]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
avoid "if ... else if ... else" logic in ada-lang.c::ada_evaluate_subexp
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
60250e8b 48#include "exceptions.h"
f7f9143b
JB
49#include "annotate.h"
50#include "valprint.h"
9bbc9174 51#include "source.h"
0259addd 52#include "observer.h"
2ba95b9b 53#include "vec.h"
692465f1 54#include "stack.h"
fa864999 55#include "gdb_vecs.h"
79d43c61 56#include "typeprint.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 125 struct symbol *, const struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 147 const struct block *);
aeb5907d 148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
0d5cff50 221static int find_struct_field (const char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
242 struct expression *,
243 int *, enum noside);
52ce6436
PH
244
245static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
852dff6c
JB
269
270static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
271\f
272
ee01b665
JB
273/* The result of a symbol lookup to be stored in our symbol cache. */
274
275struct cache_entry
276{
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289};
290
291/* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300#define HASH_SIZE 1009
301
302struct ada_symbol_cache
303{
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309};
310
311static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 312
4c4b4cd2 313/* Maximum-sized dynamic type. */
14f9c5c9
AS
314static unsigned int varsize_limit;
315
4c4b4cd2
PH
316/* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318static char *ada_completer_word_break_characters =
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
344/* Space for allocating results of ada_lookup_symbol_list. */
345static struct obstack symbol_list_obstack;
346
c6044dd1
JB
347/* Maintenance-related settings for this module. */
348
349static struct cmd_list_element *maint_set_ada_cmdlist;
350static struct cmd_list_element *maint_show_ada_cmdlist;
351
352/* Implement the "maintenance set ada" (prefix) command. */
353
354static void
355maint_set_ada_cmd (char *args, int from_tty)
356{
635c7e8a
TT
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
c6044dd1
JB
359}
360
361/* Implement the "maintenance show ada" (prefix) command. */
362
363static void
364maint_show_ada_cmd (char *args, int from_tty)
365{
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367}
368
369/* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371static int ada_ignore_descriptive_types_p = 0;
372
e802dbe0
JB
373 /* Inferior-specific data. */
374
375/* Per-inferior data for this module. */
376
377struct ada_inferior_data
378{
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
3eecfa55
JB
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
e802dbe0
JB
389};
390
391/* Our key to this module's inferior data. */
392static const struct inferior_data *ada_inferior_data;
393
394/* A cleanup routine for our inferior data. */
395static void
396ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397{
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403}
404
405/* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413static struct ada_inferior_data *
414get_ada_inferior_data (struct inferior *inf)
415{
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
41bf6aca 421 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426}
427
428/* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431static void
432ada_inferior_exit (struct inferior *inf)
433{
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436}
437
ee01b665
JB
438
439 /* program-space-specific data. */
440
441/* This module's per-program-space data. */
442struct ada_pspace_data
443{
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446};
447
448/* Key to our per-program-space data. */
449static const struct program_space_data *ada_pspace_data_handle;
450
451/* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456static struct ada_pspace_data *
457get_ada_pspace_data (struct program_space *pspace)
458{
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469}
470
471/* The cleanup callback for this module's per-program-space data. */
472
473static void
474ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475{
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481}
482
4c4b4cd2
PH
483 /* Utilities */
484
720d1a40 485/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 486 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512static struct type *
513ada_typedef_target_type (struct type *type)
514{
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518}
519
41d27058
JB
520/* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524static const char *
525ada_unqualified_name (const char *decoded_name)
526{
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535}
536
537/* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540static char *
541add_angle_brackets (const char *str)
542{
543 static char *result = NULL;
544
545 xfree (result);
88c15c34 546 result = xstrprintf ("<%s>", str);
41d27058
JB
547 return result;
548}
96d887e8 549
4c4b4cd2
PH
550static char *
551ada_get_gdb_completer_word_break_characters (void)
552{
553 return ada_completer_word_break_characters;
554}
555
e79af960
JB
556/* Print an array element index using the Ada syntax. */
557
558static void
559ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 560 const struct value_print_options *options)
e79af960 561{
79a45b7d 562 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
563 fprintf_filtered (stream, " => ");
564}
565
f27cf670 566/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 568 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 569
f27cf670
AS
570void *
571grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 572{
d2e4a39e
AS
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
4c4b4cd2 577 *size = min_size;
f27cf670 578 vect = xrealloc (vect, *size * element_size);
d2e4a39e 579 }
f27cf670 580 return vect;
14f9c5c9
AS
581}
582
583/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 584 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
585
586static int
ebf56fd3 587field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
588{
589 int len = strlen (target);
5b4ee69b 590
d2e4a39e 591 return
4c4b4cd2
PH
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
14f9c5c9
AS
597}
598
599
872c8b51
JB
600/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
607
608int
609ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611{
612 int fieldno;
872c8b51
JB
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
617 return fieldno;
618
619 if (!maybe_missing)
323e0a4a 620 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 621 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
622
623 return -1;
624}
625
626/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
627
628int
d2e4a39e 629ada_name_prefix_len (const char *name)
14f9c5c9
AS
630{
631 if (name == NULL)
632 return 0;
d2e4a39e 633 else
14f9c5c9 634 {
d2e4a39e 635 const char *p = strstr (name, "___");
5b4ee69b 636
14f9c5c9 637 if (p == NULL)
4c4b4cd2 638 return strlen (name);
14f9c5c9 639 else
4c4b4cd2 640 return p - name;
14f9c5c9
AS
641 }
642}
643
4c4b4cd2
PH
644/* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
14f9c5c9 647static int
d2e4a39e 648is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
649{
650 int len1, len2;
5b4ee69b 651
14f9c5c9
AS
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
4c4b4cd2 656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
657}
658
4c4b4cd2
PH
659/* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
14f9c5c9 661
d2e4a39e 662static struct value *
4c4b4cd2 663coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 664{
61ee279c 665 type = ada_check_typedef (type);
df407dfe 666 if (value_type (val) == type)
4c4b4cd2 667 return val;
d2e4a39e 668 else
14f9c5c9 669 {
4c4b4cd2
PH
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
714e53ab 674 check_size (type);
4c4b4cd2 675
41e8491f
JK
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
682 memcpy (value_contents_raw (result), value_contents (val),
683 TYPE_LENGTH (type));
684 }
74bcbdf3 685 set_value_component_location (result, val);
9bbda503
AC
686 set_value_bitsize (result, value_bitsize (val));
687 set_value_bitpos (result, value_bitpos (val));
42ae5230 688 set_value_address (result, value_address (val));
eca07816 689 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
690 return result;
691 }
692}
693
fc1a4b47
AC
694static const gdb_byte *
695cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
696{
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701}
702
703static CORE_ADDR
ebf56fd3 704cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
705{
706 if (address == 0)
707 return 0;
d2e4a39e 708 else
14f9c5c9
AS
709 return address + offset;
710}
711
4c4b4cd2
PH
712/* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
a2249542 716
77109804
AC
717/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
a0b31db1 719static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 720
14f9c5c9 721static void
a2249542 722lim_warning (const char *format, ...)
14f9c5c9 723{
a2249542 724 va_list args;
a2249542 725
5b4ee69b 726 va_start (args, format);
4c4b4cd2
PH
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
a2249542
MK
729 vwarning (format, args);
730
731 va_end (args);
4c4b4cd2
PH
732}
733
714e53ab
PH
734/* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
738static void
739check_size (const struct type *type)
740{
741 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 742 error (_("object size is larger than varsize-limit"));
714e53ab
PH
743}
744
0963b4bd 745/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 746static LONGEST
c3e5cd34 747max_of_size (int size)
4c4b4cd2 748{
76a01679 749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 750
76a01679 751 return top_bit | (top_bit - 1);
4c4b4cd2
PH
752}
753
0963b4bd 754/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756min_of_size (int size)
4c4b4cd2 757{
c3e5cd34 758 return -max_of_size (size) - 1;
4c4b4cd2
PH
759}
760
0963b4bd 761/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 762static ULONGEST
c3e5cd34 763umax_of_size (int size)
4c4b4cd2 764{
76a01679 765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 766
76a01679 767 return top_bit | (top_bit - 1);
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
771static LONGEST
772max_of_type (struct type *t)
4c4b4cd2 773{
c3e5cd34
PH
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778}
779
0963b4bd 780/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
781static LONGEST
782min_of_type (struct type *t)
783{
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
788}
789
790/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 793{
8739bc53 794 type = resolve_dynamic_type (type, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_HIGH_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return max_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
808 }
809}
810
14e75d8e 811/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
812LONGEST
813ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 814{
8739bc53 815 type = resolve_dynamic_type (type, 0);
76a01679 816 switch (TYPE_CODE (type))
4c4b4cd2
PH
817 {
818 case TYPE_CODE_RANGE:
690cc4eb 819 return TYPE_LOW_BOUND (type);
4c4b4cd2 820 case TYPE_CODE_ENUM:
14e75d8e 821 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
76a01679 825 case TYPE_CODE_INT:
690cc4eb 826 return min_of_type (type);
4c4b4cd2 827 default:
43bbcdc2 828 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
829 }
830}
831
832/* The identity on non-range types. For range types, the underlying
76a01679 833 non-range scalar type. */
4c4b4cd2
PH
834
835static struct type *
18af8284 836get_base_type (struct type *type)
4c4b4cd2
PH
837{
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
76a01679
JB
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
4c4b4cd2
PH
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
14f9c5c9 845}
41246937
JB
846
847/* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852struct value *
853ada_get_decoded_value (struct value *value)
854{
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870}
871
872/* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877struct type *
878ada_get_decoded_type (struct type *type)
879{
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884}
885
4c4b4cd2 886\f
76a01679 887
4c4b4cd2 888 /* Language Selection */
14f9c5c9
AS
889
890/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 891 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 892
14f9c5c9 893enum language
ccefe4c4 894ada_update_initial_language (enum language lang)
14f9c5c9 895{
d2e4a39e 896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 897 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 898 return language_ada;
14f9c5c9
AS
899
900 return lang;
901}
96d887e8
PH
902
903/* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907char *
908ada_main_name (void)
909{
3b7344d5 910 struct bound_minimal_symbol msym;
f9bc20b9 911 static char *main_program_name = NULL;
6c038f32 912
96d887e8
PH
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
3b7344d5 920 if (msym.minsym != NULL)
96d887e8 921 {
f9bc20b9
JB
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
77e371c0 925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 926 if (main_program_name_addr == 0)
323e0a4a 927 error (_("Invalid address for Ada main program name."));
96d887e8 928
f9bc20b9
JB
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
96d887e8
PH
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940}
14f9c5c9 941\f
4c4b4cd2 942 /* Symbols */
d2e4a39e 943
4c4b4cd2
PH
944/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
14f9c5c9 946
d2e4a39e
AS
947const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
14f9c5c9
AS
970};
971
4c4b4cd2
PH
972/* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
14f9c5c9 975char *
4c4b4cd2 976ada_encode (const char *decoded)
14f9c5c9 977{
4c4b4cd2
PH
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
d2e4a39e 980 const char *p;
14f9c5c9 981 int k;
d2e4a39e 982
4c4b4cd2 983 if (decoded == NULL)
14f9c5c9
AS
984 return NULL;
985
4c4b4cd2
PH
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
14f9c5c9
AS
988
989 k = 0;
4c4b4cd2 990 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 991 {
cdc7bb92 992 if (*p == '.')
4c4b4cd2
PH
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
14f9c5c9 997 else if (*p == '"')
4c4b4cd2
PH
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1265e4aa
JB
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1005 ;
1006 if (mapping->encoded == NULL)
323e0a4a 1007 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
d2e4a39e 1012 else
4c4b4cd2
PH
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
14f9c5c9
AS
1017 }
1018
4c4b4cd2
PH
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
14f9c5c9
AS
1021}
1022
1023/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
d2e4a39e
AS
1027char *
1028ada_fold_name (const char *name)
14f9c5c9 1029{
d2e4a39e 1030 static char *fold_buffer = NULL;
14f9c5c9
AS
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
d2e4a39e 1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1035
1036 if (name[0] == '\'')
1037 {
d2e4a39e
AS
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1040 }
1041 else
1042 {
1043 int i;
5b4ee69b 1044
14f9c5c9 1045 for (i = 0; i <= len; i += 1)
4c4b4cd2 1046 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1047 }
1048
1049 return fold_buffer;
1050}
1051
529cad9c
PH
1052/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054static int
1055is_lower_alphanum (const char c)
1056{
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058}
1059
c90092fe
JB
1060/* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
29480c32
JB
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
c90092fe 1067
29480c32
JB
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072static void
1073ada_remove_trailing_digits (const char *encoded, int *len)
1074{
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
5b4ee69b 1078
29480c32
JB
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090}
1091
1092/* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095static void
1096ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097{
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
0963b4bd 1103 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112}
1113
69fadcdf
JB
1114/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116static void
1117ada_remove_Xbn_suffix (const char *encoded, int *len)
1118{
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132}
1133
29480c32
JB
1134/* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
14f9c5c9 1137
4c4b4cd2 1138 The resulting string is valid until the next call of ada_decode.
29480c32 1139 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1140 is returned. */
1141
1142const char *
1143ada_decode (const char *encoded)
14f9c5c9
AS
1144{
1145 int i, j;
1146 int len0;
d2e4a39e 1147 const char *p;
4c4b4cd2 1148 char *decoded;
14f9c5c9 1149 int at_start_name;
4c4b4cd2
PH
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
d2e4a39e 1152
29480c32
JB
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
4c4b4cd2
PH
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
14f9c5c9 1158
29480c32
JB
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
4c4b4cd2 1162 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1163 goto Suppress;
1164
4c4b4cd2 1165 len0 = strlen (encoded);
4c4b4cd2 1166
29480c32
JB
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1169
4c4b4cd2
PH
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1176 {
1177 if (p[3] == 'X')
4c4b4cd2 1178 len0 = p - encoded;
14f9c5c9 1179 else
4c4b4cd2 1180 goto Suppress;
14f9c5c9 1181 }
4c4b4cd2 1182
29480c32
JB
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
4c4b4cd2 1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1188 len0 -= 3;
76a01679 1189
a10967fa
JB
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
29480c32
JB
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
4c4b4cd2 1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1201 len0 -= 1;
1202
4c4b4cd2 1203 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1204
4c4b4cd2
PH
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
14f9c5c9 1207
29480c32
JB
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
4c4b4cd2 1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1211 {
4c4b4cd2
PH
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
d2e4a39e 1220 }
14f9c5c9 1221
29480c32
JB
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
4c4b4cd2
PH
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
14f9c5c9
AS
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
29480c32 1231 /* Is this a symbol function? */
4c4b4cd2
PH
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
5b4ee69b 1235
4c4b4cd2
PH
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
14f9c5c9
AS
1253 at_start_name = 0;
1254
529cad9c
PH
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
4c4b4cd2
PH
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
529cad9c 1260
29480c32
JB
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
529cad9c
PH
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1283 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
4c4b4cd2
PH
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
29480c32
JB
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
4c4b4cd2
PH
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
cdc7bb92 1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1348 {
29480c32 1349 /* Replace '__' by '.'. */
4c4b4cd2
PH
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
14f9c5c9 1355 else
4c4b4cd2 1356 {
29480c32
JB
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
4c4b4cd2
PH
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
14f9c5c9 1363 }
4c4b4cd2 1364 decoded[j] = '\000';
14f9c5c9 1365
29480c32
JB
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
4c4b4cd2
PH
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1371 goto Suppress;
1372
4c4b4cd2
PH
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
14f9c5c9
AS
1377
1378Suppress:
4c4b4cd2
PH
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
14f9c5c9 1383 else
88c15c34 1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1385 return decoded;
1386
1387}
1388
1389/* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394static struct htab *decoded_names_store;
1395
1396/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1401 GSYMBOL).
4c4b4cd2
PH
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1404 when a decoded name is cached in it. */
4c4b4cd2 1405
45e6c716 1406const char *
f85f34ed 1407ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1408{
f85f34ed
TT
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1412
f85f34ed 1413 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1416 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1417
f85f34ed 1418 gsymbol->ada_mangled = 1;
5b4ee69b 1419
f85f34ed
TT
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
76a01679 1423 {
f85f34ed
TT
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
76a01679
JB
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
5b4ee69b 1431
76a01679
JB
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
4c4b4cd2 1436 }
14f9c5c9 1437
4c4b4cd2
PH
1438 return *resultp;
1439}
76a01679 1440
2c0b251b 1441static char *
76a01679 1442ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1443{
1444 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1445}
1446
1447/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
14f9c5c9 1453
2c0b251b 1454static int
40658b94 1455match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1456{
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
73589123 1460 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1461 else
1462 {
1463 int len_name = strlen (name);
5b4ee69b 1464
4c4b4cd2
PH
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1470 }
14f9c5c9 1471}
14f9c5c9 1472\f
d2e4a39e 1473
4c4b4cd2 1474 /* Arrays */
14f9c5c9 1475
28c85d6c
JB
1476/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499void
1500ada_fixup_array_indexes_type (struct type *index_desc_type)
1501{
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
0d5cff50 1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529}
1530
4c4b4cd2 1531/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1532
d2e4a39e
AS
1533static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536};
1537
1538/* Maximum number of array dimensions we are prepared to handle. */
1539
4c4b4cd2 1540#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1541
14f9c5c9 1542
4c4b4cd2
PH
1543/* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
14f9c5c9
AS
1545
1546/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1547 level of indirection, if needed. */
1548
d2e4a39e
AS
1549static struct type *
1550desc_base_type (struct type *type)
14f9c5c9
AS
1551{
1552 if (type == NULL)
1553 return NULL;
61ee279c 1554 type = ada_check_typedef (type);
720d1a40
JB
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1265e4aa
JB
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1562 else
1563 return type;
1564}
1565
4c4b4cd2
PH
1566/* True iff TYPE indicates a "thin" array pointer type. */
1567
14f9c5c9 1568static int
d2e4a39e 1569is_thin_pntr (struct type *type)
14f9c5c9 1570{
d2e4a39e 1571 return
14f9c5c9
AS
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574}
1575
4c4b4cd2
PH
1576/* The descriptor type for thin pointer type TYPE. */
1577
d2e4a39e
AS
1578static struct type *
1579thin_descriptor_type (struct type *type)
14f9c5c9 1580{
d2e4a39e 1581 struct type *base_type = desc_base_type (type);
5b4ee69b 1582
14f9c5c9
AS
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
d2e4a39e 1587 else
14f9c5c9 1588 {
d2e4a39e 1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1590
14f9c5c9 1591 if (alt_type == NULL)
4c4b4cd2 1592 return base_type;
14f9c5c9 1593 else
4c4b4cd2 1594 return alt_type;
14f9c5c9
AS
1595 }
1596}
1597
4c4b4cd2
PH
1598/* A pointer to the array data for thin-pointer value VAL. */
1599
d2e4a39e
AS
1600static struct value *
1601thin_data_pntr (struct value *val)
14f9c5c9 1602{
828292f2 1603 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1605
556bdfd4
UW
1606 data_type = lookup_pointer_type (data_type);
1607
14f9c5c9 1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1609 return value_cast (data_type, value_copy (val));
d2e4a39e 1610 else
42ae5230 1611 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1612}
1613
4c4b4cd2
PH
1614/* True iff TYPE indicates a "thick" array pointer type. */
1615
14f9c5c9 1616static int
d2e4a39e 1617is_thick_pntr (struct type *type)
14f9c5c9
AS
1618{
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1622}
1623
4c4b4cd2
PH
1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1626
d2e4a39e
AS
1627static struct type *
1628desc_bounds_type (struct type *type)
14f9c5c9 1629{
d2e4a39e 1630 struct type *r;
14f9c5c9
AS
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
4c4b4cd2 1640 return NULL;
14f9c5c9
AS
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
61ee279c 1643 return ada_check_typedef (r);
14f9c5c9
AS
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
61ee279c 1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1650 }
1651 return NULL;
1652}
1653
1654/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
d2e4a39e
AS
1657static struct value *
1658desc_bounds (struct value *arr)
14f9c5c9 1659{
df407dfe 1660 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1661
d2e4a39e 1662 if (is_thin_pntr (type))
14f9c5c9 1663 {
d2e4a39e 1664 struct type *bounds_type =
4c4b4cd2 1665 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1666 LONGEST addr;
1667
4cdfadb1 1668 if (bounds_type == NULL)
323e0a4a 1669 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1670
1671 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1672 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1673 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1675 addr = value_as_long (arr);
d2e4a39e 1676 else
42ae5230 1677 addr = value_address (arr);
14f9c5c9 1678
d2e4a39e 1679 return
4c4b4cd2
PH
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1682 }
1683
1684 else if (is_thick_pntr (type))
05e522ef
JB
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
14f9c5c9
AS
1705 else
1706 return NULL;
1707}
1708
4c4b4cd2
PH
1709/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
14f9c5c9 1712static int
d2e4a39e 1713fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1714{
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716}
1717
1718/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1719 size of the field containing the address of the bounds data. */
1720
14f9c5c9 1721static int
d2e4a39e 1722fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1723{
1724 type = desc_base_type (type);
1725
d2e4a39e 1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
61ee279c 1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1730}
1731
4c4b4cd2 1732/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
4c4b4cd2 1736
d2e4a39e 1737static struct type *
556bdfd4 1738desc_data_target_type (struct type *type)
14f9c5c9
AS
1739{
1740 type = desc_base_type (type);
1741
4c4b4cd2 1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1743 if (is_thin_pntr (type))
556bdfd4 1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1745 else if (is_thick_pntr (type))
556bdfd4
UW
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1752 }
1753
1754 return NULL;
14f9c5c9
AS
1755}
1756
1757/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
4c4b4cd2 1759
d2e4a39e
AS
1760static struct value *
1761desc_data (struct value *arr)
14f9c5c9 1762{
df407dfe 1763 struct type *type = value_type (arr);
5b4ee69b 1764
14f9c5c9
AS
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
d2e4a39e 1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1769 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1770 else
1771 return NULL;
1772}
1773
1774
1775/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1776 position of the field containing the address of the data. */
1777
14f9c5c9 1778static int
d2e4a39e 1779fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1780{
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782}
1783
1784/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1785 size of the field containing the address of the data. */
1786
14f9c5c9 1787static int
d2e4a39e 1788fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1789{
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1794 else
14f9c5c9
AS
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796}
1797
4c4b4cd2 1798/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
d2e4a39e
AS
1802static struct value *
1803desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1804{
d2e4a39e 1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1806 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1807}
1808
1809/* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
14f9c5c9 1813static int
d2e4a39e 1814desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1815{
d2e4a39e 1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1817}
1818
1819/* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
76a01679 1823static int
d2e4a39e 1824desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1825{
1826 type = desc_base_type (type);
1827
d2e4a39e
AS
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1832}
1833
1834/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
d2e4a39e
AS
1837static struct type *
1838desc_index_type (struct type *type, int i)
14f9c5c9
AS
1839{
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
14f9c5c9
AS
1845 return NULL;
1846}
1847
4c4b4cd2
PH
1848/* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
14f9c5c9 1851static int
d2e4a39e 1852desc_arity (struct type *type)
14f9c5c9
AS
1853{
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859}
1860
4c4b4cd2
PH
1861/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
76a01679
JB
1865static int
1866ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1867{
1868 if (type == NULL)
1869 return 0;
61ee279c 1870 type = ada_check_typedef (type);
4c4b4cd2 1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1872 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1873}
1874
52ce6436 1875/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1876 * to one. */
52ce6436 1877
2c0b251b 1878static int
52ce6436
PH
1879ada_is_array_type (struct type *type)
1880{
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886}
1887
4c4b4cd2 1888/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1889
14f9c5c9 1890int
4c4b4cd2 1891ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1892{
1893 if (type == NULL)
1894 return 0;
61ee279c 1895 type = ada_check_typedef (type);
14f9c5c9 1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1900}
1901
4c4b4cd2
PH
1902/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
14f9c5c9 1904int
4c4b4cd2 1905ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1906{
556bdfd4 1907 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1908
1909 if (type == NULL)
1910 return 0;
61ee279c 1911 type = ada_check_typedef (type);
556bdfd4
UW
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1915}
1916
1917/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1918 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1919 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1920 is still needed. */
1921
14f9c5c9 1922int
ebf56fd3 1923ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1924{
d2e4a39e 1925 return
14f9c5c9
AS
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1931}
1932
1933
4c4b4cd2 1934/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1935 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1937 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1940 a descriptor. */
d2e4a39e
AS
1941struct type *
1942ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1943{
ad82864c
JB
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1946
df407dfe
AC
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
d2e4a39e
AS
1949
1950 if (!bounds)
ad82864c
JB
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
14f9c5c9
AS
1961 else
1962 {
d2e4a39e 1963 struct type *elt_type;
14f9c5c9 1964 int arity;
d2e4a39e 1965 struct value *descriptor;
14f9c5c9 1966
df407dfe
AC
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
14f9c5c9 1969
d2e4a39e 1970 if (elt_type == NULL || arity == 0)
df407dfe 1971 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1972
1973 descriptor = desc_bounds (arr);
d2e4a39e 1974 if (value_as_long (descriptor) == 0)
4c4b4cd2 1975 return NULL;
d2e4a39e 1976 while (arity > 0)
4c4b4cd2 1977 {
e9bb382b
UW
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1982
5b4ee69b 1983 arity -= 1;
0c9c3474
SA
1984 create_static_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
4c4b4cd2 1987 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
4c4b4cd2 2009 }
14f9c5c9
AS
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013}
2014
2015/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
d2e4a39e
AS
2020struct value *
2021ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2026
14f9c5c9 2027 if (arrType == NULL)
4c4b4cd2 2028 return NULL;
14f9c5c9
AS
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
ad82864c
JB
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2033 else
2034 return arr;
2035}
2036
2037/* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2039 be ARR itself if it already is in the proper form). */
2040
720d1a40 2041struct value *
d2e4a39e 2042ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2043{
df407dfe 2044 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2045 {
d2e4a39e 2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2047
14f9c5c9 2048 if (arrVal == NULL)
323e0a4a 2049 error (_("Bounds unavailable for null array pointer."));
529cad9c 2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2051 return value_ind (arrVal);
2052 }
ad82864c
JB
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
d2e4a39e 2055 else
14f9c5c9
AS
2056 return arr;
2057}
2058
2059/* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2061 packing). For other types, is the identity. */
2062
d2e4a39e
AS
2063struct type *
2064ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2065{
ad82864c
JB
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
17280b9f
UW
2068
2069 if (ada_is_array_descriptor_type (type))
556bdfd4 2070 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2071
2072 return type;
14f9c5c9
AS
2073}
2074
4c4b4cd2
PH
2075/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
ad82864c
JB
2077static int
2078ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2079{
2080 if (type == NULL)
2081 return 0;
4c4b4cd2 2082 type = desc_base_type (type);
61ee279c 2083 type = ada_check_typedef (type);
d2e4a39e 2084 return
14f9c5c9
AS
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087}
2088
ad82864c
JB
2089/* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092int
2093ada_is_constrained_packed_array_type (struct type *type)
2094{
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097}
2098
2099/* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102static int
2103ada_is_unconstrained_packed_array_type (struct type *type)
2104{
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107}
2108
2109/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112static long
2113decode_packed_array_bitsize (struct type *type)
2114{
0d5cff50
DE
2115 const char *raw_name;
2116 const char *tail;
ad82864c
JB
2117 long bits;
2118
720d1a40
JB
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
720d1a40 2133 gdb_assert (tail != NULL);
ad82864c
JB
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143}
2144
14f9c5c9
AS
2145/* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
d2e4a39e 2154static struct type *
ad82864c 2155constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2156{
d2e4a39e
AS
2157 struct type *new_elt_type;
2158 struct type *new_type;
99b1c762
JB
2159 struct type *index_type_desc;
2160 struct type *index_type;
14f9c5c9
AS
2161 LONGEST low_bound, high_bound;
2162
61ee279c 2163 type = ada_check_typedef (type);
14f9c5c9
AS
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
99b1c762
JB
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
e9bb382b 2174 new_type = alloc_type_copy (type);
ad82864c
JB
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
99b1c762 2178 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
99b1c762 2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2186 else
14f9c5c9
AS
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2189 TYPE_LENGTH (new_type) =
4c4b4cd2 2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2191 }
2192
876cecd0 2193 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2194 return new_type;
2195}
2196
ad82864c
JB
2197/* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2199
d2e4a39e 2200static struct type *
ad82864c 2201decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2202{
0d5cff50 2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2204 char *name;
0d5cff50 2205 const char *tail;
d2e4a39e 2206 struct type *shadow_type;
14f9c5c9 2207 long bits;
14f9c5c9 2208
727e3d2e
JB
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2217 type = desc_base_type (type);
2218
14f9c5c9
AS
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
b4ba55a1
JB
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
14f9c5c9 2225 {
323e0a4a 2226 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2227 return NULL;
2228 }
cb249c71 2229 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
0963b4bd
MS
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
14f9c5c9
AS
2235 return NULL;
2236 }
d2e4a39e 2237
ad82864c
JB
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2240}
2241
ad82864c
JB
2242/* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
4c4b4cd2 2246 type length is set appropriately. */
14f9c5c9 2247
d2e4a39e 2248static struct value *
ad82864c 2249decode_constrained_packed_array (struct value *arr)
14f9c5c9 2250{
4c4b4cd2 2251 struct type *type;
14f9c5c9 2252
11aa919a
PMR
2253 /* If our value is a pointer, then dereference it. Likewise if
2254 the value is a reference. Make sure that this operation does not
2255 cause the target type to be fixed, as this would indirectly cause
2256 this array to be decoded. The rest of the routine assumes that
2257 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2258 and "value_ind" routines to perform the dereferencing, as opposed
2259 to using "ada_coerce_ref" or "ada_value_ind". */
2260 arr = coerce_ref (arr);
828292f2 2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2262 arr = value_ind (arr);
4c4b4cd2 2263
ad82864c 2264 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2265 if (type == NULL)
2266 {
323e0a4a 2267 error (_("can't unpack array"));
14f9c5c9
AS
2268 return NULL;
2269 }
61ee279c 2270
50810684 2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2272 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
df407dfe 2281 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
df407dfe 2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
4c4b4cd2 2296 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2297}
2298
2299
2300/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2301 given in IND. ARR must be a simple array. */
14f9c5c9 2302
d2e4a39e
AS
2303static struct value *
2304value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2305{
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
d2e4a39e
AS
2309 struct type *elt_type;
2310 struct value *v;
14f9c5c9
AS
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
df407dfe 2314 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2315 for (i = 0; i < arity; i += 1)
14f9c5c9 2316 {
d2e4a39e 2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
0963b4bd
MS
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
14f9c5c9 2322 else
4c4b4cd2
PH
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
323e0a4a 2330 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2331 lowerbound = upperbound = 0;
2332 }
2333
3cb382c9 2334 idx = pos_atr (ind[i]);
4c4b4cd2 2335 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
4c4b4cd2
PH
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2341 }
14f9c5c9
AS
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2347 bits, elt_type);
14f9c5c9
AS
2348 return v;
2349}
2350
4c4b4cd2 2351/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2352
2353static int
d2e4a39e 2354has_negatives (struct type *type)
14f9c5c9 2355{
d2e4a39e
AS
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
14f9c5c9 2365}
d2e4a39e 2366
14f9c5c9
AS
2367
2368/* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2371 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2376
d2e4a39e 2377struct value *
fc1a4b47 2378ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2379 long offset, int bit_offset, int bit_size,
4c4b4cd2 2380 struct type *type)
14f9c5c9 2381{
d2e4a39e 2382 struct value *v;
4c4b4cd2
PH
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2391 unsigned char *unpacked;
4c4b4cd2 2392 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
50810684 2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2398
61ee279c 2399 type = ada_check_typedef (type);
14f9c5c9
AS
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
d2e4a39e 2404 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2405 }
9214ee5f 2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2407 {
53ba8333 2408 v = value_at (type, value_address (obj));
9f1f738a 2409 type = value_type (v);
d2e4a39e 2410 bytes = (unsigned char *) alloca (len);
53ba8333 2411 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2412 }
d2e4a39e 2413 else
14f9c5c9
AS
2414 {
2415 v = allocate_value (type);
0fd88904 2416 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2417 }
d2e4a39e
AS
2418
2419 if (obj != NULL)
14f9c5c9 2420 {
53ba8333 2421 long new_offset = offset;
5b4ee69b 2422
74bcbdf3 2423 set_value_component_location (v, obj);
9bbda503
AC
2424 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2425 set_value_bitsize (v, bit_size);
df407dfe 2426 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2427 {
53ba8333 2428 ++new_offset;
9bbda503 2429 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2430 }
53ba8333
JB
2431 set_value_offset (v, new_offset);
2432
2433 /* Also set the parent value. This is needed when trying to
2434 assign a new value (in inferior memory). */
2435 set_value_parent (v, obj);
14f9c5c9
AS
2436 }
2437 else
9bbda503 2438 set_value_bitsize (v, bit_size);
0fd88904 2439 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2440
2441 srcBitsLeft = bit_size;
2442 nsrc = len;
2443 ntarg = TYPE_LENGTH (type);
2444 sign = 0;
2445 if (bit_size == 0)
2446 {
2447 memset (unpacked, 0, TYPE_LENGTH (type));
2448 return v;
2449 }
50810684 2450 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2451 {
d2e4a39e 2452 src = len - 1;
1265e4aa
JB
2453 if (has_negatives (type)
2454 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2455 sign = ~0;
d2e4a39e
AS
2456
2457 unusedLS =
4c4b4cd2
PH
2458 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2459 % HOST_CHAR_BIT;
14f9c5c9
AS
2460
2461 switch (TYPE_CODE (type))
4c4b4cd2
PH
2462 {
2463 case TYPE_CODE_ARRAY:
2464 case TYPE_CODE_UNION:
2465 case TYPE_CODE_STRUCT:
2466 /* Non-scalar values must be aligned at a byte boundary... */
2467 accumSize =
2468 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2469 /* ... And are placed at the beginning (most-significant) bytes
2470 of the target. */
529cad9c 2471 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2472 ntarg = targ + 1;
4c4b4cd2
PH
2473 break;
2474 default:
2475 accumSize = 0;
2476 targ = TYPE_LENGTH (type) - 1;
2477 break;
2478 }
14f9c5c9 2479 }
d2e4a39e 2480 else
14f9c5c9
AS
2481 {
2482 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2483
2484 src = targ = 0;
2485 unusedLS = bit_offset;
2486 accumSize = 0;
2487
d2e4a39e 2488 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2489 sign = ~0;
14f9c5c9 2490 }
d2e4a39e 2491
14f9c5c9
AS
2492 accum = 0;
2493 while (nsrc > 0)
2494 {
2495 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2496 part of the value. */
d2e4a39e 2497 unsigned int unusedMSMask =
4c4b4cd2
PH
2498 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2499 1;
2500 /* Sign-extend bits for this byte. */
14f9c5c9 2501 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2502
d2e4a39e 2503 accum |=
4c4b4cd2 2504 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2505 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2506 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2507 {
2508 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2509 accumSize -= HOST_CHAR_BIT;
2510 accum >>= HOST_CHAR_BIT;
2511 ntarg -= 1;
2512 targ += delta;
2513 }
14f9c5c9
AS
2514 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2515 unusedLS = 0;
2516 nsrc -= 1;
2517 src += delta;
2518 }
2519 while (ntarg > 0)
2520 {
2521 accum |= sign << accumSize;
2522 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 ntarg -= 1;
2526 targ += delta;
2527 }
2528
2529 return v;
2530}
d2e4a39e 2531
14f9c5c9
AS
2532/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2533 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2534 not overlap. */
14f9c5c9 2535static void
fc1a4b47 2536move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2537 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2538{
2539 unsigned int accum, mask;
2540 int accum_bits, chunk_size;
2541
2542 target += targ_offset / HOST_CHAR_BIT;
2543 targ_offset %= HOST_CHAR_BIT;
2544 source += src_offset / HOST_CHAR_BIT;
2545 src_offset %= HOST_CHAR_BIT;
50810684 2546 if (bits_big_endian_p)
14f9c5c9
AS
2547 {
2548 accum = (unsigned char) *source;
2549 source += 1;
2550 accum_bits = HOST_CHAR_BIT - src_offset;
2551
d2e4a39e 2552 while (n > 0)
4c4b4cd2
PH
2553 {
2554 int unused_right;
5b4ee69b 2555
4c4b4cd2
PH
2556 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2557 accum_bits += HOST_CHAR_BIT;
2558 source += 1;
2559 chunk_size = HOST_CHAR_BIT - targ_offset;
2560 if (chunk_size > n)
2561 chunk_size = n;
2562 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2563 mask = ((1 << chunk_size) - 1) << unused_right;
2564 *target =
2565 (*target & ~mask)
2566 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2567 n -= chunk_size;
2568 accum_bits -= chunk_size;
2569 target += 1;
2570 targ_offset = 0;
2571 }
14f9c5c9
AS
2572 }
2573 else
2574 {
2575 accum = (unsigned char) *source >> src_offset;
2576 source += 1;
2577 accum_bits = HOST_CHAR_BIT - src_offset;
2578
d2e4a39e 2579 while (n > 0)
4c4b4cd2
PH
2580 {
2581 accum = accum + ((unsigned char) *source << accum_bits);
2582 accum_bits += HOST_CHAR_BIT;
2583 source += 1;
2584 chunk_size = HOST_CHAR_BIT - targ_offset;
2585 if (chunk_size > n)
2586 chunk_size = n;
2587 mask = ((1 << chunk_size) - 1) << targ_offset;
2588 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2589 n -= chunk_size;
2590 accum_bits -= chunk_size;
2591 accum >>= chunk_size;
2592 target += 1;
2593 targ_offset = 0;
2594 }
14f9c5c9
AS
2595 }
2596}
2597
14f9c5c9
AS
2598/* Store the contents of FROMVAL into the location of TOVAL.
2599 Return a new value with the location of TOVAL and contents of
2600 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2601 floating-point or non-scalar types. */
14f9c5c9 2602
d2e4a39e
AS
2603static struct value *
2604ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2605{
df407dfe
AC
2606 struct type *type = value_type (toval);
2607 int bits = value_bitsize (toval);
14f9c5c9 2608
52ce6436
PH
2609 toval = ada_coerce_ref (toval);
2610 fromval = ada_coerce_ref (fromval);
2611
2612 if (ada_is_direct_array_type (value_type (toval)))
2613 toval = ada_coerce_to_simple_array (toval);
2614 if (ada_is_direct_array_type (value_type (fromval)))
2615 fromval = ada_coerce_to_simple_array (fromval);
2616
88e3b34b 2617 if (!deprecated_value_modifiable (toval))
323e0a4a 2618 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2619
d2e4a39e 2620 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2621 && bits > 0
d2e4a39e 2622 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2623 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2624 {
df407dfe
AC
2625 int len = (value_bitpos (toval)
2626 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2627 int from_size;
948f8e3d 2628 gdb_byte *buffer = alloca (len);
d2e4a39e 2629 struct value *val;
42ae5230 2630 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2631
2632 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2633 fromval = value_cast (type, fromval);
14f9c5c9 2634
52ce6436 2635 read_memory (to_addr, buffer, len);
aced2898
PH
2636 from_size = value_bitsize (fromval);
2637 if (from_size == 0)
2638 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2639 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2640 move_bits (buffer, value_bitpos (toval),
50810684 2641 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2642 else
50810684
UW
2643 move_bits (buffer, value_bitpos (toval),
2644 value_contents (fromval), 0, bits, 0);
972daa01 2645 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2646
14f9c5c9 2647 val = value_copy (toval);
0fd88904 2648 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2649 TYPE_LENGTH (type));
04624583 2650 deprecated_set_value_type (val, type);
d2e4a39e 2651
14f9c5c9
AS
2652 return val;
2653 }
2654
2655 return value_assign (toval, fromval);
2656}
2657
2658
52ce6436
PH
2659/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2660 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2661 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2662 * COMPONENT, and not the inferior's memory. The current contents
2663 * of COMPONENT are ignored. */
2664static void
2665value_assign_to_component (struct value *container, struct value *component,
2666 struct value *val)
2667{
2668 LONGEST offset_in_container =
42ae5230 2669 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2670 int bit_offset_in_container =
2671 value_bitpos (component) - value_bitpos (container);
2672 int bits;
2673
2674 val = value_cast (value_type (component), val);
2675
2676 if (value_bitsize (component) == 0)
2677 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2678 else
2679 bits = value_bitsize (component);
2680
50810684 2681 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2682 move_bits (value_contents_writeable (container) + offset_in_container,
2683 value_bitpos (container) + bit_offset_in_container,
2684 value_contents (val),
2685 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2686 bits, 1);
52ce6436
PH
2687 else
2688 move_bits (value_contents_writeable (container) + offset_in_container,
2689 value_bitpos (container) + bit_offset_in_container,
50810684 2690 value_contents (val), 0, bits, 0);
52ce6436
PH
2691}
2692
4c4b4cd2
PH
2693/* The value of the element of array ARR at the ARITY indices given in IND.
2694 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2695 thereto. */
2696
d2e4a39e
AS
2697struct value *
2698ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2699{
2700 int k;
d2e4a39e
AS
2701 struct value *elt;
2702 struct type *elt_type;
14f9c5c9
AS
2703
2704 elt = ada_coerce_to_simple_array (arr);
2705
df407dfe 2706 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2707 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2708 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2709 return value_subscript_packed (elt, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2714 error (_("too many subscripts (%d expected)"), k);
2497b498 2715 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2716 }
2717 return elt;
2718}
2719
2720/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2721 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2722 IND. Does not read the entire array into memory. */
14f9c5c9 2723
2c0b251b 2724static struct value *
d2e4a39e 2725ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2726 struct value **ind)
14f9c5c9
AS
2727{
2728 int k;
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 LONGEST lwb, upb;
14f9c5c9
AS
2733
2734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2735 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2736 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2737 value_copy (arr));
14f9c5c9 2738 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2739 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2740 type = TYPE_TARGET_TYPE (type);
2741 }
2742
2743 return value_ind (arr);
2744}
2745
0b5d8877 2746/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2747 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2748 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2749 per Ada rules. */
0b5d8877 2750static struct value *
f5938064
JG
2751ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2752 int low, int high)
0b5d8877 2753{
b0dd7688 2754 struct type *type0 = ada_check_typedef (type);
6c038f32 2755 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2756 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2758 struct type *index_type
2759 = create_static_range_type (NULL,
2760 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2761 low, high);
6c038f32 2762 struct type *slice_type =
b0dd7688 2763 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2764
f5938064 2765 return value_at_lazy (slice_type, base);
0b5d8877
PH
2766}
2767
2768
2769static struct value *
2770ada_value_slice (struct value *array, int low, int high)
2771{
b0dd7688 2772 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2773 struct type *index_type
2774 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2775 struct type *slice_type =
0b5d8877 2776 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2777
6c038f32 2778 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2779}
2780
14f9c5c9
AS
2781/* If type is a record type in the form of a standard GNAT array
2782 descriptor, returns the number of dimensions for type. If arr is a
2783 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2784 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2785
2786int
d2e4a39e 2787ada_array_arity (struct type *type)
14f9c5c9
AS
2788{
2789 int arity;
2790
2791 if (type == NULL)
2792 return 0;
2793
2794 type = desc_base_type (type);
2795
2796 arity = 0;
d2e4a39e 2797 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2798 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2799 else
2800 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2801 {
4c4b4cd2 2802 arity += 1;
61ee279c 2803 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2804 }
d2e4a39e 2805
14f9c5c9
AS
2806 return arity;
2807}
2808
2809/* If TYPE is a record type in the form of a standard GNAT array
2810 descriptor or a simple array type, returns the element type for
2811 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2812 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2813
d2e4a39e
AS
2814struct type *
2815ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2816{
2817 type = desc_base_type (type);
2818
d2e4a39e 2819 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2820 {
2821 int k;
d2e4a39e 2822 struct type *p_array_type;
14f9c5c9 2823
556bdfd4 2824 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2825
2826 k = ada_array_arity (type);
2827 if (k == 0)
4c4b4cd2 2828 return NULL;
d2e4a39e 2829
4c4b4cd2 2830 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2831 if (nindices >= 0 && k > nindices)
4c4b4cd2 2832 k = nindices;
d2e4a39e 2833 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2834 {
61ee279c 2835 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2836 k -= 1;
2837 }
14f9c5c9
AS
2838 return p_array_type;
2839 }
2840 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2843 {
2844 type = TYPE_TARGET_TYPE (type);
2845 nindices -= 1;
2846 }
14f9c5c9
AS
2847 return type;
2848 }
2849
2850 return NULL;
2851}
2852
4c4b4cd2 2853/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2854 Does not examine memory. Throws an error if N is invalid or TYPE
2855 is not an array type. NAME is the name of the Ada attribute being
2856 evaluated ('range, 'first, 'last, or 'length); it is used in building
2857 the error message. */
14f9c5c9 2858
1eea4ebd
UW
2859static struct type *
2860ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2861{
4c4b4cd2
PH
2862 struct type *result_type;
2863
14f9c5c9
AS
2864 type = desc_base_type (type);
2865
1eea4ebd
UW
2866 if (n < 0 || n > ada_array_arity (type))
2867 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2868
4c4b4cd2 2869 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2870 {
2871 int i;
2872
2873 for (i = 1; i < n; i += 1)
4c4b4cd2 2874 type = TYPE_TARGET_TYPE (type);
262452ec 2875 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2876 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2877 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2878 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2879 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2880 result_type = NULL;
14f9c5c9 2881 }
d2e4a39e 2882 else
1eea4ebd
UW
2883 {
2884 result_type = desc_index_type (desc_bounds_type (type), n);
2885 if (result_type == NULL)
2886 error (_("attempt to take bound of something that is not an array"));
2887 }
2888
2889 return result_type;
14f9c5c9
AS
2890}
2891
2892/* Given that arr is an array type, returns the lower bound of the
2893 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2894 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2895 array-descriptor type. It works for other arrays with bounds supplied
2896 by run-time quantities other than discriminants. */
14f9c5c9 2897
abb68b3e 2898static LONGEST
fb5e3d5c 2899ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2900{
8a48ac95 2901 struct type *type, *index_type_desc, *index_type;
1ce677a4 2902 int i;
262452ec
JK
2903
2904 gdb_assert (which == 0 || which == 1);
14f9c5c9 2905
ad82864c
JB
2906 if (ada_is_constrained_packed_array_type (arr_type))
2907 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2908
4c4b4cd2 2909 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2910 return (LONGEST) - which;
14f9c5c9
AS
2911
2912 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2913 type = TYPE_TARGET_TYPE (arr_type);
2914 else
2915 type = arr_type;
2916
2917 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2918 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2919 if (index_type_desc != NULL)
28c85d6c
JB
2920 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2921 NULL);
262452ec 2922 else
8a48ac95
JB
2923 {
2924 struct type *elt_type = check_typedef (type);
2925
2926 for (i = 1; i < n; i++)
2927 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2928
2929 index_type = TYPE_INDEX_TYPE (elt_type);
2930 }
262452ec 2931
43bbcdc2
PH
2932 return
2933 (LONGEST) (which == 0
2934 ? ada_discrete_type_low_bound (index_type)
2935 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2936}
2937
2938/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2939 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2940 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2941 supplied by run-time quantities other than discriminants. */
14f9c5c9 2942
1eea4ebd 2943static LONGEST
4dc81987 2944ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2945{
df407dfe 2946 struct type *arr_type = value_type (arr);
14f9c5c9 2947
ad82864c
JB
2948 if (ada_is_constrained_packed_array_type (arr_type))
2949 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2950 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2951 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2952 else
1eea4ebd 2953 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2954}
2955
2956/* Given that arr is an array value, returns the length of the
2957 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2958 supplied by run-time quantities other than discriminants.
