |
4946 | objfile, global, | |
4947 | aux_add_nonlocal_symbols, | |
4948 | &data, | |
40658b94 PH |
4949 | full_match, compare_names); |
4950 | } | |
4951 | } | |
339c13b6 JB |
4952 | } |
4953 | ||
4c4b4cd2 PH |
4954 | /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing |
4955 | scope and in global scopes, returning the number of matches. Sets | |
6c9353d3 | 4956 | *RESULTS to point to a vector of (SYM,BLOCK) tuples, |
4c4b4cd2 PH |
4957 | indicating the symbols found and the blocks and symbol tables (if |
4958 | any) in which they were found. This vector are transient---good only to | |
4959 | the next call of ada_lookup_symbol_list. Any non-function/non-enumeral | |
4960 | symbol match within the nest of blocks whose innermost member is BLOCK0, | |
4961 | is the one match returned (no other matches in that or | |
4962 | enclosing blocks is returned). If there are any matches in or | |
4963 | surrounding BLOCK0, then these alone are returned. Otherwise, the | |
4964 | search extends to global and file-scope (static) symbol tables. | |
4965 | Names prefixed with "standard__" are handled specially: "standard__" | |
4966 | is first stripped off, and only static and global symbols are searched. */ | |
14f9c5c9 AS |
4967 | |
4968 | int | |
4c4b4cd2 | 4969 | ada_lookup_symbol_list (const char *name0, const struct block *block0, |
76a01679 JB |
4970 | domain_enum namespace, |
4971 | struct ada_symbol_info **results) | |
14f9c5c9 AS |
4972 | { |
4973 | struct symbol *sym; | |
14f9c5c9 | 4974 | struct block *block; |
4c4b4cd2 | 4975 | const char *name; |
4c4b4cd2 | 4976 | int wild_match; |
14f9c5c9 | 4977 | int cacheIfUnique; |
4c4b4cd2 | 4978 | int ndefns; |
14f9c5c9 | 4979 | |
4c4b4cd2 PH |
4980 | obstack_free (&symbol_list_obstack, NULL); |
4981 | obstack_init (&symbol_list_obstack); | |
14f9c5c9 | 4982 | |
14f9c5c9 AS |
4983 | cacheIfUnique = 0; |
4984 | ||
4985 | /* Search specified block and its superiors. */ | |
4986 | ||
4c4b4cd2 PH |
4987 | wild_match = (strstr (name0, "__") == NULL); |
4988 | name = name0; | |
76a01679 JB |
4989 | block = (struct block *) block0; /* FIXME: No cast ought to be |
4990 | needed, but adding const will | |
4991 | have a cascade effect. */ | |
339c13b6 JB |
4992 | |
4993 | /* Special case: If the user specifies a symbol name inside package | |
4994 | Standard, do a non-wild matching of the symbol name without | |
4995 | the "standard__" prefix. This was primarily introduced in order | |
4996 | to allow the user to specifically access the standard exceptions | |
4997 | using, for instance, Standard.Constraint_Error when Constraint_Error | |
4998 | is ambiguous (due to the user defining its own Constraint_Error | |
4999 | entity inside its program). */ | |
4c4b4cd2 PH |
5000 | if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) |
5001 | { | |
5002 | wild_match = 0; | |
5003 | block = NULL; | |
5004 | name = name0 + sizeof ("standard__") - 1; | |
5005 | } | |
5006 | ||
339c13b6 | 5007 | /* Check the non-global symbols. If we have ANY match, then we're done. */ |
14f9c5c9 | 5008 | |
339c13b6 JB |
5009 | ada_add_local_symbols (&symbol_list_obstack, name, block, namespace, |
5010 | wild_match); | |
4c4b4cd2 | 5011 | if (num_defns_collected (&symbol_list_obstack) > 0) |
14f9c5c9 | 5012 | goto done; |
d2e4a39e | 5013 | |
339c13b6 JB |
5014 | /* No non-global symbols found. Check our cache to see if we have |
5015 | already performed this search before. If we have, then return | |
5016 | the same result. */ | |
5017 | ||
14f9c5c9 | 5018 | cacheIfUnique = 1; |
2570f2b7 | 5019 | if (lookup_cached_symbol (name0, namespace, &sym, &block)) |
4c4b4cd2 PH |
5020 | { |
5021 | if (sym != NULL) | |
2570f2b7 | 5022 | add_defn_to_vec (&symbol_list_obstack, sym, block); |
4c4b4cd2 PH |
5023 | goto done; |
5024 | } | |
14f9c5c9 | 5025 | |
339c13b6 JB |
5026 | /* Search symbols from all global blocks. */ |
5027 | ||
40658b94 PH |
5028 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, |
5029 | wild_match); | |
d2e4a39e | 5030 | |
4c4b4cd2 | 5031 | /* Now add symbols from all per-file blocks if we've gotten no hits |
339c13b6 | 5032 | (not strictly correct, but perhaps better than an error). */ |
d2e4a39e | 5033 | |
4c4b4cd2 | 5034 | if (num_defns_collected (&symbol_list_obstack) == 0) |
40658b94 PH |
5035 | add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, |
5036 | wild_match); | |
14f9c5c9 | 5037 | |
4c4b4cd2 PH |
5038 | done: |
5039 | ndefns = num_defns_collected (&symbol_list_obstack); | |
5040 | *results = defns_collected (&symbol_list_obstack, 1); | |
5041 | ||
5042 | ndefns = remove_extra_symbols (*results, ndefns); | |
5043 | ||
d2e4a39e | 5044 | if (ndefns == 0) |
2570f2b7 | 5045 | cache_symbol (name0, namespace, NULL, NULL); |
14f9c5c9 | 5046 | |
4c4b4cd2 | 5047 | if (ndefns == 1 && cacheIfUnique) |
2570f2b7 | 5048 | cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); |
14f9c5c9 | 5049 | |
aeb5907d | 5050 | ndefns = remove_irrelevant_renamings (*results, ndefns, block0); |
14f9c5c9 | 5051 | |
14f9c5c9 AS |
5052 | return ndefns; |
5053 | } | |
5054 | ||
d2e4a39e | 5055 | struct symbol * |
aeb5907d | 5056 | ada_lookup_encoded_symbol (const char *name, const struct block *block0, |
21b556f4 | 5057 | domain_enum namespace, struct block **block_found) |
14f9c5c9 | 5058 | { |
4c4b4cd2 | 5059 | struct ada_symbol_info *candidates; |
14f9c5c9 AS |
5060 | int n_candidates; |
5061 | ||
aeb5907d | 5062 | n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates); |
14f9c5c9 AS |
5063 | |
5064 | if (n_candidates == 0) | |
5065 | return NULL; | |
4c4b4cd2 | 5066 | |
aeb5907d JB |
5067 | if (block_found != NULL) |
5068 | *block_found = candidates[0].block; | |
4c4b4cd2 | 5069 | |
21b556f4 | 5070 | return fixup_symbol_section (candidates[0].sym, NULL); |
aeb5907d JB |
5071 | } |
5072 | ||
5073 | /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing | |
5074 | scope and in global scopes, or NULL if none. NAME is folded and | |
5075 | encoded first. Otherwise, the result is as for ada_lookup_symbol_list, | |
0963b4bd | 5076 | choosing the first symbol if there are multiple choices. |
aeb5907d JB |
5077 | *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol |
5078 | table in which the symbol was found (in both cases, these | |
5079 | assignments occur only if the pointers are non-null). */ | |
5080 | struct symbol * | |
5081 | ada_lookup_symbol (const char *name, const struct block *block0, | |
21b556f4 | 5082 | domain_enum namespace, int *is_a_field_of_this) |
aeb5907d JB |
5083 | { |
5084 | if (is_a_field_of_this != NULL) | |
5085 | *is_a_field_of_this = 0; | |
5086 | ||
5087 | return | |
5088 | ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), | |
21b556f4 | 5089 | block0, namespace, NULL); |
4c4b4cd2 | 5090 | } |
14f9c5c9 | 5091 | |
4c4b4cd2 PH |
5092 | static struct symbol * |
5093 | ada_lookup_symbol_nonlocal (const char *name, | |
76a01679 | 5094 | const struct block *block, |
21b556f4 | 5095 | const domain_enum domain) |
4c4b4cd2 | 5096 | { |
94af9270 | 5097 | return ada_lookup_symbol (name, block_static_block (block), domain, NULL); |
14f9c5c9 AS |
5098 | } |
5099 | ||
5100 | ||
4c4b4cd2 PH |
5101 | /* True iff STR is a possible encoded suffix of a normal Ada name |
5102 | that is to be ignored for matching purposes. Suffixes of parallel | |
5103 | names (e.g., XVE) are not included here. Currently, the possible suffixes | |
5823c3ef | 5104 | are given by any of the regular expressions: |
4c4b4cd2 | 5105 | |
babe1480 JB |
5106 | [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] |
5107 | ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] | |
5108 | _E[0-9]+[bs]$ [protected object entry suffixes] | |
61ee279c | 5109 | (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ |
babe1480 JB |
5110 | |
5111 | Also, any leading "__[0-9]+" sequence is skipped before the suffix | |
5112 | match is performed. This sequence is used to differentiate homonyms, | |
5113 | is an optional part of a valid name suffix. */ | |
4c4b4cd2 | 5114 | |
14f9c5c9 | 5115 | static int |
d2e4a39e | 5116 | is_name_suffix (const char *str) |
14f9c5c9 AS |
5117 | { |
5118 | int k; | |
4c4b4cd2 PH |
5119 | const char *matching; |
5120 | const int len = strlen (str); | |
5121 | ||
babe1480 JB |
5122 | /* Skip optional leading __[0-9]+. */ |
5123 | ||
4c4b4cd2 PH |
5124 | if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) |
5125 | { | |
babe1480 JB |
5126 | str += 3; |
5127 | while (isdigit (str[0])) | |
5128 | str += 1; | |
4c4b4cd2 | 5129 | } |
babe1480 JB |
5130 | |
5131 | /* [.$][0-9]+ */ | |
4c4b4cd2 | 5132 | |
babe1480 | 5133 | if (str[0] == '.' || str[0] == '$') |
4c4b4cd2 | 5134 | { |
babe1480 | 5135 | matching = str + 1; |
4c4b4cd2 PH |
5136 | while (isdigit (matching[0])) |
5137 | matching += 1; | |
5138 | if (matching[0] == '\0') | |
5139 | return 1; | |
5140 | } | |
5141 | ||
5142 | /* ___[0-9]+ */ | |
babe1480 | 5143 | |
4c4b4cd2 PH |
5144 | if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') |
5145 | { | |
5146 | matching = str + 3; | |
5147 | while (isdigit (matching[0])) | |
5148 | matching += 1; | |
5149 | if (matching[0] == '\0') | |
5150 | return 1; | |
5151 | } | |
5152 | ||
529cad9c PH |
5153 | #if 0 |
5154 | /* FIXME: brobecker/2005-09-23: Protected Object subprograms end | |
0963b4bd MS |
5155 | with a N at the end. Unfortunately, the compiler uses the same |
5156 | convention for other internal types it creates. So treating | |
529cad9c | 5157 | all entity names that end with an "N" as a name suffix causes |
0963b4bd MS |
5158 | some regressions. For instance, consider the case of an enumerated |
5159 | type. To support the 'Image attribute, it creates an array whose | |
529cad9c PH |
5160 | name ends with N. |
5161 | Having a single character like this as a suffix carrying some | |
0963b4bd | 5162 | information is a bit risky. Perhaps we should change the encoding |
529cad9c PH |
5163 | to be something like "_N" instead. In the meantime, do not do |
5164 | the following check. */ | |
5165 | /* Protected Object Subprograms */ | |
5166 | if (len == 1 && str [0] == 'N') | |
5167 | return 1; | |
5168 | #endif | |
5169 | ||
5170 | /* _E[0-9]+[bs]$ */ | |
5171 | if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) | |
5172 | { | |
5173 | matching = str + 3; | |
5174 | while (isdigit (matching[0])) | |
5175 | matching += 1; | |
5176 | if ((matching[0] == 'b' || matching[0] == 's') | |
5177 | && matching [1] == '\0') | |
5178 | return 1; | |
5179 | } | |
5180 | ||
4c4b4cd2 PH |
5181 | /* ??? We should not modify STR directly, as we are doing below. This |
5182 | is fine in this case, but may become problematic later if we find | |
5183 | that this alternative did not work, and want to try matching | |
5184 | another one from the begining of STR. Since we modified it, we | |
5185 | won't be able to find the begining of the string anymore! */ | |
14f9c5c9 AS |
5186 | if (str[0] == 'X') |
5187 | { | |
5188 | str += 1; | |
d2e4a39e | 5189 | while (str[0] != '_' && str[0] != '\0') |
4c4b4cd2 PH |
5190 | { |
5191 | if (str[0] != 'n' && str[0] != 'b') | |
5192 | return 0; | |
5193 | str += 1; | |
5194 | } | |
14f9c5c9 | 5195 | } |
babe1480 | 5196 | |
14f9c5c9 AS |
5197 | if (str[0] == '\000') |
5198 | return 1; | |
babe1480 | 5199 | |
d2e4a39e | 5200 | if (str[0] == '_') |
14f9c5c9 AS |
5201 | { |
5202 | if (str[1] != '_' || str[2] == '\000') | |
4c4b4cd2 | 5203 | return 0; |
d2e4a39e | 5204 | if (str[2] == '_') |
4c4b4cd2 | 5205 | { |
61ee279c PH |
5206 | if (strcmp (str + 3, "JM") == 0) |
5207 | return 1; | |
5208 | /* FIXME: brobecker/2004-09-30: GNAT will soon stop using | |
5209 | the LJM suffix in favor of the JM one. But we will | |
5210 | still accept LJM as a valid suffix for a reasonable | |
5211 | amount of time, just to allow ourselves to debug programs | |
5212 | compiled using an older version of GNAT. */ | |
4c4b4cd2 PH |
5213 | if (strcmp (str + 3, "LJM") == 0) |
5214 | return 1; | |
5215 | if (str[3] != 'X') | |
5216 | return 0; | |
1265e4aa JB |
5217 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' |
5218 | || str[4] == 'U' || str[4] == 'P') | |
4c4b4cd2 PH |
5219 | return 1; |
5220 | if (str[4] == 'R' && str[5] != 'T') | |
5221 | return 1; | |
5222 | return 0; | |
5223 | } | |
5224 | if (!isdigit (str[2])) | |
5225 | return 0; | |
5226 | for (k = 3; str[k] != '\0'; k += 1) | |
5227 | if (!isdigit (str[k]) && str[k] != '_') | |
5228 | return 0; | |
14f9c5c9 AS |
5229 | return 1; |
5230 | } | |
4c4b4cd2 | 5231 | if (str[0] == '$' && isdigit (str[1])) |
14f9c5c9 | 5232 | { |
4c4b4cd2 PH |
5233 | for (k = 2; str[k] != '\0'; k += 1) |
5234 | if (!isdigit (str[k]) && str[k] != '_') | |
5235 | return 0; | |
14f9c5c9 AS |
5236 | return 1; |
5237 | } | |
5238 | return 0; | |
5239 | } | |
d2e4a39e | 5240 | |
aeb5907d JB |
5241 | /* Return non-zero if the string starting at NAME and ending before |
5242 | NAME_END contains no capital letters. */ | |
529cad9c PH |
5243 | |
5244 | static int | |
5245 | is_valid_name_for_wild_match (const char *name0) | |
5246 | { | |
5247 | const char *decoded_name = ada_decode (name0); | |
5248 | int i; | |
5249 | ||
5823c3ef JB |
5250 | /* If the decoded name starts with an angle bracket, it means that |
5251 | NAME0 does not follow the GNAT encoding format. It should then | |
5252 | not be allowed as a possible wild match. */ | |
5253 | if (decoded_name[0] == '<') | |
5254 | return 0; | |
5255 | ||
529cad9c PH |
5256 | for (i=0; decoded_name[i] != '\0'; i++) |
5257 | if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) | |
5258 | return 0; | |
5259 | ||
5260 | return 1; | |
5261 | } | |
5262 | ||
73589123 PH |
5263 | /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 |
5264 | that could start a simple name. Assumes that *NAMEP points into | |
5265 | the string beginning at NAME0. */ | |
4c4b4cd2 | 5266 | |
14f9c5c9 | 5267 | static int |
73589123 | 5268 | advance_wild_match (const char **namep, const char *name0, int target0) |
14f9c5c9 | 5269 | { |
73589123 | 5270 | const char *name = *namep; |
5b4ee69b | 5271 | |
5823c3ef | 5272 | while (1) |
14f9c5c9 | 5273 | { |
aa27d0b3 | 5274 | int t0, t1; |
73589123 PH |
5275 | |
5276 | t0 = *name; | |
5277 | if (t0 == '_') | |
5278 | { | |
5279 | t1 = name[1]; | |
5280 | if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) | |
5281 | { | |
5282 | name += 1; | |
5283 | if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) | |
5284 | break; | |
5285 | else | |
5286 | name += 1; | |
5287 | } | |
aa27d0b3 JB |
5288 | else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') |
5289 | || name[2] == target0)) | |
73589123 PH |
5290 | { |
5291 | name += 2; | |
5292 | break; | |
5293 | } | |
5294 | else | |
5295 | return 0; | |
5296 | } | |
5297 | else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) | |
5298 | name += 1; | |
5299 | else | |
5823c3ef | 5300 | return 0; |
73589123 PH |
5301 | } |
5302 | ||
5303 | *namep = name; | |
5304 | return 1; | |
5305 | } | |
5306 | ||
5307 | /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any | |
5308 | informational suffixes of NAME (i.e., for which is_name_suffix is | |
5309 | true). Assumes that PATN is a lower-cased Ada simple name. */ | |
5310 | ||
5311 | static int | |
5312 | wild_match (const char *name, const char *patn) | |
5313 | { | |
5314 | const char *p, *n; | |
5315 | const char *name0 = name; | |
5316 | ||
5317 | while (1) | |
5318 | { | |
5319 | const char *match = name; | |
5320 | ||
5321 | if (*name == *patn) | |
5322 | { | |
5323 | for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) | |
5324 | if (*p != *name) | |
5325 | break; | |
5326 | if (*p == '\0' && is_name_suffix (name)) | |
5327 | return match != name0 && !is_valid_name_for_wild_match (name0); | |
5328 | ||
5329 | if (name[-1] == '_') | |
5330 | name -= 1; | |
5331 | } | |
5332 | if (!advance_wild_match (&name, name0, *patn)) | |
5333 | return 1; | |
96d887e8 | 5334 | } |
96d887e8 PH |
5335 | } |
5336 | ||
40658b94 PH |
5337 | /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from |
5338 | informational suffix. */ | |
5339 | ||
c4d840bd PH |
5340 | static int |
5341 | full_match (const char *sym_name, const char *search_name) | |
5342 | { | |
40658b94 | 5343 | return !match_name (sym_name, search_name, 0); |
c4d840bd PH |
5344 | } |
5345 | ||
5346 | ||
96d887e8 PH |
5347 | /* Add symbols from BLOCK matching identifier NAME in DOMAIN to |
5348 | vector *defn_symbols, updating the list of symbols in OBSTACKP | |
0963b4bd | 5349 | (if necessary). If WILD, treat as NAME with a wildcard prefix. |
96d887e8 PH |
5350 | OBJFILE is the section containing BLOCK. |
5351 | SYMTAB is recorded with each symbol added. */ | |
5352 | ||
5353 | static void | |
5354 | ada_add_block_symbols (struct obstack *obstackp, | |
76a01679 | 5355 | struct block *block, const char *name, |
96d887e8 | 5356 | domain_enum domain, struct objfile *objfile, |
2570f2b7 | 5357 | int wild) |
96d887e8 PH |
5358 | { |
5359 | struct dict_iterator iter; | |
5360 | int name_len = strlen (name); | |
5361 | /* A matching argument symbol, if any. */ | |
5362 | struct symbol *arg_sym; | |
5363 | /* Set true when we find a matching non-argument symbol. */ | |
5364 | int found_sym; | |
5365 | struct symbol *sym; | |
5366 | ||
5367 | arg_sym = NULL; | |
5368 | found_sym = 0; | |
5369 | if (wild) | |
5370 | { | |
c4d840bd PH |
5371 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
5372 | wild_match, &iter); | |
5373 | sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter)) | |
76a01679 | 5374 | { |
5eeb2539 AR |
5375 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5376 | SYMBOL_DOMAIN (sym), domain) | |
73589123 | 5377 | && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) |
76a01679 | 5378 | { |
2a2d4dc3 AS |
5379 | if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) |
5380 | continue; | |
5381 | else if (SYMBOL_IS_ARGUMENT (sym)) | |
5382 | arg_sym = sym; | |
5383 | else | |
5384 | { | |
76a01679 JB |
5385 | found_sym = 1; |
5386 | add_defn_to_vec (obstackp, | |
5387 | fixup_symbol_section (sym, objfile), | |
2570f2b7 | 5388 | block); |
76a01679 JB |
5389 | } |
5390 | } | |
5391 | } | |
96d887e8 PH |
5392 | } |
5393 | else | |
5394 | { | |
c4d840bd | 5395 | for (sym = dict_iter_match_first (BLOCK_DICT (block), name, |
40658b94 | 5396 | full_match, &iter); |
c4d840bd | 5397 | sym != NULL; sym = dict_iter_match_next (name, full_match, &iter)) |
76a01679 | 5398 | { |
5eeb2539 AR |
5399 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5400 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 | 5401 | { |
c4d840bd PH |
5402 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5403 | { | |
5404 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5405 | arg_sym = sym; | |
5406 | else | |
2a2d4dc3 | 5407 | { |
c4d840bd PH |
5408 | found_sym = 1; |
5409 | add_defn_to_vec (obstackp, | |
5410 | fixup_symbol_section (sym, objfile), | |
5411 | block); | |
2a2d4dc3 | 5412 | } |
c4d840bd | 5413 | } |
76a01679 JB |
5414 | } |
5415 | } | |
96d887e8 PH |
5416 | } |
5417 | ||
5418 | if (!found_sym && arg_sym != NULL) | |
5419 | { | |
76a01679 JB |
5420 | add_defn_to_vec (obstackp, |
5421 | fixup_symbol_section (arg_sym, objfile), | |
2570f2b7 | 5422 | block); |
96d887e8 PH |
5423 | } |
5424 | ||
5425 | if (!wild) | |
5426 | { | |
5427 | arg_sym = NULL; | |
5428 | found_sym = 0; | |
5429 | ||
5430 | ALL_BLOCK_SYMBOLS (block, iter, sym) | |
76a01679 | 5431 | { |
5eeb2539 AR |
5432 | if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), |
5433 | SYMBOL_DOMAIN (sym), domain)) | |
76a01679 JB |
5434 | { |
5435 | int cmp; | |
5436 | ||
5437 | cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; | |
5438 | if (cmp == 0) | |
5439 | { | |
5440 | cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); | |
5441 | if (cmp == 0) | |
5442 | cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, | |
5443 | name_len); | |
5444 | } | |
5445 | ||
5446 | if (cmp == 0 | |
5447 | && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) | |
5448 | { | |
2a2d4dc3 AS |
5449 | if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) |
5450 | { | |
5451 | if (SYMBOL_IS_ARGUMENT (sym)) | |
5452 | arg_sym = sym; | |
5453 | else | |
5454 | { | |
5455 | found_sym = 1; | |
5456 | add_defn_to_vec (obstackp, | |
5457 | fixup_symbol_section (sym, objfile), | |
5458 | block); | |
5459 | } | |
5460 | } | |
76a01679 JB |
5461 | } |
5462 | } | |
76a01679 | 5463 | } |
96d887e8 PH |
5464 | |
5465 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
5466 | They aren't parameters, right? */ | |
5467 | if (!found_sym && arg_sym != NULL) | |
5468 | { | |
5469 | add_defn_to_vec (obstackp, | |
76a01679 | 5470 | fixup_symbol_section (arg_sym, objfile), |
2570f2b7 | 5471 | block); |
96d887e8 PH |
5472 | } |
5473 | } | |
5474 | } | |
5475 | \f | |
41d27058 JB |
5476 | |
5477 | /* Symbol Completion */ | |
5478 | ||
5479 | /* If SYM_NAME is a completion candidate for TEXT, return this symbol | |
5480 | name in a form that's appropriate for the completion. The result | |
5481 | does not need to be deallocated, but is only good until the next call. | |
5482 | ||
5483 | TEXT_LEN is equal to the length of TEXT. | |
5484 | Perform a wild match if WILD_MATCH is set. | |
5485 | ENCODED should be set if TEXT represents the start of a symbol name | |
5486 | in its encoded form. */ | |
5487 | ||
5488 | static const char * | |
5489 | symbol_completion_match (const char *sym_name, | |
5490 | const char *text, int text_len, | |
5491 | int wild_match, int encoded) | |
5492 | { | |
41d27058 JB |
5493 | const int verbatim_match = (text[0] == '<'); |
5494 | int match = 0; | |
5495 | ||
5496 | if (verbatim_match) | |
5497 | { | |
5498 | /* Strip the leading angle bracket. */ | |
5499 | text = text + 1; | |
5500 | text_len--; | |
5501 | } | |
5502 | ||
5503 | /* First, test against the fully qualified name of the symbol. */ | |
5504 | ||
5505 | if (strncmp (sym_name, text, text_len) == 0) | |
5506 | match = 1; | |
5507 | ||
5508 | if (match && !encoded) | |
5509 | { | |
5510 | /* One needed check before declaring a positive match is to verify | |
5511 | that iff we are doing a verbatim match, the decoded version | |
5512 | of the symbol name starts with '<'. Otherwise, this symbol name | |
5513 | is not a suitable completion. */ | |
5514 | const char *sym_name_copy = sym_name; | |
5515 | int has_angle_bracket; | |
5516 | ||
5517 | sym_name = ada_decode (sym_name); | |
5518 | has_angle_bracket = (sym_name[0] == '<'); | |
5519 | match = (has_angle_bracket == verbatim_match); | |
5520 | sym_name = sym_name_copy; | |
5521 | } | |
5522 | ||
5523 | if (match && !verbatim_match) | |
5524 | { | |
5525 | /* When doing non-verbatim match, another check that needs to | |
5526 | be done is to verify that the potentially matching symbol name | |
5527 | does not include capital letters, because the ada-mode would | |
5528 | not be able to understand these symbol names without the | |
5529 | angle bracket notation. */ | |
5530 | const char *tmp; | |
5531 | ||
5532 | for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); | |
5533 | if (*tmp != '\0') | |
5534 | match = 0; | |
5535 | } | |
5536 | ||
5537 | /* Second: Try wild matching... */ | |
5538 | ||
5539 | if (!match && wild_match) | |
5540 | { | |
5541 | /* Since we are doing wild matching, this means that TEXT | |
5542 | may represent an unqualified symbol name. We therefore must | |
5543 | also compare TEXT against the unqualified name of the symbol. */ | |
5544 | sym_name = ada_unqualified_name (ada_decode (sym_name)); | |
5545 | ||
5546 | if (strncmp (sym_name, text, text_len) == 0) | |
5547 | match = 1; | |
5548 | } | |
5549 | ||
5550 | /* Finally: If we found a mach, prepare the result to return. */ | |
5551 | ||
5552 | if (!match) | |
5553 | return NULL; | |
5554 | ||
5555 | if (verbatim_match) | |
5556 | sym_name = add_angle_brackets (sym_name); | |
5557 | ||
5558 | if (!encoded) | |
5559 | sym_name = ada_decode (sym_name); | |
5560 | ||
5561 | return sym_name; | |
5562 | } | |
5563 | ||
2ba95b9b JB |
5564 | DEF_VEC_P (char_ptr); |
5565 | ||
41d27058 JB |
5566 | /* A companion function to ada_make_symbol_completion_list(). |
5567 | Check if SYM_NAME represents a symbol which name would be suitable | |
5568 | to complete TEXT (TEXT_LEN is the length of TEXT), in which case | |
5569 | it is appended at the end of the given string vector SV. | |
5570 | ||
5571 | ORIG_TEXT is the string original string from the user command | |
5572 | that needs to be completed. WORD is the entire command on which | |
5573 | completion should be performed. These two parameters are used to | |
5574 | determine which part of the symbol name should be added to the | |
5575 | completion vector. | |
5576 | if WILD_MATCH is set, then wild matching is performed. | |
5577 | ENCODED should be set if TEXT represents a symbol name in its | |
5578 | encoded formed (in which case the completion should also be | |
5579 | encoded). */ | |
5580 | ||
5581 | static void | |
d6565258 | 5582 | symbol_completion_add (VEC(char_ptr) **sv, |
41d27058 JB |
5583 | const char *sym_name, |
5584 | const char *text, int text_len, | |
5585 | const char *orig_text, const char *word, | |
5586 | int wild_match, int encoded) | |
5587 | { | |
5588 | const char *match = symbol_completion_match (sym_name, text, text_len, | |
5589 | wild_match, encoded); | |
5590 | char *completion; | |
5591 | ||
5592 | if (match == NULL) | |
5593 | return; | |
5594 | ||
5595 | /* We found a match, so add the appropriate completion to the given | |
5596 | string vector. */ | |
5597 | ||
5598 | if (word == orig_text) | |
5599 | { | |
5600 | completion = xmalloc (strlen (match) + 5); | |
5601 | strcpy (completion, match); | |
5602 | } | |
5603 | else if (word > orig_text) | |
5604 | { | |
5605 | /* Return some portion of sym_name. */ | |
5606 | completion = xmalloc (strlen (match) + 5); | |
5607 | strcpy (completion, match + (word - orig_text)); | |
5608 | } | |
5609 | else | |
5610 | { | |
5611 | /* Return some of ORIG_TEXT plus sym_name. */ | |
5612 | completion = xmalloc (strlen (match) + (orig_text - word) + 5); | |
5613 | strncpy (completion, word, orig_text - word); | |
5614 | completion[orig_text - word] = '\0'; | |
5615 | strcat (completion, match); | |
5616 | } | |
5617 | ||
d6565258 | 5618 | VEC_safe_push (char_ptr, *sv, completion); |
41d27058 JB |
5619 | } |
5620 | ||
ccefe4c4 | 5621 | /* An object of this type is passed as the user_data argument to the |
7b08b9eb | 5622 | expand_partial_symbol_names method. */ |
ccefe4c4 TT |
5623 | struct add_partial_datum |
5624 | { | |
5625 | VEC(char_ptr) **completions; | |
5626 | char *text; | |
5627 | int text_len; | |
5628 | char *text0; | |
5629 | char *word; | |
5630 | int wild_match; | |
5631 | int encoded; | |
5632 | }; | |
5633 | ||
7b08b9eb JK |
5634 | /* A callback for expand_partial_symbol_names. */ |
5635 | static int | |
5636 | ada_expand_partial_symbol_name (const char *name, void *user_data) | |
ccefe4c4 TT |
5637 | { |
5638 | struct add_partial_datum *data = user_data; | |
7b08b9eb JK |
5639 | |
5640 | return symbol_completion_match (name, data->text, data->text_len, | |
5641 | data->wild_match, data->encoded) != NULL; | |
ccefe4c4 TT |
5642 | } |
5643 | ||
41d27058 JB |
5644 | /* Return a list of possible symbol names completing TEXT0. The list |
5645 | is NULL terminated. WORD is the entire command on which completion | |
5646 | is made. */ | |
5647 | ||
5648 | static char ** | |
5649 | ada_make_symbol_completion_list (char *text0, char *word) | |
5650 | { | |
5651 | char *text; | |
5652 | int text_len; | |
5653 | int wild_match; | |
5654 | int encoded; | |
2ba95b9b | 5655 | VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); |
41d27058 JB |
5656 | struct symbol *sym; |
5657 | struct symtab *s; | |
41d27058 JB |
5658 | struct minimal_symbol *msymbol; |
5659 | struct objfile *objfile; | |
5660 | struct block *b, *surrounding_static_block = 0; | |
5661 | int i; | |
5662 | struct dict_iterator iter; | |
5663 | ||
5664 | if (text0[0] == '<') | |
5665 | { | |
5666 | text = xstrdup (text0); | |
5667 | make_cleanup (xfree, text); | |
5668 | text_len = strlen (text); | |
5669 | wild_match = 0; | |
5670 | encoded = 1; | |
5671 | } | |
5672 | else | |
5673 | { | |
5674 | text = xstrdup (ada_encode (text0)); | |
5675 | make_cleanup (xfree, text); | |
5676 | text_len = strlen (text); | |
5677 | for (i = 0; i < text_len; i++) | |
5678 | text[i] = tolower (text[i]); | |
5679 | ||
5680 | encoded = (strstr (text0, "__") != NULL); | |
5681 | /* If the name contains a ".", then the user is entering a fully | |
5682 | qualified entity name, and the match must not be done in wild | |
5683 | mode. Similarly, if the user wants to complete what looks like | |
5684 | an encoded name, the match must not be done in wild mode. */ | |
5685 | wild_match = (strchr (text0, '.') == NULL && !encoded); | |
5686 | } | |
5687 | ||
5688 | /* First, look at the partial symtab symbols. */ | |
41d27058 | 5689 | { |
ccefe4c4 TT |
5690 | struct add_partial_datum data; |
5691 | ||
5692 | data.completions = &completions; | |
5693 | data.text = text; | |
5694 | data.text_len = text_len; | |
5695 | data.text0 = text0; | |
5696 | data.word = word; | |
5697 | data.wild_match = wild_match; | |
5698 | data.encoded = encoded; | |
7b08b9eb | 5699 | expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); |
41d27058 JB |
5700 | } |
5701 | ||
5702 | /* At this point scan through the misc symbol vectors and add each | |
5703 | symbol you find to the list. Eventually we want to ignore | |
5704 | anything that isn't a text symbol (everything else will be | |
5705 | handled by the psymtab code above). */ | |
5706 | ||
5707 | ALL_MSYMBOLS (objfile, msymbol) | |
5708 | { | |
5709 | QUIT; | |
d6565258 | 5710 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), |
41d27058 JB |
5711 | text, text_len, text0, word, wild_match, encoded); |
5712 | } | |
5713 | ||
5714 | /* Search upwards from currently selected frame (so that we can | |
5715 | complete on local vars. */ | |
5716 | ||
5717 | for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) | |
5718 | { | |
5719 | if (!BLOCK_SUPERBLOCK (b)) | |
5720 | surrounding_static_block = b; /* For elmin of dups */ | |
5721 | ||
5722 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5723 | { | |
d6565258 | 5724 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5725 | text, text_len, text0, word, |
5726 | wild_match, encoded); | |
5727 | } | |
5728 | } | |
5729 | ||
5730 | /* Go through the symtabs and check the externs and statics for | |
5731 | symbols which match. */ | |
5732 | ||
5733 | ALL_SYMTABS (objfile, s) | |
5734 | { | |
5735 | QUIT; | |
5736 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
5737 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5738 | { | |
d6565258 | 5739 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5740 | text, text_len, text0, word, |
5741 | wild_match, encoded); | |
5742 | } | |
5743 | } | |
5744 | ||
5745 | ALL_SYMTABS (objfile, s) | |
5746 | { | |
5747 | QUIT; | |
5748 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
5749 | /* Don't do this block twice. */ | |
5750 | if (b == surrounding_static_block) | |
5751 | continue; | |
5752 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
5753 | { | |
d6565258 | 5754 | symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), |
41d27058 JB |
5755 | text, text_len, text0, word, |
5756 | wild_match, encoded); | |
5757 | } | |
5758 | } | |
5759 | ||
5760 | /* Append the closing NULL entry. */ | |
2ba95b9b | 5761 | VEC_safe_push (char_ptr, completions, NULL); |
41d27058 | 5762 | |
2ba95b9b JB |
5763 | /* Make a copy of the COMPLETIONS VEC before we free it, and then |
5764 | return the copy. It's unfortunate that we have to make a copy | |
5765 | of an array that we're about to destroy, but there is nothing much | |
5766 | we can do about it. Fortunately, it's typically not a very large | |
5767 | array. */ | |
5768 | { | |
5769 | const size_t completions_size = | |
5770 | VEC_length (char_ptr, completions) * sizeof (char *); | |
dc19db01 | 5771 | char **result = xmalloc (completions_size); |
2ba95b9b JB |
5772 | |
5773 | memcpy (result, VEC_address (char_ptr, completions), completions_size); | |
5774 | ||
5775 | VEC_free (char_ptr, completions); | |
5776 | return result; | |
5777 | } | |
41d27058 JB |
5778 | } |
5779 | ||
963a6417 | 5780 | /* Field Access */ |
96d887e8 | 5781 | |
73fb9985 JB |
5782 | /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used |
5783 | for tagged types. */ | |
5784 | ||
5785 | static int | |
5786 | ada_is_dispatch_table_ptr_type (struct type *type) | |
5787 | { | |
5788 | char *name; | |
5789 | ||
5790 | if (TYPE_CODE (type) != TYPE_CODE_PTR) | |
5791 | return 0; | |
5792 | ||
5793 | name = TYPE_NAME (TYPE_TARGET_TYPE (type)); | |
5794 | if (name == NULL) | |
5795 | return 0; | |
5796 | ||
5797 | return (strcmp (name, "ada__tags__dispatch_table") == 0); | |
5798 | } | |
5799 | ||
963a6417 PH |
5800 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed |
5801 | to be invisible to users. */ | |
96d887e8 | 5802 | |
963a6417 PH |
5803 | int |
5804 | ada_is_ignored_field (struct type *type, int field_num) | |
96d887e8 | 5805 | { |
963a6417 PH |
5806 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) |
5807 | return 1; | |
73fb9985 JB |
5808 | |
5809 | /* Check the name of that field. */ | |
5810 | { | |
5811 | const char *name = TYPE_FIELD_NAME (type, field_num); | |
5812 | ||
5813 | /* Anonymous field names should not be printed. | |
5814 | brobecker/2007-02-20: I don't think this can actually happen | |
5815 | but we don't want to print the value of annonymous fields anyway. */ | |
5816 | if (name == NULL) | |
5817 | return 1; | |
5818 | ||
5819 | /* A field named "_parent" is internally generated by GNAT for | |
5820 | tagged types, and should not be printed either. */ | |
5821 | if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) | |
5822 | return 1; | |
5823 | } | |
5824 | ||
5825 | /* If this is the dispatch table of a tagged type, then ignore. */ | |
5826 | if (ada_is_tagged_type (type, 1) | |
5827 | && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))) | |
5828 | return 1; | |
5829 | ||
5830 | /* Not a special field, so it should not be ignored. */ | |
5831 | return 0; | |
963a6417 | 5832 | } |
96d887e8 | 5833 | |
963a6417 | 5834 | /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a |
0963b4bd | 5835 | pointer or reference type whose ultimate target has a tag field. */ |
96d887e8 | 5836 | |
963a6417 PH |
5837 | int |
5838 | ada_is_tagged_type (struct type *type, int refok) | |
5839 | { | |
5840 | return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); | |
5841 | } | |
96d887e8 | 5842 | |
963a6417 | 5843 | /* True iff TYPE represents the type of X'Tag */ |
96d887e8 | 5844 | |
963a6417 PH |
5845 | int |
5846 | ada_is_tag_type (struct type *type) | |
5847 | { | |
5848 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) | |
5849 | return 0; | |
5850 | else | |
96d887e8 | 5851 | { |
963a6417 | 5852 | const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); |
5b4ee69b | 5853 | |
963a6417 PH |
5854 | return (name != NULL |
5855 | && strcmp (name, "ada__tags__dispatch_table") == 0); | |
96d887e8 | 5856 | } |
96d887e8 PH |
5857 | } |
5858 | ||
963a6417 | 5859 | /* The type of the tag on VAL. */ |
76a01679 | 5860 | |
963a6417 PH |
5861 | struct type * |
5862 | ada_tag_type (struct value *val) | |
96d887e8 | 5863 | { |
df407dfe | 5864 | return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); |
963a6417 | 5865 | } |
96d887e8 | 5866 | |
963a6417 | 5867 | /* The value of the tag on VAL. */ |
96d887e8 | 5868 | |
963a6417 PH |
5869 | struct value * |
5870 | ada_value_tag (struct value *val) | |
5871 | { | |
03ee6b2e | 5872 | return ada_value_struct_elt (val, "_tag", 0); |
96d887e8 PH |
5873 | } |
5874 | ||
963a6417 PH |
5875 | /* The value of the tag on the object of type TYPE whose contents are |
5876 | saved at VALADDR, if it is non-null, or is at memory address | |
0963b4bd | 5877 | ADDRESS. */ |
96d887e8 | 5878 | |
963a6417 | 5879 | static struct value * |
10a2c479 | 5880 | value_tag_from_contents_and_address (struct type *type, |
fc1a4b47 | 5881 | const gdb_byte *valaddr, |
963a6417 | 5882 | CORE_ADDR address) |
96d887e8 | 5883 | { |
b5385fc0 | 5884 | int tag_byte_offset; |
963a6417 | 5885 | struct type *tag_type; |
5b4ee69b | 5886 | |
963a6417 | 5887 | if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, |
52ce6436 | 5888 | NULL, NULL, NULL)) |
96d887e8 | 5889 | { |
fc1a4b47 | 5890 | const gdb_byte *valaddr1 = ((valaddr == NULL) |
10a2c479 AC |
5891 | ? NULL |
5892 | : valaddr + tag_byte_offset); | |
963a6417 | 5893 | CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; |
96d887e8 | 5894 | |
963a6417 | 5895 | return value_from_contents_and_address (tag_type, valaddr1, address1); |
96d887e8 | 5896 | } |
963a6417 PH |
5897 | return NULL; |
5898 | } | |
96d887e8 | 5899 | |
963a6417 PH |
5900 | static struct type * |
5901 | type_from_tag (struct value *tag) | |
5902 | { | |
5903 | const char *type_name = ada_tag_name (tag); | |
5b4ee69b | 5904 | |
963a6417 PH |
5905 | if (type_name != NULL) |
5906 | return ada_find_any_type (ada_encode (type_name)); | |
5907 | return NULL; | |
5908 | } | |
96d887e8 | 5909 | |
963a6417 PH |
5910 | struct tag_args |
5911 | { | |
5912 | struct value *tag; | |
5913 | char *name; | |
5914 | }; | |
4c4b4cd2 | 5915 | |
529cad9c PH |
5916 | |
5917 | static int ada_tag_name_1 (void *); | |
5918 | static int ada_tag_name_2 (struct tag_args *); | |
5919 | ||
4c4b4cd2 | 5920 | /* Wrapper function used by ada_tag_name. Given a struct tag_args* |
0963b4bd | 5921 | value ARGS, sets ARGS->name to the tag name of ARGS->tag. |
4c4b4cd2 PH |
5922 | The value stored in ARGS->name is valid until the next call to |
5923 | ada_tag_name_1. */ | |
5924 | ||
5925 | static int | |
5926 | ada_tag_name_1 (void *args0) | |
5927 | { | |
5928 | struct tag_args *args = (struct tag_args *) args0; | |
5929 | static char name[1024]; | |
76a01679 | 5930 | char *p; |
4c4b4cd2 | 5931 | struct value *val; |
5b4ee69b | 5932 | |
4c4b4cd2 | 5933 | args->name = NULL; |
03ee6b2e | 5934 | val = ada_value_struct_elt (args->tag, "tsd", 1); |
529cad9c PH |
5935 | if (val == NULL) |
5936 | return ada_tag_name_2 (args); | |
03ee6b2e | 5937 | val = ada_value_struct_elt (val, "expanded_name", 1); |
529cad9c PH |
5938 | if (val == NULL) |
5939 | return 0; | |
5940 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5941 | for (p = name; *p != '\0'; p += 1) | |
5942 | if (isalpha (*p)) | |
5943 | *p = tolower (*p); | |
5944 | args->name = name; | |
5945 | return 0; | |
5946 | } | |
5947 | ||
e802dbe0 JB |
5948 | /* Return the "ada__tags__type_specific_data" type. */ |
5949 | ||
5950 | static struct type * | |
5951 | ada_get_tsd_type (struct inferior *inf) | |
