]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
[Ada] GDB crash during "finish" of function with out parameters
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
32d0add0 3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
22cee43f
PMR
112static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
d12307c1 115static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
d12307c1 122static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
108d56a4 218static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
d12307c1 230static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab 238
52ce6436
PH
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
852dff6c
JB
270
271static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
4c4b4cd2
PH
317/* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319static char *ada_completer_word_break_characters =
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
4c4b4cd2
PH
560static char *
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
1455/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
14f9c5c9 1461
2c0b251b 1462static int
40658b94 1463match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1464{
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
73589123 1468 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1469 else
1470 {
1471 int len_name = strlen (name);
5b4ee69b 1472
4c4b4cd2
PH
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
61012eef 1475 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1478 }
14f9c5c9 1479}
14f9c5c9 1480\f
d2e4a39e 1481
4c4b4cd2 1482 /* Arrays */
14f9c5c9 1483
28c85d6c
JB
1484/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507void
1508ada_fixup_array_indexes_type (struct type *index_desc_type)
1509{
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
0d5cff50 1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537}
1538
4c4b4cd2 1539/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1540
d2e4a39e
AS
1541static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544};
1545
1546/* Maximum number of array dimensions we are prepared to handle. */
1547
4c4b4cd2 1548#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1549
14f9c5c9 1550
4c4b4cd2
PH
1551/* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
14f9c5c9
AS
1553
1554/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1555 level of indirection, if needed. */
1556
d2e4a39e
AS
1557static struct type *
1558desc_base_type (struct type *type)
14f9c5c9
AS
1559{
1560 if (type == NULL)
1561 return NULL;
61ee279c 1562 type = ada_check_typedef (type);
720d1a40
JB
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1265e4aa
JB
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1570 else
1571 return type;
1572}
1573
4c4b4cd2
PH
1574/* True iff TYPE indicates a "thin" array pointer type. */
1575
14f9c5c9 1576static int
d2e4a39e 1577is_thin_pntr (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 return
14f9c5c9
AS
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582}
1583
4c4b4cd2
PH
1584/* The descriptor type for thin pointer type TYPE. */
1585
d2e4a39e
AS
1586static struct type *
1587thin_descriptor_type (struct type *type)
14f9c5c9 1588{
d2e4a39e 1589 struct type *base_type = desc_base_type (type);
5b4ee69b 1590
14f9c5c9
AS
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
d2e4a39e 1595 else
14f9c5c9 1596 {
d2e4a39e 1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1598
14f9c5c9 1599 if (alt_type == NULL)
4c4b4cd2 1600 return base_type;
14f9c5c9 1601 else
4c4b4cd2 1602 return alt_type;
14f9c5c9
AS
1603 }
1604}
1605
4c4b4cd2
PH
1606/* A pointer to the array data for thin-pointer value VAL. */
1607
d2e4a39e
AS
1608static struct value *
1609thin_data_pntr (struct value *val)
14f9c5c9 1610{
828292f2 1611 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1613
556bdfd4
UW
1614 data_type = lookup_pointer_type (data_type);
1615
14f9c5c9 1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1617 return value_cast (data_type, value_copy (val));
d2e4a39e 1618 else
42ae5230 1619 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* True iff TYPE indicates a "thick" array pointer type. */
1623
14f9c5c9 1624static int
d2e4a39e 1625is_thick_pntr (struct type *type)
14f9c5c9
AS
1626{
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1634
d2e4a39e
AS
1635static struct type *
1636desc_bounds_type (struct type *type)
14f9c5c9 1637{
d2e4a39e 1638 struct type *r;
14f9c5c9
AS
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
4c4b4cd2 1648 return NULL;
14f9c5c9
AS
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
61ee279c 1651 return ada_check_typedef (r);
14f9c5c9
AS
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
61ee279c 1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1658 }
1659 return NULL;
1660}
1661
1662/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
d2e4a39e
AS
1665static struct value *
1666desc_bounds (struct value *arr)
14f9c5c9 1667{
df407dfe 1668 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1669
d2e4a39e 1670 if (is_thin_pntr (type))
14f9c5c9 1671 {
d2e4a39e 1672 struct type *bounds_type =
4c4b4cd2 1673 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1674 LONGEST addr;
1675
4cdfadb1 1676 if (bounds_type == NULL)
323e0a4a 1677 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1678
1679 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1680 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1681 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1683 addr = value_as_long (arr);
d2e4a39e 1684 else
42ae5230 1685 addr = value_address (arr);
14f9c5c9 1686
d2e4a39e 1687 return
4c4b4cd2
PH
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1690 }
1691
1692 else if (is_thick_pntr (type))
05e522ef
JB
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
14f9c5c9
AS
1713 else
1714 return NULL;
1715}
1716
4c4b4cd2
PH
1717/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
14f9c5c9 1720static int
d2e4a39e 1721fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1722{
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724}
1725
1726/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1727 size of the field containing the address of the bounds data. */
1728
14f9c5c9 1729static int
d2e4a39e 1730fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
d2e4a39e 1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
61ee279c 1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1738}
1739
4c4b4cd2 1740/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
4c4b4cd2 1744
d2e4a39e 1745static struct type *
556bdfd4 1746desc_data_target_type (struct type *type)
14f9c5c9
AS
1747{
1748 type = desc_base_type (type);
1749
4c4b4cd2 1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1751 if (is_thin_pntr (type))
556bdfd4 1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1753 else if (is_thick_pntr (type))
556bdfd4
UW
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1760 }
1761
1762 return NULL;
14f9c5c9
AS
1763}
1764
1765/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
4c4b4cd2 1767
d2e4a39e
AS
1768static struct value *
1769desc_data (struct value *arr)
14f9c5c9 1770{
df407dfe 1771 struct type *type = value_type (arr);
5b4ee69b 1772
14f9c5c9
AS
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
d2e4a39e 1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1777 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1778 else
1779 return NULL;
1780}
1781
1782
1783/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1784 position of the field containing the address of the data. */
1785
14f9c5c9 1786static int
d2e4a39e 1787fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1788{
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790}
1791
1792/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1793 size of the field containing the address of the data. */
1794
14f9c5c9 1795static int
d2e4a39e 1796fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1797{
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1802 else
14f9c5c9
AS
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804}
1805
4c4b4cd2 1806/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
d2e4a39e
AS
1810static struct value *
1811desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1812{
d2e4a39e 1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1814 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
14f9c5c9 1821static int
d2e4a39e 1822desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1823{
d2e4a39e 1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1825}
1826
1827/* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
76a01679 1831static int
d2e4a39e 1832desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1833{
1834 type = desc_base_type (type);
1835
d2e4a39e
AS
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1840}
1841
1842/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
d2e4a39e
AS
1845static struct type *
1846desc_index_type (struct type *type, int i)
14f9c5c9
AS
1847{
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
14f9c5c9
AS
1853 return NULL;
1854}
1855
4c4b4cd2
PH
1856/* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
14f9c5c9 1859static int
d2e4a39e 1860desc_arity (struct type *type)
14f9c5c9
AS
1861{
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867}
1868
4c4b4cd2
PH
1869/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
76a01679
JB
1873static int
1874ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1875{
1876 if (type == NULL)
1877 return 0;
61ee279c 1878 type = ada_check_typedef (type);
4c4b4cd2 1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1880 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1881}
1882
52ce6436 1883/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1884 * to one. */
52ce6436 1885
2c0b251b 1886static int
52ce6436
PH
1887ada_is_array_type (struct type *type)
1888{
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894}
1895
4c4b4cd2 1896/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1897
14f9c5c9 1898int
4c4b4cd2 1899ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1900{
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
14f9c5c9 1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1908}
1909
4c4b4cd2
PH
1910/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
14f9c5c9 1912int
4c4b4cd2 1913ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1914{
556bdfd4 1915 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1916
1917 if (type == NULL)
1918 return 0;
61ee279c 1919 type = ada_check_typedef (type);
556bdfd4
UW
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1923}
1924
1925/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1926 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1927 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1928 is still needed. */
1929
14f9c5c9 1930int
ebf56fd3 1931ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1932{
d2e4a39e 1933 return
14f9c5c9
AS
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1939}
1940
1941
4c4b4cd2 1942/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1943 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1945 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1948 a descriptor. */
d2e4a39e
AS
1949struct type *
1950ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1951{
ad82864c
JB
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1954
df407dfe
AC
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
d2e4a39e
AS
1957
1958 if (!bounds)
ad82864c
JB
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
14f9c5c9
AS
1969 else
1970 {
d2e4a39e 1971 struct type *elt_type;
14f9c5c9 1972 int arity;
d2e4a39e 1973 struct value *descriptor;
14f9c5c9 1974
df407dfe
AC
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
14f9c5c9 1977
d2e4a39e 1978 if (elt_type == NULL || arity == 0)
df407dfe 1979 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1980
1981 descriptor = desc_bounds (arr);
d2e4a39e 1982 if (value_as_long (descriptor) == 0)
4c4b4cd2 1983 return NULL;
d2e4a39e 1984 while (arity > 0)
4c4b4cd2 1985 {
e9bb382b
UW
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1990
5b4ee69b 1991 arity -= 1;
0c9c3474
SA
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
4c4b4cd2 1995 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
4c4b4cd2 2017 }
14f9c5c9
AS
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021}
2022
2023/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
d2e4a39e
AS
2028struct value *
2029ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2030{
df407dfe 2031 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2032 {
d2e4a39e 2033 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2034
14f9c5c9 2035 if (arrType == NULL)
4c4b4cd2 2036 return NULL;
14f9c5c9
AS
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
ad82864c
JB
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2041 else
2042 return arr;
2043}
2044
2045/* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2047 be ARR itself if it already is in the proper form). */
2048
720d1a40 2049struct value *
d2e4a39e 2050ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2051{
df407dfe 2052 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2053 {
d2e4a39e 2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2055
14f9c5c9 2056 if (arrVal == NULL)
323e0a4a 2057 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2059 return value_ind (arrVal);
2060 }
ad82864c
JB
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
d2e4a39e 2063 else
14f9c5c9
AS
2064 return arr;
2065}
2066
2067/* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2069 packing). For other types, is the identity. */
2070
d2e4a39e
AS
2071struct type *
2072ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2073{
ad82864c
JB
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
17280b9f
UW
2076
2077 if (ada_is_array_descriptor_type (type))
556bdfd4 2078 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2079
2080 return type;
14f9c5c9
AS
2081}
2082
4c4b4cd2
PH
2083/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
ad82864c
JB
2085static int
2086ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2087{
2088 if (type == NULL)
2089 return 0;
4c4b4cd2 2090 type = desc_base_type (type);
61ee279c 2091 type = ada_check_typedef (type);
d2e4a39e 2092 return
14f9c5c9
AS
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095}
2096
ad82864c
JB
2097/* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100int
2101ada_is_constrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105}
2106
2107/* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110static int
2111ada_is_unconstrained_packed_array_type (struct type *type)
2112{
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115}
2116
2117/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120static long
2121decode_packed_array_bitsize (struct type *type)
2122{
0d5cff50
DE
2123 const char *raw_name;
2124 const char *tail;
ad82864c
JB
2125 long bits;
2126
720d1a40
JB
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
720d1a40 2141 gdb_assert (tail != NULL);
ad82864c
JB
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151}
2152
14f9c5c9
AS
2153/* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
4c4b4cd2 2169
d2e4a39e 2170static struct type *
ad82864c 2171constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2172{
d2e4a39e
AS
2173 struct type *new_elt_type;
2174 struct type *new_type;
99b1c762
JB
2175 struct type *index_type_desc;
2176 struct type *index_type;
14f9c5c9
AS
2177 LONGEST low_bound, high_bound;
2178
61ee279c 2179 type = ada_check_typedef (type);
14f9c5c9
AS
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
99b1c762
JB
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
e9bb382b 2190 new_type = alloc_type_copy (type);
ad82864c
JB
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
99b1c762 2194 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
4a46959e
JB
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2204 else
14f9c5c9
AS
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2207 TYPE_LENGTH (new_type) =
4c4b4cd2 2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2209 }
2210
876cecd0 2211 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2212 return new_type;
2213}
2214
ad82864c
JB
2215/* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2217
d2e4a39e 2218static struct type *
ad82864c 2219decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2220{
0d5cff50 2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2222 char *name;
0d5cff50 2223 const char *tail;
d2e4a39e 2224 struct type *shadow_type;
14f9c5c9 2225 long bits;
14f9c5c9 2226
727e3d2e
JB
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2235 type = desc_base_type (type);
2236
14f9c5c9
AS
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
b4ba55a1
JB
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
14f9c5c9 2243 {
323e0a4a 2244 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2245 return NULL;
2246 }
f168693b 2247 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
0963b4bd
MS
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
14f9c5c9
AS
2253 return NULL;
2254 }
d2e4a39e 2255
ad82864c
JB
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2258}
2259
ad82864c
JB
2260/* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
4c4b4cd2 2264 type length is set appropriately. */
14f9c5c9 2265
d2e4a39e 2266static struct value *
ad82864c 2267decode_constrained_packed_array (struct value *arr)
14f9c5c9 2268{
4c4b4cd2 2269 struct type *type;
14f9c5c9 2270
11aa919a
PMR
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
828292f2 2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2280 arr = value_ind (arr);
4c4b4cd2 2281
ad82864c 2282 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2283 if (type == NULL)
2284 {
323e0a4a 2285 error (_("can't unpack array"));
14f9c5c9
AS
2286 return NULL;
2287 }
61ee279c 2288
50810684 2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2290 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
df407dfe 2299 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
df407dfe 2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
4c4b4cd2 2314 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2315}
2316
2317
2318/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2319 given in IND. ARR must be a simple array. */
14f9c5c9 2320
d2e4a39e
AS
2321static struct value *
2322value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2323{
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
d2e4a39e
AS
2327 struct type *elt_type;
2328 struct value *v;
14f9c5c9
AS
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
df407dfe 2332 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2333 for (i = 0; i < arity; i += 1)
14f9c5c9 2334 {
d2e4a39e 2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
0963b4bd
MS
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
14f9c5c9 2340 else
4c4b4cd2
PH
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
323e0a4a 2348 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2349 lowerbound = upperbound = 0;
2350 }
2351
3cb382c9 2352 idx = pos_atr (ind[i]);
4c4b4cd2 2353 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
4c4b4cd2
PH
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2359 }
14f9c5c9
AS
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2365 bits, elt_type);
14f9c5c9
AS
2366 return v;
2367}
2368
4c4b4cd2 2369/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2370
2371static int
d2e4a39e 2372has_negatives (struct type *type)
14f9c5c9 2373{
d2e4a39e
AS
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
14f9c5c9 2383}
d2e4a39e 2384
f93fca70 2385/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2387 the unpacked buffer.