2959 Does not work for arrays indexed by enumeration types with representation
2960 clauses at the moment. */
14f9c5c9 2961
1eea4ebd 2962static LONGEST
d2e4a39e 2963ada_array_length (struct value *arr, int n)
14f9c5c9 2964{
df407dfe 2965 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2966
ad82864c
JB
2967 if (ada_is_constrained_packed_array_type (arr_type))
2968 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2969
4c4b4cd2 2970 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2971 return (ada_array_bound_from_type (arr_type, n, 1)
2972 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2973 else
1eea4ebd
UW
2974 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2975 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2976}
2977
2978/* An empty array whose type is that of ARR_TYPE (an array type),
2979 with bounds LOW to LOW-1. */
2980
2981static struct value *
2982empty_array (struct type *arr_type, int low)
2983{
b0dd7688 2984 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2985 struct type *index_type
2986 = create_static_range_type
2987 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2988 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2989
0b5d8877 2990 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2991}
14f9c5c9 2992\f
d2e4a39e 2993
4c4b4cd2 2994 /* Name resolution */
14f9c5c9 2995
4c4b4cd2
PH
2996/* The "decoded" name for the user-definable Ada operator corresponding
2997 to OP. */
14f9c5c9 2998
d2e4a39e 2999static const char *
4c4b4cd2 3000ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3001{
3002 int i;
3003
4c4b4cd2 3004 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3005 {
3006 if (ada_opname_table[i].op == op)
4c4b4cd2 3007 return ada_opname_table[i].decoded;
14f9c5c9 3008 }
323e0a4a 3009 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3010}
3011
3012
4c4b4cd2
PH
3013/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3014 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3015 undefined namespace) and converts operators that are
3016 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3017 non-null, it provides a preferred result type [at the moment, only
3018 type void has any effect---causing procedures to be preferred over
3019 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3020 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3021
4c4b4cd2
PH
3022static void
3023resolve (struct expression **expp, int void_context_p)
14f9c5c9 3024{
30b15541
UW
3025 struct type *context_type = NULL;
3026 int pc = 0;
3027
3028 if (void_context_p)
3029 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3030
3031 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3032}
3033
4c4b4cd2
PH
3034/* Resolve the operator of the subexpression beginning at
3035 position *POS of *EXPP. "Resolving" consists of replacing
3036 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3037 with their resolutions, replacing built-in operators with
3038 function calls to user-defined operators, where appropriate, and,
3039 when DEPROCEDURE_P is non-zero, converting function-valued variables
3040 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3041 are as in ada_resolve, above. */
14f9c5c9 3042
d2e4a39e 3043static struct value *
4c4b4cd2 3044resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3045 struct type *context_type)
14f9c5c9
AS
3046{
3047 int pc = *pos;
3048 int i;
4c4b4cd2 3049 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3050 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3051 struct value **argvec; /* Vector of operand types (alloca'ed). */
3052 int nargs; /* Number of operands. */
52ce6436 3053 int oplen;
14f9c5c9
AS
3054
3055 argvec = NULL;
3056 nargs = 0;
3057 exp = *expp;
3058
52ce6436
PH
3059 /* Pass one: resolve operands, saving their types and updating *pos,
3060 if needed. */
14f9c5c9
AS
3061 switch (op)
3062 {
4c4b4cd2
PH
3063 case OP_FUNCALL:
3064 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3065 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3066 *pos += 7;
4c4b4cd2
PH
3067 else
3068 {
3069 *pos += 3;
3070 resolve_subexp (expp, pos, 0, NULL);
3071 }
3072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3073 break;
3074
14f9c5c9 3075 case UNOP_ADDR:
4c4b4cd2
PH
3076 *pos += 1;
3077 resolve_subexp (expp, pos, 0, NULL);
3078 break;
3079
52ce6436
PH
3080 case UNOP_QUAL:
3081 *pos += 3;
17466c1a 3082 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3083 break;
3084
52ce6436 3085 case OP_ATR_MODULUS:
4c4b4cd2
PH
3086 case OP_ATR_SIZE:
3087 case OP_ATR_TAG:
4c4b4cd2
PH
3088 case OP_ATR_FIRST:
3089 case OP_ATR_LAST:
3090 case OP_ATR_LENGTH:
3091 case OP_ATR_POS:
3092 case OP_ATR_VAL:
4c4b4cd2
PH
3093 case OP_ATR_MIN:
3094 case OP_ATR_MAX:
52ce6436
PH
3095 case TERNOP_IN_RANGE:
3096 case BINOP_IN_BOUNDS:
3097 case UNOP_IN_RANGE:
3098 case OP_AGGREGATE:
3099 case OP_OTHERS:
3100 case OP_CHOICES:
3101 case OP_POSITIONAL:
3102 case OP_DISCRETE_RANGE:
3103 case OP_NAME:
3104 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3105 *pos += oplen;
14f9c5c9
AS
3106 break;
3107
3108 case BINOP_ASSIGN:
3109 {
4c4b4cd2
PH
3110 struct value *arg1;
3111
3112 *pos += 1;
3113 arg1 = resolve_subexp (expp, pos, 0, NULL);
3114 if (arg1 == NULL)
3115 resolve_subexp (expp, pos, 1, NULL);
3116 else
df407dfe 3117 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3118 break;
14f9c5c9
AS
3119 }
3120
4c4b4cd2 3121 case UNOP_CAST:
4c4b4cd2
PH
3122 *pos += 3;
3123 nargs = 1;
3124 break;
14f9c5c9 3125
4c4b4cd2
PH
3126 case BINOP_ADD:
3127 case BINOP_SUB:
3128 case BINOP_MUL:
3129 case BINOP_DIV:
3130 case BINOP_REM:
3131 case BINOP_MOD:
3132 case BINOP_EXP:
3133 case BINOP_CONCAT:
3134 case BINOP_LOGICAL_AND:
3135 case BINOP_LOGICAL_OR:
3136 case BINOP_BITWISE_AND:
3137 case BINOP_BITWISE_IOR:
3138 case BINOP_BITWISE_XOR:
14f9c5c9 3139
4c4b4cd2
PH
3140 case BINOP_EQUAL:
3141 case BINOP_NOTEQUAL:
3142 case BINOP_LESS:
3143 case BINOP_GTR:
3144 case BINOP_LEQ:
3145 case BINOP_GEQ:
14f9c5c9 3146
4c4b4cd2
PH
3147 case BINOP_REPEAT:
3148 case BINOP_SUBSCRIPT:
3149 case BINOP_COMMA:
40c8aaa9
JB
3150 *pos += 1;
3151 nargs = 2;
3152 break;
14f9c5c9 3153
4c4b4cd2
PH
3154 case UNOP_NEG:
3155 case UNOP_PLUS:
3156 case UNOP_LOGICAL_NOT:
3157 case UNOP_ABS:
3158 case UNOP_IND:
3159 *pos += 1;
3160 nargs = 1;
3161 break;
14f9c5c9 3162
4c4b4cd2
PH
3163 case OP_LONG:
3164 case OP_DOUBLE:
3165 case OP_VAR_VALUE:
3166 *pos += 4;
3167 break;
14f9c5c9 3168
4c4b4cd2
PH
3169 case OP_TYPE:
3170 case OP_BOOL:
3171 case OP_LAST:
4c4b4cd2
PH
3172 case OP_INTERNALVAR:
3173 *pos += 3;
3174 break;
14f9c5c9 3175
4c4b4cd2
PH
3176 case UNOP_MEMVAL:
3177 *pos += 3;
3178 nargs = 1;
3179 break;
3180
67f3407f
DJ
3181 case OP_REGISTER:
3182 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3183 break;
3184
4c4b4cd2
PH
3185 case STRUCTOP_STRUCT:
3186 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3187 nargs = 1;
3188 break;
3189
4c4b4cd2 3190 case TERNOP_SLICE:
4c4b4cd2
PH
3191 *pos += 1;
3192 nargs = 3;
3193 break;
3194
52ce6436 3195 case OP_STRING:
14f9c5c9 3196 break;
4c4b4cd2
PH
3197
3198 default:
323e0a4a 3199 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3200 }
3201
76a01679 3202 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3203 for (i = 0; i < nargs; i += 1)
3204 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3205 argvec[i] = NULL;
3206 exp = *expp;
3207
3208 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3209 switch (op)
3210 {
3211 default:
3212 break;
3213
14f9c5c9 3214 case OP_VAR_VALUE:
4c4b4cd2 3215 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3216 {
3217 struct ada_symbol_info *candidates;
3218 int n_candidates;
3219
3220 n_candidates =
3221 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3222 (exp->elts[pc + 2].symbol),
3223 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3224 &candidates);
76a01679
JB
3225
3226 if (n_candidates > 1)
3227 {
3228 /* Types tend to get re-introduced locally, so if there
3229 are any local symbols that are not types, first filter
3230 out all types. */
3231 int j;
3232 for (j = 0; j < n_candidates; j += 1)
3233 switch (SYMBOL_CLASS (candidates[j].sym))
3234 {
3235 case LOC_REGISTER:
3236 case LOC_ARG:
3237 case LOC_REF_ARG:
76a01679
JB
3238 case LOC_REGPARM_ADDR:
3239 case LOC_LOCAL:
76a01679 3240 case LOC_COMPUTED:
76a01679
JB
3241 goto FoundNonType;
3242 default:
3243 break;
3244 }
3245 FoundNonType:
3246 if (j < n_candidates)
3247 {
3248 j = 0;
3249 while (j < n_candidates)
3250 {
3251 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3252 {
3253 candidates[j] = candidates[n_candidates - 1];
3254 n_candidates -= 1;
3255 }
3256 else
3257 j += 1;
3258 }
3259 }
3260 }
3261
3262 if (n_candidates == 0)
323e0a4a 3263 error (_("No definition found for %s"),
76a01679
JB
3264 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3265 else if (n_candidates == 1)
3266 i = 0;
3267 else if (deprocedure_p
3268 && !is_nonfunction (candidates, n_candidates))
3269 {
06d5cf63
JB
3270 i = ada_resolve_function
3271 (candidates, n_candidates, NULL, 0,
3272 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3273 context_type);
76a01679 3274 if (i < 0)
323e0a4a 3275 error (_("Could not find a match for %s"),
76a01679
JB
3276 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3277 }
3278 else
3279 {
323e0a4a 3280 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3282 user_select_syms (candidates, n_candidates, 1);
3283 i = 0;
3284 }
3285
3286 exp->elts[pc + 1].block = candidates[i].block;
3287 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3288 if (innermost_block == NULL
3289 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3290 innermost_block = candidates[i].block;
3291 }
3292
3293 if (deprocedure_p
3294 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3295 == TYPE_CODE_FUNC))
3296 {
3297 replace_operator_with_call (expp, pc, 0, 0,
3298 exp->elts[pc + 2].symbol,
3299 exp->elts[pc + 1].block);
3300 exp = *expp;
3301 }
14f9c5c9
AS
3302 break;
3303
3304 case OP_FUNCALL:
3305 {
4c4b4cd2 3306 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3307 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3308 {
3309 struct ada_symbol_info *candidates;
3310 int n_candidates;
3311
3312 n_candidates =
76a01679
JB
3313 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3314 (exp->elts[pc + 5].symbol),
3315 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3316 &candidates);
4c4b4cd2
PH
3317 if (n_candidates == 1)
3318 i = 0;
3319 else
3320 {
06d5cf63
JB
3321 i = ada_resolve_function
3322 (candidates, n_candidates,
3323 argvec, nargs,
3324 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3325 context_type);
4c4b4cd2 3326 if (i < 0)
323e0a4a 3327 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3328 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3329 }
3330
3331 exp->elts[pc + 4].block = candidates[i].block;
3332 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3333 if (innermost_block == NULL
3334 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3335 innermost_block = candidates[i].block;
3336 }
14f9c5c9
AS
3337 }
3338 break;
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 case BINOP_REM:
3344 case BINOP_MOD:
3345 case BINOP_CONCAT:
3346 case BINOP_BITWISE_AND:
3347 case BINOP_BITWISE_IOR:
3348 case BINOP_BITWISE_XOR:
3349 case BINOP_EQUAL:
3350 case BINOP_NOTEQUAL:
3351 case BINOP_LESS:
3352 case BINOP_GTR:
3353 case BINOP_LEQ:
3354 case BINOP_GEQ:
3355 case BINOP_EXP:
3356 case UNOP_NEG:
3357 case UNOP_PLUS:
3358 case UNOP_LOGICAL_NOT:
3359 case UNOP_ABS:
3360 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3361 {
3362 struct ada_symbol_info *candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3367 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3368 &candidates);
4c4b4cd2 3369 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3370 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3371 if (i < 0)
3372 break;
3373
76a01679
JB
3374 replace_operator_with_call (expp, pc, nargs, 1,
3375 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3376 exp = *expp;
3377 }
14f9c5c9 3378 break;
4c4b4cd2
PH
3379
3380 case OP_TYPE:
b3dbf008 3381 case OP_REGISTER:
4c4b4cd2 3382 return NULL;
14f9c5c9
AS
3383 }
3384
3385 *pos = pc;
3386 return evaluate_subexp_type (exp, pos);
3387}
3388
3389/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3390 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3391 a non-pointer. */
14f9c5c9 3392/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3393 liberal. */
14f9c5c9
AS
3394
3395static int
4dc81987 3396ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3397{
61ee279c
PH
3398 ftype = ada_check_typedef (ftype);
3399 atype = ada_check_typedef (atype);
14f9c5c9
AS
3400
3401 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3402 ftype = TYPE_TARGET_TYPE (ftype);
3403 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3404 atype = TYPE_TARGET_TYPE (atype);
3405
d2e4a39e 3406 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3407 {
3408 default:
5b3d5b7d 3409 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3410 case TYPE_CODE_PTR:
3411 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3412 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3413 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3414 else
1265e4aa
JB
3415 return (may_deref
3416 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_ENUM:
3419 case TYPE_CODE_RANGE:
3420 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3421 {
3422 case TYPE_CODE_INT:
3423 case TYPE_CODE_ENUM:
3424 case TYPE_CODE_RANGE:
3425 return 1;
3426 default:
3427 return 0;
3428 }
14f9c5c9
AS
3429
3430 case TYPE_CODE_ARRAY:
d2e4a39e 3431 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3432 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3433
3434 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3435 if (ada_is_array_descriptor_type (ftype))
3436 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3437 || ada_is_array_descriptor_type (atype));
14f9c5c9 3438 else
4c4b4cd2
PH
3439 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3440 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3441
3442 case TYPE_CODE_UNION:
3443 case TYPE_CODE_FLT:
3444 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3445 }
3446}
3447
3448/* Return non-zero if the formals of FUNC "sufficiently match" the
3449 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3450 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3451 argument function. */
14f9c5c9
AS
3452
3453static int
d2e4a39e 3454ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3455{
3456 int i;
d2e4a39e 3457 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3458
1265e4aa
JB
3459 if (SYMBOL_CLASS (func) == LOC_CONST
3460 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3461 return (n_actuals == 0);
3462 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3463 return 0;
3464
3465 if (TYPE_NFIELDS (func_type) != n_actuals)
3466 return 0;
3467
3468 for (i = 0; i < n_actuals; i += 1)
3469 {
4c4b4cd2 3470 if (actuals[i] == NULL)
76a01679
JB
3471 return 0;
3472 else
3473 {
5b4ee69b
MS
3474 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3475 i));
df407dfe 3476 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3477
76a01679
JB
3478 if (!ada_type_match (ftype, atype, 1))
3479 return 0;
3480 }
14f9c5c9
AS
3481 }
3482 return 1;
3483}
3484
3485/* False iff function type FUNC_TYPE definitely does not produce a value
3486 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3487 FUNC_TYPE is not a valid function type with a non-null return type
3488 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3489
3490static int
d2e4a39e 3491return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3492{
d2e4a39e 3493 struct type *return_type;
14f9c5c9
AS
3494
3495 if (func_type == NULL)
3496 return 1;
3497
4c4b4cd2 3498 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3499 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3500 else
18af8284 3501 return_type = get_base_type (func_type);
14f9c5c9
AS
3502 if (return_type == NULL)
3503 return 1;
3504
18af8284 3505 context_type = get_base_type (context_type);
14f9c5c9
AS
3506
3507 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3508 return context_type == NULL || return_type == context_type;
3509 else if (context_type == NULL)
3510 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3511 else
3512 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3513}
3514
3515
4c4b4cd2 3516/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3517 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3518 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3519 that returns that type, then eliminate matches that don't. If
3520 CONTEXT_TYPE is void and there is at least one match that does not
3521 return void, eliminate all matches that do.
3522
14f9c5c9
AS
3523 Asks the user if there is more than one match remaining. Returns -1
3524 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3525 solely for messages. May re-arrange and modify SYMS in
3526 the process; the index returned is for the modified vector. */
14f9c5c9 3527
4c4b4cd2
PH
3528static int
3529ada_resolve_function (struct ada_symbol_info syms[],
3530 int nsyms, struct value **args, int nargs,
3531 const char *name, struct type *context_type)
14f9c5c9 3532{
30b15541 3533 int fallback;
14f9c5c9 3534 int k;
4c4b4cd2 3535 int m; /* Number of hits */
14f9c5c9 3536
d2e4a39e 3537 m = 0;
30b15541
UW
3538 /* In the first pass of the loop, we only accept functions matching
3539 context_type. If none are found, we add a second pass of the loop
3540 where every function is accepted. */
3541 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3542 {
3543 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3544 {
61ee279c 3545 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3546
3547 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3548 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3549 {
3550 syms[m] = syms[k];
3551 m += 1;
3552 }
3553 }
14f9c5c9
AS
3554 }
3555
3556 if (m == 0)
3557 return -1;
3558 else if (m > 1)
3559 {
323e0a4a 3560 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3561 user_select_syms (syms, m, 1);
14f9c5c9
AS
3562 return 0;
3563 }
3564 return 0;
3565}
3566
4c4b4cd2
PH
3567/* Returns true (non-zero) iff decoded name N0 should appear before N1
3568 in a listing of choices during disambiguation (see sort_choices, below).
3569 The idea is that overloadings of a subprogram name from the
3570 same package should sort in their source order. We settle for ordering
3571 such symbols by their trailing number (__N or $N). */
3572
14f9c5c9 3573static int
0d5cff50 3574encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3575{
3576 if (N1 == NULL)
3577 return 0;
3578 else if (N0 == NULL)
3579 return 1;
3580 else
3581 {
3582 int k0, k1;
5b4ee69b 3583
d2e4a39e 3584 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3585 ;
d2e4a39e 3586 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3587 ;
d2e4a39e 3588 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3589 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3590 {
3591 int n0, n1;
5b4ee69b 3592
4c4b4cd2
PH
3593 n0 = k0;
3594 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3595 n0 -= 1;
3596 n1 = k1;
3597 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3598 n1 -= 1;
3599 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3600 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3601 }
14f9c5c9
AS
3602 return (strcmp (N0, N1) < 0);
3603 }
3604}
d2e4a39e 3605
4c4b4cd2
PH
3606/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3607 encoded names. */
3608
d2e4a39e 3609static void
4c4b4cd2 3610sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3611{
4c4b4cd2 3612 int i;
5b4ee69b 3613
d2e4a39e 3614 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3615 {
4c4b4cd2 3616 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3617 int j;
3618
d2e4a39e 3619 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3620 {
3621 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3622 SYMBOL_LINKAGE_NAME (sym.sym)))
3623 break;
3624 syms[j + 1] = syms[j];
3625 }
d2e4a39e 3626 syms[j + 1] = sym;
14f9c5c9
AS
3627 }
3628}
3629
4c4b4cd2
PH
3630/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3631 by asking the user (if necessary), returning the number selected,
3632 and setting the first elements of SYMS items. Error if no symbols
3633 selected. */
14f9c5c9
AS
3634
3635/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3636 to be re-integrated one of these days. */
14f9c5c9
AS
3637
3638int
4c4b4cd2 3639user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3640{
3641 int i;
d2e4a39e 3642 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3643 int n_chosen;
3644 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3645 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3646
3647 if (max_results < 1)
323e0a4a 3648 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3649 if (nsyms <= 1)
3650 return nsyms;
3651
717d2f5a
JB
3652 if (select_mode == multiple_symbols_cancel)
3653 error (_("\
3654canceled because the command is ambiguous\n\
3655See set/show multiple-symbol."));
3656
3657 /* If select_mode is "all", then return all possible symbols.
3658 Only do that if more than one symbol can be selected, of course.
3659 Otherwise, display the menu as usual. */
3660 if (select_mode == multiple_symbols_all && max_results > 1)
3661 return nsyms;
3662
323e0a4a 3663 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3664 if (max_results > 1)
323e0a4a 3665 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3666
4c4b4cd2 3667 sort_choices (syms, nsyms);
14f9c5c9
AS
3668
3669 for (i = 0; i < nsyms; i += 1)
3670 {
4c4b4cd2
PH
3671 if (syms[i].sym == NULL)
3672 continue;
3673
3674 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3675 {
76a01679
JB
3676 struct symtab_and_line sal =
3677 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3678
323e0a4a
AC
3679 if (sal.symtab == NULL)
3680 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3681 i + first_choice,
3682 SYMBOL_PRINT_NAME (syms[i].sym),
3683 sal.line);
3684 else
3685 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3686 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3687 symtab_to_filename_for_display (sal.symtab),
3688 sal.line);
4c4b4cd2
PH
3689 continue;
3690 }
d2e4a39e 3691 else
4c4b4cd2
PH
3692 {
3693 int is_enumeral =
3694 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3695 && SYMBOL_TYPE (syms[i].sym) != NULL
3696 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3697 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3698
3699 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3700 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3701 i + first_choice,
3702 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3703 symtab_to_filename_for_display (symtab),
3704 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3705 else if (is_enumeral
3706 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3707 {
a3f17187 3708 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3709 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3710 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3711 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3712 SYMBOL_PRINT_NAME (syms[i].sym));
3713 }
3714 else if (symtab != NULL)
3715 printf_unfiltered (is_enumeral
323e0a4a
AC
3716 ? _("[%d] %s in %s (enumeral)\n")
3717 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3718 i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3720 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3721 else
3722 printf_unfiltered (is_enumeral
323e0a4a
AC
3723 ? _("[%d] %s (enumeral)\n")
3724 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym));
3727 }
14f9c5c9 3728 }
d2e4a39e 3729
14f9c5c9 3730 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3731 "overload-choice");
14f9c5c9
AS
3732
3733 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3734 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3735
3736 return n_chosen;
3737}
3738
3739/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3740 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3741 order in CHOICES[0 .. N-1], and return N.
3742
3743 The user types choices as a sequence of numbers on one line
3744 separated by blanks, encoding them as follows:
3745
4c4b4cd2 3746 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3747 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3748 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3749
4c4b4cd2 3750 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3751
3752 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3753 prompts (for use with the -f switch). */
14f9c5c9
AS
3754
3755int
d2e4a39e 3756get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3757 int is_all_choice, char *annotation_suffix)
14f9c5c9 3758{
d2e4a39e 3759 char *args;
0bcd0149 3760 char *prompt;
14f9c5c9
AS
3761 int n_chosen;
3762 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3763
14f9c5c9
AS
3764 prompt = getenv ("PS2");
3765 if (prompt == NULL)
0bcd0149 3766 prompt = "> ";
14f9c5c9 3767
0bcd0149 3768 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3769
14f9c5c9 3770 if (args == NULL)
323e0a4a 3771 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3772
3773 n_chosen = 0;
76a01679 3774
4c4b4cd2
PH
3775 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3776 order, as given in args. Choices are validated. */
14f9c5c9
AS
3777 while (1)
3778 {
d2e4a39e 3779 char *args2;
14f9c5c9
AS
3780 int choice, j;
3781
0fcd72ba 3782 args = skip_spaces (args);
14f9c5c9 3783 if (*args == '\0' && n_chosen == 0)
323e0a4a 3784 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3785 else if (*args == '\0')
4c4b4cd2 3786 break;
14f9c5c9
AS
3787
3788 choice = strtol (args, &args2, 10);
d2e4a39e 3789 if (args == args2 || choice < 0
4c4b4cd2 3790 || choice > n_choices + first_choice - 1)
323e0a4a 3791 error (_("Argument must be choice number"));
14f9c5c9
AS
3792 args = args2;
3793
d2e4a39e 3794 if (choice == 0)
323e0a4a 3795 error (_("cancelled"));
14f9c5c9
AS
3796
3797 if (choice < first_choice)
4c4b4cd2
PH
3798 {
3799 n_chosen = n_choices;
3800 for (j = 0; j < n_choices; j += 1)
3801 choices[j] = j;
3802 break;
3803 }
14f9c5c9
AS
3804 choice -= first_choice;
3805
d2e4a39e 3806 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3807 {
3808 }
14f9c5c9
AS
3809
3810 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3811 {
3812 int k;
5b4ee69b 3813
4c4b4cd2
PH
3814 for (k = n_chosen - 1; k > j; k -= 1)
3815 choices[k + 1] = choices[k];
3816 choices[j + 1] = choice;
3817 n_chosen += 1;
3818 }
14f9c5c9
AS
3819 }
3820
3821 if (n_chosen > max_results)
323e0a4a 3822 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3823
14f9c5c9
AS
3824 return n_chosen;
3825}
3826
4c4b4cd2
PH
3827/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3828 on the function identified by SYM and BLOCK, and taking NARGS
3829 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3830
3831static void
d2e4a39e 3832replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3833 int oplen, struct symbol *sym,
270140bd 3834 const struct block *block)
14f9c5c9
AS
3835{
3836 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3837 symbol, -oplen for operator being replaced). */
d2e4a39e 3838 struct expression *newexp = (struct expression *)
8c1a34e7 3839 xzalloc (sizeof (struct expression)
4c4b4cd2 3840 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3841 struct expression *exp = *expp;
14f9c5c9
AS
3842
3843 newexp->nelts = exp->nelts + 7 - oplen;
3844 newexp->language_defn = exp->language_defn;
3489610d 3845 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3846 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3847 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3848 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3849
3850 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3851 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3852
3853 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3854 newexp->elts[pc + 4].block = block;
3855 newexp->elts[pc + 5].symbol = sym;
3856
3857 *expp = newexp;
aacb1f0a 3858 xfree (exp);
d2e4a39e 3859}
14f9c5c9
AS
3860
3861/* Type-class predicates */
3862
4c4b4cd2
PH
3863/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3864 or FLOAT). */
14f9c5c9
AS
3865
3866static int
d2e4a39e 3867numeric_type_p (struct type *type)
14f9c5c9
AS
3868{
3869 if (type == NULL)
3870 return 0;
d2e4a39e
AS
3871 else
3872 {
3873 switch (TYPE_CODE (type))
4c4b4cd2
PH
3874 {
3875 case TYPE_CODE_INT:
3876 case TYPE_CODE_FLT:
3877 return 1;
3878 case TYPE_CODE_RANGE:
3879 return (type == TYPE_TARGET_TYPE (type)
3880 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3881 default:
3882 return 0;
3883 }
d2e4a39e 3884 }
14f9c5c9
AS
3885}
3886
4c4b4cd2 3887/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3888
3889static int
d2e4a39e 3890integer_type_p (struct type *type)
14f9c5c9
AS
3891{
3892 if (type == NULL)
3893 return 0;
d2e4a39e
AS
3894 else
3895 {
3896 switch (TYPE_CODE (type))
4c4b4cd2
PH
3897 {
3898 case TYPE_CODE_INT:
3899 return 1;
3900 case TYPE_CODE_RANGE:
3901 return (type == TYPE_TARGET_TYPE (type)
3902 || integer_type_p (TYPE_TARGET_TYPE (type)));
3903 default:
3904 return 0;
3905 }
d2e4a39e 3906 }
14f9c5c9
AS
3907}
3908
4c4b4cd2 3909/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3910
3911static int
d2e4a39e 3912scalar_type_p (struct type *type)
14f9c5c9
AS
3913{
3914 if (type == NULL)
3915 return 0;
d2e4a39e
AS
3916 else
3917 {
3918 switch (TYPE_CODE (type))
4c4b4cd2
PH
3919 {
3920 case TYPE_CODE_INT:
3921 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ENUM:
3923 case TYPE_CODE_FLT:
3924 return 1;
3925 default:
3926 return 0;
3927 }
d2e4a39e 3928 }
14f9c5c9
AS
3929}
3930
4c4b4cd2 3931/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3932
3933static int
d2e4a39e 3934discrete_type_p (struct type *type)
14f9c5c9
AS
3935{
3936 if (type == NULL)
3937 return 0;
d2e4a39e
AS
3938 else
3939 {
3940 switch (TYPE_CODE (type))
4c4b4cd2
PH
3941 {
3942 case TYPE_CODE_INT:
3943 case TYPE_CODE_RANGE:
3944 case TYPE_CODE_ENUM:
872f0337 3945 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3946 return 1;
3947 default:
3948 return 0;
3949 }
d2e4a39e 3950 }
14f9c5c9
AS
3951}
3952
4c4b4cd2
PH
3953/* Returns non-zero if OP with operands in the vector ARGS could be
3954 a user-defined function. Errs on the side of pre-defined operators
3955 (i.e., result 0). */
14f9c5c9
AS
3956
3957static int
d2e4a39e 3958possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3959{
76a01679 3960 struct type *type0 =
df407dfe 3961 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3962 struct type *type1 =
df407dfe 3963 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3964
4c4b4cd2
PH
3965 if (type0 == NULL)
3966 return 0;
3967
14f9c5c9
AS
3968 switch (op)
3969 {
3970 default:
3971 return 0;
3972
3973 case BINOP_ADD:
3974 case BINOP_SUB:
3975 case BINOP_MUL:
3976 case BINOP_DIV:
d2e4a39e 3977 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3978
3979 case BINOP_REM:
3980 case BINOP_MOD:
3981 case BINOP_BITWISE_AND:
3982 case BINOP_BITWISE_IOR:
3983 case BINOP_BITWISE_XOR:
d2e4a39e 3984 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3985
3986 case BINOP_EQUAL:
3987 case BINOP_NOTEQUAL:
3988 case BINOP_LESS:
3989 case BINOP_GTR:
3990 case BINOP_LEQ:
3991 case BINOP_GEQ:
d2e4a39e 3992 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3993
3994 case BINOP_CONCAT:
ee90b9ab 3995 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3996
3997 case BINOP_EXP:
d2e4a39e 3998 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3999
4000 case UNOP_NEG:
4001 case UNOP_PLUS:
4002 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4003 case UNOP_ABS:
4004 return (!numeric_type_p (type0));
14f9c5c9
AS
4005
4006 }
4007}
4008\f
4c4b4cd2 4009 /* Renaming */
14f9c5c9 4010
aeb5907d
JB
4011/* NOTES:
4012
4013 1. In the following, we assume that a renaming type's name may
4014 have an ___XD suffix. It would be nice if this went away at some
4015 point.
4016 2. We handle both the (old) purely type-based representation of
4017 renamings and the (new) variable-based encoding. At some point,
4018 it is devoutly to be hoped that the former goes away
4019 (FIXME: hilfinger-2007-07-09).
4020 3. Subprogram renamings are not implemented, although the XRS
4021 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4022
4023/* If SYM encodes a renaming,
4024
4025 <renaming> renames <renamed entity>,
4026
4027 sets *LEN to the length of the renamed entity's name,
4028 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4029 the string describing the subcomponent selected from the renamed
0963b4bd 4030 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4031 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4032 are undefined). Otherwise, returns a value indicating the category
4033 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4034 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4035 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4036 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4037 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4038 may be NULL, in which case they are not assigned.
4039
4040 [Currently, however, GCC does not generate subprogram renamings.] */
4041
4042enum ada_renaming_category
4043ada_parse_renaming (struct symbol *sym,
4044 const char **renamed_entity, int *len,
4045 const char **renaming_expr)
4046{
4047 enum ada_renaming_category kind;
4048 const char *info;
4049 const char *suffix;
4050
4051 if (sym == NULL)
4052 return ADA_NOT_RENAMING;
4053 switch (SYMBOL_CLASS (sym))
14f9c5c9 4054 {
aeb5907d
JB
4055 default:
4056 return ADA_NOT_RENAMING;
4057 case LOC_TYPEDEF:
4058 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4059 renamed_entity, len, renaming_expr);
4060 case LOC_LOCAL:
4061 case LOC_STATIC:
4062 case LOC_COMPUTED:
4063 case LOC_OPTIMIZED_OUT:
4064 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4065 if (info == NULL)
4066 return ADA_NOT_RENAMING;
4067 switch (info[5])
4068 {
4069 case '_':
4070 kind = ADA_OBJECT_RENAMING;
4071 info += 6;
4072 break;
4073 case 'E':
4074 kind = ADA_EXCEPTION_RENAMING;
4075 info += 7;
4076 break;
4077 case 'P':
4078 kind = ADA_PACKAGE_RENAMING;
4079 info += 7;
4080 break;
4081 case 'S':
4082 kind = ADA_SUBPROGRAM_RENAMING;
4083 info += 7;
4084 break;
4085 default:
4086 return ADA_NOT_RENAMING;
4087 }
14f9c5c9 4088 }
4c4b4cd2 4089
aeb5907d
JB
4090 if (renamed_entity != NULL)
4091 *renamed_entity = info;
4092 suffix = strstr (info, "___XE");
4093 if (suffix == NULL || suffix == info)
4094 return ADA_NOT_RENAMING;
4095 if (len != NULL)
4096 *len = strlen (info) - strlen (suffix);
4097 suffix += 5;
4098 if (renaming_expr != NULL)
4099 *renaming_expr = suffix;
4100 return kind;
4101}
4102
4103/* Assuming TYPE encodes a renaming according to the old encoding in
4104 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4105 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4106 ADA_NOT_RENAMING otherwise. */
4107static enum ada_renaming_category
4108parse_old_style_renaming (struct type *type,
4109 const char **renamed_entity, int *len,
4110 const char **renaming_expr)
4111{
4112 enum ada_renaming_category kind;
4113 const char *name;
4114 const char *info;
4115 const char *suffix;
14f9c5c9 4116
aeb5907d
JB
4117 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4118 || TYPE_NFIELDS (type) != 1)
4119 return ADA_NOT_RENAMING;
14f9c5c9 4120
aeb5907d
JB
4121 name = type_name_no_tag (type);
4122 if (name == NULL)
4123 return ADA_NOT_RENAMING;
4124
4125 name = strstr (name, "___XR");
4126 if (name == NULL)
4127 return ADA_NOT_RENAMING;
4128 switch (name[5])
4129 {
4130 case '\0':
4131 case '_':
4132 kind = ADA_OBJECT_RENAMING;
4133 break;
4134 case 'E':
4135 kind = ADA_EXCEPTION_RENAMING;
4136 break;
4137 case 'P':
4138 kind = ADA_PACKAGE_RENAMING;
4139 break;
4140 case 'S':
4141 kind = ADA_SUBPROGRAM_RENAMING;
4142 break;
4143 default:
4144 return ADA_NOT_RENAMING;
4145 }
14f9c5c9 4146
aeb5907d
JB
4147 info = TYPE_FIELD_NAME (type, 0);
4148 if (info == NULL)
4149 return ADA_NOT_RENAMING;
4150 if (renamed_entity != NULL)
4151 *renamed_entity = info;
4152 suffix = strstr (info, "___XE");
4153 if (renaming_expr != NULL)
4154 *renaming_expr = suffix + 5;
4155 if (suffix == NULL || suffix == info)
4156 return ADA_NOT_RENAMING;
4157 if (len != NULL)
4158 *len = suffix - info;
4159 return kind;
a5ee536b
JB
4160}
4161
4162/* Compute the value of the given RENAMING_SYM, which is expected to
4163 be a symbol encoding a renaming expression. BLOCK is the block
4164 used to evaluate the renaming. */
52ce6436 4165
a5ee536b
JB
4166static struct value *
4167ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4168 const struct block *block)
a5ee536b 4169{
bbc13ae3 4170 const char *sym_name;
a5ee536b
JB
4171 struct expression *expr;
4172 struct value *value;
4173 struct cleanup *old_chain = NULL;
4174
bbc13ae3 4175 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4176 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4177 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4178 value = evaluate_expression (expr);
4179
4180 do_cleanups (old_chain);
4181 return value;
4182}
14f9c5c9 4183\f
d2e4a39e 4184
4c4b4cd2 4185 /* Evaluation: Function Calls */
14f9c5c9 4186
4c4b4cd2 4187/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4188 lvalues, and otherwise has the side-effect of allocating memory
4189 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4190
d2e4a39e 4191static struct value *
40bc484c 4192ensure_lval (struct value *val)
14f9c5c9 4193{
40bc484c
JB
4194 if (VALUE_LVAL (val) == not_lval
4195 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4196 {
df407dfe 4197 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4198 const CORE_ADDR addr =
4199 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4200
40bc484c 4201 set_value_address (val, addr);
a84a8a0d 4202 VALUE_LVAL (val) = lval_memory;
40bc484c 4203 write_memory (addr, value_contents (val), len);
c3e5cd34 4204 }
14f9c5c9
AS
4205
4206 return val;
4207}
4208
4209/* Return the value ACTUAL, converted to be an appropriate value for a
4210 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4211 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4212 values not residing in memory, updating it as needed. */
14f9c5c9 4213
a93c0eb6 4214struct value *
40bc484c 4215ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4216{
df407dfe 4217 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4218 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4219 struct type *formal_target =
4220 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4221 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4222 struct type *actual_target =
4223 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4224 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4225
4c4b4cd2 4226 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4227 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4228 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4229 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4230 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4231 {
a84a8a0d 4232 struct value *result;
5b4ee69b 4233
14f9c5c9 4234 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4235 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4236 result = desc_data (actual);
14f9c5c9 4237 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4238 {
4239 if (VALUE_LVAL (actual) != lval_memory)
4240 {
4241 struct value *val;
5b4ee69b 4242
df407dfe 4243 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4244 val = allocate_value (actual_type);
990a07ab 4245 memcpy ((char *) value_contents_raw (val),
0fd88904 4246 (char *) value_contents (actual),
4c4b4cd2 4247 TYPE_LENGTH (actual_type));
40bc484c 4248 actual = ensure_lval (val);
4c4b4cd2 4249 }
a84a8a0d 4250 result = value_addr (actual);
4c4b4cd2 4251 }
a84a8a0d
JB
4252 else
4253 return actual;
b1af9e97 4254 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4255 }
4256 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4257 return ada_value_ind (actual);
4258
4259 return actual;
4260}
4261
438c98a1
JB
4262/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4263 type TYPE. This is usually an inefficient no-op except on some targets
4264 (such as AVR) where the representation of a pointer and an address
4265 differs. */
4266
4267static CORE_ADDR
4268value_pointer (struct value *value, struct type *type)
4269{
4270 struct gdbarch *gdbarch = get_type_arch (type);
4271 unsigned len = TYPE_LENGTH (type);
4272 gdb_byte *buf = alloca (len);
4273 CORE_ADDR addr;
4274
4275 addr = value_address (value);
4276 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4277 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4278 return addr;
4279}
4280
14f9c5c9 4281
4c4b4cd2
PH
4282/* Push a descriptor of type TYPE for array value ARR on the stack at
4283 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4284 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4285 to-descriptor type rather than a descriptor type), a struct value *
4286 representing a pointer to this descriptor. */
14f9c5c9 4287
d2e4a39e 4288static struct value *
40bc484c 4289make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4290{
d2e4a39e
AS
4291 struct type *bounds_type = desc_bounds_type (type);
4292 struct type *desc_type = desc_base_type (type);
4293 struct value *descriptor = allocate_value (desc_type);
4294 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4295 int i;
d2e4a39e 4296
0963b4bd
MS
4297 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4298 i > 0; i -= 1)
14f9c5c9 4299 {
19f220c3
JK
4300 modify_field (value_type (bounds), value_contents_writeable (bounds),
4301 ada_array_bound (arr, i, 0),
4302 desc_bound_bitpos (bounds_type, i, 0),
4303 desc_bound_bitsize (bounds_type, i, 0));
4304 modify_field (value_type (bounds), value_contents_writeable (bounds),
4305 ada_array_bound (arr, i, 1),
4306 desc_bound_bitpos (bounds_type, i, 1),
4307 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4308 }
d2e4a39e 4309
40bc484c 4310 bounds = ensure_lval (bounds);
d2e4a39e 4311
19f220c3
JK
4312 modify_field (value_type (descriptor),
4313 value_contents_writeable (descriptor),
4314 value_pointer (ensure_lval (arr),
4315 TYPE_FIELD_TYPE (desc_type, 0)),
4316 fat_pntr_data_bitpos (desc_type),
4317 fat_pntr_data_bitsize (desc_type));
4318
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (bounds,
4322 TYPE_FIELD_TYPE (desc_type, 1)),
4323 fat_pntr_bounds_bitpos (desc_type),
4324 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4325
40bc484c 4326 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4327
4328 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4329 return value_addr (descriptor);
4330 else
4331 return descriptor;
4332}
14f9c5c9 4333\f
3d9434b5
JB
4334 /* Symbol Cache Module */
4335
3d9434b5 4336/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4337 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4338 on the type of entity being printed, the cache can make it as much
4339 as an order of magnitude faster than without it.
4340
4341 The descriptive type DWARF extension has significantly reduced
4342 the need for this cache, at least when DWARF is being used. However,
4343 even in this case, some expensive name-based symbol searches are still
4344 sometimes necessary - to find an XVZ variable, mostly. */
4345
ee01b665 4346/* Initialize the contents of SYM_CACHE. */
3d9434b5 4347
ee01b665
JB
4348static void
4349ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4350{
4351 obstack_init (&sym_cache->cache_space);
4352 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4353}
3d9434b5 4354
ee01b665
JB
4355/* Free the memory used by SYM_CACHE. */
4356
4357static void
4358ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4359{
ee01b665
JB
4360 obstack_free (&sym_cache->cache_space, NULL);
4361 xfree (sym_cache);
4362}
3d9434b5 4363
ee01b665
JB
4364/* Return the symbol cache associated to the given program space PSPACE.
4365 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4366
ee01b665
JB
4367static struct ada_symbol_cache *
4368ada_get_symbol_cache (struct program_space *pspace)
4369{
4370 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4371 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4372
4373 if (sym_cache == NULL)
4374 {
4375 sym_cache = XCNEW (struct ada_symbol_cache);
4376 ada_init_symbol_cache (sym_cache);
4377 }
4378
4379 return sym_cache;
4380}
3d9434b5
JB
4381
4382/* Clear all entries from the symbol cache. */
4383
4384static void
4385ada_clear_symbol_cache (void)
4386{
ee01b665
JB
4387 struct ada_symbol_cache *sym_cache
4388 = ada_get_symbol_cache (current_program_space);
4389
4390 obstack_free (&sym_cache->cache_space, NULL);
4391 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4392}
4393
4394/* Search our cache for an entry matching NAME and NAMESPACE.
4395 Return it if found, or NULL otherwise. */
4396
4397static struct cache_entry **
4398find_entry (const char *name, domain_enum namespace)
4399{
ee01b665
JB
4400 struct ada_symbol_cache *sym_cache
4401 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4402 int h = msymbol_hash (name) % HASH_SIZE;
4403 struct cache_entry **e;
4404
ee01b665 4405 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4406 {
4407 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4408 return e;
4409 }
4410 return NULL;
4411}
4412
4413/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4414 Return 1 if found, 0 otherwise.
4415
4416 If an entry was found and SYM is not NULL, set *SYM to the entry's
4417 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4418
96d887e8
PH
4419static int
4420lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4421 struct symbol **sym, const struct block **block)
96d887e8 4422{
3d9434b5
JB
4423 struct cache_entry **e = find_entry (name, namespace);
4424
4425 if (e == NULL)
4426 return 0;
4427 if (sym != NULL)
4428 *sym = (*e)->sym;
4429 if (block != NULL)
4430 *block = (*e)->block;
4431 return 1;
96d887e8
PH
4432}
4433
3d9434b5
JB
4434/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4435 in domain NAMESPACE, save this result in our symbol cache. */
4436
96d887e8
PH
4437static void
4438cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4439 const struct block *block)
96d887e8 4440{
ee01b665
JB
4441 struct ada_symbol_cache *sym_cache
4442 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4443 int h;
4444 char *copy;
4445 struct cache_entry *e;
4446
4447 /* If the symbol is a local symbol, then do not cache it, as a search
4448 for that symbol depends on the context. To determine whether
4449 the symbol is local or not, we check the block where we found it
4450 against the global and static blocks of its associated symtab. */
4451 if (sym
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4454 return;
4455
4456 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4457 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4458 sizeof (*e));
4459 e->next = sym_cache->root[h];
4460 sym_cache->root[h] = e;
4461 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4462 strcpy (copy, name);
4463 e->sym = sym;
4464 e->namespace = namespace;
4465 e->block = block;
96d887e8 4466}
4c4b4cd2
PH
4467\f
4468 /* Symbol Lookup */
4469
c0431670
JB
4470/* Return nonzero if wild matching should be used when searching for
4471 all symbols matching LOOKUP_NAME.