5952 | { | |
5953 | struct ada_inferior_data *data = get_ada_inferior_data (inf); | |
5954 | ||
5955 | if (data->tsd_type == 0) | |
5956 | data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); | |
5957 | return data->tsd_type; | |
5958 | } | |
5959 | ||
529cad9c PH |
5960 | /* Utility function for ada_tag_name_1 that tries the second |
5961 | representation for the dispatch table (in which there is no | |
5962 | explicit 'tsd' field in the referent of the tag pointer, and instead | |
0963b4bd | 5963 | the tsd pointer is stored just before the dispatch table. */ |
529cad9c PH |
5964 | |
5965 | static int | |
5966 | ada_tag_name_2 (struct tag_args *args) | |
5967 | { | |
5968 | struct type *info_type; | |
5969 | static char name[1024]; | |
5970 | char *p; | |
5971 | struct value *val, *valp; | |
5972 | ||
5973 | args->name = NULL; | |
e802dbe0 | 5974 | info_type = ada_get_tsd_type (current_inferior()); |
529cad9c PH |
5975 | if (info_type == NULL) |
5976 | return 0; | |
5977 | info_type = lookup_pointer_type (lookup_pointer_type (info_type)); | |
5978 | valp = value_cast (info_type, args->tag); | |
5979 | if (valp == NULL) | |
5980 | return 0; | |
2497b498 | 5981 | val = value_ind (value_ptradd (valp, -1)); |
4c4b4cd2 PH |
5982 | if (val == NULL) |
5983 | return 0; | |
03ee6b2e | 5984 | val = ada_value_struct_elt (val, "expanded_name", 1); |
4c4b4cd2 PH |
5985 | if (val == NULL) |
5986 | return 0; | |
5987 | read_memory_string (value_as_address (val), name, sizeof (name) - 1); | |
5988 | for (p = name; *p != '\0'; p += 1) | |
5989 | if (isalpha (*p)) | |
5990 | *p = tolower (*p); | |
5991 | args->name = name; | |
5992 | return 0; | |
5993 | } | |
5994 | ||
5995 | /* The type name of the dynamic type denoted by the 'tag value TAG, as | |
e802dbe0 | 5996 | a C string. */ |
4c4b4cd2 PH |
5997 | |
5998 | const char * | |
5999 | ada_tag_name (struct value *tag) | |
6000 | { | |
6001 | struct tag_args args; | |
5b4ee69b | 6002 | |
df407dfe | 6003 | if (!ada_is_tag_type (value_type (tag))) |
4c4b4cd2 | 6004 | return NULL; |
76a01679 | 6005 | args.tag = tag; |
4c4b4cd2 PH |
6006 | args.name = NULL; |
6007 | catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL); | |
6008 | return args.name; | |
6009 | } | |
6010 | ||
6011 | /* The parent type of TYPE, or NULL if none. */ | |
14f9c5c9 | 6012 | |
d2e4a39e | 6013 | struct type * |
ebf56fd3 | 6014 | ada_parent_type (struct type *type) |
14f9c5c9 AS |
6015 | { |
6016 | int i; | |
6017 | ||
61ee279c | 6018 | type = ada_check_typedef (type); |
14f9c5c9 AS |
6019 | |
6020 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
6021 | return NULL; | |
6022 | ||
6023 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6024 | if (ada_is_parent_field (type, i)) | |
0c1f74cf JB |
6025 | { |
6026 | struct type *parent_type = TYPE_FIELD_TYPE (type, i); | |
6027 | ||
6028 | /* If the _parent field is a pointer, then dereference it. */ | |
6029 | if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) | |
6030 | parent_type = TYPE_TARGET_TYPE (parent_type); | |
6031 | /* If there is a parallel XVS type, get the actual base type. */ | |
6032 | parent_type = ada_get_base_type (parent_type); | |
6033 | ||
6034 | return ada_check_typedef (parent_type); | |
6035 | } | |
14f9c5c9 AS |
6036 | |
6037 | return NULL; | |
6038 | } | |
6039 | ||
4c4b4cd2 PH |
6040 | /* True iff field number FIELD_NUM of structure type TYPE contains the |
6041 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
6042 | a structure type with at least FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6043 | |
6044 | int | |
ebf56fd3 | 6045 | ada_is_parent_field (struct type *type, int field_num) |
14f9c5c9 | 6046 | { |
61ee279c | 6047 | const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); |
5b4ee69b | 6048 | |
4c4b4cd2 PH |
6049 | return (name != NULL |
6050 | && (strncmp (name, "PARENT", 6) == 0 | |
6051 | || strncmp (name, "_parent", 7) == 0)); | |
14f9c5c9 AS |
6052 | } |
6053 | ||
4c4b4cd2 | 6054 | /* True iff field number FIELD_NUM of structure type TYPE is a |
14f9c5c9 | 6055 | transparent wrapper field (which should be silently traversed when doing |
4c4b4cd2 | 6056 | field selection and flattened when printing). Assumes TYPE is a |
14f9c5c9 | 6057 | structure type with at least FIELD_NUM+1 fields. Such fields are always |
4c4b4cd2 | 6058 | structures. */ |
14f9c5c9 AS |
6059 | |
6060 | int | |
ebf56fd3 | 6061 | ada_is_wrapper_field (struct type *type, int field_num) |
14f9c5c9 | 6062 | { |
d2e4a39e | 6063 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6064 | |
d2e4a39e | 6065 | return (name != NULL |
4c4b4cd2 PH |
6066 | && (strncmp (name, "PARENT", 6) == 0 |
6067 | || strcmp (name, "REP") == 0 | |
6068 | || strncmp (name, "_parent", 7) == 0 | |
6069 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
14f9c5c9 AS |
6070 | } |
6071 | ||
4c4b4cd2 PH |
6072 | /* True iff field number FIELD_NUM of structure or union type TYPE |
6073 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
6074 | FIELD_NUM+1 fields. */ | |
14f9c5c9 AS |
6075 | |
6076 | int | |
ebf56fd3 | 6077 | ada_is_variant_part (struct type *type, int field_num) |
14f9c5c9 | 6078 | { |
d2e4a39e | 6079 | struct type *field_type = TYPE_FIELD_TYPE (type, field_num); |
5b4ee69b | 6080 | |
14f9c5c9 | 6081 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION |
4c4b4cd2 | 6082 | || (is_dynamic_field (type, field_num) |
c3e5cd34 PH |
6083 | && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) |
6084 | == TYPE_CODE_UNION))); | |
14f9c5c9 AS |
6085 | } |
6086 | ||
6087 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
4c4b4cd2 | 6088 | whose discriminants are contained in the record type OUTER_TYPE, |
7c964f07 UW |
6089 | returns the type of the controlling discriminant for the variant. |
6090 | May return NULL if the type could not be found. */ | |
14f9c5c9 | 6091 | |
d2e4a39e | 6092 | struct type * |
ebf56fd3 | 6093 | ada_variant_discrim_type (struct type *var_type, struct type *outer_type) |
14f9c5c9 | 6094 | { |
d2e4a39e | 6095 | char *name = ada_variant_discrim_name (var_type); |
5b4ee69b | 6096 | |
7c964f07 | 6097 | return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); |
14f9c5c9 AS |
6098 | } |
6099 | ||
4c4b4cd2 | 6100 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a |
14f9c5c9 | 6101 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE |
4c4b4cd2 | 6102 | represents a 'when others' clause; otherwise 0. */ |
14f9c5c9 AS |
6103 | |
6104 | int | |
ebf56fd3 | 6105 | ada_is_others_clause (struct type *type, int field_num) |
14f9c5c9 | 6106 | { |
d2e4a39e | 6107 | const char *name = TYPE_FIELD_NAME (type, field_num); |
5b4ee69b | 6108 | |
14f9c5c9 AS |
6109 | return (name != NULL && name[0] == 'O'); |
6110 | } | |
6111 | ||
6112 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
4c4b4cd2 PH |
6113 | returns the name of the discriminant controlling the variant. |
6114 | The value is valid until the next call to ada_variant_discrim_name. */ | |
14f9c5c9 | 6115 | |
d2e4a39e | 6116 | char * |
ebf56fd3 | 6117 | ada_variant_discrim_name (struct type *type0) |
14f9c5c9 | 6118 | { |
d2e4a39e | 6119 | static char *result = NULL; |
14f9c5c9 | 6120 | static size_t result_len = 0; |
d2e4a39e AS |
6121 | struct type *type; |
6122 | const char *name; | |
6123 | const char *discrim_end; | |
6124 | const char *discrim_start; | |
14f9c5c9 AS |
6125 | |
6126 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
6127 | type = TYPE_TARGET_TYPE (type0); | |
6128 | else | |
6129 | type = type0; | |
6130 | ||
6131 | name = ada_type_name (type); | |
6132 | ||
6133 | if (name == NULL || name[0] == '\000') | |
6134 | return ""; | |
6135 | ||
6136 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
6137 | discrim_end -= 1) | |
6138 | { | |
4c4b4cd2 PH |
6139 | if (strncmp (discrim_end, "___XVN", 6) == 0) |
6140 | break; | |
14f9c5c9 AS |
6141 | } |
6142 | if (discrim_end == name) | |
6143 | return ""; | |
6144 | ||
d2e4a39e | 6145 | for (discrim_start = discrim_end; discrim_start != name + 3; |
14f9c5c9 AS |
6146 | discrim_start -= 1) |
6147 | { | |
d2e4a39e | 6148 | if (discrim_start == name + 1) |
4c4b4cd2 | 6149 | return ""; |
76a01679 | 6150 | if ((discrim_start > name + 3 |
4c4b4cd2 PH |
6151 | && strncmp (discrim_start - 3, "___", 3) == 0) |
6152 | || discrim_start[-1] == '.') | |
6153 | break; | |
14f9c5c9 AS |
6154 | } |
6155 | ||
6156 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
6157 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
d2e4a39e | 6158 | result[discrim_end - discrim_start] = '\0'; |
14f9c5c9 AS |
6159 | return result; |
6160 | } | |
6161 | ||
4c4b4cd2 PH |
6162 | /* Scan STR for a subtype-encoded number, beginning at position K. |
6163 | Put the position of the character just past the number scanned in | |
6164 | *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. | |
6165 | Return 1 if there was a valid number at the given position, and 0 | |
6166 | otherwise. A "subtype-encoded" number consists of the absolute value | |
6167 | in decimal, followed by the letter 'm' to indicate a negative number. | |
6168 | Assumes 0m does not occur. */ | |
14f9c5c9 AS |
6169 | |
6170 | int | |
d2e4a39e | 6171 | ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) |
14f9c5c9 AS |
6172 | { |
6173 | ULONGEST RU; | |
6174 | ||
d2e4a39e | 6175 | if (!isdigit (str[k])) |
14f9c5c9 AS |
6176 | return 0; |
6177 | ||
4c4b4cd2 | 6178 | /* Do it the hard way so as not to make any assumption about |
14f9c5c9 | 6179 | the relationship of unsigned long (%lu scan format code) and |
4c4b4cd2 | 6180 | LONGEST. */ |
14f9c5c9 AS |
6181 | RU = 0; |
6182 | while (isdigit (str[k])) | |
6183 | { | |
d2e4a39e | 6184 | RU = RU * 10 + (str[k] - '0'); |
14f9c5c9 AS |
6185 | k += 1; |
6186 | } | |
6187 | ||
d2e4a39e | 6188 | if (str[k] == 'm') |
14f9c5c9 AS |
6189 | { |
6190 | if (R != NULL) | |
4c4b4cd2 | 6191 | *R = (-(LONGEST) (RU - 1)) - 1; |
14f9c5c9 AS |
6192 | k += 1; |
6193 | } | |
6194 | else if (R != NULL) | |
6195 | *R = (LONGEST) RU; | |
6196 | ||
4c4b4cd2 | 6197 | /* NOTE on the above: Technically, C does not say what the results of |
14f9c5c9 AS |
6198 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive |
6199 | number representable as a LONGEST (although either would probably work | |
6200 | in most implementations). When RU>0, the locution in the then branch | |
4c4b4cd2 | 6201 | above is always equivalent to the negative of RU. */ |
14f9c5c9 AS |
6202 | |
6203 | if (new_k != NULL) | |
6204 | *new_k = k; | |
6205 | return 1; | |
6206 | } | |
6207 | ||
4c4b4cd2 PH |
6208 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), |
6209 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
6210 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
14f9c5c9 | 6211 | |
d2e4a39e | 6212 | int |
ebf56fd3 | 6213 | ada_in_variant (LONGEST val, struct type *type, int field_num) |
14f9c5c9 | 6214 | { |
d2e4a39e | 6215 | const char *name = TYPE_FIELD_NAME (type, field_num); |
14f9c5c9 AS |
6216 | int p; |
6217 | ||
6218 | p = 0; | |
6219 | while (1) | |
6220 | { | |
d2e4a39e | 6221 | switch (name[p]) |
4c4b4cd2 PH |
6222 | { |
6223 | case '\0': | |
6224 | return 0; | |
6225 | case 'S': | |
6226 | { | |
6227 | LONGEST W; | |
5b4ee69b | 6228 | |
4c4b4cd2 PH |
6229 | if (!ada_scan_number (name, p + 1, &W, &p)) |
6230 | return 0; | |
6231 | if (val == W) | |
6232 | return 1; | |
6233 | break; | |
6234 | } | |
6235 | case 'R': | |
6236 | { | |
6237 | LONGEST L, U; | |
5b4ee69b | 6238 | |
4c4b4cd2 PH |
6239 | if (!ada_scan_number (name, p + 1, &L, &p) |
6240 | || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) | |
6241 | return 0; | |
6242 | if (val >= L && val <= U) | |
6243 | return 1; | |
6244 | break; | |
6245 | } | |
6246 | case 'O': | |
6247 | return 1; | |
6248 | default: | |
6249 | return 0; | |
6250 | } | |
6251 | } | |
6252 | } | |
6253 | ||
0963b4bd | 6254 | /* FIXME: Lots of redundancy below. Try to consolidate. */ |
4c4b4cd2 PH |
6255 | |
6256 | /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type | |
6257 | ARG_TYPE, extract and return the value of one of its (non-static) | |
6258 | fields. FIELDNO says which field. Differs from value_primitive_field | |
6259 | only in that it can handle packed values of arbitrary type. */ | |
14f9c5c9 | 6260 | |
4c4b4cd2 | 6261 | static struct value * |
d2e4a39e | 6262 | ada_value_primitive_field (struct value *arg1, int offset, int fieldno, |
4c4b4cd2 | 6263 | struct type *arg_type) |
14f9c5c9 | 6264 | { |
14f9c5c9 AS |
6265 | struct type *type; |
6266 | ||
61ee279c | 6267 | arg_type = ada_check_typedef (arg_type); |
14f9c5c9 AS |
6268 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
6269 | ||
4c4b4cd2 | 6270 | /* Handle packed fields. */ |
14f9c5c9 AS |
6271 | |
6272 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
6273 | { | |
6274 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
6275 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
d2e4a39e | 6276 | |
0fd88904 | 6277 | return ada_value_primitive_packed_val (arg1, value_contents (arg1), |
4c4b4cd2 PH |
6278 | offset + bit_pos / 8, |
6279 | bit_pos % 8, bit_size, type); | |
14f9c5c9 AS |
6280 | } |
6281 | else | |
6282 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
6283 | } | |
6284 | ||
52ce6436 PH |
6285 | /* Find field with name NAME in object of type TYPE. If found, |
6286 | set the following for each argument that is non-null: | |
6287 | - *FIELD_TYPE_P to the field's type; | |
6288 | - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within | |
6289 | an object of that type; | |
6290 | - *BIT_OFFSET_P to the bit offset modulo byte size of the field; | |
6291 | - *BIT_SIZE_P to its size in bits if the field is packed, and | |
6292 | 0 otherwise; | |
6293 | If INDEX_P is non-null, increment *INDEX_P by the number of source-visible | |
6294 | fields up to but not including the desired field, or by the total | |
6295 | number of fields if not found. A NULL value of NAME never | |
6296 | matches; the function just counts visible fields in this case. | |
6297 | ||
0963b4bd | 6298 | Returns 1 if found, 0 otherwise. */ |
52ce6436 | 6299 | |
4c4b4cd2 | 6300 | static int |
76a01679 JB |
6301 | find_struct_field (char *name, struct type *type, int offset, |
6302 | struct type **field_type_p, | |
52ce6436 PH |
6303 | int *byte_offset_p, int *bit_offset_p, int *bit_size_p, |
6304 | int *index_p) | |
4c4b4cd2 PH |
6305 | { |
6306 | int i; | |
6307 | ||
61ee279c | 6308 | type = ada_check_typedef (type); |
76a01679 | 6309 | |
52ce6436 PH |
6310 | if (field_type_p != NULL) |
6311 | *field_type_p = NULL; | |
6312 | if (byte_offset_p != NULL) | |
d5d6fca5 | 6313 | *byte_offset_p = 0; |
52ce6436 PH |
6314 | if (bit_offset_p != NULL) |
6315 | *bit_offset_p = 0; | |
6316 | if (bit_size_p != NULL) | |
6317 | *bit_size_p = 0; | |
6318 | ||
6319 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
4c4b4cd2 PH |
6320 | { |
6321 | int bit_pos = TYPE_FIELD_BITPOS (type, i); | |
6322 | int fld_offset = offset + bit_pos / 8; | |
6323 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
76a01679 | 6324 | |
4c4b4cd2 PH |
6325 | if (t_field_name == NULL) |
6326 | continue; | |
6327 | ||
52ce6436 | 6328 | else if (name != NULL && field_name_match (t_field_name, name)) |
76a01679 JB |
6329 | { |
6330 | int bit_size = TYPE_FIELD_BITSIZE (type, i); | |
5b4ee69b | 6331 | |
52ce6436 PH |
6332 | if (field_type_p != NULL) |
6333 | *field_type_p = TYPE_FIELD_TYPE (type, i); | |
6334 | if (byte_offset_p != NULL) | |
6335 | *byte_offset_p = fld_offset; | |
6336 | if (bit_offset_p != NULL) | |
6337 | *bit_offset_p = bit_pos % 8; | |
6338 | if (bit_size_p != NULL) | |
6339 | *bit_size_p = bit_size; | |
76a01679 JB |
6340 | return 1; |
6341 | } | |
4c4b4cd2 PH |
6342 | else if (ada_is_wrapper_field (type, i)) |
6343 | { | |
52ce6436 PH |
6344 | if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, |
6345 | field_type_p, byte_offset_p, bit_offset_p, | |
6346 | bit_size_p, index_p)) | |
76a01679 JB |
6347 | return 1; |
6348 | } | |
4c4b4cd2 PH |
6349 | else if (ada_is_variant_part (type, i)) |
6350 | { | |
52ce6436 PH |
6351 | /* PNH: Wait. Do we ever execute this section, or is ARG always of |
6352 | fixed type?? */ | |
4c4b4cd2 | 6353 | int j; |
52ce6436 PH |
6354 | struct type *field_type |
6355 | = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); | |
4c4b4cd2 | 6356 | |
52ce6436 | 6357 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6358 | { |
76a01679 JB |
6359 | if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), |
6360 | fld_offset | |
6361 | + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6362 | field_type_p, byte_offset_p, | |
52ce6436 | 6363 | bit_offset_p, bit_size_p, index_p)) |
76a01679 | 6364 | return 1; |
4c4b4cd2 PH |
6365 | } |
6366 | } | |
52ce6436 PH |
6367 | else if (index_p != NULL) |
6368 | *index_p += 1; | |
4c4b4cd2 PH |
6369 | } |
6370 | return 0; | |
6371 | } | |
6372 | ||
0963b4bd | 6373 | /* Number of user-visible fields in record type TYPE. */ |
4c4b4cd2 | 6374 | |
52ce6436 PH |
6375 | static int |
6376 | num_visible_fields (struct type *type) | |
6377 | { | |
6378 | int n; | |
5b4ee69b | 6379 | |
52ce6436 PH |
6380 | n = 0; |
6381 | find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); | |
6382 | return n; | |
6383 | } | |
14f9c5c9 | 6384 | |
4c4b4cd2 | 6385 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, |
14f9c5c9 AS |
6386 | and search in it assuming it has (class) type TYPE. |
6387 | If found, return value, else return NULL. | |
6388 | ||
4c4b4cd2 | 6389 | Searches recursively through wrapper fields (e.g., '_parent'). */ |
14f9c5c9 | 6390 | |
4c4b4cd2 | 6391 | static struct value * |
d2e4a39e | 6392 | ada_search_struct_field (char *name, struct value *arg, int offset, |
4c4b4cd2 | 6393 | struct type *type) |
14f9c5c9 AS |
6394 | { |
6395 | int i; | |
14f9c5c9 | 6396 | |
5b4ee69b | 6397 | type = ada_check_typedef (type); |
52ce6436 | 6398 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
14f9c5c9 AS |
6399 | { |
6400 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6401 | ||
6402 | if (t_field_name == NULL) | |
4c4b4cd2 | 6403 | continue; |
14f9c5c9 AS |
6404 | |
6405 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 | 6406 | return ada_value_primitive_field (arg, offset, i, type); |
14f9c5c9 AS |
6407 | |
6408 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 | 6409 | { |
0963b4bd | 6410 | struct value *v = /* Do not let indent join lines here. */ |
06d5cf63 JB |
6411 | ada_search_struct_field (name, arg, |
6412 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6413 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6414 | |
4c4b4cd2 PH |
6415 | if (v != NULL) |
6416 | return v; | |
6417 | } | |
14f9c5c9 AS |
6418 | |
6419 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 | 6420 | { |
0963b4bd | 6421 | /* PNH: Do we ever get here? See find_struct_field. */ |
4c4b4cd2 | 6422 | int j; |
5b4ee69b MS |
6423 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6424 | i)); | |
4c4b4cd2 PH |
6425 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; |
6426 | ||
52ce6436 | 6427 | for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) |
4c4b4cd2 | 6428 | { |
0963b4bd MS |
6429 | struct value *v = ada_search_struct_field /* Force line |
6430 | break. */ | |
06d5cf63 JB |
6431 | (name, arg, |
6432 | var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, | |
6433 | TYPE_FIELD_TYPE (field_type, j)); | |
5b4ee69b | 6434 | |
4c4b4cd2 PH |
6435 | if (v != NULL) |
6436 | return v; | |
6437 | } | |
6438 | } | |
14f9c5c9 AS |
6439 | } |
6440 | return NULL; | |
6441 | } | |
d2e4a39e | 6442 | |
52ce6436 PH |
6443 | static struct value *ada_index_struct_field_1 (int *, struct value *, |
6444 | int, struct type *); | |
6445 | ||
6446 | ||
6447 | /* Return field #INDEX in ARG, where the index is that returned by | |
6448 | * find_struct_field through its INDEX_P argument. Adjust the address | |
6449 | * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. | |
0963b4bd | 6450 | * If found, return value, else return NULL. */ |
52ce6436 PH |
6451 | |
6452 | static struct value * | |
6453 | ada_index_struct_field (int index, struct value *arg, int offset, | |
6454 | struct type *type) | |
6455 | { | |
6456 | return ada_index_struct_field_1 (&index, arg, offset, type); | |
6457 | } | |
6458 | ||
6459 | ||
6460 | /* Auxiliary function for ada_index_struct_field. Like | |
6461 | * ada_index_struct_field, but takes index from *INDEX_P and modifies | |
0963b4bd | 6462 | * *INDEX_P. */ |
52ce6436 PH |
6463 | |
6464 | static struct value * | |
6465 | ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, | |
6466 | struct type *type) | |
6467 | { | |
6468 | int i; | |
6469 | type = ada_check_typedef (type); | |
6470 | ||
6471 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6472 | { | |
6473 | if (TYPE_FIELD_NAME (type, i) == NULL) | |
6474 | continue; | |
6475 | else if (ada_is_wrapper_field (type, i)) | |
6476 | { | |
0963b4bd | 6477 | struct value *v = /* Do not let indent join lines here. */ |
52ce6436 PH |
6478 | ada_index_struct_field_1 (index_p, arg, |
6479 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
6480 | TYPE_FIELD_TYPE (type, i)); | |
5b4ee69b | 6481 | |
52ce6436 PH |
6482 | if (v != NULL) |
6483 | return v; | |
6484 | } | |
6485 | ||
6486 | else if (ada_is_variant_part (type, i)) | |
6487 | { | |
6488 | /* PNH: Do we ever get here? See ada_search_struct_field, | |
0963b4bd | 6489 | find_struct_field. */ |
52ce6436 PH |
6490 | error (_("Cannot assign this kind of variant record")); |
6491 | } | |
6492 | else if (*index_p == 0) | |
6493 | return ada_value_primitive_field (arg, offset, i, type); | |
6494 | else | |
6495 | *index_p -= 1; | |
6496 | } | |
6497 | return NULL; | |
6498 | } | |
6499 | ||
4c4b4cd2 PH |
6500 | /* Given ARG, a value of type (pointer or reference to a)* |
6501 | structure/union, extract the component named NAME from the ultimate | |
6502 | target structure/union and return it as a value with its | |
f5938064 | 6503 | appropriate type. |
14f9c5c9 | 6504 | |
4c4b4cd2 PH |
6505 | The routine searches for NAME among all members of the structure itself |
6506 | and (recursively) among all members of any wrapper members | |
14f9c5c9 AS |
6507 | (e.g., '_parent'). |
6508 | ||
03ee6b2e PH |
6509 | If NO_ERR, then simply return NULL in case of error, rather than |
6510 | calling error. */ | |
14f9c5c9 | 6511 | |
d2e4a39e | 6512 | struct value * |
03ee6b2e | 6513 | ada_value_struct_elt (struct value *arg, char *name, int no_err) |
14f9c5c9 | 6514 | { |
4c4b4cd2 | 6515 | struct type *t, *t1; |
d2e4a39e | 6516 | struct value *v; |
14f9c5c9 | 6517 | |
4c4b4cd2 | 6518 | v = NULL; |
df407dfe | 6519 | t1 = t = ada_check_typedef (value_type (arg)); |
4c4b4cd2 PH |
6520 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6521 | { | |
6522 | t1 = TYPE_TARGET_TYPE (t); | |
6523 | if (t1 == NULL) | |
03ee6b2e | 6524 | goto BadValue; |
61ee279c | 6525 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6526 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 | 6527 | { |
994b9211 | 6528 | arg = coerce_ref (arg); |
76a01679 JB |
6529 | t = t1; |
6530 | } | |
4c4b4cd2 | 6531 | } |
14f9c5c9 | 6532 | |
4c4b4cd2 PH |
6533 | while (TYPE_CODE (t) == TYPE_CODE_PTR) |
6534 | { | |
6535 | t1 = TYPE_TARGET_TYPE (t); | |
6536 | if (t1 == NULL) | |
03ee6b2e | 6537 | goto BadValue; |
61ee279c | 6538 | t1 = ada_check_typedef (t1); |
4c4b4cd2 | 6539 | if (TYPE_CODE (t1) == TYPE_CODE_PTR) |
76a01679 JB |
6540 | { |
6541 | arg = value_ind (arg); | |
6542 | t = t1; | |
6543 | } | |
4c4b4cd2 | 6544 | else |
76a01679 | 6545 | break; |
4c4b4cd2 | 6546 | } |
14f9c5c9 | 6547 | |
4c4b4cd2 | 6548 | if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) |
03ee6b2e | 6549 | goto BadValue; |
14f9c5c9 | 6550 | |
4c4b4cd2 PH |
6551 | if (t1 == t) |
6552 | v = ada_search_struct_field (name, arg, 0, t); | |
6553 | else | |
6554 | { | |
6555 | int bit_offset, bit_size, byte_offset; | |
6556 | struct type *field_type; | |
6557 | CORE_ADDR address; | |
6558 | ||
76a01679 JB |
6559 | if (TYPE_CODE (t) == TYPE_CODE_PTR) |
6560 | address = value_as_address (arg); | |
4c4b4cd2 | 6561 | else |
0fd88904 | 6562 | address = unpack_pointer (t, value_contents (arg)); |
14f9c5c9 | 6563 | |
1ed6ede0 | 6564 | t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); |
76a01679 JB |
6565 | if (find_struct_field (name, t1, 0, |
6566 | &field_type, &byte_offset, &bit_offset, | |
52ce6436 | 6567 | &bit_size, NULL)) |
76a01679 JB |
6568 | { |
6569 | if (bit_size != 0) | |
6570 | { | |
714e53ab PH |
6571 | if (TYPE_CODE (t) == TYPE_CODE_REF) |
6572 | arg = ada_coerce_ref (arg); | |
6573 | else | |
6574 | arg = ada_value_ind (arg); | |
76a01679 JB |
6575 | v = ada_value_primitive_packed_val (arg, NULL, byte_offset, |
6576 | bit_offset, bit_size, | |
6577 | field_type); | |
6578 | } | |
6579 | else | |
f5938064 | 6580 | v = value_at_lazy (field_type, address + byte_offset); |
76a01679 JB |
6581 | } |
6582 | } | |
6583 | ||
03ee6b2e PH |
6584 | if (v != NULL || no_err) |
6585 | return v; | |
6586 | else | |
323e0a4a | 6587 | error (_("There is no member named %s."), name); |
14f9c5c9 | 6588 | |
03ee6b2e PH |
6589 | BadValue: |
6590 | if (no_err) | |
6591 | return NULL; | |
6592 | else | |
0963b4bd MS |
6593 | error (_("Attempt to extract a component of " |
6594 | "a value that is not a record.")); | |
14f9c5c9 AS |
6595 | } |
6596 | ||
6597 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
4c4b4cd2 PH |
6598 | If DISPP is non-null, add its byte displacement from the beginning of a |
6599 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
14f9c5c9 AS |
6600 | work for packed fields). |
6601 | ||
6602 | Matches any field whose name has NAME as a prefix, possibly | |
4c4b4cd2 | 6603 | followed by "___". |
14f9c5c9 | 6604 | |
0963b4bd | 6605 | TYPE can be either a struct or union. If REFOK, TYPE may also |
4c4b4cd2 PH |
6606 | be a (pointer or reference)+ to a struct or union, and the |
6607 | ultimate target type will be searched. | |
14f9c5c9 AS |
6608 | |
6609 | Looks recursively into variant clauses and parent types. | |
6610 | ||
4c4b4cd2 PH |
6611 | If NOERR is nonzero, return NULL if NAME is not suitably defined or |
6612 | TYPE is not a type of the right kind. */ | |
14f9c5c9 | 6613 | |
4c4b4cd2 | 6614 | static struct type * |
76a01679 JB |
6615 | ada_lookup_struct_elt_type (struct type *type, char *name, int refok, |
6616 | int noerr, int *dispp) | |
14f9c5c9 AS |
6617 | { |
6618 | int i; | |
6619 | ||
6620 | if (name == NULL) | |
6621 | goto BadName; | |
6622 | ||
76a01679 | 6623 | if (refok && type != NULL) |
4c4b4cd2 PH |
6624 | while (1) |
6625 | { | |
61ee279c | 6626 | type = ada_check_typedef (type); |
76a01679 JB |
6627 | if (TYPE_CODE (type) != TYPE_CODE_PTR |
6628 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
6629 | break; | |
6630 | type = TYPE_TARGET_TYPE (type); | |
4c4b4cd2 | 6631 | } |
14f9c5c9 | 6632 | |
76a01679 | 6633 | if (type == NULL |
1265e4aa JB |
6634 | || (TYPE_CODE (type) != TYPE_CODE_STRUCT |
6635 | && TYPE_CODE (type) != TYPE_CODE_UNION)) | |
14f9c5c9 | 6636 | { |
4c4b4cd2 | 6637 | if (noerr) |
76a01679 | 6638 | return NULL; |
4c4b4cd2 | 6639 | else |
76a01679 JB |
6640 | { |
6641 | target_terminal_ours (); | |
6642 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6643 | if (type == NULL) |
6644 | error (_("Type (null) is not a structure or union type")); | |
6645 | else | |
6646 | { | |
6647 | /* XXX: type_sprint */ | |
6648 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6649 | type_print (type, "", gdb_stderr, -1); | |
6650 | error (_(" is not a structure or union type")); | |
6651 | } | |
76a01679 | 6652 | } |
14f9c5c9 AS |
6653 | } |
6654 | ||
6655 | type = to_static_fixed_type (type); | |
6656 | ||
6657 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6658 | { | |
6659 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
6660 | struct type *t; | |
6661 | int disp; | |
d2e4a39e | 6662 | |
14f9c5c9 | 6663 | if (t_field_name == NULL) |
4c4b4cd2 | 6664 | continue; |
14f9c5c9 AS |
6665 | |
6666 | else if (field_name_match (t_field_name, name)) | |
4c4b4cd2 PH |
6667 | { |
6668 | if (dispp != NULL) | |
6669 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
61ee279c | 6670 | return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); |
4c4b4cd2 | 6671 | } |
14f9c5c9 AS |
6672 | |
6673 | else if (ada_is_wrapper_field (type, i)) | |
4c4b4cd2 PH |
6674 | { |
6675 | disp = 0; | |
6676 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
6677 | 0, 1, &disp); | |
6678 | if (t != NULL) | |
6679 | { | |
6680 | if (dispp != NULL) | |
6681 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6682 | return t; | |
6683 | } | |
6684 | } | |
14f9c5c9 AS |
6685 | |
6686 | else if (ada_is_variant_part (type, i)) | |
4c4b4cd2 PH |
6687 | { |
6688 | int j; | |
5b4ee69b MS |
6689 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, |
6690 | i)); | |
4c4b4cd2 PH |
6691 | |
6692 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
6693 | { | |
b1f33ddd JB |
6694 | /* FIXME pnh 2008/01/26: We check for a field that is |
6695 | NOT wrapped in a struct, since the compiler sometimes | |
6696 | generates these for unchecked variant types. Revisit | |
0963b4bd | 6697 | if the compiler changes this practice. */ |
b1f33ddd | 6698 | char *v_field_name = TYPE_FIELD_NAME (field_type, j); |
4c4b4cd2 | 6699 | disp = 0; |
b1f33ddd JB |
6700 | if (v_field_name != NULL |
6701 | && field_name_match (v_field_name, name)) | |
6702 | t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); | |
6703 | else | |
0963b4bd MS |
6704 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, |
6705 | j), | |
b1f33ddd JB |
6706 | name, 0, 1, &disp); |
6707 | ||
4c4b4cd2 PH |
6708 | if (t != NULL) |
6709 | { | |
6710 | if (dispp != NULL) | |
6711 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
6712 | return t; | |
6713 | } | |
6714 | } | |
6715 | } | |
14f9c5c9 AS |
6716 | |
6717 | } | |
6718 | ||
6719 | BadName: | |
d2e4a39e | 6720 | if (!noerr) |
14f9c5c9 AS |
6721 | { |
6722 | target_terminal_ours (); | |
6723 | gdb_flush (gdb_stdout); | |
323e0a4a AC |
6724 | if (name == NULL) |
6725 | { | |
6726 | /* XXX: type_sprint */ | |
6727 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6728 | type_print (type, "", gdb_stderr, -1); | |
6729 | error (_(" has no component named <null>")); | |
6730 | } | |
6731 | else | |
6732 | { | |
6733 | /* XXX: type_sprint */ | |
6734 | fprintf_unfiltered (gdb_stderr, _("Type ")); | |
6735 | type_print (type, "", gdb_stderr, -1); | |
6736 | error (_(" has no component named %s"), name); | |
6737 | } | |
14f9c5c9 AS |
6738 | } |
6739 | ||
6740 | return NULL; | |
6741 | } | |
6742 | ||
b1f33ddd JB |
6743 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6744 | within a value of type OUTER_TYPE, return true iff VAR_TYPE | |
6745 | represents an unchecked union (that is, the variant part of a | |
0963b4bd | 6746 | record that is named in an Unchecked_Union pragma). */ |
b1f33ddd JB |
6747 | |
6748 | static int | |
6749 | is_unchecked_variant (struct type *var_type, struct type *outer_type) | |
6750 | { | |
6751 | char *discrim_name = ada_variant_discrim_name (var_type); | |
5b4ee69b | 6752 | |
b1f33ddd JB |
6753 | return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) |
6754 | == NULL); | |
6755 | } | |
6756 | ||
6757 | ||
14f9c5c9 AS |
6758 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), |
6759 | within a value of type OUTER_TYPE that is stored in GDB at | |
4c4b4cd2 PH |
6760 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, |
6761 | numbering from 0) is applicable. Returns -1 if none are. */ | |
14f9c5c9 | 6762 | |
d2e4a39e | 6763 | int |
ebf56fd3 | 6764 | ada_which_variant_applies (struct type *var_type, struct type *outer_type, |
fc1a4b47 | 6765 | const gdb_byte *outer_valaddr) |
14f9c5c9 AS |
6766 | { |
6767 | int others_clause; | |
6768 | int i; | |
d2e4a39e | 6769 | char *discrim_name = ada_variant_discrim_name (var_type); |
0c281816 JB |
6770 | struct value *outer; |
6771 | struct value *discrim; | |
14f9c5c9 AS |
6772 | LONGEST discrim_val; |
6773 | ||
0c281816 JB |
6774 | outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); |
6775 | discrim = ada_value_struct_elt (outer, discrim_name, 1); | |
6776 | if (discrim == NULL) | |
14f9c5c9 | 6777 | return -1; |
0c281816 | 6778 | discrim_val = value_as_long (discrim); |
14f9c5c9 AS |
6779 | |
6780 | others_clause = -1; | |
6781 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
6782 | { | |
6783 | if (ada_is_others_clause (var_type, i)) | |
4c4b4cd2 | 6784 | others_clause = i; |
14f9c5c9 | 6785 | else if (ada_in_variant (discrim_val, var_type, i)) |
4c4b4cd2 | 6786 | return i; |
14f9c5c9 AS |
6787 | } |
6788 | ||
6789 | return others_clause; | |
6790 | } | |
d2e4a39e | 6791 | \f |
14f9c5c9 AS |
6792 | |
6793 | ||
4c4b4cd2 | 6794 | /* Dynamic-Sized Records */ |
14f9c5c9 AS |
6795 | |
6796 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
6797 | (i.e., a size that is not statically recorded in the debugging | |
6798 | data) does not accurately reflect the size or layout of the value. | |
6799 | Our strategy is to convert these values to values with accurate, | |
4c4b4cd2 | 6800 | conventional types that are constructed on the fly. */ |
14f9c5c9 AS |
6801 | |
6802 | /* There is a subtle and tricky problem here. In general, we cannot | |
6803 | determine the size of dynamic records without its data. However, | |
6804 | the 'struct value' data structure, which GDB uses to represent | |
6805 | quantities in the inferior process (the target), requires the size | |
6806 | of the type at the time of its allocation in order to reserve space | |
6807 | for GDB's internal copy of the data. That's why the | |
6808 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
4c4b4cd2 | 6809 | rather than struct value*s. |
14f9c5c9 AS |
6810 | |
6811 | However, GDB's internal history variables ($1, $2, etc.) are | |
6812 | struct value*s containing internal copies of the data that are not, in | |
6813 | general, the same as the data at their corresponding addresses in | |
6814 | the target. Fortunately, the types we give to these values are all | |
6815 | conventional, fixed-size types (as per the strategy described | |
6816 | above), so that we don't usually have to perform the | |
6817 | 'to_fixed_xxx_type' conversions to look at their values. | |
6818 | Unfortunately, there is one exception: if one of the internal | |
6819 | history variables is an array whose elements are unconstrained | |
6820 | records, then we will need to create distinct fixed types for each | |
6821 | element selected. */ | |
6822 | ||
6823 | /* The upshot of all of this is that many routines take a (type, host | |
6824 | address, target address) triple as arguments to represent a value. | |
6825 | The host address, if non-null, is supposed to contain an internal | |
6826 | copy of the relevant data; otherwise, the program is to consult the | |
4c4b4cd2 | 6827 | target at the target address. */ |
14f9c5c9 AS |
6828 | |
6829 | /* Assuming that VAL0 represents a pointer value, the result of | |
6830 | dereferencing it. Differs from value_ind in its treatment of | |
4c4b4cd2 | 6831 | dynamic-sized types. */ |
14f9c5c9 | 6832 | |
d2e4a39e AS |
6833 | struct value * |
6834 | ada_value_ind (struct value *val0) | |
14f9c5c9 | 6835 | { |
d2e4a39e | 6836 | struct value *val = unwrap_value (value_ind (val0)); |
5b4ee69b | 6837 | |
4c4b4cd2 | 6838 | return ada_to_fixed_value (val); |
14f9c5c9 AS |
6839 | } |
6840 | ||
6841 | /* The value resulting from dereferencing any "reference to" | |
4c4b4cd2 PH |
6842 | qualifiers on VAL0. */ |
6843 | ||
d2e4a39e AS |
6844 | static struct value * |
6845 | ada_coerce_ref (struct value *val0) | |
6846 | { | |
df407dfe | 6847 | if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) |
d2e4a39e AS |
6848 | { |
6849 | struct value *val = val0; | |
5b4ee69b | 6850 | |
994b9211 | 6851 | val = coerce_ref (val); |
d2e4a39e | 6852 | val = unwrap_value (val); |
4c4b4cd2 | 6853 | return ada_to_fixed_value (val); |
d2e4a39e AS |
6854 | } |
6855 | else | |
14f9c5c9 AS |
6856 | return val0; |
6857 | } | |
6858 | ||
6859 | /* Return OFF rounded upward if necessary to a multiple of | |
4c4b4cd2 | 6860 | ALIGNMENT (a power of 2). */ |
14f9c5c9 AS |
6861 | |
6862 | static unsigned int | |
ebf56fd3 | 6863 | align_value (unsigned int off, unsigned int alignment) |
14f9c5c9 AS |
6864 | { |
6865 | return (off + alignment - 1) & ~(alignment - 1); | |
6866 | } | |
6867 | ||
4c4b4cd2 | 6868 | /* Return the bit alignment required for field #F of template type TYPE. */ |
14f9c5c9 AS |
6869 | |
6870 | static unsigned int | |
ebf56fd3 | 6871 | field_alignment (struct type *type, int f) |
14f9c5c9 | 6872 | { |
d2e4a39e | 6873 | const char *name = TYPE_FIELD_NAME (type, f); |
64a1bf19 | 6874 | int len; |
14f9c5c9 AS |
6875 | int align_offset; |
6876 | ||
64a1bf19 JB |
6877 | /* The field name should never be null, unless the debugging information |
6878 | is somehow malformed. In this case, we assume the field does not | |
6879 | require any alignment. */ | |
6880 | if (name == NULL) | |
6881 | return 1; | |
6882 | ||
6883 | len = strlen (name); | |
6884 | ||
4c4b4cd2 PH |
6885 | if (!isdigit (name[len - 1])) |
6886 | return 1; | |
14f9c5c9 | 6887 | |
d2e4a39e | 6888 | if (isdigit (name[len - 2])) |
14f9c5c9 AS |
6889 | align_offset = len - 2; |
6890 | else | |
6891 | align_offset = len - 1; | |
6892 | ||
4c4b4cd2 | 6893 | if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) |
14f9c5c9 AS |
6894 | return TARGET_CHAR_BIT; |
6895 | ||
4c4b4cd2 PH |
6896 | return atoi (name + align_offset) * TARGET_CHAR_BIT; |
6897 | } | |
6898 | ||
6899 | /* Find a symbol named NAME. Ignores ambiguity. */ | |
6900 | ||
6901 | struct symbol * | |
6902 | ada_find_any_symbol (const char *name) | |
6903 | { | |
6904 | struct symbol *sym; | |
6905 | ||
6906 | sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); | |
6907 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6908 | return sym; | |
6909 | ||
6910 | sym = standard_lookup (name, NULL, STRUCT_DOMAIN); | |
6911 | return sym; | |
14f9c5c9 AS |
6912 | } |
6913 | ||
dddfab26 UW |
6914 | /* Find a type named NAME. Ignores ambiguity. This routine will look |
6915 | solely for types defined by debug info, it will not search the GDB | |
6916 | primitive types. */ | |
4c4b4cd2 | 6917 | |
d2e4a39e | 6918 | struct type * |
ebf56fd3 | 6919 | ada_find_any_type (const char *name) |
14f9c5c9 | 6920 | { |
4c4b4cd2 | 6921 | struct symbol *sym = ada_find_any_symbol (name); |
14f9c5c9 | 6922 | |
14f9c5c9 | 6923 | if (sym != NULL) |
dddfab26 | 6924 | return SYMBOL_TYPE (sym); |
14f9c5c9 | 6925 | |
dddfab26 | 6926 | return NULL; |
14f9c5c9 AS |
6927 | } |
6928 | ||
aeb5907d JB |
6929 | /* Given NAME and an associated BLOCK, search all symbols for |