14f9c5c9 2388
5b639dea
JB
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
f93fca70
JB
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
14f9c5c9 2394
f93fca70 2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2396
f93fca70
JB
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399static void
2400ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404{
a1c95e6b
JB
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
a1c95e6b
JB
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
4c4b4cd2 2415 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2416 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2417 unsigned char sign;
a1c95e6b 2418
4c4b4cd2
PH
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
f93fca70 2421 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2422
5b639dea
JB
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
14f9c5c9 2429 srcBitsLeft = bit_size;
086ca51f 2430 src_bytes_left = src_len;
f93fca70 2431 unpacked_bytes_left = unpacked_len;
14f9c5c9 2432 sign = 0;
f93fca70
JB
2433
2434 if (is_big_endian)
14f9c5c9 2435 {
086ca51f 2436 src_idx = src_len - 1;
f93fca70
JB
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2439 sign = ~0;
d2e4a39e
AS
2440
2441 unusedLS =
4c4b4cd2
PH
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
14f9c5c9 2444
f93fca70
JB
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
4c4b4cd2
PH
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
086ca51f
JB
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2459 }
14f9c5c9 2460 }
d2e4a39e 2461 else
14f9c5c9
AS
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
086ca51f 2465 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
f93fca70 2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2470 sign = ~0;
14f9c5c9 2471 }
d2e4a39e 2472
14f9c5c9 2473 accum = 0;
086ca51f 2474 while (src_bytes_left > 0)
14f9c5c9
AS
2475 {
2476 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2477 part of the value. */
d2e4a39e 2478 unsigned int unusedMSMask =
4c4b4cd2
PH
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
14f9c5c9 2482 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2483
d2e4a39e 2484 accum |=
086ca51f 2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2486 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2487 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2488 {
086ca51f 2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
4c4b4cd2
PH
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
4c4b4cd2 2494 }
14f9c5c9
AS
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
086ca51f
JB
2497 src_bytes_left -= 1;
2498 src_idx += delta;
14f9c5c9 2499 }
086ca51f 2500 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 accum |= sign << accumSize;
086ca51f 2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
14f9c5c9 2504 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2505 if (accumSize < 0)
2506 accumSize = 0;
14f9c5c9 2507 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
14f9c5c9 2510 }
f93fca70
JB
2511}
2512
2513/* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522struct value *
2523ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526{
2527 struct value *v;
bfb1c796 2528 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2529 gdb_byte *unpacked;
220475ed 2530 const int is_scalar = is_scalar_type (type);
d0a9e810
JB
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
f93fca70
JB
2535
2536 type = ada_check_typedef (type);
2537
d0a9e810 2538 if (obj == NULL)
bfb1c796 2539 src = valaddr + offset;
d0a9e810 2540 else
bfb1c796 2541 src = value_contents (obj) + offset;
d0a9e810
JB
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aa5c10ce 2553 staging = (gdb_byte *) malloc (staging_len);
d0a9e810
JB
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
0cafa88c
JB
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
d0a9e810
JB
2572 }
2573
f93fca70
JB
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
bfb1c796 2577 src = valaddr + offset;
f93fca70
JB
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
0cafa88c 2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2582 gdb_byte *buf;
0cafa88c 2583
f93fca70 2584 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
f93fca70
JB
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
bfb1c796 2592 src = value_contents (obj) + offset;
f93fca70
JB
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
bfb1c796 2615 unpacked = value_contents_writeable (v);
f93fca70
JB
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
d0a9e810 2620 do_cleanups (old_chain);
f93fca70
JB
2621 return v;
2622 }
2623
d0a9e810 2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
f93fca70 2625 {
d0a9e810
JB
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
f93fca70 2630 }
d0a9e810
JB
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2635
d0a9e810 2636 do_cleanups (old_chain);
14f9c5c9
AS
2637 return v;
2638}
d2e4a39e 2639
14f9c5c9
AS
2640/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2642 not overlap. */
14f9c5c9 2643static void
fc1a4b47 2644move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2645 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2646{
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
50810684 2654 if (bits_big_endian_p)
14f9c5c9
AS
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
d2e4a39e 2660 while (n > 0)
4c4b4cd2
PH
2661 {
2662 int unused_right;
5b4ee69b 2663
4c4b4cd2
PH
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
14f9c5c9
AS
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
d2e4a39e 2687 while (n > 0)
4c4b4cd2
PH
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
14f9c5c9
AS
2703 }
2704}
2705
14f9c5c9
AS
2706/* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2709 floating-point or non-scalar types. */
14f9c5c9 2710
d2e4a39e
AS
2711static struct value *
2712ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2713{
df407dfe
AC
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
14f9c5c9 2716
52ce6436
PH
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
88e3b34b 2725 if (!deprecated_value_modifiable (toval))
323e0a4a 2726 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2727
d2e4a39e 2728 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2729 && bits > 0
d2e4a39e 2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2732 {
df407dfe
AC
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2735 int from_size;
224c3ddb 2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2737 struct value *val;
42ae5230 2738 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2741 fromval = value_cast (type, fromval);
14f9c5c9 2742
52ce6436 2743 read_memory (to_addr, buffer, len);
aced2898
PH
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2748 move_bits (buffer, value_bitpos (toval),
50810684 2749 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2750 else
50810684
UW
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
972daa01 2753 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2754
14f9c5c9 2755 val = value_copy (toval);
0fd88904 2756 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2757 TYPE_LENGTH (type));
04624583 2758 deprecated_set_value_type (val, type);
d2e4a39e 2759
14f9c5c9
AS
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764}
2765
2766
7c512744
JB
2767/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
52ce6436
PH
2778static void
2779value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781{
2782 LONGEST offset_in_container =
42ae5230 2783 (LONGEST) (value_address (component) - value_address (container));
7c512744 2784 int bit_offset_in_container =
52ce6436
PH
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
7c512744 2787
52ce6436
PH
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
50810684 2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2796 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2800 bits, 1);
52ce6436 2801 else
7c512744 2802 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2803 value_bitpos (container) + bit_offset_in_container,
50810684 2804 value_contents (val), 0, bits, 0);
7c512744
JB
2805}
2806
4c4b4cd2
PH
2807/* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2809 thereto. */
2810
d2e4a39e
AS
2811struct value *
2812ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2813{
2814 int k;
d2e4a39e
AS
2815 struct value *elt;
2816 struct type *elt_type;
14f9c5c9
AS
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
df407dfe 2820 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2828 error (_("too many subscripts (%d expected)"), k);
2497b498 2829 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2830 }
2831 return elt;
2832}
2833
deede10c
JB
2834/* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
14f9c5c9 2845
2c0b251b 2846static struct value *
deede10c 2847ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2848{
2849 int k;
919e6dbe 2850 struct value *array_ind = ada_value_ind (arr);
deede10c 2851 struct type *type
919e6dbe
PMR
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
aa715135 2861 struct value *lwb_value;
14f9c5c9
AS
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2864 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2866 value_copy (arr));
14f9c5c9 2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874}
2875
0b5d8877 2876/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
0b5d8877 2880static struct value *
f5938064
JG
2881ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
0b5d8877 2883{
b0dd7688 2884 struct type *type0 = ada_check_typedef (type);
aa715135 2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2886 struct type *index_type
aa715135 2887 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2888 struct type *slice_type =
b0dd7688 2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
5b4ee69b 2901
aa715135
JG
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2905 return value_at_lazy (slice_type, base);
0b5d8877
PH
2906}
2907
2908
2909static struct value *
2910ada_value_slice (struct value *array, int low, int high)
2911{
b0dd7688 2912 struct type *type = ada_check_typedef (value_type (array));
aa715135 2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2916 struct type *slice_type =
0b5d8877 2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2918 LONGEST low_pos, high_pos;
5b4ee69b 2919
aa715135
JG
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2930}
2931
14f9c5c9
AS
2932/* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2935 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2936
2937int
d2e4a39e 2938ada_array_arity (struct type *type)
14f9c5c9
AS
2939{
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
d2e4a39e 2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2949 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2952 {
4c4b4cd2 2953 arity += 1;
61ee279c 2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2955 }
d2e4a39e 2956
14f9c5c9
AS
2957 return arity;
2958}
2959
2960/* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2963 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2964
d2e4a39e
AS
2965struct type *
2966ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2967{
2968 type = desc_base_type (type);
2969
d2e4a39e 2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2971 {
2972 int k;
d2e4a39e 2973 struct type *p_array_type;
14f9c5c9 2974
556bdfd4 2975 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
4c4b4cd2 2979 return NULL;
d2e4a39e 2980
4c4b4cd2 2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2982 if (nindices >= 0 && k > nindices)
4c4b4cd2 2983 k = nindices;
d2e4a39e 2984 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2985 {
61ee279c 2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2987 k -= 1;
2988 }
14f9c5c9
AS
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
14f9c5c9
AS
2998 return type;
2999 }
3000
3001 return NULL;
3002}
3003
4c4b4cd2 3004/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
14f9c5c9 3009
1eea4ebd
UW
3010static struct type *
3011ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3012{
4c4b4cd2
PH
3013 struct type *result_type;
3014
14f9c5c9
AS
3015 type = desc_base_type (type);
3016
1eea4ebd
UW
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3019
4c4b4cd2 3020 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
4c4b4cd2 3025 type = TYPE_TARGET_TYPE (type);
262452ec 3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3029 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
14f9c5c9 3032 }
d2e4a39e 3033 else
1eea4ebd
UW
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
14f9c5c9
AS
3041}
3042
3043/* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
14f9c5c9 3048
abb68b3e 3049static LONGEST
fb5e3d5c 3050ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3051{
8a48ac95 3052 struct type *type, *index_type_desc, *index_type;
1ce677a4 3053 int i;
262452ec
JK
3054
3055 gdb_assert (which == 0 || which == 1);
14f9c5c9 3056
ad82864c
JB
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3059
4c4b4cd2 3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3061 return (LONGEST) - which;
14f9c5c9
AS
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
bafffb51
JB
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
262452ec 3081 if (index_type_desc != NULL)
28c85d6c
JB
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
262452ec 3084 else
8a48ac95
JB
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
262452ec 3093
43bbcdc2
PH
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3098}
3099
3100/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3103 supplied by run-time quantities other than discriminants. */
14f9c5c9 3104
1eea4ebd 3105static LONGEST
4dc81987 3106ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3107{
eb479039
JB
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
14f9c5c9 3113
ad82864c
JB
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3116 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3117 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3118 else
1eea4ebd 3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3120}
3121
3122/* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
14f9c5c9 3127
1eea4ebd 3128static LONGEST
d2e4a39e 3129ada_array_length (struct value *arr, int n)
14f9c5c9 3130{
aa715135
JG
3131 struct type *arr_type, *index_type;
3132 int low, high;
eb479039
JB
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
14f9c5c9 3137
ad82864c
JB
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3140
4c4b4cd2 3141 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
14f9c5c9 3146 else
aa715135
JG
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
f168693b 3152 arr_type = check_typedef (arr_type);
aa715135
JG
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
4c4b4cd2
PH
3166}
3167
3168/* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171static struct value *