4472
4473 LOOKUP_NAME is expected to be a symbol name after transformation
4474 for Ada lookups (see ada_name_for_lookup). */
4475
4476static int
4477should_use_wild_match (const char *lookup_name)
4478{
4479 return (strstr (lookup_name, "__") == NULL);
4480}
4481
4c4b4cd2
PH
4482/* Return the result of a standard (literal, C-like) lookup of NAME in
4483 given DOMAIN, visible from lexical block BLOCK. */
4484
4485static struct symbol *
4486standard_lookup (const char *name, const struct block *block,
4487 domain_enum domain)
4488{
acbd605d
MGD
4489 /* Initialize it just to avoid a GCC false warning. */
4490 struct symbol *sym = NULL;
4c4b4cd2 4491
2570f2b7 4492 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4493 return sym;
2570f2b7
UW
4494 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4495 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4496 return sym;
4497}
4498
4499
4500/* Non-zero iff there is at least one non-function/non-enumeral symbol
4501 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4502 since they contend in overloading in the same way. */
4503static int
4504is_nonfunction (struct ada_symbol_info syms[], int n)
4505{
4506 int i;
4507
4508 for (i = 0; i < n; i += 1)
4509 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4510 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4511 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4512 return 1;
4513
4514 return 0;
4515}
4516
4517/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4518 struct types. Otherwise, they may not. */
14f9c5c9
AS
4519
4520static int
d2e4a39e 4521equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4522{
d2e4a39e 4523 if (type0 == type1)
14f9c5c9 4524 return 1;
d2e4a39e 4525 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4526 || TYPE_CODE (type0) != TYPE_CODE (type1))
4527 return 0;
d2e4a39e 4528 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4529 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4530 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4531 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4532 return 1;
d2e4a39e 4533
14f9c5c9
AS
4534 return 0;
4535}
4536
4537/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4538 no more defined than that of SYM1. */
14f9c5c9
AS
4539
4540static int
d2e4a39e 4541lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4542{
4543 if (sym0 == sym1)
4544 return 1;
176620f1 4545 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4546 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4547 return 0;
4548
d2e4a39e 4549 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4550 {
4551 case LOC_UNDEF:
4552 return 1;
4553 case LOC_TYPEDEF:
4554 {
4c4b4cd2
PH
4555 struct type *type0 = SYMBOL_TYPE (sym0);
4556 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4557 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4558 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4559 int len0 = strlen (name0);
5b4ee69b 4560
4c4b4cd2
PH
4561 return
4562 TYPE_CODE (type0) == TYPE_CODE (type1)
4563 && (equiv_types (type0, type1)
4564 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4565 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4566 }
4567 case LOC_CONST:
4568 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4569 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4570 default:
4571 return 0;
14f9c5c9
AS
4572 }
4573}
4574
4c4b4cd2
PH
4575/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4576 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4577
4578static void
76a01679
JB
4579add_defn_to_vec (struct obstack *obstackp,
4580 struct symbol *sym,
f0c5f9b2 4581 const struct block *block)
14f9c5c9
AS
4582{
4583 int i;
4c4b4cd2 4584 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4585
529cad9c
PH
4586 /* Do not try to complete stub types, as the debugger is probably
4587 already scanning all symbols matching a certain name at the
4588 time when this function is called. Trying to replace the stub
4589 type by its associated full type will cause us to restart a scan
4590 which may lead to an infinite recursion. Instead, the client
4591 collecting the matching symbols will end up collecting several
4592 matches, with at least one of them complete. It can then filter
4593 out the stub ones if needed. */
4594
4c4b4cd2
PH
4595 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4596 {
4597 if (lesseq_defined_than (sym, prevDefns[i].sym))
4598 return;
4599 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4600 {
4601 prevDefns[i].sym = sym;
4602 prevDefns[i].block = block;
4c4b4cd2 4603 return;
76a01679 4604 }
4c4b4cd2
PH
4605 }
4606
4607 {
4608 struct ada_symbol_info info;
4609
4610 info.sym = sym;
4611 info.block = block;
4c4b4cd2
PH
4612 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4613 }
4614}
4615
4616/* Number of ada_symbol_info structures currently collected in
4617 current vector in *OBSTACKP. */
4618
76a01679
JB
4619static int
4620num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4621{
4622 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4623}
4624
4625/* Vector of ada_symbol_info structures currently collected in current
4626 vector in *OBSTACKP. If FINISH, close off the vector and return
4627 its final address. */
4628
76a01679 4629static struct ada_symbol_info *
4c4b4cd2
PH
4630defns_collected (struct obstack *obstackp, int finish)
4631{
4632 if (finish)
4633 return obstack_finish (obstackp);
4634 else
4635 return (struct ada_symbol_info *) obstack_base (obstackp);
4636}
4637
7c7b6655
TT
4638/* Return a bound minimal symbol matching NAME according to Ada
4639 decoding rules. Returns an invalid symbol if there is no such
4640 minimal symbol. Names prefixed with "standard__" are handled
4641 specially: "standard__" is first stripped off, and only static and
4642 global symbols are searched. */
4c4b4cd2 4643
7c7b6655 4644struct bound_minimal_symbol
96d887e8 4645ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4646{
7c7b6655 4647 struct bound_minimal_symbol result;
4c4b4cd2 4648 struct objfile *objfile;
96d887e8 4649 struct minimal_symbol *msymbol;
dc4024cd 4650 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4651
7c7b6655
TT
4652 memset (&result, 0, sizeof (result));
4653
c0431670
JB
4654 /* Special case: If the user specifies a symbol name inside package
4655 Standard, do a non-wild matching of the symbol name without
4656 the "standard__" prefix. This was primarily introduced in order
4657 to allow the user to specifically access the standard exceptions
4658 using, for instance, Standard.Constraint_Error when Constraint_Error
4659 is ambiguous (due to the user defining its own Constraint_Error
4660 entity inside its program). */
96d887e8 4661 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4662 name += sizeof ("standard__") - 1;
4c4b4cd2 4663
96d887e8
PH
4664 ALL_MSYMBOLS (objfile, msymbol)
4665 {
efd66ac6 4666 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4667 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4668 {
4669 result.minsym = msymbol;
4670 result.objfile = objfile;
4671 break;
4672 }
96d887e8 4673 }
4c4b4cd2 4674
7c7b6655 4675 return result;
96d887e8 4676}
4c4b4cd2 4677
96d887e8
PH
4678/* For all subprograms that statically enclose the subprogram of the
4679 selected frame, add symbols matching identifier NAME in DOMAIN
4680 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4681 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4682 with a wildcard prefix. */
4c4b4cd2 4683
96d887e8
PH
4684static void
4685add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4686 const char *name, domain_enum namespace,
48b78332 4687 int wild_match_p)
96d887e8 4688{
96d887e8 4689}
14f9c5c9 4690
96d887e8
PH
4691/* True if TYPE is definitely an artificial type supplied to a symbol
4692 for which no debugging information was given in the symbol file. */
14f9c5c9 4693
96d887e8
PH
4694static int
4695is_nondebugging_type (struct type *type)
4696{
0d5cff50 4697 const char *name = ada_type_name (type);
5b4ee69b 4698
96d887e8
PH
4699 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4700}
4c4b4cd2 4701
8f17729f
JB
4702/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4703 that are deemed "identical" for practical purposes.
4704
4705 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4706 types and that their number of enumerals is identical (in other
4707 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4708
4709static int
4710ada_identical_enum_types_p (struct type *type1, struct type *type2)
4711{
4712 int i;
4713
4714 /* The heuristic we use here is fairly conservative. We consider
4715 that 2 enumerate types are identical if they have the same
4716 number of enumerals and that all enumerals have the same
4717 underlying value and name. */
4718
4719 /* All enums in the type should have an identical underlying value. */
4720 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4721 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4722 return 0;
4723
4724 /* All enumerals should also have the same name (modulo any numerical
4725 suffix). */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4727 {
0d5cff50
DE
4728 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4729 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4730 int len_1 = strlen (name_1);
4731 int len_2 = strlen (name_2);
4732
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4735 if (len_1 != len_2
4736 || strncmp (TYPE_FIELD_NAME (type1, i),
4737 TYPE_FIELD_NAME (type2, i),
4738 len_1) != 0)
4739 return 0;
4740 }
4741
4742 return 1;
4743}
4744
4745/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4746 that are deemed "identical" for practical purposes. Sometimes,
4747 enumerals are not strictly identical, but their types are so similar
4748 that they can be considered identical.
4749
4750 For instance, consider the following code:
4751
4752 type Color is (Black, Red, Green, Blue, White);
4753 type RGB_Color is new Color range Red .. Blue;
4754
4755 Type RGB_Color is a subrange of an implicit type which is a copy
4756 of type Color. If we call that implicit type RGB_ColorB ("B" is
4757 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4758 As a result, when an expression references any of the enumeral
4759 by name (Eg. "print green"), the expression is technically
4760 ambiguous and the user should be asked to disambiguate. But
4761 doing so would only hinder the user, since it wouldn't matter
4762 what choice he makes, the outcome would always be the same.
4763 So, for practical purposes, we consider them as the same. */
4764
4765static int
4766symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4767{
4768 int i;
4769
4770 /* Before performing a thorough comparison check of each type,
4771 we perform a series of inexpensive checks. We expect that these
4772 checks will quickly fail in the vast majority of cases, and thus
4773 help prevent the unnecessary use of a more expensive comparison.
4774 Said comparison also expects us to make some of these checks
4775 (see ada_identical_enum_types_p). */
4776
4777 /* Quick check: All symbols should have an enum type. */
4778 for (i = 0; i < nsyms; i++)
4779 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4780 return 0;
4781
4782 /* Quick check: They should all have the same value. */
4783 for (i = 1; i < nsyms; i++)
4784 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4785 return 0;
4786
4787 /* Quick check: They should all have the same number of enumerals. */
4788 for (i = 1; i < nsyms; i++)
4789 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4790 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4791 return 0;
4792
4793 /* All the sanity checks passed, so we might have a set of
4794 identical enumeration types. Perform a more complete
4795 comparison of the type of each symbol. */
4796 for (i = 1; i < nsyms; i++)
4797 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4798 SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 return 1;
4802}
4803
96d887e8
PH
4804/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4805 duplicate other symbols in the list (The only case I know of where
4806 this happens is when object files containing stabs-in-ecoff are
4807 linked with files containing ordinary ecoff debugging symbols (or no
4808 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4809 Returns the number of items in the modified list. */
4c4b4cd2 4810
96d887e8
PH
4811static int
4812remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4813{
4814 int i, j;
4c4b4cd2 4815
8f17729f
JB
4816 /* We should never be called with less than 2 symbols, as there
4817 cannot be any extra symbol in that case. But it's easy to
4818 handle, since we have nothing to do in that case. */
4819 if (nsyms < 2)
4820 return nsyms;
4821
96d887e8
PH
4822 i = 0;
4823 while (i < nsyms)
4824 {
a35ddb44 4825 int remove_p = 0;
339c13b6
JB
4826
4827 /* If two symbols have the same name and one of them is a stub type,
4828 the get rid of the stub. */
4829
4830 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4831 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4832 {
4833 for (j = 0; j < nsyms; j++)
4834 {
4835 if (j != i
4836 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4838 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4839 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4840 remove_p = 1;
339c13b6
JB
4841 }
4842 }
4843
4844 /* Two symbols with the same name, same class and same address
4845 should be identical. */
4846
4847 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4848 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4849 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4850 {
4851 for (j = 0; j < nsyms; j += 1)
4852 {
4853 if (i != j
4854 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4855 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4856 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4857 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4858 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4859 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4860 remove_p = 1;
4c4b4cd2 4861 }
4c4b4cd2 4862 }
339c13b6 4863
a35ddb44 4864 if (remove_p)
339c13b6
JB
4865 {
4866 for (j = i + 1; j < nsyms; j += 1)
4867 syms[j - 1] = syms[j];
4868 nsyms -= 1;
4869 }
4870
96d887e8 4871 i += 1;
14f9c5c9 4872 }
8f17729f
JB
4873
4874 /* If all the remaining symbols are identical enumerals, then
4875 just keep the first one and discard the rest.
4876
4877 Unlike what we did previously, we do not discard any entry
4878 unless they are ALL identical. This is because the symbol
4879 comparison is not a strict comparison, but rather a practical
4880 comparison. If all symbols are considered identical, then
4881 we can just go ahead and use the first one and discard the rest.
4882 But if we cannot reduce the list to a single element, we have
4883 to ask the user to disambiguate anyways. And if we have to
4884 present a multiple-choice menu, it's less confusing if the list
4885 isn't missing some choices that were identical and yet distinct. */
4886 if (symbols_are_identical_enums (syms, nsyms))
4887 nsyms = 1;
4888
96d887e8 4889 return nsyms;
14f9c5c9
AS
4890}
4891
96d887e8
PH
4892/* Given a type that corresponds to a renaming entity, use the type name
4893 to extract the scope (package name or function name, fully qualified,
4894 and following the GNAT encoding convention) where this renaming has been
4895 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4896
96d887e8
PH
4897static char *
4898xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4899{
96d887e8 4900 /* The renaming types adhere to the following convention:
0963b4bd 4901 <scope>__<rename>___<XR extension>.
96d887e8
PH
4902 So, to extract the scope, we search for the "___XR" extension,
4903 and then backtrack until we find the first "__". */
76a01679 4904
96d887e8
PH
4905 const char *name = type_name_no_tag (renaming_type);
4906 char *suffix = strstr (name, "___XR");
4907 char *last;
4908 int scope_len;
4909 char *scope;
14f9c5c9 4910
96d887e8
PH
4911 /* Now, backtrack a bit until we find the first "__". Start looking
4912 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4913
96d887e8
PH
4914 for (last = suffix - 3; last > name; last--)
4915 if (last[0] == '_' && last[1] == '_')
4916 break;
76a01679 4917
96d887e8 4918 /* Make a copy of scope and return it. */
14f9c5c9 4919
96d887e8
PH
4920 scope_len = last - name;
4921 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4922
96d887e8
PH
4923 strncpy (scope, name, scope_len);
4924 scope[scope_len] = '\0';
4c4b4cd2 4925
96d887e8 4926 return scope;
4c4b4cd2
PH
4927}
4928
96d887e8 4929/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4930
96d887e8
PH
4931static int
4932is_package_name (const char *name)
4c4b4cd2 4933{
96d887e8
PH
4934 /* Here, We take advantage of the fact that no symbols are generated
4935 for packages, while symbols are generated for each function.
4936 So the condition for NAME represent a package becomes equivalent
4937 to NAME not existing in our list of symbols. There is only one
4938 small complication with library-level functions (see below). */
4c4b4cd2 4939
96d887e8 4940 char *fun_name;
76a01679 4941
96d887e8
PH
4942 /* If it is a function that has not been defined at library level,
4943 then we should be able to look it up in the symbols. */
4944 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4945 return 0;
14f9c5c9 4946
96d887e8
PH
4947 /* Library-level function names start with "_ada_". See if function
4948 "_ada_" followed by NAME can be found. */
14f9c5c9 4949
96d887e8 4950 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4951 functions names cannot contain "__" in them. */
96d887e8
PH
4952 if (strstr (name, "__") != NULL)
4953 return 0;
4c4b4cd2 4954
b435e160 4955 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4956
96d887e8
PH
4957 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4958}
14f9c5c9 4959
96d887e8 4960/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4961 not visible from FUNCTION_NAME. */
14f9c5c9 4962
96d887e8 4963static int
0d5cff50 4964old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4965{
aeb5907d 4966 char *scope;
1509e573 4967 struct cleanup *old_chain;
aeb5907d
JB
4968
4969 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4970 return 0;
4971
4972 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4973 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4974
96d887e8
PH
4975 /* If the rename has been defined in a package, then it is visible. */
4976 if (is_package_name (scope))
1509e573
JB
4977 {
4978 do_cleanups (old_chain);
4979 return 0;
4980 }
14f9c5c9 4981
96d887e8
PH
4982 /* Check that the rename is in the current function scope by checking
4983 that its name starts with SCOPE. */
76a01679 4984
96d887e8
PH
4985 /* If the function name starts with "_ada_", it means that it is
4986 a library-level function. Strip this prefix before doing the
4987 comparison, as the encoding for the renaming does not contain
4988 this prefix. */
4989 if (strncmp (function_name, "_ada_", 5) == 0)
4990 function_name += 5;
f26caa11 4991
1509e573
JB
4992 {
4993 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4994
4995 do_cleanups (old_chain);
4996 return is_invisible;
4997 }
f26caa11
PH
4998}
4999
aeb5907d
JB
5000/* Remove entries from SYMS that corresponds to a renaming entity that
5001 is not visible from the function associated with CURRENT_BLOCK or
5002 that is superfluous due to the presence of more specific renaming
5003 information. Places surviving symbols in the initial entries of
5004 SYMS and returns the number of surviving symbols.
96d887e8
PH
5005
5006 Rationale:
aeb5907d
JB
5007 First, in cases where an object renaming is implemented as a
5008 reference variable, GNAT may produce both the actual reference
5009 variable and the renaming encoding. In this case, we discard the
5010 latter.
5011
5012 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5013 entity. Unfortunately, STABS currently does not support the definition
5014 of types that are local to a given lexical block, so all renamings types
5015 are emitted at library level. As a consequence, if an application
5016 contains two renaming entities using the same name, and a user tries to
5017 print the value of one of these entities, the result of the ada symbol
5018 lookup will also contain the wrong renaming type.
f26caa11 5019
96d887e8
PH
5020 This function partially covers for this limitation by attempting to
5021 remove from the SYMS list renaming symbols that should be visible
5022 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5023 method with the current information available. The implementation
5024 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5025
5026 - When the user tries to print a rename in a function while there
5027 is another rename entity defined in a package: Normally, the
5028 rename in the function has precedence over the rename in the
5029 package, so the latter should be removed from the list. This is
5030 currently not the case.
5031
5032 - This function will incorrectly remove valid renames if
5033 the CURRENT_BLOCK corresponds to a function which symbol name
5034 has been changed by an "Export" pragma. As a consequence,
5035 the user will be unable to print such rename entities. */
4c4b4cd2 5036
14f9c5c9 5037static int
aeb5907d
JB
5038remove_irrelevant_renamings (struct ada_symbol_info *syms,
5039 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5040{
5041 struct symbol *current_function;
0d5cff50 5042 const char *current_function_name;
4c4b4cd2 5043 int i;
aeb5907d
JB
5044 int is_new_style_renaming;
5045
5046 /* If there is both a renaming foo___XR... encoded as a variable and
5047 a simple variable foo in the same block, discard the latter.
0963b4bd 5048 First, zero out such symbols, then compress. */
aeb5907d
JB
5049 is_new_style_renaming = 0;
5050 for (i = 0; i < nsyms; i += 1)
5051 {
5052 struct symbol *sym = syms[i].sym;
270140bd 5053 const struct block *block = syms[i].block;
aeb5907d
JB
5054 const char *name;
5055 const char *suffix;
5056
5057 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 continue;
5059 name = SYMBOL_LINKAGE_NAME (sym);
5060 suffix = strstr (name, "___XR");
5061
5062 if (suffix != NULL)
5063 {
5064 int name_len = suffix - name;
5065 int j;
5b4ee69b 5066
aeb5907d
JB
5067 is_new_style_renaming = 1;
5068 for (j = 0; j < nsyms; j += 1)
5069 if (i != j && syms[j].sym != NULL
5070 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5071 name_len) == 0
5072 && block == syms[j].block)
5073 syms[j].sym = NULL;
5074 }
5075 }
5076 if (is_new_style_renaming)
5077 {
5078 int j, k;
5079
5080 for (j = k = 0; j < nsyms; j += 1)
5081 if (syms[j].sym != NULL)
5082 {
5083 syms[k] = syms[j];
5084 k += 1;
5085 }
5086 return k;
5087 }
4c4b4cd2
PH
5088
5089 /* Extract the function name associated to CURRENT_BLOCK.
5090 Abort if unable to do so. */
76a01679 5091
4c4b4cd2
PH
5092 if (current_block == NULL)
5093 return nsyms;
76a01679 5094
7f0df278 5095 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5096 if (current_function == NULL)
5097 return nsyms;
5098
5099 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5100 if (current_function_name == NULL)
5101 return nsyms;
5102
5103 /* Check each of the symbols, and remove it from the list if it is
5104 a type corresponding to a renaming that is out of the scope of
5105 the current block. */
5106
5107 i = 0;
5108 while (i < nsyms)
5109 {
aeb5907d
JB
5110 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5111 == ADA_OBJECT_RENAMING
5112 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5113 {
5114 int j;
5b4ee69b 5115
aeb5907d 5116 for (j = i + 1; j < nsyms; j += 1)
76a01679 5117 syms[j - 1] = syms[j];
4c4b4cd2
PH
5118 nsyms -= 1;
5119 }
5120 else
5121 i += 1;
5122 }
5123
5124 return nsyms;
5125}
5126
339c13b6
JB
5127/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5128 whose name and domain match NAME and DOMAIN respectively.
5129 If no match was found, then extend the search to "enclosing"
5130 routines (in other words, if we're inside a nested function,
5131 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5132 If WILD_MATCH_P is nonzero, perform the naming matching in
5133 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5134
5135 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5136
5137static void
5138ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5139 const struct block *block, domain_enum domain,
d0a8ab18 5140 int wild_match_p)
339c13b6
JB
5141{
5142 int block_depth = 0;
5143
5144 while (block != NULL)
5145 {
5146 block_depth += 1;
d0a8ab18
JB
5147 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5148 wild_match_p);
339c13b6
JB
5149
5150 /* If we found a non-function match, assume that's the one. */
5151 if (is_nonfunction (defns_collected (obstackp, 0),
5152 num_defns_collected (obstackp)))
5153 return;
5154
5155 block = BLOCK_SUPERBLOCK (block);
5156 }
5157
5158 /* If no luck so far, try to find NAME as a local symbol in some lexically
5159 enclosing subprogram. */
5160 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5161 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5162}
5163
ccefe4c4 5164/* An object of this type is used as the user_data argument when
40658b94 5165 calling the map_matching_symbols method. */
ccefe4c4 5166
40658b94 5167struct match_data
ccefe4c4 5168{
40658b94 5169 struct objfile *objfile;
ccefe4c4 5170 struct obstack *obstackp;
40658b94
PH
5171 struct symbol *arg_sym;
5172 int found_sym;
ccefe4c4
TT
5173};
5174
40658b94
PH
5175/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5176 to a list of symbols. DATA0 is a pointer to a struct match_data *
5177 containing the obstack that collects the symbol list, the file that SYM
5178 must come from, a flag indicating whether a non-argument symbol has
5179 been found in the current block, and the last argument symbol
5180 passed in SYM within the current block (if any). When SYM is null,
5181 marking the end of a block, the argument symbol is added if no
5182 other has been found. */
ccefe4c4 5183
40658b94
PH
5184static int
5185aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5186{
40658b94
PH
5187 struct match_data *data = (struct match_data *) data0;
5188
5189 if (sym == NULL)
5190 {
5191 if (!data->found_sym && data->arg_sym != NULL)
5192 add_defn_to_vec (data->obstackp,
5193 fixup_symbol_section (data->arg_sym, data->objfile),
5194 block);
5195 data->found_sym = 0;
5196 data->arg_sym = NULL;
5197 }
5198 else
5199 {
5200 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5201 return 0;
5202 else if (SYMBOL_IS_ARGUMENT (sym))
5203 data->arg_sym = sym;
5204 else
5205 {
5206 data->found_sym = 1;
5207 add_defn_to_vec (data->obstackp,
5208 fixup_symbol_section (sym, data->objfile),
5209 block);
5210 }
5211 }
5212 return 0;
5213}
5214
db230ce3
JB
5215/* Implements compare_names, but only applying the comparision using
5216 the given CASING. */
5b4ee69b 5217
40658b94 5218static int
db230ce3
JB
5219compare_names_with_case (const char *string1, const char *string2,
5220 enum case_sensitivity casing)
40658b94
PH
5221{
5222 while (*string1 != '\0' && *string2 != '\0')
5223 {
db230ce3
JB
5224 char c1, c2;
5225
40658b94
PH
5226 if (isspace (*string1) || isspace (*string2))
5227 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5228
5229 if (casing == case_sensitive_off)
5230 {
5231 c1 = tolower (*string1);
5232 c2 = tolower (*string2);
5233 }
5234 else
5235 {
5236 c1 = *string1;
5237 c2 = *string2;
5238 }
5239 if (c1 != c2)
40658b94 5240 break;
db230ce3 5241
40658b94
PH
5242 string1 += 1;
5243 string2 += 1;
5244 }
db230ce3 5245
40658b94
PH
5246 switch (*string1)
5247 {
5248 case '(':
5249 return strcmp_iw_ordered (string1, string2);
5250 case '_':
5251 if (*string2 == '\0')
5252 {
052874e8 5253 if (is_name_suffix (string1))
40658b94
PH
5254 return 0;
5255 else
1a1d5513 5256 return 1;
40658b94 5257 }
dbb8534f 5258 /* FALLTHROUGH */
40658b94
PH
5259 default:
5260 if (*string2 == '(')
5261 return strcmp_iw_ordered (string1, string2);
5262 else
db230ce3
JB
5263 {
5264 if (casing == case_sensitive_off)
5265 return tolower (*string1) - tolower (*string2);
5266 else
5267 return *string1 - *string2;
5268 }
40658b94 5269 }
ccefe4c4
TT
5270}
5271
db230ce3
JB
5272/* Compare STRING1 to STRING2, with results as for strcmp.
5273 Compatible with strcmp_iw_ordered in that...
5274
5275 strcmp_iw_ordered (STRING1, STRING2) <= 0
5276
5277 ... implies...
5278
5279 compare_names (STRING1, STRING2) <= 0
5280
5281 (they may differ as to what symbols compare equal). */
5282
5283static int
5284compare_names (const char *string1, const char *string2)
5285{
5286 int result;
5287
5288 /* Similar to what strcmp_iw_ordered does, we need to perform
5289 a case-insensitive comparison first, and only resort to
5290 a second, case-sensitive, comparison if the first one was
5291 not sufficient to differentiate the two strings. */
5292
5293 result = compare_names_with_case (string1, string2, case_sensitive_off);
5294 if (result == 0)
5295 result = compare_names_with_case (string1, string2, case_sensitive_on);
5296
5297 return result;
5298}
5299
339c13b6
JB
5300/* Add to OBSTACKP all non-local symbols whose name and domain match
5301 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5302 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5303
5304static void
40658b94
PH
5305add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5306 domain_enum domain, int global,
5307 int is_wild_match)
339c13b6
JB
5308{
5309 struct objfile *objfile;
40658b94 5310 struct match_data data;
339c13b6 5311
6475f2fe 5312 memset (&data, 0, sizeof data);
ccefe4c4 5313 data.obstackp = obstackp;
339c13b6 5314
ccefe4c4 5315 ALL_OBJFILES (objfile)
40658b94
PH
5316 {
5317 data.objfile = objfile;
5318
5319 if (is_wild_match)
4186eb54
KS
5320 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5321 aux_add_nonlocal_symbols, &data,
5322 wild_match, NULL);
40658b94 5323 else
4186eb54
KS
5324 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5325 aux_add_nonlocal_symbols, &data,
5326 full_match, compare_names);
40658b94
PH
5327 }
5328
5329 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5330 {
5331 ALL_OBJFILES (objfile)
5332 {
5333 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5334 strcpy (name1, "_ada_");
5335 strcpy (name1 + sizeof ("_ada_") - 1, name);
5336 data.objfile = objfile;
ade7ed9e
DE
5337 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5338 global,
0963b4bd
MS
5339 aux_add_nonlocal_symbols,
5340 &data,
40658b94
PH
5341 full_match, compare_names);
5342 }
5343 }
339c13b6
JB
5344}
5345
4eeaa230
DE
5346/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5347 non-zero, enclosing scope and in global scopes, returning the number of
5348 matches.
9f88c959 5349 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5350 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5351 any) in which they were found. This vector is transient---good only to
5352 the next call of ada_lookup_symbol_list.
5353
5354 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5355 symbol match within the nest of blocks whose innermost member is BLOCK0,
5356 is the one match returned (no other matches in that or
d9680e73 5357 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5358 surrounding BLOCK0, then these alone are returned.
5359
9f88c959 5360 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5361 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5362
4eeaa230
DE
5363static int
5364ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5365 domain_enum namespace,
5366 struct ada_symbol_info **results,
5367 int full_search)
14f9c5c9
AS
5368{
5369 struct symbol *sym;
f0c5f9b2 5370 const struct block *block;
4c4b4cd2 5371 const char *name;
82ccd55e 5372 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5373 int cacheIfUnique;
4c4b4cd2 5374 int ndefns;
14f9c5c9 5375
4c4b4cd2
PH
5376 obstack_free (&symbol_list_obstack, NULL);
5377 obstack_init (&symbol_list_obstack);
14f9c5c9 5378
14f9c5c9
AS
5379 cacheIfUnique = 0;
5380
5381 /* Search specified block and its superiors. */
5382
4c4b4cd2 5383 name = name0;
f0c5f9b2 5384 block = block0;
339c13b6
JB
5385
5386 /* Special case: If the user specifies a symbol name inside package
5387 Standard, do a non-wild matching of the symbol name without
5388 the "standard__" prefix. This was primarily introduced in order
5389 to allow the user to specifically access the standard exceptions
5390 using, for instance, Standard.Constraint_Error when Constraint_Error
5391 is ambiguous (due to the user defining its own Constraint_Error
5392 entity inside its program). */
4c4b4cd2
PH
5393 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5394 {
4c4b4cd2
PH
5395 block = NULL;
5396 name = name0 + sizeof ("standard__") - 1;
5397 }
5398
339c13b6 5399 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5400
4eeaa230
DE
5401 if (block != NULL)
5402 {
5403 if (full_search)
5404 {
5405 ada_add_local_symbols (&symbol_list_obstack, name, block,
5406 namespace, wild_match_p);
5407 }
5408 else
5409 {
5410 /* In the !full_search case we're are being called by
5411 ada_iterate_over_symbols, and we don't want to search
5412 superblocks. */
5413 ada_add_block_symbols (&symbol_list_obstack, block, name,
5414 namespace, NULL, wild_match_p);
5415 }
5416 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5417 goto done;
5418 }
d2e4a39e 5419
339c13b6
JB
5420 /* No non-global symbols found. Check our cache to see if we have
5421 already performed this search before. If we have, then return
5422 the same result. */
5423
14f9c5c9 5424 cacheIfUnique = 1;
2570f2b7 5425 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5426 {
5427 if (sym != NULL)
2570f2b7 5428 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5429 goto done;
5430 }
14f9c5c9 5431
339c13b6
JB
5432 /* Search symbols from all global blocks. */
5433
40658b94 5434 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5435 wild_match_p);
d2e4a39e 5436
4c4b4cd2 5437 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5438 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5439
4c4b4cd2 5440 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5442 wild_match_p);
14f9c5c9 5443
4c4b4cd2
PH
5444done:
5445 ndefns = num_defns_collected (&symbol_list_obstack);
5446 *results = defns_collected (&symbol_list_obstack, 1);
5447
5448 ndefns = remove_extra_symbols (*results, ndefns);
5449
2ad01556 5450 if (ndefns == 0 && full_search)
2570f2b7 5451 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5452
2ad01556 5453 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5454 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5455
aeb5907d 5456 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5457
14f9c5c9
AS
5458 return ndefns;
5459}
5460
4eeaa230
DE
5461/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5462 in global scopes, returning the number of matches, and setting *RESULTS
5463 to a vector of (SYM,BLOCK) tuples.
5464 See ada_lookup_symbol_list_worker for further details. */
5465
5466int
5467ada_lookup_symbol_list (const char *name0, const struct block *block0,
5468 domain_enum domain, struct ada_symbol_info **results)
5469{
5470 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5471}
5472
5473/* Implementation of the la_iterate_over_symbols method. */
5474
5475static void
5476ada_iterate_over_symbols (const struct block *block,
5477 const char *name, domain_enum domain,
5478 symbol_found_callback_ftype *callback,
5479 void *data)
5480{
5481 int ndefs, i;
5482 struct ada_symbol_info *results;
5483
5484 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5485 for (i = 0; i < ndefs; ++i)
5486 {
5487 if (! (*callback) (results[i].sym, data))
5488 break;
5489 }
5490}
5491
f8eba3c6
TT
5492/* If NAME is the name of an entity, return a string that should
5493 be used to look that entity up in Ada units. This string should
5494 be deallocated after use using xfree.
5495
5496 NAME can have any form that the "break" or "print" commands might
5497 recognize. In other words, it does not have to be the "natural"
5498 name, or the "encoded" name. */
5499
5500char *
5501ada_name_for_lookup (const char *name)
5502{
5503 char *canon;
5504 int nlen = strlen (name);
5505
5506 if (name[0] == '<' && name[nlen - 1] == '>')
5507 {
5508 canon = xmalloc (nlen - 1);
5509 memcpy (canon, name + 1, nlen - 2);
5510 canon[nlen - 2] = '\0';
5511 }
5512 else
5513 canon = xstrdup (ada_encode (ada_fold_name (name)));
5514 return canon;
5515}
5516
4e5c77fe
JB
5517/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5518 to 1, but choosing the first symbol found if there are multiple
5519 choices.
5520
5e2336be
JB
5521 The result is stored in *INFO, which must be non-NULL.
5522 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5523
5524void
5525ada_lookup_encoded_symbol (const char *name, const struct block *block,
5526 domain_enum namespace,
5e2336be 5527 struct ada_symbol_info *info)
14f9c5c9 5528{
4c4b4cd2 5529 struct ada_symbol_info *candidates;
14f9c5c9
AS
5530 int n_candidates;
5531
5e2336be
JB
5532 gdb_assert (info != NULL);
5533 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5534
4eeaa230 5535 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5536 if (n_candidates == 0)
4e5c77fe 5537 return;
4c4b4cd2 5538
5e2336be
JB
5539 *info = candidates[0];
5540 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5541}
aeb5907d
JB
5542
5543/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5544 scope and in global scopes, or NULL if none. NAME is folded and
5545 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5546 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5547 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5548
aeb5907d
JB
5549struct symbol *
5550ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5551 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5552{
5e2336be 5553 struct ada_symbol_info info;
4e5c77fe 5554
aeb5907d
JB
5555 if (is_a_field_of_this != NULL)
5556 *is_a_field_of_this = 0;
5557
4e5c77fe 5558 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5559 block0, namespace, &info);
5560 return info.sym;
4c4b4cd2 5561}
14f9c5c9 5562
4c4b4cd2
PH
5563static struct symbol *
5564ada_lookup_symbol_nonlocal (const char *name,
76a01679 5565 const struct block *block,
21b556f4 5566 const domain_enum domain)
4c4b4cd2 5567{
94af9270 5568 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5569}
5570
5571
4c4b4cd2
PH
5572/* True iff STR is a possible encoded suffix of a normal Ada name
5573 that is to be ignored for matching purposes. Suffixes of parallel
5574 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5575 are given by any of the regular expressions:
4c4b4cd2 5576
babe1480
JB
5577 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5578 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5579 TKB [subprogram suffix for task bodies]
babe1480 5580 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5581 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5582
5583 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5584 match is performed. This sequence is used to differentiate homonyms,
5585 is an optional part of a valid name suffix. */
4c4b4cd2 5586
14f9c5c9 5587static int
d2e4a39e 5588is_name_suffix (const char *str)
14f9c5c9
AS
5589{
5590 int k;
4c4b4cd2
PH
5591 const char *matching;
5592 const int len = strlen (str);
5593
babe1480
JB
5594 /* Skip optional leading __[0-9]+. */
5595
4c4b4cd2
PH
5596 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5597 {
babe1480
JB
5598 str += 3;
5599 while (isdigit (str[0]))
5600 str += 1;
4c4b4cd2 5601 }
babe1480
JB
5602
5603 /* [.$][0-9]+ */
4c4b4cd2 5604
babe1480 5605 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5606 {
babe1480 5607 matching = str + 1;
4c4b4cd2
PH
5608 while (isdigit (matching[0]))
5609 matching += 1;
5610 if (matching[0] == '\0')
5611 return 1;
5612 }
5613
5614 /* ___[0-9]+ */
babe1480 5615
4c4b4cd2
PH
5616 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5617 {
5618 matching = str + 3;
5619 while (isdigit (matching[0]))
5620 matching += 1;
5621 if (matching[0] == '\0')
5622 return 1;
5623 }
5624
9ac7f98e
JB
5625 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5626
5627 if (strcmp (str, "TKB") == 0)
5628 return 1;
5629
529cad9c
PH
5630#if 0
5631 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5632 with a N at the end. Unfortunately, the compiler uses the same
5633 convention for other internal types it creates. So treating
529cad9c 5634 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5635 some regressions. For instance, consider the case of an enumerated
5636 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5637 name ends with N.
5638 Having a single character like this as a suffix carrying some
0963b4bd 5639 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5640 to be something like "_N" instead. In the meantime, do not do
5641 the following check. */
5642 /* Protected Object Subprograms */
5643 if (len == 1 && str [0] == 'N')
5644 return 1;
5645#endif
5646
5647 /* _E[0-9]+[bs]$ */
5648 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5649 {
5650 matching = str + 3;
5651 while (isdigit (matching[0]))
5652 matching += 1;
5653 if ((matching[0] == 'b' || matching[0] == 's')
5654 && matching [1] == '\0')
5655 return 1;
5656 }
5657
4c4b4cd2
PH
5658 /* ??? We should not modify STR directly, as we are doing below. This
5659 is fine in this case, but may become problematic later if we find
5660 that this alternative did not work, and want to try matching
5661 another one from the begining of STR. Since we modified it, we
5662 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5663 if (str[0] == 'X')
5664 {
5665 str += 1;
d2e4a39e 5666 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5667 {
5668 if (str[0] != 'n' && str[0] != 'b')
5669 return 0;
5670 str += 1;
5671 }
14f9c5c9 5672 }
babe1480 5673
14f9c5c9
AS
5674 if (str[0] == '\000')
5675 return 1;
babe1480 5676
d2e4a39e 5677 if (str[0] == '_')
14f9c5c9
AS
5678 {
5679 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5680 return 0;
d2e4a39e 5681 if (str[2] == '_')
4c4b4cd2 5682 {
61ee279c
PH
5683 if (strcmp (str + 3, "JM") == 0)
5684 return 1;
5685 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5686 the LJM suffix in favor of the JM one. But we will
5687 still accept LJM as a valid suffix for a reasonable
5688 amount of time, just to allow ourselves to debug programs
5689 compiled using an older version of GNAT. */
4c4b4cd2
PH
5690 if (strcmp (str + 3, "LJM") == 0)
5691 return 1;
5692 if (str[3] != 'X')
5693 return 0;
1265e4aa
JB
5694 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5695 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5696 return 1;
5697 if (str[4] == 'R' && str[5] != 'T')
5698 return 1;
5699 return 0;
5700 }
5701 if (!isdigit (str[2]))
5702 return 0;
5703 for (k = 3; str[k] != '\0'; k += 1)
5704 if (!isdigit (str[k]) && str[k] != '_')
5705 return 0;
14f9c5c9
AS
5706 return 1;
5707 }
4c4b4cd2 5708 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5709 {
4c4b4cd2
PH
5710 for (k = 2; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5712 return 0;
14f9c5c9
AS
5713 return 1;
5714 }
5715 return 0;
5716}
d2e4a39e 5717
aeb5907d
JB
5718/* Return non-zero if the string starting at NAME and ending before
5719 NAME_END contains no capital letters. */
529cad9c
PH
5720
5721static int
5722is_valid_name_for_wild_match (const char *name0)
5723{
5724 const char *decoded_name = ada_decode (name0);
5725 int i;
5726
5823c3ef
JB
5727 /* If the decoded name starts with an angle bracket, it means that
5728 NAME0 does not follow the GNAT encoding format. It should then
5729 not be allowed as a possible wild match. */
5730 if (decoded_name[0] == '<')
5731 return 0;
5732
529cad9c
PH
5733 for (i=0; decoded_name[i] != '\0'; i++)
5734 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5735 return 0;
5736
5737 return 1;
5738}
5739
73589123
PH
5740/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5741 that could start a simple name. Assumes that *NAMEP points into
5742 the string beginning at NAME0. */
4c4b4cd2 5743
14f9c5c9 5744static int
73589123 5745advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5746{
73589123 5747 const char *name = *namep;
5b4ee69b 5748
5823c3ef 5749 while (1)
14f9c5c9 5750 {
aa27d0b3 5751 int t0, t1;
73589123
PH
5752
5753 t0 = *name;
5754 if (t0 == '_')
5755 {
5756 t1 = name[1];
5757 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5758 {
5759 name += 1;
5760 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5761 break;
5762 else
5763 name += 1;
5764 }
aa27d0b3
JB
5765 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5766 || name[2] == target0))
73589123
PH
5767 {
5768 name += 2;
5769 break;
5770 }
5771 else
5772 return 0;
5773 }
5774 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5775 name += 1;
5776 else
5823c3ef 5777 return 0;
73589123
PH
5778 }
5779
5780 *namep = name;
5781 return 1;
5782}
5783
5784/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5785 informational suffixes of NAME (i.e., for which is_name_suffix is
5786 true). Assumes that PATN is a lower-cased Ada simple name. */
5787
5788static int
5789wild_match (const char *name, const char *patn)
5790{
22e048c9 5791 const char *p;
73589123
PH
5792 const char *name0 = name;
5793
5794 while (1)
5795 {
5796 const char *match = name;
5797
5798 if (*name == *patn)
5799 {
5800 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5801 if (*p != *name)
5802 break;
5803 if (*p == '\0' && is_name_suffix (name))
5804 return match != name0 && !is_valid_name_for_wild_match (name0);
5805
5806 if (name[-1] == '_')
5807 name -= 1;
5808 }
5809 if (!advance_wild_match (&name, name0, *patn))
5810 return 1;
96d887e8 5811 }
96d887e8
PH
5812}
5813
40658b94
PH
5814/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5815 informational suffix. */
5816
c4d840bd
PH
5817static int
5818full_match (const char *sym_name, const char *search_name)
5819{
40658b94 5820 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5821}
5822
5823
96d887e8
PH
5824/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5825 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5826 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5827 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5828
5829static void
5830ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5831 const struct block *block, const char *name,
96d887e8 5832 domain_enum domain, struct objfile *objfile,
2570f2b7 5833 int wild)
96d887e8 5834{
8157b174 5835 struct block_iterator iter;
96d887e8
PH
5836 int name_len = strlen (name);
5837 /* A matching argument symbol, if any. */
5838 struct symbol *arg_sym;
5839 /* Set true when we find a matching non-argument symbol. */
5840 int found_sym;
5841 struct symbol *sym;
5842
5843 arg_sym = NULL;
5844 found_sym = 0;
5845 if (wild)
5846 {
8157b174
TT
5847 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5848 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5849 {
4186eb54
KS
5850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5851 SYMBOL_DOMAIN (sym), domain)
73589123 5852 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5853 {
2a2d4dc3
AS
5854 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5855 continue;
5856 else if (SYMBOL_IS_ARGUMENT (sym))
5857 arg_sym = sym;
5858 else
5859 {
76a01679
JB
5860 found_sym = 1;
5861 add_defn_to_vec (obstackp,
5862 fixup_symbol_section (sym, objfile),
2570f2b7 5863 block);
76a01679
JB
5864 }
5865 }
5866 }
96d887e8
PH
5867 }
5868 else
5869 {
8157b174
TT
5870 for (sym = block_iter_match_first (block, name, full_match, &iter);
5871 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5872 {
4186eb54
KS
5873 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5874 SYMBOL_DOMAIN (sym), domain))
76a01679 5875 {
c4d840bd
PH
5876 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5877 {
5878 if (SYMBOL_IS_ARGUMENT (sym))
5879 arg_sym = sym;
5880 else
2a2d4dc3 5881 {
c4d840bd
PH
5882 found_sym = 1;
5883 add_defn_to_vec (obstackp,
5884 fixup_symbol_section (sym, objfile),
5885 block);
2a2d4dc3 5886 }
c4d840bd 5887 }
76a01679
JB
5888 }
5889 }
96d887e8
PH
5890 }
5891
5892 if (!found_sym && arg_sym != NULL)
5893 {
76a01679
JB
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5896 block);
96d887e8
PH
5897 }
5898
5899 if (!wild)
5900 {
5901 arg_sym = NULL;
5902 found_sym = 0;
5903
5904 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5905 {
4186eb54
KS
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5908 {
5909 int cmp;
5910
5911 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5912 if (cmp == 0)
5913 {
5914 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5915 if (cmp == 0)
5916 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5917 name_len);
5918 }
5919
5920 if (cmp == 0
5921 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5922 {
2a2d4dc3
AS
5923 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5924 {
5925 if (SYMBOL_IS_ARGUMENT (sym))
5926 arg_sym = sym;
5927 else
5928 {
5929 found_sym = 1;
5930 add_defn_to_vec (obstackp,
5931 fixup_symbol_section (sym, objfile),
5932 block);
5933 }
5934 }
76a01679
JB
5935 }
5936 }
76a01679 5937 }
96d887e8
PH
5938
5939 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5940 They aren't parameters, right? */
5941 if (!found_sym && arg_sym != NULL)
5942 {
5943 add_defn_to_vec (obstackp,
76a01679 5944 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5945 block);
96d887e8
PH
5946 }
5947 }
5948}
5949\f
41d27058
JB
5950
5951 /* Symbol Completion */
5952
5953/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5954 name in a form that's appropriate for the completion. The result
5955 does not need to be deallocated, but is only good until the next call.
5956
5957 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5958 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5959 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5960 in its encoded form. */
5961
5962static const char *
5963symbol_completion_match (const char *sym_name,
5964 const char *text, int text_len,
6ea35997 5965 int wild_match_p, int encoded_p)
41d27058 5966{
41d27058
JB
5967 const int verbatim_match = (text[0] == '<');
5968 int match = 0;
5969
5970 if (verbatim_match)
5971 {
5972 /* Strip the leading angle bracket. */
5973 text = text + 1;
5974 text_len--;
5975 }
5976
5977 /* First, test against the fully qualified name of the symbol. */
5978
5979 if (strncmp (sym_name, text, text_len) == 0)
5980 match = 1;
5981
6ea35997 5982 if (match && !encoded_p)
41d27058
JB
5983 {
5984 /* One needed check before declaring a positive match is to verify
5985 that iff we are doing a verbatim match, the decoded version
5986 of the symbol name starts with '<'. Otherwise, this symbol name
5987 is not a suitable completion. */
5988 const char *sym_name_copy = sym_name;
5989 int has_angle_bracket;
5990
5991 sym_name = ada_decode (sym_name);
5992 has_angle_bracket = (sym_name[0] == '<');
5993 match = (has_angle_bracket == verbatim_match);
5994 sym_name = sym_name_copy;
5995 }
5996
5997 if (match && !verbatim_match)
5998 {
5999 /* When doing non-verbatim match, another check that needs to
6000 be done is to verify that the potentially matching symbol name
6001 does not include capital letters, because the ada-mode would
6002 not be able to understand these symbol names without the
6003 angle bracket notation. */
6004 const char *tmp;
6005
6006 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6007 if (*tmp != '\0')
6008 match = 0;
6009 }
6010
6011 /* Second: Try wild matching... */
6012
e701b3c0 6013 if (!match && wild_match_p)
41d27058
JB
6014 {
6015 /* Since we are doing wild matching, this means that TEXT
6016 may represent an unqualified symbol name. We therefore must
6017 also compare TEXT against the unqualified name of the symbol. */
6018 sym_name = ada_unqualified_name (ada_decode (sym_name));
6019
6020 if (strncmp (sym_name, text, text_len) == 0)
6021 match = 1;
6022 }
6023
6024 /* Finally: If we found a mach, prepare the result to return. */
6025
6026 if (!match)
6027 return NULL;
6028
6029 if (verbatim_match)
6030 sym_name = add_angle_brackets (sym_name);
6031
6ea35997 6032 if (!encoded_p)
41d27058
JB
6033 sym_name = ada_decode (sym_name);
6034
6035 return sym_name;
6036}
6037
6038/* A companion function to ada_make_symbol_completion_list().
6039 Check if SYM_NAME represents a symbol which name would be suitable
6040 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6041 it is appended at the end of the given string vector SV.