6930 | NAME suffixed with "___XR", which is the ``renaming'' symbol | |
4c4b4cd2 PH |
6931 | associated to NAME. Return this symbol if found, return |
6932 | NULL otherwise. */ | |
6933 | ||
6934 | struct symbol * | |
6935 | ada_find_renaming_symbol (const char *name, struct block *block) | |
aeb5907d JB |
6936 | { |
6937 | struct symbol *sym; | |
6938 | ||
6939 | sym = find_old_style_renaming_symbol (name, block); | |
6940 | ||
6941 | if (sym != NULL) | |
6942 | return sym; | |
6943 | ||
0963b4bd | 6944 | /* Not right yet. FIXME pnh 7/20/2007. */ |
aeb5907d JB |
6945 | sym = ada_find_any_symbol (name); |
6946 | if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) | |
6947 | return sym; | |
6948 | else | |
6949 | return NULL; | |
6950 | } | |
6951 | ||
6952 | static struct symbol * | |
6953 | find_old_style_renaming_symbol (const char *name, struct block *block) | |
4c4b4cd2 | 6954 | { |
7f0df278 | 6955 | const struct symbol *function_sym = block_linkage_function (block); |
4c4b4cd2 PH |
6956 | char *rename; |
6957 | ||
6958 | if (function_sym != NULL) | |
6959 | { | |
6960 | /* If the symbol is defined inside a function, NAME is not fully | |
6961 | qualified. This means we need to prepend the function name | |
6962 | as well as adding the ``___XR'' suffix to build the name of | |
6963 | the associated renaming symbol. */ | |
6964 | char *function_name = SYMBOL_LINKAGE_NAME (function_sym); | |
529cad9c PH |
6965 | /* Function names sometimes contain suffixes used |
6966 | for instance to qualify nested subprograms. When building | |
6967 | the XR type name, we need to make sure that this suffix is | |
6968 | not included. So do not include any suffix in the function | |
6969 | name length below. */ | |
69fadcdf | 6970 | int function_name_len = ada_name_prefix_len (function_name); |
76a01679 JB |
6971 | const int rename_len = function_name_len + 2 /* "__" */ |
6972 | + strlen (name) + 6 /* "___XR\0" */ ; | |
4c4b4cd2 | 6973 | |
529cad9c | 6974 | /* Strip the suffix if necessary. */ |
69fadcdf JB |
6975 | ada_remove_trailing_digits (function_name, &function_name_len); |
6976 | ada_remove_po_subprogram_suffix (function_name, &function_name_len); | |
6977 | ada_remove_Xbn_suffix (function_name, &function_name_len); | |
529cad9c | 6978 | |
4c4b4cd2 PH |
6979 | /* Library-level functions are a special case, as GNAT adds |
6980 | a ``_ada_'' prefix to the function name to avoid namespace | |
aeb5907d | 6981 | pollution. However, the renaming symbols themselves do not |
4c4b4cd2 PH |
6982 | have this prefix, so we need to skip this prefix if present. */ |
6983 | if (function_name_len > 5 /* "_ada_" */ | |
6984 | && strstr (function_name, "_ada_") == function_name) | |
69fadcdf JB |
6985 | { |
6986 | function_name += 5; | |
6987 | function_name_len -= 5; | |
6988 | } | |
4c4b4cd2 PH |
6989 | |
6990 | rename = (char *) alloca (rename_len * sizeof (char)); | |
69fadcdf JB |
6991 | strncpy (rename, function_name, function_name_len); |
6992 | xsnprintf (rename + function_name_len, rename_len - function_name_len, | |
6993 | "__%s___XR", name); | |
4c4b4cd2 PH |
6994 | } |
6995 | else | |
6996 | { | |
6997 | const int rename_len = strlen (name) + 6; | |
5b4ee69b | 6998 | |
4c4b4cd2 | 6999 | rename = (char *) alloca (rename_len * sizeof (char)); |
88c15c34 | 7000 | xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); |
4c4b4cd2 PH |
7001 | } |
7002 | ||
7003 | return ada_find_any_symbol (rename); | |
7004 | } | |
7005 | ||
14f9c5c9 | 7006 | /* Because of GNAT encoding conventions, several GDB symbols may match a |
4c4b4cd2 | 7007 | given type name. If the type denoted by TYPE0 is to be preferred to |
14f9c5c9 | 7008 | that of TYPE1 for purposes of type printing, return non-zero; |
4c4b4cd2 PH |
7009 | otherwise return 0. */ |
7010 | ||
14f9c5c9 | 7011 | int |
d2e4a39e | 7012 | ada_prefer_type (struct type *type0, struct type *type1) |
14f9c5c9 AS |
7013 | { |
7014 | if (type1 == NULL) | |
7015 | return 1; | |
7016 | else if (type0 == NULL) | |
7017 | return 0; | |
7018 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
7019 | return 1; | |
7020 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
7021 | return 0; | |
4c4b4cd2 PH |
7022 | else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) |
7023 | return 1; | |
ad82864c | 7024 | else if (ada_is_constrained_packed_array_type (type0)) |
14f9c5c9 | 7025 | return 1; |
4c4b4cd2 PH |
7026 | else if (ada_is_array_descriptor_type (type0) |
7027 | && !ada_is_array_descriptor_type (type1)) | |
14f9c5c9 | 7028 | return 1; |
aeb5907d JB |
7029 | else |
7030 | { | |
7031 | const char *type0_name = type_name_no_tag (type0); | |
7032 | const char *type1_name = type_name_no_tag (type1); | |
7033 | ||
7034 | if (type0_name != NULL && strstr (type0_name, "___XR") != NULL | |
7035 | && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) | |
7036 | return 1; | |
7037 | } | |
14f9c5c9 AS |
7038 | return 0; |
7039 | } | |
7040 | ||
7041 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
4c4b4cd2 PH |
7042 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ |
7043 | ||
d2e4a39e AS |
7044 | char * |
7045 | ada_type_name (struct type *type) | |
14f9c5c9 | 7046 | { |
d2e4a39e | 7047 | if (type == NULL) |
14f9c5c9 AS |
7048 | return NULL; |
7049 | else if (TYPE_NAME (type) != NULL) | |
7050 | return TYPE_NAME (type); | |
7051 | else | |
7052 | return TYPE_TAG_NAME (type); | |
7053 | } | |
7054 | ||
b4ba55a1 JB |
7055 | /* Search the list of "descriptive" types associated to TYPE for a type |
7056 | whose name is NAME. */ | |
7057 | ||
7058 | static struct type * | |
7059 | find_parallel_type_by_descriptive_type (struct type *type, const char *name) | |
7060 | { | |
7061 | struct type *result; | |
7062 | ||
7063 | /* If there no descriptive-type info, then there is no parallel type | |
7064 | to be found. */ | |
7065 | if (!HAVE_GNAT_AUX_INFO (type)) | |
7066 | return NULL; | |
7067 | ||
7068 | result = TYPE_DESCRIPTIVE_TYPE (type); | |
7069 | while (result != NULL) | |
7070 | { | |
7071 | char *result_name = ada_type_name (result); | |
7072 | ||
7073 | if (result_name == NULL) | |
7074 | { | |
7075 | warning (_("unexpected null name on descriptive type")); | |
7076 | return NULL; | |
7077 | } | |
7078 | ||
7079 | /* If the names match, stop. */ | |
7080 | if (strcmp (result_name, name) == 0) | |
7081 | break; | |
7082 | ||
7083 | /* Otherwise, look at the next item on the list, if any. */ | |
7084 | if (HAVE_GNAT_AUX_INFO (result)) | |
7085 | result = TYPE_DESCRIPTIVE_TYPE (result); | |
7086 | else | |
7087 | result = NULL; | |
7088 | } | |
7089 | ||
7090 | /* If we didn't find a match, see whether this is a packed array. With | |
7091 | older compilers, the descriptive type information is either absent or | |
7092 | irrelevant when it comes to packed arrays so the above lookup fails. | |
7093 | Fall back to using a parallel lookup by name in this case. */ | |
12ab9e09 | 7094 | if (result == NULL && ada_is_constrained_packed_array_type (type)) |
b4ba55a1 JB |
7095 | return ada_find_any_type (name); |
7096 | ||
7097 | return result; | |
7098 | } | |
7099 | ||
7100 | /* Find a parallel type to TYPE with the specified NAME, using the | |
7101 | descriptive type taken from the debugging information, if available, | |
7102 | and otherwise using the (slower) name-based method. */ | |
7103 | ||
7104 | static struct type * | |
7105 | ada_find_parallel_type_with_name (struct type *type, const char *name) | |
7106 | { | |
7107 | struct type *result = NULL; | |
7108 | ||
7109 | if (HAVE_GNAT_AUX_INFO (type)) | |
7110 | result = find_parallel_type_by_descriptive_type (type, name); | |
7111 | else | |
7112 | result = ada_find_any_type (name); | |
7113 | ||
7114 | return result; | |
7115 | } | |
7116 | ||
7117 | /* Same as above, but specify the name of the parallel type by appending | |
4c4b4cd2 | 7118 | SUFFIX to the name of TYPE. */ |
14f9c5c9 | 7119 | |
d2e4a39e | 7120 | struct type * |
ebf56fd3 | 7121 | ada_find_parallel_type (struct type *type, const char *suffix) |
14f9c5c9 | 7122 | { |
b4ba55a1 | 7123 | char *name, *typename = ada_type_name (type); |
14f9c5c9 | 7124 | int len; |
d2e4a39e | 7125 | |
14f9c5c9 AS |
7126 | if (typename == NULL) |
7127 | return NULL; | |
7128 | ||
7129 | len = strlen (typename); | |
7130 | ||
b4ba55a1 | 7131 | name = (char *) alloca (len + strlen (suffix) + 1); |
14f9c5c9 AS |
7132 | |
7133 | strcpy (name, typename); | |
7134 | strcpy (name + len, suffix); | |
7135 | ||
b4ba55a1 | 7136 | return ada_find_parallel_type_with_name (type, name); |
14f9c5c9 AS |
7137 | } |
7138 | ||
14f9c5c9 | 7139 | /* If TYPE is a variable-size record type, return the corresponding template |
4c4b4cd2 | 7140 | type describing its fields. Otherwise, return NULL. */ |
14f9c5c9 | 7141 | |
d2e4a39e AS |
7142 | static struct type * |
7143 | dynamic_template_type (struct type *type) | |
14f9c5c9 | 7144 | { |
61ee279c | 7145 | type = ada_check_typedef (type); |
14f9c5c9 AS |
7146 | |
7147 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
d2e4a39e | 7148 | || ada_type_name (type) == NULL) |
14f9c5c9 | 7149 | return NULL; |
d2e4a39e | 7150 | else |
14f9c5c9 AS |
7151 | { |
7152 | int len = strlen (ada_type_name (type)); | |
5b4ee69b | 7153 | |
4c4b4cd2 PH |
7154 | if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) |
7155 | return type; | |
14f9c5c9 | 7156 | else |
4c4b4cd2 | 7157 | return ada_find_parallel_type (type, "___XVE"); |
14f9c5c9 AS |
7158 | } |
7159 | } | |
7160 | ||
7161 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
4c4b4cd2 | 7162 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ |
14f9c5c9 | 7163 | |
d2e4a39e AS |
7164 | static int |
7165 | is_dynamic_field (struct type *templ_type, int field_num) | |
14f9c5c9 AS |
7166 | { |
7167 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
5b4ee69b | 7168 | |
d2e4a39e | 7169 | return name != NULL |
14f9c5c9 AS |
7170 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR |
7171 | && strstr (name, "___XVL") != NULL; | |
7172 | } | |
7173 | ||
4c4b4cd2 PH |
7174 | /* The index of the variant field of TYPE, or -1 if TYPE does not |
7175 | represent a variant record type. */ | |
14f9c5c9 | 7176 | |
d2e4a39e | 7177 | static int |
4c4b4cd2 | 7178 | variant_field_index (struct type *type) |
14f9c5c9 AS |
7179 | { |
7180 | int f; | |
7181 | ||
4c4b4cd2 PH |
7182 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) |
7183 | return -1; | |
7184 | ||
7185 | for (f = 0; f < TYPE_NFIELDS (type); f += 1) | |
7186 | { | |
7187 | if (ada_is_variant_part (type, f)) | |
7188 | return f; | |
7189 | } | |
7190 | return -1; | |
14f9c5c9 AS |
7191 | } |
7192 | ||
4c4b4cd2 PH |
7193 | /* A record type with no fields. */ |
7194 | ||
d2e4a39e | 7195 | static struct type * |
e9bb382b | 7196 | empty_record (struct type *template) |
14f9c5c9 | 7197 | { |
e9bb382b | 7198 | struct type *type = alloc_type_copy (template); |
5b4ee69b | 7199 | |
14f9c5c9 AS |
7200 | TYPE_CODE (type) = TYPE_CODE_STRUCT; |
7201 | TYPE_NFIELDS (type) = 0; | |
7202 | TYPE_FIELDS (type) = NULL; | |
b1f33ddd | 7203 | INIT_CPLUS_SPECIFIC (type); |
14f9c5c9 AS |
7204 | TYPE_NAME (type) = "<empty>"; |
7205 | TYPE_TAG_NAME (type) = NULL; | |
14f9c5c9 AS |
7206 | TYPE_LENGTH (type) = 0; |
7207 | return type; | |
7208 | } | |
7209 | ||
7210 | /* An ordinary record type (with fixed-length fields) that describes | |
4c4b4cd2 PH |
7211 | the value of type TYPE at VALADDR or ADDRESS (see comments at |
7212 | the beginning of this section) VAL according to GNAT conventions. | |
7213 | DVAL0 should describe the (portion of a) record that contains any | |
df407dfe | 7214 | necessary discriminants. It should be NULL if value_type (VAL) is |
14f9c5c9 AS |
7215 | an outer-level type (i.e., as opposed to a branch of a variant.) A |
7216 | variant field (unless unchecked) is replaced by a particular branch | |
4c4b4cd2 | 7217 | of the variant. |
14f9c5c9 | 7218 | |
4c4b4cd2 PH |
7219 | If not KEEP_DYNAMIC_FIELDS, then all fields whose position or |
7220 | length are not statically known are discarded. As a consequence, | |
7221 | VALADDR, ADDRESS and DVAL0 are ignored. | |
7222 | ||
7223 | NOTE: Limitations: For now, we assume that dynamic fields and | |
7224 | variants occupy whole numbers of bytes. However, they need not be | |
7225 | byte-aligned. */ | |
7226 | ||
7227 | struct type * | |
10a2c479 | 7228 | ada_template_to_fixed_record_type_1 (struct type *type, |
fc1a4b47 | 7229 | const gdb_byte *valaddr, |
4c4b4cd2 PH |
7230 | CORE_ADDR address, struct value *dval0, |
7231 | int keep_dynamic_fields) | |
14f9c5c9 | 7232 | { |
d2e4a39e AS |
7233 | struct value *mark = value_mark (); |
7234 | struct value *dval; | |
7235 | struct type *rtype; | |
14f9c5c9 | 7236 | int nfields, bit_len; |
4c4b4cd2 | 7237 | int variant_field; |
14f9c5c9 | 7238 | long off; |
d94e4f4f | 7239 | int fld_bit_len; |
14f9c5c9 AS |
7240 | int f; |
7241 | ||
4c4b4cd2 PH |
7242 | /* Compute the number of fields in this record type that are going |
7243 | to be processed: unless keep_dynamic_fields, this includes only | |
7244 | fields whose position and length are static will be processed. */ | |
7245 | if (keep_dynamic_fields) | |
7246 | nfields = TYPE_NFIELDS (type); | |
7247 | else | |
7248 | { | |
7249 | nfields = 0; | |
76a01679 | 7250 | while (nfields < TYPE_NFIELDS (type) |
4c4b4cd2 PH |
7251 | && !ada_is_variant_part (type, nfields) |
7252 | && !is_dynamic_field (type, nfields)) | |
7253 | nfields++; | |
7254 | } | |
7255 | ||
e9bb382b | 7256 | rtype = alloc_type_copy (type); |
14f9c5c9 AS |
7257 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
7258 | INIT_CPLUS_SPECIFIC (rtype); | |
7259 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e | 7260 | TYPE_FIELDS (rtype) = (struct field *) |
14f9c5c9 AS |
7261 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); |
7262 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
7263 | TYPE_NAME (rtype) = ada_type_name (type); | |
7264 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7265 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 | 7266 | |
d2e4a39e AS |
7267 | off = 0; |
7268 | bit_len = 0; | |
4c4b4cd2 PH |
7269 | variant_field = -1; |
7270 | ||
14f9c5c9 AS |
7271 | for (f = 0; f < nfields; f += 1) |
7272 | { | |
6c038f32 PH |
7273 | off = align_value (off, field_alignment (type, f)) |
7274 | + TYPE_FIELD_BITPOS (type, f); | |
14f9c5c9 | 7275 | TYPE_FIELD_BITPOS (rtype, f) = off; |
d2e4a39e | 7276 | TYPE_FIELD_BITSIZE (rtype, f) = 0; |
14f9c5c9 | 7277 | |
d2e4a39e | 7278 | if (ada_is_variant_part (type, f)) |
4c4b4cd2 PH |
7279 | { |
7280 | variant_field = f; | |
d94e4f4f | 7281 | fld_bit_len = 0; |
4c4b4cd2 | 7282 | } |
14f9c5c9 | 7283 | else if (is_dynamic_field (type, f)) |
4c4b4cd2 | 7284 | { |
284614f0 JB |
7285 | const gdb_byte *field_valaddr = valaddr; |
7286 | CORE_ADDR field_address = address; | |
7287 | struct type *field_type = | |
7288 | TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); | |
7289 | ||
4c4b4cd2 | 7290 | if (dval0 == NULL) |
b5304971 JG |
7291 | { |
7292 | /* rtype's length is computed based on the run-time | |
7293 | value of discriminants. If the discriminants are not | |
7294 | initialized, the type size may be completely bogus and | |
0963b4bd | 7295 | GDB may fail to allocate a value for it. So check the |
b5304971 JG |
7296 | size first before creating the value. */ |
7297 | check_size (rtype); | |
7298 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7299 | } | |
4c4b4cd2 PH |
7300 | else |
7301 | dval = dval0; | |
7302 | ||
284614f0 JB |
7303 | /* If the type referenced by this field is an aligner type, we need |
7304 | to unwrap that aligner type, because its size might not be set. | |
7305 | Keeping the aligner type would cause us to compute the wrong | |
7306 | size for this field, impacting the offset of the all the fields | |
7307 | that follow this one. */ | |
7308 | if (ada_is_aligner_type (field_type)) | |
7309 | { | |
7310 | long field_offset = TYPE_FIELD_BITPOS (field_type, f); | |
7311 | ||
7312 | field_valaddr = cond_offset_host (field_valaddr, field_offset); | |
7313 | field_address = cond_offset_target (field_address, field_offset); | |
7314 | field_type = ada_aligned_type (field_type); | |
7315 | } | |
7316 | ||
7317 | field_valaddr = cond_offset_host (field_valaddr, | |
7318 | off / TARGET_CHAR_BIT); | |
7319 | field_address = cond_offset_target (field_address, | |
7320 | off / TARGET_CHAR_BIT); | |
7321 | ||
7322 | /* Get the fixed type of the field. Note that, in this case, | |
7323 | we do not want to get the real type out of the tag: if | |
7324 | the current field is the parent part of a tagged record, | |
7325 | we will get the tag of the object. Clearly wrong: the real | |
7326 | type of the parent is not the real type of the child. We | |
7327 | would end up in an infinite loop. */ | |
7328 | field_type = ada_get_base_type (field_type); | |
7329 | field_type = ada_to_fixed_type (field_type, field_valaddr, | |
7330 | field_address, dval, 0); | |
27f2a97b JB |
7331 | /* If the field size is already larger than the maximum |
7332 | object size, then the record itself will necessarily | |
7333 | be larger than the maximum object size. We need to make | |
7334 | this check now, because the size might be so ridiculously | |
7335 | large (due to an uninitialized variable in the inferior) | |
7336 | that it would cause an overflow when adding it to the | |
7337 | record size. */ | |
7338 | check_size (field_type); | |
284614f0 JB |
7339 | |
7340 | TYPE_FIELD_TYPE (rtype, f) = field_type; | |
4c4b4cd2 | 7341 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
27f2a97b JB |
7342 | /* The multiplication can potentially overflow. But because |
7343 | the field length has been size-checked just above, and | |
7344 | assuming that the maximum size is a reasonable value, | |
7345 | an overflow should not happen in practice. So rather than | |
7346 | adding overflow recovery code to this already complex code, | |
7347 | we just assume that it's not going to happen. */ | |
d94e4f4f | 7348 | fld_bit_len = |
4c4b4cd2 PH |
7349 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; |
7350 | } | |
14f9c5c9 | 7351 | else |
4c4b4cd2 | 7352 | { |
9f0dec2d JB |
7353 | struct type *field_type = TYPE_FIELD_TYPE (type, f); |
7354 | ||
720d1a40 JB |
7355 | /* If our field is a typedef type (most likely a typedef of |
7356 | a fat pointer, encoding an array access), then we need to | |
7357 | look at its target type to determine its characteristics. | |
7358 | In particular, we would miscompute the field size if we took | |
7359 | the size of the typedef (zero), instead of the size of | |
7360 | the target type. */ | |
7361 | if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) | |
7362 | field_type = ada_typedef_target_type (field_type); | |
7363 | ||
9f0dec2d | 7364 | TYPE_FIELD_TYPE (rtype, f) = field_type; |
4c4b4cd2 PH |
7365 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); |
7366 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
d94e4f4f | 7367 | fld_bit_len = |
4c4b4cd2 PH |
7368 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); |
7369 | else | |
d94e4f4f | 7370 | fld_bit_len = |
9f0dec2d | 7371 | TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; |
4c4b4cd2 | 7372 | } |
14f9c5c9 | 7373 | if (off + fld_bit_len > bit_len) |
4c4b4cd2 | 7374 | bit_len = off + fld_bit_len; |
d94e4f4f | 7375 | off += fld_bit_len; |
4c4b4cd2 PH |
7376 | TYPE_LENGTH (rtype) = |
7377 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
14f9c5c9 | 7378 | } |
4c4b4cd2 PH |
7379 | |
7380 | /* We handle the variant part, if any, at the end because of certain | |
b1f33ddd | 7381 | odd cases in which it is re-ordered so as NOT to be the last field of |
4c4b4cd2 PH |
7382 | the record. This can happen in the presence of representation |
7383 | clauses. */ | |
7384 | if (variant_field >= 0) | |
7385 | { | |
7386 | struct type *branch_type; | |
7387 | ||
7388 | off = TYPE_FIELD_BITPOS (rtype, variant_field); | |
7389 | ||
7390 | if (dval0 == NULL) | |
7391 | dval = value_from_contents_and_address (rtype, valaddr, address); | |
7392 | else | |
7393 | dval = dval0; | |
7394 | ||
7395 | branch_type = | |
7396 | to_fixed_variant_branch_type | |
7397 | (TYPE_FIELD_TYPE (type, variant_field), | |
7398 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
7399 | cond_offset_target (address, off / TARGET_CHAR_BIT), dval); | |
7400 | if (branch_type == NULL) | |
7401 | { | |
7402 | for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) | |
7403 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
7404 | TYPE_NFIELDS (rtype) -= 1; | |
7405 | } | |
7406 | else | |
7407 | { | |
7408 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; | |
7409 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7410 | fld_bit_len = | |
7411 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * | |
7412 | TARGET_CHAR_BIT; | |
7413 | if (off + fld_bit_len > bit_len) | |
7414 | bit_len = off + fld_bit_len; | |
7415 | TYPE_LENGTH (rtype) = | |
7416 | align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; | |
7417 | } | |
7418 | } | |
7419 | ||
714e53ab PH |
7420 | /* According to exp_dbug.ads, the size of TYPE for variable-size records |
7421 | should contain the alignment of that record, which should be a strictly | |
7422 | positive value. If null or negative, then something is wrong, most | |
7423 | probably in the debug info. In that case, we don't round up the size | |
0963b4bd | 7424 | of the resulting type. If this record is not part of another structure, |
714e53ab PH |
7425 | the current RTYPE length might be good enough for our purposes. */ |
7426 | if (TYPE_LENGTH (type) <= 0) | |
7427 | { | |
323e0a4a AC |
7428 | if (TYPE_NAME (rtype)) |
7429 | warning (_("Invalid type size for `%s' detected: %d."), | |
7430 | TYPE_NAME (rtype), TYPE_LENGTH (type)); | |
7431 | else | |
7432 | warning (_("Invalid type size for <unnamed> detected: %d."), | |
7433 | TYPE_LENGTH (type)); | |
714e53ab PH |
7434 | } |
7435 | else | |
7436 | { | |
7437 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), | |
7438 | TYPE_LENGTH (type)); | |
7439 | } | |
14f9c5c9 AS |
7440 | |
7441 | value_free_to_mark (mark); | |
d2e4a39e | 7442 | if (TYPE_LENGTH (rtype) > varsize_limit) |
323e0a4a | 7443 | error (_("record type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7444 | return rtype; |
7445 | } | |
7446 | ||
4c4b4cd2 PH |
7447 | /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS |
7448 | of 1. */ | |
14f9c5c9 | 7449 | |
d2e4a39e | 7450 | static struct type * |
fc1a4b47 | 7451 | template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 PH |
7452 | CORE_ADDR address, struct value *dval0) |
7453 | { | |
7454 | return ada_template_to_fixed_record_type_1 (type, valaddr, | |
7455 | address, dval0, 1); | |
7456 | } | |
7457 | ||
7458 | /* An ordinary record type in which ___XVL-convention fields and | |
7459 | ___XVU- and ___XVN-convention field types in TYPE0 are replaced with | |
7460 | static approximations, containing all possible fields. Uses | |
7461 | no runtime values. Useless for use in values, but that's OK, | |
7462 | since the results are used only for type determinations. Works on both | |
7463 | structs and unions. Representation note: to save space, we memorize | |
7464 | the result of this function in the TYPE_TARGET_TYPE of the | |
7465 | template type. */ | |
7466 | ||
7467 | static struct type * | |
7468 | template_to_static_fixed_type (struct type *type0) | |
14f9c5c9 AS |
7469 | { |
7470 | struct type *type; | |
7471 | int nfields; | |
7472 | int f; | |
7473 | ||
4c4b4cd2 PH |
7474 | if (TYPE_TARGET_TYPE (type0) != NULL) |
7475 | return TYPE_TARGET_TYPE (type0); | |
7476 | ||
7477 | nfields = TYPE_NFIELDS (type0); | |
7478 | type = type0; | |
14f9c5c9 AS |
7479 | |
7480 | for (f = 0; f < nfields; f += 1) | |
7481 | { | |
61ee279c | 7482 | struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); |
4c4b4cd2 | 7483 | struct type *new_type; |
14f9c5c9 | 7484 | |
4c4b4cd2 PH |
7485 | if (is_dynamic_field (type0, f)) |
7486 | new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); | |
14f9c5c9 | 7487 | else |
f192137b | 7488 | new_type = static_unwrap_type (field_type); |
4c4b4cd2 PH |
7489 | if (type == type0 && new_type != field_type) |
7490 | { | |
e9bb382b | 7491 | TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); |
4c4b4cd2 PH |
7492 | TYPE_CODE (type) = TYPE_CODE (type0); |
7493 | INIT_CPLUS_SPECIFIC (type); | |
7494 | TYPE_NFIELDS (type) = nfields; | |
7495 | TYPE_FIELDS (type) = (struct field *) | |
7496 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
7497 | memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), | |
7498 | sizeof (struct field) * nfields); | |
7499 | TYPE_NAME (type) = ada_type_name (type0); | |
7500 | TYPE_TAG_NAME (type) = NULL; | |
876cecd0 | 7501 | TYPE_FIXED_INSTANCE (type) = 1; |
4c4b4cd2 PH |
7502 | TYPE_LENGTH (type) = 0; |
7503 | } | |
7504 | TYPE_FIELD_TYPE (type, f) = new_type; | |
7505 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); | |
14f9c5c9 | 7506 | } |
14f9c5c9 AS |
7507 | return type; |
7508 | } | |
7509 | ||
4c4b4cd2 | 7510 | /* Given an object of type TYPE whose contents are at VALADDR and |
5823c3ef JB |
7511 | whose address in memory is ADDRESS, returns a revision of TYPE, |
7512 | which should be a non-dynamic-sized record, in which the variant | |
7513 | part, if any, is replaced with the appropriate branch. Looks | |
4c4b4cd2 PH |
7514 | for discriminant values in DVAL0, which can be NULL if the record |
7515 | contains the necessary discriminant values. */ | |
7516 | ||
d2e4a39e | 7517 | static struct type * |
fc1a4b47 | 7518 | to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, |
4c4b4cd2 | 7519 | CORE_ADDR address, struct value *dval0) |
14f9c5c9 | 7520 | { |
d2e4a39e | 7521 | struct value *mark = value_mark (); |
4c4b4cd2 | 7522 | struct value *dval; |
d2e4a39e | 7523 | struct type *rtype; |
14f9c5c9 AS |
7524 | struct type *branch_type; |
7525 | int nfields = TYPE_NFIELDS (type); | |
4c4b4cd2 | 7526 | int variant_field = variant_field_index (type); |
14f9c5c9 | 7527 | |
4c4b4cd2 | 7528 | if (variant_field == -1) |
14f9c5c9 AS |
7529 | return type; |
7530 | ||
4c4b4cd2 PH |
7531 | if (dval0 == NULL) |
7532 | dval = value_from_contents_and_address (type, valaddr, address); | |
7533 | else | |
7534 | dval = dval0; | |
7535 | ||
e9bb382b | 7536 | rtype = alloc_type_copy (type); |
14f9c5c9 | 7537 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; |
4c4b4cd2 PH |
7538 | INIT_CPLUS_SPECIFIC (rtype); |
7539 | TYPE_NFIELDS (rtype) = nfields; | |
d2e4a39e AS |
7540 | TYPE_FIELDS (rtype) = |
7541 | (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
7542 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
4c4b4cd2 | 7543 | sizeof (struct field) * nfields); |
14f9c5c9 AS |
7544 | TYPE_NAME (rtype) = ada_type_name (type); |
7545 | TYPE_TAG_NAME (rtype) = NULL; | |
876cecd0 | 7546 | TYPE_FIXED_INSTANCE (rtype) = 1; |
14f9c5c9 AS |
7547 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); |
7548 | ||
4c4b4cd2 PH |
7549 | branch_type = to_fixed_variant_branch_type |
7550 | (TYPE_FIELD_TYPE (type, variant_field), | |
d2e4a39e | 7551 | cond_offset_host (valaddr, |
4c4b4cd2 PH |
7552 | TYPE_FIELD_BITPOS (type, variant_field) |
7553 | / TARGET_CHAR_BIT), | |
d2e4a39e | 7554 | cond_offset_target (address, |
4c4b4cd2 PH |
7555 | TYPE_FIELD_BITPOS (type, variant_field) |
7556 | / TARGET_CHAR_BIT), dval); | |
d2e4a39e | 7557 | if (branch_type == NULL) |
14f9c5c9 | 7558 | { |
4c4b4cd2 | 7559 | int f; |
5b4ee69b | 7560 | |
4c4b4cd2 PH |
7561 | for (f = variant_field + 1; f < nfields; f += 1) |
7562 | TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; | |
14f9c5c9 | 7563 | TYPE_NFIELDS (rtype) -= 1; |
14f9c5c9 AS |
7564 | } |
7565 | else | |
7566 | { | |
4c4b4cd2 PH |
7567 | TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; |
7568 | TYPE_FIELD_NAME (rtype, variant_field) = "S"; | |
7569 | TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; | |
14f9c5c9 | 7570 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); |
14f9c5c9 | 7571 | } |
4c4b4cd2 | 7572 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); |
d2e4a39e | 7573 | |
4c4b4cd2 | 7574 | value_free_to_mark (mark); |
14f9c5c9 AS |
7575 | return rtype; |
7576 | } | |
7577 | ||
7578 | /* An ordinary record type (with fixed-length fields) that describes | |
7579 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
7580 | beginning of this section]. Any necessary discriminants' values | |
4c4b4cd2 PH |
7581 | should be in DVAL, a record value; it may be NULL if the object |
7582 | at ADDR itself contains any necessary discriminant values. | |
7583 | Additionally, VALADDR and ADDRESS may also be NULL if no discriminant | |
7584 | values from the record are needed. Except in the case that DVAL, | |
7585 | VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless | |
7586 | unchecked) is replaced by a particular branch of the variant. | |
7587 | ||
7588 | NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 | |
7589 | is questionable and may be removed. It can arise during the | |
7590 | processing of an unconstrained-array-of-record type where all the | |
7591 | variant branches have exactly the same size. This is because in | |
7592 | such cases, the compiler does not bother to use the XVS convention | |
7593 | when encoding the record. I am currently dubious of this | |
7594 | shortcut and suspect the compiler should be altered. FIXME. */ | |
14f9c5c9 | 7595 | |
d2e4a39e | 7596 | static struct type * |
fc1a4b47 | 7597 | to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7598 | CORE_ADDR address, struct value *dval) |
14f9c5c9 | 7599 | { |
d2e4a39e | 7600 | struct type *templ_type; |
14f9c5c9 | 7601 | |
876cecd0 | 7602 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7603 | return type0; |
7604 | ||
d2e4a39e | 7605 | templ_type = dynamic_template_type (type0); |
14f9c5c9 AS |
7606 | |
7607 | if (templ_type != NULL) | |
7608 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
4c4b4cd2 PH |
7609 | else if (variant_field_index (type0) >= 0) |
7610 | { | |
7611 | if (dval == NULL && valaddr == NULL && address == 0) | |
7612 | return type0; | |
7613 | return to_record_with_fixed_variant_part (type0, valaddr, address, | |
7614 | dval); | |
7615 | } | |
14f9c5c9 AS |
7616 | else |
7617 | { | |
876cecd0 | 7618 | TYPE_FIXED_INSTANCE (type0) = 1; |
14f9c5c9 AS |
7619 | return type0; |
7620 | } | |
7621 | ||
7622 | } | |
7623 | ||
7624 | /* An ordinary record type (with fixed-length fields) that describes | |
7625 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
7626 | union type. Any necessary discriminants' values should be in DVAL, | |
7627 | a record value. That is, this routine selects the appropriate | |
7628 | branch of the union at ADDR according to the discriminant value | |
b1f33ddd | 7629 | indicated in the union's type name. Returns VAR_TYPE0 itself if |
0963b4bd | 7630 | it represents a variant subject to a pragma Unchecked_Union. */ |
14f9c5c9 | 7631 | |
d2e4a39e | 7632 | static struct type * |
fc1a4b47 | 7633 | to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, |
4c4b4cd2 | 7634 | CORE_ADDR address, struct value *dval) |
14f9c5c9 AS |
7635 | { |
7636 | int which; | |
d2e4a39e AS |
7637 | struct type *templ_type; |
7638 | struct type *var_type; | |
14f9c5c9 AS |
7639 | |
7640 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
7641 | var_type = TYPE_TARGET_TYPE (var_type0); | |
d2e4a39e | 7642 | else |
14f9c5c9 AS |
7643 | var_type = var_type0; |
7644 | ||
7645 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
7646 | ||
7647 | if (templ_type != NULL) | |
7648 | var_type = templ_type; | |
7649 | ||
b1f33ddd JB |
7650 | if (is_unchecked_variant (var_type, value_type (dval))) |
7651 | return var_type0; | |
d2e4a39e AS |
7652 | which = |
7653 | ada_which_variant_applies (var_type, | |
0fd88904 | 7654 | value_type (dval), value_contents (dval)); |
14f9c5c9 AS |
7655 | |
7656 | if (which < 0) | |
e9bb382b | 7657 | return empty_record (var_type); |
14f9c5c9 | 7658 | else if (is_dynamic_field (var_type, which)) |
4c4b4cd2 | 7659 | return to_fixed_record_type |
d2e4a39e AS |
7660 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), |
7661 | valaddr, address, dval); | |
4c4b4cd2 | 7662 | else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) |
d2e4a39e AS |
7663 | return |
7664 | to_fixed_record_type | |
7665 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
14f9c5c9 AS |
7666 | else |
7667 | return TYPE_FIELD_TYPE (var_type, which); | |
7668 | } | |
7669 | ||
7670 | /* Assuming that TYPE0 is an array type describing the type of a value | |
7671 | at ADDR, and that DVAL describes a record containing any | |
7672 | discriminants used in TYPE0, returns a type for the value that | |
7673 | contains no dynamic components (that is, no components whose sizes | |
7674 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
7675 | true, gives an error message if the resulting type's size is over | |
4c4b4cd2 | 7676 | varsize_limit. */ |
14f9c5c9 | 7677 | |
d2e4a39e AS |
7678 | static struct type * |
7679 | to_fixed_array_type (struct type *type0, struct value *dval, | |
4c4b4cd2 | 7680 | int ignore_too_big) |
14f9c5c9 | 7681 | { |
d2e4a39e AS |
7682 | struct type *index_type_desc; |
7683 | struct type *result; | |
ad82864c | 7684 | int constrained_packed_array_p; |
14f9c5c9 | 7685 | |
b0dd7688 | 7686 | type0 = ada_check_typedef (type0); |
284614f0 | 7687 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 | 7688 | return type0; |
14f9c5c9 | 7689 | |
ad82864c JB |
7690 | constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); |
7691 | if (constrained_packed_array_p) | |
7692 | type0 = decode_constrained_packed_array_type (type0); | |
284614f0 | 7693 | |
14f9c5c9 | 7694 | index_type_desc = ada_find_parallel_type (type0, "___XA"); |
28c85d6c | 7695 | ada_fixup_array_indexes_type (index_type_desc); |
14f9c5c9 AS |
7696 | if (index_type_desc == NULL) |
7697 | { | |
61ee279c | 7698 | struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); |
5b4ee69b | 7699 | |
14f9c5c9 | 7700 | /* NOTE: elt_type---the fixed version of elt_type0---should never |
4c4b4cd2 PH |
7701 | depend on the contents of the array in properly constructed |
7702 | debugging data. */ | |
529cad9c PH |
7703 | /* Create a fixed version of the array element type. |
7704 | We're not providing the address of an element here, | |
e1d5a0d2 | 7705 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7706 | the conversion. This should not be a problem, since arrays of |
7707 | unconstrained objects are not allowed. In particular, all | |
7708 | the elements of an array of a tagged type should all be of | |
7709 | the same type specified in the debugging info. No need to | |
7710 | consult the object tag. */ | |
1ed6ede0 | 7711 | struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); |
14f9c5c9 | 7712 | |
284614f0 JB |
7713 | /* Make sure we always create a new array type when dealing with |
7714 | packed array types, since we're going to fix-up the array | |
7715 | type length and element bitsize a little further down. */ | |
ad82864c | 7716 | if (elt_type0 == elt_type && !constrained_packed_array_p) |
4c4b4cd2 | 7717 | result = type0; |
14f9c5c9 | 7718 | else |
e9bb382b | 7719 | result = create_array_type (alloc_type_copy (type0), |
4c4b4cd2 | 7720 | elt_type, TYPE_INDEX_TYPE (type0)); |
14f9c5c9 AS |
7721 | } |
7722 | else | |
7723 | { | |
7724 | int i; | |
7725 | struct type *elt_type0; | |
7726 | ||
7727 | elt_type0 = type0; | |
7728 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
4c4b4cd2 | 7729 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
14f9c5c9 AS |
7730 | |
7731 | /* NOTE: result---the fixed version of elt_type0---should never | |
4c4b4cd2 PH |
7732 | depend on the contents of the array in properly constructed |
7733 | debugging data. */ | |
529cad9c PH |
7734 | /* Create a fixed version of the array element type. |
7735 | We're not providing the address of an element here, | |
e1d5a0d2 | 7736 | and thus the actual object value cannot be inspected to do |
529cad9c PH |
7737 | the conversion. This should not be a problem, since arrays of |
7738 | unconstrained objects are not allowed. In particular, all | |
7739 | the elements of an array of a tagged type should all be of | |
7740 | the same type specified in the debugging info. No need to | |
7741 | consult the object tag. */ | |
1ed6ede0 JB |
7742 | result = |
7743 | ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); | |
1ce677a4 UW |
7744 | |
7745 | elt_type0 = type0; | |
14f9c5c9 | 7746 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) |
4c4b4cd2 PH |
7747 | { |
7748 | struct type *range_type = | |
28c85d6c | 7749 | to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); |
5b4ee69b | 7750 | |
e9bb382b | 7751 | result = create_array_type (alloc_type_copy (elt_type0), |
4c4b4cd2 | 7752 | result, range_type); |
1ce677a4 | 7753 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); |
4c4b4cd2 | 7754 | } |
d2e4a39e | 7755 | if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) |
323e0a4a | 7756 | error (_("array type with dynamic size is larger than varsize-limit")); |
14f9c5c9 AS |
7757 | } |
7758 | ||
ad82864c | 7759 | if (constrained_packed_array_p) |
284614f0 JB |
7760 | { |
7761 | /* So far, the resulting type has been created as if the original | |
7762 | type was a regular (non-packed) array type. As a result, the | |
7763 | bitsize of the array elements needs to be set again, and the array | |
7764 | length needs to be recomputed based on that bitsize. */ | |
7765 | int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); | |
7766 | int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); | |
7767 | ||
7768 | TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); | |
7769 | TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; | |
7770 | if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) | |
7771 | TYPE_LENGTH (result)++; | |
7772 | } | |
7773 | ||
876cecd0 | 7774 | TYPE_FIXED_INSTANCE (result) = 1; |
14f9c5c9 | 7775 | return result; |
d2e4a39e | 7776 | } |
14f9c5c9 AS |
7777 | |
7778 | ||
7779 | /* A standard type (containing no dynamically sized components) | |
7780 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
7781 | DVAL describes a record containing any discriminants used in TYPE0, | |
4c4b4cd2 | 7782 | and may be NULL if there are none, or if the object of type TYPE at |
529cad9c PH |
7783 | ADDRESS or in VALADDR contains these discriminants. |
7784 | ||
1ed6ede0 JB |
7785 | If CHECK_TAG is not null, in the case of tagged types, this function |
7786 | attempts to locate the object's tag and use it to compute the actual | |
7787 | type. However, when ADDRESS is null, we cannot use it to determine the | |
7788 | location of the tag, and therefore compute the tagged type's actual type. | |