3172empty_array (struct type *arr_type, int low)
3173{
b0dd7688 3174 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3179
0b5d8877 3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3181}
14f9c5c9 3182\f
d2e4a39e 3183
4c4b4cd2 3184 /* Name resolution */
14f9c5c9 3185
4c4b4cd2
PH
3186/* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
14f9c5c9 3188
d2e4a39e 3189static const char *
4c4b4cd2 3190ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3191{
3192 int i;
3193
4c4b4cd2 3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3195 {
3196 if (ada_opname_table[i].op == op)
4c4b4cd2 3197 return ada_opname_table[i].decoded;
14f9c5c9 3198 }
323e0a4a 3199 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3200}
3201
3202
4c4b4cd2
PH
3203/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3210 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3211
4c4b4cd2
PH
3212static void
3213resolve (struct expression **expp, int void_context_p)
14f9c5c9 3214{
30b15541
UW
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3222}
3223
4c4b4cd2
PH
3224/* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
14f9c5c9 3232
d2e4a39e 3233static struct value *
4c4b4cd2 3234resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3235 struct type *context_type)
14f9c5c9
AS
3236{
3237 int pc = *pos;
3238 int i;
4c4b4cd2 3239 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
52ce6436 3243 int oplen;
14f9c5c9
AS
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
52ce6436
PH
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
14f9c5c9
AS
3251 switch (op)
3252 {
4c4b4cd2
PH
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
4c4b4cd2
PH
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3263 break;
3264
14f9c5c9 3265 case UNOP_ADDR:
4c4b4cd2
PH
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
52ce6436
PH
3270 case UNOP_QUAL:
3271 *pos += 3;
17466c1a 3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3273 break;
3274
52ce6436 3275 case OP_ATR_MODULUS:
4c4b4cd2
PH
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
4c4b4cd2
PH
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
4c4b4cd2
PH
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
52ce6436
PH
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
14f9c5c9
AS
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
4c4b4cd2
PH
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
df407dfe 3307 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3308 break;
14f9c5c9
AS
3309 }
3310
4c4b4cd2 3311 case UNOP_CAST:
4c4b4cd2
PH
3312 *pos += 3;
3313 nargs = 1;
3314 break;
14f9c5c9 3315
4c4b4cd2
PH
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
14f9c5c9 3329
4c4b4cd2
PH
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
14f9c5c9 3336
4c4b4cd2
PH
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
40c8aaa9
JB
3340 *pos += 1;
3341 nargs = 2;
3342 break;
14f9c5c9 3343
4c4b4cd2
PH
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
14f9c5c9 3352
4c4b4cd2
PH
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
14f9c5c9 3358
4c4b4cd2
PH
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
4c4b4cd2
PH
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
14f9c5c9 3365
4c4b4cd2
PH
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
67f3407f
DJ
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
4c4b4cd2
PH
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
4c4b4cd2 3380 case TERNOP_SLICE:
4c4b4cd2
PH
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
52ce6436 3385 case OP_STRING:
14f9c5c9 3386 break;
4c4b4cd2
PH
3387
3388 default:
323e0a4a 3389 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3390 }
3391
8d749320 3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
14f9c5c9 3404 case OP_VAR_VALUE:
4c4b4cd2 3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3406 {
d12307c1 3407 struct block_symbol *candidates;
76a01679
JB
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3414 &candidates);
76a01679
JB
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
d12307c1 3423 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
76a01679
JB
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
76a01679 3430 case LOC_COMPUTED:
76a01679
JB
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
d12307c1 3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
323e0a4a 3453 error (_("No definition found for %s"),
76a01679
JB
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
06d5cf63
JB
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
76a01679 3464 if (i < 0)
323e0a4a 3465 error (_("Could not find a match for %s"),
76a01679
JB
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
323e0a4a 3470 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
14f9c5c9
AS
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
4c4b4cd2 3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3498 {
d12307c1 3499 struct block_symbol *candidates;
4c4b4cd2
PH
3500 int n_candidates;
3501
3502 n_candidates =
76a01679
JB
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3506 &candidates);
4c4b4cd2
PH
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
06d5cf63
JB
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
4c4b4cd2 3516 if (i < 0)
323e0a4a 3517 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3525 innermost_block = candidates[i].block;
3526 }
14f9c5c9
AS
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3551 {
d12307c1 3552 struct block_symbol *candidates;
4c4b4cd2
PH
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3558 &candidates);
4c4b4cd2 3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3560 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3561 if (i < 0)
3562 break;
3563
d12307c1
PMR
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
4c4b4cd2
PH
3567 exp = *expp;
3568 }
14f9c5c9 3569 break;
4c4b4cd2
PH
3570
3571 case OP_TYPE:
b3dbf008 3572 case OP_REGISTER:
4c4b4cd2 3573 return NULL;
14f9c5c9
AS
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578}
3579
3580/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3582 a non-pointer. */
14f9c5c9 3583/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3584 liberal. */
14f9c5c9
AS
3585
3586static int
4dc81987 3587ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3588{
61ee279c
PH
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
14f9c5c9
AS
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
d2e4a39e 3597 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3598 {
3599 default:
5b3d5b7d 3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3605 else
1265e4aa
JB
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
14f9c5c9
AS
3620
3621 case TYPE_CODE_ARRAY:
d2e4a39e 3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3623 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3624
3625 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
14f9c5c9 3629 else
4c4b4cd2
PH
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637}
3638
3639/* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3642 argument function. */
14f9c5c9
AS
3643
3644static int
d2e4a39e 3645ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3646{
3647 int i;
d2e4a39e 3648 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3649
1265e4aa
JB
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
4c4b4cd2 3661 if (actuals[i] == NULL)
76a01679
JB
3662 return 0;
3663 else
3664 {
5b4ee69b
MS
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
df407dfe 3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3668
76a01679
JB
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
14f9c5c9
AS
3672 }
3673 return 1;
3674}
3675
3676/* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681static int
d2e4a39e 3682return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3683{
d2e4a39e 3684 struct type *return_type;
14f9c5c9
AS
3685
3686 if (func_type == NULL)
3687 return 1;
3688
4c4b4cd2 3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3691 else
18af8284 3692 return_type = get_base_type (func_type);
14f9c5c9
AS
3693 if (return_type == NULL)
3694 return 1;
3695
18af8284 3696 context_type = get_base_type (context_type);
14f9c5c9
AS
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704}
3705
3706
4c4b4cd2 3707/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3708 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
14f9c5c9
AS
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
14f9c5c9 3718
4c4b4cd2 3719static int
d12307c1 3720ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
14f9c5c9 3723{
30b15541 3724 int fallback;
14f9c5c9 3725 int k;
4c4b4cd2 3726 int m; /* Number of hits */
14f9c5c9 3727
d2e4a39e 3728 m = 0;
30b15541
UW
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3733 {
3734 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3735 {
d12307c1 3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3737
d12307c1 3738 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3739 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
14f9c5c9
AS
3745 }
3746
dc5c8746
PMR
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3751 if (m == 0)
3752 return -1;
dc5c8746 3753 else if (m > 1 && !parse_completion)
14f9c5c9 3754 {
323e0a4a 3755 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3756 user_select_syms (syms, m, 1);
14f9c5c9
AS
3757 return 0;
3758 }
3759 return 0;
3760}
3761
4c4b4cd2
PH
3762/* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
14f9c5c9 3768static int
0d5cff50 3769encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3770{
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
5b4ee69b 3778
d2e4a39e 3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3780 ;
d2e4a39e 3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3782 ;
d2e4a39e 3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
5b4ee69b 3787
4c4b4cd2
PH
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
14f9c5c9
AS
3797 return (strcmp (N0, N1) < 0);
3798 }
3799}
d2e4a39e 3800
4c4b4cd2
PH
3801/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
d2e4a39e 3804static void
d12307c1 3805sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3806{
4c4b4cd2 3807 int i;
5b4ee69b 3808
d2e4a39e 3809 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3810 {
d12307c1 3811 struct block_symbol sym = syms[i];
14f9c5c9
AS
3812 int j;
3813
d2e4a39e 3814 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3815 {
d12307c1
PMR
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
d2e4a39e 3821 syms[j + 1] = sym;
14f9c5c9
AS
3822 }
3823}
3824
4c4b4cd2
PH
3825/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3826 by asking the user (if necessary), returning the number selected,
3827 and setting the first elements of SYMS items. Error if no symbols
3828 selected. */
14f9c5c9
AS
3829
3830/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3831 to be re-integrated one of these days. */
14f9c5c9
AS
3832
3833int
d12307c1 3834user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3835{
3836 int i;
8d749320 3837 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3838 int n_chosen;
3839 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3840 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3841
3842 if (max_results < 1)
323e0a4a 3843 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3844 if (nsyms <= 1)
3845 return nsyms;
3846
717d2f5a
JB
3847 if (select_mode == multiple_symbols_cancel)
3848 error (_("\
3849canceled because the command is ambiguous\n\
3850See set/show multiple-symbol."));
3851
3852 /* If select_mode is "all", then return all possible symbols.
3853 Only do that if more than one symbol can be selected, of course.
3854 Otherwise, display the menu as usual. */
3855 if (select_mode == multiple_symbols_all && max_results > 1)
3856 return nsyms;
3857
323e0a4a 3858 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3859 if (max_results > 1)
323e0a4a 3860 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3861
4c4b4cd2 3862 sort_choices (syms, nsyms);
14f9c5c9
AS
3863
3864 for (i = 0; i < nsyms; i += 1)
3865 {
d12307c1 3866 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3867 continue;
3868
d12307c1 3869 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3870 {
76a01679 3871 struct symtab_and_line sal =
d12307c1 3872 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3873
323e0a4a
AC
3874 if (sal.symtab == NULL)
3875 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3876 i + first_choice,
d12307c1 3877 SYMBOL_PRINT_NAME (syms[i].symbol),
323e0a4a
AC
3878 sal.line);
3879 else
3880 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
d12307c1 3881 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821
JK
3882 symtab_to_filename_for_display (sal.symtab),
3883 sal.line);
4c4b4cd2
PH
3884 continue;
3885 }
d2e4a39e 3886 else
4c4b4cd2
PH
3887 {
3888 int is_enumeral =
d12307c1
PMR
3889 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3890 && SYMBOL_TYPE (syms[i].symbol) != NULL
3891 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3892 struct symtab *symtab = NULL;
3893
d12307c1
PMR
3894 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3895 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3896
d12307c1 3897 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
323e0a4a 3898 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2 3899 i + first_choice,
d12307c1 3900 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3901 symtab_to_filename_for_display (symtab),
d12307c1 3902 SYMBOL_LINE (syms[i].symbol));
76a01679 3903 else if (is_enumeral
d12307c1 3904 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3905 {
a3f17187 3906 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3907 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3908 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3909 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3910 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2
PH
3911 }
3912 else if (symtab != NULL)
3913 printf_unfiltered (is_enumeral
323e0a4a
AC
3914 ? _("[%d] %s in %s (enumeral)\n")
3915 : _("[%d] %s at %s:?\n"),
4c4b4cd2 3916 i + first_choice,
d12307c1 3917 SYMBOL_PRINT_NAME (syms[i].symbol),
05cba821 3918 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3919 else
3920 printf_unfiltered (is_enumeral
323e0a4a
AC
3921 ? _("[%d] %s (enumeral)\n")
3922 : _("[%d] %s at ?\n"),
4c4b4cd2 3923 i + first_choice,
d12307c1 3924 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3925 }
14f9c5c9 3926 }
d2e4a39e 3927
14f9c5c9 3928 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3929 "overload-choice");
14f9c5c9
AS
3930
3931 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3932 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3933
3934 return n_chosen;
3935}
3936
3937/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3938 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3939 order in CHOICES[0 .. N-1], and return N.