6042
6043 ORIG_TEXT is the string original string from the user command
6044 that needs to be completed. WORD is the entire command on which
6045 completion should be performed. These two parameters are used to
6046 determine which part of the symbol name should be added to the
6047 completion vector.
c0af1706 6048 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6049 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6050 encoded formed (in which case the completion should also be
6051 encoded). */
6052
6053static void
d6565258 6054symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6055 const char *sym_name,
6056 const char *text, int text_len,
6057 const char *orig_text, const char *word,
cb8e9b97 6058 int wild_match_p, int encoded_p)
41d27058
JB
6059{
6060 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6061 wild_match_p, encoded_p);
41d27058
JB
6062 char *completion;
6063
6064 if (match == NULL)
6065 return;
6066
6067 /* We found a match, so add the appropriate completion to the given
6068 string vector. */
6069
6070 if (word == orig_text)
6071 {
6072 completion = xmalloc (strlen (match) + 5);
6073 strcpy (completion, match);
6074 }
6075 else if (word > orig_text)
6076 {
6077 /* Return some portion of sym_name. */
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match + (word - orig_text));
6080 }
6081 else
6082 {
6083 /* Return some of ORIG_TEXT plus sym_name. */
6084 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6085 strncpy (completion, word, orig_text - word);
6086 completion[orig_text - word] = '\0';
6087 strcat (completion, match);
6088 }
6089
d6565258 6090 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6091}
6092
ccefe4c4 6093/* An object of this type is passed as the user_data argument to the
bb4142cf 6094 expand_symtabs_matching method. */
ccefe4c4
TT
6095struct add_partial_datum
6096{
6097 VEC(char_ptr) **completions;
6f937416 6098 const char *text;
ccefe4c4 6099 int text_len;
6f937416
PA
6100 const char *text0;
6101 const char *word;
ccefe4c4
TT
6102 int wild_match;
6103 int encoded;
6104};
6105
bb4142cf
DE
6106/* A callback for expand_symtabs_matching. */
6107
7b08b9eb 6108static int
bb4142cf 6109ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6110{
6111 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6112
6113 return symbol_completion_match (name, data->text, data->text_len,
6114 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6115}
6116
49c4e619
TT
6117/* Return a list of possible symbol names completing TEXT0. WORD is
6118 the entire command on which completion is made. */
41d27058 6119
49c4e619 6120static VEC (char_ptr) *
6f937416
PA
6121ada_make_symbol_completion_list (const char *text0, const char *word,
6122 enum type_code code)
41d27058
JB
6123{
6124 char *text;
6125 int text_len;
b1ed564a
JB
6126 int wild_match_p;
6127 int encoded_p;
2ba95b9b 6128 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6129 struct symbol *sym;
6130 struct symtab *s;
41d27058
JB
6131 struct minimal_symbol *msymbol;
6132 struct objfile *objfile;
3977b71f 6133 const struct block *b, *surrounding_static_block = 0;
41d27058 6134 int i;
8157b174 6135 struct block_iterator iter;
b8fea896 6136 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6137
2f68a895
TT
6138 gdb_assert (code == TYPE_CODE_UNDEF);
6139
41d27058
JB
6140 if (text0[0] == '<')
6141 {
6142 text = xstrdup (text0);
6143 make_cleanup (xfree, text);
6144 text_len = strlen (text);
b1ed564a
JB
6145 wild_match_p = 0;
6146 encoded_p = 1;
41d27058
JB
6147 }
6148 else
6149 {
6150 text = xstrdup (ada_encode (text0));
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
6153 for (i = 0; i < text_len; i++)
6154 text[i] = tolower (text[i]);
6155
b1ed564a 6156 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6157 /* If the name contains a ".", then the user is entering a fully
6158 qualified entity name, and the match must not be done in wild
6159 mode. Similarly, if the user wants to complete what looks like
6160 an encoded name, the match must not be done in wild mode. */
b1ed564a 6161 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6162 }
6163
6164 /* First, look at the partial symtab symbols. */
41d27058 6165 {
ccefe4c4
TT
6166 struct add_partial_datum data;
6167
6168 data.completions = &completions;
6169 data.text = text;
6170 data.text_len = text_len;
6171 data.text0 = text0;
6172 data.word = word;
b1ed564a
JB
6173 data.wild_match = wild_match_p;
6174 data.encoded = encoded_p;
bb4142cf
DE
6175 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6176 &data);
41d27058
JB
6177 }
6178
6179 /* At this point scan through the misc symbol vectors and add each
6180 symbol you find to the list. Eventually we want to ignore
6181 anything that isn't a text symbol (everything else will be
6182 handled by the psymtab code above). */
6183
6184 ALL_MSYMBOLS (objfile, msymbol)
6185 {
6186 QUIT;
efd66ac6 6187 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6188 text, text_len, text0, word, wild_match_p,
6189 encoded_p);
41d27058
JB
6190 }
6191
6192 /* Search upwards from currently selected frame (so that we can
6193 complete on local vars. */
6194
6195 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6196 {
6197 if (!BLOCK_SUPERBLOCK (b))
6198 surrounding_static_block = b; /* For elmin of dups */
6199
6200 ALL_BLOCK_SYMBOLS (b, iter, sym)
6201 {
d6565258 6202 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6203 text, text_len, text0, word,
b1ed564a 6204 wild_match_p, encoded_p);
41d27058
JB
6205 }
6206 }
6207
6208 /* Go through the symtabs and check the externs and statics for
6209 symbols which match. */
6210
6211 ALL_SYMTABS (objfile, s)
6212 {
6213 QUIT;
6214 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6215 ALL_BLOCK_SYMBOLS (b, iter, sym)
6216 {
d6565258 6217 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6218 text, text_len, text0, word,
b1ed564a 6219 wild_match_p, encoded_p);
41d27058
JB
6220 }
6221 }
6222
6223 ALL_SYMTABS (objfile, s)
6224 {
6225 QUIT;
6226 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6227 /* Don't do this block twice. */
6228 if (b == surrounding_static_block)
6229 continue;
6230 ALL_BLOCK_SYMBOLS (b, iter, sym)
6231 {
d6565258 6232 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6233 text, text_len, text0, word,
b1ed564a 6234 wild_match_p, encoded_p);
41d27058
JB
6235 }
6236 }
6237
b8fea896 6238 do_cleanups (old_chain);
49c4e619 6239 return completions;
41d27058
JB
6240}
6241
963a6417 6242 /* Field Access */
96d887e8 6243
73fb9985
JB
6244/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6245 for tagged types. */
6246
6247static int
6248ada_is_dispatch_table_ptr_type (struct type *type)
6249{
0d5cff50 6250 const char *name;
73fb9985
JB
6251
6252 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6253 return 0;
6254
6255 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6256 if (name == NULL)
6257 return 0;
6258
6259 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6260}
6261
ac4a2da4
JG
6262/* Return non-zero if TYPE is an interface tag. */
6263
6264static int
6265ada_is_interface_tag (struct type *type)
6266{
6267 const char *name = TYPE_NAME (type);
6268
6269 if (name == NULL)
6270 return 0;
6271
6272 return (strcmp (name, "ada__tags__interface_tag") == 0);
6273}
6274
963a6417
PH
6275/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6276 to be invisible to users. */
96d887e8 6277
963a6417
PH
6278int
6279ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6280{
963a6417
PH
6281 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6282 return 1;
ffde82bf 6283
73fb9985
JB
6284 /* Check the name of that field. */
6285 {
6286 const char *name = TYPE_FIELD_NAME (type, field_num);
6287
6288 /* Anonymous field names should not be printed.
6289 brobecker/2007-02-20: I don't think this can actually happen
6290 but we don't want to print the value of annonymous fields anyway. */
6291 if (name == NULL)
6292 return 1;
6293
ffde82bf
JB
6294 /* Normally, fields whose name start with an underscore ("_")
6295 are fields that have been internally generated by the compiler,
6296 and thus should not be printed. The "_parent" field is special,
6297 however: This is a field internally generated by the compiler
6298 for tagged types, and it contains the components inherited from
6299 the parent type. This field should not be printed as is, but
6300 should not be ignored either. */
73fb9985
JB
6301 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6302 return 1;
6303 }
6304
ac4a2da4
JG
6305 /* If this is the dispatch table of a tagged type or an interface tag,
6306 then ignore. */
73fb9985 6307 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6308 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6309 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6310 return 1;
6311
6312 /* Not a special field, so it should not be ignored. */
6313 return 0;
963a6417 6314}
96d887e8 6315
963a6417 6316/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6317 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6318
963a6417
PH
6319int
6320ada_is_tagged_type (struct type *type, int refok)
6321{
6322 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6323}
96d887e8 6324
963a6417 6325/* True iff TYPE represents the type of X'Tag */
96d887e8 6326
963a6417
PH
6327int
6328ada_is_tag_type (struct type *type)
6329{
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6331 return 0;
6332 else
96d887e8 6333 {
963a6417 6334 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6335
963a6417
PH
6336 return (name != NULL
6337 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6338 }
96d887e8
PH
6339}
6340
963a6417 6341/* The type of the tag on VAL. */
76a01679 6342
963a6417
PH
6343struct type *
6344ada_tag_type (struct value *val)
96d887e8 6345{
df407dfe 6346 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6347}
96d887e8 6348
b50d69b5
JG
6349/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6350 retired at Ada 05). */
6351
6352static int
6353is_ada95_tag (struct value *tag)
6354{
6355 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6356}
6357
963a6417 6358/* The value of the tag on VAL. */
96d887e8 6359
963a6417
PH
6360struct value *
6361ada_value_tag (struct value *val)
6362{
03ee6b2e 6363 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6364}
6365
963a6417
PH
6366/* The value of the tag on the object of type TYPE whose contents are
6367 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6368 ADDRESS. */
96d887e8 6369
963a6417 6370static struct value *
10a2c479 6371value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6372 const gdb_byte *valaddr,
963a6417 6373 CORE_ADDR address)
96d887e8 6374{
b5385fc0 6375 int tag_byte_offset;
963a6417 6376 struct type *tag_type;
5b4ee69b 6377
963a6417 6378 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6379 NULL, NULL, NULL))
96d887e8 6380 {
fc1a4b47 6381 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6382 ? NULL
6383 : valaddr + tag_byte_offset);
963a6417 6384 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6385
963a6417 6386 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6387 }
963a6417
PH
6388 return NULL;
6389}
96d887e8 6390
963a6417
PH
6391static struct type *
6392type_from_tag (struct value *tag)
6393{
6394 const char *type_name = ada_tag_name (tag);
5b4ee69b 6395
963a6417
PH
6396 if (type_name != NULL)
6397 return ada_find_any_type (ada_encode (type_name));
6398 return NULL;
6399}
96d887e8 6400
b50d69b5
JG
6401/* Given a value OBJ of a tagged type, return a value of this
6402 type at the base address of the object. The base address, as
6403 defined in Ada.Tags, it is the address of the primary tag of
6404 the object, and therefore where the field values of its full
6405 view can be fetched. */
6406
6407struct value *
6408ada_tag_value_at_base_address (struct value *obj)
6409{
6410 volatile struct gdb_exception e;
6411 struct value *val;
6412 LONGEST offset_to_top = 0;
6413 struct type *ptr_type, *obj_type;
6414 struct value *tag;
6415 CORE_ADDR base_address;
6416
6417 obj_type = value_type (obj);
6418
6419 /* It is the responsability of the caller to deref pointers. */
6420
6421 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6422 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6423 return obj;
6424
6425 tag = ada_value_tag (obj);
6426 if (!tag)
6427 return obj;
6428
6429 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6430
6431 if (is_ada95_tag (tag))
6432 return obj;
6433
6434 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6435 ptr_type = lookup_pointer_type (ptr_type);
6436 val = value_cast (ptr_type, tag);
6437 if (!val)
6438 return obj;
6439
6440 /* It is perfectly possible that an exception be raised while
6441 trying to determine the base address, just like for the tag;
6442 see ada_tag_name for more details. We do not print the error
6443 message for the same reason. */
6444
6445 TRY_CATCH (e, RETURN_MASK_ERROR)
6446 {
6447 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6448 }
6449
6450 if (e.reason < 0)
6451 return obj;
6452
6453 /* If offset is null, nothing to do. */
6454
6455 if (offset_to_top == 0)
6456 return obj;
6457
6458 /* -1 is a special case in Ada.Tags; however, what should be done
6459 is not quite clear from the documentation. So do nothing for
6460 now. */
6461
6462 if (offset_to_top == -1)
6463 return obj;
6464
6465 base_address = value_address (obj) - offset_to_top;
6466 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6467
6468 /* Make sure that we have a proper tag at the new address.
6469 Otherwise, offset_to_top is bogus (which can happen when
6470 the object is not initialized yet). */
6471
6472 if (!tag)
6473 return obj;
6474
6475 obj_type = type_from_tag (tag);
6476
6477 if (!obj_type)
6478 return obj;
6479
6480 return value_from_contents_and_address (obj_type, NULL, base_address);
6481}
6482
1b611343
JB
6483/* Return the "ada__tags__type_specific_data" type. */
6484
6485static struct type *
6486ada_get_tsd_type (struct inferior *inf)
963a6417 6487{
1b611343 6488 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6489
1b611343
JB
6490 if (data->tsd_type == 0)
6491 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6492 return data->tsd_type;
6493}
529cad9c 6494
1b611343
JB
6495/* Return the TSD (type-specific data) associated to the given TAG.
6496 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6497
1b611343 6498 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6499
1b611343
JB
6500static struct value *
6501ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6502{
4c4b4cd2 6503 struct value *val;
1b611343 6504 struct type *type;
5b4ee69b 6505
1b611343
JB
6506 /* First option: The TSD is simply stored as a field of our TAG.
6507 Only older versions of GNAT would use this format, but we have
6508 to test it first, because there are no visible markers for
6509 the current approach except the absence of that field. */
529cad9c 6510
1b611343
JB
6511 val = ada_value_struct_elt (tag, "tsd", 1);
6512 if (val)
6513 return val;
e802dbe0 6514
1b611343
JB
6515 /* Try the second representation for the dispatch table (in which
6516 there is no explicit 'tsd' field in the referent of the tag pointer,
6517 and instead the tsd pointer is stored just before the dispatch
6518 table. */
e802dbe0 6519
1b611343
JB
6520 type = ada_get_tsd_type (current_inferior());
6521 if (type == NULL)
6522 return NULL;
6523 type = lookup_pointer_type (lookup_pointer_type (type));
6524 val = value_cast (type, tag);
6525 if (val == NULL)
6526 return NULL;
6527 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6528}
6529
1b611343
JB
6530/* Given the TSD of a tag (type-specific data), return a string
6531 containing the name of the associated type.
6532
6533 The returned value is good until the next call. May return NULL
6534 if we are unable to determine the tag name. */
6535
6536static char *
6537ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6538{
529cad9c
PH
6539 static char name[1024];
6540 char *p;
1b611343 6541 struct value *val;
529cad9c 6542
1b611343 6543 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6544 if (val == NULL)
1b611343 6545 return NULL;
4c4b4cd2
PH
6546 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6547 for (p = name; *p != '\0'; p += 1)
6548 if (isalpha (*p))
6549 *p = tolower (*p);
1b611343 6550 return name;
4c4b4cd2
PH
6551}
6552
6553/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6554 a C string.
6555
6556 Return NULL if the TAG is not an Ada tag, or if we were unable to
6557 determine the name of that tag. The result is good until the next
6558 call. */
4c4b4cd2
PH
6559
6560const char *
6561ada_tag_name (struct value *tag)
6562{
1b611343
JB
6563 volatile struct gdb_exception e;
6564 char *name = NULL;
5b4ee69b 6565
df407dfe 6566 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6567 return NULL;
1b611343
JB
6568
6569 /* It is perfectly possible that an exception be raised while trying
6570 to determine the TAG's name, even under normal circumstances:
6571 The associated variable may be uninitialized or corrupted, for
6572 instance. We do not let any exception propagate past this point.
6573 instead we return NULL.
6574
6575 We also do not print the error message either (which often is very
6576 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6577 the caller print a more meaningful message if necessary. */
6578 TRY_CATCH (e, RETURN_MASK_ERROR)
6579 {
6580 struct value *tsd = ada_get_tsd_from_tag (tag);
6581
6582 if (tsd != NULL)
6583 name = ada_tag_name_from_tsd (tsd);
6584 }
6585
6586 return name;
4c4b4cd2
PH
6587}
6588
6589/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6590
d2e4a39e 6591struct type *
ebf56fd3 6592ada_parent_type (struct type *type)
14f9c5c9
AS
6593{
6594 int i;
6595
61ee279c 6596 type = ada_check_typedef (type);
14f9c5c9
AS
6597
6598 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6599 return NULL;
6600
6601 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6602 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6603 {
6604 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6605
6606 /* If the _parent field is a pointer, then dereference it. */
6607 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6608 parent_type = TYPE_TARGET_TYPE (parent_type);
6609 /* If there is a parallel XVS type, get the actual base type. */
6610 parent_type = ada_get_base_type (parent_type);
6611
6612 return ada_check_typedef (parent_type);
6613 }
14f9c5c9
AS
6614
6615 return NULL;
6616}
6617
4c4b4cd2
PH
6618/* True iff field number FIELD_NUM of structure type TYPE contains the
6619 parent-type (inherited) fields of a derived type. Assumes TYPE is
6620 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6621
6622int
ebf56fd3 6623ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6624{
61ee279c 6625 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6626
4c4b4cd2
PH
6627 return (name != NULL
6628 && (strncmp (name, "PARENT", 6) == 0
6629 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6630}
6631
4c4b4cd2 6632/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6633 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6634 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6635 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6636 structures. */
14f9c5c9
AS
6637
6638int
ebf56fd3 6639ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6640{
d2e4a39e 6641 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6642
d2e4a39e 6643 return (name != NULL
4c4b4cd2
PH
6644 && (strncmp (name, "PARENT", 6) == 0
6645 || strcmp (name, "REP") == 0
6646 || strncmp (name, "_parent", 7) == 0
6647 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6648}
6649
4c4b4cd2
PH
6650/* True iff field number FIELD_NUM of structure or union type TYPE
6651 is a variant wrapper. Assumes TYPE is a structure type with at least
6652 FIELD_NUM+1 fields. */
14f9c5c9
AS
6653
6654int
ebf56fd3 6655ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6656{
d2e4a39e 6657 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6658
14f9c5c9 6659 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6660 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6661 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6662 == TYPE_CODE_UNION)));
14f9c5c9
AS
6663}
6664
6665/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6666 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6667 returns the type of the controlling discriminant for the variant.
6668 May return NULL if the type could not be found. */
14f9c5c9 6669
d2e4a39e 6670struct type *
ebf56fd3 6671ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6672{
d2e4a39e 6673 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6674
7c964f07 6675 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6676}
6677
4c4b4cd2 6678/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6679 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6680 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6681
6682int
ebf56fd3 6683ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6684{
d2e4a39e 6685 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6686
14f9c5c9
AS
6687 return (name != NULL && name[0] == 'O');
6688}
6689
6690/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6691 returns the name of the discriminant controlling the variant.
6692 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6693
d2e4a39e 6694char *
ebf56fd3 6695ada_variant_discrim_name (struct type *type0)
14f9c5c9 6696{
d2e4a39e 6697 static char *result = NULL;
14f9c5c9 6698 static size_t result_len = 0;
d2e4a39e
AS
6699 struct type *type;
6700 const char *name;
6701 const char *discrim_end;
6702 const char *discrim_start;
14f9c5c9
AS
6703
6704 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6705 type = TYPE_TARGET_TYPE (type0);
6706 else
6707 type = type0;
6708
6709 name = ada_type_name (type);
6710
6711 if (name == NULL || name[0] == '\000')
6712 return "";
6713
6714 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6715 discrim_end -= 1)
6716 {
4c4b4cd2
PH
6717 if (strncmp (discrim_end, "___XVN", 6) == 0)
6718 break;
14f9c5c9
AS
6719 }
6720 if (discrim_end == name)
6721 return "";
6722
d2e4a39e 6723 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6724 discrim_start -= 1)
6725 {
d2e4a39e 6726 if (discrim_start == name + 1)
4c4b4cd2 6727 return "";
76a01679 6728 if ((discrim_start > name + 3
4c4b4cd2
PH
6729 && strncmp (discrim_start - 3, "___", 3) == 0)
6730 || discrim_start[-1] == '.')
6731 break;
14f9c5c9
AS
6732 }
6733
6734 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6735 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6736 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6737 return result;
6738}
6739
4c4b4cd2
PH
6740/* Scan STR for a subtype-encoded number, beginning at position K.
6741 Put the position of the character just past the number scanned in
6742 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6743 Return 1 if there was a valid number at the given position, and 0
6744 otherwise. A "subtype-encoded" number consists of the absolute value
6745 in decimal, followed by the letter 'm' to indicate a negative number.
6746 Assumes 0m does not occur. */
14f9c5c9
AS
6747
6748int
d2e4a39e 6749ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6750{
6751 ULONGEST RU;
6752
d2e4a39e 6753 if (!isdigit (str[k]))
14f9c5c9
AS
6754 return 0;
6755
4c4b4cd2 6756 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6757 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6758 LONGEST. */
14f9c5c9
AS
6759 RU = 0;
6760 while (isdigit (str[k]))
6761 {
d2e4a39e 6762 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6763 k += 1;
6764 }
6765
d2e4a39e 6766 if (str[k] == 'm')
14f9c5c9
AS
6767 {
6768 if (R != NULL)
4c4b4cd2 6769 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6770 k += 1;
6771 }
6772 else if (R != NULL)
6773 *R = (LONGEST) RU;
6774
4c4b4cd2 6775 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6776 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6777 number representable as a LONGEST (although either would probably work
6778 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6779 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6780
6781 if (new_k != NULL)
6782 *new_k = k;
6783 return 1;
6784}
6785
4c4b4cd2
PH
6786/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6787 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6788 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6789
d2e4a39e 6790int
ebf56fd3 6791ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6792{
d2e4a39e 6793 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6794 int p;
6795
6796 p = 0;
6797 while (1)
6798 {
d2e4a39e 6799 switch (name[p])
4c4b4cd2
PH
6800 {
6801 case '\0':
6802 return 0;
6803 case 'S':
6804 {
6805 LONGEST W;
5b4ee69b 6806
4c4b4cd2
PH
6807 if (!ada_scan_number (name, p + 1, &W, &p))
6808 return 0;
6809 if (val == W)
6810 return 1;
6811 break;
6812 }
6813 case 'R':
6814 {
6815 LONGEST L, U;
5b4ee69b 6816
4c4b4cd2
PH
6817 if (!ada_scan_number (name, p + 1, &L, &p)
6818 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6819 return 0;
6820 if (val >= L && val <= U)
6821 return 1;
6822 break;
6823 }
6824 case 'O':
6825 return 1;
6826 default:
6827 return 0;
6828 }
6829 }
6830}
6831
0963b4bd 6832/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6833
6834/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6835 ARG_TYPE, extract and return the value of one of its (non-static)
6836 fields. FIELDNO says which field. Differs from value_primitive_field
6837 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6838
4c4b4cd2 6839static struct value *
d2e4a39e 6840ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6841 struct type *arg_type)
14f9c5c9 6842{
14f9c5c9
AS
6843 struct type *type;
6844
61ee279c 6845 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6846 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6847
4c4b4cd2 6848 /* Handle packed fields. */
14f9c5c9
AS
6849
6850 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6851 {
6852 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6853 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6854
0fd88904 6855 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6856 offset + bit_pos / 8,
6857 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6858 }
6859 else
6860 return value_primitive_field (arg1, offset, fieldno, arg_type);
6861}
6862
52ce6436
PH
6863/* Find field with name NAME in object of type TYPE. If found,
6864 set the following for each argument that is non-null:
6865 - *FIELD_TYPE_P to the field's type;
6866 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6867 an object of that type;
6868 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6869 - *BIT_SIZE_P to its size in bits if the field is packed, and
6870 0 otherwise;
6871 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6872 fields up to but not including the desired field, or by the total
6873 number of fields if not found. A NULL value of NAME never
6874 matches; the function just counts visible fields in this case.
6875
0963b4bd 6876 Returns 1 if found, 0 otherwise. */
52ce6436 6877
4c4b4cd2 6878static int
0d5cff50 6879find_struct_field (const char *name, struct type *type, int offset,
76a01679 6880 struct type **field_type_p,
52ce6436
PH
6881 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6882 int *index_p)
4c4b4cd2
PH
6883{
6884 int i;
6885
61ee279c 6886 type = ada_check_typedef (type);
76a01679 6887
52ce6436
PH
6888 if (field_type_p != NULL)
6889 *field_type_p = NULL;
6890 if (byte_offset_p != NULL)
d5d6fca5 6891 *byte_offset_p = 0;
52ce6436
PH
6892 if (bit_offset_p != NULL)
6893 *bit_offset_p = 0;
6894 if (bit_size_p != NULL)
6895 *bit_size_p = 0;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6898 {
6899 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6900 int fld_offset = offset + bit_pos / 8;
0d5cff50 6901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6902
4c4b4cd2
PH
6903 if (t_field_name == NULL)
6904 continue;
6905
52ce6436 6906 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6907 {
6908 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6909
52ce6436
PH
6910 if (field_type_p != NULL)
6911 *field_type_p = TYPE_FIELD_TYPE (type, i);
6912 if (byte_offset_p != NULL)
6913 *byte_offset_p = fld_offset;
6914 if (bit_offset_p != NULL)
6915 *bit_offset_p = bit_pos % 8;
6916 if (bit_size_p != NULL)
6917 *bit_size_p = bit_size;
76a01679
JB
6918 return 1;
6919 }
4c4b4cd2
PH
6920 else if (ada_is_wrapper_field (type, i))
6921 {
52ce6436
PH
6922 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6923 field_type_p, byte_offset_p, bit_offset_p,
6924 bit_size_p, index_p))
76a01679
JB
6925 return 1;
6926 }
4c4b4cd2
PH
6927 else if (ada_is_variant_part (type, i))
6928 {
52ce6436
PH
6929 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6930 fixed type?? */
4c4b4cd2 6931 int j;
52ce6436
PH
6932 struct type *field_type
6933 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6934
52ce6436 6935 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6936 {
76a01679
JB
6937 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6938 fld_offset
6939 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6940 field_type_p, byte_offset_p,
52ce6436 6941 bit_offset_p, bit_size_p, index_p))
76a01679 6942 return 1;
4c4b4cd2
PH
6943 }
6944 }
52ce6436
PH
6945 else if (index_p != NULL)
6946 *index_p += 1;
4c4b4cd2
PH
6947 }
6948 return 0;
6949}
6950
0963b4bd 6951/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6952
52ce6436
PH
6953static int
6954num_visible_fields (struct type *type)
6955{
6956 int n;
5b4ee69b 6957
52ce6436
PH
6958 n = 0;
6959 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6960 return n;
6961}
14f9c5c9 6962
4c4b4cd2 6963/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6964 and search in it assuming it has (class) type TYPE.
6965 If found, return value, else return NULL.
6966
4c4b4cd2 6967 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6968
4c4b4cd2 6969static struct value *
d2e4a39e 6970ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6971 struct type *type)
14f9c5c9
AS
6972{
6973 int i;
14f9c5c9 6974
5b4ee69b 6975 type = ada_check_typedef (type);
52ce6436 6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6977 {
0d5cff50 6978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6979
6980 if (t_field_name == NULL)
4c4b4cd2 6981 continue;
14f9c5c9
AS
6982
6983 else if (field_name_match (t_field_name, name))
4c4b4cd2 6984 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6985
6986 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6987 {
0963b4bd 6988 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6989 ada_search_struct_field (name, arg,
6990 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6991 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6992
4c4b4cd2
PH
6993 if (v != NULL)
6994 return v;
6995 }
14f9c5c9
AS
6996
6997 else if (ada_is_variant_part (type, i))
4c4b4cd2 6998 {
0963b4bd 6999 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7000 int j;
5b4ee69b
MS
7001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7002 i));
4c4b4cd2
PH
7003 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7004
52ce6436 7005 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7006 {
0963b4bd
MS
7007 struct value *v = ada_search_struct_field /* Force line
7008 break. */
06d5cf63
JB
7009 (name, arg,
7010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7012
4c4b4cd2
PH
7013 if (v != NULL)
7014 return v;
7015 }
7016 }
14f9c5c9
AS
7017 }
7018 return NULL;
7019}
d2e4a39e 7020
52ce6436
PH
7021static struct value *ada_index_struct_field_1 (int *, struct value *,
7022 int, struct type *);
7023
7024
7025/* Return field #INDEX in ARG, where the index is that returned by
7026 * find_struct_field through its INDEX_P argument. Adjust the address
7027 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7028 * If found, return value, else return NULL. */
52ce6436
PH
7029
7030static struct value *
7031ada_index_struct_field (int index, struct value *arg, int offset,
7032 struct type *type)
7033{
7034 return ada_index_struct_field_1 (&index, arg, offset, type);
7035}
7036
7037
7038/* Auxiliary function for ada_index_struct_field. Like
7039 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7040 * *INDEX_P. */
52ce6436
PH
7041
7042static struct value *
7043ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7044 struct type *type)
7045{
7046 int i;
7047 type = ada_check_typedef (type);
7048
7049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7050 {
7051 if (TYPE_FIELD_NAME (type, i) == NULL)
7052 continue;
7053 else if (ada_is_wrapper_field (type, i))
7054 {
0963b4bd 7055 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7056 ada_index_struct_field_1 (index_p, arg,
7057 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7058 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7059
52ce6436
PH
7060 if (v != NULL)
7061 return v;
7062 }
7063
7064 else if (ada_is_variant_part (type, i))
7065 {
7066 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7067 find_struct_field. */
52ce6436
PH
7068 error (_("Cannot assign this kind of variant record"));
7069 }
7070 else if (*index_p == 0)
7071 return ada_value_primitive_field (arg, offset, i, type);
7072 else
7073 *index_p -= 1;
7074 }
7075 return NULL;
7076}
7077
4c4b4cd2
PH
7078/* Given ARG, a value of type (pointer or reference to a)*
7079 structure/union, extract the component named NAME from the ultimate
7080 target structure/union and return it as a value with its
f5938064 7081 appropriate type.
14f9c5c9 7082
4c4b4cd2
PH
7083 The routine searches for NAME among all members of the structure itself
7084 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7085 (e.g., '_parent').
7086
03ee6b2e
PH
7087 If NO_ERR, then simply return NULL in case of error, rather than
7088 calling error. */
14f9c5c9 7089
d2e4a39e 7090struct value *
03ee6b2e 7091ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7092{
4c4b4cd2 7093 struct type *t, *t1;
d2e4a39e 7094 struct value *v;
14f9c5c9 7095
4c4b4cd2 7096 v = NULL;
df407dfe 7097 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7098 if (TYPE_CODE (t) == TYPE_CODE_REF)
7099 {
7100 t1 = TYPE_TARGET_TYPE (t);
7101 if (t1 == NULL)
03ee6b2e 7102 goto BadValue;
61ee279c 7103 t1 = ada_check_typedef (t1);
4c4b4cd2 7104 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7105 {
994b9211 7106 arg = coerce_ref (arg);
76a01679
JB
7107 t = t1;
7108 }
4c4b4cd2 7109 }
14f9c5c9 7110
4c4b4cd2
PH
7111 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7112 {
7113 t1 = TYPE_TARGET_TYPE (t);
7114 if (t1 == NULL)
03ee6b2e 7115 goto BadValue;
61ee279c 7116 t1 = ada_check_typedef (t1);
4c4b4cd2 7117 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7118 {
7119 arg = value_ind (arg);
7120 t = t1;
7121 }
4c4b4cd2 7122 else
76a01679 7123 break;
4c4b4cd2 7124 }
14f9c5c9 7125
4c4b4cd2 7126 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7127 goto BadValue;
14f9c5c9 7128
4c4b4cd2
PH
7129 if (t1 == t)
7130 v = ada_search_struct_field (name, arg, 0, t);
7131 else
7132 {
7133 int bit_offset, bit_size, byte_offset;
7134 struct type *field_type;
7135 CORE_ADDR address;
7136
76a01679 7137 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7138 address = value_address (ada_value_ind (arg));
4c4b4cd2 7139 else
b50d69b5 7140 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7141
1ed6ede0 7142 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7143 if (find_struct_field (name, t1, 0,
7144 &field_type, &byte_offset, &bit_offset,
52ce6436 7145 &bit_size, NULL))
76a01679
JB
7146 {
7147 if (bit_size != 0)
7148 {
714e53ab
PH
7149 if (TYPE_CODE (t) == TYPE_CODE_REF)
7150 arg = ada_coerce_ref (arg);
7151 else
7152 arg = ada_value_ind (arg);
76a01679
JB
7153 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7154 bit_offset, bit_size,
7155 field_type);
7156 }
7157 else
f5938064 7158 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7159 }
7160 }
7161
03ee6b2e
PH
7162 if (v != NULL || no_err)
7163 return v;
7164 else
323e0a4a 7165 error (_("There is no member named %s."), name);
14f9c5c9 7166
03ee6b2e
PH
7167 BadValue:
7168 if (no_err)
7169 return NULL;
7170 else
0963b4bd
MS
7171 error (_("Attempt to extract a component of "
7172 "a value that is not a record."));
14f9c5c9
AS
7173}
7174
7175/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7176 If DISPP is non-null, add its byte displacement from the beginning of a
7177 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7178 work for packed fields).
7179
7180 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7181 followed by "___".
14f9c5c9 7182
0963b4bd 7183 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7184 be a (pointer or reference)+ to a struct or union, and the
7185 ultimate target type will be searched.
14f9c5c9
AS
7186
7187 Looks recursively into variant clauses and parent types.
7188
4c4b4cd2
PH
7189 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7190 TYPE is not a type of the right kind. */
14f9c5c9 7191
4c4b4cd2 7192static struct type *
76a01679
JB
7193ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7194 int noerr, int *dispp)
14f9c5c9
AS
7195{
7196 int i;
7197
7198 if (name == NULL)
7199 goto BadName;
7200
76a01679 7201 if (refok && type != NULL)
4c4b4cd2
PH
7202 while (1)
7203 {
61ee279c 7204 type = ada_check_typedef (type);
76a01679
JB
7205 if (TYPE_CODE (type) != TYPE_CODE_PTR
7206 && TYPE_CODE (type) != TYPE_CODE_REF)
7207 break;
7208 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7209 }
14f9c5c9 7210
76a01679 7211 if (type == NULL
1265e4aa
JB
7212 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7213 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7214 {
4c4b4cd2 7215 if (noerr)
76a01679 7216 return NULL;
4c4b4cd2 7217 else
76a01679
JB
7218 {
7219 target_terminal_ours ();
7220 gdb_flush (gdb_stdout);
323e0a4a
AC
7221 if (type == NULL)
7222 error (_("Type (null) is not a structure or union type"));
7223 else
7224 {
7225 /* XXX: type_sprint */
7226 fprintf_unfiltered (gdb_stderr, _("Type "));
7227 type_print (type, "", gdb_stderr, -1);
7228 error (_(" is not a structure or union type"));
7229 }
76a01679 7230 }
14f9c5c9
AS
7231 }
7232
7233 type = to_static_fixed_type (type);
7234
7235 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7236 {
0d5cff50 7237 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7238 struct type *t;
7239 int disp;
d2e4a39e 7240
14f9c5c9 7241 if (t_field_name == NULL)
4c4b4cd2 7242 continue;
14f9c5c9
AS
7243
7244 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7245 {
7246 if (dispp != NULL)
7247 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7248 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7249 }
14f9c5c9
AS
7250
7251 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7252 {
7253 disp = 0;
7254 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7255 0, 1, &disp);
7256 if (t != NULL)
7257 {
7258 if (dispp != NULL)
7259 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7260 return t;
7261 }
7262 }
14f9c5c9
AS
7263
7264 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7265 {
7266 int j;
5b4ee69b
MS
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7268 i));
4c4b4cd2
PH
7269
7270 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7271 {
b1f33ddd
JB
7272 /* FIXME pnh 2008/01/26: We check for a field that is
7273 NOT wrapped in a struct, since the compiler sometimes
7274 generates these for unchecked variant types. Revisit
0963b4bd 7275 if the compiler changes this practice. */
0d5cff50 7276 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7277 disp = 0;
b1f33ddd
JB
7278 if (v_field_name != NULL
7279 && field_name_match (v_field_name, name))
7280 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7281 else
0963b4bd
MS
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7283 j),
b1f33ddd
JB
7284 name, 0, 1, &disp);
7285
4c4b4cd2
PH
7286 if (t != NULL)
7287 {
7288 if (dispp != NULL)
7289 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7290 return t;
7291 }
7292 }
7293 }
14f9c5c9
AS
7294
7295 }
7296
7297BadName:
d2e4a39e 7298 if (!noerr)
14f9c5c9
AS
7299 {
7300 target_terminal_ours ();
7301 gdb_flush (gdb_stdout);
323e0a4a
AC
7302 if (name == NULL)
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" has no component named <null>"));
7308 }
7309 else
7310 {
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named %s"), name);
7315 }
14f9c5c9
AS
7316 }
7317
7318 return NULL;
7319}
7320
b1f33ddd
JB
7321/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7322 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7323 represents an unchecked union (that is, the variant part of a
0963b4bd 7324 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7325
7326static int
7327is_unchecked_variant (struct type *var_type, struct type *outer_type)
7328{
7329 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7330
b1f33ddd
JB
7331 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7332 == NULL);
7333}
7334
7335
14f9c5c9
AS
7336/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7337 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7338 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7339 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7340
d2e4a39e 7341int
ebf56fd3 7342ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7343 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7344{
7345 int others_clause;
7346 int i;
d2e4a39e 7347 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7348 struct value *outer;
7349 struct value *discrim;
14f9c5c9
AS
7350 LONGEST discrim_val;
7351
012370f6
TT
7352 /* Using plain value_from_contents_and_address here causes problems
7353 because we will end up trying to resolve a type that is currently
7354 being constructed. */
7355 outer = value_from_contents_and_address_unresolved (outer_type,
7356 outer_valaddr, 0);
0c281816
JB
7357 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7358 if (discrim == NULL)
14f9c5c9 7359 return -1;
0c281816 7360 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7361
7362 others_clause = -1;
7363 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7364 {
7365 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7366 others_clause = i;
14f9c5c9 7367 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7368 return i;
14f9c5c9
AS
7369 }
7370
7371 return others_clause;
7372}
d2e4a39e 7373\f
14f9c5c9
AS
7374
7375
4c4b4cd2 7376 /* Dynamic-Sized Records */
14f9c5c9
AS
7377
7378/* Strategy: The type ostensibly attached to a value with dynamic size
7379 (i.e., a size that is not statically recorded in the debugging
7380 data) does not accurately reflect the size or layout of the value.
7381 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7382 conventional types that are constructed on the fly. */
14f9c5c9
AS
7383
7384/* There is a subtle and tricky problem here. In general, we cannot
7385 determine the size of dynamic records without its data. However,
7386 the 'struct value' data structure, which GDB uses to represent
7387 quantities in the inferior process (the target), requires the size
7388 of the type at the time of its allocation in order to reserve space
7389 for GDB's internal copy of the data. That's why the
7390 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7391 rather than struct value*s.
14f9c5c9
AS
7392
7393 However, GDB's internal history variables ($1, $2, etc.) are
7394 struct value*s containing internal copies of the data that are not, in
7395 general, the same as the data at their corresponding addresses in
7396 the target. Fortunately, the types we give to these values are all
7397 conventional, fixed-size types (as per the strategy described
7398 above), so that we don't usually have to perform the
7399 'to_fixed_xxx_type' conversions to look at their values.
7400 Unfortunately, there is one exception: if one of the internal
7401 history variables is an array whose elements are unconstrained
7402 records, then we will need to create distinct fixed types for each
7403 element selected. */
7404
7405/* The upshot of all of this is that many routines take a (type, host
7406 address, target address) triple as arguments to represent a value.
7407 The host address, if non-null, is supposed to contain an internal
7408 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7409 target at the target address. */
14f9c5c9
AS
7410
7411/* Assuming that VAL0 represents a pointer value, the result of
7412 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7413 dynamic-sized types. */
14f9c5c9 7414
d2e4a39e
AS
7415struct value *
7416ada_value_ind (struct value *val0)
14f9c5c9 7417{
c48db5ca 7418 struct value *val = value_ind (val0);
5b4ee69b 7419
b50d69b5
JG
7420 if (ada_is_tagged_type (value_type (val), 0))
7421 val = ada_tag_value_at_base_address (val);
7422
4c4b4cd2 7423 return ada_to_fixed_value (val);
14f9c5c9
AS
7424}
7425
7426/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7427 qualifiers on VAL0. */
7428
d2e4a39e
AS
7429static struct value *
7430ada_coerce_ref (struct value *val0)
7431{
df407dfe 7432 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7433 {
7434 struct value *val = val0;
5b4ee69b 7435
994b9211 7436 val = coerce_ref (val);
b50d69b5
JG
7437
7438 if (ada_is_tagged_type (value_type (val), 0))
7439 val = ada_tag_value_at_base_address (val);
7440
4c4b4cd2 7441 return ada_to_fixed_value (val);
d2e4a39e
AS
7442 }
7443 else
14f9c5c9
AS
7444 return val0;
7445}
7446
7447/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7448 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7449
7450static unsigned int
ebf56fd3 7451align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7452{
7453 return (off + alignment - 1) & ~(alignment - 1);
7454}
7455
4c4b4cd2 7456/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7457
7458static unsigned int
ebf56fd3 7459field_alignment (struct type *type, int f)
14f9c5c9 7460{
d2e4a39e 7461 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7462 int len;
14f9c5c9
AS
7463 int align_offset;
7464
64a1bf19
JB
7465 /* The field name should never be null, unless the debugging information
7466 is somehow malformed. In this case, we assume the field does not
7467 require any alignment. */
7468 if (name == NULL)
7469 return 1;
7470
7471 len = strlen (name);
7472
4c4b4cd2
PH
7473 if (!isdigit (name[len - 1]))
7474 return 1;
14f9c5c9 7475
d2e4a39e 7476 if (isdigit (name[len - 2]))
14f9c5c9
AS
7477 align_offset = len - 2;
7478 else
7479 align_offset = len - 1;
7480
4c4b4cd2 7481 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7482 return TARGET_CHAR_BIT;
7483
4c4b4cd2
PH
7484 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7485}
7486
852dff6c 7487/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7488
852dff6c
JB
7489static struct symbol *
7490ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7491{
7492 struct symbol *sym;
7493
7494 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7495 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7496 return sym;
7497
4186eb54
KS
7498 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7499 return sym;
14f9c5c9
AS
7500}
7501
dddfab26
UW
7502/* Find a type named NAME. Ignores ambiguity. This routine will look
7503 solely for types defined by debug info, it will not search the GDB
7504 primitive types. */
4c4b4cd2 7505
852dff6c 7506static struct type *
ebf56fd3 7507ada_find_any_type (const char *name)
14f9c5c9 7508{
852dff6c 7509 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7510
14f9c5c9 7511 if (sym != NULL)
dddfab26 7512 return SYMBOL_TYPE (sym);
14f9c5c9 7513
dddfab26 7514 return NULL;
14f9c5c9
AS
7515}
7516
739593e0
JB
7517/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7518 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7519 symbol, in which case it is returned. Otherwise, this looks for
7520 symbols whose name is that of NAME_SYM suffixed with "___XR".
7521 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7522
7523struct symbol *
270140bd 7524ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7525{
739593e0 7526 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7527 struct symbol *sym;
7528
739593e0
JB
7529 if (strstr (name, "___XR") != NULL)
7530 return name_sym;
7531
aeb5907d
JB
7532 sym = find_old_style_renaming_symbol (name, block);
7533
7534 if (sym != NULL)
7535 return sym;
7536
0963b4bd 7537 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7538 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7539 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7540 return sym;
7541 else
7542 return NULL;
7543}
7544
7545static struct symbol *
270140bd 7546find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7547{
7f0df278 7548 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7549 char *rename;
7550
7551 if (function_sym != NULL)
7552 {
7553 /* If the symbol is defined inside a function, NAME is not fully
7554 qualified. This means we need to prepend the function name
7555 as well as adding the ``___XR'' suffix to build the name of
7556 the associated renaming symbol. */
0d5cff50 7557 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7558 /* Function names sometimes contain suffixes used
7559 for instance to qualify nested subprograms. When building
7560 the XR type name, we need to make sure that this suffix is
7561 not included. So do not include any suffix in the function
7562 name length below. */
69fadcdf 7563 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7564 const int rename_len = function_name_len + 2 /* "__" */
7565 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7566
529cad9c 7567 /* Strip the suffix if necessary. */
69fadcdf
JB
7568 ada_remove_trailing_digits (function_name, &function_name_len);
7569 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7570 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7571
4c4b4cd2
PH
7572 /* Library-level functions are a special case, as GNAT adds
7573 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7574 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7575 have this prefix, so we need to skip this prefix if present. */
7576 if (function_name_len > 5 /* "_ada_" */
7577 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7578 {
7579 function_name += 5;
7580 function_name_len -= 5;
7581 }
4c4b4cd2
PH
7582
7583 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7584 strncpy (rename, function_name, function_name_len);
7585 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7586 "__%s___XR", name);
4c4b4cd2
PH
7587 }
7588 else
7589 {
7590 const int rename_len = strlen (name) + 6;
5b4ee69b 7591
4c4b4cd2 7592 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7593 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7594 }
7595
852dff6c 7596 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7597}
7598
14f9c5c9 7599/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7600 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7601 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7602 otherwise return 0. */
7603
14f9c5c9 7604int
d2e4a39e 7605ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7606{
7607 if (type1 == NULL)
7608 return 1;
7609 else if (type0 == NULL)
7610 return 0;
7611 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7612 return 1;
7613 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7614 return 0;
4c4b4cd2
PH
7615 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7616 return 1;
ad82864c 7617 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7618 return 1;
4c4b4cd2
PH
7619 else if (ada_is_array_descriptor_type (type0)
7620 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7621 return 1;
aeb5907d
JB
7622 else
7623 {
7624 const char *type0_name = type_name_no_tag (type0);
7625 const char *type1_name = type_name_no_tag (type1);
7626
7627 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7628 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7629 return 1;
7630 }
14f9c5c9
AS
7631 return 0;
7632}
7633
7634/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7635 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7636
0d5cff50 7637const char *
d2e4a39e 7638ada_type_name (struct type *type)
14f9c5c9 7639{
d2e4a39e 7640 if (type == NULL)
14f9c5c9
AS
7641 return NULL;
7642 else if (TYPE_NAME (type) != NULL)
7643 return TYPE_NAME (type);
7644 else
7645 return TYPE_TAG_NAME (type);
7646}
7647
b4ba55a1
JB
7648/* Search the list of "descriptive" types associated to TYPE for a type
7649 whose name is NAME. */
7650
7651static struct type *
7652find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7653{
7654 struct type *result;
7655
c6044dd1
JB
7656 if (ada_ignore_descriptive_types_p)
7657 return NULL;
7658
b4ba55a1
JB
7659 /* If there no descriptive-type info, then there is no parallel type
7660 to be found. */
7661 if (!HAVE_GNAT_AUX_INFO (type))
7662 return NULL;
7663
7664 result = TYPE_DESCRIPTIVE_TYPE (type);
7665 while (result != NULL)
7666 {
0d5cff50 7667 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7668
7669 if (result_name == NULL)
7670 {
7671 warning (_("unexpected null name on descriptive type"));
7672 return NULL;
7673 }
7674
7675 /* If the names match, stop. */
7676 if (strcmp (result_name, name) == 0)
7677 break;
7678
7679 /* Otherwise, look at the next item on the list, if any. */
7680 if (HAVE_GNAT_AUX_INFO (result))
7681 result = TYPE_DESCRIPTIVE_TYPE (result);
7682 else
7683 result = NULL;
7684 }
7685
7686 /* If we didn't find a match, see whether this is a packed array. With
7687 older compilers, the descriptive type information is either absent or
7688 irrelevant when it comes to packed arrays so the above lookup fails.