7789 | So we return the tagged type without consulting the tag. */ | |
529cad9c | 7790 | |
f192137b JB |
7791 | static struct type * |
7792 | ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, | |
1ed6ede0 | 7793 | CORE_ADDR address, struct value *dval, int check_tag) |
14f9c5c9 | 7794 | { |
61ee279c | 7795 | type = ada_check_typedef (type); |
d2e4a39e AS |
7796 | switch (TYPE_CODE (type)) |
7797 | { | |
7798 | default: | |
14f9c5c9 | 7799 | return type; |
d2e4a39e | 7800 | case TYPE_CODE_STRUCT: |
4c4b4cd2 | 7801 | { |
76a01679 | 7802 | struct type *static_type = to_static_fixed_type (type); |
1ed6ede0 JB |
7803 | struct type *fixed_record_type = |
7804 | to_fixed_record_type (type, valaddr, address, NULL); | |
5b4ee69b | 7805 | |
529cad9c PH |
7806 | /* If STATIC_TYPE is a tagged type and we know the object's address, |
7807 | then we can determine its tag, and compute the object's actual | |
0963b4bd | 7808 | type from there. Note that we have to use the fixed record |
1ed6ede0 JB |
7809 | type (the parent part of the record may have dynamic fields |
7810 | and the way the location of _tag is expressed may depend on | |
7811 | them). */ | |
529cad9c | 7812 | |
1ed6ede0 | 7813 | if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) |
76a01679 JB |
7814 | { |
7815 | struct type *real_type = | |
1ed6ede0 JB |
7816 | type_from_tag (value_tag_from_contents_and_address |
7817 | (fixed_record_type, | |
7818 | valaddr, | |
7819 | address)); | |
5b4ee69b | 7820 | |
76a01679 | 7821 | if (real_type != NULL) |
1ed6ede0 | 7822 | return to_fixed_record_type (real_type, valaddr, address, NULL); |
76a01679 | 7823 | } |
4af88198 JB |
7824 | |
7825 | /* Check to see if there is a parallel ___XVZ variable. | |
7826 | If there is, then it provides the actual size of our type. */ | |
7827 | else if (ada_type_name (fixed_record_type) != NULL) | |
7828 | { | |
7829 | char *name = ada_type_name (fixed_record_type); | |
7830 | char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); | |
7831 | int xvz_found = 0; | |
7832 | LONGEST size; | |
7833 | ||
88c15c34 | 7834 | xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); |
4af88198 JB |
7835 | size = get_int_var_value (xvz_name, &xvz_found); |
7836 | if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) | |
7837 | { | |
7838 | fixed_record_type = copy_type (fixed_record_type); | |
7839 | TYPE_LENGTH (fixed_record_type) = size; | |
7840 | ||
7841 | /* The FIXED_RECORD_TYPE may have be a stub. We have | |
7842 | observed this when the debugging info is STABS, and | |
7843 | apparently it is something that is hard to fix. | |
7844 | ||
7845 | In practice, we don't need the actual type definition | |
7846 | at all, because the presence of the XVZ variable allows us | |
7847 | to assume that there must be a XVS type as well, which we | |
7848 | should be able to use later, when we need the actual type | |
7849 | definition. | |
7850 | ||
7851 | In the meantime, pretend that the "fixed" type we are | |
7852 | returning is NOT a stub, because this can cause trouble | |
7853 | when using this type to create new types targeting it. | |
7854 | Indeed, the associated creation routines often check | |
7855 | whether the target type is a stub and will try to replace | |
0963b4bd | 7856 | it, thus using a type with the wrong size. This, in turn, |
4af88198 JB |
7857 | might cause the new type to have the wrong size too. |
7858 | Consider the case of an array, for instance, where the size | |
7859 | of the array is computed from the number of elements in | |
7860 | our array multiplied by the size of its element. */ | |
7861 | TYPE_STUB (fixed_record_type) = 0; | |
7862 | } | |
7863 | } | |
1ed6ede0 | 7864 | return fixed_record_type; |
4c4b4cd2 | 7865 | } |
d2e4a39e | 7866 | case TYPE_CODE_ARRAY: |
4c4b4cd2 | 7867 | return to_fixed_array_type (type, dval, 1); |
d2e4a39e AS |
7868 | case TYPE_CODE_UNION: |
7869 | if (dval == NULL) | |
4c4b4cd2 | 7870 | return type; |
d2e4a39e | 7871 | else |
4c4b4cd2 | 7872 | return to_fixed_variant_branch_type (type, valaddr, address, dval); |
d2e4a39e | 7873 | } |
14f9c5c9 AS |
7874 | } |
7875 | ||
f192137b JB |
7876 | /* The same as ada_to_fixed_type_1, except that it preserves the type |
7877 | if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. | |
96dbd2c1 JB |
7878 | |
7879 | The typedef layer needs be preserved in order to differentiate between | |
7880 | arrays and array pointers when both types are implemented using the same | |
7881 | fat pointer. In the array pointer case, the pointer is encoded as | |
7882 | a typedef of the pointer type. For instance, considering: | |
7883 | ||
7884 | type String_Access is access String; | |
7885 | S1 : String_Access := null; | |
7886 | ||
7887 | To the debugger, S1 is defined as a typedef of type String. But | |
7888 | to the user, it is a pointer. So if the user tries to print S1, | |
7889 | we should not dereference the array, but print the array address | |
7890 | instead. | |
7891 | ||
7892 | If we didn't preserve the typedef layer, we would lose the fact that | |
7893 | the type is to be presented as a pointer (needs de-reference before | |
7894 | being printed). And we would also use the source-level type name. */ | |
f192137b JB |
7895 | |
7896 | struct type * | |
7897 | ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, | |
7898 | CORE_ADDR address, struct value *dval, int check_tag) | |
7899 | ||
7900 | { | |
7901 | struct type *fixed_type = | |
7902 | ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); | |
7903 | ||
96dbd2c1 JB |
7904 | /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, |
7905 | then preserve the typedef layer. | |
7906 | ||
7907 | Implementation note: We can only check the main-type portion of | |
7908 | the TYPE and FIXED_TYPE, because eliminating the typedef layer | |
7909 | from TYPE now returns a type that has the same instance flags | |
7910 | as TYPE. For instance, if TYPE is a "typedef const", and its | |
7911 | target type is a "struct", then the typedef elimination will return | |
7912 | a "const" version of the target type. See check_typedef for more | |
7913 | details about how the typedef layer elimination is done. | |
7914 | ||
7915 | brobecker/2010-11-19: It seems to me that the only case where it is | |
7916 | useful to preserve the typedef layer is when dealing with fat pointers. | |
7917 | Perhaps, we could add a check for that and preserve the typedef layer | |
7918 | only in that situation. But this seems unecessary so far, probably | |
7919 | because we call check_typedef/ada_check_typedef pretty much everywhere. | |
7920 | */ | |
f192137b | 7921 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF |
720d1a40 | 7922 | && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) |
96dbd2c1 | 7923 | == TYPE_MAIN_TYPE (fixed_type))) |
f192137b JB |
7924 | return type; |
7925 | ||
7926 | return fixed_type; | |
7927 | } | |
7928 | ||
14f9c5c9 | 7929 | /* A standard (static-sized) type corresponding as well as possible to |
4c4b4cd2 | 7930 | TYPE0, but based on no runtime data. */ |
14f9c5c9 | 7931 | |
d2e4a39e AS |
7932 | static struct type * |
7933 | to_static_fixed_type (struct type *type0) | |
14f9c5c9 | 7934 | { |
d2e4a39e | 7935 | struct type *type; |
14f9c5c9 AS |
7936 | |
7937 | if (type0 == NULL) | |
7938 | return NULL; | |
7939 | ||
876cecd0 | 7940 | if (TYPE_FIXED_INSTANCE (type0)) |
4c4b4cd2 PH |
7941 | return type0; |
7942 | ||
61ee279c | 7943 | type0 = ada_check_typedef (type0); |
d2e4a39e | 7944 | |
14f9c5c9 AS |
7945 | switch (TYPE_CODE (type0)) |
7946 | { | |
7947 | default: | |
7948 | return type0; | |
7949 | case TYPE_CODE_STRUCT: | |
7950 | type = dynamic_template_type (type0); | |
d2e4a39e | 7951 | if (type != NULL) |
4c4b4cd2 PH |
7952 | return template_to_static_fixed_type (type); |
7953 | else | |
7954 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7955 | case TYPE_CODE_UNION: |
7956 | type = ada_find_parallel_type (type0, "___XVU"); | |
7957 | if (type != NULL) | |
4c4b4cd2 PH |
7958 | return template_to_static_fixed_type (type); |
7959 | else | |
7960 | return template_to_static_fixed_type (type0); | |
14f9c5c9 AS |
7961 | } |
7962 | } | |
7963 | ||
4c4b4cd2 PH |
7964 | /* A static approximation of TYPE with all type wrappers removed. */ |
7965 | ||
d2e4a39e AS |
7966 | static struct type * |
7967 | static_unwrap_type (struct type *type) | |
14f9c5c9 AS |
7968 | { |
7969 | if (ada_is_aligner_type (type)) | |
7970 | { | |
61ee279c | 7971 | struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); |
14f9c5c9 | 7972 | if (ada_type_name (type1) == NULL) |
4c4b4cd2 | 7973 | TYPE_NAME (type1) = ada_type_name (type); |
14f9c5c9 AS |
7974 | |
7975 | return static_unwrap_type (type1); | |
7976 | } | |
d2e4a39e | 7977 | else |
14f9c5c9 | 7978 | { |
d2e4a39e | 7979 | struct type *raw_real_type = ada_get_base_type (type); |
5b4ee69b | 7980 | |
d2e4a39e | 7981 | if (raw_real_type == type) |
4c4b4cd2 | 7982 | return type; |
14f9c5c9 | 7983 | else |
4c4b4cd2 | 7984 | return to_static_fixed_type (raw_real_type); |
14f9c5c9 AS |
7985 | } |
7986 | } | |
7987 | ||
7988 | /* In some cases, incomplete and private types require | |
4c4b4cd2 | 7989 | cross-references that are not resolved as records (for example, |
14f9c5c9 AS |
7990 | type Foo; |
7991 | type FooP is access Foo; | |
7992 | V: FooP; | |
7993 | type Foo is array ...; | |
4c4b4cd2 | 7994 | ). In these cases, since there is no mechanism for producing |
14f9c5c9 AS |
7995 | cross-references to such types, we instead substitute for FooP a |
7996 | stub enumeration type that is nowhere resolved, and whose tag is | |
4c4b4cd2 | 7997 | the name of the actual type. Call these types "non-record stubs". */ |
14f9c5c9 AS |
7998 | |
7999 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
4c4b4cd2 PH |
8000 | exists, otherwise TYPE. */ |
8001 | ||
d2e4a39e | 8002 | struct type * |
61ee279c | 8003 | ada_check_typedef (struct type *type) |
14f9c5c9 | 8004 | { |
727e3d2e JB |
8005 | if (type == NULL) |
8006 | return NULL; | |
8007 | ||
720d1a40 JB |
8008 | /* If our type is a typedef type of a fat pointer, then we're done. |
8009 | We don't want to strip the TYPE_CODE_TYPDEF layer, because this is | |
8010 | what allows us to distinguish between fat pointers that represent | |
8011 | array types, and fat pointers that represent array access types | |
8012 | (in both cases, the compiler implements them as fat pointers). */ | |
8013 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF | |
8014 | && is_thick_pntr (ada_typedef_target_type (type))) | |
8015 | return type; | |
8016 | ||
14f9c5c9 AS |
8017 | CHECK_TYPEDEF (type); |
8018 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
529cad9c | 8019 | || !TYPE_STUB (type) |
14f9c5c9 AS |
8020 | || TYPE_TAG_NAME (type) == NULL) |
8021 | return type; | |
d2e4a39e | 8022 | else |
14f9c5c9 | 8023 | { |
d2e4a39e AS |
8024 | char *name = TYPE_TAG_NAME (type); |
8025 | struct type *type1 = ada_find_any_type (name); | |
5b4ee69b | 8026 | |
05e522ef JB |
8027 | if (type1 == NULL) |
8028 | return type; | |
8029 | ||
8030 | /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with | |
8031 | stubs pointing to arrays, as we don't create symbols for array | |
3a867c22 JB |
8032 | types, only for the typedef-to-array types). If that's the case, |
8033 | strip the typedef layer. */ | |
8034 | if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) | |
8035 | type1 = ada_check_typedef (type1); | |
8036 | ||
8037 | return type1; | |
14f9c5c9 AS |
8038 | } |
8039 | } | |
8040 | ||
8041 | /* A value representing the data at VALADDR/ADDRESS as described by | |
8042 | type TYPE0, but with a standard (static-sized) type that correctly | |
8043 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
8044 | type, then return VAL0 [this feature is simply to avoid redundant | |
4c4b4cd2 | 8045 | creation of struct values]. */ |
14f9c5c9 | 8046 | |
4c4b4cd2 PH |
8047 | static struct value * |
8048 | ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, | |
8049 | struct value *val0) | |
14f9c5c9 | 8050 | { |
1ed6ede0 | 8051 | struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); |
5b4ee69b | 8052 | |
14f9c5c9 AS |
8053 | if (type == type0 && val0 != NULL) |
8054 | return val0; | |
d2e4a39e | 8055 | else |
4c4b4cd2 PH |
8056 | return value_from_contents_and_address (type, 0, address); |
8057 | } | |
8058 | ||
8059 | /* A value representing VAL, but with a standard (static-sized) type | |
8060 | that correctly describes it. Does not necessarily create a new | |
8061 | value. */ | |
8062 | ||
0c3acc09 | 8063 | struct value * |
4c4b4cd2 PH |
8064 | ada_to_fixed_value (struct value *val) |
8065 | { | |
df407dfe | 8066 | return ada_to_fixed_value_create (value_type (val), |
42ae5230 | 8067 | value_address (val), |
4c4b4cd2 | 8068 | val); |
14f9c5c9 | 8069 | } |
d2e4a39e | 8070 | \f |
14f9c5c9 | 8071 | |
14f9c5c9 AS |
8072 | /* Attributes */ |
8073 | ||
4c4b4cd2 PH |
8074 | /* Table mapping attribute numbers to names. |
8075 | NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ | |
14f9c5c9 | 8076 | |
d2e4a39e | 8077 | static const char *attribute_names[] = { |
14f9c5c9 AS |
8078 | "<?>", |
8079 | ||
d2e4a39e | 8080 | "first", |
14f9c5c9 AS |
8081 | "last", |
8082 | "length", | |
8083 | "image", | |
14f9c5c9 AS |
8084 | "max", |
8085 | "min", | |
4c4b4cd2 PH |
8086 | "modulus", |
8087 | "pos", | |
8088 | "size", | |
8089 | "tag", | |
14f9c5c9 | 8090 | "val", |
14f9c5c9 AS |
8091 | 0 |
8092 | }; | |
8093 | ||
d2e4a39e | 8094 | const char * |
4c4b4cd2 | 8095 | ada_attribute_name (enum exp_opcode n) |
14f9c5c9 | 8096 | { |
4c4b4cd2 PH |
8097 | if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) |
8098 | return attribute_names[n - OP_ATR_FIRST + 1]; | |
14f9c5c9 AS |
8099 | else |
8100 | return attribute_names[0]; | |
8101 | } | |
8102 | ||
4c4b4cd2 | 8103 | /* Evaluate the 'POS attribute applied to ARG. */ |
14f9c5c9 | 8104 | |
4c4b4cd2 PH |
8105 | static LONGEST |
8106 | pos_atr (struct value *arg) | |
14f9c5c9 | 8107 | { |
24209737 PH |
8108 | struct value *val = coerce_ref (arg); |
8109 | struct type *type = value_type (val); | |
14f9c5c9 | 8110 | |
d2e4a39e | 8111 | if (!discrete_type_p (type)) |
323e0a4a | 8112 | error (_("'POS only defined on discrete types")); |
14f9c5c9 AS |
8113 | |
8114 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8115 | { | |
8116 | int i; | |
24209737 | 8117 | LONGEST v = value_as_long (val); |
14f9c5c9 | 8118 | |
d2e4a39e | 8119 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) |
4c4b4cd2 PH |
8120 | { |
8121 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
8122 | return i; | |
8123 | } | |
323e0a4a | 8124 | error (_("enumeration value is invalid: can't find 'POS")); |
14f9c5c9 AS |
8125 | } |
8126 | else | |
24209737 | 8127 | return value_as_long (val); |
4c4b4cd2 PH |
8128 | } |
8129 | ||
8130 | static struct value * | |
3cb382c9 | 8131 | value_pos_atr (struct type *type, struct value *arg) |
4c4b4cd2 | 8132 | { |
3cb382c9 | 8133 | return value_from_longest (type, pos_atr (arg)); |
14f9c5c9 AS |
8134 | } |
8135 | ||
4c4b4cd2 | 8136 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ |
14f9c5c9 | 8137 | |
d2e4a39e AS |
8138 | static struct value * |
8139 | value_val_atr (struct type *type, struct value *arg) | |
14f9c5c9 | 8140 | { |
d2e4a39e | 8141 | if (!discrete_type_p (type)) |
323e0a4a | 8142 | error (_("'VAL only defined on discrete types")); |
df407dfe | 8143 | if (!integer_type_p (value_type (arg))) |
323e0a4a | 8144 | error (_("'VAL requires integral argument")); |
14f9c5c9 AS |
8145 | |
8146 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
8147 | { | |
8148 | long pos = value_as_long (arg); | |
5b4ee69b | 8149 | |
14f9c5c9 | 8150 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) |
323e0a4a | 8151 | error (_("argument to 'VAL out of range")); |
d2e4a39e | 8152 | return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); |
14f9c5c9 AS |
8153 | } |
8154 | else | |
8155 | return value_from_longest (type, value_as_long (arg)); | |
8156 | } | |
14f9c5c9 | 8157 | \f |
d2e4a39e | 8158 | |
4c4b4cd2 | 8159 | /* Evaluation */ |
14f9c5c9 | 8160 | |
4c4b4cd2 PH |
8161 | /* True if TYPE appears to be an Ada character type. |
8162 | [At the moment, this is true only for Character and Wide_Character; | |
8163 | It is a heuristic test that could stand improvement]. */ | |
14f9c5c9 | 8164 | |
d2e4a39e AS |
8165 | int |
8166 | ada_is_character_type (struct type *type) | |
14f9c5c9 | 8167 | { |
7b9f71f2 JB |
8168 | const char *name; |
8169 | ||
8170 | /* If the type code says it's a character, then assume it really is, | |
8171 | and don't check any further. */ | |
8172 | if (TYPE_CODE (type) == TYPE_CODE_CHAR) | |
8173 | return 1; | |
8174 | ||
8175 | /* Otherwise, assume it's a character type iff it is a discrete type | |
8176 | with a known character type name. */ | |
8177 | name = ada_type_name (type); | |
8178 | return (name != NULL | |
8179 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
8180 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8181 | && (strcmp (name, "character") == 0 | |
8182 | || strcmp (name, "wide_character") == 0 | |
5a517ebd | 8183 | || strcmp (name, "wide_wide_character") == 0 |
7b9f71f2 | 8184 | || strcmp (name, "unsigned char") == 0)); |
14f9c5c9 AS |
8185 | } |
8186 | ||
4c4b4cd2 | 8187 | /* True if TYPE appears to be an Ada string type. */ |
14f9c5c9 AS |
8188 | |
8189 | int | |
ebf56fd3 | 8190 | ada_is_string_type (struct type *type) |
14f9c5c9 | 8191 | { |
61ee279c | 8192 | type = ada_check_typedef (type); |
d2e4a39e | 8193 | if (type != NULL |
14f9c5c9 | 8194 | && TYPE_CODE (type) != TYPE_CODE_PTR |
76a01679 JB |
8195 | && (ada_is_simple_array_type (type) |
8196 | || ada_is_array_descriptor_type (type)) | |
14f9c5c9 AS |
8197 | && ada_array_arity (type) == 1) |
8198 | { | |
8199 | struct type *elttype = ada_array_element_type (type, 1); | |
8200 | ||
8201 | return ada_is_character_type (elttype); | |
8202 | } | |
d2e4a39e | 8203 | else |
14f9c5c9 AS |
8204 | return 0; |
8205 | } | |
8206 | ||
5bf03f13 JB |
8207 | /* The compiler sometimes provides a parallel XVS type for a given |
8208 | PAD type. Normally, it is safe to follow the PAD type directly, | |
8209 | but older versions of the compiler have a bug that causes the offset | |
8210 | of its "F" field to be wrong. Following that field in that case | |
8211 | would lead to incorrect results, but this can be worked around | |
8212 | by ignoring the PAD type and using the associated XVS type instead. | |
8213 | ||
8214 | Set to True if the debugger should trust the contents of PAD types. | |
8215 | Otherwise, ignore the PAD type if there is a parallel XVS type. */ | |
8216 | static int trust_pad_over_xvs = 1; | |
14f9c5c9 AS |
8217 | |
8218 | /* True if TYPE is a struct type introduced by the compiler to force the | |
8219 | alignment of a value. Such types have a single field with a | |
4c4b4cd2 | 8220 | distinctive name. */ |
14f9c5c9 AS |
8221 | |
8222 | int | |
ebf56fd3 | 8223 | ada_is_aligner_type (struct type *type) |
14f9c5c9 | 8224 | { |
61ee279c | 8225 | type = ada_check_typedef (type); |
714e53ab | 8226 | |
5bf03f13 | 8227 | if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) |
714e53ab PH |
8228 | return 0; |
8229 | ||
14f9c5c9 | 8230 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT |
4c4b4cd2 PH |
8231 | && TYPE_NFIELDS (type) == 1 |
8232 | && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); | |
14f9c5c9 AS |
8233 | } |
8234 | ||
8235 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
4c4b4cd2 | 8236 | the parallel type. */ |
14f9c5c9 | 8237 | |
d2e4a39e AS |
8238 | struct type * |
8239 | ada_get_base_type (struct type *raw_type) | |
14f9c5c9 | 8240 | { |
d2e4a39e AS |
8241 | struct type *real_type_namer; |
8242 | struct type *raw_real_type; | |
14f9c5c9 AS |
8243 | |
8244 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
8245 | return raw_type; | |
8246 | ||
284614f0 JB |
8247 | if (ada_is_aligner_type (raw_type)) |
8248 | /* The encoding specifies that we should always use the aligner type. | |
8249 | So, even if this aligner type has an associated XVS type, we should | |
8250 | simply ignore it. | |
8251 | ||
8252 | According to the compiler gurus, an XVS type parallel to an aligner | |
8253 | type may exist because of a stabs limitation. In stabs, aligner | |
8254 | types are empty because the field has a variable-sized type, and | |
8255 | thus cannot actually be used as an aligner type. As a result, | |
8256 | we need the associated parallel XVS type to decode the type. | |
8257 | Since the policy in the compiler is to not change the internal | |
8258 | representation based on the debugging info format, we sometimes | |
8259 | end up having a redundant XVS type parallel to the aligner type. */ | |
8260 | return raw_type; | |
8261 | ||
14f9c5c9 | 8262 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); |
d2e4a39e | 8263 | if (real_type_namer == NULL |
14f9c5c9 AS |
8264 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT |
8265 | || TYPE_NFIELDS (real_type_namer) != 1) | |
8266 | return raw_type; | |
8267 | ||
f80d3ff2 JB |
8268 | if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) |
8269 | { | |
8270 | /* This is an older encoding form where the base type needs to be | |
8271 | looked up by name. We prefer the newer enconding because it is | |
8272 | more efficient. */ | |
8273 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
8274 | if (raw_real_type == NULL) | |
8275 | return raw_type; | |
8276 | else | |
8277 | return raw_real_type; | |
8278 | } | |
8279 | ||
8280 | /* The field in our XVS type is a reference to the base type. */ | |
8281 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); | |
d2e4a39e | 8282 | } |
14f9c5c9 | 8283 | |
4c4b4cd2 | 8284 | /* The type of value designated by TYPE, with all aligners removed. */ |
14f9c5c9 | 8285 | |
d2e4a39e AS |
8286 | struct type * |
8287 | ada_aligned_type (struct type *type) | |
14f9c5c9 AS |
8288 | { |
8289 | if (ada_is_aligner_type (type)) | |
8290 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
8291 | else | |
8292 | return ada_get_base_type (type); | |
8293 | } | |
8294 | ||
8295 | ||
8296 | /* The address of the aligned value in an object at address VALADDR | |
4c4b4cd2 | 8297 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ |
14f9c5c9 | 8298 | |
fc1a4b47 AC |
8299 | const gdb_byte * |
8300 | ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) | |
14f9c5c9 | 8301 | { |
d2e4a39e | 8302 | if (ada_is_aligner_type (type)) |
14f9c5c9 | 8303 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), |
4c4b4cd2 PH |
8304 | valaddr + |
8305 | TYPE_FIELD_BITPOS (type, | |
8306 | 0) / TARGET_CHAR_BIT); | |
14f9c5c9 AS |
8307 | else |
8308 | return valaddr; | |
8309 | } | |
8310 | ||
4c4b4cd2 PH |
8311 | |
8312 | ||
14f9c5c9 | 8313 | /* The printed representation of an enumeration literal with encoded |
4c4b4cd2 | 8314 | name NAME. The value is good to the next call of ada_enum_name. */ |
d2e4a39e AS |
8315 | const char * |
8316 | ada_enum_name (const char *name) | |
14f9c5c9 | 8317 | { |
4c4b4cd2 PH |
8318 | static char *result; |
8319 | static size_t result_len = 0; | |
d2e4a39e | 8320 | char *tmp; |
14f9c5c9 | 8321 | |
4c4b4cd2 PH |
8322 | /* First, unqualify the enumeration name: |
8323 | 1. Search for the last '.' character. If we find one, then skip | |
177b42fe | 8324 | all the preceding characters, the unqualified name starts |
76a01679 | 8325 | right after that dot. |
4c4b4cd2 | 8326 | 2. Otherwise, we may be debugging on a target where the compiler |
76a01679 JB |
8327 | translates dots into "__". Search forward for double underscores, |
8328 | but stop searching when we hit an overloading suffix, which is | |
8329 | of the form "__" followed by digits. */ | |
4c4b4cd2 | 8330 | |
c3e5cd34 PH |
8331 | tmp = strrchr (name, '.'); |
8332 | if (tmp != NULL) | |
4c4b4cd2 PH |
8333 | name = tmp + 1; |
8334 | else | |
14f9c5c9 | 8335 | { |
4c4b4cd2 PH |
8336 | while ((tmp = strstr (name, "__")) != NULL) |
8337 | { | |
8338 | if (isdigit (tmp[2])) | |
8339 | break; | |
8340 | else | |
8341 | name = tmp + 2; | |
8342 | } | |
14f9c5c9 AS |
8343 | } |
8344 | ||
8345 | if (name[0] == 'Q') | |
8346 | { | |
14f9c5c9 | 8347 | int v; |
5b4ee69b | 8348 | |
14f9c5c9 | 8349 | if (name[1] == 'U' || name[1] == 'W') |
4c4b4cd2 PH |
8350 | { |
8351 | if (sscanf (name + 2, "%x", &v) != 1) | |
8352 | return name; | |
8353 | } | |
14f9c5c9 | 8354 | else |
4c4b4cd2 | 8355 | return name; |
14f9c5c9 | 8356 | |
4c4b4cd2 | 8357 | GROW_VECT (result, result_len, 16); |
14f9c5c9 | 8358 | if (isascii (v) && isprint (v)) |
88c15c34 | 8359 | xsnprintf (result, result_len, "'%c'", v); |
14f9c5c9 | 8360 | else if (name[1] == 'U') |
88c15c34 | 8361 | xsnprintf (result, result_len, "[\"%02x\"]", v); |
14f9c5c9 | 8362 | else |
88c15c34 | 8363 | xsnprintf (result, result_len, "[\"%04x\"]", v); |
14f9c5c9 AS |
8364 | |
8365 | return result; | |
8366 | } | |
d2e4a39e | 8367 | else |
4c4b4cd2 | 8368 | { |
c3e5cd34 PH |
8369 | tmp = strstr (name, "__"); |
8370 | if (tmp == NULL) | |
8371 | tmp = strstr (name, "$"); | |
8372 | if (tmp != NULL) | |
4c4b4cd2 PH |
8373 | { |
8374 | GROW_VECT (result, result_len, tmp - name + 1); | |
8375 | strncpy (result, name, tmp - name); | |
8376 | result[tmp - name] = '\0'; | |
8377 | return result; | |
8378 | } | |
8379 | ||
8380 | return name; | |
8381 | } | |
14f9c5c9 AS |
8382 | } |
8383 | ||
14f9c5c9 AS |
8384 | /* Evaluate the subexpression of EXP starting at *POS as for |
8385 | evaluate_type, updating *POS to point just past the evaluated | |
4c4b4cd2 | 8386 | expression. */ |
14f9c5c9 | 8387 | |
d2e4a39e AS |
8388 | static struct value * |
8389 | evaluate_subexp_type (struct expression *exp, int *pos) | |
14f9c5c9 | 8390 | { |
4b27a620 | 8391 | return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); |
14f9c5c9 AS |
8392 | } |
8393 | ||
8394 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
4c4b4cd2 | 8395 | value it wraps. */ |
14f9c5c9 | 8396 | |
d2e4a39e AS |
8397 | static struct value * |
8398 | unwrap_value (struct value *val) | |
14f9c5c9 | 8399 | { |
df407dfe | 8400 | struct type *type = ada_check_typedef (value_type (val)); |
5b4ee69b | 8401 | |
14f9c5c9 AS |
8402 | if (ada_is_aligner_type (type)) |
8403 | { | |
de4d072f | 8404 | struct value *v = ada_value_struct_elt (val, "F", 0); |
df407dfe | 8405 | struct type *val_type = ada_check_typedef (value_type (v)); |
5b4ee69b | 8406 | |
14f9c5c9 | 8407 | if (ada_type_name (val_type) == NULL) |
4c4b4cd2 | 8408 | TYPE_NAME (val_type) = ada_type_name (type); |
14f9c5c9 AS |
8409 | |
8410 | return unwrap_value (v); | |
8411 | } | |
d2e4a39e | 8412 | else |
14f9c5c9 | 8413 | { |
d2e4a39e | 8414 | struct type *raw_real_type = |
61ee279c | 8415 | ada_check_typedef (ada_get_base_type (type)); |
d2e4a39e | 8416 | |
5bf03f13 JB |
8417 | /* If there is no parallel XVS or XVE type, then the value is |
8418 | already unwrapped. Return it without further modification. */ | |
8419 | if ((type == raw_real_type) | |
8420 | && ada_find_parallel_type (type, "___XVE") == NULL) | |
8421 | return val; | |
14f9c5c9 | 8422 | |
d2e4a39e | 8423 | return |
4c4b4cd2 PH |
8424 | coerce_unspec_val_to_type |
8425 | (val, ada_to_fixed_type (raw_real_type, 0, | |
42ae5230 | 8426 | value_address (val), |
1ed6ede0 | 8427 | NULL, 1)); |
14f9c5c9 AS |
8428 | } |
8429 | } | |
d2e4a39e AS |
8430 | |
8431 | static struct value * | |
8432 | cast_to_fixed (struct type *type, struct value *arg) | |
14f9c5c9 AS |
8433 | { |
8434 | LONGEST val; | |
8435 | ||
df407dfe | 8436 | if (type == value_type (arg)) |
14f9c5c9 | 8437 | return arg; |
df407dfe | 8438 | else if (ada_is_fixed_point_type (value_type (arg))) |
d2e4a39e | 8439 | val = ada_float_to_fixed (type, |
df407dfe | 8440 | ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8441 | value_as_long (arg))); |
d2e4a39e | 8442 | else |
14f9c5c9 | 8443 | { |
a53b7a21 | 8444 | DOUBLEST argd = value_as_double (arg); |
5b4ee69b | 8445 | |
14f9c5c9 AS |
8446 | val = ada_float_to_fixed (type, argd); |
8447 | } | |
8448 | ||
8449 | return value_from_longest (type, val); | |
8450 | } | |
8451 | ||
d2e4a39e | 8452 | static struct value * |
a53b7a21 | 8453 | cast_from_fixed (struct type *type, struct value *arg) |
14f9c5c9 | 8454 | { |
df407dfe | 8455 | DOUBLEST val = ada_fixed_to_float (value_type (arg), |
4c4b4cd2 | 8456 | value_as_long (arg)); |
5b4ee69b | 8457 | |
a53b7a21 | 8458 | return value_from_double (type, val); |
14f9c5c9 AS |
8459 | } |
8460 | ||
4c4b4cd2 PH |
8461 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and |
8462 | return the converted value. */ | |
8463 | ||
d2e4a39e AS |
8464 | static struct value * |
8465 | coerce_for_assign (struct type *type, struct value *val) | |
14f9c5c9 | 8466 | { |
df407dfe | 8467 | struct type *type2 = value_type (val); |
5b4ee69b | 8468 | |
14f9c5c9 AS |
8469 | if (type == type2) |
8470 | return val; | |
8471 | ||
61ee279c PH |
8472 | type2 = ada_check_typedef (type2); |
8473 | type = ada_check_typedef (type); | |
14f9c5c9 | 8474 | |
d2e4a39e AS |
8475 | if (TYPE_CODE (type2) == TYPE_CODE_PTR |
8476 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
14f9c5c9 AS |
8477 | { |
8478 | val = ada_value_ind (val); | |
df407dfe | 8479 | type2 = value_type (val); |
14f9c5c9 AS |
8480 | } |
8481 | ||
d2e4a39e | 8482 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY |
14f9c5c9 AS |
8483 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) |
8484 | { | |
8485 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
4c4b4cd2 PH |
8486 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) |
8487 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
323e0a4a | 8488 | error (_("Incompatible types in assignment")); |
04624583 | 8489 | deprecated_set_value_type (val, type); |
14f9c5c9 | 8490 | } |
d2e4a39e | 8491 | return val; |
14f9c5c9 AS |
8492 | } |
8493 | ||
4c4b4cd2 PH |
8494 | static struct value * |
8495 | ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | |
8496 | { | |
8497 | struct value *val; | |
8498 | struct type *type1, *type2; | |
8499 | LONGEST v, v1, v2; | |
8500 | ||
994b9211 AC |
8501 | arg1 = coerce_ref (arg1); |
8502 | arg2 = coerce_ref (arg2); | |
18af8284 JB |
8503 | type1 = get_base_type (ada_check_typedef (value_type (arg1))); |
8504 | type2 = get_base_type (ada_check_typedef (value_type (arg2))); | |
4c4b4cd2 | 8505 | |
76a01679 JB |
8506 | if (TYPE_CODE (type1) != TYPE_CODE_INT |
8507 | || TYPE_CODE (type2) != TYPE_CODE_INT) | |
4c4b4cd2 PH |
8508 | return value_binop (arg1, arg2, op); |
8509 | ||
76a01679 | 8510 | switch (op) |
4c4b4cd2 PH |
8511 | { |
8512 | case BINOP_MOD: | |
8513 | case BINOP_DIV: | |
8514 | case BINOP_REM: | |
8515 | break; | |
8516 | default: | |
8517 | return value_binop (arg1, arg2, op); | |
8518 | } | |
8519 | ||
8520 | v2 = value_as_long (arg2); | |
8521 | if (v2 == 0) | |
323e0a4a | 8522 | error (_("second operand of %s must not be zero."), op_string (op)); |
4c4b4cd2 PH |
8523 | |
8524 | if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) | |
8525 | return value_binop (arg1, arg2, op); | |
8526 | ||
8527 | v1 = value_as_long (arg1); | |
8528 | switch (op) | |
8529 | { | |
8530 | case BINOP_DIV: | |
8531 | v = v1 / v2; | |
76a01679 JB |
8532 | if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) |
8533 | v += v > 0 ? -1 : 1; | |
4c4b4cd2 PH |
8534 | break; |
8535 | case BINOP_REM: | |
8536 | v = v1 % v2; | |
76a01679 JB |
8537 | if (v * v1 < 0) |
8538 | v -= v2; | |
4c4b4cd2 PH |
8539 | break; |
8540 | default: | |
8541 | /* Should not reach this point. */ | |
8542 | v = 0; | |
8543 | } | |
8544 | ||
8545 | val = allocate_value (type1); | |
990a07ab | 8546 | store_unsigned_integer (value_contents_raw (val), |
e17a4113 UW |
8547 | TYPE_LENGTH (value_type (val)), |
8548 | gdbarch_byte_order (get_type_arch (type1)), v); | |
4c4b4cd2 PH |
8549 | return val; |
8550 | } | |
8551 | ||
8552 | static int | |
8553 | ada_value_equal (struct value *arg1, struct value *arg2) | |
8554 | { | |
df407dfe AC |
8555 | if (ada_is_direct_array_type (value_type (arg1)) |
8556 | || ada_is_direct_array_type (value_type (arg2))) | |
4c4b4cd2 | 8557 | { |
f58b38bf JB |
8558 | /* Automatically dereference any array reference before |
8559 | we attempt to perform the comparison. */ | |
8560 | arg1 = ada_coerce_ref (arg1); | |
8561 | arg2 = ada_coerce_ref (arg2); | |
8562 | ||
4c4b4cd2 PH |
8563 | arg1 = ada_coerce_to_simple_array (arg1); |
8564 | arg2 = ada_coerce_to_simple_array (arg2); | |
df407dfe AC |
8565 | if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY |
8566 | || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) | |
323e0a4a | 8567 | error (_("Attempt to compare array with non-array")); |
4c4b4cd2 | 8568 | /* FIXME: The following works only for types whose |
76a01679 JB |
8569 | representations use all bits (no padding or undefined bits) |
8570 | and do not have user-defined equality. */ | |
8571 | return | |
df407dfe | 8572 | TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) |
0fd88904 | 8573 | && memcmp (value_contents (arg1), value_contents (arg2), |
df407dfe | 8574 | TYPE_LENGTH (value_type (arg1))) == 0; |
4c4b4cd2 PH |
8575 | } |
8576 | return value_equal (arg1, arg2); | |
8577 | } | |
8578 | ||
52ce6436 PH |
8579 | /* Total number of component associations in the aggregate starting at |
8580 | index PC in EXP. Assumes that index PC is the start of an | |
0963b4bd | 8581 | OP_AGGREGATE. */ |
52ce6436 PH |
8582 | |
8583 | static int | |
8584 | num_component_specs (struct expression *exp, int pc) | |
8585 | { | |
8586 | int n, m, i; | |
5b4ee69b | 8587 | |
52ce6436 PH |
8588 | m = exp->elts[pc + 1].longconst; |
8589 | pc += 3; | |
8590 | n = 0; | |
8591 | for (i = 0; i < m; i += 1) | |
8592 | { | |
8593 | switch (exp->elts[pc].opcode) | |
8594 | { | |
8595 | default: | |
8596 | n += 1; | |
8597 | break; | |
8598 | case OP_CHOICES: | |
8599 | n += exp->elts[pc + 1].longconst; | |
8600 | break; | |
8601 | } | |
8602 | ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); | |
8603 | } | |
8604 | return n; | |
8605 | } | |
8606 | ||
8607 | /* Assign the result of evaluating EXP starting at *POS to the INDEXth | |
8608 | component of LHS (a simple array or a record), updating *POS past | |
8609 | the expression, assuming that LHS is contained in CONTAINER. Does | |
8610 | not modify the inferior's memory, nor does it modify LHS (unless | |
8611 | LHS == CONTAINER). */ | |
8612 | ||
8613 | static void | |
8614 | assign_component (struct value *container, struct value *lhs, LONGEST index, | |
8615 | struct expression *exp, int *pos) | |
8616 | { | |
8617 | struct value *mark = value_mark (); | |
8618 | struct value *elt; | |
5b4ee69b | 8619 | |
52ce6436 PH |
8620 | if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) |
8621 | { | |
22601c15 UW |
8622 | struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; |
8623 | struct value *index_val = value_from_longest (index_type, index); | |
5b4ee69b | 8624 | |
52ce6436 PH |
8625 | elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); |
8626 | } | |
8627 | else | |
8628 | { | |
8629 | elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); | |
8630 | elt = ada_to_fixed_value (unwrap_value (elt)); | |
8631 | } | |
8632 | ||
8633 | if (exp->elts[*pos].opcode == OP_AGGREGATE) | |
8634 | assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); | |
8635 | else | |
8636 | value_assign_to_component (container, elt, | |
8637 | ada_evaluate_subexp (NULL, exp, pos, | |
8638 | EVAL_NORMAL)); | |
8639 | ||
8640 | value_free_to_mark (mark); | |
8641 | } | |
8642 | ||
8643 | /* Assuming that LHS represents an lvalue having a record or array | |
8644 | type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment | |
8645 | of that aggregate's value to LHS, advancing *POS past the | |
8646 | aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an | |
8647 | lvalue containing LHS (possibly LHS itself). Does not modify | |
8648 | the inferior's memory, nor does it modify the contents of | |
0963b4bd | 8649 | LHS (unless == CONTAINER). Returns the modified CONTAINER. */ |
52ce6436 PH |
8650 | |
8651 | static struct value * | |
8652 | assign_aggregate (struct value *container, | |
8653 | struct value *lhs, struct expression *exp, | |
8654 | int *pos, enum noside noside) | |
8655 | { | |
8656 | struct type *lhs_type; | |
8657 | int n = exp->elts[*pos+1].longconst; | |
8658 | LONGEST low_index, high_index; | |
8659 | int num_specs; | |
8660 | LONGEST *indices; | |
8661 | int max_indices, num_indices; | |
8662 | int is_array_aggregate; | |
8663 | int i; | |
52ce6436 PH |
8664 | |
8665 | *pos += 3; | |
8666 | if (noside != EVAL_NORMAL) | |
8667 | { | |
52ce6436 PH |
8668 | for (i = 0; i < n; i += 1) |
8669 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
8670 | return container; | |
8671 | } | |
8672 | ||
8673 | container = ada_coerce_ref (container); | |
8674 | if (ada_is_direct_array_type (value_type (container))) | |
8675 | container = ada_coerce_to_simple_array (container); | |
8676 | lhs = ada_coerce_ref (lhs); | |
8677 | if (!deprecated_value_modifiable (lhs)) | |
8678 | error (_("Left operand of assignment is not a modifiable lvalue.")); | |
8679 | ||
8680 | lhs_type = value_type (lhs); | |
8681 | if (ada_is_direct_array_type (lhs_type)) | |
8682 | { | |
8683 | lhs = ada_coerce_to_simple_array (lhs); | |
8684 | lhs_type = value_type (lhs); | |
8685 | low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); | |
8686 | high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); | |
8687 | is_array_aggregate = 1; | |
8688 | } | |
8689 | else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) | |
8690 | { | |
8691 | low_index = 0; | |
8692 | high_index = num_visible_fields (lhs_type) - 1; | |
8693 | is_array_aggregate = 0; | |
8694 | } | |
8695 | else | |
8696 | error (_("Left-hand side must be array or record.")); | |
8697 | ||
8698 | num_specs = num_component_specs (exp, *pos - 3); | |
8699 | max_indices = 4 * num_specs + 4; | |
8700 | indices = alloca (max_indices * sizeof (indices[0])); | |
8701 | indices[0] = indices[1] = low_index - 1; | |
8702 | indices[2] = indices[3] = high_index + 1; | |
8703 | num_indices = 4; | |
8704 | ||
8705 | for (i = 0; i < n; i += 1) | |
8706 | { | |
8707 | switch (exp->elts[*pos].opcode) | |
8708 | { | |
8709 | case OP_CHOICES: | |
8710 | aggregate_assign_from_choices (container, lhs, exp, pos, indices, | |
8711 | &num_indices, max_indices, | |
8712 | low_index, high_index); | |
8713 | break; | |
8714 | case OP_POSITIONAL: | |
8715 | aggregate_assign_positional (container, lhs, exp, pos, indices, | |
8716 | &num_indices, max_indices, | |
8717 | low_index, high_index); | |
8718 | break; | |
8719 | case OP_OTHERS: | |
8720 | if (i != n-1) | |
8721 | error (_("Misplaced 'others' clause")); | |