3940
3941 The user types choices as a sequence of numbers on one line
3942 separated by blanks, encoding them as follows:
3943
4c4b4cd2 3944 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3945 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3946 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3947
4c4b4cd2 3948 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3949
3950 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3951 prompts (for use with the -f switch). */
14f9c5c9
AS
3952
3953int
d2e4a39e 3954get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3955 int is_all_choice, char *annotation_suffix)
14f9c5c9 3956{
d2e4a39e 3957 char *args;
0bcd0149 3958 char *prompt;
14f9c5c9
AS
3959 int n_chosen;
3960 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3961
14f9c5c9
AS
3962 prompt = getenv ("PS2");
3963 if (prompt == NULL)
0bcd0149 3964 prompt = "> ";
14f9c5c9 3965
0bcd0149 3966 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3967
14f9c5c9 3968 if (args == NULL)
323e0a4a 3969 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3970
3971 n_chosen = 0;
76a01679 3972
4c4b4cd2
PH
3973 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3974 order, as given in args. Choices are validated. */
14f9c5c9
AS
3975 while (1)
3976 {
d2e4a39e 3977 char *args2;
14f9c5c9
AS
3978 int choice, j;
3979
0fcd72ba 3980 args = skip_spaces (args);
14f9c5c9 3981 if (*args == '\0' && n_chosen == 0)
323e0a4a 3982 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3983 else if (*args == '\0')
4c4b4cd2 3984 break;
14f9c5c9
AS
3985
3986 choice = strtol (args, &args2, 10);
d2e4a39e 3987 if (args == args2 || choice < 0
4c4b4cd2 3988 || choice > n_choices + first_choice - 1)
323e0a4a 3989 error (_("Argument must be choice number"));
14f9c5c9
AS
3990 args = args2;
3991
d2e4a39e 3992 if (choice == 0)
323e0a4a 3993 error (_("cancelled"));
14f9c5c9
AS
3994
3995 if (choice < first_choice)
4c4b4cd2
PH
3996 {
3997 n_chosen = n_choices;
3998 for (j = 0; j < n_choices; j += 1)
3999 choices[j] = j;
4000 break;
4001 }
14f9c5c9
AS
4002 choice -= first_choice;
4003
d2e4a39e 4004 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4005 {
4006 }
14f9c5c9
AS
4007
4008 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4009 {
4010 int k;
5b4ee69b 4011
4c4b4cd2
PH
4012 for (k = n_chosen - 1; k > j; k -= 1)
4013 choices[k + 1] = choices[k];
4014 choices[j + 1] = choice;
4015 n_chosen += 1;
4016 }
14f9c5c9
AS
4017 }
4018
4019 if (n_chosen > max_results)
323e0a4a 4020 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4021
14f9c5c9
AS
4022 return n_chosen;
4023}
4024
4c4b4cd2
PH
4025/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4026 on the function identified by SYM and BLOCK, and taking NARGS
4027 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4028
4029static void
d2e4a39e 4030replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4031 int oplen, struct symbol *sym,
270140bd 4032 const struct block *block)
14f9c5c9
AS
4033{
4034 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4035 symbol, -oplen for operator being replaced). */
d2e4a39e 4036 struct expression *newexp = (struct expression *)
8c1a34e7 4037 xzalloc (sizeof (struct expression)
4c4b4cd2 4038 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4039 struct expression *exp = *expp;
14f9c5c9
AS
4040
4041 newexp->nelts = exp->nelts + 7 - oplen;
4042 newexp->language_defn = exp->language_defn;
3489610d 4043 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4044 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4045 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4046 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4047
4048 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4049 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4050
4051 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4052 newexp->elts[pc + 4].block = block;
4053 newexp->elts[pc + 5].symbol = sym;
4054
4055 *expp = newexp;
aacb1f0a 4056 xfree (exp);
d2e4a39e 4057}
14f9c5c9
AS
4058
4059/* Type-class predicates */
4060
4c4b4cd2
PH
4061/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4062 or FLOAT). */
14f9c5c9
AS
4063
4064static int
d2e4a39e 4065numeric_type_p (struct type *type)
14f9c5c9
AS
4066{
4067 if (type == NULL)
4068 return 0;
d2e4a39e
AS
4069 else
4070 {
4071 switch (TYPE_CODE (type))
4c4b4cd2
PH
4072 {
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_FLT:
4075 return 1;
4076 case TYPE_CODE_RANGE:
4077 return (type == TYPE_TARGET_TYPE (type)
4078 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4079 default:
4080 return 0;
4081 }
d2e4a39e 4082 }
14f9c5c9
AS
4083}
4084
4c4b4cd2 4085/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4086
4087static int
d2e4a39e 4088integer_type_p (struct type *type)
14f9c5c9
AS
4089{
4090 if (type == NULL)
4091 return 0;
d2e4a39e
AS
4092 else
4093 {
4094 switch (TYPE_CODE (type))
4c4b4cd2
PH
4095 {
4096 case TYPE_CODE_INT:
4097 return 1;
4098 case TYPE_CODE_RANGE:
4099 return (type == TYPE_TARGET_TYPE (type)
4100 || integer_type_p (TYPE_TARGET_TYPE (type)));
4101 default:
4102 return 0;
4103 }
d2e4a39e 4104 }
14f9c5c9
AS
4105}
4106
4c4b4cd2 4107/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4108
4109static int
d2e4a39e 4110scalar_type_p (struct type *type)
14f9c5c9
AS
4111{
4112 if (type == NULL)
4113 return 0;
d2e4a39e
AS
4114 else
4115 {
4116 switch (TYPE_CODE (type))
4c4b4cd2
PH
4117 {
4118 case TYPE_CODE_INT:
4119 case TYPE_CODE_RANGE:
4120 case TYPE_CODE_ENUM:
4121 case TYPE_CODE_FLT:
4122 return 1;
4123 default:
4124 return 0;
4125 }
d2e4a39e 4126 }
14f9c5c9
AS
4127}
4128
4c4b4cd2 4129/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4130
4131static int
d2e4a39e 4132discrete_type_p (struct type *type)
14f9c5c9
AS
4133{
4134 if (type == NULL)
4135 return 0;
d2e4a39e
AS
4136 else
4137 {
4138 switch (TYPE_CODE (type))
4c4b4cd2
PH
4139 {
4140 case TYPE_CODE_INT:
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
872f0337 4143 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4144 return 1;
4145 default:
4146 return 0;
4147 }
d2e4a39e 4148 }
14f9c5c9
AS
4149}
4150
4c4b4cd2
PH
4151/* Returns non-zero if OP with operands in the vector ARGS could be
4152 a user-defined function. Errs on the side of pre-defined operators
4153 (i.e., result 0). */
14f9c5c9
AS
4154
4155static int
d2e4a39e 4156possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4157{
76a01679 4158 struct type *type0 =
df407dfe 4159 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4160 struct type *type1 =
df407dfe 4161 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4162
4c4b4cd2
PH
4163 if (type0 == NULL)
4164 return 0;
4165
14f9c5c9
AS
4166 switch (op)
4167 {
4168 default:
4169 return 0;
4170
4171 case BINOP_ADD:
4172 case BINOP_SUB:
4173 case BINOP_MUL:
4174 case BINOP_DIV:
d2e4a39e 4175 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4176
4177 case BINOP_REM:
4178 case BINOP_MOD:
4179 case BINOP_BITWISE_AND:
4180 case BINOP_BITWISE_IOR:
4181 case BINOP_BITWISE_XOR:
d2e4a39e 4182 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4183
4184 case BINOP_EQUAL:
4185 case BINOP_NOTEQUAL:
4186 case BINOP_LESS:
4187 case BINOP_GTR:
4188 case BINOP_LEQ:
4189 case BINOP_GEQ:
d2e4a39e 4190 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4191
4192 case BINOP_CONCAT:
ee90b9ab 4193 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4194
4195 case BINOP_EXP:
d2e4a39e 4196 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4197
4198 case UNOP_NEG:
4199 case UNOP_PLUS:
4200 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4201 case UNOP_ABS:
4202 return (!numeric_type_p (type0));
14f9c5c9
AS
4203
4204 }
4205}
4206\f
4c4b4cd2 4207 /* Renaming */
14f9c5c9 4208
aeb5907d
JB
4209/* NOTES:
4210
4211 1. In the following, we assume that a renaming type's name may
4212 have an ___XD suffix. It would be nice if this went away at some
4213 point.
4214 2. We handle both the (old) purely type-based representation of
4215 renamings and the (new) variable-based encoding. At some point,
4216 it is devoutly to be hoped that the former goes away
4217 (FIXME: hilfinger-2007-07-09).
4218 3. Subprogram renamings are not implemented, although the XRS
4219 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4220
4221/* If SYM encodes a renaming,
4222
4223 <renaming> renames <renamed entity>,
4224
4225 sets *LEN to the length of the renamed entity's name,
4226 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4227 the string describing the subcomponent selected from the renamed
0963b4bd 4228 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4229 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4230 are undefined). Otherwise, returns a value indicating the category
4231 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4232 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4233 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4234 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4235 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4236 may be NULL, in which case they are not assigned.
4237
4238 [Currently, however, GCC does not generate subprogram renamings.] */
4239
4240enum ada_renaming_category
4241ada_parse_renaming (struct symbol *sym,
4242 const char **renamed_entity, int *len,
4243 const char **renaming_expr)
4244{
4245 enum ada_renaming_category kind;
4246 const char *info;
4247 const char *suffix;
4248
4249 if (sym == NULL)
4250 return ADA_NOT_RENAMING;
4251 switch (SYMBOL_CLASS (sym))
14f9c5c9 4252 {
aeb5907d
JB
4253 default:
4254 return ADA_NOT_RENAMING;
4255 case LOC_TYPEDEF:
4256 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4257 renamed_entity, len, renaming_expr);
4258 case LOC_LOCAL:
4259 case LOC_STATIC:
4260 case LOC_COMPUTED:
4261 case LOC_OPTIMIZED_OUT:
4262 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4263 if (info == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (info[5])
4266 {
4267 case '_':
4268 kind = ADA_OBJECT_RENAMING;
4269 info += 6;
4270 break;
4271 case 'E':
4272 kind = ADA_EXCEPTION_RENAMING;
4273 info += 7;
4274 break;
4275 case 'P':
4276 kind = ADA_PACKAGE_RENAMING;
4277 info += 7;
4278 break;
4279 case 'S':
4280 kind = ADA_SUBPROGRAM_RENAMING;
4281 info += 7;
4282 break;
4283 default:
4284 return ADA_NOT_RENAMING;
4285 }
14f9c5c9 4286 }
4c4b4cd2 4287
aeb5907d
JB
4288 if (renamed_entity != NULL)
4289 *renamed_entity = info;
4290 suffix = strstr (info, "___XE");
4291 if (suffix == NULL || suffix == info)
4292 return ADA_NOT_RENAMING;
4293 if (len != NULL)
4294 *len = strlen (info) - strlen (suffix);
4295 suffix += 5;
4296 if (renaming_expr != NULL)
4297 *renaming_expr = suffix;
4298 return kind;
4299}
4300
4301/* Assuming TYPE encodes a renaming according to the old encoding in
4302 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4303 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4304 ADA_NOT_RENAMING otherwise. */
4305static enum ada_renaming_category
4306parse_old_style_renaming (struct type *type,
4307 const char **renamed_entity, int *len,
4308 const char **renaming_expr)
4309{
4310 enum ada_renaming_category kind;
4311 const char *name;
4312 const char *info;
4313 const char *suffix;
14f9c5c9 4314
aeb5907d
JB
4315 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4316 || TYPE_NFIELDS (type) != 1)
4317 return ADA_NOT_RENAMING;
14f9c5c9 4318
aeb5907d
JB
4319 name = type_name_no_tag (type);
4320 if (name == NULL)
4321 return ADA_NOT_RENAMING;
4322
4323 name = strstr (name, "___XR");
4324 if (name == NULL)
4325 return ADA_NOT_RENAMING;
4326 switch (name[5])
4327 {
4328 case '\0':
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 break;
4332 case 'E':
4333 kind = ADA_EXCEPTION_RENAMING;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 break;
4338 case 'S':
4339 kind = ADA_SUBPROGRAM_RENAMING;
4340 break;
4341 default:
4342 return ADA_NOT_RENAMING;
4343 }
14f9c5c9 4344
aeb5907d
JB
4345 info = TYPE_FIELD_NAME (type, 0);
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (renaming_expr != NULL)
4352 *renaming_expr = suffix + 5;
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = suffix - info;
4357 return kind;
a5ee536b
JB
4358}
4359
4360/* Compute the value of the given RENAMING_SYM, which is expected to
4361 be a symbol encoding a renaming expression. BLOCK is the block
4362 used to evaluate the renaming. */
52ce6436 4363
a5ee536b
JB
4364static struct value *
4365ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4366 const struct block *block)
a5ee536b 4367{
bbc13ae3 4368 const char *sym_name;
a5ee536b
JB
4369 struct expression *expr;
4370 struct value *value;
4371 struct cleanup *old_chain = NULL;
4372
bbc13ae3 4373 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4374 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4375 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4376 value = evaluate_expression (expr);
4377
4378 do_cleanups (old_chain);
4379 return value;
4380}
14f9c5c9 4381\f
d2e4a39e 4382
4c4b4cd2 4383 /* Evaluation: Function Calls */
14f9c5c9 4384
4c4b4cd2 4385/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4386 lvalues, and otherwise has the side-effect of allocating memory
4387 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4388
d2e4a39e 4389static struct value *
40bc484c 4390ensure_lval (struct value *val)
14f9c5c9 4391{
40bc484c
JB
4392 if (VALUE_LVAL (val) == not_lval
4393 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4394 {
df407dfe 4395 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4396 const CORE_ADDR addr =
4397 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4398
40bc484c 4399 set_value_address (val, addr);
a84a8a0d 4400 VALUE_LVAL (val) = lval_memory;
40bc484c 4401 write_memory (addr, value_contents (val), len);
c3e5cd34 4402 }
14f9c5c9
AS
4403
4404 return val;
4405}
4406
4407/* Return the value ACTUAL, converted to be an appropriate value for a
4408 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4409 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4410 values not residing in memory, updating it as needed. */
14f9c5c9 4411
a93c0eb6 4412struct value *
40bc484c 4413ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4414{
df407dfe 4415 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4416 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4417 struct type *formal_target =
4418 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4419 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4420 struct type *actual_target =
4421 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4422 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4423
4c4b4cd2 4424 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4425 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4426 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4427 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4428 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4429 {
a84a8a0d 4430 struct value *result;
5b4ee69b 4431
14f9c5c9 4432 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4433 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4434 result = desc_data (actual);
14f9c5c9 4435 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4436 {
4437 if (VALUE_LVAL (actual) != lval_memory)
4438 {
4439 struct value *val;
5b4ee69b 4440
df407dfe 4441 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4442 val = allocate_value (actual_type);
990a07ab 4443 memcpy ((char *) value_contents_raw (val),
0fd88904 4444 (char *) value_contents (actual),
4c4b4cd2 4445 TYPE_LENGTH (actual_type));
40bc484c 4446 actual = ensure_lval (val);
4c4b4cd2 4447 }
a84a8a0d 4448 result = value_addr (actual);
4c4b4cd2 4449 }
a84a8a0d
JB
4450 else
4451 return actual;
b1af9e97 4452 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4453 }
4454 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4455 return ada_value_ind (actual);
8344af1e
JB
4456 else if (ada_is_aligner_type (formal_type))
4457 {
4458 /* We need to turn this parameter into an aligner type
4459 as well. */
4460 struct value *aligner = allocate_value (formal_type);
4461 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4462
4463 value_assign_to_component (aligner, component, actual);
4464 return aligner;
4465 }
14f9c5c9
AS
4466
4467 return actual;
4468}
4469
438c98a1
JB
4470/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4471 type TYPE. This is usually an inefficient no-op except on some targets
4472 (such as AVR) where the representation of a pointer and an address
4473 differs. */
4474
4475static CORE_ADDR
4476value_pointer (struct value *value, struct type *type)
4477{
4478 struct gdbarch *gdbarch = get_type_arch (type);
4479 unsigned len = TYPE_LENGTH (type);
224c3ddb 4480 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4481 CORE_ADDR addr;
4482
4483 addr = value_address (value);
4484 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4485 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4486 return addr;
4487}
4488
14f9c5c9 4489
4c4b4cd2
PH
4490/* Push a descriptor of type TYPE for array value ARR on the stack at
4491 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4492 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4493 to-descriptor type rather than a descriptor type), a struct value *
4494 representing a pointer to this descriptor. */
14f9c5c9 4495
d2e4a39e 4496static struct value *
40bc484c 4497make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4498{
d2e4a39e
AS
4499 struct type *bounds_type = desc_bounds_type (type);
4500 struct type *desc_type = desc_base_type (type);
4501 struct value *descriptor = allocate_value (desc_type);
4502 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4503 int i;
d2e4a39e 4504
0963b4bd
MS
4505 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4506 i > 0; i -= 1)
14f9c5c9 4507 {
19f220c3
JK
4508 modify_field (value_type (bounds), value_contents_writeable (bounds),
4509 ada_array_bound (arr, i, 0),
4510 desc_bound_bitpos (bounds_type, i, 0),
4511 desc_bound_bitsize (bounds_type, i, 0));
4512 modify_field (value_type (bounds), value_contents_writeable (bounds),
4513 ada_array_bound (arr, i, 1),
4514 desc_bound_bitpos (bounds_type, i, 1),
4515 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4516 }
d2e4a39e 4517
40bc484c 4518 bounds = ensure_lval (bounds);
d2e4a39e 4519
19f220c3
JK
4520 modify_field (value_type (descriptor),
4521 value_contents_writeable (descriptor),
4522 value_pointer (ensure_lval (arr),
4523 TYPE_FIELD_TYPE (desc_type, 0)),
4524 fat_pntr_data_bitpos (desc_type),
4525 fat_pntr_data_bitsize (desc_type));
4526
4527 modify_field (value_type (descriptor),
4528 value_contents_writeable (descriptor),
4529 value_pointer (bounds,
4530 TYPE_FIELD_TYPE (desc_type, 1)),
4531 fat_pntr_bounds_bitpos (desc_type),
4532 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4533
40bc484c 4534 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4535
4536 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4537 return value_addr (descriptor);
4538 else
4539 return descriptor;
4540}
14f9c5c9 4541\f
3d9434b5
JB
4542 /* Symbol Cache Module */
4543
3d9434b5 4544/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4545 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4546 on the type of entity being printed, the cache can make it as much
4547 as an order of magnitude faster than without it.