7689 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7690 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7691 return ada_find_any_type (name);
7692
7693 return result;
7694}
7695
7696/* Find a parallel type to TYPE with the specified NAME, using the
7697 descriptive type taken from the debugging information, if available,
7698 and otherwise using the (slower) name-based method. */
7699
7700static struct type *
7701ada_find_parallel_type_with_name (struct type *type, const char *name)
7702{
7703 struct type *result = NULL;
7704
7705 if (HAVE_GNAT_AUX_INFO (type))
7706 result = find_parallel_type_by_descriptive_type (type, name);
7707 else
7708 result = ada_find_any_type (name);
7709
7710 return result;
7711}
7712
7713/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7714 SUFFIX to the name of TYPE. */
14f9c5c9 7715
d2e4a39e 7716struct type *
ebf56fd3 7717ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7718{
0d5cff50
DE
7719 char *name;
7720 const char *typename = ada_type_name (type);
14f9c5c9 7721 int len;
d2e4a39e 7722
14f9c5c9
AS
7723 if (typename == NULL)
7724 return NULL;
7725
7726 len = strlen (typename);
7727
b4ba55a1 7728 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7729
7730 strcpy (name, typename);
7731 strcpy (name + len, suffix);
7732
b4ba55a1 7733 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7734}
7735
14f9c5c9 7736/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7737 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7738
d2e4a39e
AS
7739static struct type *
7740dynamic_template_type (struct type *type)
14f9c5c9 7741{
61ee279c 7742 type = ada_check_typedef (type);
14f9c5c9
AS
7743
7744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7745 || ada_type_name (type) == NULL)
14f9c5c9 7746 return NULL;
d2e4a39e 7747 else
14f9c5c9
AS
7748 {
7749 int len = strlen (ada_type_name (type));
5b4ee69b 7750
4c4b4cd2
PH
7751 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7752 return type;
14f9c5c9 7753 else
4c4b4cd2 7754 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7755 }
7756}
7757
7758/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7759 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7760
d2e4a39e
AS
7761static int
7762is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7763{
7764 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7765
d2e4a39e 7766 return name != NULL
14f9c5c9
AS
7767 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7768 && strstr (name, "___XVL") != NULL;
7769}
7770
4c4b4cd2
PH
7771/* The index of the variant field of TYPE, or -1 if TYPE does not
7772 represent a variant record type. */
14f9c5c9 7773
d2e4a39e 7774static int
4c4b4cd2 7775variant_field_index (struct type *type)
14f9c5c9
AS
7776{
7777 int f;
7778
4c4b4cd2
PH
7779 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7780 return -1;
7781
7782 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7783 {
7784 if (ada_is_variant_part (type, f))
7785 return f;
7786 }
7787 return -1;
14f9c5c9
AS
7788}
7789
4c4b4cd2
PH
7790/* A record type with no fields. */
7791
d2e4a39e 7792static struct type *
e9bb382b 7793empty_record (struct type *template)
14f9c5c9 7794{
e9bb382b 7795 struct type *type = alloc_type_copy (template);
5b4ee69b 7796
14f9c5c9
AS
7797 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7798 TYPE_NFIELDS (type) = 0;
7799 TYPE_FIELDS (type) = NULL;
b1f33ddd 7800 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7801 TYPE_NAME (type) = "<empty>";
7802 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7803 TYPE_LENGTH (type) = 0;
7804 return type;
7805}
7806
7807/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7808 the value of type TYPE at VALADDR or ADDRESS (see comments at
7809 the beginning of this section) VAL according to GNAT conventions.
7810 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7811 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7812 an outer-level type (i.e., as opposed to a branch of a variant.) A
7813 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7814 of the variant.
14f9c5c9 7815
4c4b4cd2
PH
7816 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7817 length are not statically known are discarded. As a consequence,
7818 VALADDR, ADDRESS and DVAL0 are ignored.
7819
7820 NOTE: Limitations: For now, we assume that dynamic fields and
7821 variants occupy whole numbers of bytes. However, they need not be
7822 byte-aligned. */
7823
7824struct type *
10a2c479 7825ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7826 const gdb_byte *valaddr,
4c4b4cd2
PH
7827 CORE_ADDR address, struct value *dval0,
7828 int keep_dynamic_fields)
14f9c5c9 7829{
d2e4a39e
AS
7830 struct value *mark = value_mark ();
7831 struct value *dval;
7832 struct type *rtype;
14f9c5c9 7833 int nfields, bit_len;
4c4b4cd2 7834 int variant_field;
14f9c5c9 7835 long off;
d94e4f4f 7836 int fld_bit_len;
14f9c5c9
AS
7837 int f;
7838
4c4b4cd2
PH
7839 /* Compute the number of fields in this record type that are going
7840 to be processed: unless keep_dynamic_fields, this includes only
7841 fields whose position and length are static will be processed. */
7842 if (keep_dynamic_fields)
7843 nfields = TYPE_NFIELDS (type);
7844 else
7845 {
7846 nfields = 0;
76a01679 7847 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7848 && !ada_is_variant_part (type, nfields)
7849 && !is_dynamic_field (type, nfields))
7850 nfields++;
7851 }
7852
e9bb382b 7853 rtype = alloc_type_copy (type);
14f9c5c9
AS
7854 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7855 INIT_CPLUS_SPECIFIC (rtype);
7856 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7857 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7858 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7859 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7860 TYPE_NAME (rtype) = ada_type_name (type);
7861 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7862 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7863
d2e4a39e
AS
7864 off = 0;
7865 bit_len = 0;
4c4b4cd2
PH
7866 variant_field = -1;
7867
14f9c5c9
AS
7868 for (f = 0; f < nfields; f += 1)
7869 {
6c038f32
PH
7870 off = align_value (off, field_alignment (type, f))
7871 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7872 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7873 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7874
d2e4a39e 7875 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7876 {
7877 variant_field = f;
d94e4f4f 7878 fld_bit_len = 0;
4c4b4cd2 7879 }
14f9c5c9 7880 else if (is_dynamic_field (type, f))
4c4b4cd2 7881 {
284614f0
JB
7882 const gdb_byte *field_valaddr = valaddr;
7883 CORE_ADDR field_address = address;
7884 struct type *field_type =
7885 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7886
4c4b4cd2 7887 if (dval0 == NULL)
b5304971
JG
7888 {
7889 /* rtype's length is computed based on the run-time
7890 value of discriminants. If the discriminants are not
7891 initialized, the type size may be completely bogus and
0963b4bd 7892 GDB may fail to allocate a value for it. So check the
b5304971
JG
7893 size first before creating the value. */
7894 check_size (rtype);
012370f6
TT
7895 /* Using plain value_from_contents_and_address here
7896 causes problems because we will end up trying to
7897 resolve a type that is currently being
7898 constructed. */
7899 dval = value_from_contents_and_address_unresolved (rtype,
7900 valaddr,
7901 address);
9f1f738a 7902 rtype = value_type (dval);
b5304971 7903 }
4c4b4cd2
PH
7904 else
7905 dval = dval0;
7906
284614f0
JB
7907 /* If the type referenced by this field is an aligner type, we need
7908 to unwrap that aligner type, because its size might not be set.
7909 Keeping the aligner type would cause us to compute the wrong
7910 size for this field, impacting the offset of the all the fields
7911 that follow this one. */
7912 if (ada_is_aligner_type (field_type))
7913 {
7914 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7915
7916 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7917 field_address = cond_offset_target (field_address, field_offset);
7918 field_type = ada_aligned_type (field_type);
7919 }
7920
7921 field_valaddr = cond_offset_host (field_valaddr,
7922 off / TARGET_CHAR_BIT);
7923 field_address = cond_offset_target (field_address,
7924 off / TARGET_CHAR_BIT);
7925
7926 /* Get the fixed type of the field. Note that, in this case,
7927 we do not want to get the real type out of the tag: if
7928 the current field is the parent part of a tagged record,
7929 we will get the tag of the object. Clearly wrong: the real
7930 type of the parent is not the real type of the child. We
7931 would end up in an infinite loop. */
7932 field_type = ada_get_base_type (field_type);
7933 field_type = ada_to_fixed_type (field_type, field_valaddr,
7934 field_address, dval, 0);
27f2a97b
JB
7935 /* If the field size is already larger than the maximum
7936 object size, then the record itself will necessarily
7937 be larger than the maximum object size. We need to make
7938 this check now, because the size might be so ridiculously
7939 large (due to an uninitialized variable in the inferior)
7940 that it would cause an overflow when adding it to the
7941 record size. */
7942 check_size (field_type);
284614f0
JB
7943
7944 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7945 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7946 /* The multiplication can potentially overflow. But because
7947 the field length has been size-checked just above, and
7948 assuming that the maximum size is a reasonable value,
7949 an overflow should not happen in practice. So rather than
7950 adding overflow recovery code to this already complex code,
7951 we just assume that it's not going to happen. */
d94e4f4f 7952 fld_bit_len =
4c4b4cd2
PH
7953 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7954 }
14f9c5c9 7955 else
4c4b4cd2 7956 {
5ded5331
JB
7957 /* Note: If this field's type is a typedef, it is important
7958 to preserve the typedef layer.
7959
7960 Otherwise, we might be transforming a typedef to a fat
7961 pointer (encoding a pointer to an unconstrained array),
7962 into a basic fat pointer (encoding an unconstrained
7963 array). As both types are implemented using the same
7964 structure, the typedef is the only clue which allows us
7965 to distinguish between the two options. Stripping it
7966 would prevent us from printing this field appropriately. */
7967 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7968 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7969 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7970 fld_bit_len =
4c4b4cd2
PH
7971 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7972 else
5ded5331
JB
7973 {
7974 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7975
7976 /* We need to be careful of typedefs when computing
7977 the length of our field. If this is a typedef,
7978 get the length of the target type, not the length
7979 of the typedef. */
7980 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7981 field_type = ada_typedef_target_type (field_type);
7982
7983 fld_bit_len =
7984 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7985 }
4c4b4cd2 7986 }
14f9c5c9 7987 if (off + fld_bit_len > bit_len)
4c4b4cd2 7988 bit_len = off + fld_bit_len;
d94e4f4f 7989 off += fld_bit_len;
4c4b4cd2
PH
7990 TYPE_LENGTH (rtype) =
7991 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7992 }
4c4b4cd2
PH
7993
7994 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7995 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7996 the record. This can happen in the presence of representation
7997 clauses. */
7998 if (variant_field >= 0)
7999 {
8000 struct type *branch_type;
8001
8002 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8003
8004 if (dval0 == NULL)
9f1f738a 8005 {
012370f6
TT
8006 /* Using plain value_from_contents_and_address here causes
8007 problems because we will end up trying to resolve a type
8008 that is currently being constructed. */
8009 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8010 address);
9f1f738a
SA
8011 rtype = value_type (dval);
8012 }
4c4b4cd2
PH
8013 else
8014 dval = dval0;
8015
8016 branch_type =
8017 to_fixed_variant_branch_type
8018 (TYPE_FIELD_TYPE (type, variant_field),
8019 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8020 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8021 if (branch_type == NULL)
8022 {
8023 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8024 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8025 TYPE_NFIELDS (rtype) -= 1;
8026 }
8027 else
8028 {
8029 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8030 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8031 fld_bit_len =
8032 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8033 TARGET_CHAR_BIT;
8034 if (off + fld_bit_len > bit_len)
8035 bit_len = off + fld_bit_len;
8036 TYPE_LENGTH (rtype) =
8037 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8038 }
8039 }
8040
714e53ab
PH
8041 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8042 should contain the alignment of that record, which should be a strictly
8043 positive value. If null or negative, then something is wrong, most
8044 probably in the debug info. In that case, we don't round up the size
0963b4bd 8045 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8046 the current RTYPE length might be good enough for our purposes. */
8047 if (TYPE_LENGTH (type) <= 0)
8048 {
323e0a4a
AC
8049 if (TYPE_NAME (rtype))
8050 warning (_("Invalid type size for `%s' detected: %d."),
8051 TYPE_NAME (rtype), TYPE_LENGTH (type));
8052 else
8053 warning (_("Invalid type size for <unnamed> detected: %d."),
8054 TYPE_LENGTH (type));
714e53ab
PH
8055 }
8056 else
8057 {
8058 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8059 TYPE_LENGTH (type));
8060 }
14f9c5c9
AS
8061
8062 value_free_to_mark (mark);
d2e4a39e 8063 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8064 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8065 return rtype;
8066}
8067
4c4b4cd2
PH
8068/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8069 of 1. */
14f9c5c9 8070
d2e4a39e 8071static struct type *
fc1a4b47 8072template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8073 CORE_ADDR address, struct value *dval0)
8074{
8075 return ada_template_to_fixed_record_type_1 (type, valaddr,
8076 address, dval0, 1);
8077}
8078
8079/* An ordinary record type in which ___XVL-convention fields and
8080 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8081 static approximations, containing all possible fields. Uses
8082 no runtime values. Useless for use in values, but that's OK,
8083 since the results are used only for type determinations. Works on both
8084 structs and unions. Representation note: to save space, we memorize
8085 the result of this function in the TYPE_TARGET_TYPE of the
8086 template type. */
8087
8088static struct type *
8089template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8090{
8091 struct type *type;
8092 int nfields;
8093 int f;
8094
4c4b4cd2
PH
8095 if (TYPE_TARGET_TYPE (type0) != NULL)
8096 return TYPE_TARGET_TYPE (type0);
8097
8098 nfields = TYPE_NFIELDS (type0);
8099 type = type0;
14f9c5c9
AS
8100
8101 for (f = 0; f < nfields; f += 1)
8102 {
61ee279c 8103 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8104 struct type *new_type;
14f9c5c9 8105
4c4b4cd2
PH
8106 if (is_dynamic_field (type0, f))
8107 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8108 else
f192137b 8109 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8110 if (type == type0 && new_type != field_type)
8111 {
e9bb382b 8112 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8113 TYPE_CODE (type) = TYPE_CODE (type0);
8114 INIT_CPLUS_SPECIFIC (type);
8115 TYPE_NFIELDS (type) = nfields;
8116 TYPE_FIELDS (type) = (struct field *)
8117 TYPE_ALLOC (type, nfields * sizeof (struct field));
8118 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8119 sizeof (struct field) * nfields);
8120 TYPE_NAME (type) = ada_type_name (type0);
8121 TYPE_TAG_NAME (type) = NULL;
876cecd0 8122 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8123 TYPE_LENGTH (type) = 0;
8124 }
8125 TYPE_FIELD_TYPE (type, f) = new_type;
8126 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8127 }
14f9c5c9
AS
8128 return type;
8129}
8130
4c4b4cd2 8131/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8132 whose address in memory is ADDRESS, returns a revision of TYPE,
8133 which should be a non-dynamic-sized record, in which the variant
8134 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8135 for discriminant values in DVAL0, which can be NULL if the record
8136 contains the necessary discriminant values. */
8137
d2e4a39e 8138static struct type *
fc1a4b47 8139to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8140 CORE_ADDR address, struct value *dval0)
14f9c5c9 8141{
d2e4a39e 8142 struct value *mark = value_mark ();
4c4b4cd2 8143 struct value *dval;
d2e4a39e 8144 struct type *rtype;
14f9c5c9
AS
8145 struct type *branch_type;
8146 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8147 int variant_field = variant_field_index (type);
14f9c5c9 8148
4c4b4cd2 8149 if (variant_field == -1)
14f9c5c9
AS
8150 return type;
8151
4c4b4cd2 8152 if (dval0 == NULL)
9f1f738a
SA
8153 {
8154 dval = value_from_contents_and_address (type, valaddr, address);
8155 type = value_type (dval);
8156 }
4c4b4cd2
PH
8157 else
8158 dval = dval0;
8159
e9bb382b 8160 rtype = alloc_type_copy (type);
14f9c5c9 8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8162 INIT_CPLUS_SPECIFIC (rtype);
8163 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8164 TYPE_FIELDS (rtype) =
8165 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8167 sizeof (struct field) * nfields);
14f9c5c9
AS
8168 TYPE_NAME (rtype) = ada_type_name (type);
8169 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8170 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8171 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8172
4c4b4cd2
PH
8173 branch_type = to_fixed_variant_branch_type
8174 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8175 cond_offset_host (valaddr,
4c4b4cd2
PH
8176 TYPE_FIELD_BITPOS (type, variant_field)
8177 / TARGET_CHAR_BIT),
d2e4a39e 8178 cond_offset_target (address,
4c4b4cd2
PH
8179 TYPE_FIELD_BITPOS (type, variant_field)
8180 / TARGET_CHAR_BIT), dval);
d2e4a39e 8181 if (branch_type == NULL)
14f9c5c9 8182 {
4c4b4cd2 8183 int f;
5b4ee69b 8184
4c4b4cd2
PH
8185 for (f = variant_field + 1; f < nfields; f += 1)
8186 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8187 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8188 }
8189 else
8190 {
4c4b4cd2
PH
8191 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8192 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8193 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8194 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8195 }
4c4b4cd2 8196 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8197
4c4b4cd2 8198 value_free_to_mark (mark);
14f9c5c9
AS
8199 return rtype;
8200}
8201
8202/* An ordinary record type (with fixed-length fields) that describes
8203 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8204 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8205 should be in DVAL, a record value; it may be NULL if the object
8206 at ADDR itself contains any necessary discriminant values.
8207 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8208 values from the record are needed. Except in the case that DVAL,
8209 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8210 unchecked) is replaced by a particular branch of the variant.
8211
8212 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8213 is questionable and may be removed. It can arise during the
8214 processing of an unconstrained-array-of-record type where all the
8215 variant branches have exactly the same size. This is because in
8216 such cases, the compiler does not bother to use the XVS convention
8217 when encoding the record. I am currently dubious of this
8218 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8219
d2e4a39e 8220static struct type *
fc1a4b47 8221to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8222 CORE_ADDR address, struct value *dval)
14f9c5c9 8223{
d2e4a39e 8224 struct type *templ_type;
14f9c5c9 8225
876cecd0 8226 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8227 return type0;
8228
d2e4a39e 8229 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8230
8231 if (templ_type != NULL)
8232 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8233 else if (variant_field_index (type0) >= 0)
8234 {
8235 if (dval == NULL && valaddr == NULL && address == 0)
8236 return type0;
8237 return to_record_with_fixed_variant_part (type0, valaddr, address,
8238 dval);
8239 }
14f9c5c9
AS
8240 else
8241 {
876cecd0 8242 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8243 return type0;
8244 }
8245
8246}
8247
8248/* An ordinary record type (with fixed-length fields) that describes
8249 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8250 union type. Any necessary discriminants' values should be in DVAL,
8251 a record value. That is, this routine selects the appropriate
8252 branch of the union at ADDR according to the discriminant value
b1f33ddd 8253 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8254 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8255
d2e4a39e 8256static struct type *
fc1a4b47 8257to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8258 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8259{
8260 int which;
d2e4a39e
AS
8261 struct type *templ_type;
8262 struct type *var_type;
14f9c5c9
AS
8263
8264 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8265 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8266 else
14f9c5c9
AS
8267 var_type = var_type0;
8268
8269 templ_type = ada_find_parallel_type (var_type, "___XVU");
8270
8271 if (templ_type != NULL)
8272 var_type = templ_type;
8273
b1f33ddd
JB
8274 if (is_unchecked_variant (var_type, value_type (dval)))
8275 return var_type0;
d2e4a39e
AS
8276 which =
8277 ada_which_variant_applies (var_type,
0fd88904 8278 value_type (dval), value_contents (dval));
14f9c5c9
AS
8279
8280 if (which < 0)
e9bb382b 8281 return empty_record (var_type);
14f9c5c9 8282 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8283 return to_fixed_record_type
d2e4a39e
AS
8284 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8285 valaddr, address, dval);
4c4b4cd2 8286 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8287 return
8288 to_fixed_record_type
8289 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8290 else
8291 return TYPE_FIELD_TYPE (var_type, which);
8292}
8293
8294/* Assuming that TYPE0 is an array type describing the type of a value
8295 at ADDR, and that DVAL describes a record containing any
8296 discriminants used in TYPE0, returns a type for the value that
8297 contains no dynamic components (that is, no components whose sizes
8298 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8299 true, gives an error message if the resulting type's size is over
4c4b4cd2 8300 varsize_limit. */
14f9c5c9 8301
d2e4a39e
AS
8302static struct type *
8303to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8304 int ignore_too_big)
14f9c5c9 8305{
d2e4a39e
AS
8306 struct type *index_type_desc;
8307 struct type *result;
ad82864c 8308 int constrained_packed_array_p;
14f9c5c9 8309
b0dd7688 8310 type0 = ada_check_typedef (type0);
284614f0 8311 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8312 return type0;
14f9c5c9 8313
ad82864c
JB
8314 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8315 if (constrained_packed_array_p)
8316 type0 = decode_constrained_packed_array_type (type0);
284614f0 8317
14f9c5c9 8318 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8319 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8320 if (index_type_desc == NULL)
8321 {
61ee279c 8322 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8323
14f9c5c9 8324 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8325 depend on the contents of the array in properly constructed
8326 debugging data. */
529cad9c
PH
8327 /* Create a fixed version of the array element type.
8328 We're not providing the address of an element here,
e1d5a0d2 8329 and thus the actual object value cannot be inspected to do
529cad9c
PH
8330 the conversion. This should not be a problem, since arrays of
8331 unconstrained objects are not allowed. In particular, all
8332 the elements of an array of a tagged type should all be of
8333 the same type specified in the debugging info. No need to
8334 consult the object tag. */
1ed6ede0 8335 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8336
284614f0
JB
8337 /* Make sure we always create a new array type when dealing with
8338 packed array types, since we're going to fix-up the array
8339 type length and element bitsize a little further down. */
ad82864c 8340 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8341 result = type0;
14f9c5c9 8342 else
e9bb382b 8343 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8344 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8345 }
8346 else
8347 {
8348 int i;
8349 struct type *elt_type0;
8350
8351 elt_type0 = type0;
8352 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8353 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8354
8355 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8356 depend on the contents of the array in properly constructed
8357 debugging data. */
529cad9c
PH
8358 /* Create a fixed version of the array element type.
8359 We're not providing the address of an element here,
e1d5a0d2 8360 and thus the actual object value cannot be inspected to do
529cad9c
PH
8361 the conversion. This should not be a problem, since arrays of
8362 unconstrained objects are not allowed. In particular, all
8363 the elements of an array of a tagged type should all be of
8364 the same type specified in the debugging info. No need to
8365 consult the object tag. */
1ed6ede0
JB
8366 result =
8367 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8368
8369 elt_type0 = type0;
14f9c5c9 8370 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8371 {
8372 struct type *range_type =
28c85d6c 8373 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8374
e9bb382b 8375 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8376 result, range_type);
1ce677a4 8377 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8378 }
d2e4a39e 8379 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8380 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8381 }
8382
2e6fda7d
JB
8383 /* We want to preserve the type name. This can be useful when
8384 trying to get the type name of a value that has already been
8385 printed (for instance, if the user did "print VAR; whatis $". */
8386 TYPE_NAME (result) = TYPE_NAME (type0);
8387
ad82864c 8388 if (constrained_packed_array_p)
284614f0
JB
8389 {
8390 /* So far, the resulting type has been created as if the original
8391 type was a regular (non-packed) array type. As a result, the
8392 bitsize of the array elements needs to be set again, and the array
8393 length needs to be recomputed based on that bitsize. */
8394 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8395 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8396
8397 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8398 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8399 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8400 TYPE_LENGTH (result)++;
8401 }
8402
876cecd0 8403 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8404 return result;
d2e4a39e 8405}
14f9c5c9
AS
8406
8407
8408/* A standard type (containing no dynamically sized components)
8409 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8410 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8411 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8412 ADDRESS or in VALADDR contains these discriminants.
8413
1ed6ede0
JB
8414 If CHECK_TAG is not null, in the case of tagged types, this function
8415 attempts to locate the object's tag and use it to compute the actual
8416 type. However, when ADDRESS is null, we cannot use it to determine the
8417 location of the tag, and therefore compute the tagged type's actual type.
8418 So we return the tagged type without consulting the tag. */
529cad9c 8419
f192137b
JB
8420static struct type *
8421ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8422 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8423{
61ee279c 8424 type = ada_check_typedef (type);
d2e4a39e
AS
8425 switch (TYPE_CODE (type))
8426 {
8427 default:
14f9c5c9 8428 return type;
d2e4a39e 8429 case TYPE_CODE_STRUCT:
4c4b4cd2 8430 {
76a01679 8431 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8432 struct type *fixed_record_type =
8433 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8434
529cad9c
PH
8435 /* If STATIC_TYPE is a tagged type and we know the object's address,
8436 then we can determine its tag, and compute the object's actual
0963b4bd 8437 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8438 type (the parent part of the record may have dynamic fields
8439 and the way the location of _tag is expressed may depend on
8440 them). */
529cad9c 8441
1ed6ede0 8442 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8443 {
b50d69b5
JG
8444 struct value *tag =
8445 value_tag_from_contents_and_address
8446 (fixed_record_type,
8447 valaddr,
8448 address);
8449 struct type *real_type = type_from_tag (tag);
8450 struct value *obj =
8451 value_from_contents_and_address (fixed_record_type,
8452 valaddr,
8453 address);
9f1f738a 8454 fixed_record_type = value_type (obj);
76a01679 8455 if (real_type != NULL)
b50d69b5
JG
8456 return to_fixed_record_type
8457 (real_type, NULL,
8458 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8459 }
4af88198
JB
8460
8461 /* Check to see if there is a parallel ___XVZ variable.
8462 If there is, then it provides the actual size of our type. */
8463 else if (ada_type_name (fixed_record_type) != NULL)
8464 {
0d5cff50 8465 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8466 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8467 int xvz_found = 0;
8468 LONGEST size;
8469
88c15c34 8470 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8471 size = get_int_var_value (xvz_name, &xvz_found);
8472 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8473 {
8474 fixed_record_type = copy_type (fixed_record_type);
8475 TYPE_LENGTH (fixed_record_type) = size;
8476
8477 /* The FIXED_RECORD_TYPE may have be a stub. We have
8478 observed this when the debugging info is STABS, and
8479 apparently it is something that is hard to fix.
8480
8481 In practice, we don't need the actual type definition
8482 at all, because the presence of the XVZ variable allows us
8483 to assume that there must be a XVS type as well, which we
8484 should be able to use later, when we need the actual type
8485 definition.
8486
8487 In the meantime, pretend that the "fixed" type we are
8488 returning is NOT a stub, because this can cause trouble
8489 when using this type to create new types targeting it.
8490 Indeed, the associated creation routines often check
8491 whether the target type is a stub and will try to replace
0963b4bd 8492 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8493 might cause the new type to have the wrong size too.
8494 Consider the case of an array, for instance, where the size
8495 of the array is computed from the number of elements in
8496 our array multiplied by the size of its element. */
8497 TYPE_STUB (fixed_record_type) = 0;
8498 }
8499 }
1ed6ede0 8500 return fixed_record_type;
4c4b4cd2 8501 }
d2e4a39e 8502 case TYPE_CODE_ARRAY:
4c4b4cd2 8503 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8504 case TYPE_CODE_UNION:
8505 if (dval == NULL)
4c4b4cd2 8506 return type;
d2e4a39e 8507 else
4c4b4cd2 8508 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8509 }
14f9c5c9
AS
8510}
8511
f192137b
JB
8512/* The same as ada_to_fixed_type_1, except that it preserves the type
8513 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8514
8515 The typedef layer needs be preserved in order to differentiate between
8516 arrays and array pointers when both types are implemented using the same
8517 fat pointer. In the array pointer case, the pointer is encoded as
8518 a typedef of the pointer type. For instance, considering:
8519
8520 type String_Access is access String;
8521 S1 : String_Access := null;
8522
8523 To the debugger, S1 is defined as a typedef of type String. But
8524 to the user, it is a pointer. So if the user tries to print S1,
8525 we should not dereference the array, but print the array address
8526 instead.
8527
8528 If we didn't preserve the typedef layer, we would lose the fact that
8529 the type is to be presented as a pointer (needs de-reference before
8530 being printed). And we would also use the source-level type name. */
f192137b
JB
8531
8532struct type *
8533ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8534 CORE_ADDR address, struct value *dval, int check_tag)
8535
8536{
8537 struct type *fixed_type =
8538 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8539
96dbd2c1
JB
8540 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8541 then preserve the typedef layer.
8542
8543 Implementation note: We can only check the main-type portion of
8544 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8545 from TYPE now returns a type that has the same instance flags
8546 as TYPE. For instance, if TYPE is a "typedef const", and its
8547 target type is a "struct", then the typedef elimination will return
8548 a "const" version of the target type. See check_typedef for more
8549 details about how the typedef layer elimination is done.
8550
8551 brobecker/2010-11-19: It seems to me that the only case where it is
8552 useful to preserve the typedef layer is when dealing with fat pointers.
8553 Perhaps, we could add a check for that and preserve the typedef layer
8554 only in that situation. But this seems unecessary so far, probably
8555 because we call check_typedef/ada_check_typedef pretty much everywhere.
8556 */
f192137b 8557 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8558 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8559 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8560 return type;
8561
8562 return fixed_type;
8563}
8564
14f9c5c9 8565/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8566 TYPE0, but based on no runtime data. */
14f9c5c9 8567
d2e4a39e
AS
8568static struct type *
8569to_static_fixed_type (struct type *type0)
14f9c5c9 8570{
d2e4a39e 8571 struct type *type;
14f9c5c9
AS
8572
8573 if (type0 == NULL)
8574 return NULL;
8575
876cecd0 8576 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8577 return type0;
8578
61ee279c 8579 type0 = ada_check_typedef (type0);
d2e4a39e 8580
14f9c5c9
AS
8581 switch (TYPE_CODE (type0))
8582 {
8583 default:
8584 return type0;
8585 case TYPE_CODE_STRUCT:
8586 type = dynamic_template_type (type0);
d2e4a39e 8587 if (type != NULL)
4c4b4cd2
PH
8588 return template_to_static_fixed_type (type);
8589 else
8590 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8591 case TYPE_CODE_UNION:
8592 type = ada_find_parallel_type (type0, "___XVU");
8593 if (type != NULL)
4c4b4cd2
PH
8594 return template_to_static_fixed_type (type);
8595 else
8596 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8597 }
8598}
8599
4c4b4cd2
PH
8600/* A static approximation of TYPE with all type wrappers removed. */
8601
d2e4a39e
AS
8602static struct type *
8603static_unwrap_type (struct type *type)
14f9c5c9
AS
8604{
8605 if (ada_is_aligner_type (type))
8606 {
61ee279c 8607 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8608 if (ada_type_name (type1) == NULL)
4c4b4cd2 8609 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8610
8611 return static_unwrap_type (type1);
8612 }
d2e4a39e 8613 else
14f9c5c9 8614 {
d2e4a39e 8615 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8616
d2e4a39e 8617 if (raw_real_type == type)
4c4b4cd2 8618 return type;
14f9c5c9 8619 else
4c4b4cd2 8620 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8621 }
8622}
8623
8624/* In some cases, incomplete and private types require
4c4b4cd2 8625 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8626 type Foo;
8627 type FooP is access Foo;
8628 V: FooP;
8629 type Foo is array ...;
4c4b4cd2 8630 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8631 cross-references to such types, we instead substitute for FooP a
8632 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8633 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8634
8635/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8636 exists, otherwise TYPE. */
8637
d2e4a39e 8638struct type *
61ee279c 8639ada_check_typedef (struct type *type)
14f9c5c9 8640{
727e3d2e
JB
8641 if (type == NULL)
8642 return NULL;
8643
720d1a40
JB
8644 /* If our type is a typedef type of a fat pointer, then we're done.
8645 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8646 what allows us to distinguish between fat pointers that represent
8647 array types, and fat pointers that represent array access types
8648 (in both cases, the compiler implements them as fat pointers). */
8649 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8650 && is_thick_pntr (ada_typedef_target_type (type)))
8651 return type;
8652
14f9c5c9
AS
8653 CHECK_TYPEDEF (type);
8654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8655 || !TYPE_STUB (type)
14f9c5c9
AS
8656 || TYPE_TAG_NAME (type) == NULL)
8657 return type;
d2e4a39e 8658 else
14f9c5c9 8659 {
0d5cff50 8660 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8661 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8662
05e522ef
JB
8663 if (type1 == NULL)
8664 return type;
8665
8666 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8667 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8668 types, only for the typedef-to-array types). If that's the case,
8669 strip the typedef layer. */
8670 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8671 type1 = ada_check_typedef (type1);
8672
8673 return type1;
14f9c5c9
AS
8674 }
8675}
8676
8677/* A value representing the data at VALADDR/ADDRESS as described by
8678 type TYPE0, but with a standard (static-sized) type that correctly
8679 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8680 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8681 creation of struct values]. */
14f9c5c9 8682
4c4b4cd2
PH
8683static struct value *
8684ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8685 struct value *val0)
14f9c5c9 8686{
1ed6ede0 8687 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8688
14f9c5c9
AS
8689 if (type == type0 && val0 != NULL)
8690 return val0;
d2e4a39e 8691 else
4c4b4cd2
PH
8692 return value_from_contents_and_address (type, 0, address);
8693}
8694
8695/* A value representing VAL, but with a standard (static-sized) type
8696 that correctly describes it. Does not necessarily create a new
8697 value. */
8698
0c3acc09 8699struct value *
4c4b4cd2
PH
8700ada_to_fixed_value (struct value *val)
8701{
c48db5ca
JB
8702 val = unwrap_value (val);
8703 val = ada_to_fixed_value_create (value_type (val),
8704 value_address (val),
8705 val);
8706 return val;
14f9c5c9 8707}
d2e4a39e 8708\f
14f9c5c9 8709
14f9c5c9
AS
8710/* Attributes */
8711
4c4b4cd2
PH
8712/* Table mapping attribute numbers to names.
8713 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8714
d2e4a39e 8715static const char *attribute_names[] = {
14f9c5c9
AS
8716 "<?>",
8717
d2e4a39e 8718 "first",
14f9c5c9
AS
8719 "last",
8720 "length",
8721 "image",
14f9c5c9
AS
8722 "max",
8723 "min",
4c4b4cd2
PH
8724 "modulus",
8725 "pos",
8726 "size",
8727 "tag",
14f9c5c9 8728 "val",
14f9c5c9
AS
8729 0
8730};
8731
d2e4a39e 8732const char *
4c4b4cd2 8733ada_attribute_name (enum exp_opcode n)
14f9c5c9 8734{
4c4b4cd2
PH
8735 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8736 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8737 else
8738 return attribute_names[0];
8739}
8740
4c4b4cd2 8741/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8742
4c4b4cd2
PH
8743static LONGEST
8744pos_atr (struct value *arg)
14f9c5c9 8745{
24209737
PH
8746 struct value *val = coerce_ref (arg);
8747 struct type *type = value_type (val);
14f9c5c9 8748
d2e4a39e 8749 if (!discrete_type_p (type))
323e0a4a 8750 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8751
8752 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8753 {
8754 int i;
24209737 8755 LONGEST v = value_as_long (val);
14f9c5c9 8756
d2e4a39e 8757 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8758 {
14e75d8e 8759 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8760 return i;
8761 }
323e0a4a 8762 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8763 }
8764 else
24209737 8765 return value_as_long (val);
4c4b4cd2
PH
8766}
8767
8768static struct value *
3cb382c9 8769value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8770{
3cb382c9 8771 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8772}
8773
4c4b4cd2 8774/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8775
d2e4a39e
AS
8776static struct value *
8777value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8778{
d2e4a39e 8779 if (!discrete_type_p (type))
323e0a4a 8780 error (_("'VAL only defined on discrete types"));
df407dfe 8781 if (!integer_type_p (value_type (arg)))
323e0a4a 8782 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8783
8784 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8785 {
8786 long pos = value_as_long (arg);
5b4ee69b 8787
14f9c5c9 8788 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8789 error (_("argument to 'VAL out of range"));
14e75d8e 8790 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8791 }
8792 else
8793 return value_from_longest (type, value_as_long (arg));
8794}
14f9c5c9 8795\f
d2e4a39e 8796
4c4b4cd2 8797 /* Evaluation */
14f9c5c9 8798
4c4b4cd2
PH
8799/* True if TYPE appears to be an Ada character type.
8800 [At the moment, this is true only for Character and Wide_Character;
8801 It is a heuristic test that could stand improvement]. */
14f9c5c9 8802
d2e4a39e
AS
8803int
8804ada_is_character_type (struct type *type)
14f9c5c9 8805{
7b9f71f2
JB
8806 const char *name;
8807
8808 /* If the type code says it's a character, then assume it really is,
8809 and don't check any further. */
8810 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8811 return 1;
8812
8813 /* Otherwise, assume it's a character type iff it is a discrete type
8814 with a known character type name. */
8815 name = ada_type_name (type);
8816 return (name != NULL
8817 && (TYPE_CODE (type) == TYPE_CODE_INT
8818 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8819 && (strcmp (name, "character") == 0
8820 || strcmp (name, "wide_character") == 0
5a517ebd 8821 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8822 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8823}
8824
4c4b4cd2 8825/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8826
8827int
ebf56fd3 8828ada_is_string_type (struct type *type)
14f9c5c9 8829{
61ee279c 8830 type = ada_check_typedef (type);
d2e4a39e 8831 if (type != NULL
14f9c5c9 8832 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8833 && (ada_is_simple_array_type (type)
8834 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8835 && ada_array_arity (type) == 1)
8836 {
8837 struct type *elttype = ada_array_element_type (type, 1);
8838
8839 return ada_is_character_type (elttype);
8840 }
d2e4a39e 8841 else
14f9c5c9
AS
8842 return 0;
8843}
8844
5bf03f13
JB
8845/* The compiler sometimes provides a parallel XVS type for a given
8846 PAD type. Normally, it is safe to follow the PAD type directly,
8847 but older versions of the compiler have a bug that causes the offset
8848 of its "F" field to be wrong. Following that field in that case
8849 would lead to incorrect results, but this can be worked around
8850 by ignoring the PAD type and using the associated XVS type instead.
8851
8852 Set to True if the debugger should trust the contents of PAD types.
8853 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8854static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8855
8856/* True if TYPE is a struct type introduced by the compiler to force the
8857 alignment of a value. Such types have a single field with a
4c4b4cd2 8858 distinctive name. */
14f9c5c9
AS
8859
8860int
ebf56fd3 8861ada_is_aligner_type (struct type *type)
14f9c5c9 8862{
61ee279c 8863 type = ada_check_typedef (type);
714e53ab 8864
5bf03f13 8865 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8866 return 0;
8867
14f9c5c9 8868 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8869 && TYPE_NFIELDS (type) == 1
8870 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8871}
8872
8873/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8874 the parallel type. */
14f9c5c9 8875
d2e4a39e
AS
8876struct type *
8877ada_get_base_type (struct type *raw_type)
14f9c5c9 8878{
d2e4a39e
AS
8879 struct type *real_type_namer;
8880 struct type *raw_real_type;
14f9c5c9
AS
8881
8882 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8883 return raw_type;
8884
284614f0
JB
8885 if (ada_is_aligner_type (raw_type))
8886 /* The encoding specifies that we should always use the aligner type.
8887 So, even if this aligner type has an associated XVS type, we should
8888 simply ignore it.
8889
8890 According to the compiler gurus, an XVS type parallel to an aligner
8891 type may exist because of a stabs limitation. In stabs, aligner
8892 types are empty because the field has a variable-sized type, and
8893 thus cannot actually be used as an aligner type. As a result,
8894 we need the associated parallel XVS type to decode the type.
8895 Since the policy in the compiler is to not change the internal
8896 representation based on the debugging info format, we sometimes
8897 end up having a redundant XVS type parallel to the aligner type. */
8898 return raw_type;
8899
14f9c5c9 8900 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8901 if (real_type_namer == NULL
14f9c5c9
AS
8902 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8903 || TYPE_NFIELDS (real_type_namer) != 1)
8904 return raw_type;
8905
f80d3ff2
JB
8906 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8907 {
8908 /* This is an older encoding form where the base type needs to be
8909 looked up by name. We prefer the newer enconding because it is
8910 more efficient. */
8911 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8912 if (raw_real_type == NULL)
8913 return raw_type;
8914 else
8915 return raw_real_type;
8916 }
8917
8918 /* The field in our XVS type is a reference to the base type. */
8919 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8920}
14f9c5c9 8921
4c4b4cd2 8922/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8923
d2e4a39e
AS
8924struct type *
8925ada_aligned_type (struct type *type)
14f9c5c9
AS
8926{
8927 if (ada_is_aligner_type (type))
8928 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8929 else
8930 return ada_get_base_type (type);
8931}
8932
8933
8934/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8935 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8936
fc1a4b47
AC
8937const gdb_byte *
8938ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8939{
d2e4a39e 8940 if (ada_is_aligner_type (type))
14f9c5c9 8941 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8942 valaddr +
8943 TYPE_FIELD_BITPOS (type,
8944 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8945 else
8946 return valaddr;
8947}
8948
4c4b4cd2
PH
8949
8950
14f9c5c9 8951/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8952 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8953const char *
8954ada_enum_name (const char *name)
14f9c5c9 8955{
4c4b4cd2
PH
8956 static char *result;
8957 static size_t result_len = 0;
d2e4a39e 8958 char *tmp;
14f9c5c9 8959
4c4b4cd2
PH
8960 /* First, unqualify the enumeration name:
8961 1. Search for the last '.' character. If we find one, then skip
177b42fe 8962 all the preceding characters, the unqualified name starts
76a01679 8963 right after that dot.