8722 | aggregate_assign_others (container, lhs, exp, pos, indices, | |
8723 | num_indices, low_index, high_index); | |
8724 | break; | |
8725 | default: | |
8726 | error (_("Internal error: bad aggregate clause")); | |
8727 | } | |
8728 | } | |
8729 | ||
8730 | return container; | |
8731 | } | |
8732 | ||
8733 | /* Assign into the component of LHS indexed by the OP_POSITIONAL | |
8734 | construct at *POS, updating *POS past the construct, given that | |
8735 | the positions are relative to lower bound LOW, where HIGH is the | |
8736 | upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] | |
8737 | updating *NUM_INDICES as needed. CONTAINER is as for | |
0963b4bd | 8738 | assign_aggregate. */ |
52ce6436 PH |
8739 | static void |
8740 | aggregate_assign_positional (struct value *container, | |
8741 | struct value *lhs, struct expression *exp, | |
8742 | int *pos, LONGEST *indices, int *num_indices, | |
8743 | int max_indices, LONGEST low, LONGEST high) | |
8744 | { | |
8745 | LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; | |
8746 | ||
8747 | if (ind - 1 == high) | |
e1d5a0d2 | 8748 | warning (_("Extra components in aggregate ignored.")); |
52ce6436 PH |
8749 | if (ind <= high) |
8750 | { | |
8751 | add_component_interval (ind, ind, indices, num_indices, max_indices); | |
8752 | *pos += 3; | |
8753 | assign_component (container, lhs, ind, exp, pos); | |
8754 | } | |
8755 | else | |
8756 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8757 | } | |
8758 | ||
8759 | /* Assign into the components of LHS indexed by the OP_CHOICES | |
8760 | construct at *POS, updating *POS past the construct, given that | |
8761 | the allowable indices are LOW..HIGH. Record the indices assigned | |
8762 | to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as | |
0963b4bd | 8763 | needed. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8764 | static void |
8765 | aggregate_assign_from_choices (struct value *container, | |
8766 | struct value *lhs, struct expression *exp, | |
8767 | int *pos, LONGEST *indices, int *num_indices, | |
8768 | int max_indices, LONGEST low, LONGEST high) | |
8769 | { | |
8770 | int j; | |
8771 | int n_choices = longest_to_int (exp->elts[*pos+1].longconst); | |
8772 | int choice_pos, expr_pc; | |
8773 | int is_array = ada_is_direct_array_type (value_type (lhs)); | |
8774 | ||
8775 | choice_pos = *pos += 3; | |
8776 | ||
8777 | for (j = 0; j < n_choices; j += 1) | |
8778 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8779 | expr_pc = *pos; | |
8780 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8781 | ||
8782 | for (j = 0; j < n_choices; j += 1) | |
8783 | { | |
8784 | LONGEST lower, upper; | |
8785 | enum exp_opcode op = exp->elts[choice_pos].opcode; | |
5b4ee69b | 8786 | |
52ce6436 PH |
8787 | if (op == OP_DISCRETE_RANGE) |
8788 | { | |
8789 | choice_pos += 1; | |
8790 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8791 | EVAL_NORMAL)); | |
8792 | upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, | |
8793 | EVAL_NORMAL)); | |
8794 | } | |
8795 | else if (is_array) | |
8796 | { | |
8797 | lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, | |
8798 | EVAL_NORMAL)); | |
8799 | upper = lower; | |
8800 | } | |
8801 | else | |
8802 | { | |
8803 | int ind; | |
8804 | char *name; | |
5b4ee69b | 8805 | |
52ce6436 PH |
8806 | switch (op) |
8807 | { | |
8808 | case OP_NAME: | |
8809 | name = &exp->elts[choice_pos + 2].string; | |
8810 | break; | |
8811 | case OP_VAR_VALUE: | |
8812 | name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); | |
8813 | break; | |
8814 | default: | |
8815 | error (_("Invalid record component association.")); | |
8816 | } | |
8817 | ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); | |
8818 | ind = 0; | |
8819 | if (! find_struct_field (name, value_type (lhs), 0, | |
8820 | NULL, NULL, NULL, NULL, &ind)) | |
8821 | error (_("Unknown component name: %s."), name); | |
8822 | lower = upper = ind; | |
8823 | } | |
8824 | ||
8825 | if (lower <= upper && (lower < low || upper > high)) | |
8826 | error (_("Index in component association out of bounds.")); | |
8827 | ||
8828 | add_component_interval (lower, upper, indices, num_indices, | |
8829 | max_indices); | |
8830 | while (lower <= upper) | |
8831 | { | |
8832 | int pos1; | |
5b4ee69b | 8833 | |
52ce6436 PH |
8834 | pos1 = expr_pc; |
8835 | assign_component (container, lhs, lower, exp, &pos1); | |
8836 | lower += 1; | |
8837 | } | |
8838 | } | |
8839 | } | |
8840 | ||
8841 | /* Assign the value of the expression in the OP_OTHERS construct in | |
8842 | EXP at *POS into the components of LHS indexed from LOW .. HIGH that | |
8843 | have not been previously assigned. The index intervals already assigned | |
8844 | are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the | |
0963b4bd | 8845 | OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ |
52ce6436 PH |
8846 | static void |
8847 | aggregate_assign_others (struct value *container, | |
8848 | struct value *lhs, struct expression *exp, | |
8849 | int *pos, LONGEST *indices, int num_indices, | |
8850 | LONGEST low, LONGEST high) | |
8851 | { | |
8852 | int i; | |
5ce64950 | 8853 | int expr_pc = *pos + 1; |
52ce6436 PH |
8854 | |
8855 | for (i = 0; i < num_indices - 2; i += 2) | |
8856 | { | |
8857 | LONGEST ind; | |
5b4ee69b | 8858 | |
52ce6436 PH |
8859 | for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) |
8860 | { | |
5ce64950 | 8861 | int localpos; |
5b4ee69b | 8862 | |
5ce64950 MS |
8863 | localpos = expr_pc; |
8864 | assign_component (container, lhs, ind, exp, &localpos); | |
52ce6436 PH |
8865 | } |
8866 | } | |
8867 | ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); | |
8868 | } | |
8869 | ||
8870 | /* Add the interval [LOW .. HIGH] to the sorted set of intervals | |
8871 | [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], | |
8872 | modifying *SIZE as needed. It is an error if *SIZE exceeds | |
8873 | MAX_SIZE. The resulting intervals do not overlap. */ | |
8874 | static void | |
8875 | add_component_interval (LONGEST low, LONGEST high, | |
8876 | LONGEST* indices, int *size, int max_size) | |
8877 | { | |
8878 | int i, j; | |
5b4ee69b | 8879 | |
52ce6436 PH |
8880 | for (i = 0; i < *size; i += 2) { |
8881 | if (high >= indices[i] && low <= indices[i + 1]) | |
8882 | { | |
8883 | int kh; | |
5b4ee69b | 8884 | |
52ce6436 PH |
8885 | for (kh = i + 2; kh < *size; kh += 2) |
8886 | if (high < indices[kh]) | |
8887 | break; | |
8888 | if (low < indices[i]) | |
8889 | indices[i] = low; | |
8890 | indices[i + 1] = indices[kh - 1]; | |
8891 | if (high > indices[i + 1]) | |
8892 | indices[i + 1] = high; | |
8893 | memcpy (indices + i + 2, indices + kh, *size - kh); | |
8894 | *size -= kh - i - 2; | |
8895 | return; | |
8896 | } | |
8897 | else if (high < indices[i]) | |
8898 | break; | |
8899 | } | |
8900 | ||
8901 | if (*size == max_size) | |
8902 | error (_("Internal error: miscounted aggregate components.")); | |
8903 | *size += 2; | |
8904 | for (j = *size-1; j >= i+2; j -= 1) | |
8905 | indices[j] = indices[j - 2]; | |
8906 | indices[i] = low; | |
8907 | indices[i + 1] = high; | |
8908 | } | |
8909 | ||
6e48bd2c JB |
8910 | /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 |
8911 | is different. */ | |
8912 | ||
8913 | static struct value * | |
8914 | ada_value_cast (struct type *type, struct value *arg2, enum noside noside) | |
8915 | { | |
8916 | if (type == ada_check_typedef (value_type (arg2))) | |
8917 | return arg2; | |
8918 | ||
8919 | if (ada_is_fixed_point_type (type)) | |
8920 | return (cast_to_fixed (type, arg2)); | |
8921 | ||
8922 | if (ada_is_fixed_point_type (value_type (arg2))) | |
a53b7a21 | 8923 | return cast_from_fixed (type, arg2); |
6e48bd2c JB |
8924 | |
8925 | return value_cast (type, arg2); | |
8926 | } | |
8927 | ||
284614f0 JB |
8928 | /* Evaluating Ada expressions, and printing their result. |
8929 | ------------------------------------------------------ | |
8930 | ||
21649b50 JB |
8931 | 1. Introduction: |
8932 | ---------------- | |
8933 | ||
284614f0 JB |
8934 | We usually evaluate an Ada expression in order to print its value. |
8935 | We also evaluate an expression in order to print its type, which | |
8936 | happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, | |
8937 | but we'll focus mostly on the EVAL_NORMAL phase. In practice, the | |
8938 | EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of | |
8939 | the evaluation compared to the EVAL_NORMAL, but is otherwise very | |
8940 | similar. | |
8941 | ||
8942 | Evaluating expressions is a little more complicated for Ada entities | |
8943 | than it is for entities in languages such as C. The main reason for | |
8944 | this is that Ada provides types whose definition might be dynamic. | |
8945 | One example of such types is variant records. Or another example | |
8946 | would be an array whose bounds can only be known at run time. | |
8947 | ||
8948 | The following description is a general guide as to what should be | |
8949 | done (and what should NOT be done) in order to evaluate an expression | |
8950 | involving such types, and when. This does not cover how the semantic | |
8951 | information is encoded by GNAT as this is covered separatly. For the | |
8952 | document used as the reference for the GNAT encoding, see exp_dbug.ads | |
8953 | in the GNAT sources. | |
8954 | ||
8955 | Ideally, we should embed each part of this description next to its | |
8956 | associated code. Unfortunately, the amount of code is so vast right | |
8957 | now that it's hard to see whether the code handling a particular | |
8958 | situation might be duplicated or not. One day, when the code is | |
8959 | cleaned up, this guide might become redundant with the comments | |
8960 | inserted in the code, and we might want to remove it. | |
8961 | ||
21649b50 JB |
8962 | 2. ``Fixing'' an Entity, the Simple Case: |
8963 | ----------------------------------------- | |
8964 | ||
284614f0 JB |
8965 | When evaluating Ada expressions, the tricky issue is that they may |
8966 | reference entities whose type contents and size are not statically | |
8967 | known. Consider for instance a variant record: | |
8968 | ||
8969 | type Rec (Empty : Boolean := True) is record | |
8970 | case Empty is | |
8971 | when True => null; | |
8972 | when False => Value : Integer; | |
8973 | end case; | |
8974 | end record; | |
8975 | Yes : Rec := (Empty => False, Value => 1); | |
8976 | No : Rec := (empty => True); | |
8977 | ||
8978 | The size and contents of that record depends on the value of the | |
8979 | descriminant (Rec.Empty). At this point, neither the debugging | |
8980 | information nor the associated type structure in GDB are able to | |
8981 | express such dynamic types. So what the debugger does is to create | |
8982 | "fixed" versions of the type that applies to the specific object. | |
8983 | We also informally refer to this opperation as "fixing" an object, | |
8984 | which means creating its associated fixed type. | |
8985 | ||
8986 | Example: when printing the value of variable "Yes" above, its fixed | |
8987 | type would look like this: | |
8988 | ||
8989 | type Rec is record | |
8990 | Empty : Boolean; | |
8991 | Value : Integer; | |
8992 | end record; | |
8993 | ||
8994 | On the other hand, if we printed the value of "No", its fixed type | |
8995 | would become: | |
8996 | ||
8997 | type Rec is record | |
8998 | Empty : Boolean; | |
8999 | end record; | |
9000 | ||
9001 | Things become a little more complicated when trying to fix an entity | |
9002 | with a dynamic type that directly contains another dynamic type, | |
9003 | such as an array of variant records, for instance. There are | |
9004 | two possible cases: Arrays, and records. | |
9005 | ||
21649b50 JB |
9006 | 3. ``Fixing'' Arrays: |
9007 | --------------------- | |
9008 | ||
9009 | The type structure in GDB describes an array in terms of its bounds, | |
9010 | and the type of its elements. By design, all elements in the array | |
9011 | have the same type and we cannot represent an array of variant elements | |
9012 | using the current type structure in GDB. When fixing an array, | |
9013 | we cannot fix the array element, as we would potentially need one | |
9014 | fixed type per element of the array. As a result, the best we can do | |
9015 | when fixing an array is to produce an array whose bounds and size | |
9016 | are correct (allowing us to read it from memory), but without having | |
9017 | touched its element type. Fixing each element will be done later, | |
9018 | when (if) necessary. | |
9019 | ||
9020 | Arrays are a little simpler to handle than records, because the same | |
9021 | amount of memory is allocated for each element of the array, even if | |
1b536f04 | 9022 | the amount of space actually used by each element differs from element |
21649b50 | 9023 | to element. Consider for instance the following array of type Rec: |
284614f0 JB |
9024 | |
9025 | type Rec_Array is array (1 .. 2) of Rec; | |
9026 | ||
1b536f04 JB |
9027 | The actual amount of memory occupied by each element might be different |
9028 | from element to element, depending on the value of their discriminant. | |
21649b50 | 9029 | But the amount of space reserved for each element in the array remains |
1b536f04 | 9030 | fixed regardless. So we simply need to compute that size using |
21649b50 JB |
9031 | the debugging information available, from which we can then determine |
9032 | the array size (we multiply the number of elements of the array by | |
9033 | the size of each element). | |
9034 | ||
9035 | The simplest case is when we have an array of a constrained element | |
9036 | type. For instance, consider the following type declarations: | |
9037 | ||
9038 | type Bounded_String (Max_Size : Integer) is | |
9039 | Length : Integer; | |
9040 | Buffer : String (1 .. Max_Size); | |
9041 | end record; | |
9042 | type Bounded_String_Array is array (1 ..2) of Bounded_String (80); | |
9043 | ||
9044 | In this case, the compiler describes the array as an array of | |
9045 | variable-size elements (identified by its XVS suffix) for which | |
9046 | the size can be read in the parallel XVZ variable. | |
9047 | ||
9048 | In the case of an array of an unconstrained element type, the compiler | |
9049 | wraps the array element inside a private PAD type. This type should not | |
9050 | be shown to the user, and must be "unwrap"'ed before printing. Note | |
284614f0 JB |
9051 | that we also use the adjective "aligner" in our code to designate |
9052 | these wrapper types. | |
9053 | ||
1b536f04 | 9054 | In some cases, the size allocated for each element is statically |
21649b50 JB |
9055 | known. In that case, the PAD type already has the correct size, |
9056 | and the array element should remain unfixed. | |
9057 | ||
9058 | But there are cases when this size is not statically known. | |
9059 | For instance, assuming that "Five" is an integer variable: | |
284614f0 JB |
9060 | |
9061 | type Dynamic is array (1 .. Five) of Integer; | |
9062 | type Wrapper (Has_Length : Boolean := False) is record | |
9063 | Data : Dynamic; | |
9064 | case Has_Length is | |
9065 | when True => Length : Integer; | |
9066 | when False => null; | |
9067 | end case; | |
9068 | end record; | |
9069 | type Wrapper_Array is array (1 .. 2) of Wrapper; | |
9070 | ||
9071 | Hello : Wrapper_Array := (others => (Has_Length => True, | |
9072 | Data => (others => 17), | |
9073 | Length => 1)); | |
9074 | ||
9075 | ||
9076 | The debugging info would describe variable Hello as being an | |
9077 | array of a PAD type. The size of that PAD type is not statically | |
9078 | known, but can be determined using a parallel XVZ variable. | |
9079 | In that case, a copy of the PAD type with the correct size should | |
9080 | be used for the fixed array. | |
9081 | ||
21649b50 JB |
9082 | 3. ``Fixing'' record type objects: |
9083 | ---------------------------------- | |
9084 | ||
9085 | Things are slightly different from arrays in the case of dynamic | |
284614f0 JB |
9086 | record types. In this case, in order to compute the associated |
9087 | fixed type, we need to determine the size and offset of each of | |
9088 | its components. This, in turn, requires us to compute the fixed | |
9089 | type of each of these components. | |
9090 | ||
9091 | Consider for instance the example: | |
9092 | ||
9093 | type Bounded_String (Max_Size : Natural) is record | |
9094 | Str : String (1 .. Max_Size); | |
9095 | Length : Natural; | |
9096 | end record; | |
9097 | My_String : Bounded_String (Max_Size => 10); | |
9098 | ||
9099 | In that case, the position of field "Length" depends on the size | |
9100 | of field Str, which itself depends on the value of the Max_Size | |
21649b50 | 9101 | discriminant. In order to fix the type of variable My_String, |
284614f0 JB |
9102 | we need to fix the type of field Str. Therefore, fixing a variant |
9103 | record requires us to fix each of its components. | |
9104 | ||
9105 | However, if a component does not have a dynamic size, the component | |
9106 | should not be fixed. In particular, fields that use a PAD type | |
9107 | should not fixed. Here is an example where this might happen | |
9108 | (assuming type Rec above): | |
9109 | ||
9110 | type Container (Big : Boolean) is record | |
9111 | First : Rec; | |
9112 | After : Integer; | |
9113 | case Big is | |
9114 | when True => Another : Integer; | |
9115 | when False => null; | |
9116 | end case; | |
9117 | end record; | |
9118 | My_Container : Container := (Big => False, | |
9119 | First => (Empty => True), | |
9120 | After => 42); | |
9121 | ||
9122 | In that example, the compiler creates a PAD type for component First, | |
9123 | whose size is constant, and then positions the component After just | |
9124 | right after it. The offset of component After is therefore constant | |
9125 | in this case. | |
9126 | ||
9127 | The debugger computes the position of each field based on an algorithm | |
9128 | that uses, among other things, the actual position and size of the field | |
21649b50 JB |
9129 | preceding it. Let's now imagine that the user is trying to print |
9130 | the value of My_Container. If the type fixing was recursive, we would | |
284614f0 JB |
9131 | end up computing the offset of field After based on the size of the |
9132 | fixed version of field First. And since in our example First has | |
9133 | only one actual field, the size of the fixed type is actually smaller | |
9134 | than the amount of space allocated to that field, and thus we would | |
9135 | compute the wrong offset of field After. | |
9136 | ||
21649b50 JB |
9137 | To make things more complicated, we need to watch out for dynamic |
9138 | components of variant records (identified by the ___XVL suffix in | |
9139 | the component name). Even if the target type is a PAD type, the size | |
9140 | of that type might not be statically known. So the PAD type needs | |
9141 | to be unwrapped and the resulting type needs to be fixed. Otherwise, | |
9142 | we might end up with the wrong size for our component. This can be | |
9143 | observed with the following type declarations: | |
284614f0 JB |
9144 | |
9145 | type Octal is new Integer range 0 .. 7; | |
9146 | type Octal_Array is array (Positive range <>) of Octal; | |
9147 | pragma Pack (Octal_Array); | |
9148 | ||
9149 | type Octal_Buffer (Size : Positive) is record | |
9150 | Buffer : Octal_Array (1 .. Size); | |
9151 | Length : Integer; | |
9152 | end record; | |
9153 | ||
9154 | In that case, Buffer is a PAD type whose size is unset and needs | |
9155 | to be computed by fixing the unwrapped type. | |
9156 | ||
21649b50 JB |
9157 | 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: |
9158 | ---------------------------------------------------------- | |
9159 | ||
9160 | Lastly, when should the sub-elements of an entity that remained unfixed | |
284614f0 JB |
9161 | thus far, be actually fixed? |
9162 | ||
9163 | The answer is: Only when referencing that element. For instance | |
9164 | when selecting one component of a record, this specific component | |
9165 | should be fixed at that point in time. Or when printing the value | |
9166 | of a record, each component should be fixed before its value gets | |
9167 | printed. Similarly for arrays, the element of the array should be | |
9168 | fixed when printing each element of the array, or when extracting | |
9169 | one element out of that array. On the other hand, fixing should | |
9170 | not be performed on the elements when taking a slice of an array! | |
9171 | ||
9172 | Note that one of the side-effects of miscomputing the offset and | |
9173 | size of each field is that we end up also miscomputing the size | |
9174 | of the containing type. This can have adverse results when computing | |
9175 | the value of an entity. GDB fetches the value of an entity based | |
9176 | on the size of its type, and thus a wrong size causes GDB to fetch | |
9177 | the wrong amount of memory. In the case where the computed size is | |
9178 | too small, GDB fetches too little data to print the value of our | |
9179 | entiry. Results in this case as unpredicatble, as we usually read | |
9180 | past the buffer containing the data =:-o. */ | |
9181 | ||
9182 | /* Implement the evaluate_exp routine in the exp_descriptor structure | |
9183 | for the Ada language. */ | |
9184 | ||
52ce6436 | 9185 | static struct value * |
ebf56fd3 | 9186 | ada_evaluate_subexp (struct type *expect_type, struct expression *exp, |
4c4b4cd2 | 9187 | int *pos, enum noside noside) |
14f9c5c9 AS |
9188 | { |
9189 | enum exp_opcode op; | |
b5385fc0 | 9190 | int tem; |
14f9c5c9 AS |
9191 | int pc; |
9192 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
9193 | struct type *type; | |
52ce6436 | 9194 | int nargs, oplen; |
d2e4a39e | 9195 | struct value **argvec; |
14f9c5c9 | 9196 | |
d2e4a39e AS |
9197 | pc = *pos; |
9198 | *pos += 1; | |
14f9c5c9 AS |
9199 | op = exp->elts[pc].opcode; |
9200 | ||
d2e4a39e | 9201 | switch (op) |
14f9c5c9 AS |
9202 | { |
9203 | default: | |
9204 | *pos -= 1; | |
6e48bd2c JB |
9205 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9206 | arg1 = unwrap_value (arg1); | |
9207 | ||
9208 | /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, | |
9209 | then we need to perform the conversion manually, because | |
9210 | evaluate_subexp_standard doesn't do it. This conversion is | |
9211 | necessary in Ada because the different kinds of float/fixed | |
9212 | types in Ada have different representations. | |
9213 | ||
9214 | Similarly, we need to perform the conversion from OP_LONG | |
9215 | ourselves. */ | |
9216 | if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) | |
9217 | arg1 = ada_value_cast (expect_type, arg1, noside); | |
9218 | ||
9219 | return arg1; | |
4c4b4cd2 PH |
9220 | |
9221 | case OP_STRING: | |
9222 | { | |
76a01679 | 9223 | struct value *result; |
5b4ee69b | 9224 | |
76a01679 JB |
9225 | *pos -= 1; |
9226 | result = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9227 | /* The result type will have code OP_STRING, bashed there from | |
9228 | OP_ARRAY. Bash it back. */ | |
df407dfe AC |
9229 | if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) |
9230 | TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; | |
76a01679 | 9231 | return result; |
4c4b4cd2 | 9232 | } |
14f9c5c9 AS |
9233 | |
9234 | case UNOP_CAST: | |
9235 | (*pos) += 2; | |
9236 | type = exp->elts[pc + 1].type; | |
9237 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
9238 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9239 | goto nosideret; |
6e48bd2c | 9240 | arg1 = ada_value_cast (type, arg1, noside); |
14f9c5c9 AS |
9241 | return arg1; |
9242 | ||
4c4b4cd2 PH |
9243 | case UNOP_QUAL: |
9244 | (*pos) += 2; | |
9245 | type = exp->elts[pc + 1].type; | |
9246 | return ada_evaluate_subexp (type, exp, pos, noside); | |
9247 | ||
14f9c5c9 AS |
9248 | case BINOP_ASSIGN: |
9249 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
52ce6436 PH |
9250 | if (exp->elts[*pos].opcode == OP_AGGREGATE) |
9251 | { | |
9252 | arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); | |
9253 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
9254 | return arg1; | |
9255 | return ada_value_assign (arg1, arg1); | |
9256 | } | |
003f3813 JB |
9257 | /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, |
9258 | except if the lhs of our assignment is a convenience variable. | |
9259 | In the case of assigning to a convenience variable, the lhs | |
9260 | should be exactly the result of the evaluation of the rhs. */ | |
9261 | type = value_type (arg1); | |
9262 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
9263 | type = NULL; | |
9264 | arg2 = evaluate_subexp (type, exp, pos, noside); | |
14f9c5c9 | 9265 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9266 | return arg1; |
df407dfe AC |
9267 | if (ada_is_fixed_point_type (value_type (arg1))) |
9268 | arg2 = cast_to_fixed (value_type (arg1), arg2); | |
9269 | else if (ada_is_fixed_point_type (value_type (arg2))) | |
76a01679 | 9270 | error |
323e0a4a | 9271 | (_("Fixed-point values must be assigned to fixed-point variables")); |
d2e4a39e | 9272 | else |
df407dfe | 9273 | arg2 = coerce_for_assign (value_type (arg1), arg2); |
4c4b4cd2 | 9274 | return ada_value_assign (arg1, arg2); |
14f9c5c9 AS |
9275 | |
9276 | case BINOP_ADD: | |
9277 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9278 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9279 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9280 | goto nosideret; |
2ac8a782 JB |
9281 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9282 | return (value_from_longest | |
9283 | (value_type (arg1), | |
9284 | value_as_long (arg1) + value_as_long (arg2))); | |
df407dfe AC |
9285 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9286 | || ada_is_fixed_point_type (value_type (arg2))) | |
9287 | && value_type (arg1) != value_type (arg2)) | |
323e0a4a | 9288 | error (_("Operands of fixed-point addition must have the same type")); |
b7789565 JB |
9289 | /* Do the addition, and cast the result to the type of the first |
9290 | argument. We cannot cast the result to a reference type, so if | |
9291 | ARG1 is a reference type, find its underlying type. */ | |
9292 | type = value_type (arg1); | |
9293 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9294 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9295 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9296 | return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); |
14f9c5c9 AS |
9297 | |
9298 | case BINOP_SUB: | |
9299 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9300 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
9301 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9302 | goto nosideret; |
2ac8a782 JB |
9303 | if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) |
9304 | return (value_from_longest | |
9305 | (value_type (arg1), | |
9306 | value_as_long (arg1) - value_as_long (arg2))); | |
df407dfe AC |
9307 | if ((ada_is_fixed_point_type (value_type (arg1)) |
9308 | || ada_is_fixed_point_type (value_type (arg2))) | |
9309 | && value_type (arg1) != value_type (arg2)) | |
0963b4bd MS |
9310 | error (_("Operands of fixed-point subtraction " |
9311 | "must have the same type")); | |
b7789565 JB |
9312 | /* Do the substraction, and cast the result to the type of the first |
9313 | argument. We cannot cast the result to a reference type, so if | |
9314 | ARG1 is a reference type, find its underlying type. */ | |
9315 | type = value_type (arg1); | |
9316 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
9317 | type = TYPE_TARGET_TYPE (type); | |
f44316fa | 9318 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
89eef114 | 9319 | return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); |
14f9c5c9 AS |
9320 | |
9321 | case BINOP_MUL: | |
9322 | case BINOP_DIV: | |
e1578042 JB |
9323 | case BINOP_REM: |
9324 | case BINOP_MOD: | |
14f9c5c9 AS |
9325 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9326 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9327 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 9328 | goto nosideret; |
e1578042 | 9329 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9c2be529 JB |
9330 | { |
9331 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9332 | return value_zero (value_type (arg1), not_lval); | |
9333 | } | |
14f9c5c9 | 9334 | else |
4c4b4cd2 | 9335 | { |
a53b7a21 | 9336 | type = builtin_type (exp->gdbarch)->builtin_double; |
df407dfe | 9337 | if (ada_is_fixed_point_type (value_type (arg1))) |
a53b7a21 | 9338 | arg1 = cast_from_fixed (type, arg1); |
df407dfe | 9339 | if (ada_is_fixed_point_type (value_type (arg2))) |
a53b7a21 | 9340 | arg2 = cast_from_fixed (type, arg2); |
f44316fa | 9341 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
4c4b4cd2 PH |
9342 | return ada_value_binop (arg1, arg2, op); |
9343 | } | |
9344 | ||
4c4b4cd2 PH |
9345 | case BINOP_EQUAL: |
9346 | case BINOP_NOTEQUAL: | |
14f9c5c9 | 9347 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
df407dfe | 9348 | arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); |
14f9c5c9 | 9349 | if (noside == EVAL_SKIP) |
76a01679 | 9350 | goto nosideret; |
4c4b4cd2 | 9351 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9352 | tem = 0; |
4c4b4cd2 | 9353 | else |
f44316fa UW |
9354 | { |
9355 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9356 | tem = ada_value_equal (arg1, arg2); | |
9357 | } | |
4c4b4cd2 | 9358 | if (op == BINOP_NOTEQUAL) |
76a01679 | 9359 | tem = !tem; |
fbb06eb1 UW |
9360 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9361 | return value_from_longest (type, (LONGEST) tem); | |
4c4b4cd2 PH |
9362 | |
9363 | case UNOP_NEG: | |
9364 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9365 | if (noside == EVAL_SKIP) | |
9366 | goto nosideret; | |
df407dfe AC |
9367 | else if (ada_is_fixed_point_type (value_type (arg1))) |
9368 | return value_cast (value_type (arg1), value_neg (arg1)); | |
14f9c5c9 | 9369 | else |
f44316fa UW |
9370 | { |
9371 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9372 | return value_neg (arg1); | |
9373 | } | |
4c4b4cd2 | 9374 | |
2330c6c6 JB |
9375 | case BINOP_LOGICAL_AND: |
9376 | case BINOP_LOGICAL_OR: | |
9377 | case UNOP_LOGICAL_NOT: | |
000d5124 JB |
9378 | { |
9379 | struct value *val; | |
9380 | ||
9381 | *pos -= 1; | |
9382 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
fbb06eb1 UW |
9383 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9384 | return value_cast (type, val); | |
000d5124 | 9385 | } |
2330c6c6 JB |
9386 | |
9387 | case BINOP_BITWISE_AND: | |
9388 | case BINOP_BITWISE_IOR: | |
9389 | case BINOP_BITWISE_XOR: | |
000d5124 JB |
9390 | { |
9391 | struct value *val; | |
9392 | ||
9393 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
9394 | *pos = pc; | |
9395 | val = evaluate_subexp_standard (expect_type, exp, pos, noside); | |
9396 | ||
9397 | return value_cast (value_type (arg1), val); | |
9398 | } | |
2330c6c6 | 9399 | |
14f9c5c9 AS |
9400 | case OP_VAR_VALUE: |
9401 | *pos -= 1; | |
6799def4 | 9402 | |
14f9c5c9 | 9403 | if (noside == EVAL_SKIP) |
4c4b4cd2 PH |
9404 | { |
9405 | *pos += 4; | |
9406 | goto nosideret; | |
9407 | } | |
9408 | else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) | |
76a01679 JB |
9409 | /* Only encountered when an unresolved symbol occurs in a |
9410 | context other than a function call, in which case, it is | |
52ce6436 | 9411 | invalid. */ |
323e0a4a | 9412 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 | 9413 | SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); |
14f9c5c9 | 9414 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 | 9415 | { |
0c1f74cf | 9416 | type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); |
31dbc1c5 JB |
9417 | /* Check to see if this is a tagged type. We also need to handle |
9418 | the case where the type is a reference to a tagged type, but | |
9419 | we have to be careful to exclude pointers to tagged types. | |
9420 | The latter should be shown as usual (as a pointer), whereas | |
9421 | a reference should mostly be transparent to the user. */ | |
9422 | if (ada_is_tagged_type (type, 0) | |
9423 | || (TYPE_CODE(type) == TYPE_CODE_REF | |
9424 | && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) | |
0c1f74cf JB |
9425 | { |
9426 | /* Tagged types are a little special in the fact that the real | |
9427 | type is dynamic and can only be determined by inspecting the | |
9428 | object's tag. This means that we need to get the object's | |
9429 | value first (EVAL_NORMAL) and then extract the actual object | |
9430 | type from its tag. | |
9431 | ||
9432 | Note that we cannot skip the final step where we extract | |
9433 | the object type from its tag, because the EVAL_NORMAL phase | |
9434 | results in dynamic components being resolved into fixed ones. | |
9435 | This can cause problems when trying to print the type | |
9436 | description of tagged types whose parent has a dynamic size: | |
9437 | We use the type name of the "_parent" component in order | |
9438 | to print the name of the ancestor type in the type description. | |
9439 | If that component had a dynamic size, the resolution into | |
9440 | a fixed type would result in the loss of that type name, | |
9441 | thus preventing us from printing the name of the ancestor | |
9442 | type in the type description. */ | |
b79819ba JB |
9443 | struct type *actual_type; |
9444 | ||
0c1f74cf | 9445 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); |
b79819ba JB |
9446 | actual_type = type_from_tag (ada_value_tag (arg1)); |
9447 | if (actual_type == NULL) | |
9448 | /* If, for some reason, we were unable to determine | |
9449 | the actual type from the tag, then use the static | |
9450 | approximation that we just computed as a fallback. | |
9451 | This can happen if the debugging information is | |
9452 | incomplete, for instance. */ | |
9453 | actual_type = type; | |
9454 | ||
9455 | return value_zero (actual_type, not_lval); | |
0c1f74cf JB |
9456 | } |
9457 | ||
4c4b4cd2 PH |
9458 | *pos += 4; |
9459 | return value_zero | |
9460 | (to_static_fixed_type | |
9461 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), | |
9462 | not_lval); | |
9463 | } | |
d2e4a39e | 9464 | else |
4c4b4cd2 | 9465 | { |
284614f0 JB |
9466 | arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); |
9467 | arg1 = unwrap_value (arg1); | |
4c4b4cd2 PH |
9468 | return ada_to_fixed_value (arg1); |
9469 | } | |
9470 | ||
9471 | case OP_FUNCALL: | |
9472 | (*pos) += 2; | |
9473 | ||
9474 | /* Allocate arg vector, including space for the function to be | |
9475 | called in argvec[0] and a terminating NULL. */ | |
9476 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
9477 | argvec = | |
9478 | (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); | |
9479 | ||
9480 | if (exp->elts[*pos].opcode == OP_VAR_VALUE | |
76a01679 | 9481 | && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) |
323e0a4a | 9482 | error (_("Unexpected unresolved symbol, %s, during evaluation"), |
4c4b4cd2 PH |
9483 | SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); |
9484 | else | |
9485 | { | |
9486 | for (tem = 0; tem <= nargs; tem += 1) | |
9487 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9488 | argvec[tem] = 0; | |
9489 | ||
9490 | if (noside == EVAL_SKIP) | |
9491 | goto nosideret; | |
9492 | } | |
9493 | ||
ad82864c JB |
9494 | if (ada_is_constrained_packed_array_type |
9495 | (desc_base_type (value_type (argvec[0])))) | |
4c4b4cd2 | 9496 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); |
284614f0 JB |
9497 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY |
9498 | && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) | |
9499 | /* This is a packed array that has already been fixed, and | |
9500 | therefore already coerced to a simple array. Nothing further | |
9501 | to do. */ | |
9502 | ; | |
df407dfe AC |
9503 | else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF |
9504 | || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY | |
76a01679 | 9505 | && VALUE_LVAL (argvec[0]) == lval_memory)) |
4c4b4cd2 PH |
9506 | argvec[0] = value_addr (argvec[0]); |
9507 | ||
df407dfe | 9508 | type = ada_check_typedef (value_type (argvec[0])); |
720d1a40 JB |
9509 | |
9510 | /* Ada allows us to implicitly dereference arrays when subscripting | |
8f465ea7 JB |
9511 | them. So, if this is an array typedef (encoding use for array |
9512 | access types encoded as fat pointers), strip it now. */ | |
720d1a40 JB |
9513 | if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) |
9514 | type = ada_typedef_target_type (type); | |
9515 | ||
4c4b4cd2 PH |
9516 | if (TYPE_CODE (type) == TYPE_CODE_PTR) |
9517 | { | |
61ee279c | 9518 | switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) |
4c4b4cd2 PH |
9519 | { |
9520 | case TYPE_CODE_FUNC: | |
61ee279c | 9521 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9522 | break; |
9523 | case TYPE_CODE_ARRAY: | |
9524 | break; | |
9525 | case TYPE_CODE_STRUCT: | |
9526 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
9527 | argvec[0] = ada_value_ind (argvec[0]); | |
61ee279c | 9528 | type = ada_check_typedef (TYPE_TARGET_TYPE (type)); |
4c4b4cd2 PH |
9529 | break; |
9530 | default: | |
323e0a4a | 9531 | error (_("cannot subscript or call something of type `%s'"), |
df407dfe | 9532 | ada_type_name (value_type (argvec[0]))); |
4c4b4cd2 PH |
9533 | break; |
9534 | } | |
9535 | } | |
9536 | ||
9537 | switch (TYPE_CODE (type)) | |
9538 | { | |
9539 | case TYPE_CODE_FUNC: | |
9540 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9541 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
9542 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
9543 | case TYPE_CODE_STRUCT: | |
9544 | { | |
9545 | int arity; | |
9546 | ||
4c4b4cd2 PH |
9547 | arity = ada_array_arity (type); |
9548 | type = ada_array_element_type (type, nargs); | |
9549 | if (type == NULL) | |
323e0a4a | 9550 | error (_("cannot subscript or call a record")); |
4c4b4cd2 | 9551 | if (arity != nargs) |
323e0a4a | 9552 | error (_("wrong number of subscripts; expecting %d"), arity); |
4c4b4cd2 | 9553 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
0a07e705 | 9554 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9555 | return |
9556 | unwrap_value (ada_value_subscript | |
9557 | (argvec[0], nargs, argvec + 1)); | |
9558 | } | |
9559 | case TYPE_CODE_ARRAY: | |
9560 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9561 | { | |
9562 | type = ada_array_element_type (type, nargs); | |
9563 | if (type == NULL) | |
323e0a4a | 9564 | error (_("element type of array unknown")); |
4c4b4cd2 | 9565 | else |
0a07e705 | 9566 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9567 | } |
9568 | return | |
9569 | unwrap_value (ada_value_subscript | |
9570 | (ada_coerce_to_simple_array (argvec[0]), | |
9571 | nargs, argvec + 1)); | |