4548
4549 The descriptive type DWARF extension has significantly reduced
4550 the need for this cache, at least when DWARF is being used. However,
4551 even in this case, some expensive name-based symbol searches are still
4552 sometimes necessary - to find an XVZ variable, mostly. */
4553
ee01b665 4554/* Initialize the contents of SYM_CACHE. */
3d9434b5 4555
ee01b665
JB
4556static void
4557ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4558{
4559 obstack_init (&sym_cache->cache_space);
4560 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4561}
3d9434b5 4562
ee01b665
JB
4563/* Free the memory used by SYM_CACHE. */
4564
4565static void
4566ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4567{
ee01b665
JB
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 xfree (sym_cache);
4570}
3d9434b5 4571
ee01b665
JB
4572/* Return the symbol cache associated to the given program space PSPACE.
4573 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4574
ee01b665
JB
4575static struct ada_symbol_cache *
4576ada_get_symbol_cache (struct program_space *pspace)
4577{
4578 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4579
66c168ae 4580 if (pspace_data->sym_cache == NULL)
ee01b665 4581 {
66c168ae
JB
4582 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4583 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4584 }
4585
66c168ae 4586 return pspace_data->sym_cache;
ee01b665 4587}
3d9434b5
JB
4588
4589/* Clear all entries from the symbol cache. */
4590
4591static void
4592ada_clear_symbol_cache (void)
4593{
ee01b665
JB
4594 struct ada_symbol_cache *sym_cache
4595 = ada_get_symbol_cache (current_program_space);
4596
4597 obstack_free (&sym_cache->cache_space, NULL);
4598 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4599}
4600
fe978cb0 4601/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4602 Return it if found, or NULL otherwise. */
4603
4604static struct cache_entry **
fe978cb0 4605find_entry (const char *name, domain_enum domain)
3d9434b5 4606{
ee01b665
JB
4607 struct ada_symbol_cache *sym_cache
4608 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4609 int h = msymbol_hash (name) % HASH_SIZE;
4610 struct cache_entry **e;
4611
ee01b665 4612 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4613 {
fe978cb0 4614 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4615 return e;
4616 }
4617 return NULL;
4618}
4619
fe978cb0 4620/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4621 Return 1 if found, 0 otherwise.
4622
4623 If an entry was found and SYM is not NULL, set *SYM to the entry's
4624 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4625
96d887e8 4626static int
fe978cb0 4627lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4628 struct symbol **sym, const struct block **block)
96d887e8 4629{
fe978cb0 4630 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4631
4632 if (e == NULL)
4633 return 0;
4634 if (sym != NULL)
4635 *sym = (*e)->sym;
4636 if (block != NULL)
4637 *block = (*e)->block;
4638 return 1;
96d887e8
PH
4639}
4640
3d9434b5 4641/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4642 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4643
96d887e8 4644static void
fe978cb0 4645cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4646 const struct block *block)
96d887e8 4647{
ee01b665
JB
4648 struct ada_symbol_cache *sym_cache
4649 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4650 int h;
4651 char *copy;
4652 struct cache_entry *e;
4653
1994afbf
DE
4654 /* Symbols for builtin types don't have a block.
4655 For now don't cache such symbols. */
4656 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4657 return;
4658
3d9434b5
JB
4659 /* If the symbol is a local symbol, then do not cache it, as a search
4660 for that symbol depends on the context. To determine whether
4661 the symbol is local or not, we check the block where we found it
4662 against the global and static blocks of its associated symtab. */
4663 if (sym
08be3fe3 4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4665 GLOBAL_BLOCK) != block
08be3fe3 4666 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4667 STATIC_BLOCK) != block)
3d9434b5
JB
4668 return;
4669
4670 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4671 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4672 sizeof (*e));
4673 e->next = sym_cache->root[h];
4674 sym_cache->root[h] = e;
224c3ddb
SM
4675 e->name = copy
4676 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4677 strcpy (copy, name);
4678 e->sym = sym;
fe978cb0 4679 e->domain = domain;
3d9434b5 4680 e->block = block;
96d887e8 4681}
4c4b4cd2
PH
4682\f
4683 /* Symbol Lookup */
4684
c0431670
JB
4685/* Return nonzero if wild matching should be used when searching for
4686 all symbols matching LOOKUP_NAME.
4687
4688 LOOKUP_NAME is expected to be a symbol name after transformation
4689 for Ada lookups (see ada_name_for_lookup). */
4690
4691static int
4692should_use_wild_match (const char *lookup_name)
4693{
4694 return (strstr (lookup_name, "__") == NULL);
4695}
4696
4c4b4cd2
PH
4697/* Return the result of a standard (literal, C-like) lookup of NAME in
4698 given DOMAIN, visible from lexical block BLOCK. */
4699
4700static struct symbol *
4701standard_lookup (const char *name, const struct block *block,
4702 domain_enum domain)
4703{
acbd605d 4704 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4705 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4706
d12307c1
PMR
4707 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4708 return sym.symbol;
2570f2b7 4709 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4710 cache_symbol (name, domain, sym.symbol, sym.block);
4711 return sym.symbol;
4c4b4cd2
PH
4712}
4713
4714
4715/* Non-zero iff there is at least one non-function/non-enumeral symbol
4716 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4717 since they contend in overloading in the same way. */
4718static int
d12307c1 4719is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4720{
4721 int i;
4722
4723 for (i = 0; i < n; i += 1)
d12307c1
PMR
4724 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4725 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4726 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4727 return 1;
4728
4729 return 0;
4730}
4731
4732/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4733 struct types. Otherwise, they may not. */
14f9c5c9
AS
4734
4735static int
d2e4a39e 4736equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4737{
d2e4a39e 4738 if (type0 == type1)
14f9c5c9 4739 return 1;
d2e4a39e 4740 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4741 || TYPE_CODE (type0) != TYPE_CODE (type1))
4742 return 0;
d2e4a39e 4743 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4744 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4745 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4746 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4747 return 1;
d2e4a39e 4748
14f9c5c9
AS
4749 return 0;
4750}
4751
4752/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4753 no more defined than that of SYM1. */
14f9c5c9
AS
4754
4755static int
d2e4a39e 4756lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4757{
4758 if (sym0 == sym1)
4759 return 1;
176620f1 4760 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4761 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4762 return 0;
4763
d2e4a39e 4764 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4765 {
4766 case LOC_UNDEF:
4767 return 1;
4768 case LOC_TYPEDEF:
4769 {
4c4b4cd2
PH
4770 struct type *type0 = SYMBOL_TYPE (sym0);
4771 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4772 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4773 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4774 int len0 = strlen (name0);
5b4ee69b 4775
4c4b4cd2
PH
4776 return
4777 TYPE_CODE (type0) == TYPE_CODE (type1)
4778 && (equiv_types (type0, type1)
4779 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4780 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4781 }
4782 case LOC_CONST:
4783 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4784 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4785 default:
4786 return 0;
14f9c5c9
AS
4787 }
4788}
4789
d12307c1 4790/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4791 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4792
4793static void
76a01679
JB
4794add_defn_to_vec (struct obstack *obstackp,
4795 struct symbol *sym,
f0c5f9b2 4796 const struct block *block)
14f9c5c9
AS
4797{
4798 int i;
d12307c1 4799 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4800
529cad9c
PH
4801 /* Do not try to complete stub types, as the debugger is probably
4802 already scanning all symbols matching a certain name at the
4803 time when this function is called. Trying to replace the stub
4804 type by its associated full type will cause us to restart a scan
4805 which may lead to an infinite recursion. Instead, the client
4806 collecting the matching symbols will end up collecting several
4807 matches, with at least one of them complete. It can then filter
4808 out the stub ones if needed. */
4809
4c4b4cd2
PH
4810 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4811 {
d12307c1 4812 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4813 return;
d12307c1 4814 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4815 {
d12307c1 4816 prevDefns[i].symbol = sym;
4c4b4cd2 4817 prevDefns[i].block = block;
4c4b4cd2 4818 return;
76a01679 4819 }
4c4b4cd2
PH
4820 }
4821
4822 {
d12307c1 4823 struct block_symbol info;
4c4b4cd2 4824
d12307c1 4825 info.symbol = sym;
4c4b4cd2 4826 info.block = block;
d12307c1 4827 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4828 }
4829}
4830
d12307c1
PMR
4831/* Number of block_symbol structures currently collected in current vector in
4832 OBSTACKP. */
4c4b4cd2 4833
76a01679
JB
4834static int
4835num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4836{
d12307c1 4837 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4838}
4839
d12307c1
PMR
4840/* Vector of block_symbol structures currently collected in current vector in
4841 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4842
d12307c1 4843static struct block_symbol *
4c4b4cd2
PH
4844defns_collected (struct obstack *obstackp, int finish)
4845{
4846 if (finish)
224c3ddb 4847 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4848 else
d12307c1 4849 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4850}
4851
7c7b6655
TT
4852/* Return a bound minimal symbol matching NAME according to Ada
4853 decoding rules. Returns an invalid symbol if there is no such
4854 minimal symbol. Names prefixed with "standard__" are handled
4855 specially: "standard__" is first stripped off, and only static and
4856 global symbols are searched. */
4c4b4cd2 4857
7c7b6655 4858struct bound_minimal_symbol
96d887e8 4859ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4860{
7c7b6655 4861 struct bound_minimal_symbol result;
4c4b4cd2 4862 struct objfile *objfile;
96d887e8 4863 struct minimal_symbol *msymbol;
dc4024cd 4864 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4865
7c7b6655
TT
4866 memset (&result, 0, sizeof (result));
4867
c0431670
JB
4868 /* Special case: If the user specifies a symbol name inside package
4869 Standard, do a non-wild matching of the symbol name without
4870 the "standard__" prefix. This was primarily introduced in order
4871 to allow the user to specifically access the standard exceptions
4872 using, for instance, Standard.Constraint_Error when Constraint_Error
4873 is ambiguous (due to the user defining its own Constraint_Error
4874 entity inside its program). */
61012eef 4875 if (startswith (name, "standard__"))
c0431670 4876 name += sizeof ("standard__") - 1;
4c4b4cd2 4877
96d887e8
PH
4878 ALL_MSYMBOLS (objfile, msymbol)
4879 {
efd66ac6 4880 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4881 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4882 {
4883 result.minsym = msymbol;
4884 result.objfile = objfile;
4885 break;
4886 }
96d887e8 4887 }
4c4b4cd2 4888
7c7b6655 4889 return result;
96d887e8 4890}
4c4b4cd2 4891
96d887e8
PH
4892/* For all subprograms that statically enclose the subprogram of the
4893 selected frame, add symbols matching identifier NAME in DOMAIN
4894 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4895 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4896 with a wildcard prefix. */
4c4b4cd2 4897
96d887e8
PH
4898static void
4899add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4900 const char *name, domain_enum domain,
48b78332 4901 int wild_match_p)
96d887e8 4902{
96d887e8 4903}
14f9c5c9 4904
96d887e8
PH
4905/* True if TYPE is definitely an artificial type supplied to a symbol
4906 for which no debugging information was given in the symbol file. */
14f9c5c9 4907
96d887e8
PH
4908static int
4909is_nondebugging_type (struct type *type)
4910{
0d5cff50 4911 const char *name = ada_type_name (type);
5b4ee69b 4912
96d887e8
PH
4913 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4914}
4c4b4cd2 4915
8f17729f
JB
4916/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4917 that are deemed "identical" for practical purposes.
4918
4919 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4920 types and that their number of enumerals is identical (in other
4921 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4922
4923static int
4924ada_identical_enum_types_p (struct type *type1, struct type *type2)
4925{
4926 int i;
4927
4928 /* The heuristic we use here is fairly conservative. We consider
4929 that 2 enumerate types are identical if they have the same
4930 number of enumerals and that all enumerals have the same
4931 underlying value and name. */
4932
4933 /* All enums in the type should have an identical underlying value. */
4934 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4935 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4936 return 0;
4937
4938 /* All enumerals should also have the same name (modulo any numerical
4939 suffix). */
4940 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4941 {
0d5cff50
DE
4942 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4943 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4944 int len_1 = strlen (name_1);
4945 int len_2 = strlen (name_2);
4946
4947 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4948 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4949 if (len_1 != len_2
4950 || strncmp (TYPE_FIELD_NAME (type1, i),
4951 TYPE_FIELD_NAME (type2, i),
4952 len_1) != 0)
4953 return 0;
4954 }
4955
4956 return 1;
4957}
4958
4959/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4960 that are deemed "identical" for practical purposes. Sometimes,
4961 enumerals are not strictly identical, but their types are so similar
4962 that they can be considered identical.