4c4b4cd2 8964 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8965 translates dots into "__". Search forward for double underscores,
8966 but stop searching when we hit an overloading suffix, which is
8967 of the form "__" followed by digits. */
4c4b4cd2 8968
c3e5cd34
PH
8969 tmp = strrchr (name, '.');
8970 if (tmp != NULL)
4c4b4cd2
PH
8971 name = tmp + 1;
8972 else
14f9c5c9 8973 {
4c4b4cd2
PH
8974 while ((tmp = strstr (name, "__")) != NULL)
8975 {
8976 if (isdigit (tmp[2]))
8977 break;
8978 else
8979 name = tmp + 2;
8980 }
14f9c5c9
AS
8981 }
8982
8983 if (name[0] == 'Q')
8984 {
14f9c5c9 8985 int v;
5b4ee69b 8986
14f9c5c9 8987 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8988 {
8989 if (sscanf (name + 2, "%x", &v) != 1)
8990 return name;
8991 }
14f9c5c9 8992 else
4c4b4cd2 8993 return name;
14f9c5c9 8994
4c4b4cd2 8995 GROW_VECT (result, result_len, 16);
14f9c5c9 8996 if (isascii (v) && isprint (v))
88c15c34 8997 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8998 else if (name[1] == 'U')
88c15c34 8999 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9000 else
88c15c34 9001 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9002
9003 return result;
9004 }
d2e4a39e 9005 else
4c4b4cd2 9006 {
c3e5cd34
PH
9007 tmp = strstr (name, "__");
9008 if (tmp == NULL)
9009 tmp = strstr (name, "$");
9010 if (tmp != NULL)
4c4b4cd2
PH
9011 {
9012 GROW_VECT (result, result_len, tmp - name + 1);
9013 strncpy (result, name, tmp - name);
9014 result[tmp - name] = '\0';
9015 return result;
9016 }
9017
9018 return name;
9019 }
14f9c5c9
AS
9020}
9021
14f9c5c9
AS
9022/* Evaluate the subexpression of EXP starting at *POS as for
9023 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9024 expression. */
14f9c5c9 9025
d2e4a39e
AS
9026static struct value *
9027evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9028{
4b27a620 9029 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9030}
9031
9032/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9033 value it wraps. */
14f9c5c9 9034
d2e4a39e
AS
9035static struct value *
9036unwrap_value (struct value *val)
14f9c5c9 9037{
df407dfe 9038 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9039
14f9c5c9
AS
9040 if (ada_is_aligner_type (type))
9041 {
de4d072f 9042 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9043 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9044
14f9c5c9 9045 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9046 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9047
9048 return unwrap_value (v);
9049 }
d2e4a39e 9050 else
14f9c5c9 9051 {
d2e4a39e 9052 struct type *raw_real_type =
61ee279c 9053 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9054
5bf03f13
JB
9055 /* If there is no parallel XVS or XVE type, then the value is
9056 already unwrapped. Return it without further modification. */
9057 if ((type == raw_real_type)
9058 && ada_find_parallel_type (type, "___XVE") == NULL)
9059 return val;
14f9c5c9 9060
d2e4a39e 9061 return
4c4b4cd2
PH
9062 coerce_unspec_val_to_type
9063 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9064 value_address (val),
1ed6ede0 9065 NULL, 1));
14f9c5c9
AS
9066 }
9067}
d2e4a39e
AS
9068
9069static struct value *
9070cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9071{
9072 LONGEST val;
9073
df407dfe 9074 if (type == value_type (arg))
14f9c5c9 9075 return arg;
df407dfe 9076 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9077 val = ada_float_to_fixed (type,
df407dfe 9078 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9079 value_as_long (arg)));
d2e4a39e 9080 else
14f9c5c9 9081 {
a53b7a21 9082 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9083
14f9c5c9
AS
9084 val = ada_float_to_fixed (type, argd);
9085 }
9086
9087 return value_from_longest (type, val);
9088}
9089
d2e4a39e 9090static struct value *
a53b7a21 9091cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9092{
df407dfe 9093 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9094 value_as_long (arg));
5b4ee69b 9095
a53b7a21 9096 return value_from_double (type, val);
14f9c5c9
AS
9097}
9098
d99dcf51
JB
9099/* Given two array types T1 and T2, return nonzero iff both arrays
9100 contain the same number of elements. */
9101
9102static int
9103ada_same_array_size_p (struct type *t1, struct type *t2)
9104{
9105 LONGEST lo1, hi1, lo2, hi2;
9106
9107 /* Get the array bounds in order to verify that the size of
9108 the two arrays match. */
9109 if (!get_array_bounds (t1, &lo1, &hi1)
9110 || !get_array_bounds (t2, &lo2, &hi2))
9111 error (_("unable to determine array bounds"));
9112
9113 /* To make things easier for size comparison, normalize a bit
9114 the case of empty arrays by making sure that the difference
9115 between upper bound and lower bound is always -1. */
9116 if (lo1 > hi1)
9117 hi1 = lo1 - 1;
9118 if (lo2 > hi2)
9119 hi2 = lo2 - 1;
9120
9121 return (hi1 - lo1 == hi2 - lo2);
9122}
9123
9124/* Assuming that VAL is an array of integrals, and TYPE represents
9125 an array with the same number of elements, but with wider integral
9126 elements, return an array "casted" to TYPE. In practice, this
9127 means that the returned array is built by casting each element
9128 of the original array into TYPE's (wider) element type. */
9129
9130static struct value *
9131ada_promote_array_of_integrals (struct type *type, struct value *val)
9132{
9133 struct type *elt_type = TYPE_TARGET_TYPE (type);
9134 LONGEST lo, hi;
9135 struct value *res;
9136 LONGEST i;
9137
9138 /* Verify that both val and type are arrays of scalars, and
9139 that the size of val's elements is smaller than the size
9140 of type's element. */
9141 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9142 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9143 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9144 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9145 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9146 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9147
9148 if (!get_array_bounds (type, &lo, &hi))
9149 error (_("unable to determine array bounds"));
9150
9151 res = allocate_value (type);
9152
9153 /* Promote each array element. */
9154 for (i = 0; i < hi - lo + 1; i++)
9155 {
9156 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9157
9158 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9159 value_contents_all (elt), TYPE_LENGTH (elt_type));
9160 }
9161
9162 return res;
9163}
9164
4c4b4cd2
PH
9165/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9166 return the converted value. */
9167
d2e4a39e
AS
9168static struct value *
9169coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9170{
df407dfe 9171 struct type *type2 = value_type (val);
5b4ee69b 9172
14f9c5c9
AS
9173 if (type == type2)
9174 return val;
9175
61ee279c
PH
9176 type2 = ada_check_typedef (type2);
9177 type = ada_check_typedef (type);
14f9c5c9 9178
d2e4a39e
AS
9179 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9180 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9181 {
9182 val = ada_value_ind (val);
df407dfe 9183 type2 = value_type (val);
14f9c5c9
AS
9184 }
9185
d2e4a39e 9186 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9187 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9188 {
d99dcf51
JB
9189 if (!ada_same_array_size_p (type, type2))
9190 error (_("cannot assign arrays of different length"));
9191
9192 if (is_integral_type (TYPE_TARGET_TYPE (type))
9193 && is_integral_type (TYPE_TARGET_TYPE (type2))
9194 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9195 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9196 {
9197 /* Allow implicit promotion of the array elements to
9198 a wider type. */
9199 return ada_promote_array_of_integrals (type, val);
9200 }
9201
9202 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9203 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9204 error (_("Incompatible types in assignment"));
04624583 9205 deprecated_set_value_type (val, type);
14f9c5c9 9206 }
d2e4a39e 9207 return val;
14f9c5c9
AS
9208}
9209
4c4b4cd2
PH
9210static struct value *
9211ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9212{
9213 struct value *val;
9214 struct type *type1, *type2;
9215 LONGEST v, v1, v2;
9216
994b9211
AC
9217 arg1 = coerce_ref (arg1);
9218 arg2 = coerce_ref (arg2);
18af8284
JB
9219 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9220 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9221
76a01679
JB
9222 if (TYPE_CODE (type1) != TYPE_CODE_INT
9223 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9224 return value_binop (arg1, arg2, op);
9225
76a01679 9226 switch (op)
4c4b4cd2
PH
9227 {
9228 case BINOP_MOD:
9229 case BINOP_DIV:
9230 case BINOP_REM:
9231 break;
9232 default:
9233 return value_binop (arg1, arg2, op);
9234 }
9235
9236 v2 = value_as_long (arg2);
9237 if (v2 == 0)
323e0a4a 9238 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9239
9240 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9241 return value_binop (arg1, arg2, op);
9242
9243 v1 = value_as_long (arg1);
9244 switch (op)
9245 {
9246 case BINOP_DIV:
9247 v = v1 / v2;
76a01679
JB
9248 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9249 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9250 break;
9251 case BINOP_REM:
9252 v = v1 % v2;
76a01679
JB
9253 if (v * v1 < 0)
9254 v -= v2;
4c4b4cd2
PH
9255 break;
9256 default:
9257 /* Should not reach this point. */
9258 v = 0;
9259 }
9260
9261 val = allocate_value (type1);
990a07ab 9262 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9263 TYPE_LENGTH (value_type (val)),
9264 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9265 return val;
9266}
9267
9268static int
9269ada_value_equal (struct value *arg1, struct value *arg2)
9270{
df407dfe
AC
9271 if (ada_is_direct_array_type (value_type (arg1))
9272 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9273 {
f58b38bf
JB
9274 /* Automatically dereference any array reference before
9275 we attempt to perform the comparison. */
9276 arg1 = ada_coerce_ref (arg1);
9277 arg2 = ada_coerce_ref (arg2);
9278
4c4b4cd2
PH
9279 arg1 = ada_coerce_to_simple_array (arg1);
9280 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9281 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9282 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9283 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9284 /* FIXME: The following works only for types whose
76a01679
JB
9285 representations use all bits (no padding or undefined bits)
9286 and do not have user-defined equality. */
9287 return
df407dfe 9288 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9289 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9290 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9291 }
9292 return value_equal (arg1, arg2);
9293}
9294
52ce6436
PH
9295/* Total number of component associations in the aggregate starting at
9296 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9297 OP_AGGREGATE. */
52ce6436
PH
9298
9299static int
9300num_component_specs (struct expression *exp, int pc)
9301{
9302 int n, m, i;
5b4ee69b 9303
52ce6436
PH
9304 m = exp->elts[pc + 1].longconst;
9305 pc += 3;
9306 n = 0;
9307 for (i = 0; i < m; i += 1)
9308 {
9309 switch (exp->elts[pc].opcode)
9310 {
9311 default:
9312 n += 1;
9313 break;
9314 case OP_CHOICES:
9315 n += exp->elts[pc + 1].longconst;
9316 break;
9317 }
9318 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9319 }
9320 return n;
9321}
9322
9323/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9324 component of LHS (a simple array or a record), updating *POS past
9325 the expression, assuming that LHS is contained in CONTAINER. Does
9326 not modify the inferior's memory, nor does it modify LHS (unless
9327 LHS == CONTAINER). */
9328
9329static void
9330assign_component (struct value *container, struct value *lhs, LONGEST index,
9331 struct expression *exp, int *pos)
9332{
9333 struct value *mark = value_mark ();
9334 struct value *elt;
5b4ee69b 9335
52ce6436
PH
9336 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9337 {
22601c15
UW
9338 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9339 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9340
52ce6436
PH
9341 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9342 }
9343 else
9344 {
9345 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9346 elt = ada_to_fixed_value (elt);
52ce6436
PH
9347 }
9348
9349 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9350 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9351 else
9352 value_assign_to_component (container, elt,
9353 ada_evaluate_subexp (NULL, exp, pos,
9354 EVAL_NORMAL));
9355
9356 value_free_to_mark (mark);
9357}
9358
9359/* Assuming that LHS represents an lvalue having a record or array
9360 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9361 of that aggregate's value to LHS, advancing *POS past the
9362 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9363 lvalue containing LHS (possibly LHS itself). Does not modify
9364 the inferior's memory, nor does it modify the contents of
0963b4bd 9365 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9366
9367static struct value *
9368assign_aggregate (struct value *container,
9369 struct value *lhs, struct expression *exp,
9370 int *pos, enum noside noside)
9371{
9372 struct type *lhs_type;
9373 int n = exp->elts[*pos+1].longconst;
9374 LONGEST low_index, high_index;
9375 int num_specs;
9376 LONGEST *indices;
9377 int max_indices, num_indices;
52ce6436 9378 int i;
52ce6436
PH
9379
9380 *pos += 3;
9381 if (noside != EVAL_NORMAL)
9382 {
52ce6436
PH
9383 for (i = 0; i < n; i += 1)
9384 ada_evaluate_subexp (NULL, exp, pos, noside);
9385 return container;
9386 }
9387
9388 container = ada_coerce_ref (container);
9389 if (ada_is_direct_array_type (value_type (container)))
9390 container = ada_coerce_to_simple_array (container);
9391 lhs = ada_coerce_ref (lhs);
9392 if (!deprecated_value_modifiable (lhs))
9393 error (_("Left operand of assignment is not a modifiable lvalue."));
9394
9395 lhs_type = value_type (lhs);
9396 if (ada_is_direct_array_type (lhs_type))
9397 {
9398 lhs = ada_coerce_to_simple_array (lhs);
9399 lhs_type = value_type (lhs);
9400 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9401 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9402 }
9403 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9404 {
9405 low_index = 0;
9406 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9407 }
9408 else
9409 error (_("Left-hand side must be array or record."));
9410
9411 num_specs = num_component_specs (exp, *pos - 3);
9412 max_indices = 4 * num_specs + 4;
9413 indices = alloca (max_indices * sizeof (indices[0]));
9414 indices[0] = indices[1] = low_index - 1;
9415 indices[2] = indices[3] = high_index + 1;
9416 num_indices = 4;
9417
9418 for (i = 0; i < n; i += 1)
9419 {
9420 switch (exp->elts[*pos].opcode)
9421 {
1fbf5ada
JB
9422 case OP_CHOICES:
9423 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9424 &num_indices, max_indices,
9425 low_index, high_index);
9426 break;
9427 case OP_POSITIONAL:
9428 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9429 &num_indices, max_indices,
9430 low_index, high_index);
1fbf5ada
JB
9431 break;
9432 case OP_OTHERS:
9433 if (i != n-1)
9434 error (_("Misplaced 'others' clause"));
9435 aggregate_assign_others (container, lhs, exp, pos, indices,
9436 num_indices, low_index, high_index);
9437 break;
9438 default:
9439 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9440 }
9441 }
9442
9443 return container;
9444}
9445
9446/* Assign into the component of LHS indexed by the OP_POSITIONAL
9447 construct at *POS, updating *POS past the construct, given that
9448 the positions are relative to lower bound LOW, where HIGH is the
9449 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9450 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9451 assign_aggregate. */
52ce6436
PH
9452static void
9453aggregate_assign_positional (struct value *container,
9454 struct value *lhs, struct expression *exp,
9455 int *pos, LONGEST *indices, int *num_indices,
9456 int max_indices, LONGEST low, LONGEST high)
9457{
9458 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9459
9460 if (ind - 1 == high)
e1d5a0d2 9461 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9462 if (ind <= high)
9463 {
9464 add_component_interval (ind, ind, indices, num_indices, max_indices);
9465 *pos += 3;
9466 assign_component (container, lhs, ind, exp, pos);
9467 }
9468 else
9469 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9470}
9471
9472/* Assign into the components of LHS indexed by the OP_CHOICES
9473 construct at *POS, updating *POS past the construct, given that
9474 the allowable indices are LOW..HIGH. Record the indices assigned
9475 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9476 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9477static void
9478aggregate_assign_from_choices (struct value *container,
9479 struct value *lhs, struct expression *exp,
9480 int *pos, LONGEST *indices, int *num_indices,
9481 int max_indices, LONGEST low, LONGEST high)
9482{
9483 int j;
9484 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9485 int choice_pos, expr_pc;
9486 int is_array = ada_is_direct_array_type (value_type (lhs));
9487
9488 choice_pos = *pos += 3;
9489
9490 for (j = 0; j < n_choices; j += 1)
9491 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9492 expr_pc = *pos;
9493 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9494
9495 for (j = 0; j < n_choices; j += 1)
9496 {
9497 LONGEST lower, upper;
9498 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9499
52ce6436
PH
9500 if (op == OP_DISCRETE_RANGE)
9501 {
9502 choice_pos += 1;
9503 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9504 EVAL_NORMAL));
9505 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9506 EVAL_NORMAL));
9507 }
9508 else if (is_array)
9509 {
9510 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9511 EVAL_NORMAL));
9512 upper = lower;
9513 }
9514 else
9515 {
9516 int ind;
0d5cff50 9517 const char *name;
5b4ee69b 9518
52ce6436
PH
9519 switch (op)
9520 {
9521 case OP_NAME:
9522 name = &exp->elts[choice_pos + 2].string;
9523 break;
9524 case OP_VAR_VALUE:
9525 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9526 break;
9527 default:
9528 error (_("Invalid record component association."));
9529 }
9530 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9531 ind = 0;
9532 if (! find_struct_field (name, value_type (lhs), 0,
9533 NULL, NULL, NULL, NULL, &ind))
9534 error (_("Unknown component name: %s."), name);
9535 lower = upper = ind;
9536 }
9537
9538 if (lower <= upper && (lower < low || upper > high))
9539 error (_("Index in component association out of bounds."));
9540
9541 add_component_interval (lower, upper, indices, num_indices,
9542 max_indices);
9543 while (lower <= upper)
9544 {
9545 int pos1;
5b4ee69b 9546
52ce6436
PH
9547 pos1 = expr_pc;
9548 assign_component (container, lhs, lower, exp, &pos1);
9549 lower += 1;
9550 }
9551 }
9552}
9553
9554/* Assign the value of the expression in the OP_OTHERS construct in
9555 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9556 have not been previously assigned. The index intervals already assigned
9557 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9558 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9559static void
9560aggregate_assign_others (struct value *container,
9561 struct value *lhs, struct expression *exp,
9562 int *pos, LONGEST *indices, int num_indices,
9563 LONGEST low, LONGEST high)
9564{
9565 int i;
5ce64950 9566 int expr_pc = *pos + 1;
52ce6436
PH
9567
9568 for (i = 0; i < num_indices - 2; i += 2)
9569 {
9570 LONGEST ind;
5b4ee69b 9571
52ce6436
PH
9572 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9573 {
5ce64950 9574 int localpos;
5b4ee69b 9575
5ce64950
MS
9576 localpos = expr_pc;
9577 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9578 }
9579 }
9580 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9581}
9582
9583/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9584 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9585 modifying *SIZE as needed. It is an error if *SIZE exceeds
9586 MAX_SIZE. The resulting intervals do not overlap. */
9587static void
9588add_component_interval (LONGEST low, LONGEST high,
9589 LONGEST* indices, int *size, int max_size)
9590{
9591 int i, j;
5b4ee69b 9592
52ce6436
PH
9593 for (i = 0; i < *size; i += 2) {
9594 if (high >= indices[i] && low <= indices[i + 1])
9595 {
9596 int kh;
5b4ee69b 9597
52ce6436
PH
9598 for (kh = i + 2; kh < *size; kh += 2)
9599 if (high < indices[kh])
9600 break;
9601 if (low < indices[i])
9602 indices[i] = low;
9603 indices[i + 1] = indices[kh - 1];
9604 if (high > indices[i + 1])
9605 indices[i + 1] = high;
9606 memcpy (indices + i + 2, indices + kh, *size - kh);
9607 *size -= kh - i - 2;
9608 return;
9609 }
9610 else if (high < indices[i])
9611 break;
9612 }
9613
9614 if (*size == max_size)
9615 error (_("Internal error: miscounted aggregate components."));
9616 *size += 2;
9617 for (j = *size-1; j >= i+2; j -= 1)
9618 indices[j] = indices[j - 2];
9619 indices[i] = low;
9620 indices[i + 1] = high;
9621}
9622
6e48bd2c
JB
9623/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9624 is different. */
9625
9626static struct value *
9627ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9628{
9629 if (type == ada_check_typedef (value_type (arg2)))
9630 return arg2;
9631
9632 if (ada_is_fixed_point_type (type))
9633 return (cast_to_fixed (type, arg2));
9634
9635 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9636 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9637
9638 return value_cast (type, arg2);
9639}
9640
284614f0
JB
9641/* Evaluating Ada expressions, and printing their result.
9642 ------------------------------------------------------
9643
21649b50
JB
9644 1. Introduction:
9645 ----------------
9646
284614f0
JB
9647 We usually evaluate an Ada expression in order to print its value.
9648 We also evaluate an expression in order to print its type, which
9649 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9650 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9651 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9652 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9653 similar.
9654
9655 Evaluating expressions is a little more complicated for Ada entities
9656 than it is for entities in languages such as C. The main reason for
9657 this is that Ada provides types whose definition might be dynamic.
9658 One example of such types is variant records. Or another example
9659 would be an array whose bounds can only be known at run time.
9660
9661 The following description is a general guide as to what should be
9662 done (and what should NOT be done) in order to evaluate an expression
9663 involving such types, and when. This does not cover how the semantic
9664 information is encoded by GNAT as this is covered separatly. For the
9665 document used as the reference for the GNAT encoding, see exp_dbug.ads
9666 in the GNAT sources.
9667
9668 Ideally, we should embed each part of this description next to its
9669 associated code. Unfortunately, the amount of code is so vast right
9670 now that it's hard to see whether the code handling a particular
9671 situation might be duplicated or not. One day, when the code is
9672 cleaned up, this guide might become redundant with the comments
9673 inserted in the code, and we might want to remove it.
9674
21649b50
JB
9675 2. ``Fixing'' an Entity, the Simple Case:
9676 -----------------------------------------
9677
284614f0
JB
9678 When evaluating Ada expressions, the tricky issue is that they may
9679 reference entities whose type contents and size are not statically
9680 known. Consider for instance a variant record:
9681
9682 type Rec (Empty : Boolean := True) is record
9683 case Empty is
9684 when True => null;
9685 when False => Value : Integer;
9686 end case;
9687 end record;
9688 Yes : Rec := (Empty => False, Value => 1);
9689 No : Rec := (empty => True);
9690
9691 The size and contents of that record depends on the value of the
9692 descriminant (Rec.Empty). At this point, neither the debugging
9693 information nor the associated type structure in GDB are able to
9694 express such dynamic types. So what the debugger does is to create
9695 "fixed" versions of the type that applies to the specific object.
9696 We also informally refer to this opperation as "fixing" an object,
9697 which means creating its associated fixed type.
9698
9699 Example: when printing the value of variable "Yes" above, its fixed
9700 type would look like this:
9701
9702 type Rec is record
9703 Empty : Boolean;
9704 Value : Integer;
9705 end record;
9706
9707 On the other hand, if we printed the value of "No", its fixed type
9708 would become:
9709
9710 type Rec is record
9711 Empty : Boolean;
9712 end record;
9713
9714 Things become a little more complicated when trying to fix an entity
9715 with a dynamic type that directly contains another dynamic type,
9716 such as an array of variant records, for instance. There are
9717 two possible cases: Arrays, and records.
9718
21649b50
JB
9719 3. ``Fixing'' Arrays:
9720 ---------------------
9721
9722 The type structure in GDB describes an array in terms of its bounds,
9723 and the type of its elements. By design, all elements in the array
9724 have the same type and we cannot represent an array of variant elements
9725 using the current type structure in GDB. When fixing an array,
9726 we cannot fix the array element, as we would potentially need one
9727 fixed type per element of the array. As a result, the best we can do
9728 when fixing an array is to produce an array whose bounds and size
9729 are correct (allowing us to read it from memory), but without having
9730 touched its element type. Fixing each element will be done later,
9731 when (if) necessary.
9732
9733 Arrays are a little simpler to handle than records, because the same
9734 amount of memory is allocated for each element of the array, even if
1b536f04 9735 the amount of space actually used by each element differs from element
21649b50 9736 to element. Consider for instance the following array of type Rec:
284614f0
JB
9737
9738 type Rec_Array is array (1 .. 2) of Rec;
9739
1b536f04
JB
9740 The actual amount of memory occupied by each element might be different
9741 from element to element, depending on the value of their discriminant.
21649b50 9742 But the amount of space reserved for each element in the array remains
1b536f04 9743 fixed regardless. So we simply need to compute that size using
21649b50
JB
9744 the debugging information available, from which we can then determine
9745 the array size (we multiply the number of elements of the array by
9746 the size of each element).
9747
9748 The simplest case is when we have an array of a constrained element
9749 type. For instance, consider the following type declarations:
9750
9751 type Bounded_String (Max_Size : Integer) is
9752 Length : Integer;
9753 Buffer : String (1 .. Max_Size);
9754 end record;
9755 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9756
9757 In this case, the compiler describes the array as an array of
9758 variable-size elements (identified by its XVS suffix) for which
9759 the size can be read in the parallel XVZ variable.
9760
9761 In the case of an array of an unconstrained element type, the compiler
9762 wraps the array element inside a private PAD type. This type should not
9763 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9764 that we also use the adjective "aligner" in our code to designate
9765 these wrapper types.
9766
1b536f04 9767 In some cases, the size allocated for each element is statically
21649b50
JB
9768 known. In that case, the PAD type already has the correct size,
9769 and the array element should remain unfixed.
9770
9771 But there are cases when this size is not statically known.
9772 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9773
9774 type Dynamic is array (1 .. Five) of Integer;
9775 type Wrapper (Has_Length : Boolean := False) is record
9776 Data : Dynamic;
9777 case Has_Length is
9778 when True => Length : Integer;
9779 when False => null;
9780 end case;
9781 end record;
9782 type Wrapper_Array is array (1 .. 2) of Wrapper;
9783
9784 Hello : Wrapper_Array := (others => (Has_Length => True,
9785 Data => (others => 17),
9786 Length => 1));
9787
9788
9789 The debugging info would describe variable Hello as being an
9790 array of a PAD type. The size of that PAD type is not statically
9791 known, but can be determined using a parallel XVZ variable.
9792 In that case, a copy of the PAD type with the correct size should
9793 be used for the fixed array.
9794
21649b50
JB
9795 3. ``Fixing'' record type objects:
9796 ----------------------------------
9797
9798 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9799 record types. In this case, in order to compute the associated
9800 fixed type, we need to determine the size and offset of each of
9801 its components. This, in turn, requires us to compute the fixed
9802 type of each of these components.
9803
9804 Consider for instance the example:
9805
9806 type Bounded_String (Max_Size : Natural) is record
9807 Str : String (1 .. Max_Size);
9808 Length : Natural;
9809 end record;
9810 My_String : Bounded_String (Max_Size => 10);
9811
9812 In that case, the position of field "Length" depends on the size
9813 of field Str, which itself depends on the value of the Max_Size
21649b50 9814 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9815 we need to fix the type of field Str. Therefore, fixing a variant
9816 record requires us to fix each of its components.
9817
9818 However, if a component does not have a dynamic size, the component
9819 should not be fixed. In particular, fields that use a PAD type
9820 should not fixed. Here is an example where this might happen
9821 (assuming type Rec above):
9822
9823 type Container (Big : Boolean) is record
9824 First : Rec;
9825 After : Integer;
9826 case Big is
9827 when True => Another : Integer;
9828 when False => null;
9829 end case;
9830 end record;
9831 My_Container : Container := (Big => False,
9832 First => (Empty => True),
9833 After => 42);
9834
9835 In that example, the compiler creates a PAD type for component First,
9836 whose size is constant, and then positions the component After just
9837 right after it. The offset of component After is therefore constant
9838 in this case.
9839
9840 The debugger computes the position of each field based on an algorithm
9841 that uses, among other things, the actual position and size of the field
21649b50
JB
9842 preceding it. Let's now imagine that the user is trying to print
9843 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9844 end up computing the offset of field After based on the size of the
9845 fixed version of field First. And since in our example First has
9846 only one actual field, the size of the fixed type is actually smaller
9847 than the amount of space allocated to that field, and thus we would
9848 compute the wrong offset of field After.
9849
21649b50
JB
9850 To make things more complicated, we need to watch out for dynamic
9851 components of variant records (identified by the ___XVL suffix in
9852 the component name). Even if the target type is a PAD type, the size
9853 of that type might not be statically known. So the PAD type needs
9854 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9855 we might end up with the wrong size for our component. This can be
9856 observed with the following type declarations:
284614f0
JB
9857
9858 type Octal is new Integer range 0 .. 7;
9859 type Octal_Array is array (Positive range <>) of Octal;
9860 pragma Pack (Octal_Array);
9861
9862 type Octal_Buffer (Size : Positive) is record
9863 Buffer : Octal_Array (1 .. Size);
9864 Length : Integer;
9865 end record;
9866
9867 In that case, Buffer is a PAD type whose size is unset and needs
9868 to be computed by fixing the unwrapped type.
9869
21649b50
JB
9870 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9871 ----------------------------------------------------------
9872
9873 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9874 thus far, be actually fixed?
9875
9876 The answer is: Only when referencing that element. For instance
9877 when selecting one component of a record, this specific component
9878 should be fixed at that point in time. Or when printing the value
9879 of a record, each component should be fixed before its value gets
9880 printed. Similarly for arrays, the element of the array should be
9881 fixed when printing each element of the array, or when extracting
9882 one element out of that array. On the other hand, fixing should
9883 not be performed on the elements when taking a slice of an array!
9884
9885 Note that one of the side-effects of miscomputing the offset and
9886 size of each field is that we end up also miscomputing the size
9887 of the containing type. This can have adverse results when computing
9888 the value of an entity. GDB fetches the value of an entity based
9889 on the size of its type, and thus a wrong size causes GDB to fetch
9890 the wrong amount of memory. In the case where the computed size is
9891 too small, GDB fetches too little data to print the value of our
9892 entiry. Results in this case as unpredicatble, as we usually read
9893 past the buffer containing the data =:-o. */
9894
9895/* Implement the evaluate_exp routine in the exp_descriptor structure
9896 for the Ada language. */
9897
52ce6436 9898static struct value *
ebf56fd3 9899ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9900 int *pos, enum noside noside)
14f9c5c9
AS
9901{
9902 enum exp_opcode op;
b5385fc0 9903 int tem;
14f9c5c9 9904 int pc;
5ec18f2b 9905 int preeval_pos;
14f9c5c9
AS
9906 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9907 struct type *type;
52ce6436 9908 int nargs, oplen;
d2e4a39e 9909 struct value **argvec;
14f9c5c9 9910
d2e4a39e
AS
9911 pc = *pos;
9912 *pos += 1;
14f9c5c9
AS
9913 op = exp->elts[pc].opcode;
9914
d2e4a39e 9915 switch (op)
14f9c5c9
AS
9916 {
9917 default:
9918 *pos -= 1;
6e48bd2c 9919 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9920
9921 if (noside == EVAL_NORMAL)
9922 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9923
9924 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9925 then we need to perform the conversion manually, because
9926 evaluate_subexp_standard doesn't do it. This conversion is
9927 necessary in Ada because the different kinds of float/fixed
9928 types in Ada have different representations.
9929
9930 Similarly, we need to perform the conversion from OP_LONG
9931 ourselves. */
9932 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9933 arg1 = ada_value_cast (expect_type, arg1, noside);
9934
9935 return arg1;
4c4b4cd2
PH
9936
9937 case OP_STRING:
9938 {
76a01679 9939 struct value *result;
5b4ee69b 9940
76a01679
JB
9941 *pos -= 1;
9942 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9943 /* The result type will have code OP_STRING, bashed there from
9944 OP_ARRAY. Bash it back. */
df407dfe
AC
9945 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9946 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9947 return result;
4c4b4cd2 9948 }
14f9c5c9
AS
9949
9950 case UNOP_CAST:
9951 (*pos) += 2;
9952 type = exp->elts[pc + 1].type;
9953 arg1 = evaluate_subexp (type, exp, pos, noside);
9954 if (noside == EVAL_SKIP)
4c4b4cd2 9955 goto nosideret;
6e48bd2c 9956 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9957 return arg1;
9958
4c4b4cd2
PH
9959 case UNOP_QUAL:
9960 (*pos) += 2;
9961 type = exp->elts[pc + 1].type;
9962 return ada_evaluate_subexp (type, exp, pos, noside);
9963
14f9c5c9
AS
9964 case BINOP_ASSIGN:
9965 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9966 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9967 {
9968 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9969 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9970 return arg1;
9971 return ada_value_assign (arg1, arg1);
9972 }
003f3813
JB
9973 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9974 except if the lhs of our assignment is a convenience variable.
9975 In the case of assigning to a convenience variable, the lhs
9976 should be exactly the result of the evaluation of the rhs. */
9977 type = value_type (arg1);
9978 if (VALUE_LVAL (arg1) == lval_internalvar)
9979 type = NULL;
9980 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9981 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9982 return arg1;
df407dfe
AC
9983 if (ada_is_fixed_point_type (value_type (arg1)))
9984 arg2 = cast_to_fixed (value_type (arg1), arg2);
9985 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9986 error
323e0a4a 9987 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9988 else
df407dfe 9989 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9990 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9991
9992 case BINOP_ADD:
9993 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9994 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9995 if (noside == EVAL_SKIP)
4c4b4cd2 9996 goto nosideret;
2ac8a782
JB
9997 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9998 return (value_from_longest
9999 (value_type (arg1),
10000 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10001 if ((ada_is_fixed_point_type (value_type (arg1))
10002 || ada_is_fixed_point_type (value_type (arg2)))
10003 && value_type (arg1) != value_type (arg2))
323e0a4a 10004 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10005 /* Do the addition, and cast the result to the type of the first
10006 argument. We cannot cast the result to a reference type, so if
10007 ARG1 is a reference type, find its underlying type. */
10008 type = value_type (arg1);
10009 while (TYPE_CODE (type) == TYPE_CODE_REF)
10010 type = TYPE_TARGET_TYPE (type);
f44316fa 10011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10012 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10013
10014 case BINOP_SUB:
10015 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10016 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10017 if (noside == EVAL_SKIP)
4c4b4cd2 10018 goto nosideret;
2ac8a782
JB
10019 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10020 return (value_from_longest
10021 (value_type (arg1),
10022 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10023 if ((ada_is_fixed_point_type (value_type (arg1))
10024 || ada_is_fixed_point_type (value_type (arg2)))
10025 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10026 error (_("Operands of fixed-point subtraction "
10027 "must have the same type"));
b7789565
JB
10028 /* Do the substraction, and cast the result to the type of the first
10029 argument. We cannot cast the result to a reference type, so if
10030 ARG1 is a reference type, find its underlying type. */
10031 type = value_type (arg1);
10032 while (TYPE_CODE (type) == TYPE_CODE_REF)
10033 type = TYPE_TARGET_TYPE (type);
f44316fa 10034 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10035 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10036
10037 case BINOP_MUL:
10038 case BINOP_DIV:
e1578042
JB
10039 case BINOP_REM:
10040 case BINOP_MOD:
14f9c5c9
AS
10041 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10042 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10043 if (noside == EVAL_SKIP)
4c4b4cd2 10044 goto nosideret;
e1578042 10045 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10046 {
10047 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10048 return value_zero (value_type (arg1), not_lval);
10049 }
14f9c5c9 10050 else
4c4b4cd2 10051 {
a53b7a21 10052 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10053 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10054 arg1 = cast_from_fixed (type, arg1);
df407dfe 10055 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10056 arg2 = cast_from_fixed (type, arg2);
f44316fa 10057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10058 return ada_value_binop (arg1, arg2, op);
10059 }
10060
4c4b4cd2
PH
10061 case BINOP_EQUAL:
10062 case BINOP_NOTEQUAL:
14f9c5c9 10063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10064 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10065 if (noside == EVAL_SKIP)
76a01679 10066 goto nosideret;
4c4b4cd2 10067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10068 tem = 0;
4c4b4cd2 10069 else
f44316fa
UW
10070 {
10071 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10072 tem = ada_value_equal (arg1, arg2);
10073 }
4c4b4cd2 10074 if (op == BINOP_NOTEQUAL)
76a01679 10075 tem = !tem;
fbb06eb1
UW
10076 type = language_bool_type (exp->language_defn, exp->gdbarch);
10077 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10078
10079 case UNOP_NEG:
10080 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10081 if (noside == EVAL_SKIP)
10082 goto nosideret;
df407dfe
AC
10083 else if (ada_is_fixed_point_type (value_type (arg1)))
10084 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10085 else
f44316fa
UW
10086 {
10087 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10088 return value_neg (arg1);
10089 }
4c4b4cd2 10090
2330c6c6
JB
10091 case BINOP_LOGICAL_AND:
10092 case BINOP_LOGICAL_OR:
10093 case UNOP_LOGICAL_NOT:
000d5124
JB
10094 {
10095 struct value *val;
10096
10097 *pos -= 1;
10098 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10099 type = language_bool_type (exp->language_defn, exp->gdbarch);
10100 return value_cast (type, val);
000d5124 10101 }
2330c6c6
JB
10102
10103 case BINOP_BITWISE_AND:
10104 case BINOP_BITWISE_IOR:
10105 case BINOP_BITWISE_XOR:
000d5124
JB
10106 {
10107 struct value *val;
10108
10109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10110 *pos = pc;
10111 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10112
10113 return value_cast (value_type (arg1), val);
10114 }
2330c6c6 10115
14f9c5c9
AS
10116 case OP_VAR_VALUE:
10117 *pos -= 1;
6799def4 10118
14f9c5c9 10119 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10120 {
10121 *pos += 4;
10122 goto nosideret;
10123 }
da5c522f
JB
10124
10125 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10126 /* Only encountered when an unresolved symbol occurs in a
10127 context other than a function call, in which case, it is
52ce6436 10128 invalid. */
323e0a4a 10129 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10130 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10131
10132 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10133 {
0c1f74cf 10134 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10135 /* Check to see if this is a tagged type. We also need to handle
10136 the case where the type is a reference to a tagged type, but
10137 we have to be careful to exclude pointers to tagged types.
10138 The latter should be shown as usual (as a pointer), whereas
10139 a reference should mostly be transparent to the user. */
10140 if (ada_is_tagged_type (type, 0)
023db19c 10141 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10142 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10143 {
10144 /* Tagged types are a little special in the fact that the real
10145 type is dynamic and can only be determined by inspecting the
10146 object's tag. This means that we need to get the object's
10147 value first (EVAL_NORMAL) and then extract the actual object
10148 type from its tag.
10149
10150 Note that we cannot skip the final step where we extract
10151 the object type from its tag, because the EVAL_NORMAL phase
10152 results in dynamic components being resolved into fixed ones.
10153 This can cause problems when trying to print the type
10154 description of tagged types whose parent has a dynamic size:
10155 We use the type name of the "_parent" component in order
10156 to print the name of the ancestor type in the type description.
10157 If that component had a dynamic size, the resolution into
10158 a fixed type would result in the loss of that type name,
10159 thus preventing us from printing the name of the ancestor
10160 type in the type description. */
10161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10162
10163 if (TYPE_CODE (type) != TYPE_CODE_REF)
10164 {
10165 struct type *actual_type;
10166
10167 actual_type = type_from_tag (ada_value_tag (arg1));
10168 if (actual_type == NULL)
10169 /* If, for some reason, we were unable to determine
10170 the actual type from the tag, then use the static
10171 approximation that we just computed as a fallback.
10172 This can happen if the debugging information is
10173 incomplete, for instance. */
10174 actual_type = type;
10175 return value_zero (actual_type, not_lval);
10176 }
10177 else
10178 {
10179 /* In the case of a ref, ada_coerce_ref takes care
10180 of determining the actual type. But the evaluation
10181 should return a ref as it should be valid to ask
10182 for its address; so rebuild a ref after coerce. */
10183 arg1 = ada_coerce_ref (arg1);
10184 return value_ref (arg1);
10185 }
10186 }
0c1f74cf 10187
4c4b4cd2 10188 *pos += 4;
52865325 10189 return value_zero (to_static_fixed_type (type), not_lval);
4c4b4cd2 10190 }
da5c522f
JB
10191
10192 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10193 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10194
10195 case OP_FUNCALL:
10196 (*pos) += 2;
10197
10198 /* Allocate arg vector, including space for the function to be
10199 called in argvec[0] and a terminating NULL. */
10200 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10201 argvec =
10202 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10203
10204 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10205 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10206 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10207 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10208 else
10209 {
10210 for (tem = 0; tem <= nargs; tem += 1)
10211 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10212 argvec[tem] = 0;
10213
10214 if (noside == EVAL_SKIP)
10215 goto nosideret;
10216 }
10217
ad82864c
JB
10218 if (ada_is_constrained_packed_array_type
10219 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10220 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10221 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10222 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10223 /* This is a packed array that has already been fixed, and
10224 therefore already coerced to a simple array. Nothing further
10225 to do. */
10226 ;
df407dfe
AC
10227 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10228 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10229 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10230 argvec[0] = value_addr (argvec[0]);
10231
df407dfe 10232 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10233
10234 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10235 them. So, if this is an array typedef (encoding use for array
10236 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10237 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10238 type = ada_typedef_target_type (type);
10239
4c4b4cd2
PH
10240 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10241 {
61ee279c 10242 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10243 {
10244 case TYPE_CODE_FUNC:
61ee279c 10245 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10246 break;
10247 case TYPE_CODE_ARRAY:
10248 break;
10249 case TYPE_CODE_STRUCT:
10250 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10251 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10252 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10253 break;
10254 default:
323e0a4a 10255 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10256 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10257 break;
10258 }
10259 }
10260
10261 switch (TYPE_CODE (type))
10262 {
10263 case TYPE_CODE_FUNC:
10264 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10265 {
10266 struct type *rtype = TYPE_TARGET_TYPE (type);
10267
10268 if (TYPE_GNU_IFUNC (type))
10269 return allocate_value (TYPE_TARGET_TYPE (rtype));
10270 return allocate_value (rtype);
10271 }
4c4b4cd2 10272 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10273 case TYPE_CODE_INTERNAL_FUNCTION:
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10275 /* We don't know anything about what the internal
10276 function might return, but we have to return
10277 something. */
10278 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10279 not_lval);
10280 else
10281 return call_internal_function (exp->gdbarch, exp->language_defn,
10282 argvec[0], nargs, argvec + 1);
10283
4c4b4cd2
PH
10284 case TYPE_CODE_STRUCT:
10285 {
10286 int arity;
10287
4c4b4cd2
PH
10288 arity = ada_array_arity (type);
10289 type = ada_array_element_type (type, nargs);
10290 if (type == NULL)
323e0a4a 10291 error (_("cannot subscript or call a record"));
4c4b4cd2 10292 if (arity != nargs)
323e0a4a 10293 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10294 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10295 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10296 return
10297 unwrap_value (ada_value_subscript
10298 (argvec[0], nargs, argvec + 1));
10299 }
10300 case TYPE_CODE_ARRAY:
10301 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10302 {
10303 type = ada_array_element_type (type, nargs);
10304 if (type == NULL)
323e0a4a 10305 error (_("element type of array unknown"));
4c4b4cd2 10306 else
0a07e705 10307 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10308 }
10309 return
10310 unwrap_value (ada_value_subscript
10311 (ada_coerce_to_simple_array (argvec[0]),
10312 nargs, argvec + 1));
10313 case TYPE_CODE_PTR: /* Pointer to array */
10314 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10315 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10316 {
10317 type = ada_array_element_type (type, nargs);
10318 if (type == NULL)
323e0a4a 10319 error (_("element type of array unknown"));
4c4b4cd2 10320 else
0a07e705 10321 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10322 }
10323 return
10324 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10325 nargs, argvec + 1));
10326
10327 default:
e1d5a0d2
PH
10328 error (_("Attempt to index or call something other than an "
10329 "array or function"));
4c4b4cd2
PH
10330 }
10331
10332 case TERNOP_SLICE:
10333 {
10334 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10335 struct value *low_bound_val =
10336 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10337 struct value *high_bound_val =
10338 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10339 LONGEST low_bound;
10340 LONGEST high_bound;
5b4ee69b 10341
994b9211
AC
10342 low_bound_val = coerce_ref (low_bound_val);
10343 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10344 low_bound = pos_atr (low_bound_val);
10345 high_bound = pos_atr (high_bound_val);
963a6417 10346
4c4b4cd2
PH
10347 if (noside == EVAL_SKIP)
10348 goto nosideret;
10349
4c4b4cd2
PH
10350 /* If this is a reference to an aligner type, then remove all
10351 the aligners. */
df407dfe
AC
10352 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10353 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10354 TYPE_TARGET_TYPE (value_type (array)) =
10355 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10356
ad82864c 10357 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10358 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10359
10360 /* If this is a reference to an array or an array lvalue,
10361 convert to a pointer. */
df407dfe
AC
10362 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10363 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10364 && VALUE_LVAL (array) == lval_memory))
10365 array = value_addr (array);
10366
1265e4aa 10367 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10368 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10369 (value_type (array))))
0b5d8877 10370 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10371
10372 array = ada_coerce_to_simple_array_ptr (array);
10373
714e53ab
PH
10374 /* If we have more than one level of pointer indirection,
10375 dereference the value until we get only one level. */
df407dfe
AC
10376 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10377 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10378 == TYPE_CODE_PTR))
10379 array = value_ind (array);
10380
10381 /* Make sure we really do have an array type before going further,
10382 to avoid a SEGV when trying to get the index type or the target
10383 type later down the road if the debug info generated by
10384 the compiler is incorrect or incomplete. */
df407dfe 10385 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10386 error (_("cannot take slice of non-array"));
714e53ab 10387
828292f2
JB
10388 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10389 == TYPE_CODE_PTR)
4c4b4cd2 10390 {
828292f2
JB
10391 struct type *type0 = ada_check_typedef (value_type (array));
10392
0b5d8877 10393 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10394 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10395 else
10396 {
10397 struct type *arr_type0 =
828292f2 10398 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10399
f5938064
JG
10400 return ada_value_slice_from_ptr (array, arr_type0,
10401 longest_to_int (low_bound),
10402 longest_to_int (high_bound));
4c4b4cd2
PH
10403 }
10404 }
10405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10406 return array;
10407 else if (high_bound < low_bound)
df407dfe 10408 return empty_array (value_type (array), low_bound);
4c4b4cd2 10409 else
529cad9c
PH
10410 return ada_value_slice (array, longest_to_int (low_bound),
10411 longest_to_int (high_bound));
4c4b4cd2 10412 }
14f9c5c9 10413
4c4b4cd2
PH
10414 case UNOP_IN_RANGE:
10415 (*pos) += 2;
10416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10417 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10418
14f9c5c9 10419 if (noside == EVAL_SKIP)
4c4b4cd2 10420 goto nosideret;
14f9c5c9 10421
4c4b4cd2
PH
10422 switch (TYPE_CODE (type))
10423 {
10424 default:
e1d5a0d2
PH
10425 lim_warning (_("Membership test incompletely implemented; "
10426 "always returns true"));
fbb06eb1
UW
10427 type = language_bool_type (exp->language_defn, exp->gdbarch);
10428 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10429
10430 case TYPE_CODE_RANGE:
030b4912
UW
10431 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10432 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10433 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10434 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10435 type = language_bool_type (exp->language_defn, exp->gdbarch);
10436 return
10437 value_from_longest (type,
4c4b4cd2
PH
10438 (value_less (arg1, arg3)
10439 || value_equal (arg1, arg3))
10440 && (value_less (arg2, arg1)
10441 || value_equal (arg2, arg1)));
10442 }
10443
10444 case BINOP_IN_BOUNDS:
14f9c5c9 10445 (*pos) += 2;
4c4b4cd2
PH
10446 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10447 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10448
4c4b4cd2
PH
10449 if (noside == EVAL_SKIP)
10450 goto nosideret;
14f9c5c9 10451
4c4b4cd2 10452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10453 {
10454 type = language_bool_type (exp->language_defn, exp->gdbarch);
10455 return value_zero (type, not_lval);
10456 }
14f9c5c9 10457
4c4b4cd2 10458 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10459
1eea4ebd
UW
10460 type = ada_index_type (value_type (arg2), tem, "range");
10461 if (!type)
10462 type = value_type (arg1);
14f9c5c9 10463
1eea4ebd
UW
10464 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10465 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10466
f44316fa
UW
10467 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10468 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10469 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10470 return
fbb06eb1 10471 value_from_longest (type,
4c4b4cd2
PH
10472 (value_less (arg1, arg3)
10473 || value_equal (arg1, arg3))
10474 && (value_less (arg2, arg1)
10475 || value_equal (arg2, arg1)));
10476
10477 case TERNOP_IN_RANGE:
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481
10482 if (noside == EVAL_SKIP)
10483 goto nosideret;
10484
f44316fa
UW
10485 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10487 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10488 return
fbb06eb1 10489 value_from_longest (type,
4c4b4cd2
PH
10490 (value_less (arg1, arg3)
10491 || value_equal (arg1, arg3))
10492 && (value_less (arg2, arg1)
10493 || value_equal (arg2, arg1)));
10494
10495 case OP_ATR_FIRST:
10496 case OP_ATR_LAST:
10497 case OP_ATR_LENGTH:
10498 {
76a01679 10499 struct type *type_arg;
5b4ee69b 10500
76a01679
JB
10501 if (exp->elts[*pos].opcode == OP_TYPE)
10502 {
10503 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10504 arg1 = NULL;
5bc23cb3 10505 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10506 }
10507 else
10508 {
10509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 type_arg = NULL;
10511 }
10512
10513 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10514 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10515 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10516 *pos += 4;
10517
10518 if (noside == EVAL_SKIP)
10519 goto nosideret;
10520
10521 if (type_arg == NULL)
10522 {
10523 arg1 = ada_coerce_ref (arg1);
10524
ad82864c 10525 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10526 arg1 = ada_coerce_to_simple_array (arg1);
10527
aa4fb036 10528 if (op == OP_ATR_LENGTH)
1eea4ebd 10529 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10530 else
10531 {
10532 type = ada_index_type (value_type (arg1), tem,
10533 ada_attribute_name (op));
10534 if (type == NULL)
10535 type = builtin_type (exp->gdbarch)->builtin_int;
10536 }
76a01679
JB
10537
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10539 return allocate_value (type);
76a01679
JB
10540
10541 switch (op)
10542 {
10543 default: /* Should never happen. */
323e0a4a 10544 error (_("unexpected attribute encountered"));
76a01679 10545 case OP_ATR_FIRST:
1eea4ebd
UW
10546 return value_from_longest
10547 (type, ada_array_bound (arg1, tem, 0));
76a01679 10548 case OP_ATR_LAST:
1eea4ebd
UW
10549 return value_from_longest
10550 (type, ada_array_bound (arg1, tem, 1));
76a01679 10551 case OP_ATR_LENGTH:
1eea4ebd
UW
10552 return value_from_longest
10553 (type, ada_array_length (arg1, tem));
76a01679
JB
10554 }
10555 }
10556 else if (discrete_type_p (type_arg))
10557 {
10558 struct type *range_type;
0d5cff50 10559 const char *name = ada_type_name (type_arg);
5b4ee69b 10560
76a01679
JB
10561 range_type = NULL;
10562 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10563 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10564 if (range_type == NULL)
10565 range_type = type_arg;
10566 switch (op)
10567 {
10568 default:
323e0a4a 10569 error (_("unexpected attribute encountered"));
76a01679 10570 case OP_ATR_FIRST:
690cc4eb 10571 return value_from_longest
43bbcdc2 10572 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10573 case OP_ATR_LAST:
690cc4eb 10574 return value_from_longest
43bbcdc2 10575 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10576 case OP_ATR_LENGTH:
323e0a4a 10577 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10578 }
10579 }
10580 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10581 error (_("unimplemented type attribute"));
76a01679
JB
10582 else
10583 {
10584 LONGEST low, high;
10585
ad82864c
JB
10586 if (ada_is_constrained_packed_array_type (type_arg))
10587 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10588
aa4fb036 10589 if (op == OP_ATR_LENGTH)
1eea4ebd 10590 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10591 else
10592 {
10593 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10594 if (type == NULL)
10595 type = builtin_type (exp->gdbarch)->builtin_int;
10596 }
1eea4ebd 10597
76a01679
JB
10598 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10599 return allocate_value (type);
10600
10601 switch (op)
10602 {
10603 default:
323e0a4a 10604 error (_("unexpected attribute encountered"));
76a01679 10605 case OP_ATR_FIRST:
1eea4ebd 10606 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10607 return value_from_longest (type, low);
10608 case OP_ATR_LAST:
1eea4ebd 10609 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10610 return value_from_longest (type, high);
10611 case OP_ATR_LENGTH:
1eea4ebd
UW
10612 low = ada_array_bound_from_type (type_arg, tem, 0);
10613 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10614 return value_from_longest (type, high - low + 1);
10615 }
10616 }
14f9c5c9
AS
10617 }
10618
4c4b4cd2
PH
10619 case OP_ATR_TAG:
10620 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10621 if (noside == EVAL_SKIP)
76a01679 10622 goto nosideret;
4c4b4cd2
PH
10623
10624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10625 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10626
10627 return ada_value_tag (arg1);
10628
10629 case OP_ATR_MIN:
10630 case OP_ATR_MAX:
10631 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10633 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 if (noside == EVAL_SKIP)
76a01679 10635 goto nosideret;
d2e4a39e 10636 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10637 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10638 else
f44316fa
UW
10639 {
10640 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10641 return value_binop (arg1, arg2,
10642 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10643 }
14f9c5c9 10644
4c4b4cd2
PH
10645 case OP_ATR_MODULUS:
10646 {
31dedfee 10647 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10648
5b4ee69b 10649 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10650 if (noside == EVAL_SKIP)
10651 goto nosideret;
4c4b4cd2 10652
76a01679 10653 if (!ada_is_modular_type (type_arg))
323e0a4a 10654 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10655
76a01679
JB
10656 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10657 ada_modulus (type_arg));
4c4b4cd2
PH
10658 }
10659
10660
10661 case OP_ATR_POS:
10662 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664 if (noside == EVAL_SKIP)
76a01679 10665 goto nosideret;
3cb382c9
UW
10666 type = builtin_type (exp->gdbarch)->builtin_int;
10667 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10668 return value_zero (type, not_lval);
14f9c5c9 10669 else
3cb382c9 10670 return value_pos_atr (type, arg1);
14f9c5c9 10671
4c4b4cd2
PH
10672 case OP_ATR_SIZE:
10673 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10674 type = value_type (arg1);
10675
10676 /* If the argument is a reference, then dereference its type, since
10677 the user is really asking for the size of the actual object,
10678 not the size of the pointer. */
10679 if (TYPE_CODE (type) == TYPE_CODE_REF)
10680 type = TYPE_TARGET_TYPE (type);
10681
4c4b4cd2 10682 if (noside == EVAL_SKIP)
76a01679 10683 goto nosideret;
4c4b4cd2 10684 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10685 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10686 else
22601c15 10687 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10688 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10689
10690 case OP_ATR_VAL:
10691 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10692 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10693 type = exp->elts[pc + 2].type;
14f9c5c9 10694 if (noside == EVAL_SKIP)
76a01679 10695 goto nosideret;
4c4b4cd2 10696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10697 return value_zero (type, not_lval);
4c4b4cd2 10698 else
76a01679 10699 return value_val_atr (type, arg1);
4c4b4cd2
PH
10700
10701 case BINOP_EXP:
10702 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10703 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10707 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10708 else
f44316fa
UW
10709 {
10710 /* For integer exponentiation operations,
10711 only promote the first argument. */
10712 if (is_integral_type (value_type (arg2)))
10713 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10714 else
10715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10716
10717 return value_binop (arg1, arg2, op);
10718 }
4c4b4cd2
PH
10719
10720 case UNOP_PLUS:
10721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10722 if (noside == EVAL_SKIP)
10723 goto nosideret;
10724 else
10725 return arg1;
10726
10727 case UNOP_ABS:
10728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
f44316fa 10731 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10732 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10733 return value_neg (arg1);
14f9c5c9 10734 else
4c4b4cd2 10735 return arg1;
14f9c5c9
AS
10736
10737 case UNOP_IND:
5ec18f2b 10738 preeval_pos = *pos;
6b0d7253 10739 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10740 if (noside == EVAL_SKIP)
4c4b4cd2 10741 goto nosideret;
df407dfe 10742 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10743 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10744 {
10745 if (ada_is_array_descriptor_type (type))
10746 /* GDB allows dereferencing GNAT array descriptors. */
10747 {
10748 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10749
4c4b4cd2 10750 if (arrType == NULL)
323e0a4a 10751 error (_("Attempt to dereference null array pointer."));
00a4c844 10752 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10753 }
10754 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10755 || TYPE_CODE (type) == TYPE_CODE_REF
10756 /* In C you can dereference an array to get the 1st elt. */
10757 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10758 {
5ec18f2b
JG
10759 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10760 only be determined by inspecting the object's tag.