9572 | case TYPE_CODE_PTR: /* Pointer to array */ | |
9573 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
9574 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9575 | { | |
9576 | type = ada_array_element_type (type, nargs); | |
9577 | if (type == NULL) | |
323e0a4a | 9578 | error (_("element type of array unknown")); |
4c4b4cd2 | 9579 | else |
0a07e705 | 9580 | return value_zero (ada_aligned_type (type), lval_memory); |
4c4b4cd2 PH |
9581 | } |
9582 | return | |
9583 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
9584 | nargs, argvec + 1)); | |
9585 | ||
9586 | default: | |
e1d5a0d2 PH |
9587 | error (_("Attempt to index or call something other than an " |
9588 | "array or function")); | |
4c4b4cd2 PH |
9589 | } |
9590 | ||
9591 | case TERNOP_SLICE: | |
9592 | { | |
9593 | struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9594 | struct value *low_bound_val = | |
9595 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
714e53ab PH |
9596 | struct value *high_bound_val = |
9597 | evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9598 | LONGEST low_bound; | |
9599 | LONGEST high_bound; | |
5b4ee69b | 9600 | |
994b9211 AC |
9601 | low_bound_val = coerce_ref (low_bound_val); |
9602 | high_bound_val = coerce_ref (high_bound_val); | |
714e53ab PH |
9603 | low_bound = pos_atr (low_bound_val); |
9604 | high_bound = pos_atr (high_bound_val); | |
963a6417 | 9605 | |
4c4b4cd2 PH |
9606 | if (noside == EVAL_SKIP) |
9607 | goto nosideret; | |
9608 | ||
4c4b4cd2 PH |
9609 | /* If this is a reference to an aligner type, then remove all |
9610 | the aligners. */ | |
df407dfe AC |
9611 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9612 | && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) | |
9613 | TYPE_TARGET_TYPE (value_type (array)) = | |
9614 | ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); | |
4c4b4cd2 | 9615 | |
ad82864c | 9616 | if (ada_is_constrained_packed_array_type (value_type (array))) |
323e0a4a | 9617 | error (_("cannot slice a packed array")); |
4c4b4cd2 PH |
9618 | |
9619 | /* If this is a reference to an array or an array lvalue, | |
9620 | convert to a pointer. */ | |
df407dfe AC |
9621 | if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF |
9622 | || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY | |
4c4b4cd2 PH |
9623 | && VALUE_LVAL (array) == lval_memory)) |
9624 | array = value_addr (array); | |
9625 | ||
1265e4aa | 9626 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
61ee279c | 9627 | && ada_is_array_descriptor_type (ada_check_typedef |
df407dfe | 9628 | (value_type (array)))) |
0b5d8877 | 9629 | return empty_array (ada_type_of_array (array, 0), low_bound); |
4c4b4cd2 PH |
9630 | |
9631 | array = ada_coerce_to_simple_array_ptr (array); | |
9632 | ||
714e53ab PH |
9633 | /* If we have more than one level of pointer indirection, |
9634 | dereference the value until we get only one level. */ | |
df407dfe AC |
9635 | while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR |
9636 | && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) | |
714e53ab PH |
9637 | == TYPE_CODE_PTR)) |
9638 | array = value_ind (array); | |
9639 | ||
9640 | /* Make sure we really do have an array type before going further, | |
9641 | to avoid a SEGV when trying to get the index type or the target | |
9642 | type later down the road if the debug info generated by | |
9643 | the compiler is incorrect or incomplete. */ | |
df407dfe | 9644 | if (!ada_is_simple_array_type (value_type (array))) |
323e0a4a | 9645 | error (_("cannot take slice of non-array")); |
714e53ab | 9646 | |
828292f2 JB |
9647 | if (TYPE_CODE (ada_check_typedef (value_type (array))) |
9648 | == TYPE_CODE_PTR) | |
4c4b4cd2 | 9649 | { |
828292f2 JB |
9650 | struct type *type0 = ada_check_typedef (value_type (array)); |
9651 | ||
0b5d8877 | 9652 | if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) |
828292f2 | 9653 | return empty_array (TYPE_TARGET_TYPE (type0), low_bound); |
4c4b4cd2 PH |
9654 | else |
9655 | { | |
9656 | struct type *arr_type0 = | |
828292f2 | 9657 | to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); |
5b4ee69b | 9658 | |
f5938064 JG |
9659 | return ada_value_slice_from_ptr (array, arr_type0, |
9660 | longest_to_int (low_bound), | |
9661 | longest_to_int (high_bound)); | |
4c4b4cd2 PH |
9662 | } |
9663 | } | |
9664 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9665 | return array; | |
9666 | else if (high_bound < low_bound) | |
df407dfe | 9667 | return empty_array (value_type (array), low_bound); |
4c4b4cd2 | 9668 | else |
529cad9c PH |
9669 | return ada_value_slice (array, longest_to_int (low_bound), |
9670 | longest_to_int (high_bound)); | |
4c4b4cd2 | 9671 | } |
14f9c5c9 | 9672 | |
4c4b4cd2 PH |
9673 | case UNOP_IN_RANGE: |
9674 | (*pos) += 2; | |
9675 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8008e265 | 9676 | type = check_typedef (exp->elts[pc + 1].type); |
14f9c5c9 | 9677 | |
14f9c5c9 | 9678 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9679 | goto nosideret; |
14f9c5c9 | 9680 | |
4c4b4cd2 PH |
9681 | switch (TYPE_CODE (type)) |
9682 | { | |
9683 | default: | |
e1d5a0d2 PH |
9684 | lim_warning (_("Membership test incompletely implemented; " |
9685 | "always returns true")); | |
fbb06eb1 UW |
9686 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9687 | return value_from_longest (type, (LONGEST) 1); | |
4c4b4cd2 PH |
9688 | |
9689 | case TYPE_CODE_RANGE: | |
030b4912 UW |
9690 | arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); |
9691 | arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); | |
f44316fa UW |
9692 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9693 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 UW |
9694 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
9695 | return | |
9696 | value_from_longest (type, | |
4c4b4cd2 PH |
9697 | (value_less (arg1, arg3) |
9698 | || value_equal (arg1, arg3)) | |
9699 | && (value_less (arg2, arg1) | |
9700 | || value_equal (arg2, arg1))); | |
9701 | } | |
9702 | ||
9703 | case BINOP_IN_BOUNDS: | |
14f9c5c9 | 9704 | (*pos) += 2; |
4c4b4cd2 PH |
9705 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9706 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
14f9c5c9 | 9707 | |
4c4b4cd2 PH |
9708 | if (noside == EVAL_SKIP) |
9709 | goto nosideret; | |
14f9c5c9 | 9710 | |
4c4b4cd2 | 9711 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
fbb06eb1 UW |
9712 | { |
9713 | type = language_bool_type (exp->language_defn, exp->gdbarch); | |
9714 | return value_zero (type, not_lval); | |
9715 | } | |
14f9c5c9 | 9716 | |
4c4b4cd2 | 9717 | tem = longest_to_int (exp->elts[pc + 1].longconst); |
14f9c5c9 | 9718 | |
1eea4ebd UW |
9719 | type = ada_index_type (value_type (arg2), tem, "range"); |
9720 | if (!type) | |
9721 | type = value_type (arg1); | |
14f9c5c9 | 9722 | |
1eea4ebd UW |
9723 | arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); |
9724 | arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); | |
d2e4a39e | 9725 | |
f44316fa UW |
9726 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9727 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9728 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9729 | return |
fbb06eb1 | 9730 | value_from_longest (type, |
4c4b4cd2 PH |
9731 | (value_less (arg1, arg3) |
9732 | || value_equal (arg1, arg3)) | |
9733 | && (value_less (arg2, arg1) | |
9734 | || value_equal (arg2, arg1))); | |
9735 | ||
9736 | case TERNOP_IN_RANGE: | |
9737 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9738 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9739 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9740 | ||
9741 | if (noside == EVAL_SKIP) | |
9742 | goto nosideret; | |
9743 | ||
f44316fa UW |
9744 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); |
9745 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); | |
fbb06eb1 | 9746 | type = language_bool_type (exp->language_defn, exp->gdbarch); |
4c4b4cd2 | 9747 | return |
fbb06eb1 | 9748 | value_from_longest (type, |
4c4b4cd2 PH |
9749 | (value_less (arg1, arg3) |
9750 | || value_equal (arg1, arg3)) | |
9751 | && (value_less (arg2, arg1) | |
9752 | || value_equal (arg2, arg1))); | |
9753 | ||
9754 | case OP_ATR_FIRST: | |
9755 | case OP_ATR_LAST: | |
9756 | case OP_ATR_LENGTH: | |
9757 | { | |
76a01679 | 9758 | struct type *type_arg; |
5b4ee69b | 9759 | |
76a01679 JB |
9760 | if (exp->elts[*pos].opcode == OP_TYPE) |
9761 | { | |
9762 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
9763 | arg1 = NULL; | |
5bc23cb3 | 9764 | type_arg = check_typedef (exp->elts[pc + 2].type); |
76a01679 JB |
9765 | } |
9766 | else | |
9767 | { | |
9768 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9769 | type_arg = NULL; | |
9770 | } | |
9771 | ||
9772 | if (exp->elts[*pos].opcode != OP_LONG) | |
323e0a4a | 9773 | error (_("Invalid operand to '%s"), ada_attribute_name (op)); |
76a01679 JB |
9774 | tem = longest_to_int (exp->elts[*pos + 2].longconst); |
9775 | *pos += 4; | |
9776 | ||
9777 | if (noside == EVAL_SKIP) | |
9778 | goto nosideret; | |
9779 | ||
9780 | if (type_arg == NULL) | |
9781 | { | |
9782 | arg1 = ada_coerce_ref (arg1); | |
9783 | ||
ad82864c | 9784 | if (ada_is_constrained_packed_array_type (value_type (arg1))) |
76a01679 JB |
9785 | arg1 = ada_coerce_to_simple_array (arg1); |
9786 | ||
1eea4ebd UW |
9787 | type = ada_index_type (value_type (arg1), tem, |
9788 | ada_attribute_name (op)); | |
9789 | if (type == NULL) | |
9790 | type = builtin_type (exp->gdbarch)->builtin_int; | |
76a01679 JB |
9791 | |
9792 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1eea4ebd | 9793 | return allocate_value (type); |
76a01679 JB |
9794 | |
9795 | switch (op) | |
9796 | { | |
9797 | default: /* Should never happen. */ | |
323e0a4a | 9798 | error (_("unexpected attribute encountered")); |
76a01679 | 9799 | case OP_ATR_FIRST: |
1eea4ebd UW |
9800 | return value_from_longest |
9801 | (type, ada_array_bound (arg1, tem, 0)); | |
76a01679 | 9802 | case OP_ATR_LAST: |
1eea4ebd UW |
9803 | return value_from_longest |
9804 | (type, ada_array_bound (arg1, tem, 1)); | |
76a01679 | 9805 | case OP_ATR_LENGTH: |
1eea4ebd UW |
9806 | return value_from_longest |
9807 | (type, ada_array_length (arg1, tem)); | |
76a01679 JB |
9808 | } |
9809 | } | |
9810 | else if (discrete_type_p (type_arg)) | |
9811 | { | |
9812 | struct type *range_type; | |
9813 | char *name = ada_type_name (type_arg); | |
5b4ee69b | 9814 | |
76a01679 JB |
9815 | range_type = NULL; |
9816 | if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) | |
28c85d6c | 9817 | range_type = to_fixed_range_type (type_arg, NULL); |
76a01679 JB |
9818 | if (range_type == NULL) |
9819 | range_type = type_arg; | |
9820 | switch (op) | |
9821 | { | |
9822 | default: | |
323e0a4a | 9823 | error (_("unexpected attribute encountered")); |
76a01679 | 9824 | case OP_ATR_FIRST: |
690cc4eb | 9825 | return value_from_longest |
43bbcdc2 | 9826 | (range_type, ada_discrete_type_low_bound (range_type)); |
76a01679 | 9827 | case OP_ATR_LAST: |
690cc4eb | 9828 | return value_from_longest |
43bbcdc2 | 9829 | (range_type, ada_discrete_type_high_bound (range_type)); |
76a01679 | 9830 | case OP_ATR_LENGTH: |
323e0a4a | 9831 | error (_("the 'length attribute applies only to array types")); |
76a01679 JB |
9832 | } |
9833 | } | |
9834 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
323e0a4a | 9835 | error (_("unimplemented type attribute")); |
76a01679 JB |
9836 | else |
9837 | { | |
9838 | LONGEST low, high; | |
9839 | ||
ad82864c JB |
9840 | if (ada_is_constrained_packed_array_type (type_arg)) |
9841 | type_arg = decode_constrained_packed_array_type (type_arg); | |
76a01679 | 9842 | |
1eea4ebd | 9843 | type = ada_index_type (type_arg, tem, ada_attribute_name (op)); |
76a01679 | 9844 | if (type == NULL) |
1eea4ebd UW |
9845 | type = builtin_type (exp->gdbarch)->builtin_int; |
9846 | ||
76a01679 JB |
9847 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
9848 | return allocate_value (type); | |
9849 | ||
9850 | switch (op) | |
9851 | { | |
9852 | default: | |
323e0a4a | 9853 | error (_("unexpected attribute encountered")); |
76a01679 | 9854 | case OP_ATR_FIRST: |
1eea4ebd | 9855 | low = ada_array_bound_from_type (type_arg, tem, 0); |
76a01679 JB |
9856 | return value_from_longest (type, low); |
9857 | case OP_ATR_LAST: | |
1eea4ebd | 9858 | high = ada_array_bound_from_type (type_arg, tem, 1); |
76a01679 JB |
9859 | return value_from_longest (type, high); |
9860 | case OP_ATR_LENGTH: | |
1eea4ebd UW |
9861 | low = ada_array_bound_from_type (type_arg, tem, 0); |
9862 | high = ada_array_bound_from_type (type_arg, tem, 1); | |
76a01679 JB |
9863 | return value_from_longest (type, high - low + 1); |
9864 | } | |
9865 | } | |
14f9c5c9 AS |
9866 | } |
9867 | ||
4c4b4cd2 PH |
9868 | case OP_ATR_TAG: |
9869 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9870 | if (noside == EVAL_SKIP) | |
76a01679 | 9871 | goto nosideret; |
4c4b4cd2 PH |
9872 | |
9873 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
76a01679 | 9874 | return value_zero (ada_tag_type (arg1), not_lval); |
4c4b4cd2 PH |
9875 | |
9876 | return ada_value_tag (arg1); | |
9877 | ||
9878 | case OP_ATR_MIN: | |
9879 | case OP_ATR_MAX: | |
9880 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9881 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9882 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9883 | if (noside == EVAL_SKIP) | |
76a01679 | 9884 | goto nosideret; |
d2e4a39e | 9885 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
df407dfe | 9886 | return value_zero (value_type (arg1), not_lval); |
14f9c5c9 | 9887 | else |
f44316fa UW |
9888 | { |
9889 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9890 | return value_binop (arg1, arg2, | |
9891 | op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
9892 | } | |
14f9c5c9 | 9893 | |
4c4b4cd2 PH |
9894 | case OP_ATR_MODULUS: |
9895 | { | |
31dedfee | 9896 | struct type *type_arg = check_typedef (exp->elts[pc + 2].type); |
4c4b4cd2 | 9897 | |
5b4ee69b | 9898 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); |
76a01679 JB |
9899 | if (noside == EVAL_SKIP) |
9900 | goto nosideret; | |
4c4b4cd2 | 9901 | |
76a01679 | 9902 | if (!ada_is_modular_type (type_arg)) |
323e0a4a | 9903 | error (_("'modulus must be applied to modular type")); |
4c4b4cd2 | 9904 | |
76a01679 JB |
9905 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), |
9906 | ada_modulus (type_arg)); | |
4c4b4cd2 PH |
9907 | } |
9908 | ||
9909 | ||
9910 | case OP_ATR_POS: | |
9911 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 AS |
9912 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
9913 | if (noside == EVAL_SKIP) | |
76a01679 | 9914 | goto nosideret; |
3cb382c9 UW |
9915 | type = builtin_type (exp->gdbarch)->builtin_int; |
9916 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
9917 | return value_zero (type, not_lval); | |
14f9c5c9 | 9918 | else |
3cb382c9 | 9919 | return value_pos_atr (type, arg1); |
14f9c5c9 | 9920 | |
4c4b4cd2 PH |
9921 | case OP_ATR_SIZE: |
9922 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
8c1c099f JB |
9923 | type = value_type (arg1); |
9924 | ||
9925 | /* If the argument is a reference, then dereference its type, since | |
9926 | the user is really asking for the size of the actual object, | |
9927 | not the size of the pointer. */ | |
9928 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
9929 | type = TYPE_TARGET_TYPE (type); | |
9930 | ||
4c4b4cd2 | 9931 | if (noside == EVAL_SKIP) |
76a01679 | 9932 | goto nosideret; |
4c4b4cd2 | 9933 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
22601c15 | 9934 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); |
4c4b4cd2 | 9935 | else |
22601c15 | 9936 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, |
8c1c099f | 9937 | TARGET_CHAR_BIT * TYPE_LENGTH (type)); |
4c4b4cd2 PH |
9938 | |
9939 | case OP_ATR_VAL: | |
9940 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
14f9c5c9 | 9941 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
4c4b4cd2 | 9942 | type = exp->elts[pc + 2].type; |
14f9c5c9 | 9943 | if (noside == EVAL_SKIP) |
76a01679 | 9944 | goto nosideret; |
4c4b4cd2 | 9945 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 9946 | return value_zero (type, not_lval); |
4c4b4cd2 | 9947 | else |
76a01679 | 9948 | return value_val_atr (type, arg1); |
4c4b4cd2 PH |
9949 | |
9950 | case BINOP_EXP: | |
9951 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9952 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9953 | if (noside == EVAL_SKIP) | |
9954 | goto nosideret; | |
9955 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
df407dfe | 9956 | return value_zero (value_type (arg1), not_lval); |
4c4b4cd2 | 9957 | else |
f44316fa UW |
9958 | { |
9959 | /* For integer exponentiation operations, | |
9960 | only promote the first argument. */ | |
9961 | if (is_integral_type (value_type (arg2))) | |
9962 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); | |
9963 | else | |
9964 | binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); | |
9965 | ||
9966 | return value_binop (arg1, arg2, op); | |
9967 | } | |
4c4b4cd2 PH |
9968 | |
9969 | case UNOP_PLUS: | |
9970 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9971 | if (noside == EVAL_SKIP) | |
9972 | goto nosideret; | |
9973 | else | |
9974 | return arg1; | |
9975 | ||
9976 | case UNOP_ABS: | |
9977 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
9978 | if (noside == EVAL_SKIP) | |
9979 | goto nosideret; | |
f44316fa | 9980 | unop_promote (exp->language_defn, exp->gdbarch, &arg1); |
df407dfe | 9981 | if (value_less (arg1, value_zero (value_type (arg1), not_lval))) |
4c4b4cd2 | 9982 | return value_neg (arg1); |
14f9c5c9 | 9983 | else |
4c4b4cd2 | 9984 | return arg1; |
14f9c5c9 AS |
9985 | |
9986 | case UNOP_IND: | |
6b0d7253 | 9987 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); |
14f9c5c9 | 9988 | if (noside == EVAL_SKIP) |
4c4b4cd2 | 9989 | goto nosideret; |
df407dfe | 9990 | type = ada_check_typedef (value_type (arg1)); |
14f9c5c9 | 9991 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
4c4b4cd2 PH |
9992 | { |
9993 | if (ada_is_array_descriptor_type (type)) | |
9994 | /* GDB allows dereferencing GNAT array descriptors. */ | |
9995 | { | |
9996 | struct type *arrType = ada_type_of_array (arg1, 0); | |
5b4ee69b | 9997 | |
4c4b4cd2 | 9998 | if (arrType == NULL) |
323e0a4a | 9999 | error (_("Attempt to dereference null array pointer.")); |
00a4c844 | 10000 | return value_at_lazy (arrType, 0); |
4c4b4cd2 PH |
10001 | } |
10002 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
10003 | || TYPE_CODE (type) == TYPE_CODE_REF | |
10004 | /* In C you can dereference an array to get the 1st elt. */ | |
10005 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
714e53ab PH |
10006 | { |
10007 | type = to_static_fixed_type | |
10008 | (ada_aligned_type | |
10009 | (ada_check_typedef (TYPE_TARGET_TYPE (type)))); | |
10010 | check_size (type); | |
10011 | return value_zero (type, lval_memory); | |
10012 | } | |
4c4b4cd2 | 10013 | else if (TYPE_CODE (type) == TYPE_CODE_INT) |
6b0d7253 JB |
10014 | { |
10015 | /* GDB allows dereferencing an int. */ | |
10016 | if (expect_type == NULL) | |
10017 | return value_zero (builtin_type (exp->gdbarch)->builtin_int, | |
10018 | lval_memory); | |
10019 | else | |
10020 | { | |
10021 | expect_type = | |
10022 | to_static_fixed_type (ada_aligned_type (expect_type)); | |
10023 | return value_zero (expect_type, lval_memory); | |
10024 | } | |
10025 | } | |
4c4b4cd2 | 10026 | else |
323e0a4a | 10027 | error (_("Attempt to take contents of a non-pointer value.")); |
4c4b4cd2 | 10028 | } |
0963b4bd | 10029 | arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ |
df407dfe | 10030 | type = ada_check_typedef (value_type (arg1)); |
d2e4a39e | 10031 | |
96967637 JB |
10032 | if (TYPE_CODE (type) == TYPE_CODE_INT) |
10033 | /* GDB allows dereferencing an int. If we were given | |
10034 | the expect_type, then use that as the target type. | |
10035 | Otherwise, assume that the target type is an int. */ | |
10036 | { | |
10037 | if (expect_type != NULL) | |
10038 | return ada_value_ind (value_cast (lookup_pointer_type (expect_type), | |
10039 | arg1)); | |
10040 | else | |
10041 | return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, | |
10042 | (CORE_ADDR) value_as_address (arg1)); | |
10043 | } | |
6b0d7253 | 10044 | |
4c4b4cd2 PH |
10045 | if (ada_is_array_descriptor_type (type)) |
10046 | /* GDB allows dereferencing GNAT array descriptors. */ | |
10047 | return ada_coerce_to_simple_array (arg1); | |
14f9c5c9 | 10048 | else |
4c4b4cd2 | 10049 | return ada_value_ind (arg1); |
14f9c5c9 AS |
10050 | |
10051 | case STRUCTOP_STRUCT: | |
10052 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
10053 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
10054 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
10055 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10056 | goto nosideret; |
14f9c5c9 | 10057 | if (noside == EVAL_AVOID_SIDE_EFFECTS) |
76a01679 | 10058 | { |
df407dfe | 10059 | struct type *type1 = value_type (arg1); |
5b4ee69b | 10060 | |
76a01679 JB |
10061 | if (ada_is_tagged_type (type1, 1)) |
10062 | { | |
10063 | type = ada_lookup_struct_elt_type (type1, | |
10064 | &exp->elts[pc + 2].string, | |
10065 | 1, 1, NULL); | |
10066 | if (type == NULL) | |
10067 | /* In this case, we assume that the field COULD exist | |
10068 | in some extension of the type. Return an object of | |
10069 | "type" void, which will match any formal | |
0963b4bd | 10070 | (see ada_type_match). */ |
30b15541 UW |
10071 | return value_zero (builtin_type (exp->gdbarch)->builtin_void, |
10072 | lval_memory); | |
76a01679 JB |
10073 | } |
10074 | else | |
10075 | type = | |
10076 | ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, | |
10077 | 0, NULL); | |
10078 | ||
10079 | return value_zero (ada_aligned_type (type), lval_memory); | |
10080 | } | |
14f9c5c9 | 10081 | else |
284614f0 JB |
10082 | arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); |
10083 | arg1 = unwrap_value (arg1); | |
10084 | return ada_to_fixed_value (arg1); | |
10085 | ||
14f9c5c9 | 10086 | case OP_TYPE: |
4c4b4cd2 PH |
10087 | /* The value is not supposed to be used. This is here to make it |
10088 | easier to accommodate expressions that contain types. */ | |
14f9c5c9 AS |
10089 | (*pos) += 2; |
10090 | if (noside == EVAL_SKIP) | |
4c4b4cd2 | 10091 | goto nosideret; |
14f9c5c9 | 10092 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) |
a6cfbe68 | 10093 | return allocate_value (exp->elts[pc + 1].type); |
14f9c5c9 | 10094 | else |
323e0a4a | 10095 | error (_("Attempt to use a type name as an expression")); |
52ce6436 PH |
10096 | |
10097 | case OP_AGGREGATE: | |
10098 | case OP_CHOICES: | |
10099 | case OP_OTHERS: | |
10100 | case OP_DISCRETE_RANGE: | |
10101 | case OP_POSITIONAL: | |
10102 | case OP_NAME: | |
10103 | if (noside == EVAL_NORMAL) | |
10104 | switch (op) | |
10105 | { | |
10106 | case OP_NAME: | |
10107 | error (_("Undefined name, ambiguous name, or renaming used in " | |
e1d5a0d2 | 10108 | "component association: %s."), &exp->elts[pc+2].string); |
52ce6436 PH |
10109 | case OP_AGGREGATE: |
10110 | error (_("Aggregates only allowed on the right of an assignment")); | |
10111 | default: | |
0963b4bd MS |
10112 | internal_error (__FILE__, __LINE__, |
10113 | _("aggregate apparently mangled")); | |
52ce6436 PH |
10114 | } |
10115 | ||
10116 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
10117 | *pos += oplen - 1; | |
10118 | for (tem = 0; tem < nargs; tem += 1) | |
10119 | ada_evaluate_subexp (NULL, exp, pos, noside); | |
10120 | goto nosideret; | |
14f9c5c9 AS |
10121 | } |
10122 | ||
10123 | nosideret: | |
22601c15 | 10124 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); |
14f9c5c9 | 10125 | } |
14f9c5c9 | 10126 | \f |
d2e4a39e | 10127 | |
4c4b4cd2 | 10128 | /* Fixed point */ |
14f9c5c9 AS |
10129 | |
10130 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
10131 | type name that encodes the 'small and 'delta information. | |
4c4b4cd2 | 10132 | Otherwise, return NULL. */ |
14f9c5c9 | 10133 | |
d2e4a39e | 10134 | static const char * |
ebf56fd3 | 10135 | fixed_type_info (struct type *type) |
14f9c5c9 | 10136 | { |
d2e4a39e | 10137 | const char *name = ada_type_name (type); |
14f9c5c9 AS |
10138 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); |
10139 | ||
d2e4a39e AS |
10140 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) |
10141 | { | |
14f9c5c9 | 10142 | const char *tail = strstr (name, "___XF_"); |
5b4ee69b | 10143 | |
14f9c5c9 | 10144 | if (tail == NULL) |
4c4b4cd2 | 10145 | return NULL; |
d2e4a39e | 10146 | else |
4c4b4cd2 | 10147 | return tail + 5; |
14f9c5c9 AS |
10148 | } |
10149 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
10150 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
10151 | else | |
10152 | return NULL; | |
10153 | } | |
10154 | ||
4c4b4cd2 | 10155 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ |
14f9c5c9 AS |
10156 | |
10157 | int | |
ebf56fd3 | 10158 | ada_is_fixed_point_type (struct type *type) |
14f9c5c9 AS |
10159 | { |
10160 | return fixed_type_info (type) != NULL; | |
10161 | } | |
10162 | ||
4c4b4cd2 PH |
10163 | /* Return non-zero iff TYPE represents a System.Address type. */ |
10164 | ||
10165 | int | |
10166 | ada_is_system_address_type (struct type *type) | |
10167 | { | |
10168 | return (TYPE_NAME (type) | |
10169 | && strcmp (TYPE_NAME (type), "system__address") == 0); | |
10170 | } | |
10171 | ||
14f9c5c9 AS |
10172 | /* Assuming that TYPE is the representation of an Ada fixed-point |
10173 | type, return its delta, or -1 if the type is malformed and the | |
4c4b4cd2 | 10174 | delta cannot be determined. */ |
14f9c5c9 AS |
10175 | |
10176 | DOUBLEST | |
ebf56fd3 | 10177 | ada_delta (struct type *type) |
14f9c5c9 AS |
10178 | { |
10179 | const char *encoding = fixed_type_info (type); | |
facc390f | 10180 | DOUBLEST num, den; |
14f9c5c9 | 10181 | |
facc390f JB |
10182 | /* Strictly speaking, num and den are encoded as integer. However, |
10183 | they may not fit into a long, and they will have to be converted | |
10184 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10185 | if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10186 | &num, &den) < 2) | |
14f9c5c9 | 10187 | return -1.0; |
d2e4a39e | 10188 | else |
facc390f | 10189 | return num / den; |
14f9c5c9 AS |
10190 | } |
10191 | ||
10192 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
4c4b4cd2 | 10193 | factor ('SMALL value) associated with the type. */ |
14f9c5c9 AS |
10194 | |
10195 | static DOUBLEST | |
ebf56fd3 | 10196 | scaling_factor (struct type *type) |
14f9c5c9 AS |
10197 | { |
10198 | const char *encoding = fixed_type_info (type); | |
facc390f | 10199 | DOUBLEST num0, den0, num1, den1; |
14f9c5c9 | 10200 | int n; |
d2e4a39e | 10201 | |
facc390f JB |
10202 | /* Strictly speaking, num's and den's are encoded as integer. However, |
10203 | they may not fit into a long, and they will have to be converted | |
10204 | to DOUBLEST anyway. So scan them as DOUBLEST. */ | |
10205 | n = sscanf (encoding, | |
10206 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT | |
10207 | "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, | |
10208 | &num0, &den0, &num1, &den1); | |
14f9c5c9 AS |
10209 | |
10210 | if (n < 2) | |
10211 | return 1.0; | |
10212 | else if (n == 4) | |
facc390f | 10213 | return num1 / den1; |
d2e4a39e | 10214 | else |
facc390f | 10215 | return num0 / den0; |
14f9c5c9 AS |
10216 | } |
10217 | ||
10218 | ||
10219 | /* Assuming that X is the representation of a value of fixed-point | |
4c4b4cd2 | 10220 | type TYPE, return its floating-point equivalent. */ |
14f9c5c9 AS |
10221 | |
10222 | DOUBLEST | |
ebf56fd3 | 10223 | ada_fixed_to_float (struct type *type, LONGEST x) |
14f9c5c9 | 10224 | { |
d2e4a39e | 10225 | return (DOUBLEST) x *scaling_factor (type); |
14f9c5c9 AS |
10226 | } |
10227 | ||
4c4b4cd2 PH |
10228 | /* The representation of a fixed-point value of type TYPE |
10229 | corresponding to the value X. */ | |
14f9c5c9 AS |
10230 | |
10231 | LONGEST | |
ebf56fd3 | 10232 | ada_float_to_fixed (struct type *type, DOUBLEST x) |
14f9c5c9 AS |
10233 | { |
10234 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
10235 | } | |
10236 | ||
14f9c5c9 | 10237 | \f |
d2e4a39e | 10238 | |
4c4b4cd2 | 10239 | /* Range types */ |
14f9c5c9 AS |
10240 | |
10241 | /* Scan STR beginning at position K for a discriminant name, and | |
10242 | return the value of that discriminant field of DVAL in *PX. If | |
10243 | PNEW_K is not null, put the position of the character beyond the | |
10244 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
4c4b4cd2 | 10245 | not alter *PX and *PNEW_K if unsuccessful. */ |
14f9c5c9 AS |
10246 | |
10247 | static int | |
07d8f827 | 10248 | scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, |
76a01679 | 10249 | int *pnew_k) |
14f9c5c9 AS |
10250 | { |
10251 | static char *bound_buffer = NULL; | |
10252 | static size_t bound_buffer_len = 0; | |
10253 | char *bound; | |
10254 | char *pend; | |
d2e4a39e | 10255 | struct value *bound_val; |
14f9c5c9 AS |
10256 | |
10257 | if (dval == NULL || str == NULL || str[k] == '\0') | |
10258 | return 0; | |
10259 | ||
d2e4a39e | 10260 | pend = strstr (str + k, "__"); |
14f9c5c9 AS |
10261 | if (pend == NULL) |
10262 | { | |
d2e4a39e | 10263 | bound = str + k; |
14f9c5c9 AS |
10264 | k += strlen (bound); |
10265 | } | |
d2e4a39e | 10266 | else |
14f9c5c9 | 10267 | { |
d2e4a39e | 10268 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); |
14f9c5c9 | 10269 | bound = bound_buffer; |
d2e4a39e AS |
10270 | strncpy (bound_buffer, str + k, pend - (str + k)); |
10271 | bound[pend - (str + k)] = '\0'; | |
10272 | k = pend - str; | |
14f9c5c9 | 10273 | } |
d2e4a39e | 10274 | |
df407dfe | 10275 | bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); |
14f9c5c9 AS |
10276 | if (bound_val == NULL) |
10277 | return 0; | |
10278 | ||
10279 | *px = value_as_long (bound_val); | |
10280 | if (pnew_k != NULL) | |
10281 | *pnew_k = k; | |
10282 | return 1; | |
10283 | } | |
10284 | ||
10285 | /* Value of variable named NAME in the current environment. If | |
10286 | no such variable found, then if ERR_MSG is null, returns 0, and | |
4c4b4cd2 PH |
10287 | otherwise causes an error with message ERR_MSG. */ |
10288 | ||
d2e4a39e AS |
10289 | static struct value * |
10290 | get_var_value (char *name, char *err_msg) | |
14f9c5c9 | 10291 | { |
4c4b4cd2 | 10292 | struct ada_symbol_info *syms; |
14f9c5c9 AS |
10293 | int nsyms; |
10294 | ||
4c4b4cd2 PH |
10295 | nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, |
10296 | &syms); | |
14f9c5c9 AS |
10297 | |
10298 | if (nsyms != 1) | |
10299 | { | |
10300 | if (err_msg == NULL) | |
4c4b4cd2 | 10301 | return 0; |
14f9c5c9 | 10302 | else |
8a3fe4f8 | 10303 | error (("%s"), err_msg); |
14f9c5c9 AS |
10304 | } |
10305 | ||
4c4b4cd2 | 10306 | return value_of_variable (syms[0].sym, syms[0].block); |
14f9c5c9 | 10307 | } |
d2e4a39e | 10308 | |
14f9c5c9 | 10309 | /* Value of integer variable named NAME in the current environment. If |
4c4b4cd2 PH |
10310 | no such variable found, returns 0, and sets *FLAG to 0. If |
10311 | successful, sets *FLAG to 1. */ | |
10312 | ||
14f9c5c9 | 10313 | LONGEST |
4c4b4cd2 | 10314 | get_int_var_value (char *name, int *flag) |
14f9c5c9 | 10315 | { |
4c4b4cd2 | 10316 | struct value *var_val = get_var_value (name, 0); |
d2e4a39e | 10317 | |
14f9c5c9 AS |
10318 | if (var_val == 0) |
10319 | { | |
10320 | if (flag != NULL) | |
4c4b4cd2 | 10321 | *flag = 0; |
14f9c5c9 AS |
10322 | return 0; |
10323 | } | |
10324 | else | |
10325 | { | |
10326 | if (flag != NULL) | |
4c4b4cd2 | 10327 | *flag = 1; |
14f9c5c9 AS |
10328 | return value_as_long (var_val); |
10329 | } | |
10330 | } | |
d2e4a39e | 10331 | |
14f9c5c9 AS |
10332 | |
10333 | /* Return a range type whose base type is that of the range type named | |
10334 | NAME in the current environment, and whose bounds are calculated | |
4c4b4cd2 | 10335 | from NAME according to the GNAT range encoding conventions. |
1ce677a4 UW |
10336 | Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the |
10337 | corresponding range type from debug information; fall back to using it | |
10338 | if symbol lookup fails. If a new type must be created, allocate it | |
10339 | like ORIG_TYPE was. The bounds information, in general, is encoded | |
10340 | in NAME, the base type given in the named range type. */ | |
14f9c5c9 | 10341 | |
d2e4a39e | 10342 | static struct type * |
28c85d6c | 10343 | to_fixed_range_type (struct type *raw_type, struct value *dval) |
14f9c5c9 | 10344 | { |
28c85d6c | 10345 | char *name; |
14f9c5c9 | 10346 | struct type *base_type; |
d2e4a39e | 10347 | char *subtype_info; |
14f9c5c9 | 10348 | |
28c85d6c JB |
10349 | gdb_assert (raw_type != NULL); |
10350 | gdb_assert (TYPE_NAME (raw_type) != NULL); | |
dddfab26 | 10351 | |
1ce677a4 | 10352 | if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) |
14f9c5c9 AS |
10353 | base_type = TYPE_TARGET_TYPE (raw_type); |
10354 | else | |
10355 | base_type = raw_type; | |
10356 | ||
28c85d6c | 10357 | name = TYPE_NAME (raw_type); |
14f9c5c9 AS |
10358 | subtype_info = strstr (name, "___XD"); |
10359 | if (subtype_info == NULL) | |
690cc4eb | 10360 | { |
43bbcdc2 PH |
10361 | LONGEST L = ada_discrete_type_low_bound (raw_type); |
10362 | LONGEST U = ada_discrete_type_high_bound (raw_type); | |
5b4ee69b | 10363 | |
690cc4eb PH |
10364 | if (L < INT_MIN || U > INT_MAX) |
10365 | return raw_type; | |
10366 | else | |
28c85d6c | 10367 | return create_range_type (alloc_type_copy (raw_type), raw_type, |
43bbcdc2 PH |
10368 | ada_discrete_type_low_bound (raw_type), |
10369 | ada_discrete_type_high_bound (raw_type)); | |
690cc4eb | 10370 | } |
14f9c5c9 AS |
10371 | else |
10372 | { | |
10373 | static char *name_buf = NULL; | |
10374 | static size_t name_len = 0; | |
10375 | int prefix_len = subtype_info - name; | |
10376 | LONGEST L, U; | |
10377 | struct type *type; | |
10378 | char *bounds_str; | |
10379 | int n; | |
10380 | ||
10381 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
10382 | strncpy (name_buf, name, prefix_len); | |
10383 | name_buf[prefix_len] = '\0'; | |
10384 | ||
10385 | subtype_info += 5; | |
10386 | bounds_str = strchr (subtype_info, '_'); | |
10387 | n = 1; | |
10388 | ||
d2e4a39e | 10389 | if (*subtype_info == 'L') |
4c4b4cd2 PH |
10390 | { |
10391 | if (!ada_scan_number (bounds_str, n, &L, &n) | |
10392 | && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
10393 | return raw_type; | |
10394 | if (bounds_str[n] == '_') | |
10395 | n += 2; | |
0963b4bd | 10396 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ |
4c4b4cd2 PH |
10397 | n += 1; |
10398 | subtype_info += 1; | |
10399 | } | |
d2e4a39e | 10400 | else |
4c4b4cd2 PH |
10401 | { |
10402 | int ok; | |
5b4ee69b | 10403 | |
4c4b4cd2 PH |
10404 | strcpy (name_buf + prefix_len, "___L"); |
10405 | L = get_int_var_value (name_buf, &ok); | |
10406 | if (!ok) | |
10407 | { | |
323e0a4a | 10408 | lim_warning (_("Unknown lower bound, using 1.")); |
4c4b4cd2 PH |
10409 | L = 1; |
10410 | } | |
10411 | } | |
14f9c5c9 | 10412 | |
d2e4a39e | 10413 | if (*subtype_info == 'U') |
4c4b4cd2 PH |
10414 | { |
10415 | if (!ada_scan_number (bounds_str, n, &U, &n) | |
10416 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
10417 | return raw_type; | |
10418 | } | |
d2e4a39e | 10419 | else |
4c4b4cd2 PH |
10420 | { |
10421 | int ok; | |
5b4ee69b | 10422 | |
4c4b4cd2 PH |
10423 | strcpy (name_buf + prefix_len, "___U"); |
10424 | U = get_int_var_value (name_buf, &ok); | |
10425 | if (!ok) | |
10426 | { | |
323e0a4a | 10427 | lim_warning (_("Unknown upper bound, using %ld."), (long) L); |
4c4b4cd2 PH |
10428 | U = L; |
10429 | } | |
10430 | } | |
14f9c5c9 | 10431 | |
28c85d6c | 10432 | type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); |
d2e4a39e | 10433 | TYPE_NAME (type) = name; |
14f9c5c9 AS |
10434 | return type; |
10435 | } | |
10436 | } | |
10437 | ||
4c4b4cd2 PH |
10438 | /* True iff NAME is the name of a range type. */ |
10439 | ||
14f9c5c9 | 10440 | int |
d2e4a39e | 10441 | ada_is_range_type_name (const char *name) |
14f9c5c9 AS |
10442 | { |
10443 | return (name != NULL && strstr (name, "___XD")); | |
d2e4a39e | 10444 | } |
14f9c5c9 | 10445 | \f |
d2e4a39e | 10446 | |
4c4b4cd2 PH |
10447 | /* Modular types */ |
10448 | ||
10449 | /* True iff TYPE is an Ada modular type. */ | |
14f9c5c9 | 10450 | |
14f9c5c9 | 10451 | int |
d2e4a39e | 10452 | ada_is_modular_type (struct type *type) |
14f9c5c9 | 10453 | { |
18af8284 | 10454 | struct type *subranged_type = get_base_type (type); |
14f9c5c9 AS |
10455 | |
10456 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
690cc4eb | 10457 | && TYPE_CODE (subranged_type) == TYPE_CODE_INT |
4c4b4cd2 | 10458 | && TYPE_UNSIGNED (subranged_type)); |
14f9c5c9 AS |
10459 | } |
10460 | ||
0056e4d5 JB |
10461 | /* Try to determine the lower and upper bounds of the given modular type |
10462 | using the type name only. Return non-zero and set L and U as the lower | |
10463 | and upper bounds (respectively) if successful. */ | |
10464 | ||
10465 | int | |
10466 | ada_modulus_from_name (struct type *type, ULONGEST *modulus) | |
10467 | { | |
10468 | char *name = ada_type_name (type); | |
10469 | char *suffix; | |
10470 | int k; | |
10471 | LONGEST U; | |
10472 | ||
10473 | if (name == NULL) | |
10474 | return 0; | |
10475 | ||
10476 | /* Discrete type bounds are encoded using an __XD suffix. In our case, | |
10477 | we are looking for static bounds, which means an __XDLU suffix. | |
10478 | Moreover, we know that the lower bound of modular types is always | |
10479 | zero, so the actual suffix should start with "__XDLU_0__", and | |
10480 | then be followed by the upper bound value. */ | |
10481 | suffix = strstr (name, "__XDLU_0__"); | |
10482 | if (suffix == NULL) | |
10483 | return 0; | |
10484 | k = 10; | |
10485 | if (!ada_scan_number (suffix, k, &U, NULL)) | |
10486 | return 0; | |
10487 | ||
10488 | *modulus = (ULONGEST) U + 1; | |
10489 | return 1; | |
10490 | } | |
10491 | ||
4c4b4cd2 PH |
10492 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ |
10493 | ||
61ee279c | 10494 | ULONGEST |
0056e4d5 | 10495 | ada_modulus (struct type *type) |
14f9c5c9 | 10496 | { |
43bbcdc2 | 10497 | return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; |
14f9c5c9 | 10498 | } |
d2e4a39e | 10499 | \f |
f7f9143b JB |
10500 | |
10501 | /* Ada exception catchpoint support: | |
10502 | --------------------------------- | |
10503 | ||
10504 | We support 3 kinds of exception catchpoints: | |
10505 | . catchpoints on Ada exceptions | |
10506 | . catchpoints on unhandled Ada exceptions | |
10507 | . catchpoints on failed assertions | |
10508 | ||
10509 | Exceptions raised during failed assertions, or unhandled exceptions | |