4963
4964 For instance, consider the following code:
4965
4966 type Color is (Black, Red, Green, Blue, White);
4967 type RGB_Color is new Color range Red .. Blue;
4968
4969 Type RGB_Color is a subrange of an implicit type which is a copy
4970 of type Color. If we call that implicit type RGB_ColorB ("B" is
4971 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4972 As a result, when an expression references any of the enumeral
4973 by name (Eg. "print green"), the expression is technically
4974 ambiguous and the user should be asked to disambiguate. But
4975 doing so would only hinder the user, since it wouldn't matter
4976 what choice he makes, the outcome would always be the same.
4977 So, for practical purposes, we consider them as the same. */
4978
4979static int
d12307c1 4980symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
4981{
4982 int i;
4983
4984 /* Before performing a thorough comparison check of each type,
4985 we perform a series of inexpensive checks. We expect that these
4986 checks will quickly fail in the vast majority of cases, and thus
4987 help prevent the unnecessary use of a more expensive comparison.
4988 Said comparison also expects us to make some of these checks
4989 (see ada_identical_enum_types_p). */
4990
4991 /* Quick check: All symbols should have an enum type. */
4992 for (i = 0; i < nsyms; i++)
d12307c1 4993 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4994 return 0;
4995
4996 /* Quick check: They should all have the same value. */
4997 for (i = 1; i < nsyms; i++)
d12307c1 4998 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4999 return 0;
5000
5001 /* Quick check: They should all have the same number of enumerals. */
5002 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5003 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5004 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5005 return 0;
5006
5007 /* All the sanity checks passed, so we might have a set of
5008 identical enumeration types. Perform a more complete
5009 comparison of the type of each symbol. */
5010 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5011 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5012 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5013 return 0;
5014
5015 return 1;
5016}
5017
96d887e8
PH
5018/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5019 duplicate other symbols in the list (The only case I know of where
5020 this happens is when object files containing stabs-in-ecoff are
5021 linked with files containing ordinary ecoff debugging symbols (or no
5022 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5023 Returns the number of items in the modified list. */
4c4b4cd2 5024
96d887e8 5025static int
d12307c1 5026remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5027{
5028 int i, j;
4c4b4cd2 5029
8f17729f
JB
5030 /* We should never be called with less than 2 symbols, as there
5031 cannot be any extra symbol in that case. But it's easy to
5032 handle, since we have nothing to do in that case. */
5033 if (nsyms < 2)
5034 return nsyms;
5035
96d887e8
PH
5036 i = 0;
5037 while (i < nsyms)
5038 {
a35ddb44 5039 int remove_p = 0;
339c13b6
JB
5040
5041 /* If two symbols have the same name and one of them is a stub type,
5042 the get rid of the stub. */
5043
d12307c1
PMR
5044 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5045 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5046 {
5047 for (j = 0; j < nsyms; j++)
5048 {
5049 if (j != i
d12307c1
PMR
5050 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5051 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5052 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5053 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5054 remove_p = 1;
339c13b6
JB
5055 }
5056 }
5057
5058 /* Two symbols with the same name, same class and same address
5059 should be identical. */
5060
d12307c1
PMR
5061 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5062 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5063 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5064 {
5065 for (j = 0; j < nsyms; j += 1)
5066 {
5067 if (i != j
d12307c1
PMR
5068 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5069 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5070 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5071 && SYMBOL_CLASS (syms[i].symbol)
5072 == SYMBOL_CLASS (syms[j].symbol)
5073 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5074 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5075 remove_p = 1;
4c4b4cd2 5076 }
4c4b4cd2 5077 }
339c13b6 5078
a35ddb44 5079 if (remove_p)
339c13b6
JB
5080 {
5081 for (j = i + 1; j < nsyms; j += 1)
5082 syms[j - 1] = syms[j];
5083 nsyms -= 1;
5084 }
5085
96d887e8 5086 i += 1;
14f9c5c9 5087 }
8f17729f
JB
5088
5089 /* If all the remaining symbols are identical enumerals, then
5090 just keep the first one and discard the rest.
5091
5092 Unlike what we did previously, we do not discard any entry
5093 unless they are ALL identical. This is because the symbol
5094 comparison is not a strict comparison, but rather a practical
5095 comparison. If all symbols are considered identical, then
5096 we can just go ahead and use the first one and discard the rest.
5097 But if we cannot reduce the list to a single element, we have
5098 to ask the user to disambiguate anyways. And if we have to
5099 present a multiple-choice menu, it's less confusing if the list
5100 isn't missing some choices that were identical and yet distinct. */
5101 if (symbols_are_identical_enums (syms, nsyms))
5102 nsyms = 1;
5103
96d887e8 5104 return nsyms;
14f9c5c9
AS
5105}
5106
96d887e8
PH
5107/* Given a type that corresponds to a renaming entity, use the type name
5108 to extract the scope (package name or function name, fully qualified,
5109 and following the GNAT encoding convention) where this renaming has been
5110 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5111
96d887e8
PH
5112static char *
5113xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5114{
96d887e8 5115 /* The renaming types adhere to the following convention:
0963b4bd 5116 <scope>__<rename>___<XR extension>.
96d887e8
PH
5117 So, to extract the scope, we search for the "___XR" extension,
5118 and then backtrack until we find the first "__". */
76a01679 5119
96d887e8 5120 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5121 const char *suffix = strstr (name, "___XR");
5122 const char *last;
96d887e8
PH
5123 int scope_len;
5124 char *scope;
14f9c5c9 5125
96d887e8
PH
5126 /* Now, backtrack a bit until we find the first "__". Start looking
5127 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5128
96d887e8
PH
5129 for (last = suffix - 3; last > name; last--)
5130 if (last[0] == '_' && last[1] == '_')
5131 break;
76a01679 5132
96d887e8 5133 /* Make a copy of scope and return it. */
14f9c5c9 5134
96d887e8
PH
5135 scope_len = last - name;
5136 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5137
96d887e8
PH
5138 strncpy (scope, name, scope_len);
5139 scope[scope_len] = '\0';
4c4b4cd2 5140
96d887e8 5141 return scope;
4c4b4cd2
PH
5142}
5143
96d887e8 5144/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5145
96d887e8
PH
5146static int
5147is_package_name (const char *name)
4c4b4cd2 5148{
96d887e8
PH
5149 /* Here, We take advantage of the fact that no symbols are generated
5150 for packages, while symbols are generated for each function.
5151 So the condition for NAME represent a package becomes equivalent
5152 to NAME not existing in our list of symbols. There is only one
5153 small complication with library-level functions (see below). */
4c4b4cd2 5154
96d887e8 5155 char *fun_name;
76a01679 5156
96d887e8
PH
5157 /* If it is a function that has not been defined at library level,
5158 then we should be able to look it up in the symbols. */
5159 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5160 return 0;
14f9c5c9 5161
96d887e8
PH
5162 /* Library-level function names start with "_ada_". See if function
5163 "_ada_" followed by NAME can be found. */
14f9c5c9 5164
96d887e8 5165 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5166 functions names cannot contain "__" in them. */
96d887e8
PH
5167 if (strstr (name, "__") != NULL)
5168 return 0;
4c4b4cd2 5169
b435e160 5170 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5171
96d887e8
PH
5172 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5173}
14f9c5c9 5174
96d887e8 5175/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5176 not visible from FUNCTION_NAME. */
14f9c5c9 5177
96d887e8 5178static int
0d5cff50 5179old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5180{
aeb5907d 5181 char *scope;
1509e573 5182 struct cleanup *old_chain;
aeb5907d
JB
5183
5184 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5185 return 0;
5186
5187 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5188 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5189
96d887e8
PH
5190 /* If the rename has been defined in a package, then it is visible. */
5191 if (is_package_name (scope))
1509e573
JB
5192 {
5193 do_cleanups (old_chain);
5194 return 0;
5195 }
14f9c5c9 5196
96d887e8
PH
5197 /* Check that the rename is in the current function scope by checking
5198 that its name starts with SCOPE. */
76a01679 5199
96d887e8
PH
5200 /* If the function name starts with "_ada_", it means that it is
5201 a library-level function. Strip this prefix before doing the
5202 comparison, as the encoding for the renaming does not contain
5203 this prefix. */
61012eef 5204 if (startswith (function_name, "_ada_"))
96d887e8 5205 function_name += 5;
f26caa11 5206
1509e573 5207 {
61012eef 5208 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5209
5210 do_cleanups (old_chain);
5211 return is_invisible;
5212 }
f26caa11
PH
5213}
5214
aeb5907d
JB
5215/* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
96d887e8
PH
5220
5221 Rationale:
aeb5907d
JB
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
f26caa11 5234
96d887e8
PH
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
4c4b4cd2 5251
14f9c5c9 5252static int
d12307c1 5253remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5254 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5255{
5256 struct symbol *current_function;
0d5cff50 5257 const char *current_function_name;
4c4b4cd2 5258 int i;
aeb5907d
JB
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
0963b4bd 5263 First, zero out such symbols, then compress. */
aeb5907d
JB
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < nsyms; i += 1)
5266 {
d12307c1 5267 struct symbol *sym = syms[i].symbol;
270140bd 5268 const struct block *block = syms[i].block;
aeb5907d
JB
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = SYMBOL_LINKAGE_NAME (sym);
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5b4ee69b 5281
aeb5907d
JB
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5284 if (i != j && syms[j].symbol != NULL
5285 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5286 name_len) == 0
5287 && block == syms[j].block)
d12307c1 5288 syms[j].symbol = NULL;
aeb5907d
JB
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5296 if (syms[j].symbol != NULL)
aeb5907d
JB
5297 {
5298 syms[k] = syms[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
4c4b4cd2
PH
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
76a01679 5306
4c4b4cd2
PH
5307 if (current_block == NULL)
5308 return nsyms;
76a01679 5309
7f0df278 5310 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5311 if (current_function == NULL)
5312 return nsyms;
5313
5314 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5315 if (current_function_name == NULL)
5316 return nsyms;
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < nsyms)
5324 {
d12307c1 5325 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5326 == ADA_OBJECT_RENAMING
d12307c1 5327 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5328 {
5329 int j;
5b4ee69b 5330
aeb5907d 5331 for (j = i + 1; j < nsyms; j += 1)
76a01679 5332 syms[j - 1] = syms[j];
4c4b4cd2
PH
5333 nsyms -= 1;
5334 }
5335 else
5336 i += 1;
5337 }
5338
5339 return nsyms;
5340}
5341
339c13b6
JB
5342/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5343 whose name and domain match NAME and DOMAIN respectively.
5344 If no match was found, then extend the search to "enclosing"
5345 routines (in other words, if we're inside a nested function,
5346 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5347 If WILD_MATCH_P is nonzero, perform the naming matching in
5348 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5349
5350 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5351
5352static void
5353ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5354 const struct block *block, domain_enum domain,
d0a8ab18 5355 int wild_match_p)
339c13b6
JB
5356{
5357 int block_depth = 0;
5358
5359 while (block != NULL)
5360 {
5361 block_depth += 1;
d0a8ab18
JB
5362 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5363 wild_match_p);
339c13b6
JB
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
5367 num_defns_collected (obstackp)))
5368 return;
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5376 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5377}
5378
ccefe4c4 5379/* An object of this type is used as the user_data argument when
40658b94 5380 calling the map_matching_symbols method. */
ccefe4c4 5381
40658b94 5382struct match_data
ccefe4c4 5383{
40658b94 5384 struct objfile *objfile;
ccefe4c4 5385 struct obstack *obstackp;
40658b94
PH
5386 struct symbol *arg_sym;
5387 int found_sym;
ccefe4c4
TT
5388};
5389
22cee43f 5390/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5391 to a list of symbols. DATA0 is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
ccefe4c4 5398
40658b94
PH
5399static int
5400aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5401{
40658b94
PH
5402 struct match_data *data = (struct match_data *) data0;
5403
5404 if (sym == NULL)
5405 {
5406 if (!data->found_sym && data->arg_sym != NULL)
5407 add_defn_to_vec (data->obstackp,
5408 fixup_symbol_section (data->arg_sym, data->objfile),
5409 block);
5410 data->found_sym = 0;
5411 data->arg_sym = NULL;
5412 }
5413 else
5414 {
5415 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5416 return 0;
5417 else if (SYMBOL_IS_ARGUMENT (sym))
5418 data->arg_sym = sym;
5419 else
5420 {
5421 data->found_sym = 1;
5422 add_defn_to_vec (data->obstackp,
5423 fixup_symbol_section (sym, data->objfile),
5424 block);
5425 }
5426 }
5427 return 0;
5428}
5429
22cee43f
PMR
5430/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5431 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5432 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5433 function "wild_match" for more information). Return whether we found such
5434 symbols. */
5435
5436static int
5437ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
5439 const char *name,
5440 domain_enum domain,
5441 int wild_match_p)
5442{
5443 struct using_direct *renaming;
5444 int defns_mark = num_defns_collected (obstackp);
5445
5446 for (renaming = block_using (block);
5447 renaming != NULL;
5448 renaming = renaming->next)
5449 {
5450 const char *r_name;
5451 int name_match;
5452
5453 /* Avoid infinite recursions: skip this renaming if we are actually
5454 already traversing it.