10761 This means that we need to evaluate completely the
10762 expression in order to get its type. */
10763
023db19c
JB
10764 if ((TYPE_CODE (type) == TYPE_CODE_REF
10765 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10766 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10767 {
10768 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10769 EVAL_NORMAL);
10770 type = value_type (ada_value_ind (arg1));
10771 }
10772 else
10773 {
10774 type = to_static_fixed_type
10775 (ada_aligned_type
10776 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10777 }
10778 check_size (type);
714e53ab
PH
10779 return value_zero (type, lval_memory);
10780 }
4c4b4cd2 10781 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10782 {
10783 /* GDB allows dereferencing an int. */
10784 if (expect_type == NULL)
10785 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10786 lval_memory);
10787 else
10788 {
10789 expect_type =
10790 to_static_fixed_type (ada_aligned_type (expect_type));
10791 return value_zero (expect_type, lval_memory);
10792 }
10793 }
4c4b4cd2 10794 else
323e0a4a 10795 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10796 }
0963b4bd 10797 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10798 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10799
96967637
JB
10800 if (TYPE_CODE (type) == TYPE_CODE_INT)
10801 /* GDB allows dereferencing an int. If we were given
10802 the expect_type, then use that as the target type.
10803 Otherwise, assume that the target type is an int. */
10804 {
10805 if (expect_type != NULL)
10806 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10807 arg1));
10808 else
10809 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10810 (CORE_ADDR) value_as_address (arg1));
10811 }
6b0d7253 10812
4c4b4cd2
PH
10813 if (ada_is_array_descriptor_type (type))
10814 /* GDB allows dereferencing GNAT array descriptors. */
10815 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10816 else
4c4b4cd2 10817 return ada_value_ind (arg1);
14f9c5c9
AS
10818
10819 case STRUCTOP_STRUCT:
10820 tem = longest_to_int (exp->elts[pc + 1].longconst);
10821 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10822 preeval_pos = *pos;
14f9c5c9
AS
10823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10824 if (noside == EVAL_SKIP)
4c4b4cd2 10825 goto nosideret;
14f9c5c9 10826 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10827 {
df407dfe 10828 struct type *type1 = value_type (arg1);
5b4ee69b 10829
76a01679
JB
10830 if (ada_is_tagged_type (type1, 1))
10831 {
10832 type = ada_lookup_struct_elt_type (type1,
10833 &exp->elts[pc + 2].string,
10834 1, 1, NULL);
5ec18f2b
JG
10835
10836 /* If the field is not found, check if it exists in the
10837 extension of this object's type. This means that we
10838 need to evaluate completely the expression. */
10839
76a01679 10840 if (type == NULL)
5ec18f2b
JG
10841 {
10842 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10843 EVAL_NORMAL);
10844 arg1 = ada_value_struct_elt (arg1,
10845 &exp->elts[pc + 2].string,
10846 0);
10847 arg1 = unwrap_value (arg1);
10848 type = value_type (ada_to_fixed_value (arg1));
10849 }
76a01679
JB
10850 }
10851 else
10852 type =
10853 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10854 0, NULL);
10855
10856 return value_zero (ada_aligned_type (type), lval_memory);
10857 }
14f9c5c9 10858 else
284614f0
JB
10859 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10860 arg1 = unwrap_value (arg1);
10861 return ada_to_fixed_value (arg1);
10862
14f9c5c9 10863 case OP_TYPE:
4c4b4cd2
PH
10864 /* The value is not supposed to be used. This is here to make it
10865 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10866 (*pos) += 2;
10867 if (noside == EVAL_SKIP)
4c4b4cd2 10868 goto nosideret;
14f9c5c9 10869 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10870 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10871 else
323e0a4a 10872 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10873
10874 case OP_AGGREGATE:
10875 case OP_CHOICES:
10876 case OP_OTHERS:
10877 case OP_DISCRETE_RANGE:
10878 case OP_POSITIONAL:
10879 case OP_NAME:
10880 if (noside == EVAL_NORMAL)
10881 switch (op)
10882 {
10883 case OP_NAME:
10884 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10885 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10886 case OP_AGGREGATE:
10887 error (_("Aggregates only allowed on the right of an assignment"));
10888 default:
0963b4bd
MS
10889 internal_error (__FILE__, __LINE__,
10890 _("aggregate apparently mangled"));
52ce6436
PH
10891 }
10892
10893 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10894 *pos += oplen - 1;
10895 for (tem = 0; tem < nargs; tem += 1)
10896 ada_evaluate_subexp (NULL, exp, pos, noside);
10897 goto nosideret;
14f9c5c9
AS
10898 }
10899
10900nosideret:
22601c15 10901 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10902}
14f9c5c9 10903\f
d2e4a39e 10904
4c4b4cd2 10905 /* Fixed point */
14f9c5c9
AS
10906
10907/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10908 type name that encodes the 'small and 'delta information.
4c4b4cd2 10909 Otherwise, return NULL. */
14f9c5c9 10910
d2e4a39e 10911static const char *
ebf56fd3 10912fixed_type_info (struct type *type)
14f9c5c9 10913{
d2e4a39e 10914 const char *name = ada_type_name (type);
14f9c5c9
AS
10915 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10916
d2e4a39e
AS
10917 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10918 {
14f9c5c9 10919 const char *tail = strstr (name, "___XF_");
5b4ee69b 10920
14f9c5c9 10921 if (tail == NULL)
4c4b4cd2 10922 return NULL;
d2e4a39e 10923 else
4c4b4cd2 10924 return tail + 5;
14f9c5c9
AS
10925 }
10926 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10927 return fixed_type_info (TYPE_TARGET_TYPE (type));
10928 else
10929 return NULL;
10930}
10931
4c4b4cd2 10932/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10933
10934int
ebf56fd3 10935ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10936{
10937 return fixed_type_info (type) != NULL;
10938}
10939
4c4b4cd2
PH
10940/* Return non-zero iff TYPE represents a System.Address type. */
10941
10942int
10943ada_is_system_address_type (struct type *type)
10944{
10945 return (TYPE_NAME (type)
10946 && strcmp (TYPE_NAME (type), "system__address") == 0);
10947}
10948
14f9c5c9
AS
10949/* Assuming that TYPE is the representation of an Ada fixed-point
10950 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10951 delta cannot be determined. */
14f9c5c9
AS
10952
10953DOUBLEST
ebf56fd3 10954ada_delta (struct type *type)
14f9c5c9
AS
10955{
10956 const char *encoding = fixed_type_info (type);
facc390f 10957 DOUBLEST num, den;
14f9c5c9 10958
facc390f
JB
10959 /* Strictly speaking, num and den are encoded as integer. However,
10960 they may not fit into a long, and they will have to be converted
10961 to DOUBLEST anyway. So scan them as DOUBLEST. */
10962 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10963 &num, &den) < 2)
14f9c5c9 10964 return -1.0;
d2e4a39e 10965 else
facc390f 10966 return num / den;
14f9c5c9
AS
10967}
10968
10969/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10970 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10971
10972static DOUBLEST
ebf56fd3 10973scaling_factor (struct type *type)
14f9c5c9
AS
10974{
10975 const char *encoding = fixed_type_info (type);
facc390f 10976 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10977 int n;
d2e4a39e 10978
facc390f
JB
10979 /* Strictly speaking, num's and den's are encoded as integer. However,
10980 they may not fit into a long, and they will have to be converted
10981 to DOUBLEST anyway. So scan them as DOUBLEST. */
10982 n = sscanf (encoding,
10983 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10984 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10985 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10986
10987 if (n < 2)
10988 return 1.0;
10989 else if (n == 4)
facc390f 10990 return num1 / den1;
d2e4a39e 10991 else
facc390f 10992 return num0 / den0;
14f9c5c9
AS
10993}
10994
10995
10996/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10997 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10998
10999DOUBLEST
ebf56fd3 11000ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11001{
d2e4a39e 11002 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11003}
11004
4c4b4cd2
PH
11005/* The representation of a fixed-point value of type TYPE
11006 corresponding to the value X. */
14f9c5c9
AS
11007
11008LONGEST
ebf56fd3 11009ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11010{
11011 return (LONGEST) (x / scaling_factor (type) + 0.5);
11012}
11013
14f9c5c9 11014\f
d2e4a39e 11015
4c4b4cd2 11016 /* Range types */
14f9c5c9
AS
11017
11018/* Scan STR beginning at position K for a discriminant name, and
11019 return the value of that discriminant field of DVAL in *PX. If
11020 PNEW_K is not null, put the position of the character beyond the
11021 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11022 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11023
11024static int
07d8f827 11025scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11026 int *pnew_k)
14f9c5c9
AS
11027{
11028 static char *bound_buffer = NULL;
11029 static size_t bound_buffer_len = 0;
11030 char *bound;
11031 char *pend;
d2e4a39e 11032 struct value *bound_val;
14f9c5c9
AS
11033
11034 if (dval == NULL || str == NULL || str[k] == '\0')
11035 return 0;
11036
d2e4a39e 11037 pend = strstr (str + k, "__");
14f9c5c9
AS
11038 if (pend == NULL)
11039 {
d2e4a39e 11040 bound = str + k;
14f9c5c9
AS
11041 k += strlen (bound);
11042 }
d2e4a39e 11043 else
14f9c5c9 11044 {
d2e4a39e 11045 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11046 bound = bound_buffer;
d2e4a39e
AS
11047 strncpy (bound_buffer, str + k, pend - (str + k));
11048 bound[pend - (str + k)] = '\0';
11049 k = pend - str;
14f9c5c9 11050 }
d2e4a39e 11051
df407dfe 11052 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11053 if (bound_val == NULL)
11054 return 0;
11055
11056 *px = value_as_long (bound_val);
11057 if (pnew_k != NULL)
11058 *pnew_k = k;
11059 return 1;
11060}
11061
11062/* Value of variable named NAME in the current environment. If
11063 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11064 otherwise causes an error with message ERR_MSG. */
11065
d2e4a39e
AS
11066static struct value *
11067get_var_value (char *name, char *err_msg)
14f9c5c9 11068{
4c4b4cd2 11069 struct ada_symbol_info *syms;
14f9c5c9
AS
11070 int nsyms;
11071
4c4b4cd2 11072 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11073 &syms);
14f9c5c9
AS
11074
11075 if (nsyms != 1)
11076 {
11077 if (err_msg == NULL)
4c4b4cd2 11078 return 0;
14f9c5c9 11079 else
8a3fe4f8 11080 error (("%s"), err_msg);
14f9c5c9
AS
11081 }
11082
4c4b4cd2 11083 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11084}
d2e4a39e 11085
14f9c5c9 11086/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11087 no such variable found, returns 0, and sets *FLAG to 0. If
11088 successful, sets *FLAG to 1. */
11089
14f9c5c9 11090LONGEST
4c4b4cd2 11091get_int_var_value (char *name, int *flag)
14f9c5c9 11092{
4c4b4cd2 11093 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11094
14f9c5c9
AS
11095 if (var_val == 0)
11096 {
11097 if (flag != NULL)
4c4b4cd2 11098 *flag = 0;
14f9c5c9
AS
11099 return 0;
11100 }
11101 else
11102 {
11103 if (flag != NULL)
4c4b4cd2 11104 *flag = 1;
14f9c5c9
AS
11105 return value_as_long (var_val);
11106 }
11107}
d2e4a39e 11108
14f9c5c9
AS
11109
11110/* Return a range type whose base type is that of the range type named
11111 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11112 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11113 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11114 corresponding range type from debug information; fall back to using it
11115 if symbol lookup fails. If a new type must be created, allocate it
11116 like ORIG_TYPE was. The bounds information, in general, is encoded
11117 in NAME, the base type given in the named range type. */
14f9c5c9 11118
d2e4a39e 11119static struct type *
28c85d6c 11120to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11121{
0d5cff50 11122 const char *name;
14f9c5c9 11123 struct type *base_type;
d2e4a39e 11124 char *subtype_info;
14f9c5c9 11125
28c85d6c
JB
11126 gdb_assert (raw_type != NULL);
11127 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11128
1ce677a4 11129 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11130 base_type = TYPE_TARGET_TYPE (raw_type);
11131 else
11132 base_type = raw_type;
11133
28c85d6c 11134 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11135 subtype_info = strstr (name, "___XD");
11136 if (subtype_info == NULL)
690cc4eb 11137 {
43bbcdc2
PH
11138 LONGEST L = ada_discrete_type_low_bound (raw_type);
11139 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11140
690cc4eb
PH
11141 if (L < INT_MIN || U > INT_MAX)
11142 return raw_type;
11143 else
0c9c3474
SA
11144 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11145 L, U);
690cc4eb 11146 }
14f9c5c9
AS
11147 else
11148 {
11149 static char *name_buf = NULL;
11150 static size_t name_len = 0;
11151 int prefix_len = subtype_info - name;
11152 LONGEST L, U;
11153 struct type *type;
11154 char *bounds_str;
11155 int n;
11156
11157 GROW_VECT (name_buf, name_len, prefix_len + 5);
11158 strncpy (name_buf, name, prefix_len);
11159 name_buf[prefix_len] = '\0';
11160
11161 subtype_info += 5;
11162 bounds_str = strchr (subtype_info, '_');
11163 n = 1;
11164
d2e4a39e 11165 if (*subtype_info == 'L')
4c4b4cd2
PH
11166 {
11167 if (!ada_scan_number (bounds_str, n, &L, &n)
11168 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11169 return raw_type;
11170 if (bounds_str[n] == '_')
11171 n += 2;
0963b4bd 11172 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11173 n += 1;
11174 subtype_info += 1;
11175 }
d2e4a39e 11176 else
4c4b4cd2
PH
11177 {
11178 int ok;
5b4ee69b 11179
4c4b4cd2
PH
11180 strcpy (name_buf + prefix_len, "___L");
11181 L = get_int_var_value (name_buf, &ok);
11182 if (!ok)
11183 {
323e0a4a 11184 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11185 L = 1;
11186 }
11187 }
14f9c5c9 11188
d2e4a39e 11189 if (*subtype_info == 'U')
4c4b4cd2
PH
11190 {
11191 if (!ada_scan_number (bounds_str, n, &U, &n)
11192 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11193 return raw_type;
11194 }
d2e4a39e 11195 else
4c4b4cd2
PH
11196 {
11197 int ok;
5b4ee69b 11198
4c4b4cd2
PH
11199 strcpy (name_buf + prefix_len, "___U");
11200 U = get_int_var_value (name_buf, &ok);
11201 if (!ok)
11202 {
323e0a4a 11203 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11204 U = L;
11205 }
11206 }
14f9c5c9 11207
0c9c3474
SA
11208 type = create_static_range_type (alloc_type_copy (raw_type),
11209 base_type, L, U);
d2e4a39e 11210 TYPE_NAME (type) = name;
14f9c5c9
AS
11211 return type;
11212 }
11213}
11214
4c4b4cd2
PH
11215/* True iff NAME is the name of a range type. */
11216
14f9c5c9 11217int
d2e4a39e 11218ada_is_range_type_name (const char *name)
14f9c5c9
AS
11219{
11220 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11221}
14f9c5c9 11222\f
d2e4a39e 11223
4c4b4cd2
PH
11224 /* Modular types */
11225
11226/* True iff TYPE is an Ada modular type. */
14f9c5c9 11227
14f9c5c9 11228int
d2e4a39e 11229ada_is_modular_type (struct type *type)
14f9c5c9 11230{
18af8284 11231 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11232
11233 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11234 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11235 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11236}
11237
4c4b4cd2
PH
11238/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11239
61ee279c 11240ULONGEST
0056e4d5 11241ada_modulus (struct type *type)
14f9c5c9 11242{
43bbcdc2 11243 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11244}
d2e4a39e 11245\f
f7f9143b
JB
11246
11247/* Ada exception catchpoint support:
11248 ---------------------------------
11249
11250 We support 3 kinds of exception catchpoints:
11251 . catchpoints on Ada exceptions
11252 . catchpoints on unhandled Ada exceptions
11253 . catchpoints on failed assertions
11254
11255 Exceptions raised during failed assertions, or unhandled exceptions
11256 could perfectly be caught with the general catchpoint on Ada exceptions.
11257 However, we can easily differentiate these two special cases, and having
11258 the option to distinguish these two cases from the rest can be useful
11259 to zero-in on certain situations.
11260
11261 Exception catchpoints are a specialized form of breakpoint,
11262 since they rely on inserting breakpoints inside known routines
11263 of the GNAT runtime. The implementation therefore uses a standard
11264 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11265 of breakpoint_ops.
11266
0259addd
JB
11267 Support in the runtime for exception catchpoints have been changed
11268 a few times already, and these changes affect the implementation
11269 of these catchpoints. In order to be able to support several
11270 variants of the runtime, we use a sniffer that will determine
28010a5d 11271 the runtime variant used by the program being debugged. */
f7f9143b 11272
82eacd52
JB
11273/* Ada's standard exceptions.
11274
11275 The Ada 83 standard also defined Numeric_Error. But there so many
11276 situations where it was unclear from the Ada 83 Reference Manual
11277 (RM) whether Constraint_Error or Numeric_Error should be raised,
11278 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11279 Interpretation saying that anytime the RM says that Numeric_Error
11280 should be raised, the implementation may raise Constraint_Error.
11281 Ada 95 went one step further and pretty much removed Numeric_Error
11282 from the list of standard exceptions (it made it a renaming of
11283 Constraint_Error, to help preserve compatibility when compiling
11284 an Ada83 compiler). As such, we do not include Numeric_Error from
11285 this list of standard exceptions. */
3d0b0fa3
JB
11286
11287static char *standard_exc[] = {
11288 "constraint_error",
11289 "program_error",
11290 "storage_error",
11291 "tasking_error"
11292};
11293
0259addd
JB
11294typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11295
11296/* A structure that describes how to support exception catchpoints
11297 for a given executable. */
11298
11299struct exception_support_info
11300{
11301 /* The name of the symbol to break on in order to insert
11302 a catchpoint on exceptions. */
11303 const char *catch_exception_sym;
11304
11305 /* The name of the symbol to break on in order to insert
11306 a catchpoint on unhandled exceptions. */
11307 const char *catch_exception_unhandled_sym;
11308
11309 /* The name of the symbol to break on in order to insert
11310 a catchpoint on failed assertions. */
11311 const char *catch_assert_sym;
11312
11313 /* Assuming that the inferior just triggered an unhandled exception
11314 catchpoint, this function is responsible for returning the address
11315 in inferior memory where the name of that exception is stored.
11316 Return zero if the address could not be computed. */
11317 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11318};
11319
11320static CORE_ADDR ada_unhandled_exception_name_addr (void);
11321static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11322
11323/* The following exception support info structure describes how to
11324 implement exception catchpoints with the latest version of the
11325 Ada runtime (as of 2007-03-06). */
11326
11327static const struct exception_support_info default_exception_support_info =
11328{
11329 "__gnat_debug_raise_exception", /* catch_exception_sym */
11330 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11331 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11332 ada_unhandled_exception_name_addr
11333};
11334
11335/* The following exception support info structure describes how to
11336 implement exception catchpoints with a slightly older version
11337 of the Ada runtime. */
11338
11339static const struct exception_support_info exception_support_info_fallback =
11340{
11341 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11342 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11343 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11344 ada_unhandled_exception_name_addr_from_raise
11345};
11346
f17011e0
JB
11347/* Return nonzero if we can detect the exception support routines
11348 described in EINFO.
11349
11350 This function errors out if an abnormal situation is detected
11351 (for instance, if we find the exception support routines, but
11352 that support is found to be incomplete). */
11353
11354static int
11355ada_has_this_exception_support (const struct exception_support_info *einfo)
11356{
11357 struct symbol *sym;
11358
11359 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11360 that should be compiled with debugging information. As a result, we
11361 expect to find that symbol in the symtabs. */
11362
11363 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11364 if (sym == NULL)
a6af7abe
JB
11365 {
11366 /* Perhaps we did not find our symbol because the Ada runtime was
11367 compiled without debugging info, or simply stripped of it.
11368 It happens on some GNU/Linux distributions for instance, where
11369 users have to install a separate debug package in order to get
11370 the runtime's debugging info. In that situation, let the user
11371 know why we cannot insert an Ada exception catchpoint.
11372
11373 Note: Just for the purpose of inserting our Ada exception
11374 catchpoint, we could rely purely on the associated minimal symbol.
11375 But we would be operating in degraded mode anyway, since we are
11376 still lacking the debugging info needed later on to extract
11377 the name of the exception being raised (this name is printed in
11378 the catchpoint message, and is also used when trying to catch
11379 a specific exception). We do not handle this case for now. */
3b7344d5 11380 struct bound_minimal_symbol msym
1c8e84b0
JB
11381 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11382
3b7344d5 11383 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11384 error (_("Your Ada runtime appears to be missing some debugging "
11385 "information.\nCannot insert Ada exception catchpoint "
11386 "in this configuration."));
11387
11388 return 0;
11389 }
f17011e0
JB
11390
11391 /* Make sure that the symbol we found corresponds to a function. */
11392
11393 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11394 error (_("Symbol \"%s\" is not a function (class = %d)"),
11395 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11396
11397 return 1;
11398}
11399
0259addd
JB
11400/* Inspect the Ada runtime and determine which exception info structure
11401 should be used to provide support for exception catchpoints.
11402
3eecfa55
JB
11403 This function will always set the per-inferior exception_info,
11404 or raise an error. */
0259addd
JB
11405
11406static void
11407ada_exception_support_info_sniffer (void)
11408{
3eecfa55 11409 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11410
11411 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11412 if (data->exception_info != NULL)
0259addd
JB
11413 return;
11414
11415 /* Check the latest (default) exception support info. */
f17011e0 11416 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11417 {
3eecfa55 11418 data->exception_info = &default_exception_support_info;
0259addd
JB
11419 return;
11420 }
11421
11422 /* Try our fallback exception suport info. */
f17011e0 11423 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11424 {
3eecfa55 11425 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11426 return;
11427 }
11428
11429 /* Sometimes, it is normal for us to not be able to find the routine
11430 we are looking for. This happens when the program is linked with
11431 the shared version of the GNAT runtime, and the program has not been
11432 started yet. Inform the user of these two possible causes if
11433 applicable. */
11434
ccefe4c4 11435 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11436 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11437
11438 /* If the symbol does not exist, then check that the program is
11439 already started, to make sure that shared libraries have been
11440 loaded. If it is not started, this may mean that the symbol is
11441 in a shared library. */
11442
11443 if (ptid_get_pid (inferior_ptid) == 0)
11444 error (_("Unable to insert catchpoint. Try to start the program first."));
11445
11446 /* At this point, we know that we are debugging an Ada program and
11447 that the inferior has been started, but we still are not able to
0963b4bd 11448 find the run-time symbols. That can mean that we are in
0259addd
JB
11449 configurable run time mode, or that a-except as been optimized
11450 out by the linker... In any case, at this point it is not worth
11451 supporting this feature. */
11452
7dda8cff 11453 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11454}
11455
f7f9143b
JB
11456/* True iff FRAME is very likely to be that of a function that is
11457 part of the runtime system. This is all very heuristic, but is
11458 intended to be used as advice as to what frames are uninteresting
11459 to most users. */
11460
11461static int
11462is_known_support_routine (struct frame_info *frame)
11463{
4ed6b5be 11464 struct symtab_and_line sal;
55b87a52 11465 char *func_name;
692465f1 11466 enum language func_lang;
f7f9143b 11467 int i;
f35a17b5 11468 const char *fullname;
f7f9143b 11469
4ed6b5be
JB
11470 /* If this code does not have any debugging information (no symtab),
11471 This cannot be any user code. */
f7f9143b 11472
4ed6b5be 11473 find_frame_sal (frame, &sal);
f7f9143b
JB
11474 if (sal.symtab == NULL)
11475 return 1;
11476
4ed6b5be
JB
11477 /* If there is a symtab, but the associated source file cannot be
11478 located, then assume this is not user code: Selecting a frame
11479 for which we cannot display the code would not be very helpful
11480 for the user. This should also take care of case such as VxWorks
11481 where the kernel has some debugging info provided for a few units. */
f7f9143b 11482
f35a17b5
JK
11483 fullname = symtab_to_fullname (sal.symtab);
11484 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11485 return 1;
11486
4ed6b5be
JB
11487 /* Check the unit filename againt the Ada runtime file naming.
11488 We also check the name of the objfile against the name of some
11489 known system libraries that sometimes come with debugging info
11490 too. */
11491
f7f9143b
JB
11492 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11493 {
11494 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11495 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11496 return 1;
4ed6b5be 11497 if (sal.symtab->objfile != NULL
4262abfb 11498 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11499 return 1;
f7f9143b
JB
11500 }
11501
4ed6b5be 11502 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11503
e9e07ba6 11504 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11505 if (func_name == NULL)
11506 return 1;
11507
11508 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11509 {
11510 re_comp (known_auxiliary_function_name_patterns[i]);
11511 if (re_exec (func_name))
55b87a52
KS
11512 {
11513 xfree (func_name);
11514 return 1;
11515 }
f7f9143b
JB
11516 }
11517
55b87a52 11518 xfree (func_name);
f7f9143b
JB
11519 return 0;
11520}
11521
11522/* Find the first frame that contains debugging information and that is not
11523 part of the Ada run-time, starting from FI and moving upward. */
11524
0ef643c8 11525void
f7f9143b
JB
11526ada_find_printable_frame (struct frame_info *fi)
11527{
11528 for (; fi != NULL; fi = get_prev_frame (fi))
11529 {
11530 if (!is_known_support_routine (fi))
11531 {
11532 select_frame (fi);
11533 break;
11534 }
11535 }
11536
11537}
11538
11539/* Assuming that the inferior just triggered an unhandled exception
11540 catchpoint, return the address in inferior memory where the name
11541 of the exception is stored.
11542
11543 Return zero if the address could not be computed. */
11544
11545static CORE_ADDR
11546ada_unhandled_exception_name_addr (void)
0259addd
JB
11547{
11548 return parse_and_eval_address ("e.full_name");
11549}
11550
11551/* Same as ada_unhandled_exception_name_addr, except that this function
11552 should be used when the inferior uses an older version of the runtime,
11553 where the exception name needs to be extracted from a specific frame
11554 several frames up in the callstack. */
11555
11556static CORE_ADDR
11557ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11558{
11559 int frame_level;
11560 struct frame_info *fi;
3eecfa55 11561 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11562 struct cleanup *old_chain;
f7f9143b
JB
11563
11564 /* To determine the name of this exception, we need to select
11565 the frame corresponding to RAISE_SYM_NAME. This frame is
11566 at least 3 levels up, so we simply skip the first 3 frames
11567 without checking the name of their associated function. */
11568 fi = get_current_frame ();
11569 for (frame_level = 0; frame_level < 3; frame_level += 1)
11570 if (fi != NULL)
11571 fi = get_prev_frame (fi);
11572
55b87a52 11573 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11574 while (fi != NULL)
11575 {
55b87a52 11576 char *func_name;
692465f1
JB
11577 enum language func_lang;
11578
e9e07ba6 11579 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11580 if (func_name != NULL)
11581 {
11582 make_cleanup (xfree, func_name);
11583
11584 if (strcmp (func_name,
11585 data->exception_info->catch_exception_sym) == 0)
11586 break; /* We found the frame we were looking for... */
11587 fi = get_prev_frame (fi);
11588 }
f7f9143b 11589 }
55b87a52 11590 do_cleanups (old_chain);
f7f9143b
JB
11591
11592 if (fi == NULL)
11593 return 0;
11594
11595 select_frame (fi);
11596 return parse_and_eval_address ("id.full_name");
11597}
11598
11599/* Assuming the inferior just triggered an Ada exception catchpoint
11600 (of any type), return the address in inferior memory where the name
11601 of the exception is stored, if applicable.
11602
11603 Return zero if the address could not be computed, or if not relevant. */
11604
11605static CORE_ADDR
761269c8 11606ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11607 struct breakpoint *b)
11608{
3eecfa55
JB
11609 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11610
f7f9143b
JB
11611 switch (ex)
11612 {
761269c8 11613 case ada_catch_exception:
f7f9143b
JB
11614 return (parse_and_eval_address ("e.full_name"));
11615 break;
11616
761269c8 11617 case ada_catch_exception_unhandled:
3eecfa55 11618 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11619 break;
11620
761269c8 11621 case ada_catch_assert:
f7f9143b
JB
11622 return 0; /* Exception name is not relevant in this case. */
11623 break;
11624
11625 default:
11626 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11627 break;
11628 }
11629
11630 return 0; /* Should never be reached. */
11631}
11632
11633/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11634 any error that ada_exception_name_addr_1 might cause to be thrown.
11635 When an error is intercepted, a warning with the error message is printed,
11636 and zero is returned. */
11637
11638static CORE_ADDR
761269c8 11639ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11640 struct breakpoint *b)
11641{
bfd189b1 11642 volatile struct gdb_exception e;
f7f9143b
JB
11643 CORE_ADDR result = 0;
11644
11645 TRY_CATCH (e, RETURN_MASK_ERROR)
11646 {
11647 result = ada_exception_name_addr_1 (ex, b);
11648 }
11649
11650 if (e.reason < 0)
11651 {
11652 warning (_("failed to get exception name: %s"), e.message);
11653 return 0;
11654 }
11655
11656 return result;
11657}
11658
28010a5d
PA
11659static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11660
11661/* Ada catchpoints.
11662
11663 In the case of catchpoints on Ada exceptions, the catchpoint will
11664 stop the target on every exception the program throws. When a user
11665 specifies the name of a specific exception, we translate this
11666 request into a condition expression (in text form), and then parse
11667 it into an expression stored in each of the catchpoint's locations.
11668 We then use this condition to check whether the exception that was
11669 raised is the one the user is interested in. If not, then the
11670 target is resumed again. We store the name of the requested
11671 exception, in order to be able to re-set the condition expression
11672 when symbols change. */
11673
11674/* An instance of this type is used to represent an Ada catchpoint
11675 breakpoint location. It includes a "struct bp_location" as a kind
11676 of base class; users downcast to "struct bp_location *" when
11677 needed. */
11678
11679struct ada_catchpoint_location
11680{
11681 /* The base class. */
11682 struct bp_location base;
11683
11684 /* The condition that checks whether the exception that was raised
11685 is the specific exception the user specified on catchpoint
11686 creation. */
11687 struct expression *excep_cond_expr;
11688};
11689
11690/* Implement the DTOR method in the bp_location_ops structure for all
11691 Ada exception catchpoint kinds. */
11692
11693static void
11694ada_catchpoint_location_dtor (struct bp_location *bl)
11695{
11696 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11697
11698 xfree (al->excep_cond_expr);
11699}
11700
11701/* The vtable to be used in Ada catchpoint locations. */
11702
11703static const struct bp_location_ops ada_catchpoint_location_ops =
11704{
11705 ada_catchpoint_location_dtor
11706};
11707
11708/* An instance of this type is used to represent an Ada catchpoint.
11709 It includes a "struct breakpoint" as a kind of base class; users
11710 downcast to "struct breakpoint *" when needed. */
11711
11712struct ada_catchpoint
11713{
11714 /* The base class. */
11715 struct breakpoint base;
11716
11717 /* The name of the specific exception the user specified. */
11718 char *excep_string;
11719};
11720
11721/* Parse the exception condition string in the context of each of the
11722 catchpoint's locations, and store them for later evaluation. */
11723
11724static void
11725create_excep_cond_exprs (struct ada_catchpoint *c)
11726{
11727 struct cleanup *old_chain;
11728 struct bp_location *bl;
11729 char *cond_string;
11730
11731 /* Nothing to do if there's no specific exception to catch. */
11732 if (c->excep_string == NULL)
11733 return;
11734
11735 /* Same if there are no locations... */
11736 if (c->base.loc == NULL)
11737 return;
11738
11739 /* Compute the condition expression in text form, from the specific
11740 expection we want to catch. */
11741 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11742 old_chain = make_cleanup (xfree, cond_string);
11743
11744 /* Iterate over all the catchpoint's locations, and parse an
11745 expression for each. */
11746 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11747 {
11748 struct ada_catchpoint_location *ada_loc
11749 = (struct ada_catchpoint_location *) bl;
11750 struct expression *exp = NULL;
11751
11752 if (!bl->shlib_disabled)
11753 {
11754 volatile struct gdb_exception e;
bbc13ae3 11755 const char *s;
28010a5d
PA
11756
11757 s = cond_string;
11758 TRY_CATCH (e, RETURN_MASK_ERROR)
11759 {
1bb9788d
TT
11760 exp = parse_exp_1 (&s, bl->address,
11761 block_for_pc (bl->address), 0);
28010a5d
PA
11762 }
11763 if (e.reason < 0)
849f2b52
JB
11764 {
11765 warning (_("failed to reevaluate internal exception condition "
11766 "for catchpoint %d: %s"),
11767 c->base.number, e.message);
11768 /* There is a bug in GCC on sparc-solaris when building with
11769 optimization which causes EXP to change unexpectedly
11770 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11771 The problem should be fixed starting with GCC 4.9.
11772 In the meantime, work around it by forcing EXP back
11773 to NULL. */
11774 exp = NULL;
11775 }
28010a5d
PA
11776 }
11777
11778 ada_loc->excep_cond_expr = exp;
11779 }
11780
11781 do_cleanups (old_chain);
11782}
11783
11784/* Implement the DTOR method in the breakpoint_ops structure for all
11785 exception catchpoint kinds. */
11786
11787static void
761269c8 11788dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11789{
11790 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11791
11792 xfree (c->excep_string);
348d480f 11793
2060206e 11794 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11795}
11796
11797/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11798 structure for all exception catchpoint kinds. */
11799
11800static struct bp_location *
761269c8 11801allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11802 struct breakpoint *self)
11803{
11804 struct ada_catchpoint_location *loc;
11805
11806 loc = XNEW (struct ada_catchpoint_location);
11807 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11808 loc->excep_cond_expr = NULL;
11809 return &loc->base;
11810}
11811
11812/* Implement the RE_SET method in the breakpoint_ops structure for all
11813 exception catchpoint kinds. */
11814
11815static void
761269c8 11816re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11817{
11818 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11819
11820 /* Call the base class's method. This updates the catchpoint's
11821 locations. */
2060206e 11822 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11823
11824 /* Reparse the exception conditional expressions. One for each
11825 location. */
11826 create_excep_cond_exprs (c);
11827}
11828
11829/* Returns true if we should stop for this breakpoint hit. If the
11830 user specified a specific exception, we only want to cause a stop
11831 if the program thrown that exception. */
11832
11833static int
11834should_stop_exception (const struct bp_location *bl)
11835{
11836 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11837 const struct ada_catchpoint_location *ada_loc
11838 = (const struct ada_catchpoint_location *) bl;
11839 volatile struct gdb_exception ex;
11840 int stop;
11841
11842 /* With no specific exception, should always stop. */
11843 if (c->excep_string == NULL)
11844 return 1;
11845
11846 if (ada_loc->excep_cond_expr == NULL)
11847 {
11848 /* We will have a NULL expression if back when we were creating
11849 the expressions, this location's had failed to parse. */
11850 return 1;
11851 }
11852
11853 stop = 1;
11854 TRY_CATCH (ex, RETURN_MASK_ALL)
11855 {
11856 struct value *mark;
11857
11858 mark = value_mark ();
11859 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11860 value_free_to_mark (mark);
11861 }
11862 if (ex.reason < 0)
11863 exception_fprintf (gdb_stderr, ex,
11864 _("Error in testing exception condition:\n"));
11865 return stop;
11866}
11867
11868/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11869 for all exception catchpoint kinds. */
11870
11871static void
761269c8 11872check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11873{
11874 bs->stop = should_stop_exception (bs->bp_location_at);
11875}
11876
f7f9143b
JB
11877/* Implement the PRINT_IT method in the breakpoint_ops structure
11878 for all exception catchpoint kinds. */
11879
11880static enum print_stop_action
761269c8 11881print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11882{
79a45e25 11883 struct ui_out *uiout = current_uiout;
348d480f
PA
11884 struct breakpoint *b = bs->breakpoint_at;
11885
956a9fb9 11886 annotate_catchpoint (b->number);
f7f9143b 11887
956a9fb9 11888 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11889 {
956a9fb9
JB
11890 ui_out_field_string (uiout, "reason",
11891 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11892 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11893 }
11894
00eb2c4a
JB
11895 ui_out_text (uiout,
11896 b->disposition == disp_del ? "\nTemporary catchpoint "
11897 : "\nCatchpoint ");
956a9fb9
JB
11898 ui_out_field_int (uiout, "bkptno", b->number);
11899 ui_out_text (uiout, ", ");
f7f9143b 11900
f7f9143b
JB
11901 switch (ex)
11902 {
761269c8
JB
11903 case ada_catch_exception:
11904 case ada_catch_exception_unhandled:
956a9fb9
JB
11905 {
11906 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11907 char exception_name[256];
11908
11909 if (addr != 0)
11910 {
c714b426
PA
11911 read_memory (addr, (gdb_byte *) exception_name,
11912 sizeof (exception_name) - 1);
956a9fb9
JB
11913 exception_name [sizeof (exception_name) - 1] = '\0';
11914 }
11915 else
11916 {
11917 /* For some reason, we were unable to read the exception
11918 name. This could happen if the Runtime was compiled
11919 without debugging info, for instance. In that case,
11920 just replace the exception name by the generic string
11921 "exception" - it will read as "an exception" in the
11922 notification we are about to print. */
967cff16 11923 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11924 }
11925 /* In the case of unhandled exception breakpoints, we print
11926 the exception name as "unhandled EXCEPTION_NAME", to make
11927 it clearer to the user which kind of catchpoint just got
11928 hit. We used ui_out_text to make sure that this extra
11929 info does not pollute the exception name in the MI case. */
761269c8 11930 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11931 ui_out_text (uiout, "unhandled ");
11932 ui_out_field_string (uiout, "exception-name", exception_name);
11933 }
11934 break;
761269c8 11935 case ada_catch_assert:
956a9fb9
JB
11936 /* In this case, the name of the exception is not really
11937 important. Just print "failed assertion" to make it clearer
11938 that his program just hit an assertion-failure catchpoint.
11939 We used ui_out_text because this info does not belong in
11940 the MI output. */
11941 ui_out_text (uiout, "failed assertion");
11942 break;
f7f9143b 11943 }
956a9fb9
JB
11944 ui_out_text (uiout, " at ");
11945 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11946
11947 return PRINT_SRC_AND_LOC;
11948}
11949
11950/* Implement the PRINT_ONE method in the breakpoint_ops structure
11951 for all exception catchpoint kinds. */
11952
11953static void
761269c8 11954print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11955 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11956{
79a45e25 11957 struct ui_out *uiout = current_uiout;
28010a5d 11958 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11959 struct value_print_options opts;
11960
11961 get_user_print_options (&opts);
11962 if (opts.addressprint)
f7f9143b
JB
11963 {
11964 annotate_field (4);
5af949e3 11965 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11966 }
11967
11968 annotate_field (5);
a6d9a66e 11969 *last_loc = b->loc;
f7f9143b
JB
11970 switch (ex)
11971 {
761269c8 11972 case ada_catch_exception:
28010a5d 11973 if (c->excep_string != NULL)
f7f9143b 11974 {
28010a5d
PA
11975 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11976
f7f9143b
JB
11977 ui_out_field_string (uiout, "what", msg);
11978 xfree (msg);
11979 }
11980 else
11981 ui_out_field_string (uiout, "what", "all Ada exceptions");
11982
11983 break;
11984
761269c8 11985 case ada_catch_exception_unhandled:
f7f9143b
JB
11986 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11987 break;
11988
761269c8 11989 case ada_catch_assert:
f7f9143b
JB
11990 ui_out_field_string (uiout, "what", "failed Ada assertions");
11991 break;
11992
11993 default:
11994 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11995 break;
11996 }
11997}
11998
11999/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12000 for all exception catchpoint kinds. */
12001
12002static void
761269c8 12003print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12004 struct breakpoint *b)
12005{
28010a5d 12006 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12007 struct ui_out *uiout = current_uiout;
28010a5d 12008
00eb2c4a
JB
12009 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12010 : _("Catchpoint "));
12011 ui_out_field_int (uiout, "bkptno", b->number);
12012 ui_out_text (uiout, ": ");
12013
f7f9143b
JB
12014 switch (ex)
12015 {
761269c8 12016 case ada_catch_exception:
28010a5d 12017 if (c->excep_string != NULL)
00eb2c4a
JB
12018 {
12019 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12020 struct cleanup *old_chain = make_cleanup (xfree, info);
12021
12022 ui_out_text (uiout, info);
12023 do_cleanups (old_chain);
12024 }
f7f9143b 12025 else
00eb2c4a 12026 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12027 break;
12028
761269c8 12029 case ada_catch_exception_unhandled:
00eb2c4a 12030 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12031 break;
12032
761269c8 12033 case ada_catch_assert:
00eb2c4a 12034 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12035 break;
12036
12037 default:
12038 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12039 break;
12040 }
12041}
12042
6149aea9
PA
12043/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12044 for all exception catchpoint kinds. */
12045
12046static void
761269c8 12047print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12048 struct breakpoint *b, struct ui_file *fp)
12049{
28010a5d
PA
12050 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12051
6149aea9
PA
12052 switch (ex)
12053 {
761269c8 12054 case ada_catch_exception:
6149aea9 12055 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12056 if (c->excep_string != NULL)
12057 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12058 break;
12059
761269c8 12060 case ada_catch_exception_unhandled:
78076abc 12061 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12062 break;
12063
761269c8 12064 case ada_catch_assert:
6149aea9
PA
12065 fprintf_filtered (fp, "catch assert");
12066 break;
12067
12068 default:
12069 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12070 }
d9b3f62e 12071 print_recreate_thread (b, fp);
6149aea9
PA
12072}
12073
f7f9143b
JB
12074/* Virtual table for "catch exception" breakpoints. */
12075
28010a5d
PA
12076static void
12077dtor_catch_exception (struct breakpoint *b)
12078{
761269c8 12079 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12080}
12081
12082static struct bp_location *
12083allocate_location_catch_exception (struct breakpoint *self)
12084{
761269c8 12085 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12086}
12087
12088static void
12089re_set_catch_exception (struct breakpoint *b)
12090{
761269c8 12091 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12092}
12093
12094static void
12095check_status_catch_exception (bpstat bs)
12096{
761269c8 12097 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12098}
12099
f7f9143b 12100static enum print_stop_action
348d480f 12101print_it_catch_exception (bpstat bs)
f7f9143b 12102{
761269c8 12103 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12104}
12105
12106static void
a6d9a66e 12107print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12108{
761269c8 12109 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12110}
12111
12112static void
12113print_mention_catch_exception (struct breakpoint *b)
12114{
761269c8 12115 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12116}
12117
6149aea9
PA
12118static void
12119print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12120{
761269c8 12121 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12122}
12123
2060206e 12124static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12125
12126/* Virtual table for "catch exception unhandled" breakpoints. */
12127
28010a5d
PA
12128static void
12129dtor_catch_exception_unhandled (struct breakpoint *b)
12130{
761269c8 12131 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12132}
12133
12134static struct bp_location *
12135allocate_location_catch_exception_unhandled (struct breakpoint *self)
12136{
761269c8 12137 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12138}
12139
12140static void
12141re_set_catch_exception_unhandled (struct breakpoint *b)
12142{
761269c8 12143 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12144}
12145
12146static void
12147check_status_catch_exception_unhandled (bpstat bs)
12148{
761269c8 12149 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12150}
12151
f7f9143b 12152static enum print_stop_action
348d480f 12153print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12154{
761269c8 12155 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12156}
12157
12158static void
a6d9a66e
UW
12159print_one_catch_exception_unhandled (struct breakpoint *b,
12160 struct bp_location **last_loc)
f7f9143b 12161{
761269c8 12162 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12163}
12164
12165static void
12166print_mention_catch_exception_unhandled (struct breakpoint *b)
12167{
761269c8 12168 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12169}
12170
6149aea9
PA
12171static void
12172print_recreate_catch_exception_unhandled (struct breakpoint *b,
12173 struct ui_file *fp)
12174{
761269c8 12175 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12176}
12177
2060206e 12178static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12179
12180/* Virtual table for "catch assert" breakpoints. */
12181
28010a5d
PA
12182static void
12183dtor_catch_assert (struct breakpoint *b)
12184{
761269c8 12185 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12186}
12187
12188static struct bp_location *
12189allocate_location_catch_assert (struct breakpoint *self)
12190{
761269c8 12191 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12192}
12193
12194static void
12195re_set_catch_assert (struct breakpoint *b)
12196{
761269c8 12197 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12198}
12199
12200static void
12201check_status_catch_assert (bpstat bs)
12202{
761269c8 12203 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12204}
12205
f7f9143b 12206static enum print_stop_action
348d480f 12207print_it_catch_assert (bpstat bs)
f7f9143b 12208{
761269c8 12209 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12210}
12211
12212static void
a6d9a66e 12213print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12214{
761269c8 12215 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12216}
12217
12218static void
12219print_mention_catch_assert (struct breakpoint *b)
12220{
761269c8 12221 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12222}
12223
6149aea9
PA
12224static void
12225print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12226{
761269c8 12227 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12228}
12229
2060206e 12230static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12231
f7f9143b
JB
12232/* Return a newly allocated copy of the first space-separated token
12233 in ARGSP, and then adjust ARGSP to point immediately after that
12234 token.