10510 | could perfectly be caught with the general catchpoint on Ada exceptions. | |
10511 | However, we can easily differentiate these two special cases, and having | |
10512 | the option to distinguish these two cases from the rest can be useful | |
10513 | to zero-in on certain situations. | |
10514 | ||
10515 | Exception catchpoints are a specialized form of breakpoint, | |
10516 | since they rely on inserting breakpoints inside known routines | |
10517 | of the GNAT runtime. The implementation therefore uses a standard | |
10518 | breakpoint structure of the BP_BREAKPOINT type, but with its own set | |
10519 | of breakpoint_ops. | |
10520 | ||
0259addd JB |
10521 | Support in the runtime for exception catchpoints have been changed |
10522 | a few times already, and these changes affect the implementation | |
10523 | of these catchpoints. In order to be able to support several | |
10524 | variants of the runtime, we use a sniffer that will determine | |
28010a5d | 10525 | the runtime variant used by the program being debugged. */ |
f7f9143b JB |
10526 | |
10527 | /* The different types of catchpoints that we introduced for catching | |
10528 | Ada exceptions. */ | |
10529 | ||
10530 | enum exception_catchpoint_kind | |
10531 | { | |
10532 | ex_catch_exception, | |
10533 | ex_catch_exception_unhandled, | |
10534 | ex_catch_assert | |
10535 | }; | |
10536 | ||
3d0b0fa3 JB |
10537 | /* Ada's standard exceptions. */ |
10538 | ||
10539 | static char *standard_exc[] = { | |
10540 | "constraint_error", | |
10541 | "program_error", | |
10542 | "storage_error", | |
10543 | "tasking_error" | |
10544 | }; | |
10545 | ||
0259addd JB |
10546 | typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); |
10547 | ||
10548 | /* A structure that describes how to support exception catchpoints | |
10549 | for a given executable. */ | |
10550 | ||
10551 | struct exception_support_info | |
10552 | { | |
10553 | /* The name of the symbol to break on in order to insert | |
10554 | a catchpoint on exceptions. */ | |
10555 | const char *catch_exception_sym; | |
10556 | ||
10557 | /* The name of the symbol to break on in order to insert | |
10558 | a catchpoint on unhandled exceptions. */ | |
10559 | const char *catch_exception_unhandled_sym; | |
10560 | ||
10561 | /* The name of the symbol to break on in order to insert | |
10562 | a catchpoint on failed assertions. */ | |
10563 | const char *catch_assert_sym; | |
10564 | ||
10565 | /* Assuming that the inferior just triggered an unhandled exception | |
10566 | catchpoint, this function is responsible for returning the address | |
10567 | in inferior memory where the name of that exception is stored. | |
10568 | Return zero if the address could not be computed. */ | |
10569 | ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; | |
10570 | }; | |
10571 | ||
10572 | static CORE_ADDR ada_unhandled_exception_name_addr (void); | |
10573 | static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); | |
10574 | ||
10575 | /* The following exception support info structure describes how to | |
10576 | implement exception catchpoints with the latest version of the | |
10577 | Ada runtime (as of 2007-03-06). */ | |
10578 | ||
10579 | static const struct exception_support_info default_exception_support_info = | |
10580 | { | |
10581 | "__gnat_debug_raise_exception", /* catch_exception_sym */ | |
10582 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10583 | "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ | |
10584 | ada_unhandled_exception_name_addr | |
10585 | }; | |
10586 | ||
10587 | /* The following exception support info structure describes how to | |
10588 | implement exception catchpoints with a slightly older version | |
10589 | of the Ada runtime. */ | |
10590 | ||
10591 | static const struct exception_support_info exception_support_info_fallback = | |
10592 | { | |
10593 | "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ | |
10594 | "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ | |
10595 | "system__assertions__raise_assert_failure", /* catch_assert_sym */ | |
10596 | ada_unhandled_exception_name_addr_from_raise | |
10597 | }; | |
10598 | ||
10599 | /* For each executable, we sniff which exception info structure to use | |
10600 | and cache it in the following global variable. */ | |
10601 | ||
10602 | static const struct exception_support_info *exception_info = NULL; | |
10603 | ||
10604 | /* Inspect the Ada runtime and determine which exception info structure | |
10605 | should be used to provide support for exception catchpoints. | |
10606 | ||
10607 | This function will always set exception_info, or raise an error. */ | |
10608 | ||
10609 | static void | |
10610 | ada_exception_support_info_sniffer (void) | |
10611 | { | |
10612 | struct symbol *sym; | |
10613 | ||
10614 | /* If the exception info is already known, then no need to recompute it. */ | |
10615 | if (exception_info != NULL) | |
10616 | return; | |
10617 | ||
10618 | /* Check the latest (default) exception support info. */ | |
10619 | sym = standard_lookup (default_exception_support_info.catch_exception_sym, | |
10620 | NULL, VAR_DOMAIN); | |
10621 | if (sym != NULL) | |
10622 | { | |
10623 | exception_info = &default_exception_support_info; | |
10624 | return; | |
10625 | } | |
10626 | ||
10627 | /* Try our fallback exception suport info. */ | |
10628 | sym = standard_lookup (exception_support_info_fallback.catch_exception_sym, | |
10629 | NULL, VAR_DOMAIN); | |
10630 | if (sym != NULL) | |
10631 | { | |
10632 | exception_info = &exception_support_info_fallback; | |
10633 | return; | |
10634 | } | |
10635 | ||
10636 | /* Sometimes, it is normal for us to not be able to find the routine | |
10637 | we are looking for. This happens when the program is linked with | |
10638 | the shared version of the GNAT runtime, and the program has not been | |
10639 | started yet. Inform the user of these two possible causes if | |
10640 | applicable. */ | |
10641 | ||
ccefe4c4 | 10642 | if (ada_update_initial_language (language_unknown) != language_ada) |
0259addd JB |
10643 | error (_("Unable to insert catchpoint. Is this an Ada main program?")); |
10644 | ||
10645 | /* If the symbol does not exist, then check that the program is | |
10646 | already started, to make sure that shared libraries have been | |
10647 | loaded. If it is not started, this may mean that the symbol is | |
10648 | in a shared library. */ | |
10649 | ||
10650 | if (ptid_get_pid (inferior_ptid) == 0) | |
10651 | error (_("Unable to insert catchpoint. Try to start the program first.")); | |
10652 | ||
10653 | /* At this point, we know that we are debugging an Ada program and | |
10654 | that the inferior has been started, but we still are not able to | |
0963b4bd | 10655 | find the run-time symbols. That can mean that we are in |
0259addd JB |
10656 | configurable run time mode, or that a-except as been optimized |
10657 | out by the linker... In any case, at this point it is not worth | |
10658 | supporting this feature. */ | |
10659 | ||
10660 | error (_("Cannot insert catchpoints in this configuration.")); | |
10661 | } | |
10662 | ||
10663 | /* An observer of "executable_changed" events. | |
10664 | Its role is to clear certain cached values that need to be recomputed | |
10665 | each time a new executable is loaded by GDB. */ | |
10666 | ||
10667 | static void | |
781b42b0 | 10668 | ada_executable_changed_observer (void) |
0259addd JB |
10669 | { |
10670 | /* If the executable changed, then it is possible that the Ada runtime | |
10671 | is different. So we need to invalidate the exception support info | |
10672 | cache. */ | |
10673 | exception_info = NULL; | |
10674 | } | |
10675 | ||
f7f9143b JB |
10676 | /* True iff FRAME is very likely to be that of a function that is |
10677 | part of the runtime system. This is all very heuristic, but is | |
10678 | intended to be used as advice as to what frames are uninteresting | |
10679 | to most users. */ | |
10680 | ||
10681 | static int | |
10682 | is_known_support_routine (struct frame_info *frame) | |
10683 | { | |
4ed6b5be | 10684 | struct symtab_and_line sal; |
f7f9143b | 10685 | char *func_name; |
692465f1 | 10686 | enum language func_lang; |
f7f9143b | 10687 | int i; |
f7f9143b | 10688 | |
4ed6b5be JB |
10689 | /* If this code does not have any debugging information (no symtab), |
10690 | This cannot be any user code. */ | |
f7f9143b | 10691 | |
4ed6b5be | 10692 | find_frame_sal (frame, &sal); |
f7f9143b JB |
10693 | if (sal.symtab == NULL) |
10694 | return 1; | |
10695 | ||
4ed6b5be JB |
10696 | /* If there is a symtab, but the associated source file cannot be |
10697 | located, then assume this is not user code: Selecting a frame | |
10698 | for which we cannot display the code would not be very helpful | |
10699 | for the user. This should also take care of case such as VxWorks | |
10700 | where the kernel has some debugging info provided for a few units. */ | |
f7f9143b | 10701 | |
9bbc9174 | 10702 | if (symtab_to_fullname (sal.symtab) == NULL) |
f7f9143b JB |
10703 | return 1; |
10704 | ||
4ed6b5be JB |
10705 | /* Check the unit filename againt the Ada runtime file naming. |
10706 | We also check the name of the objfile against the name of some | |
10707 | known system libraries that sometimes come with debugging info | |
10708 | too. */ | |
10709 | ||
f7f9143b JB |
10710 | for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) |
10711 | { | |
10712 | re_comp (known_runtime_file_name_patterns[i]); | |
10713 | if (re_exec (sal.symtab->filename)) | |
10714 | return 1; | |
4ed6b5be JB |
10715 | if (sal.symtab->objfile != NULL |
10716 | && re_exec (sal.symtab->objfile->name)) | |
10717 | return 1; | |
f7f9143b JB |
10718 | } |
10719 | ||
4ed6b5be | 10720 | /* Check whether the function is a GNAT-generated entity. */ |
f7f9143b | 10721 | |
e9e07ba6 | 10722 | find_frame_funname (frame, &func_name, &func_lang, NULL); |
f7f9143b JB |
10723 | if (func_name == NULL) |
10724 | return 1; | |
10725 | ||
10726 | for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) | |
10727 | { | |
10728 | re_comp (known_auxiliary_function_name_patterns[i]); | |
10729 | if (re_exec (func_name)) | |
10730 | return 1; | |
10731 | } | |
10732 | ||
10733 | return 0; | |
10734 | } | |
10735 | ||
10736 | /* Find the first frame that contains debugging information and that is not | |
10737 | part of the Ada run-time, starting from FI and moving upward. */ | |
10738 | ||
0ef643c8 | 10739 | void |
f7f9143b JB |
10740 | ada_find_printable_frame (struct frame_info *fi) |
10741 | { | |
10742 | for (; fi != NULL; fi = get_prev_frame (fi)) | |
10743 | { | |
10744 | if (!is_known_support_routine (fi)) | |
10745 | { | |
10746 | select_frame (fi); | |
10747 | break; | |
10748 | } | |
10749 | } | |
10750 | ||
10751 | } | |
10752 | ||
10753 | /* Assuming that the inferior just triggered an unhandled exception | |
10754 | catchpoint, return the address in inferior memory where the name | |
10755 | of the exception is stored. | |
10756 | ||
10757 | Return zero if the address could not be computed. */ | |
10758 | ||
10759 | static CORE_ADDR | |
10760 | ada_unhandled_exception_name_addr (void) | |
0259addd JB |
10761 | { |
10762 | return parse_and_eval_address ("e.full_name"); | |
10763 | } | |
10764 | ||
10765 | /* Same as ada_unhandled_exception_name_addr, except that this function | |
10766 | should be used when the inferior uses an older version of the runtime, | |
10767 | where the exception name needs to be extracted from a specific frame | |
10768 | several frames up in the callstack. */ | |
10769 | ||
10770 | static CORE_ADDR | |
10771 | ada_unhandled_exception_name_addr_from_raise (void) | |
f7f9143b JB |
10772 | { |
10773 | int frame_level; | |
10774 | struct frame_info *fi; | |
10775 | ||
10776 | /* To determine the name of this exception, we need to select | |
10777 | the frame corresponding to RAISE_SYM_NAME. This frame is | |
10778 | at least 3 levels up, so we simply skip the first 3 frames | |
10779 | without checking the name of their associated function. */ | |
10780 | fi = get_current_frame (); | |
10781 | for (frame_level = 0; frame_level < 3; frame_level += 1) | |
10782 | if (fi != NULL) | |
10783 | fi = get_prev_frame (fi); | |
10784 | ||
10785 | while (fi != NULL) | |
10786 | { | |
692465f1 JB |
10787 | char *func_name; |
10788 | enum language func_lang; | |
10789 | ||
e9e07ba6 | 10790 | find_frame_funname (fi, &func_name, &func_lang, NULL); |
f7f9143b | 10791 | if (func_name != NULL |
0259addd | 10792 | && strcmp (func_name, exception_info->catch_exception_sym) == 0) |
f7f9143b JB |
10793 | break; /* We found the frame we were looking for... */ |
10794 | fi = get_prev_frame (fi); | |
10795 | } | |
10796 | ||
10797 | if (fi == NULL) | |
10798 | return 0; | |
10799 | ||
10800 | select_frame (fi); | |
10801 | return parse_and_eval_address ("id.full_name"); | |
10802 | } | |
10803 | ||
10804 | /* Assuming the inferior just triggered an Ada exception catchpoint | |
10805 | (of any type), return the address in inferior memory where the name | |
10806 | of the exception is stored, if applicable. | |
10807 | ||
10808 | Return zero if the address could not be computed, or if not relevant. */ | |
10809 | ||
10810 | static CORE_ADDR | |
10811 | ada_exception_name_addr_1 (enum exception_catchpoint_kind ex, | |
10812 | struct breakpoint *b) | |
10813 | { | |
10814 | switch (ex) | |
10815 | { | |
10816 | case ex_catch_exception: | |
10817 | return (parse_and_eval_address ("e.full_name")); | |
10818 | break; | |
10819 | ||
10820 | case ex_catch_exception_unhandled: | |
0259addd | 10821 | return exception_info->unhandled_exception_name_addr (); |
f7f9143b JB |
10822 | break; |
10823 | ||
10824 | case ex_catch_assert: | |
10825 | return 0; /* Exception name is not relevant in this case. */ | |
10826 | break; | |
10827 | ||
10828 | default: | |
10829 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
10830 | break; | |
10831 | } | |
10832 | ||
10833 | return 0; /* Should never be reached. */ | |
10834 | } | |
10835 | ||
10836 | /* Same as ada_exception_name_addr_1, except that it intercepts and contains | |
10837 | any error that ada_exception_name_addr_1 might cause to be thrown. | |
10838 | When an error is intercepted, a warning with the error message is printed, | |
10839 | and zero is returned. */ | |
10840 | ||
10841 | static CORE_ADDR | |
10842 | ada_exception_name_addr (enum exception_catchpoint_kind ex, | |
10843 | struct breakpoint *b) | |
10844 | { | |
10845 | struct gdb_exception e; | |
10846 | CORE_ADDR result = 0; | |
10847 | ||
10848 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10849 | { | |
10850 | result = ada_exception_name_addr_1 (ex, b); | |
10851 | } | |
10852 | ||
10853 | if (e.reason < 0) | |
10854 | { | |
10855 | warning (_("failed to get exception name: %s"), e.message); | |
10856 | return 0; | |
10857 | } | |
10858 | ||
10859 | return result; | |
10860 | } | |
10861 | ||
28010a5d PA |
10862 | static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind, |
10863 | char *, char **, | |
c0a91b2b | 10864 | const struct breakpoint_ops **); |
28010a5d PA |
10865 | static char *ada_exception_catchpoint_cond_string (const char *excep_string); |
10866 | ||
10867 | /* Ada catchpoints. | |
10868 | ||
10869 | In the case of catchpoints on Ada exceptions, the catchpoint will | |
10870 | stop the target on every exception the program throws. When a user | |
10871 | specifies the name of a specific exception, we translate this | |
10872 | request into a condition expression (in text form), and then parse | |
10873 | it into an expression stored in each of the catchpoint's locations. | |
10874 | We then use this condition to check whether the exception that was | |
10875 | raised is the one the user is interested in. If not, then the | |
10876 | target is resumed again. We store the name of the requested | |
10877 | exception, in order to be able to re-set the condition expression | |
10878 | when symbols change. */ | |
10879 | ||
10880 | /* An instance of this type is used to represent an Ada catchpoint | |
10881 | breakpoint location. It includes a "struct bp_location" as a kind | |
10882 | of base class; users downcast to "struct bp_location *" when | |
10883 | needed. */ | |
10884 | ||
10885 | struct ada_catchpoint_location | |
10886 | { | |
10887 | /* The base class. */ | |
10888 | struct bp_location base; | |
10889 | ||
10890 | /* The condition that checks whether the exception that was raised | |
10891 | is the specific exception the user specified on catchpoint | |
10892 | creation. */ | |
10893 | struct expression *excep_cond_expr; | |
10894 | }; | |
10895 | ||
10896 | /* Implement the DTOR method in the bp_location_ops structure for all | |
10897 | Ada exception catchpoint kinds. */ | |
10898 | ||
10899 | static void | |
10900 | ada_catchpoint_location_dtor (struct bp_location *bl) | |
10901 | { | |
10902 | struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; | |
10903 | ||
10904 | xfree (al->excep_cond_expr); | |
10905 | } | |
10906 | ||
10907 | /* The vtable to be used in Ada catchpoint locations. */ | |
10908 | ||
10909 | static const struct bp_location_ops ada_catchpoint_location_ops = | |
10910 | { | |
10911 | ada_catchpoint_location_dtor | |
10912 | }; | |
10913 | ||
10914 | /* An instance of this type is used to represent an Ada catchpoint. | |
10915 | It includes a "struct breakpoint" as a kind of base class; users | |
10916 | downcast to "struct breakpoint *" when needed. */ | |
10917 | ||
10918 | struct ada_catchpoint | |
10919 | { | |
10920 | /* The base class. */ | |
10921 | struct breakpoint base; | |
10922 | ||
10923 | /* The name of the specific exception the user specified. */ | |
10924 | char *excep_string; | |
10925 | }; | |
10926 | ||
10927 | /* Parse the exception condition string in the context of each of the | |
10928 | catchpoint's locations, and store them for later evaluation. */ | |
10929 | ||
10930 | static void | |
10931 | create_excep_cond_exprs (struct ada_catchpoint *c) | |
10932 | { | |
10933 | struct cleanup *old_chain; | |
10934 | struct bp_location *bl; | |
10935 | char *cond_string; | |
10936 | ||
10937 | /* Nothing to do if there's no specific exception to catch. */ | |
10938 | if (c->excep_string == NULL) | |
10939 | return; | |
10940 | ||
10941 | /* Same if there are no locations... */ | |
10942 | if (c->base.loc == NULL) | |
10943 | return; | |
10944 | ||
10945 | /* Compute the condition expression in text form, from the specific | |
10946 | expection we want to catch. */ | |
10947 | cond_string = ada_exception_catchpoint_cond_string (c->excep_string); | |
10948 | old_chain = make_cleanup (xfree, cond_string); | |
10949 | ||
10950 | /* Iterate over all the catchpoint's locations, and parse an | |
10951 | expression for each. */ | |
10952 | for (bl = c->base.loc; bl != NULL; bl = bl->next) | |
10953 | { | |
10954 | struct ada_catchpoint_location *ada_loc | |
10955 | = (struct ada_catchpoint_location *) bl; | |
10956 | struct expression *exp = NULL; | |
10957 | ||
10958 | if (!bl->shlib_disabled) | |
10959 | { | |
10960 | volatile struct gdb_exception e; | |
10961 | char *s; | |
10962 | ||
10963 | s = cond_string; | |
10964 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
10965 | { | |
10966 | exp = parse_exp_1 (&s, block_for_pc (bl->address), 0); | |
10967 | } | |
10968 | if (e.reason < 0) | |
10969 | warning (_("failed to reevaluate internal exception condition " | |
10970 | "for catchpoint %d: %s"), | |
10971 | c->base.number, e.message); | |
10972 | } | |
10973 | ||
10974 | ada_loc->excep_cond_expr = exp; | |
10975 | } | |
10976 | ||
10977 | do_cleanups (old_chain); | |
10978 | } | |
10979 | ||
10980 | /* Implement the DTOR method in the breakpoint_ops structure for all | |
10981 | exception catchpoint kinds. */ | |
10982 | ||
10983 | static void | |
10984 | dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
10985 | { | |
10986 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
10987 | ||
10988 | xfree (c->excep_string); | |
348d480f | 10989 | |
2060206e | 10990 | bkpt_breakpoint_ops.dtor (b); |
28010a5d PA |
10991 | } |
10992 | ||
10993 | /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops | |
10994 | structure for all exception catchpoint kinds. */ | |
10995 | ||
10996 | static struct bp_location * | |
10997 | allocate_location_exception (enum exception_catchpoint_kind ex, | |
10998 | struct breakpoint *self) | |
10999 | { | |
11000 | struct ada_catchpoint_location *loc; | |
11001 | ||
11002 | loc = XNEW (struct ada_catchpoint_location); | |
11003 | init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); | |
11004 | loc->excep_cond_expr = NULL; | |
11005 | return &loc->base; | |
11006 | } | |
11007 | ||
11008 | /* Implement the RE_SET method in the breakpoint_ops structure for all | |
11009 | exception catchpoint kinds. */ | |
11010 | ||
11011 | static void | |
11012 | re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b) | |
11013 | { | |
11014 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; | |
11015 | ||
11016 | /* Call the base class's method. This updates the catchpoint's | |
11017 | locations. */ | |
2060206e | 11018 | bkpt_breakpoint_ops.re_set (b); |
28010a5d PA |
11019 | |
11020 | /* Reparse the exception conditional expressions. One for each | |
11021 | location. */ | |
11022 | create_excep_cond_exprs (c); | |
11023 | } | |
11024 | ||
11025 | /* Returns true if we should stop for this breakpoint hit. If the | |
11026 | user specified a specific exception, we only want to cause a stop | |
11027 | if the program thrown that exception. */ | |
11028 | ||
11029 | static int | |
11030 | should_stop_exception (const struct bp_location *bl) | |
11031 | { | |
11032 | struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; | |
11033 | const struct ada_catchpoint_location *ada_loc | |
11034 | = (const struct ada_catchpoint_location *) bl; | |
11035 | volatile struct gdb_exception ex; | |
11036 | int stop; | |
11037 | ||
11038 | /* With no specific exception, should always stop. */ | |
11039 | if (c->excep_string == NULL) | |
11040 | return 1; | |
11041 | ||
11042 | if (ada_loc->excep_cond_expr == NULL) | |
11043 | { | |
11044 | /* We will have a NULL expression if back when we were creating | |
11045 | the expressions, this location's had failed to parse. */ | |
11046 | return 1; | |
11047 | } | |
11048 | ||
11049 | stop = 1; | |
11050 | TRY_CATCH (ex, RETURN_MASK_ALL) | |
11051 | { | |
11052 | struct value *mark; | |
11053 | ||
11054 | mark = value_mark (); | |
11055 | stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); | |
11056 | value_free_to_mark (mark); | |
11057 | } | |
11058 | if (ex.reason < 0) | |
11059 | exception_fprintf (gdb_stderr, ex, | |
11060 | _("Error in testing exception condition:\n")); | |
11061 | return stop; | |
11062 | } | |
11063 | ||
11064 | /* Implement the CHECK_STATUS method in the breakpoint_ops structure | |
11065 | for all exception catchpoint kinds. */ | |
11066 | ||
11067 | static void | |
11068 | check_status_exception (enum exception_catchpoint_kind ex, bpstat bs) | |
11069 | { | |
11070 | bs->stop = should_stop_exception (bs->bp_location_at); | |
11071 | } | |
11072 | ||
f7f9143b JB |
11073 | /* Implement the PRINT_IT method in the breakpoint_ops structure |
11074 | for all exception catchpoint kinds. */ | |
11075 | ||
11076 | static enum print_stop_action | |
348d480f | 11077 | print_it_exception (enum exception_catchpoint_kind ex, bpstat bs) |
f7f9143b | 11078 | { |
79a45e25 | 11079 | struct ui_out *uiout = current_uiout; |
348d480f PA |
11080 | struct breakpoint *b = bs->breakpoint_at; |
11081 | ||
956a9fb9 | 11082 | annotate_catchpoint (b->number); |
f7f9143b | 11083 | |
956a9fb9 | 11084 | if (ui_out_is_mi_like_p (uiout)) |
f7f9143b | 11085 | { |
956a9fb9 JB |
11086 | ui_out_field_string (uiout, "reason", |
11087 | async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); | |
11088 | ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); | |
f7f9143b JB |
11089 | } |
11090 | ||
00eb2c4a JB |
11091 | ui_out_text (uiout, |
11092 | b->disposition == disp_del ? "\nTemporary catchpoint " | |
11093 | : "\nCatchpoint "); | |
956a9fb9 JB |
11094 | ui_out_field_int (uiout, "bkptno", b->number); |
11095 | ui_out_text (uiout, ", "); | |
f7f9143b | 11096 | |
f7f9143b JB |
11097 | switch (ex) |
11098 | { | |
11099 | case ex_catch_exception: | |
f7f9143b | 11100 | case ex_catch_exception_unhandled: |
956a9fb9 JB |
11101 | { |
11102 | const CORE_ADDR addr = ada_exception_name_addr (ex, b); | |
11103 | char exception_name[256]; | |
11104 | ||
11105 | if (addr != 0) | |
11106 | { | |
11107 | read_memory (addr, exception_name, sizeof (exception_name) - 1); | |
11108 | exception_name [sizeof (exception_name) - 1] = '\0'; | |
11109 | } | |
11110 | else | |
11111 | { | |
11112 | /* For some reason, we were unable to read the exception | |
11113 | name. This could happen if the Runtime was compiled | |
11114 | without debugging info, for instance. In that case, | |
11115 | just replace the exception name by the generic string | |
11116 | "exception" - it will read as "an exception" in the | |
11117 | notification we are about to print. */ | |
967cff16 | 11118 | memcpy (exception_name, "exception", sizeof ("exception")); |
956a9fb9 JB |
11119 | } |
11120 | /* In the case of unhandled exception breakpoints, we print | |
11121 | the exception name as "unhandled EXCEPTION_NAME", to make | |
11122 | it clearer to the user which kind of catchpoint just got | |
11123 | hit. We used ui_out_text to make sure that this extra | |
11124 | info does not pollute the exception name in the MI case. */ | |
11125 | if (ex == ex_catch_exception_unhandled) | |
11126 | ui_out_text (uiout, "unhandled "); | |
11127 | ui_out_field_string (uiout, "exception-name", exception_name); | |
11128 | } | |
11129 | break; | |
f7f9143b | 11130 | case ex_catch_assert: |
956a9fb9 JB |
11131 | /* In this case, the name of the exception is not really |
11132 | important. Just print "failed assertion" to make it clearer | |
11133 | that his program just hit an assertion-failure catchpoint. | |
11134 | We used ui_out_text because this info does not belong in | |
11135 | the MI output. */ | |
11136 | ui_out_text (uiout, "failed assertion"); | |
11137 | break; | |
f7f9143b | 11138 | } |
956a9fb9 JB |
11139 | ui_out_text (uiout, " at "); |
11140 | ada_find_printable_frame (get_current_frame ()); | |
f7f9143b JB |
11141 | |
11142 | return PRINT_SRC_AND_LOC; | |
11143 | } | |
11144 | ||
11145 | /* Implement the PRINT_ONE method in the breakpoint_ops structure | |
11146 | for all exception catchpoint kinds. */ | |
11147 | ||
11148 | static void | |
11149 | print_one_exception (enum exception_catchpoint_kind ex, | |
a6d9a66e | 11150 | struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11151 | { |
79a45e25 | 11152 | struct ui_out *uiout = current_uiout; |
28010a5d | 11153 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45b7d TT |
11154 | struct value_print_options opts; |
11155 | ||
11156 | get_user_print_options (&opts); | |
11157 | if (opts.addressprint) | |
f7f9143b JB |
11158 | { |
11159 | annotate_field (4); | |
5af949e3 | 11160 | ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); |
f7f9143b JB |
11161 | } |
11162 | ||
11163 | annotate_field (5); | |
a6d9a66e | 11164 | *last_loc = b->loc; |
f7f9143b JB |
11165 | switch (ex) |
11166 | { | |
11167 | case ex_catch_exception: | |
28010a5d | 11168 | if (c->excep_string != NULL) |
f7f9143b | 11169 | { |
28010a5d PA |
11170 | char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); |
11171 | ||
f7f9143b JB |
11172 | ui_out_field_string (uiout, "what", msg); |
11173 | xfree (msg); | |
11174 | } | |
11175 | else | |
11176 | ui_out_field_string (uiout, "what", "all Ada exceptions"); | |
11177 | ||
11178 | break; | |
11179 | ||
11180 | case ex_catch_exception_unhandled: | |
11181 | ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); | |
11182 | break; | |
11183 | ||
11184 | case ex_catch_assert: | |
11185 | ui_out_field_string (uiout, "what", "failed Ada assertions"); | |
11186 | break; | |
11187 | ||
11188 | default: | |
11189 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11190 | break; | |
11191 | } | |
11192 | } | |
11193 | ||
11194 | /* Implement the PRINT_MENTION method in the breakpoint_ops structure | |
11195 | for all exception catchpoint kinds. */ | |
11196 | ||
11197 | static void | |
11198 | print_mention_exception (enum exception_catchpoint_kind ex, | |
11199 | struct breakpoint *b) | |
11200 | { | |
28010a5d | 11201 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
79a45e25 | 11202 | struct ui_out *uiout = current_uiout; |
28010a5d | 11203 | |
00eb2c4a JB |
11204 | ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") |
11205 | : _("Catchpoint ")); | |
11206 | ui_out_field_int (uiout, "bkptno", b->number); | |
11207 | ui_out_text (uiout, ": "); | |
11208 | ||
f7f9143b JB |
11209 | switch (ex) |
11210 | { | |
11211 | case ex_catch_exception: | |
28010a5d | 11212 | if (c->excep_string != NULL) |
00eb2c4a JB |
11213 | { |
11214 | char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); | |
11215 | struct cleanup *old_chain = make_cleanup (xfree, info); | |
11216 | ||
11217 | ui_out_text (uiout, info); | |
11218 | do_cleanups (old_chain); | |
11219 | } | |
f7f9143b | 11220 | else |
00eb2c4a | 11221 | ui_out_text (uiout, _("all Ada exceptions")); |
f7f9143b JB |
11222 | break; |
11223 | ||
11224 | case ex_catch_exception_unhandled: | |
00eb2c4a | 11225 | ui_out_text (uiout, _("unhandled Ada exceptions")); |
f7f9143b JB |
11226 | break; |
11227 | ||
11228 | case ex_catch_assert: | |
00eb2c4a | 11229 | ui_out_text (uiout, _("failed Ada assertions")); |
f7f9143b JB |
11230 | break; |
11231 | ||
11232 | default: | |
11233 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11234 | break; | |
11235 | } | |
11236 | } | |
11237 | ||
6149aea9 PA |
11238 | /* Implement the PRINT_RECREATE method in the breakpoint_ops structure |
11239 | for all exception catchpoint kinds. */ | |
11240 | ||
11241 | static void | |
11242 | print_recreate_exception (enum exception_catchpoint_kind ex, | |
11243 | struct breakpoint *b, struct ui_file *fp) | |
11244 | { | |
28010a5d PA |
11245 | struct ada_catchpoint *c = (struct ada_catchpoint *) b; |
11246 | ||
6149aea9 PA |
11247 | switch (ex) |
11248 | { | |
11249 | case ex_catch_exception: | |
11250 | fprintf_filtered (fp, "catch exception"); | |
28010a5d PA |
11251 | if (c->excep_string != NULL) |
11252 | fprintf_filtered (fp, " %s", c->excep_string); | |
6149aea9 PA |
11253 | break; |
11254 | ||
11255 | case ex_catch_exception_unhandled: | |
78076abc | 11256 | fprintf_filtered (fp, "catch exception unhandled"); |
6149aea9 PA |
11257 | break; |
11258 | ||
11259 | case ex_catch_assert: | |
11260 | fprintf_filtered (fp, "catch assert"); | |
11261 | break; | |
11262 | ||
11263 | default: | |
11264 | internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); | |
11265 | } | |
d9b3f62e | 11266 | print_recreate_thread (b, fp); |
6149aea9 PA |
11267 | } |
11268 | ||
f7f9143b JB |
11269 | /* Virtual table for "catch exception" breakpoints. */ |
11270 | ||
28010a5d PA |
11271 | static void |
11272 | dtor_catch_exception (struct breakpoint *b) | |
11273 | { | |
11274 | dtor_exception (ex_catch_exception, b); | |
11275 | } | |
11276 | ||
11277 | static struct bp_location * | |
11278 | allocate_location_catch_exception (struct breakpoint *self) | |
11279 | { | |
11280 | return allocate_location_exception (ex_catch_exception, self); | |
11281 | } | |
11282 | ||
11283 | static void | |
11284 | re_set_catch_exception (struct breakpoint *b) | |
11285 | { | |
11286 | re_set_exception (ex_catch_exception, b); | |
11287 | } | |
11288 | ||
11289 | static void | |
11290 | check_status_catch_exception (bpstat bs) | |
11291 | { | |
11292 | check_status_exception (ex_catch_exception, bs); | |
11293 | } | |
11294 | ||
f7f9143b | 11295 | static enum print_stop_action |
348d480f | 11296 | print_it_catch_exception (bpstat bs) |
f7f9143b | 11297 | { |
348d480f | 11298 | return print_it_exception (ex_catch_exception, bs); |
f7f9143b JB |
11299 | } |
11300 | ||
11301 | static void | |
a6d9a66e | 11302 | print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11303 | { |
a6d9a66e | 11304 | print_one_exception (ex_catch_exception, b, last_loc); |
f7f9143b JB |
11305 | } |
11306 | ||
11307 | static void | |
11308 | print_mention_catch_exception (struct breakpoint *b) | |
11309 | { | |
11310 | print_mention_exception (ex_catch_exception, b); | |
11311 | } | |
11312 | ||
6149aea9 PA |
11313 | static void |
11314 | print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) | |
11315 | { | |
11316 | print_recreate_exception (ex_catch_exception, b, fp); | |
11317 | } | |
11318 | ||
2060206e | 11319 | static struct breakpoint_ops catch_exception_breakpoint_ops; |
f7f9143b JB |
11320 | |
11321 | /* Virtual table for "catch exception unhandled" breakpoints. */ | |
11322 | ||
28010a5d PA |
11323 | static void |
11324 | dtor_catch_exception_unhandled (struct breakpoint *b) | |
11325 | { | |
11326 | dtor_exception (ex_catch_exception_unhandled, b); | |
11327 | } | |
11328 | ||
11329 | static struct bp_location * | |
11330 | allocate_location_catch_exception_unhandled (struct breakpoint *self) | |
11331 | { | |
11332 | return allocate_location_exception (ex_catch_exception_unhandled, self); | |
11333 | } | |
11334 | ||
11335 | static void | |
11336 | re_set_catch_exception_unhandled (struct breakpoint *b) | |
11337 | { | |
11338 | re_set_exception (ex_catch_exception_unhandled, b); | |
11339 | } | |
11340 | ||
11341 | static void | |
11342 | check_status_catch_exception_unhandled (bpstat bs) | |
11343 | { | |
11344 | check_status_exception (ex_catch_exception_unhandled, bs); | |
11345 | } | |
11346 | ||
f7f9143b | 11347 | static enum print_stop_action |
348d480f | 11348 | print_it_catch_exception_unhandled (bpstat bs) |
f7f9143b | 11349 | { |
348d480f | 11350 | return print_it_exception (ex_catch_exception_unhandled, bs); |
f7f9143b JB |
11351 | } |
11352 | ||
11353 | static void | |
a6d9a66e UW |
11354 | print_one_catch_exception_unhandled (struct breakpoint *b, |
11355 | struct bp_location **last_loc) | |
f7f9143b | 11356 | { |
a6d9a66e | 11357 | print_one_exception (ex_catch_exception_unhandled, b, last_loc); |
f7f9143b JB |
11358 | } |
11359 | ||
11360 | static void | |
11361 | print_mention_catch_exception_unhandled (struct breakpoint *b) | |
11362 | { | |
11363 | print_mention_exception (ex_catch_exception_unhandled, b); | |
11364 | } | |
11365 | ||
6149aea9 PA |
11366 | static void |
11367 | print_recreate_catch_exception_unhandled (struct breakpoint *b, | |
11368 | struct ui_file *fp) | |
11369 | { | |
11370 | print_recreate_exception (ex_catch_exception_unhandled, b, fp); | |
11371 | } | |
11372 | ||
2060206e | 11373 | static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; |
f7f9143b JB |
11374 | |
11375 | /* Virtual table for "catch assert" breakpoints. */ | |
11376 | ||
28010a5d PA |
11377 | static void |
11378 | dtor_catch_assert (struct breakpoint *b) | |
11379 | { | |
11380 | dtor_exception (ex_catch_assert, b); | |
11381 | } | |
11382 | ||
11383 | static struct bp_location * | |
11384 | allocate_location_catch_assert (struct breakpoint *self) | |
11385 | { | |
11386 | return allocate_location_exception (ex_catch_assert, self); | |
11387 | } | |
11388 | ||
11389 | static void | |
11390 | re_set_catch_assert (struct breakpoint *b) | |
11391 | { | |
11392 | return re_set_exception (ex_catch_assert, b); | |
11393 | } | |
11394 | ||
11395 | static void | |
11396 | check_status_catch_assert (bpstat bs) | |
11397 | { | |
11398 | check_status_exception (ex_catch_assert, bs); | |
11399 | } | |
11400 | ||
f7f9143b | 11401 | static enum print_stop_action |
348d480f | 11402 | print_it_catch_assert (bpstat bs) |
f7f9143b | 11403 | { |
348d480f | 11404 | return print_it_exception (ex_catch_assert, bs); |
f7f9143b JB |
11405 | } |
11406 | ||
11407 | static void | |
a6d9a66e | 11408 | print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) |
f7f9143b | 11409 | { |
a6d9a66e | 11410 | print_one_exception (ex_catch_assert, b, last_loc); |
f7f9143b JB |
11411 | } |
11412 | ||
11413 | static void | |
11414 | print_mention_catch_assert (struct breakpoint *b) | |
11415 | { | |
11416 | print_mention_exception (ex_catch_assert, b); | |
11417 | } | |
11418 | ||
6149aea9 PA |
11419 | static void |
11420 | print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) | |
11421 | { | |
11422 | print_recreate_exception (ex_catch_assert, b, fp); | |
11423 | } | |
11424 | ||
2060206e | 11425 | static struct breakpoint_ops catch_assert_breakpoint_ops; |
f7f9143b | 11426 | |
f7f9143b JB |
11427 | /* Return a newly allocated copy of the first space-separated token |
11428 | in ARGSP, and then adjust ARGSP to point immediately after that | |
11429 | token. | |
11430 | ||
11431 | Return NULL if ARGPS does not contain any more tokens. */ | |
11432 | ||
11433 | static char * | |
11434 | ada_get_next_arg (char **argsp) | |
11435 | { | |
11436 | char *args = *argsp; | |
11437 | char *end; | |
11438 | char *result; | |
11439 | ||
11440 | /* Skip any leading white space. */ | |
11441 | ||
11442 | while (isspace (*args)) | |
11443 | args++; | |
11444 | ||
11445 | if (args[0] == '\0') | |
11446 | return NULL; /* No more arguments. */ | |
11447 | ||
11448 | /* Find the end of the current argument. */ | |
11449 | ||
11450 | end = args; | |
11451 | while (*end != '\0' && !isspace (*end)) | |
11452 | end++; | |
11453 | ||
11454 | /* Adjust ARGSP to point to the start of the next argument. */ | |
11455 | ||
11456 | *argsp = end; | |
11457 | ||
11458 | /* Make a copy of the current argument and return it. */ | |
11459 | ||
11460 | result = xmalloc (end - args + 1); | |
11461 | strncpy (result, args, end - args); | |
11462 | result[end - args] = '\0'; | |
11463 | ||
11464 | return result; | |
11465 | } | |
11466 | ||
11467 | /* Split the arguments specified in a "catch exception" command. | |
11468 | Set EX to the appropriate catchpoint type. | |
28010a5d | 11469 | Set EXCEP_STRING to the name of the specific exception if |
f7f9143b JB |
11470 | specified by the user. */ |
11471 | ||
11472 | static void | |
11473 | catch_ada_exception_command_split (char *args, | |
11474 | enum exception_catchpoint_kind *ex, | |
28010a5d | 11475 | char **excep_string) |
f7f9143b JB |
11476 | { |
11477 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); | |
11478 | char *exception_name; | |
11479 | ||
11480 | exception_name = ada_get_next_arg (&args); | |
11481 | make_cleanup (xfree, exception_name); | |
11482 | ||
11483 | /* Check that we do not have any more arguments. Anything else | |
11484 | is unexpected. */ | |
11485 | ||
11486 | while (isspace (*args)) | |
11487 | args++; | |
11488 | ||
11489 | if (args[0] != '\0') | |