5455
5456 Currently, symbol lookup in Ada don't use the namespace machinery from
5457 C++/Fortran support: skip namespace imports that use them. */
5458 if (renaming->searched
5459 || (renaming->import_src != NULL
5460 && renaming->import_src[0] != '\0')
5461 || (renaming->import_dest != NULL
5462 && renaming->import_dest[0] != '\0'))
5463 continue;
5464 renaming->searched = 1;
5465
5466 /* TODO: here, we perform another name-based symbol lookup, which can
5467 pull its own multiple overloads. In theory, we should be able to do
5468 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5469 not a simple name. But in order to do this, we would need to enhance
5470 the DWARF reader to associate a symbol to this renaming, instead of a
5471 name. So, for now, we do something simpler: re-use the C++/Fortran
5472 namespace machinery. */
5473 r_name = (renaming->alias != NULL
5474 ? renaming->alias
5475 : renaming->declaration);
5476 name_match
5477 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5478 if (name_match == 0)
5479 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5480 1, NULL);
5481 renaming->searched = 0;
5482 }
5483 return num_defns_collected (obstackp) != defns_mark;
5484}
5485
db230ce3
JB
5486/* Implements compare_names, but only applying the comparision using
5487 the given CASING. */
5b4ee69b 5488
40658b94 5489static int
db230ce3
JB
5490compare_names_with_case (const char *string1, const char *string2,
5491 enum case_sensitivity casing)
40658b94
PH
5492{
5493 while (*string1 != '\0' && *string2 != '\0')
5494 {
db230ce3
JB
5495 char c1, c2;
5496
40658b94
PH
5497 if (isspace (*string1) || isspace (*string2))
5498 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5499
5500 if (casing == case_sensitive_off)
5501 {
5502 c1 = tolower (*string1);
5503 c2 = tolower (*string2);
5504 }
5505 else
5506 {
5507 c1 = *string1;
5508 c2 = *string2;
5509 }
5510 if (c1 != c2)
40658b94 5511 break;
db230ce3 5512
40658b94
PH
5513 string1 += 1;
5514 string2 += 1;
5515 }
db230ce3 5516
40658b94
PH
5517 switch (*string1)
5518 {
5519 case '(':
5520 return strcmp_iw_ordered (string1, string2);
5521 case '_':
5522 if (*string2 == '\0')
5523 {
052874e8 5524 if (is_name_suffix (string1))
40658b94
PH
5525 return 0;
5526 else
1a1d5513 5527 return 1;
40658b94 5528 }
dbb8534f 5529 /* FALLTHROUGH */
40658b94
PH
5530 default:
5531 if (*string2 == '(')
5532 return strcmp_iw_ordered (string1, string2);
5533 else
db230ce3
JB
5534 {
5535 if (casing == case_sensitive_off)
5536 return tolower (*string1) - tolower (*string2);
5537 else
5538 return *string1 - *string2;
5539 }
40658b94 5540 }
ccefe4c4
TT
5541}
5542
db230ce3
JB
5543/* Compare STRING1 to STRING2, with results as for strcmp.
5544 Compatible with strcmp_iw_ordered in that...
5545
5546 strcmp_iw_ordered (STRING1, STRING2) <= 0
5547
5548 ... implies...
5549
5550 compare_names (STRING1, STRING2) <= 0
5551
5552 (they may differ as to what symbols compare equal). */
5553
5554static int
5555compare_names (const char *string1, const char *string2)
5556{
5557 int result;
5558
5559 /* Similar to what strcmp_iw_ordered does, we need to perform
5560 a case-insensitive comparison first, and only resort to
5561 a second, case-sensitive, comparison if the first one was
5562 not sufficient to differentiate the two strings. */
5563
5564 result = compare_names_with_case (string1, string2, case_sensitive_off);
5565 if (result == 0)
5566 result = compare_names_with_case (string1, string2, case_sensitive_on);
5567
5568 return result;
5569}
5570
339c13b6
JB
5571/* Add to OBSTACKP all non-local symbols whose name and domain match
5572 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5573 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5574
5575static void
40658b94
PH
5576add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5577 domain_enum domain, int global,
5578 int is_wild_match)
339c13b6
JB
5579{
5580 struct objfile *objfile;
22cee43f 5581 struct compunit_symtab *cu;
40658b94 5582 struct match_data data;
339c13b6 5583
6475f2fe 5584 memset (&data, 0, sizeof data);
ccefe4c4 5585 data.obstackp = obstackp;
339c13b6 5586
ccefe4c4 5587 ALL_OBJFILES (objfile)
40658b94
PH
5588 {
5589 data.objfile = objfile;
5590
5591 if (is_wild_match)
4186eb54
KS
5592 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5593 aux_add_nonlocal_symbols, &data,
5594 wild_match, NULL);
40658b94 5595 else
4186eb54
KS
5596 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5597 aux_add_nonlocal_symbols, &data,
5598 full_match, compare_names);
22cee43f
PMR
5599
5600 ALL_OBJFILE_COMPUNITS (objfile, cu)
5601 {
5602 const struct block *global_block
5603 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5604
5605 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5606 is_wild_match))
5607 data.found_sym = 1;
5608 }
40658b94
PH
5609 }
5610
5611 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5612 {
5613 ALL_OBJFILES (objfile)
5614 {
224c3ddb 5615 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5616 strcpy (name1, "_ada_");
5617 strcpy (name1 + sizeof ("_ada_") - 1, name);
5618 data.objfile = objfile;
ade7ed9e
DE
5619 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5620 global,
0963b4bd
MS
5621 aux_add_nonlocal_symbols,
5622 &data,
40658b94
PH
5623 full_match, compare_names);
5624 }
5625 }
339c13b6
JB
5626}
5627
22cee43f 5628/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5629 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5630 matches. Add these to OBSTACKP.
4eeaa230 5631
22cee43f
PMR
5632 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5634 is the one match returned (no other matches in that or
d9680e73 5635 enclosing blocks is returned). If there are any matches in or
22cee43f 5636 surrounding BLOCK, then these alone are returned.
4eeaa230 5637
9f88c959 5638 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5639 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5640
22cee43f
PMR
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5643
5644static void
5645ada_add_all_symbols (struct obstack *obstackp,
5646 const struct block *block,
5647 const char *name,
5648 domain_enum domain,
5649 int full_search,
5650 int *made_global_lookup_p)
14f9c5c9
AS
5651{
5652 struct symbol *sym;
22cee43f 5653 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5654
22cee43f
PMR
5655 if (made_global_lookup_p)
5656 *made_global_lookup_p = 0;
339c13b6
JB
5657
5658 /* Special case: If the user specifies a symbol name inside package
5659 Standard, do a non-wild matching of the symbol name without
5660 the "standard__" prefix. This was primarily introduced in order
5661 to allow the user to specifically access the standard exceptions
5662 using, for instance, Standard.Constraint_Error when Constraint_Error
5663 is ambiguous (due to the user defining its own Constraint_Error
5664 entity inside its program). */
22cee43f 5665 if (startswith (name, "standard__"))
4c4b4cd2 5666 {
4c4b4cd2 5667 block = NULL;
22cee43f 5668 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5669 }
5670
339c13b6 5671 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5672
4eeaa230
DE
5673 if (block != NULL)
5674 {
5675 if (full_search)
22cee43f 5676 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5677 else
5678 {
5679 /* In the !full_search case we're are being called by
5680 ada_iterate_over_symbols, and we don't want to search
5681 superblocks. */
22cee43f
PMR
5682 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5683 wild_match_p);
4eeaa230 5684 }
22cee43f
PMR
5685 if (num_defns_collected (obstackp) > 0 || !full_search)
5686 return;
4eeaa230 5687 }
d2e4a39e 5688
339c13b6
JB
5689 /* No non-global symbols found. Check our cache to see if we have
5690 already performed this search before. If we have, then return
5691 the same result. */
5692
22cee43f 5693 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5694 {
5695 if (sym != NULL)
22cee43f
PMR
5696 add_defn_to_vec (obstackp, sym, block);
5697 return;
4c4b4cd2 5698 }
14f9c5c9 5699
22cee43f
PMR
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 1;
b1eedac9 5702
339c13b6
JB
5703 /* Search symbols from all global blocks. */
5704
22cee43f 5705 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5706
4c4b4cd2 5707 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5708 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5709
22cee43f
PMR
5710 if (num_defns_collected (obstackp) == 0)
5711 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5712}
5713
5714/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5715 non-zero, enclosing scope and in global scopes, returning the number of
5716 matches.
5717 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5718 indicating the symbols found and the blocks and symbol tables (if
5719 any) in which they were found. This vector is transient---good only to
5720 the next call of ada_lookup_symbol_list.
5721
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5730
5731static int
5732ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5733 domain_enum domain,
5734 struct block_symbol **results,
5735 int full_search)
5736{
5737 const int wild_match_p = should_use_wild_match (name);
5738 int syms_from_global_search;
5739 int ndefns;
5740
5741 obstack_free (&symbol_list_obstack, NULL);
5742 obstack_init (&symbol_list_obstack);
5743 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5744 full_search, &syms_from_global_search);
14f9c5c9 5745
4c4b4cd2
PH
5746 ndefns = num_defns_collected (&symbol_list_obstack);
5747 *results = defns_collected (&symbol_list_obstack, 1);
5748
5749 ndefns = remove_extra_symbols (*results, ndefns);
5750
b1eedac9 5751 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5752 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5753
b1eedac9 5754 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5755 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5756
22cee43f 5757 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5758 return ndefns;
5759}
5760
4eeaa230
DE
5761/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5762 in global scopes, returning the number of matches, and setting *RESULTS
5763 to a vector of (SYM,BLOCK) tuples.
5764 See ada_lookup_symbol_list_worker for further details. */
5765
5766int
5767ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5768 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5769{
5770 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5771}
5772
5773/* Implementation of the la_iterate_over_symbols method. */
5774
5775static void
5776ada_iterate_over_symbols (const struct block *block,
5777 const char *name, domain_enum domain,
5778 symbol_found_callback_ftype *callback,
5779 void *data)
5780{
5781 int ndefs, i;
d12307c1 5782 struct block_symbol *results;
4eeaa230
DE
5783
5784 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5785 for (i = 0; i < ndefs; ++i)
5786 {
d12307c1 5787 if (! (*callback) (results[i].symbol, data))
4eeaa230
DE
5788 break;
5789 }
5790}
5791
f8eba3c6
TT
5792/* If NAME is the name of an entity, return a string that should
5793 be used to look that entity up in Ada units. This string should
5794 be deallocated after use using xfree.
5795
5796 NAME can have any form that the "break" or "print" commands might
5797 recognize. In other words, it does not have to be the "natural"
5798 name, or the "encoded" name. */
5799
5800char *
5801ada_name_for_lookup (const char *name)
5802{
5803 char *canon;
5804 int nlen = strlen (name);
5805
5806 if (name[0] == '<' && name[nlen - 1] == '>')
5807 {
224c3ddb 5808 canon = (char *) xmalloc (nlen - 1);
f8eba3c6
TT
5809 memcpy (canon, name + 1, nlen - 2);
5810 canon[nlen - 2] = '\0';
5811 }
5812 else
5813 canon = xstrdup (ada_encode (ada_fold_name (name)));
5814 return canon;
5815}
5816
4e5c77fe
JB
5817/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5818 to 1, but choosing the first symbol found if there are multiple
5819 choices.
5820
5e2336be
JB
5821 The result is stored in *INFO, which must be non-NULL.
5822 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5823
5824void
5825ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5826 domain_enum domain,
d12307c1 5827 struct block_symbol *info)
14f9c5c9 5828{
d12307c1 5829 struct block_symbol *candidates;
14f9c5c9
AS
5830 int n_candidates;
5831
5e2336be 5832 gdb_assert (info != NULL);
d12307c1 5833 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5834
fe978cb0 5835 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5836 if (n_candidates == 0)
4e5c77fe 5837 return;
4c4b4cd2 5838
5e2336be 5839 *info = candidates[0];
d12307c1 5840 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5841}
aeb5907d
JB
5842
5843/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5844 scope and in global scopes, or NULL if none. NAME is folded and
5845 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5846 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5847 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5848
d12307c1 5849struct block_symbol
aeb5907d 5850ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5851 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5852{
d12307c1 5853 struct block_symbol info;
4e5c77fe 5854
aeb5907d
JB
5855 if (is_a_field_of_this != NULL)
5856 *is_a_field_of_this = 0;
5857
4e5c77fe 5858 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5859 block0, domain, &info);
d12307c1 5860 return info;
4c4b4cd2 5861}
14f9c5c9 5862
d12307c1 5863static struct block_symbol
f606139a
DE
5864ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5865 const char *name,
76a01679 5866 const struct block *block,
21b556f4 5867 const domain_enum domain)
4c4b4cd2 5868{
d12307c1 5869 struct block_symbol sym;
04dccad0
JB
5870
5871 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5872 if (sym.symbol != NULL)
04dccad0
JB
5873 return sym;
5874
5875 /* If we haven't found a match at this point, try the primitive
5876 types. In other languages, this search is performed before
5877 searching for global symbols in order to short-circuit that
5878 global-symbol search if it happens that the name corresponds
5879 to a primitive type. But we cannot do the same in Ada, because
5880 it is perfectly legitimate for a program to declare a type which
5881 has the same name as a standard type. If looking up a type in
5882 that situation, we have traditionally ignored the primitive type
5883 in favor of user-defined types. This is why, unlike most other
5884 languages, we search the primitive types this late and only after
5885 having searched the global symbols without success. */
5886
5887 if (domain == VAR_DOMAIN)
5888 {
5889 struct gdbarch *gdbarch;
5890
5891 if (block == NULL)
5892 gdbarch = target_gdbarch ();
5893 else
5894 gdbarch = block_gdbarch (block);
d12307c1
PMR
5895 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5896 if (sym.symbol != NULL)
04dccad0
JB
5897 return sym;
5898 }
5899
d12307c1 5900 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5901}
5902
5903
4c4b4cd2
PH
5904/* True iff STR is a possible encoded suffix of a normal Ada name
5905 that is to be ignored for matching purposes. Suffixes of parallel
5906 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5907 are given by any of the regular expressions:
4c4b4cd2 5908
babe1480
JB
5909 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5910 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5911 TKB [subprogram suffix for task bodies]
babe1480 5912 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5913 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5914
5915 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5916 match is performed. This sequence is used to differentiate homonyms,
5917 is an optional part of a valid name suffix. */
4c4b4cd2 5918
14f9c5c9 5919static int
d2e4a39e 5920is_name_suffix (const char *str)
14f9c5c9
AS
5921{
5922 int k;
4c4b4cd2
PH
5923 const char *matching;
5924 const int len = strlen (str);
5925
babe1480
JB
5926 /* Skip optional leading __[0-9]+. */
5927
4c4b4cd2
PH
5928 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5929 {
babe1480
JB
5930 str += 3;
5931 while (isdigit (str[0]))
5932 str += 1;
4c4b4cd2 5933 }
babe1480
JB
5934
5935 /* [.$][0-9]+ */
4c4b4cd2 5936
babe1480 5937 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5938 {
babe1480 5939 matching = str + 1;
4c4b4cd2
PH
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
5946 /* ___[0-9]+ */
babe1480 5947
4c4b4cd2
PH
5948 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5949 {
5950 matching = str + 3;
5951 while (isdigit (matching[0]))
5952 matching += 1;
5953 if (matching[0] == '\0')
5954 return 1;
5955 }
5956
9ac7f98e
JB
5957 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5958
5959 if (strcmp (str, "TKB") == 0)
5960 return 1;
5961
529cad9c
PH
5962#if 0
5963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5964 with a N at the end. Unfortunately, the compiler uses the same
5965 convention for other internal types it creates. So treating
529cad9c 5966 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5967 some regressions. For instance, consider the case of an enumerated
5968 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5969 name ends with N.