12235
12236 Return NULL if ARGPS does not contain any more tokens. */
12237
12238static char *
12239ada_get_next_arg (char **argsp)
12240{
12241 char *args = *argsp;
12242 char *end;
12243 char *result;
12244
0fcd72ba 12245 args = skip_spaces (args);
f7f9143b
JB
12246 if (args[0] == '\0')
12247 return NULL; /* No more arguments. */
12248
12249 /* Find the end of the current argument. */
12250
0fcd72ba 12251 end = skip_to_space (args);
f7f9143b
JB
12252
12253 /* Adjust ARGSP to point to the start of the next argument. */
12254
12255 *argsp = end;
12256
12257 /* Make a copy of the current argument and return it. */
12258
12259 result = xmalloc (end - args + 1);
12260 strncpy (result, args, end - args);
12261 result[end - args] = '\0';
12262
12263 return result;
12264}
12265
12266/* Split the arguments specified in a "catch exception" command.
12267 Set EX to the appropriate catchpoint type.
28010a5d 12268 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12269 specified by the user.
12270 If a condition is found at the end of the arguments, the condition
12271 expression is stored in COND_STRING (memory must be deallocated
12272 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12273
12274static void
12275catch_ada_exception_command_split (char *args,
761269c8 12276 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12277 char **excep_string,
12278 char **cond_string)
f7f9143b
JB
12279{
12280 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12281 char *exception_name;
5845583d 12282 char *cond = NULL;
f7f9143b
JB
12283
12284 exception_name = ada_get_next_arg (&args);
5845583d
JB
12285 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12286 {
12287 /* This is not an exception name; this is the start of a condition
12288 expression for a catchpoint on all exceptions. So, "un-get"
12289 this token, and set exception_name to NULL. */
12290 xfree (exception_name);
12291 exception_name = NULL;
12292 args -= 2;
12293 }
f7f9143b
JB
12294 make_cleanup (xfree, exception_name);
12295
5845583d 12296 /* Check to see if we have a condition. */
f7f9143b 12297
0fcd72ba 12298 args = skip_spaces (args);
5845583d
JB
12299 if (strncmp (args, "if", 2) == 0
12300 && (isspace (args[2]) || args[2] == '\0'))
12301 {
12302 args += 2;
12303 args = skip_spaces (args);
12304
12305 if (args[0] == '\0')
12306 error (_("Condition missing after `if' keyword"));
12307 cond = xstrdup (args);
12308 make_cleanup (xfree, cond);
12309
12310 args += strlen (args);
12311 }
12312
12313 /* Check that we do not have any more arguments. Anything else
12314 is unexpected. */
f7f9143b
JB
12315
12316 if (args[0] != '\0')
12317 error (_("Junk at end of expression"));
12318
12319 discard_cleanups (old_chain);
12320
12321 if (exception_name == NULL)
12322 {
12323 /* Catch all exceptions. */
761269c8 12324 *ex = ada_catch_exception;
28010a5d 12325 *excep_string = NULL;
f7f9143b
JB
12326 }
12327 else if (strcmp (exception_name, "unhandled") == 0)
12328 {
12329 /* Catch unhandled exceptions. */
761269c8 12330 *ex = ada_catch_exception_unhandled;
28010a5d 12331 *excep_string = NULL;
f7f9143b
JB
12332 }
12333 else
12334 {
12335 /* Catch a specific exception. */
761269c8 12336 *ex = ada_catch_exception;
28010a5d 12337 *excep_string = exception_name;
f7f9143b 12338 }
5845583d 12339 *cond_string = cond;
f7f9143b
JB
12340}
12341
12342/* Return the name of the symbol on which we should break in order to
12343 implement a catchpoint of the EX kind. */
12344
12345static const char *
761269c8 12346ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12347{
3eecfa55
JB
12348 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12349
12350 gdb_assert (data->exception_info != NULL);
0259addd 12351
f7f9143b
JB
12352 switch (ex)
12353 {
761269c8 12354 case ada_catch_exception:
3eecfa55 12355 return (data->exception_info->catch_exception_sym);
f7f9143b 12356 break;
761269c8 12357 case ada_catch_exception_unhandled:
3eecfa55 12358 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12359 break;
761269c8 12360 case ada_catch_assert:
3eecfa55 12361 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12362 break;
12363 default:
12364 internal_error (__FILE__, __LINE__,
12365 _("unexpected catchpoint kind (%d)"), ex);
12366 }
12367}
12368
12369/* Return the breakpoint ops "virtual table" used for catchpoints
12370 of the EX kind. */
12371
c0a91b2b 12372static const struct breakpoint_ops *
761269c8 12373ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12374{
12375 switch (ex)
12376 {
761269c8 12377 case ada_catch_exception:
f7f9143b
JB
12378 return (&catch_exception_breakpoint_ops);
12379 break;
761269c8 12380 case ada_catch_exception_unhandled:
f7f9143b
JB
12381 return (&catch_exception_unhandled_breakpoint_ops);
12382 break;
761269c8 12383 case ada_catch_assert:
f7f9143b
JB
12384 return (&catch_assert_breakpoint_ops);
12385 break;
12386 default:
12387 internal_error (__FILE__, __LINE__,
12388 _("unexpected catchpoint kind (%d)"), ex);
12389 }
12390}
12391
12392/* Return the condition that will be used to match the current exception
12393 being raised with the exception that the user wants to catch. This
12394 assumes that this condition is used when the inferior just triggered
12395 an exception catchpoint.
12396
12397 The string returned is a newly allocated string that needs to be
12398 deallocated later. */
12399
12400static char *
28010a5d 12401ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12402{
3d0b0fa3
JB
12403 int i;
12404
0963b4bd 12405 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12406 runtime units that have been compiled without debugging info; if
28010a5d 12407 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12408 exception (e.g. "constraint_error") then, during the evaluation
12409 of the condition expression, the symbol lookup on this name would
0963b4bd 12410 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12411 may then be set only on user-defined exceptions which have the
12412 same not-fully-qualified name (e.g. my_package.constraint_error).
12413
12414 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12415 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12416 exception constraint_error" is rewritten into "catch exception
12417 standard.constraint_error".
12418
12419 If an exception named contraint_error is defined in another package of
12420 the inferior program, then the only way to specify this exception as a
12421 breakpoint condition is to use its fully-qualified named:
12422 e.g. my_package.constraint_error. */
12423
12424 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12425 {
28010a5d 12426 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12427 {
12428 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12429 excep_string);
3d0b0fa3
JB
12430 }
12431 }
28010a5d 12432 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12433}
12434
12435/* Return the symtab_and_line that should be used to insert an exception
12436 catchpoint of the TYPE kind.
12437
28010a5d
PA
12438 EXCEP_STRING should contain the name of a specific exception that
12439 the catchpoint should catch, or NULL otherwise.
f7f9143b 12440
28010a5d
PA
12441 ADDR_STRING returns the name of the function where the real
12442 breakpoint that implements the catchpoints is set, depending on the
12443 type of catchpoint we need to create. */
f7f9143b
JB
12444
12445static struct symtab_and_line
761269c8 12446ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12447 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12448{
12449 const char *sym_name;
12450 struct symbol *sym;
f7f9143b 12451
0259addd
JB
12452 /* First, find out which exception support info to use. */
12453 ada_exception_support_info_sniffer ();
12454
12455 /* Then lookup the function on which we will break in order to catch
f7f9143b 12456 the Ada exceptions requested by the user. */
f7f9143b
JB
12457 sym_name = ada_exception_sym_name (ex);
12458 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12459
f17011e0
JB
12460 /* We can assume that SYM is not NULL at this stage. If the symbol
12461 did not exist, ada_exception_support_info_sniffer would have
12462 raised an exception.
f7f9143b 12463
f17011e0
JB
12464 Also, ada_exception_support_info_sniffer should have already
12465 verified that SYM is a function symbol. */
12466 gdb_assert (sym != NULL);
12467 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12468
12469 /* Set ADDR_STRING. */
f7f9143b
JB
12470 *addr_string = xstrdup (sym_name);
12471
f7f9143b 12472 /* Set OPS. */
4b9eee8c 12473 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12474
f17011e0 12475 return find_function_start_sal (sym, 1);
f7f9143b
JB
12476}
12477
b4a5b78b 12478/* Create an Ada exception catchpoint.
f7f9143b 12479
b4a5b78b 12480 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12481
2df4d1d5
JB
12482 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12483 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12484 of the exception to which this catchpoint applies. When not NULL,
12485 the string must be allocated on the heap, and its deallocation
12486 is no longer the responsibility of the caller.
12487
12488 COND_STRING, if not NULL, is the catchpoint condition. This string
12489 must be allocated on the heap, and its deallocation is no longer
12490 the responsibility of the caller.
f7f9143b 12491
b4a5b78b
JB
12492 TEMPFLAG, if nonzero, means that the underlying breakpoint
12493 should be temporary.
28010a5d 12494
b4a5b78b 12495 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12496
349774ef 12497void
28010a5d 12498create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12499 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12500 char *excep_string,
5845583d 12501 char *cond_string,
28010a5d 12502 int tempflag,
349774ef 12503 int disabled,
28010a5d
PA
12504 int from_tty)
12505{
12506 struct ada_catchpoint *c;
b4a5b78b
JB
12507 char *addr_string = NULL;
12508 const struct breakpoint_ops *ops = NULL;
12509 struct symtab_and_line sal
12510 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12511
12512 c = XNEW (struct ada_catchpoint);
12513 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12514 ops, tempflag, disabled, from_tty);
28010a5d
PA
12515 c->excep_string = excep_string;
12516 create_excep_cond_exprs (c);
5845583d
JB
12517 if (cond_string != NULL)
12518 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12519 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12520}
12521
9ac4176b
PA
12522/* Implement the "catch exception" command. */
12523
12524static void
12525catch_ada_exception_command (char *arg, int from_tty,
12526 struct cmd_list_element *command)
12527{
12528 struct gdbarch *gdbarch = get_current_arch ();
12529 int tempflag;
761269c8 12530 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12531 char *excep_string = NULL;
5845583d 12532 char *cond_string = NULL;
9ac4176b
PA
12533
12534 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12535
12536 if (!arg)
12537 arg = "";
b4a5b78b
JB
12538 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12539 &cond_string);
12540 create_ada_exception_catchpoint (gdbarch, ex_kind,
12541 excep_string, cond_string,
349774ef
JB
12542 tempflag, 1 /* enabled */,
12543 from_tty);
9ac4176b
PA
12544}
12545
b4a5b78b 12546/* Split the arguments specified in a "catch assert" command.
5845583d 12547
b4a5b78b
JB
12548 ARGS contains the command's arguments (or the empty string if
12549 no arguments were passed).
5845583d
JB
12550
12551 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12552 (the memory needs to be deallocated after use). */
5845583d 12553
b4a5b78b
JB
12554static void
12555catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12556{
5845583d 12557 args = skip_spaces (args);
f7f9143b 12558
5845583d
JB
12559 /* Check whether a condition was provided. */
12560 if (strncmp (args, "if", 2) == 0
12561 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12562 {
5845583d 12563 args += 2;
0fcd72ba 12564 args = skip_spaces (args);
5845583d
JB
12565 if (args[0] == '\0')
12566 error (_("condition missing after `if' keyword"));
12567 *cond_string = xstrdup (args);
f7f9143b
JB
12568 }
12569
5845583d
JB
12570 /* Otherwise, there should be no other argument at the end of
12571 the command. */
12572 else if (args[0] != '\0')
12573 error (_("Junk at end of arguments."));
f7f9143b
JB
12574}
12575
9ac4176b
PA
12576/* Implement the "catch assert" command. */
12577
12578static void
12579catch_assert_command (char *arg, int from_tty,
12580 struct cmd_list_element *command)
12581{
12582 struct gdbarch *gdbarch = get_current_arch ();
12583 int tempflag;
5845583d 12584 char *cond_string = NULL;
9ac4176b
PA
12585
12586 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12587
12588 if (!arg)
12589 arg = "";
b4a5b78b 12590 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12591 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12592 NULL, cond_string,
349774ef
JB
12593 tempflag, 1 /* enabled */,
12594 from_tty);
9ac4176b 12595}
778865d3
JB
12596
12597/* Return non-zero if the symbol SYM is an Ada exception object. */
12598
12599static int
12600ada_is_exception_sym (struct symbol *sym)
12601{
12602 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12603
12604 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12605 && SYMBOL_CLASS (sym) != LOC_BLOCK
12606 && SYMBOL_CLASS (sym) != LOC_CONST
12607 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12608 && type_name != NULL && strcmp (type_name, "exception") == 0);
12609}
12610
12611/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12612 Ada exception object. This matches all exceptions except the ones
12613 defined by the Ada language. */
12614
12615static int
12616ada_is_non_standard_exception_sym (struct symbol *sym)
12617{
12618 int i;
12619
12620 if (!ada_is_exception_sym (sym))
12621 return 0;
12622
12623 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12624 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12625 return 0; /* A standard exception. */
12626
12627 /* Numeric_Error is also a standard exception, so exclude it.
12628 See the STANDARD_EXC description for more details as to why
12629 this exception is not listed in that array. */
12630 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12631 return 0;
12632
12633 return 1;
12634}
12635
12636/* A helper function for qsort, comparing two struct ada_exc_info
12637 objects.
12638
12639 The comparison is determined first by exception name, and then
12640 by exception address. */
12641
12642static int
12643compare_ada_exception_info (const void *a, const void *b)
12644{
12645 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12646 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12647 int result;
12648
12649 result = strcmp (exc_a->name, exc_b->name);
12650 if (result != 0)
12651 return result;
12652
12653 if (exc_a->addr < exc_b->addr)
12654 return -1;
12655 if (exc_a->addr > exc_b->addr)
12656 return 1;
12657
12658 return 0;
12659}
12660
12661/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12662 routine, but keeping the first SKIP elements untouched.
12663
12664 All duplicates are also removed. */
12665
12666static void
12667sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12668 int skip)
12669{
12670 struct ada_exc_info *to_sort
12671 = VEC_address (ada_exc_info, *exceptions) + skip;
12672 int to_sort_len
12673 = VEC_length (ada_exc_info, *exceptions) - skip;
12674 int i, j;
12675
12676 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12677 compare_ada_exception_info);
12678
12679 for (i = 1, j = 1; i < to_sort_len; i++)
12680 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12681 to_sort[j++] = to_sort[i];
12682 to_sort_len = j;
12683 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12684}
12685
12686/* A function intended as the "name_matcher" callback in the struct
12687 quick_symbol_functions' expand_symtabs_matching method.
12688
12689 SEARCH_NAME is the symbol's search name.
12690
12691 If USER_DATA is not NULL, it is a pointer to a regext_t object
12692 used to match the symbol (by natural name). Otherwise, when USER_DATA
12693 is null, no filtering is performed, and all symbols are a positive
12694 match. */
12695
12696static int
12697ada_exc_search_name_matches (const char *search_name, void *user_data)
12698{
12699 regex_t *preg = user_data;
12700
12701 if (preg == NULL)
12702 return 1;
12703
12704 /* In Ada, the symbol "search name" is a linkage name, whereas
12705 the regular expression used to do the matching refers to
12706 the natural name. So match against the decoded name. */
12707 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12708}
12709
12710/* Add all exceptions defined by the Ada standard whose name match
12711 a regular expression.
12712
12713 If PREG is not NULL, then this regexp_t object is used to
12714 perform the symbol name matching. Otherwise, no name-based
12715 filtering is performed.
12716
12717 EXCEPTIONS is a vector of exceptions to which matching exceptions
12718 gets pushed. */
12719
12720static void
12721ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12722{
12723 int i;
12724
12725 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12726 {
12727 if (preg == NULL
12728 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12729 {
12730 struct bound_minimal_symbol msymbol
12731 = ada_lookup_simple_minsym (standard_exc[i]);
12732
12733 if (msymbol.minsym != NULL)
12734 {
12735 struct ada_exc_info info
77e371c0 12736 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12737
12738 VEC_safe_push (ada_exc_info, *exceptions, &info);
12739 }
12740 }
12741 }
12742}
12743
12744/* Add all Ada exceptions defined locally and accessible from the given
12745 FRAME.
12746
12747 If PREG is not NULL, then this regexp_t object is used to
12748 perform the symbol name matching. Otherwise, no name-based
12749 filtering is performed.
12750
12751 EXCEPTIONS is a vector of exceptions to which matching exceptions
12752 gets pushed. */
12753
12754static void
12755ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12756 VEC(ada_exc_info) **exceptions)
12757{
3977b71f 12758 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12759
12760 while (block != 0)
12761 {
12762 struct block_iterator iter;
12763 struct symbol *sym;
12764
12765 ALL_BLOCK_SYMBOLS (block, iter, sym)
12766 {
12767 switch (SYMBOL_CLASS (sym))
12768 {
12769 case LOC_TYPEDEF:
12770 case LOC_BLOCK:
12771 case LOC_CONST:
12772 break;
12773 default:
12774 if (ada_is_exception_sym (sym))
12775 {
12776 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12777 SYMBOL_VALUE_ADDRESS (sym)};
12778
12779 VEC_safe_push (ada_exc_info, *exceptions, &info);
12780 }
12781 }
12782 }
12783 if (BLOCK_FUNCTION (block) != NULL)
12784 break;
12785 block = BLOCK_SUPERBLOCK (block);
12786 }
12787}
12788
12789/* Add all exceptions defined globally whose name name match
12790 a regular expression, excluding standard exceptions.
12791
12792 The reason we exclude standard exceptions is that they need
12793 to be handled separately: Standard exceptions are defined inside
12794 a runtime unit which is normally not compiled with debugging info,
12795 and thus usually do not show up in our symbol search. However,
12796 if the unit was in fact built with debugging info, we need to
12797 exclude them because they would duplicate the entry we found
12798 during the special loop that specifically searches for those
12799 standard exceptions.
12800
12801 If PREG is not NULL, then this regexp_t object is used to
12802 perform the symbol name matching. Otherwise, no name-based
12803 filtering is performed.
12804
12805 EXCEPTIONS is a vector of exceptions to which matching exceptions
12806 gets pushed. */
12807
12808static void
12809ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12810{
12811 struct objfile *objfile;
12812 struct symtab *s;
12813
bb4142cf
DE
12814 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12815 VARIABLES_DOMAIN, preg);
778865d3
JB
12816
12817 ALL_PRIMARY_SYMTABS (objfile, s)
12818 {
346d1dfe 12819 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12820 int i;
12821
12822 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12823 {
12824 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12825 struct block_iterator iter;
12826 struct symbol *sym;
12827
12828 ALL_BLOCK_SYMBOLS (b, iter, sym)
12829 if (ada_is_non_standard_exception_sym (sym)
12830 && (preg == NULL
12831 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12832 0, NULL, 0) == 0))
12833 {
12834 struct ada_exc_info info
12835 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12836
12837 VEC_safe_push (ada_exc_info, *exceptions, &info);
12838 }
12839 }
12840 }
12841}
12842
12843/* Implements ada_exceptions_list with the regular expression passed
12844 as a regex_t, rather than a string.
12845
12846 If not NULL, PREG is used to filter out exceptions whose names
12847 do not match. Otherwise, all exceptions are listed. */
12848
12849static VEC(ada_exc_info) *
12850ada_exceptions_list_1 (regex_t *preg)
12851{
12852 VEC(ada_exc_info) *result = NULL;
12853 struct cleanup *old_chain
12854 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12855 int prev_len;
12856
12857 /* First, list the known standard exceptions. These exceptions
12858 need to be handled separately, as they are usually defined in
12859 runtime units that have been compiled without debugging info. */
12860
12861 ada_add_standard_exceptions (preg, &result);
12862
12863 /* Next, find all exceptions whose scope is local and accessible
12864 from the currently selected frame. */
12865
12866 if (has_stack_frames ())
12867 {
12868 prev_len = VEC_length (ada_exc_info, result);
12869 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12870 &result);
12871 if (VEC_length (ada_exc_info, result) > prev_len)
12872 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12873 }
12874
12875 /* Add all exceptions whose scope is global. */
12876
12877 prev_len = VEC_length (ada_exc_info, result);
12878 ada_add_global_exceptions (preg, &result);
12879 if (VEC_length (ada_exc_info, result) > prev_len)
12880 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12881
12882 discard_cleanups (old_chain);
12883 return result;
12884}
12885
12886/* Return a vector of ada_exc_info.
12887
12888 If REGEXP is NULL, all exceptions are included in the result.
12889 Otherwise, it should contain a valid regular expression,
12890 and only the exceptions whose names match that regular expression
12891 are included in the result.
12892
12893 The exceptions are sorted in the following order:
12894 - Standard exceptions (defined by the Ada language), in
12895 alphabetical order;
12896 - Exceptions only visible from the current frame, in
12897 alphabetical order;
12898 - Exceptions whose scope is global, in alphabetical order. */
12899
12900VEC(ada_exc_info) *
12901ada_exceptions_list (const char *regexp)
12902{
12903 VEC(ada_exc_info) *result = NULL;
12904 struct cleanup *old_chain = NULL;
12905 regex_t reg;
12906
12907 if (regexp != NULL)
12908 old_chain = compile_rx_or_error (&reg, regexp,
12909 _("invalid regular expression"));
12910
12911 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12912
12913 if (old_chain != NULL)
12914 do_cleanups (old_chain);
12915 return result;
12916}
12917
12918/* Implement the "info exceptions" command. */
12919
12920static void
12921info_exceptions_command (char *regexp, int from_tty)
12922{
12923 VEC(ada_exc_info) *exceptions;
12924 struct cleanup *cleanup;
12925 struct gdbarch *gdbarch = get_current_arch ();
12926 int ix;
12927 struct ada_exc_info *info;
12928
12929 exceptions = ada_exceptions_list (regexp);
12930 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12931
12932 if (regexp != NULL)
12933 printf_filtered
12934 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12935 else
12936 printf_filtered (_("All defined Ada exceptions:\n"));
12937
12938 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12939 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12940
12941 do_cleanups (cleanup);
12942}
12943
4c4b4cd2
PH
12944 /* Operators */
12945/* Information about operators given special treatment in functions
12946 below. */
12947/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12948
12949#define ADA_OPERATORS \
12950 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12951 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12952 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12953 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12954 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12955 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12956 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12957 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12958 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12959 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12960 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12961 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12962 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12963 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12964 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12965 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12966 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12967 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12968 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12969
12970static void
554794dc
SDJ
12971ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12972 int *argsp)
4c4b4cd2
PH
12973{
12974 switch (exp->elts[pc - 1].opcode)
12975 {
76a01679 12976 default:
4c4b4cd2
PH
12977 operator_length_standard (exp, pc, oplenp, argsp);
12978 break;
12979
12980#define OP_DEFN(op, len, args, binop) \
12981 case op: *oplenp = len; *argsp = args; break;
12982 ADA_OPERATORS;
12983#undef OP_DEFN
52ce6436
PH
12984
12985 case OP_AGGREGATE:
12986 *oplenp = 3;
12987 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12988 break;
12989
12990 case OP_CHOICES:
12991 *oplenp = 3;
12992 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12993 break;
4c4b4cd2
PH
12994 }
12995}
12996
c0201579
JK
12997/* Implementation of the exp_descriptor method operator_check. */
12998
12999static int
13000ada_operator_check (struct expression *exp, int pos,
13001 int (*objfile_func) (struct objfile *objfile, void *data),
13002 void *data)
13003{
13004 const union exp_element *const elts = exp->elts;
13005 struct type *type = NULL;
13006
13007 switch (elts[pos].opcode)
13008 {
13009 case UNOP_IN_RANGE:
13010 case UNOP_QUAL:
13011 type = elts[pos + 1].type;
13012 break;
13013
13014 default:
13015 return operator_check_standard (exp, pos, objfile_func, data);
13016 }
13017
13018 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13019
13020 if (type && TYPE_OBJFILE (type)
13021 && (*objfile_func) (TYPE_OBJFILE (type), data))
13022 return 1;
13023
13024 return 0;
13025}
13026
4c4b4cd2
PH
13027static char *
13028ada_op_name (enum exp_opcode opcode)
13029{
13030 switch (opcode)
13031 {
76a01679 13032 default:
4c4b4cd2 13033 return op_name_standard (opcode);
52ce6436 13034
4c4b4cd2
PH
13035#define OP_DEFN(op, len, args, binop) case op: return #op;
13036 ADA_OPERATORS;
13037#undef OP_DEFN
52ce6436
PH
13038
13039 case OP_AGGREGATE:
13040 return "OP_AGGREGATE";
13041 case OP_CHOICES:
13042 return "OP_CHOICES";
13043 case OP_NAME:
13044 return "OP_NAME";
4c4b4cd2
PH
13045 }
13046}
13047
13048/* As for operator_length, but assumes PC is pointing at the first
13049 element of the operator, and gives meaningful results only for the
52ce6436 13050 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13051
13052static void
76a01679
JB
13053ada_forward_operator_length (struct expression *exp, int pc,
13054 int *oplenp, int *argsp)
4c4b4cd2 13055{
76a01679 13056 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13057 {
13058 default:
13059 *oplenp = *argsp = 0;
13060 break;
52ce6436 13061
4c4b4cd2
PH
13062#define OP_DEFN(op, len, args, binop) \
13063 case op: *oplenp = len; *argsp = args; break;
13064 ADA_OPERATORS;
13065#undef OP_DEFN
52ce6436
PH
13066
13067 case OP_AGGREGATE:
13068 *oplenp = 3;
13069 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13070 break;
13071
13072 case OP_CHOICES:
13073 *oplenp = 3;
13074 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13075 break;
13076
13077 case OP_STRING:
13078 case OP_NAME:
13079 {
13080 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13081
52ce6436
PH
13082 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13083 *argsp = 0;
13084 break;
13085 }
4c4b4cd2
PH
13086 }
13087}
13088
13089static int
13090ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13091{
13092 enum exp_opcode op = exp->elts[elt].opcode;
13093 int oplen, nargs;
13094 int pc = elt;
13095 int i;
76a01679 13096
4c4b4cd2
PH
13097 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13098
76a01679 13099 switch (op)
4c4b4cd2 13100 {
76a01679 13101 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13102 case OP_ATR_FIRST:
13103 case OP_ATR_LAST:
13104 case OP_ATR_LENGTH:
13105 case OP_ATR_IMAGE:
13106 case OP_ATR_MAX:
13107 case OP_ATR_MIN:
13108 case OP_ATR_MODULUS:
13109 case OP_ATR_POS:
13110 case OP_ATR_SIZE:
13111 case OP_ATR_TAG:
13112 case OP_ATR_VAL:
13113 break;
13114
13115 case UNOP_IN_RANGE:
13116 case UNOP_QUAL:
323e0a4a
AC
13117 /* XXX: gdb_sprint_host_address, type_sprint */
13118 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13119 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13120 fprintf_filtered (stream, " (");
13121 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13122 fprintf_filtered (stream, ")");
13123 break;
13124 case BINOP_IN_BOUNDS:
52ce6436
PH
13125 fprintf_filtered (stream, " (%d)",
13126 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13127 break;
13128 case TERNOP_IN_RANGE:
13129 break;
13130
52ce6436
PH
13131 case OP_AGGREGATE:
13132 case OP_OTHERS:
13133 case OP_DISCRETE_RANGE:
13134 case OP_POSITIONAL:
13135 case OP_CHOICES:
13136 break;
13137
13138 case OP_NAME:
13139 case OP_STRING:
13140 {
13141 char *name = &exp->elts[elt + 2].string;
13142 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13143
52ce6436
PH
13144 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13145 break;
13146 }
13147
4c4b4cd2
PH
13148 default:
13149 return dump_subexp_body_standard (exp, stream, elt);
13150 }
13151
13152 elt += oplen;
13153 for (i = 0; i < nargs; i += 1)
13154 elt = dump_subexp (exp, stream, elt);
13155
13156 return elt;
13157}
13158
13159/* The Ada extension of print_subexp (q.v.). */
13160
76a01679
JB
13161static void
13162ada_print_subexp (struct expression *exp, int *pos,
13163 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13164{
52ce6436 13165 int oplen, nargs, i;
4c4b4cd2
PH
13166 int pc = *pos;
13167 enum exp_opcode op = exp->elts[pc].opcode;
13168
13169 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13170
52ce6436 13171 *pos += oplen;
4c4b4cd2
PH
13172 switch (op)
13173 {
13174 default:
52ce6436 13175 *pos -= oplen;
4c4b4cd2
PH
13176 print_subexp_standard (exp, pos, stream, prec);
13177 return;
13178
13179 case OP_VAR_VALUE:
4c4b4cd2
PH
13180 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13181 return;
13182
13183 case BINOP_IN_BOUNDS:
323e0a4a 13184 /* XXX: sprint_subexp */
4c4b4cd2 13185 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13186 fputs_filtered (" in ", stream);
4c4b4cd2 13187 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13188 fputs_filtered ("'range", stream);
4c4b4cd2 13189 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13190 fprintf_filtered (stream, "(%ld)",
13191 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13192 return;
13193
13194 case TERNOP_IN_RANGE:
4c4b4cd2 13195 if (prec >= PREC_EQUAL)
76a01679 13196 fputs_filtered ("(", stream);
323e0a4a 13197 /* XXX: sprint_subexp */
4c4b4cd2 13198 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13199 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13200 print_subexp (exp, pos, stream, PREC_EQUAL);
13201 fputs_filtered (" .. ", stream);
13202 print_subexp (exp, pos, stream, PREC_EQUAL);
13203 if (prec >= PREC_EQUAL)
76a01679
JB
13204 fputs_filtered (")", stream);
13205 return;
4c4b4cd2
PH
13206
13207 case OP_ATR_FIRST:
13208 case OP_ATR_LAST:
13209 case OP_ATR_LENGTH:
13210 case OP_ATR_IMAGE:
13211 case OP_ATR_MAX:
13212 case OP_ATR_MIN:
13213 case OP_ATR_MODULUS:
13214 case OP_ATR_POS:
13215 case OP_ATR_SIZE:
13216 case OP_ATR_TAG:
13217 case OP_ATR_VAL:
4c4b4cd2 13218 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13219 {
13220 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13221 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13222 &type_print_raw_options);
76a01679
JB
13223 *pos += 3;
13224 }
4c4b4cd2 13225 else
76a01679 13226 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13227 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13228 if (nargs > 1)
76a01679
JB
13229 {
13230 int tem;
5b4ee69b 13231
76a01679
JB
13232 for (tem = 1; tem < nargs; tem += 1)
13233 {
13234 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13235 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13236 }
13237 fputs_filtered (")", stream);
13238 }
4c4b4cd2 13239 return;
14f9c5c9 13240
4c4b4cd2 13241 case UNOP_QUAL:
4c4b4cd2
PH
13242 type_print (exp->elts[pc + 1].type, "", stream, 0);
13243 fputs_filtered ("'(", stream);
13244 print_subexp (exp, pos, stream, PREC_PREFIX);
13245 fputs_filtered (")", stream);
13246 return;
14f9c5c9 13247
4c4b4cd2 13248 case UNOP_IN_RANGE:
323e0a4a 13249 /* XXX: sprint_subexp */
4c4b4cd2 13250 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13251 fputs_filtered (" in ", stream);
79d43c61
TT
13252 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13253 &type_print_raw_options);
4c4b4cd2 13254 return;
52ce6436
PH
13255
13256 case OP_DISCRETE_RANGE:
13257 print_subexp (exp, pos, stream, PREC_SUFFIX);
13258 fputs_filtered ("..", stream);
13259 print_subexp (exp, pos, stream, PREC_SUFFIX);
13260 return;
13261
13262 case OP_OTHERS:
13263 fputs_filtered ("others => ", stream);
13264 print_subexp (exp, pos, stream, PREC_SUFFIX);
13265 return;
13266
13267 case OP_CHOICES:
13268 for (i = 0; i < nargs-1; i += 1)
13269 {
13270 if (i > 0)
13271 fputs_filtered ("|", stream);
13272 print_subexp (exp, pos, stream, PREC_SUFFIX);
13273 }
13274 fputs_filtered (" => ", stream);
13275 print_subexp (exp, pos, stream, PREC_SUFFIX);
13276 return;
13277
13278 case OP_POSITIONAL:
13279 print_subexp (exp, pos, stream, PREC_SUFFIX);
13280 return;
13281
13282 case OP_AGGREGATE:
13283 fputs_filtered ("(", stream);
13284 for (i = 0; i < nargs; i += 1)
13285 {
13286 if (i > 0)
13287 fputs_filtered (", ", stream);
13288 print_subexp (exp, pos, stream, PREC_SUFFIX);
13289 }
13290 fputs_filtered (")", stream);
13291 return;
4c4b4cd2
PH
13292 }
13293}
14f9c5c9
AS
13294
13295/* Table mapping opcodes into strings for printing operators
13296 and precedences of the operators. */
13297
d2e4a39e
AS
13298static const struct op_print ada_op_print_tab[] = {
13299 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13300 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13301 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13302 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13303 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13304 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13305 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13306 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13307 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13308 {">=", BINOP_GEQ, PREC_ORDER, 0},
13309 {">", BINOP_GTR, PREC_ORDER, 0},
13310 {"<", BINOP_LESS, PREC_ORDER, 0},
13311 {">>", BINOP_RSH, PREC_SHIFT, 0},
13312 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13313 {"+", BINOP_ADD, PREC_ADD, 0},
13314 {"-", BINOP_SUB, PREC_ADD, 0},
13315 {"&", BINOP_CONCAT, PREC_ADD, 0},
13316 {"*", BINOP_MUL, PREC_MUL, 0},
13317 {"/", BINOP_DIV, PREC_MUL, 0},
13318 {"rem", BINOP_REM, PREC_MUL, 0},
13319 {"mod", BINOP_MOD, PREC_MUL, 0},
13320 {"**", BINOP_EXP, PREC_REPEAT, 0},
13321 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13322 {"-", UNOP_NEG, PREC_PREFIX, 0},
13323 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13324 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13325 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13326 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13327 {".all", UNOP_IND, PREC_SUFFIX, 1},
13328 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13329 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13330 {NULL, 0, 0, 0}
14f9c5c9
AS
13331};
13332\f
72d5681a
PH
13333enum ada_primitive_types {
13334 ada_primitive_type_int,
13335 ada_primitive_type_long,
13336 ada_primitive_type_short,
13337 ada_primitive_type_char,
13338 ada_primitive_type_float,
13339 ada_primitive_type_double,
13340 ada_primitive_type_void,
13341 ada_primitive_type_long_long,
13342 ada_primitive_type_long_double,
13343 ada_primitive_type_natural,
13344 ada_primitive_type_positive,
13345 ada_primitive_type_system_address,
13346 nr_ada_primitive_types
13347};
6c038f32
PH
13348
13349static void
d4a9a881 13350ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13351 struct language_arch_info *lai)
13352{
d4a9a881 13353 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13354
72d5681a 13355 lai->primitive_type_vector
d4a9a881 13356 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13357 struct type *);
e9bb382b
UW
13358
13359 lai->primitive_type_vector [ada_primitive_type_int]
13360 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13361 0, "integer");
13362 lai->primitive_type_vector [ada_primitive_type_long]
13363 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13364 0, "long_integer");
13365 lai->primitive_type_vector [ada_primitive_type_short]
13366 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13367 0, "short_integer");
13368 lai->string_char_type
13369 = lai->primitive_type_vector [ada_primitive_type_char]
13370 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13371 lai->primitive_type_vector [ada_primitive_type_float]
13372 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13373 "float", NULL);
13374 lai->primitive_type_vector [ada_primitive_type_double]
13375 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13376 "long_float", NULL);
13377 lai->primitive_type_vector [ada_primitive_type_long_long]
13378 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13379 0, "long_long_integer");
13380 lai->primitive_type_vector [ada_primitive_type_long_double]
13381 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13382 "long_long_float", NULL);
13383 lai->primitive_type_vector [ada_primitive_type_natural]
13384 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13385 0, "natural");
13386 lai->primitive_type_vector [ada_primitive_type_positive]
13387 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13388 0, "positive");
13389 lai->primitive_type_vector [ada_primitive_type_void]
13390 = builtin->builtin_void;
13391
13392 lai->primitive_type_vector [ada_primitive_type_system_address]
13393 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13394 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13395 = "system__address";
fbb06eb1 13396
47e729a8 13397 lai->bool_type_symbol = NULL;
fbb06eb1 13398 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13399}
6c038f32
PH
13400\f
13401 /* Language vector */
13402
13403/* Not really used, but needed in the ada_language_defn. */
13404
13405static void
6c7a06a3 13406emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13407{
6c7a06a3 13408 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13409}
13410
13411static int
410a0ff2 13412parse (struct parser_state *ps)
6c038f32
PH
13413{
13414 warnings_issued = 0;
410a0ff2 13415 return ada_parse (ps);
6c038f32
PH
13416}
13417
13418static const struct exp_descriptor ada_exp_descriptor = {
13419 ada_print_subexp,
13420 ada_operator_length,
c0201579 13421 ada_operator_check,
6c038f32
PH
13422 ada_op_name,
13423 ada_dump_subexp_body,
13424 ada_evaluate_subexp
13425};
13426
1a119f36 13427/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13428 for Ada. */
13429
1a119f36
JB
13430static symbol_name_cmp_ftype
13431ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13432{
13433 if (should_use_wild_match (lookup_name))
13434 return wild_match;
13435 else
13436 return compare_names;
13437}
13438
a5ee536b
JB
13439/* Implement the "la_read_var_value" language_defn method for Ada. */
13440
13441static struct value *
13442ada_read_var_value (struct symbol *var, struct frame_info *frame)
13443{
3977b71f 13444 const struct block *frame_block = NULL;
a5ee536b
JB
13445 struct symbol *renaming_sym = NULL;
13446
13447 /* The only case where default_read_var_value is not sufficient
13448 is when VAR is a renaming... */
13449 if (frame)
13450 frame_block = get_frame_block (frame, NULL);
13451 if (frame_block)
13452 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13453 if (renaming_sym != NULL)
13454 return ada_read_renaming_var_value (renaming_sym, frame_block);
13455
13456 /* This is a typical case where we expect the default_read_var_value
13457 function to work. */
13458 return default_read_var_value (var, frame);
13459}
13460
6c038f32
PH
13461const struct language_defn ada_language_defn = {
13462 "ada", /* Language name */
6abde28f 13463 "Ada",
6c038f32 13464 language_ada,
6c038f32 13465 range_check_off,
6c038f32
PH
13466 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13467 that's not quite what this means. */
6c038f32 13468 array_row_major,
9a044a89 13469 macro_expansion_no,
6c038f32
PH
13470 &ada_exp_descriptor,
13471 parse,
13472 ada_error,
13473 resolve,
13474 ada_printchar, /* Print a character constant */
13475 ada_printstr, /* Function to print string constant */
13476 emit_char, /* Function to print single char (not used) */
6c038f32 13477 ada_print_type, /* Print a type using appropriate syntax */
be942545 13478 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13479 ada_val_print, /* Print a value using appropriate syntax */
13480 ada_value_print, /* Print a top-level value */
a5ee536b 13481 ada_read_var_value, /* la_read_var_value */
6c038f32 13482 NULL, /* Language specific skip_trampoline */
2b2d9e11 13483 NULL, /* name_of_this */
6c038f32
PH
13484 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13485 basic_lookup_transparent_type, /* lookup_transparent_type */
13486 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13487 NULL, /* Language specific
13488 class_name_from_physname */
6c038f32
PH
13489 ada_op_print_tab, /* expression operators for printing */
13490 0, /* c-style arrays */
13491 1, /* String lower bound */
6c038f32 13492 ada_get_gdb_completer_word_break_characters,
41d27058 13493 ada_make_symbol_completion_list,
72d5681a 13494 ada_language_arch_info,
e79af960 13495 ada_print_array_index,
41f1b697 13496 default_pass_by_reference,
ae6a3a4c 13497 c_get_string,
1a119f36 13498 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13499 ada_iterate_over_symbols,
a53b64ea 13500 &ada_varobj_ops,
6c038f32
PH
13501 LANG_MAGIC
13502};
13503
2c0b251b
PA
13504/* Provide a prototype to silence -Wmissing-prototypes. */
13505extern initialize_file_ftype _initialize_ada_language;
13506
5bf03f13
JB
13507/* Command-list for the "set/show ada" prefix command. */
13508static struct cmd_list_element *set_ada_list;
13509static struct cmd_list_element *show_ada_list;
13510
13511/* Implement the "set ada" prefix command. */
13512
13513static void
13514set_ada_command (char *arg, int from_tty)
13515{
13516 printf_unfiltered (_(\
13517"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13518 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13519}
13520
13521/* Implement the "show ada" prefix command. */
13522
13523static void
13524show_ada_command (char *args, int from_tty)
13525{
13526 cmd_show_list (show_ada_list, from_tty, "");
13527}
13528
2060206e
PA
13529static void
13530initialize_ada_catchpoint_ops (void)
13531{
13532 struct breakpoint_ops *ops;
13533
13534 initialize_breakpoint_ops ();
13535
13536 ops = &catch_exception_breakpoint_ops;
13537 *ops = bkpt_breakpoint_ops;
13538 ops->dtor = dtor_catch_exception;
13539 ops->allocate_location = allocate_location_catch_exception;
13540 ops->re_set = re_set_catch_exception;
13541 ops->check_status = check_status_catch_exception;
13542 ops->print_it = print_it_catch_exception;
13543 ops->print_one = print_one_catch_exception;
13544 ops->print_mention = print_mention_catch_exception;
13545 ops->print_recreate = print_recreate_catch_exception;
13546
13547 ops = &catch_exception_unhandled_breakpoint_ops;
13548 *ops = bkpt_breakpoint_ops;
13549 ops->dtor = dtor_catch_exception_unhandled;
13550 ops->allocate_location = allocate_location_catch_exception_unhandled;
13551 ops->re_set = re_set_catch_exception_unhandled;
13552 ops->check_status = check_status_catch_exception_unhandled;
13553 ops->print_it = print_it_catch_exception_unhandled;
13554 ops->print_one = print_one_catch_exception_unhandled;
13555 ops->print_mention = print_mention_catch_exception_unhandled;
13556 ops->print_recreate = print_recreate_catch_exception_unhandled;
13557
13558 ops = &catch_assert_breakpoint_ops;
13559 *ops = bkpt_breakpoint_ops;
13560 ops->dtor = dtor_catch_assert;
13561 ops->allocate_location = allocate_location_catch_assert;
13562 ops->re_set = re_set_catch_assert;
13563 ops->check_status = check_status_catch_assert;
13564 ops->print_it = print_it_catch_assert;
13565 ops->print_one = print_one_catch_assert;
13566 ops->print_mention = print_mention_catch_assert;
13567 ops->print_recreate = print_recreate_catch_assert;
13568}
13569
3d9434b5
JB
13570/* This module's 'new_objfile' observer. */
13571
13572static void
13573ada_new_objfile_observer (struct objfile *objfile)
13574{
13575 ada_clear_symbol_cache ();
13576}
13577
13578/* This module's 'free_objfile' observer. */
13579
13580static void
13581ada_free_objfile_observer (struct objfile *objfile)
13582{
13583 ada_clear_symbol_cache ();
13584}
13585
d2e4a39e 13586void
6c038f32 13587_initialize_ada_language (void)
14f9c5c9 13588{
6c038f32
PH
13589 add_language (&ada_language_defn);
13590
2060206e
PA
13591 initialize_ada_catchpoint_ops ();
13592
5bf03f13
JB
13593 add_prefix_cmd ("ada", no_class, set_ada_command,
13594 _("Prefix command for changing Ada-specfic settings"),
13595 &set_ada_list, "set ada ", 0, &setlist);
13596
13597 add_prefix_cmd ("ada", no_class, show_ada_command,
13598 _("Generic command for showing Ada-specific settings."),
13599 &show_ada_list, "show ada ", 0, &showlist);
13600
13601 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13602 &trust_pad_over_xvs, _("\
13603Enable or disable an optimization trusting PAD types over XVS types"), _("\
13604Show whether an optimization trusting PAD types over XVS types is activated"),
13605 _("\
13606This is related to the encoding used by the GNAT compiler. The debugger\n\
13607should normally trust the contents of PAD types, but certain older versions\n\
13608of GNAT have a bug that sometimes causes the information in the PAD type\n\
13609to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13610work around this bug. It is always safe to turn this option \"off\", but\n\
13611this incurs a slight performance penalty, so it is recommended to NOT change\n\
13612this option to \"off\" unless necessary."),
13613 NULL, NULL, &set_ada_list, &show_ada_list);
13614
9ac4176b
PA
13615 add_catch_command ("exception", _("\
13616Catch Ada exceptions, when raised.\n\
13617With an argument, catch only exceptions with the given name."),
13618 catch_ada_exception_command,
13619 NULL,
13620 CATCH_PERMANENT,
13621 CATCH_TEMPORARY);
13622 add_catch_command ("assert", _("\
13623Catch failed Ada assertions, when raised.\n\
13624With an argument, catch only exceptions with the given name."),
13625 catch_assert_command,
13626 NULL,
13627 CATCH_PERMANENT,
13628 CATCH_TEMPORARY);
13629
6c038f32 13630 varsize_limit = 65536;
6c038f32 13631
778865d3
JB
13632 add_info ("exceptions", info_exceptions_command,
13633 _("\
13634List all Ada exception names.\n\
13635If a regular expression is passed as an argument, only those matching\n\
13636the regular expression are listed."));
13637
c6044dd1
JB
13638 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13639 _("Set Ada maintenance-related variables."),
13640 &maint_set_ada_cmdlist, "maintenance set ada ",
13641 0/*allow-unknown*/, &maintenance_set_cmdlist);
13642
13643 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13644 _("Show Ada maintenance-related variables"),
13645 &maint_show_ada_cmdlist, "maintenance show ada ",
13646 0/*allow-unknown*/, &maintenance_show_cmdlist);
13647
13648 add_setshow_boolean_cmd
13649 ("ignore-descriptive-types", class_maintenance,
13650 &ada_ignore_descriptive_types_p,
13651 _("Set whether descriptive types generated by GNAT should be ignored."),
13652 _("Show whether descriptive types generated by GNAT should be ignored."),
13653 _("\
13654When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13655DWARF attribute."),
13656 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13657
6c038f32
PH
13658 obstack_init (&symbol_list_obstack);
13659
13660 decoded_names_store = htab_create_alloc
13661 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13662 NULL, xcalloc, xfree);
6b69afc4 13663
3d9434b5
JB
13664 /* The ada-lang observers. */
13665 observer_attach_new_objfile (ada_new_objfile_observer);
13666 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13667 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13668
13669 /* Setup various context-specific data. */
e802dbe0 13670 ada_inferior_data
8e260fc0 13671 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13672 ada_pspace_data_handle
13673 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13674}