11490 | error (_("Junk at end of expression")); | |
11491 | ||
11492 | discard_cleanups (old_chain); | |
11493 | ||
11494 | if (exception_name == NULL) | |
11495 | { | |
11496 | /* Catch all exceptions. */ | |
11497 | *ex = ex_catch_exception; | |
28010a5d | 11498 | *excep_string = NULL; |
f7f9143b JB |
11499 | } |
11500 | else if (strcmp (exception_name, "unhandled") == 0) | |
11501 | { | |
11502 | /* Catch unhandled exceptions. */ | |
11503 | *ex = ex_catch_exception_unhandled; | |
28010a5d | 11504 | *excep_string = NULL; |
f7f9143b JB |
11505 | } |
11506 | else | |
11507 | { | |
11508 | /* Catch a specific exception. */ | |
11509 | *ex = ex_catch_exception; | |
28010a5d | 11510 | *excep_string = exception_name; |
f7f9143b JB |
11511 | } |
11512 | } | |
11513 | ||
11514 | /* Return the name of the symbol on which we should break in order to | |
11515 | implement a catchpoint of the EX kind. */ | |
11516 | ||
11517 | static const char * | |
11518 | ada_exception_sym_name (enum exception_catchpoint_kind ex) | |
11519 | { | |
0259addd JB |
11520 | gdb_assert (exception_info != NULL); |
11521 | ||
f7f9143b JB |
11522 | switch (ex) |
11523 | { | |
11524 | case ex_catch_exception: | |
0259addd | 11525 | return (exception_info->catch_exception_sym); |
f7f9143b JB |
11526 | break; |
11527 | case ex_catch_exception_unhandled: | |
0259addd | 11528 | return (exception_info->catch_exception_unhandled_sym); |
f7f9143b JB |
11529 | break; |
11530 | case ex_catch_assert: | |
0259addd | 11531 | return (exception_info->catch_assert_sym); |
f7f9143b JB |
11532 | break; |
11533 | default: | |
11534 | internal_error (__FILE__, __LINE__, | |
11535 | _("unexpected catchpoint kind (%d)"), ex); | |
11536 | } | |
11537 | } | |
11538 | ||
11539 | /* Return the breakpoint ops "virtual table" used for catchpoints | |
11540 | of the EX kind. */ | |
11541 | ||
c0a91b2b | 11542 | static const struct breakpoint_ops * |
4b9eee8c | 11543 | ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex) |
f7f9143b JB |
11544 | { |
11545 | switch (ex) | |
11546 | { | |
11547 | case ex_catch_exception: | |
11548 | return (&catch_exception_breakpoint_ops); | |
11549 | break; | |
11550 | case ex_catch_exception_unhandled: | |
11551 | return (&catch_exception_unhandled_breakpoint_ops); | |
11552 | break; | |
11553 | case ex_catch_assert: | |
11554 | return (&catch_assert_breakpoint_ops); | |
11555 | break; | |
11556 | default: | |
11557 | internal_error (__FILE__, __LINE__, | |
11558 | _("unexpected catchpoint kind (%d)"), ex); | |
11559 | } | |
11560 | } | |
11561 | ||
11562 | /* Return the condition that will be used to match the current exception | |
11563 | being raised with the exception that the user wants to catch. This | |
11564 | assumes that this condition is used when the inferior just triggered | |
11565 | an exception catchpoint. | |
11566 | ||
11567 | The string returned is a newly allocated string that needs to be | |
11568 | deallocated later. */ | |
11569 | ||
11570 | static char * | |
28010a5d | 11571 | ada_exception_catchpoint_cond_string (const char *excep_string) |
f7f9143b | 11572 | { |
3d0b0fa3 JB |
11573 | int i; |
11574 | ||
0963b4bd | 11575 | /* The standard exceptions are a special case. They are defined in |
3d0b0fa3 | 11576 | runtime units that have been compiled without debugging info; if |
28010a5d | 11577 | EXCEP_STRING is the not-fully-qualified name of a standard |
3d0b0fa3 JB |
11578 | exception (e.g. "constraint_error") then, during the evaluation |
11579 | of the condition expression, the symbol lookup on this name would | |
0963b4bd | 11580 | *not* return this standard exception. The catchpoint condition |
3d0b0fa3 JB |
11581 | may then be set only on user-defined exceptions which have the |
11582 | same not-fully-qualified name (e.g. my_package.constraint_error). | |
11583 | ||
11584 | To avoid this unexcepted behavior, these standard exceptions are | |
0963b4bd | 11585 | systematically prefixed by "standard". This means that "catch |
3d0b0fa3 JB |
11586 | exception constraint_error" is rewritten into "catch exception |
11587 | standard.constraint_error". | |
11588 | ||
11589 | If an exception named contraint_error is defined in another package of | |
11590 | the inferior program, then the only way to specify this exception as a | |
11591 | breakpoint condition is to use its fully-qualified named: | |
11592 | e.g. my_package.constraint_error. */ | |
11593 | ||
11594 | for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) | |
11595 | { | |
28010a5d | 11596 | if (strcmp (standard_exc [i], excep_string) == 0) |
3d0b0fa3 JB |
11597 | { |
11598 | return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", | |
28010a5d | 11599 | excep_string); |
3d0b0fa3 JB |
11600 | } |
11601 | } | |
28010a5d | 11602 | return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); |
f7f9143b JB |
11603 | } |
11604 | ||
11605 | /* Return the symtab_and_line that should be used to insert an exception | |
11606 | catchpoint of the TYPE kind. | |
11607 | ||
28010a5d PA |
11608 | EXCEP_STRING should contain the name of a specific exception that |
11609 | the catchpoint should catch, or NULL otherwise. | |
f7f9143b | 11610 | |
28010a5d PA |
11611 | ADDR_STRING returns the name of the function where the real |
11612 | breakpoint that implements the catchpoints is set, depending on the | |
11613 | type of catchpoint we need to create. */ | |
f7f9143b JB |
11614 | |
11615 | static struct symtab_and_line | |
28010a5d | 11616 | ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string, |
c0a91b2b | 11617 | char **addr_string, const struct breakpoint_ops **ops) |
f7f9143b JB |
11618 | { |
11619 | const char *sym_name; | |
11620 | struct symbol *sym; | |
11621 | struct symtab_and_line sal; | |
11622 | ||
0259addd JB |
11623 | /* First, find out which exception support info to use. */ |
11624 | ada_exception_support_info_sniffer (); | |
11625 | ||
11626 | /* Then lookup the function on which we will break in order to catch | |
f7f9143b JB |
11627 | the Ada exceptions requested by the user. */ |
11628 | ||
11629 | sym_name = ada_exception_sym_name (ex); | |
11630 | sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); | |
11631 | ||
11632 | /* The symbol we're looking up is provided by a unit in the GNAT runtime | |
11633 | that should be compiled with debugging information. As a result, we | |
11634 | expect to find that symbol in the symtabs. If we don't find it, then | |
11635 | the target most likely does not support Ada exceptions, or we cannot | |
11636 | insert exception breakpoints yet, because the GNAT runtime hasn't been | |
11637 | loaded yet. */ | |
11638 | ||
11639 | /* brobecker/2006-12-26: It is conceivable that the runtime was compiled | |
11640 | in such a way that no debugging information is produced for the symbol | |
11641 | we are looking for. In this case, we could search the minimal symbols | |
11642 | as a fall-back mechanism. This would still be operating in degraded | |
11643 | mode, however, as we would still be missing the debugging information | |
11644 | that is needed in order to extract the name of the exception being | |
11645 | raised (this name is printed in the catchpoint message, and is also | |
11646 | used when trying to catch a specific exception). We do not handle | |
11647 | this case for now. */ | |
11648 | ||
11649 | if (sym == NULL) | |
0259addd | 11650 | error (_("Unable to break on '%s' in this configuration."), sym_name); |
f7f9143b JB |
11651 | |
11652 | /* Make sure that the symbol we found corresponds to a function. */ | |
11653 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
11654 | error (_("Symbol \"%s\" is not a function (class = %d)"), | |
11655 | sym_name, SYMBOL_CLASS (sym)); | |
11656 | ||
11657 | sal = find_function_start_sal (sym, 1); | |
11658 | ||
11659 | /* Set ADDR_STRING. */ | |
11660 | ||
11661 | *addr_string = xstrdup (sym_name); | |
11662 | ||
f7f9143b | 11663 | /* Set OPS. */ |
4b9eee8c | 11664 | *ops = ada_exception_breakpoint_ops (ex); |
f7f9143b JB |
11665 | |
11666 | return sal; | |
11667 | } | |
11668 | ||
11669 | /* Parse the arguments (ARGS) of the "catch exception" command. | |
11670 | ||
f7f9143b JB |
11671 | If the user asked the catchpoint to catch only a specific |
11672 | exception, then save the exception name in ADDR_STRING. | |
11673 | ||
11674 | See ada_exception_sal for a description of all the remaining | |
11675 | function arguments of this function. */ | |
11676 | ||
9ac4176b | 11677 | static struct symtab_and_line |
f7f9143b | 11678 | ada_decode_exception_location (char *args, char **addr_string, |
28010a5d | 11679 | char **excep_string, |
c0a91b2b | 11680 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11681 | { |
11682 | enum exception_catchpoint_kind ex; | |
11683 | ||
28010a5d PA |
11684 | catch_ada_exception_command_split (args, &ex, excep_string); |
11685 | return ada_exception_sal (ex, *excep_string, addr_string, ops); | |
11686 | } | |
11687 | ||
11688 | /* Create an Ada exception catchpoint. */ | |
11689 | ||
11690 | static void | |
11691 | create_ada_exception_catchpoint (struct gdbarch *gdbarch, | |
11692 | struct symtab_and_line sal, | |
11693 | char *addr_string, | |
11694 | char *excep_string, | |
c0a91b2b | 11695 | const struct breakpoint_ops *ops, |
28010a5d PA |
11696 | int tempflag, |
11697 | int from_tty) | |
11698 | { | |
11699 | struct ada_catchpoint *c; | |
11700 | ||
11701 | c = XNEW (struct ada_catchpoint); | |
11702 | init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, | |
11703 | ops, tempflag, from_tty); | |
11704 | c->excep_string = excep_string; | |
11705 | create_excep_cond_exprs (c); | |
3ea46bff | 11706 | install_breakpoint (0, &c->base, 1); |
f7f9143b JB |
11707 | } |
11708 | ||
9ac4176b PA |
11709 | /* Implement the "catch exception" command. */ |
11710 | ||
11711 | static void | |
11712 | catch_ada_exception_command (char *arg, int from_tty, | |
11713 | struct cmd_list_element *command) | |
11714 | { | |
11715 | struct gdbarch *gdbarch = get_current_arch (); | |
11716 | int tempflag; | |
11717 | struct symtab_and_line sal; | |
11718 | char *addr_string = NULL; | |
28010a5d | 11719 | char *excep_string = NULL; |
c0a91b2b | 11720 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11721 | |
11722 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11723 | ||
11724 | if (!arg) | |
11725 | arg = ""; | |
28010a5d PA |
11726 | sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops); |
11727 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, | |
11728 | excep_string, ops, tempflag, from_tty); | |
9ac4176b PA |
11729 | } |
11730 | ||
11731 | static struct symtab_and_line | |
f7f9143b | 11732 | ada_decode_assert_location (char *args, char **addr_string, |
c0a91b2b | 11733 | const struct breakpoint_ops **ops) |
f7f9143b JB |
11734 | { |
11735 | /* Check that no argument where provided at the end of the command. */ | |
11736 | ||
11737 | if (args != NULL) | |
11738 | { | |
11739 | while (isspace (*args)) | |
11740 | args++; | |
11741 | if (*args != '\0') | |
11742 | error (_("Junk at end of arguments.")); | |
11743 | } | |
11744 | ||
28010a5d | 11745 | return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops); |
f7f9143b JB |
11746 | } |
11747 | ||
9ac4176b PA |
11748 | /* Implement the "catch assert" command. */ |
11749 | ||
11750 | static void | |
11751 | catch_assert_command (char *arg, int from_tty, | |
11752 | struct cmd_list_element *command) | |
11753 | { | |
11754 | struct gdbarch *gdbarch = get_current_arch (); | |
11755 | int tempflag; | |
11756 | struct symtab_and_line sal; | |
11757 | char *addr_string = NULL; | |
c0a91b2b | 11758 | const struct breakpoint_ops *ops = NULL; |
9ac4176b PA |
11759 | |
11760 | tempflag = get_cmd_context (command) == CATCH_TEMPORARY; | |
11761 | ||
11762 | if (!arg) | |
11763 | arg = ""; | |
11764 | sal = ada_decode_assert_location (arg, &addr_string, &ops); | |
28010a5d PA |
11765 | create_ada_exception_catchpoint (gdbarch, sal, addr_string, |
11766 | NULL, ops, tempflag, from_tty); | |
9ac4176b | 11767 | } |
4c4b4cd2 PH |
11768 | /* Operators */ |
11769 | /* Information about operators given special treatment in functions | |
11770 | below. */ | |
11771 | /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ | |
11772 | ||
11773 | #define ADA_OPERATORS \ | |
11774 | OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ | |
11775 | OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ | |
11776 | OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ | |
11777 | OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ | |
11778 | OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ | |
11779 | OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ | |
11780 | OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ | |
11781 | OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ | |
11782 | OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ | |
11783 | OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ | |
11784 | OP_DEFN (OP_ATR_POS, 1, 2, 0) \ | |
11785 | OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ | |
11786 | OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ | |
11787 | OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ | |
11788 | OP_DEFN (UNOP_QUAL, 3, 1, 0) \ | |
52ce6436 PH |
11789 | OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ |
11790 | OP_DEFN (OP_OTHERS, 1, 1, 0) \ | |
11791 | OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ | |
11792 | OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) | |
4c4b4cd2 PH |
11793 | |
11794 | static void | |
554794dc SDJ |
11795 | ada_operator_length (const struct expression *exp, int pc, int *oplenp, |
11796 | int *argsp) | |
4c4b4cd2 PH |
11797 | { |
11798 | switch (exp->elts[pc - 1].opcode) | |
11799 | { | |
76a01679 | 11800 | default: |
4c4b4cd2 PH |
11801 | operator_length_standard (exp, pc, oplenp, argsp); |
11802 | break; | |
11803 | ||
11804 | #define OP_DEFN(op, len, args, binop) \ | |
11805 | case op: *oplenp = len; *argsp = args; break; | |
11806 | ADA_OPERATORS; | |
11807 | #undef OP_DEFN | |
52ce6436 PH |
11808 | |
11809 | case OP_AGGREGATE: | |
11810 | *oplenp = 3; | |
11811 | *argsp = longest_to_int (exp->elts[pc - 2].longconst); | |
11812 | break; | |
11813 | ||
11814 | case OP_CHOICES: | |
11815 | *oplenp = 3; | |
11816 | *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; | |
11817 | break; | |
4c4b4cd2 PH |
11818 | } |
11819 | } | |
11820 | ||
c0201579 JK |
11821 | /* Implementation of the exp_descriptor method operator_check. */ |
11822 | ||
11823 | static int | |
11824 | ada_operator_check (struct expression *exp, int pos, | |
11825 | int (*objfile_func) (struct objfile *objfile, void *data), | |
11826 | void *data) | |
11827 | { | |
11828 | const union exp_element *const elts = exp->elts; | |
11829 | struct type *type = NULL; | |
11830 | ||
11831 | switch (elts[pos].opcode) | |
11832 | { | |
11833 | case UNOP_IN_RANGE: | |
11834 | case UNOP_QUAL: | |
11835 | type = elts[pos + 1].type; | |
11836 | break; | |
11837 | ||
11838 | default: | |
11839 | return operator_check_standard (exp, pos, objfile_func, data); | |
11840 | } | |
11841 | ||
11842 | /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ | |
11843 | ||
11844 | if (type && TYPE_OBJFILE (type) | |
11845 | && (*objfile_func) (TYPE_OBJFILE (type), data)) | |
11846 | return 1; | |
11847 | ||
11848 | return 0; | |
11849 | } | |
11850 | ||
4c4b4cd2 PH |
11851 | static char * |
11852 | ada_op_name (enum exp_opcode opcode) | |
11853 | { | |
11854 | switch (opcode) | |
11855 | { | |
76a01679 | 11856 | default: |
4c4b4cd2 | 11857 | return op_name_standard (opcode); |
52ce6436 | 11858 | |
4c4b4cd2 PH |
11859 | #define OP_DEFN(op, len, args, binop) case op: return #op; |
11860 | ADA_OPERATORS; | |
11861 | #undef OP_DEFN | |
52ce6436 PH |
11862 | |
11863 | case OP_AGGREGATE: | |
11864 | return "OP_AGGREGATE"; | |
11865 | case OP_CHOICES: | |
11866 | return "OP_CHOICES"; | |
11867 | case OP_NAME: | |
11868 | return "OP_NAME"; | |
4c4b4cd2 PH |
11869 | } |
11870 | } | |
11871 | ||
11872 | /* As for operator_length, but assumes PC is pointing at the first | |
11873 | element of the operator, and gives meaningful results only for the | |
52ce6436 | 11874 | Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ |
4c4b4cd2 PH |
11875 | |
11876 | static void | |
76a01679 JB |
11877 | ada_forward_operator_length (struct expression *exp, int pc, |
11878 | int *oplenp, int *argsp) | |
4c4b4cd2 | 11879 | { |
76a01679 | 11880 | switch (exp->elts[pc].opcode) |
4c4b4cd2 PH |
11881 | { |
11882 | default: | |
11883 | *oplenp = *argsp = 0; | |
11884 | break; | |
52ce6436 | 11885 | |
4c4b4cd2 PH |
11886 | #define OP_DEFN(op, len, args, binop) \ |
11887 | case op: *oplenp = len; *argsp = args; break; | |
11888 | ADA_OPERATORS; | |
11889 | #undef OP_DEFN | |
52ce6436 PH |
11890 | |
11891 | case OP_AGGREGATE: | |
11892 | *oplenp = 3; | |
11893 | *argsp = longest_to_int (exp->elts[pc + 1].longconst); | |
11894 | break; | |
11895 | ||
11896 | case OP_CHOICES: | |
11897 | *oplenp = 3; | |
11898 | *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
11899 | break; | |
11900 | ||
11901 | case OP_STRING: | |
11902 | case OP_NAME: | |
11903 | { | |
11904 | int len = longest_to_int (exp->elts[pc + 1].longconst); | |
5b4ee69b | 11905 | |
52ce6436 PH |
11906 | *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); |
11907 | *argsp = 0; | |
11908 | break; | |
11909 | } | |
4c4b4cd2 PH |
11910 | } |
11911 | } | |
11912 | ||
11913 | static int | |
11914 | ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) | |
11915 | { | |
11916 | enum exp_opcode op = exp->elts[elt].opcode; | |
11917 | int oplen, nargs; | |
11918 | int pc = elt; | |
11919 | int i; | |
76a01679 | 11920 | |
4c4b4cd2 PH |
11921 | ada_forward_operator_length (exp, elt, &oplen, &nargs); |
11922 | ||
76a01679 | 11923 | switch (op) |
4c4b4cd2 | 11924 | { |
76a01679 | 11925 | /* Ada attributes ('Foo). */ |
4c4b4cd2 PH |
11926 | case OP_ATR_FIRST: |
11927 | case OP_ATR_LAST: | |
11928 | case OP_ATR_LENGTH: | |
11929 | case OP_ATR_IMAGE: | |
11930 | case OP_ATR_MAX: | |
11931 | case OP_ATR_MIN: | |
11932 | case OP_ATR_MODULUS: | |
11933 | case OP_ATR_POS: | |
11934 | case OP_ATR_SIZE: | |
11935 | case OP_ATR_TAG: | |
11936 | case OP_ATR_VAL: | |
11937 | break; | |
11938 | ||
11939 | case UNOP_IN_RANGE: | |
11940 | case UNOP_QUAL: | |
323e0a4a AC |
11941 | /* XXX: gdb_sprint_host_address, type_sprint */ |
11942 | fprintf_filtered (stream, _("Type @")); | |
4c4b4cd2 PH |
11943 | gdb_print_host_address (exp->elts[pc + 1].type, stream); |
11944 | fprintf_filtered (stream, " ("); | |
11945 | type_print (exp->elts[pc + 1].type, NULL, stream, 0); | |
11946 | fprintf_filtered (stream, ")"); | |
11947 | break; | |
11948 | case BINOP_IN_BOUNDS: | |
52ce6436 PH |
11949 | fprintf_filtered (stream, " (%d)", |
11950 | longest_to_int (exp->elts[pc + 2].longconst)); | |
4c4b4cd2 PH |
11951 | break; |
11952 | case TERNOP_IN_RANGE: | |
11953 | break; | |
11954 | ||
52ce6436 PH |
11955 | case OP_AGGREGATE: |
11956 | case OP_OTHERS: | |
11957 | case OP_DISCRETE_RANGE: | |
11958 | case OP_POSITIONAL: | |
11959 | case OP_CHOICES: | |
11960 | break; | |
11961 | ||
11962 | case OP_NAME: | |
11963 | case OP_STRING: | |
11964 | { | |
11965 | char *name = &exp->elts[elt + 2].string; | |
11966 | int len = longest_to_int (exp->elts[elt + 1].longconst); | |
5b4ee69b | 11967 | |
52ce6436 PH |
11968 | fprintf_filtered (stream, "Text: `%.*s'", len, name); |
11969 | break; | |
11970 | } | |
11971 | ||
4c4b4cd2 PH |
11972 | default: |
11973 | return dump_subexp_body_standard (exp, stream, elt); | |
11974 | } | |
11975 | ||
11976 | elt += oplen; | |
11977 | for (i = 0; i < nargs; i += 1) | |
11978 | elt = dump_subexp (exp, stream, elt); | |
11979 | ||
11980 | return elt; | |
11981 | } | |
11982 | ||
11983 | /* The Ada extension of print_subexp (q.v.). */ | |
11984 | ||
76a01679 JB |
11985 | static void |
11986 | ada_print_subexp (struct expression *exp, int *pos, | |
11987 | struct ui_file *stream, enum precedence prec) | |
4c4b4cd2 | 11988 | { |
52ce6436 | 11989 | int oplen, nargs, i; |
4c4b4cd2 PH |
11990 | int pc = *pos; |
11991 | enum exp_opcode op = exp->elts[pc].opcode; | |
11992 | ||
11993 | ada_forward_operator_length (exp, pc, &oplen, &nargs); | |
11994 | ||
52ce6436 | 11995 | *pos += oplen; |
4c4b4cd2 PH |
11996 | switch (op) |
11997 | { | |
11998 | default: | |
52ce6436 | 11999 | *pos -= oplen; |
4c4b4cd2 PH |
12000 | print_subexp_standard (exp, pos, stream, prec); |
12001 | return; | |
12002 | ||
12003 | case OP_VAR_VALUE: | |
4c4b4cd2 PH |
12004 | fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); |
12005 | return; | |
12006 | ||
12007 | case BINOP_IN_BOUNDS: | |
323e0a4a | 12008 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12009 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12010 | fputs_filtered (" in ", stream); |
4c4b4cd2 | 12011 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12012 | fputs_filtered ("'range", stream); |
4c4b4cd2 | 12013 | if (exp->elts[pc + 1].longconst > 1) |
76a01679 JB |
12014 | fprintf_filtered (stream, "(%ld)", |
12015 | (long) exp->elts[pc + 1].longconst); | |
4c4b4cd2 PH |
12016 | return; |
12017 | ||
12018 | case TERNOP_IN_RANGE: | |
4c4b4cd2 | 12019 | if (prec >= PREC_EQUAL) |
76a01679 | 12020 | fputs_filtered ("(", stream); |
323e0a4a | 12021 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12022 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12023 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12024 | print_subexp (exp, pos, stream, PREC_EQUAL); |
12025 | fputs_filtered (" .. ", stream); | |
12026 | print_subexp (exp, pos, stream, PREC_EQUAL); | |
12027 | if (prec >= PREC_EQUAL) | |
76a01679 JB |
12028 | fputs_filtered (")", stream); |
12029 | return; | |
4c4b4cd2 PH |
12030 | |
12031 | case OP_ATR_FIRST: | |
12032 | case OP_ATR_LAST: | |
12033 | case OP_ATR_LENGTH: | |
12034 | case OP_ATR_IMAGE: | |
12035 | case OP_ATR_MAX: | |
12036 | case OP_ATR_MIN: | |
12037 | case OP_ATR_MODULUS: | |
12038 | case OP_ATR_POS: | |
12039 | case OP_ATR_SIZE: | |
12040 | case OP_ATR_TAG: | |
12041 | case OP_ATR_VAL: | |
4c4b4cd2 | 12042 | if (exp->elts[*pos].opcode == OP_TYPE) |
76a01679 JB |
12043 | { |
12044 | if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) | |
12045 | LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0); | |
12046 | *pos += 3; | |
12047 | } | |
4c4b4cd2 | 12048 | else |
76a01679 | 12049 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
4c4b4cd2 PH |
12050 | fprintf_filtered (stream, "'%s", ada_attribute_name (op)); |
12051 | if (nargs > 1) | |
76a01679 JB |
12052 | { |
12053 | int tem; | |
5b4ee69b | 12054 | |
76a01679 JB |
12055 | for (tem = 1; tem < nargs; tem += 1) |
12056 | { | |
12057 | fputs_filtered ((tem == 1) ? " (" : ", ", stream); | |
12058 | print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); | |
12059 | } | |
12060 | fputs_filtered (")", stream); | |
12061 | } | |
4c4b4cd2 | 12062 | return; |
14f9c5c9 | 12063 | |
4c4b4cd2 | 12064 | case UNOP_QUAL: |
4c4b4cd2 PH |
12065 | type_print (exp->elts[pc + 1].type, "", stream, 0); |
12066 | fputs_filtered ("'(", stream); | |
12067 | print_subexp (exp, pos, stream, PREC_PREFIX); | |
12068 | fputs_filtered (")", stream); | |
12069 | return; | |
14f9c5c9 | 12070 | |
4c4b4cd2 | 12071 | case UNOP_IN_RANGE: |
323e0a4a | 12072 | /* XXX: sprint_subexp */ |
4c4b4cd2 | 12073 | print_subexp (exp, pos, stream, PREC_SUFFIX); |
0b48a291 | 12074 | fputs_filtered (" in ", stream); |
4c4b4cd2 PH |
12075 | LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0); |
12076 | return; | |
52ce6436 PH |
12077 | |
12078 | case OP_DISCRETE_RANGE: | |
12079 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12080 | fputs_filtered ("..", stream); | |
12081 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12082 | return; | |
12083 | ||
12084 | case OP_OTHERS: | |
12085 | fputs_filtered ("others => ", stream); | |
12086 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12087 | return; | |
12088 | ||
12089 | case OP_CHOICES: | |
12090 | for (i = 0; i < nargs-1; i += 1) | |
12091 | { | |
12092 | if (i > 0) | |
12093 | fputs_filtered ("|", stream); | |
12094 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12095 | } | |
12096 | fputs_filtered (" => ", stream); | |
12097 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12098 | return; | |
12099 | ||
12100 | case OP_POSITIONAL: | |
12101 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12102 | return; | |
12103 | ||
12104 | case OP_AGGREGATE: | |
12105 | fputs_filtered ("(", stream); | |
12106 | for (i = 0; i < nargs; i += 1) | |
12107 | { | |
12108 | if (i > 0) | |
12109 | fputs_filtered (", ", stream); | |
12110 | print_subexp (exp, pos, stream, PREC_SUFFIX); | |
12111 | } | |
12112 | fputs_filtered (")", stream); | |
12113 | return; | |
4c4b4cd2 PH |
12114 | } |
12115 | } | |
14f9c5c9 AS |
12116 | |
12117 | /* Table mapping opcodes into strings for printing operators | |
12118 | and precedences of the operators. */ | |
12119 | ||
d2e4a39e AS |
12120 | static const struct op_print ada_op_print_tab[] = { |
12121 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
12122 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
12123 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
12124 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
12125 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
12126 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
12127 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
12128 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
12129 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
12130 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
12131 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
12132 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
12133 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
12134 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
12135 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
12136 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
12137 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
12138 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
12139 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
12140 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
12141 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
12142 | {"**", BINOP_EXP, PREC_REPEAT, 0}, | |
12143 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
12144 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
12145 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
12146 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
12147 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
12148 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
4c4b4cd2 PH |
12149 | {".all", UNOP_IND, PREC_SUFFIX, 1}, |
12150 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, | |
12151 | {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, | |
d2e4a39e | 12152 | {NULL, 0, 0, 0} |
14f9c5c9 AS |
12153 | }; |
12154 | \f | |
72d5681a PH |
12155 | enum ada_primitive_types { |
12156 | ada_primitive_type_int, | |
12157 | ada_primitive_type_long, | |
12158 | ada_primitive_type_short, | |
12159 | ada_primitive_type_char, | |
12160 | ada_primitive_type_float, | |
12161 | ada_primitive_type_double, | |
12162 | ada_primitive_type_void, | |
12163 | ada_primitive_type_long_long, | |
12164 | ada_primitive_type_long_double, | |
12165 | ada_primitive_type_natural, | |
12166 | ada_primitive_type_positive, | |
12167 | ada_primitive_type_system_address, | |
12168 | nr_ada_primitive_types | |
12169 | }; | |
6c038f32 PH |
12170 | |
12171 | static void | |
d4a9a881 | 12172 | ada_language_arch_info (struct gdbarch *gdbarch, |
72d5681a PH |
12173 | struct language_arch_info *lai) |
12174 | { | |
d4a9a881 | 12175 | const struct builtin_type *builtin = builtin_type (gdbarch); |
5b4ee69b | 12176 | |
72d5681a | 12177 | lai->primitive_type_vector |
d4a9a881 | 12178 | = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, |
72d5681a | 12179 | struct type *); |
e9bb382b UW |
12180 | |
12181 | lai->primitive_type_vector [ada_primitive_type_int] | |
12182 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12183 | 0, "integer"); | |
12184 | lai->primitive_type_vector [ada_primitive_type_long] | |
12185 | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | |
12186 | 0, "long_integer"); | |
12187 | lai->primitive_type_vector [ada_primitive_type_short] | |
12188 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), | |
12189 | 0, "short_integer"); | |
12190 | lai->string_char_type | |
12191 | = lai->primitive_type_vector [ada_primitive_type_char] | |
12192 | = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); | |
12193 | lai->primitive_type_vector [ada_primitive_type_float] | |
12194 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
12195 | "float", NULL); | |
12196 | lai->primitive_type_vector [ada_primitive_type_double] | |
12197 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12198 | "long_float", NULL); | |
12199 | lai->primitive_type_vector [ada_primitive_type_long_long] | |
12200 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), | |
12201 | 0, "long_long_integer"); | |
12202 | lai->primitive_type_vector [ada_primitive_type_long_double] | |
12203 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
12204 | "long_long_float", NULL); | |
12205 | lai->primitive_type_vector [ada_primitive_type_natural] | |
12206 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12207 | 0, "natural"); | |
12208 | lai->primitive_type_vector [ada_primitive_type_positive] | |
12209 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | |
12210 | 0, "positive"); | |
12211 | lai->primitive_type_vector [ada_primitive_type_void] | |
12212 | = builtin->builtin_void; | |
12213 | ||
12214 | lai->primitive_type_vector [ada_primitive_type_system_address] | |
12215 | = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); | |
72d5681a PH |
12216 | TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) |
12217 | = "system__address"; | |
fbb06eb1 | 12218 | |
47e729a8 | 12219 | lai->bool_type_symbol = NULL; |
fbb06eb1 | 12220 | lai->bool_type_default = builtin->builtin_bool; |
6c038f32 | 12221 | } |
6c038f32 PH |
12222 | \f |
12223 | /* Language vector */ | |
12224 | ||
12225 | /* Not really used, but needed in the ada_language_defn. */ | |
12226 | ||
12227 | static void | |
6c7a06a3 | 12228 | emit_char (int c, struct type *type, struct ui_file *stream, int quoter) |
6c038f32 | 12229 | { |
6c7a06a3 | 12230 | ada_emit_char (c, type, stream, quoter, 1); |
6c038f32 PH |
12231 | } |
12232 | ||
12233 | static int | |
12234 | parse (void) | |
12235 | { | |
12236 | warnings_issued = 0; | |
12237 | return ada_parse (); | |
12238 | } | |
12239 | ||
12240 | static const struct exp_descriptor ada_exp_descriptor = { | |
12241 | ada_print_subexp, | |
12242 | ada_operator_length, | |
c0201579 | 12243 | ada_operator_check, |
6c038f32 PH |
12244 | ada_op_name, |
12245 | ada_dump_subexp_body, | |
12246 | ada_evaluate_subexp | |
12247 | }; | |
12248 | ||
12249 | const struct language_defn ada_language_defn = { | |
12250 | "ada", /* Language name */ | |
12251 | language_ada, | |
6c038f32 PH |
12252 | range_check_off, |
12253 | type_check_off, | |
12254 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
12255 | that's not quite what this means. */ | |
6c038f32 | 12256 | array_row_major, |
9a044a89 | 12257 | macro_expansion_no, |
6c038f32 PH |
12258 | &ada_exp_descriptor, |
12259 | parse, | |
12260 | ada_error, | |
12261 | resolve, | |
12262 | ada_printchar, /* Print a character constant */ | |
12263 | ada_printstr, /* Function to print string constant */ | |
12264 | emit_char, /* Function to print single char (not used) */ | |
6c038f32 | 12265 | ada_print_type, /* Print a type using appropriate syntax */ |
be942545 | 12266 | ada_print_typedef, /* Print a typedef using appropriate syntax */ |
6c038f32 PH |
12267 | ada_val_print, /* Print a value using appropriate syntax */ |
12268 | ada_value_print, /* Print a top-level value */ | |
12269 | NULL, /* Language specific skip_trampoline */ | |
2b2d9e11 | 12270 | NULL, /* name_of_this */ |
6c038f32 PH |
12271 | ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ |
12272 | basic_lookup_transparent_type, /* lookup_transparent_type */ | |
12273 | ada_la_decode, /* Language specific symbol demangler */ | |
0963b4bd MS |
12274 | NULL, /* Language specific |
12275 | class_name_from_physname */ | |
6c038f32 PH |
12276 | ada_op_print_tab, /* expression operators for printing */ |
12277 | 0, /* c-style arrays */ | |
12278 | 1, /* String lower bound */ | |
6c038f32 | 12279 | ada_get_gdb_completer_word_break_characters, |
41d27058 | 12280 | ada_make_symbol_completion_list, |
72d5681a | 12281 | ada_language_arch_info, |
e79af960 | 12282 | ada_print_array_index, |
41f1b697 | 12283 | default_pass_by_reference, |
ae6a3a4c | 12284 | c_get_string, |
6c038f32 PH |
12285 | LANG_MAGIC |
12286 | }; | |
12287 | ||
2c0b251b PA |
12288 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
12289 | extern initialize_file_ftype _initialize_ada_language; | |
12290 | ||
5bf03f13 JB |
12291 | /* Command-list for the "set/show ada" prefix command. */ |
12292 | static struct cmd_list_element *set_ada_list; | |
12293 | static struct cmd_list_element *show_ada_list; | |
12294 | ||
12295 | /* Implement the "set ada" prefix command. */ | |
12296 | ||
12297 | static void | |
12298 | set_ada_command (char *arg, int from_tty) | |
12299 | { | |
12300 | printf_unfiltered (_(\ | |
12301 | "\"set ada\" must be followed by the name of a setting.\n")); | |
12302 | help_list (set_ada_list, "set ada ", -1, gdb_stdout); | |
12303 | } | |
12304 | ||
12305 | /* Implement the "show ada" prefix command. */ | |
12306 | ||
12307 | static void | |
12308 | show_ada_command (char *args, int from_tty) | |
12309 | { | |
12310 | cmd_show_list (show_ada_list, from_tty, ""); | |
12311 | } | |
12312 | ||
2060206e PA |
12313 | static void |
12314 | initialize_ada_catchpoint_ops (void) | |
12315 | { | |
12316 | struct breakpoint_ops *ops; | |
12317 | ||
12318 | initialize_breakpoint_ops (); | |
12319 | ||
12320 | ops = &catch_exception_breakpoint_ops; | |
12321 | *ops = bkpt_breakpoint_ops; | |
12322 | ops->dtor = dtor_catch_exception; | |
12323 | ops->allocate_location = allocate_location_catch_exception; | |
12324 | ops->re_set = re_set_catch_exception; | |
12325 | ops->check_status = check_status_catch_exception; | |
12326 | ops->print_it = print_it_catch_exception; | |
12327 | ops->print_one = print_one_catch_exception; | |
12328 | ops->print_mention = print_mention_catch_exception; | |
12329 | ops->print_recreate = print_recreate_catch_exception; | |
12330 | ||
12331 | ops = &catch_exception_unhandled_breakpoint_ops; | |
12332 | *ops = bkpt_breakpoint_ops; | |
12333 | ops->dtor = dtor_catch_exception_unhandled; | |
12334 | ops->allocate_location = allocate_location_catch_exception_unhandled; | |
12335 | ops->re_set = re_set_catch_exception_unhandled; | |
12336 | ops->check_status = check_status_catch_exception_unhandled; | |
12337 | ops->print_it = print_it_catch_exception_unhandled; | |
12338 | ops->print_one = print_one_catch_exception_unhandled; | |
12339 | ops->print_mention = print_mention_catch_exception_unhandled; | |
12340 | ops->print_recreate = print_recreate_catch_exception_unhandled; | |
12341 | ||
12342 | ops = &catch_assert_breakpoint_ops; | |
12343 | *ops = bkpt_breakpoint_ops; | |
12344 | ops->dtor = dtor_catch_assert; | |
12345 | ops->allocate_location = allocate_location_catch_assert; | |
12346 | ops->re_set = re_set_catch_assert; | |
12347 | ops->check_status = check_status_catch_assert; | |
12348 | ops->print_it = print_it_catch_assert; | |
12349 | ops->print_one = print_one_catch_assert; | |
12350 | ops->print_mention = print_mention_catch_assert; | |
12351 | ops->print_recreate = print_recreate_catch_assert; | |
12352 | } | |
12353 | ||
d2e4a39e | 12354 | void |
6c038f32 | 12355 | _initialize_ada_language (void) |
14f9c5c9 | 12356 | { |
6c038f32 PH |
12357 | add_language (&ada_language_defn); |
12358 | ||
2060206e PA |
12359 | initialize_ada_catchpoint_ops (); |
12360 | ||
5bf03f13 JB |
12361 | add_prefix_cmd ("ada", no_class, set_ada_command, |
12362 | _("Prefix command for changing Ada-specfic settings"), | |
12363 | &set_ada_list, "set ada ", 0, &setlist); | |
12364 | ||
12365 | add_prefix_cmd ("ada", no_class, show_ada_command, | |
12366 | _("Generic command for showing Ada-specific settings."), | |
12367 | &show_ada_list, "show ada ", 0, &showlist); | |
12368 | ||
12369 | add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, | |
12370 | &trust_pad_over_xvs, _("\ | |
12371 | Enable or disable an optimization trusting PAD types over XVS types"), _("\ | |
12372 | Show whether an optimization trusting PAD types over XVS types is activated"), | |
12373 | _("\ | |
12374 | This is related to the encoding used by the GNAT compiler. The debugger\n\ | |
12375 | should normally trust the contents of PAD types, but certain older versions\n\ | |
12376 | of GNAT have a bug that sometimes causes the information in the PAD type\n\ | |
12377 | to be incorrect. Turning this setting \"off\" allows the debugger to\n\ | |
12378 | work around this bug. It is always safe to turn this option \"off\", but\n\ | |
12379 | this incurs a slight performance penalty, so it is recommended to NOT change\n\ | |
12380 | this option to \"off\" unless necessary."), | |
12381 | NULL, NULL, &set_ada_list, &show_ada_list); | |
12382 | ||
9ac4176b PA |
12383 | add_catch_command ("exception", _("\ |
12384 | Catch Ada exceptions, when raised.\n\ | |
12385 | With an argument, catch only exceptions with the given name."), | |
12386 | catch_ada_exception_command, | |
12387 | NULL, | |
12388 | CATCH_PERMANENT, | |
12389 | CATCH_TEMPORARY); | |
12390 | add_catch_command ("assert", _("\ | |
12391 | Catch failed Ada assertions, when raised.\n\ | |
12392 | With an argument, catch only exceptions with the given name."), | |
12393 | catch_assert_command, | |
12394 | NULL, | |
12395 | CATCH_PERMANENT, | |
12396 | CATCH_TEMPORARY); | |
12397 | ||
6c038f32 | 12398 | varsize_limit = 65536; |
6c038f32 PH |
12399 | |
12400 | obstack_init (&symbol_list_obstack); | |
12401 | ||
12402 | decoded_names_store = htab_create_alloc | |
12403 | (256, htab_hash_string, (int (*)(const void *, const void *)) streq, | |
12404 | NULL, xcalloc, xfree); | |
6b69afc4 JB |
12405 | |
12406 | observer_attach_executable_changed (ada_executable_changed_observer); | |
e802dbe0 JB |
12407 | |
12408 | /* Setup per-inferior data. */ | |
12409 | observer_attach_inferior_exit (ada_inferior_exit); | |
12410 | ada_inferior_data | |
12411 | = register_inferior_data_with_cleanup (ada_inferior_data_cleanup); | |
14f9c5c9 | 12412 | } |