5970 Having a single character like this as a suffix carrying some
0963b4bd 5971 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5972 to be something like "_N" instead. In the meantime, do not do
5973 the following check. */
5974 /* Protected Object Subprograms */
5975 if (len == 1 && str [0] == 'N')
5976 return 1;
5977#endif
5978
5979 /* _E[0-9]+[bs]$ */
5980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5981 {
5982 matching = str + 3;
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if ((matching[0] == 'b' || matching[0] == 's')
5986 && matching [1] == '\0')
5987 return 1;
5988 }
5989
4c4b4cd2
PH
5990 /* ??? We should not modify STR directly, as we are doing below. This
5991 is fine in this case, but may become problematic later if we find
5992 that this alternative did not work, and want to try matching
5993 another one from the begining of STR. Since we modified it, we
5994 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5995 if (str[0] == 'X')
5996 {
5997 str += 1;
d2e4a39e 5998 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5999 {
6000 if (str[0] != 'n' && str[0] != 'b')
6001 return 0;
6002 str += 1;
6003 }
14f9c5c9 6004 }
babe1480 6005
14f9c5c9
AS
6006 if (str[0] == '\000')
6007 return 1;
babe1480 6008
d2e4a39e 6009 if (str[0] == '_')
14f9c5c9
AS
6010 {
6011 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6012 return 0;
d2e4a39e 6013 if (str[2] == '_')
4c4b4cd2 6014 {
61ee279c
PH
6015 if (strcmp (str + 3, "JM") == 0)
6016 return 1;
6017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6018 the LJM suffix in favor of the JM one. But we will
6019 still accept LJM as a valid suffix for a reasonable
6020 amount of time, just to allow ourselves to debug programs
6021 compiled using an older version of GNAT. */
4c4b4cd2
PH
6022 if (strcmp (str + 3, "LJM") == 0)
6023 return 1;
6024 if (str[3] != 'X')
6025 return 0;
1265e4aa
JB
6026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6027 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6028 return 1;
6029 if (str[4] == 'R' && str[5] != 'T')
6030 return 1;
6031 return 0;
6032 }
6033 if (!isdigit (str[2]))
6034 return 0;
6035 for (k = 3; str[k] != '\0'; k += 1)
6036 if (!isdigit (str[k]) && str[k] != '_')
6037 return 0;
14f9c5c9
AS
6038 return 1;
6039 }
4c4b4cd2 6040 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6041 {
4c4b4cd2
PH
6042 for (k = 2; str[k] != '\0'; k += 1)
6043 if (!isdigit (str[k]) && str[k] != '_')
6044 return 0;
14f9c5c9
AS
6045 return 1;
6046 }
6047 return 0;
6048}
d2e4a39e 6049
aeb5907d
JB
6050/* Return non-zero if the string starting at NAME and ending before
6051 NAME_END contains no capital letters. */
529cad9c
PH
6052
6053static int
6054is_valid_name_for_wild_match (const char *name0)
6055{
6056 const char *decoded_name = ada_decode (name0);
6057 int i;
6058
5823c3ef
JB
6059 /* If the decoded name starts with an angle bracket, it means that
6060 NAME0 does not follow the GNAT encoding format. It should then
6061 not be allowed as a possible wild match. */
6062 if (decoded_name[0] == '<')
6063 return 0;
6064
529cad9c
PH
6065 for (i=0; decoded_name[i] != '\0'; i++)
6066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6067 return 0;
6068
6069 return 1;
6070}
6071
73589123
PH
6072/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6073 that could start a simple name. Assumes that *NAMEP points into
6074 the string beginning at NAME0. */
4c4b4cd2 6075
14f9c5c9 6076static int
73589123 6077advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6078{
73589123 6079 const char *name = *namep;
5b4ee69b 6080
5823c3ef 6081 while (1)
14f9c5c9 6082 {
aa27d0b3 6083 int t0, t1;
73589123
PH
6084
6085 t0 = *name;
6086 if (t0 == '_')
6087 {
6088 t1 = name[1];
6089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6090 {
6091 name += 1;
61012eef 6092 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6093 break;
6094 else
6095 name += 1;
6096 }
aa27d0b3
JB
6097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6098 || name[2] == target0))
73589123
PH
6099 {
6100 name += 2;
6101 break;
6102 }
6103 else
6104 return 0;
6105 }
6106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6107 name += 1;
6108 else
5823c3ef 6109 return 0;
73589123
PH
6110 }
6111
6112 *namep = name;
6113 return 1;
6114}
6115
6116/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6117 informational suffixes of NAME (i.e., for which is_name_suffix is
6118 true). Assumes that PATN is a lower-cased Ada simple name. */
6119
6120static int
6121wild_match (const char *name, const char *patn)
6122{
22e048c9 6123 const char *p;
73589123
PH
6124 const char *name0 = name;
6125
6126 while (1)
6127 {
6128 const char *match = name;
6129
6130 if (*name == *patn)
6131 {
6132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6133 if (*p != *name)
6134 break;
6135 if (*p == '\0' && is_name_suffix (name))
6136 return match != name0 && !is_valid_name_for_wild_match (name0);
6137
6138 if (name[-1] == '_')
6139 name -= 1;
6140 }
6141 if (!advance_wild_match (&name, name0, *patn))
6142 return 1;
96d887e8 6143 }
96d887e8
PH
6144}
6145
40658b94
PH
6146/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6147 informational suffix. */
6148
c4d840bd
PH
6149static int
6150full_match (const char *sym_name, const char *search_name)
6151{
40658b94 6152 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6153}
6154
6155
96d887e8
PH
6156/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6157 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6159 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6160
6161static void
6162ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6163 const struct block *block, const char *name,
96d887e8 6164 domain_enum domain, struct objfile *objfile,
2570f2b7 6165 int wild)
96d887e8 6166{
8157b174 6167 struct block_iterator iter;
96d887e8
PH
6168 int name_len = strlen (name);
6169 /* A matching argument symbol, if any. */
6170 struct symbol *arg_sym;
6171 /* Set true when we find a matching non-argument symbol. */
6172 int found_sym;
6173 struct symbol *sym;
6174
6175 arg_sym = NULL;
6176 found_sym = 0;
6177 if (wild)
6178 {
8157b174
TT
6179 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6180 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6181 {
4186eb54
KS
6182 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6183 SYMBOL_DOMAIN (sym), domain)
73589123 6184 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6185 {
2a2d4dc3
AS
6186 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6187 continue;
6188 else if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
76a01679
JB
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
2570f2b7 6195 block);
76a01679
JB
6196 }
6197 }
6198 }
96d887e8
PH
6199 }
6200 else
6201 {
8157b174
TT
6202 for (sym = block_iter_match_first (block, name, full_match, &iter);
6203 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6204 {
4186eb54
KS
6205 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6206 SYMBOL_DOMAIN (sym), domain))
76a01679 6207 {
c4d840bd
PH
6208 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6209 {
6210 if (SYMBOL_IS_ARGUMENT (sym))
6211 arg_sym = sym;
6212 else
2a2d4dc3 6213 {
c4d840bd
PH
6214 found_sym = 1;
6215 add_defn_to_vec (obstackp,
6216 fixup_symbol_section (sym, objfile),
6217 block);
2a2d4dc3 6218 }
c4d840bd 6219 }
76a01679
JB
6220 }
6221 }
96d887e8
PH
6222 }
6223
22cee43f
PMR
6224 /* Handle renamings. */
6225
6226 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6227 found_sym = 1;
6228
96d887e8
PH
6229 if (!found_sym && arg_sym != NULL)
6230 {
76a01679
JB
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6233 block);
96d887e8
PH
6234 }
6235
6236 if (!wild)
6237 {
6238 arg_sym = NULL;
6239 found_sym = 0;
6240
6241 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6242 {
4186eb54
KS
6243 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6244 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6245 {
6246 int cmp;
6247
6248 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6249 if (cmp == 0)
6250 {
61012eef 6251 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6252 if (cmp == 0)
6253 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6254 name_len);
6255 }
6256
6257 if (cmp == 0
6258 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6259 {
2a2d4dc3
AS
6260 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6261 {
6262 if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
6269 block);
6270 }
6271 }
76a01679
JB
6272 }
6273 }
76a01679 6274 }
96d887e8
PH
6275
6276 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6277 They aren't parameters, right? */
6278 if (!found_sym && arg_sym != NULL)
6279 {
6280 add_defn_to_vec (obstackp,
76a01679 6281 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6282 block);
96d887e8
PH
6283 }
6284 }
6285}
6286\f
41d27058
JB
6287
6288 /* Symbol Completion */
6289
6290/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6291 name in a form that's appropriate for the completion. The result
6292 does not need to be deallocated, but is only good until the next call.
6293
6294 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6295 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6296 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6297 in its encoded form. */
6298
6299static const char *
6300symbol_completion_match (const char *sym_name,
6301 const char *text, int text_len,
6ea35997 6302 int wild_match_p, int encoded_p)
41d27058 6303{
41d27058
JB
6304 const int verbatim_match = (text[0] == '<');
6305 int match = 0;
6306
6307 if (verbatim_match)
6308 {
6309 /* Strip the leading angle bracket. */
6310 text = text + 1;
6311 text_len--;
6312 }
6313
6314 /* First, test against the fully qualified name of the symbol. */
6315
6316 if (strncmp (sym_name, text, text_len) == 0)
6317 match = 1;
6318
6ea35997 6319 if (match && !encoded_p)
41d27058
JB
6320 {
6321 /* One needed check before declaring a positive match is to verify
6322 that iff we are doing a verbatim match, the decoded version
6323 of the symbol name starts with '<'. Otherwise, this symbol name
6324 is not a suitable completion. */
6325 const char *sym_name_copy = sym_name;
6326 int has_angle_bracket;
6327
6328 sym_name = ada_decode (sym_name);
6329 has_angle_bracket = (sym_name[0] == '<');
6330 match = (has_angle_bracket == verbatim_match);
6331 sym_name = sym_name_copy;
6332 }
6333
6334 if (match && !verbatim_match)
6335 {
6336 /* When doing non-verbatim match, another check that needs to
6337 be done is to verify that the potentially matching symbol name
6338 does not include capital letters, because the ada-mode would
6339 not be able to understand these symbol names without the
6340 angle bracket notation. */
6341 const char *tmp;
6342
6343 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6344 if (*tmp != '\0')
6345 match = 0;
6346 }
6347
6348 /* Second: Try wild matching... */
6349
e701b3c0 6350 if (!match && wild_match_p)
41d27058
JB
6351 {
6352 /* Since we are doing wild matching, this means that TEXT
6353 may represent an unqualified symbol name. We therefore must
6354 also compare TEXT against the unqualified name of the symbol. */
6355 sym_name = ada_unqualified_name (ada_decode (sym_name));
6356
6357 if (strncmp (sym_name, text, text_len) == 0)
6358 match = 1;
6359 }
6360
6361 /* Finally: If we found a mach, prepare the result to return. */
6362
6363 if (!match)
6364 return NULL;
6365
6366 if (verbatim_match)
6367 sym_name = add_angle_brackets (sym_name);
6368
6ea35997 6369 if (!encoded_p)
41d27058
JB
6370 sym_name = ada_decode (sym_name);
6371
6372 return sym_name;
6373}
6374
6375/* A companion function to ada_make_symbol_completion_list().
6376 Check if SYM_NAME represents a symbol which name would be suitable
6377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6378 it is appended at the end of the given string vector SV.
6379
6380 ORIG_TEXT is the string original string from the user command
6381 that needs to be completed. WORD is the entire command on which
6382 completion should be performed. These two parameters are used to
6383 determine which part of the symbol name should be added to the
6384 completion vector.
c0af1706 6385 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6386 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6387 encoded formed (in which case the completion should also be
6388 encoded). */
6389
6390static void
d6565258 6391symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6392 const char *sym_name,
6393 const char *text, int text_len,
6394 const char *orig_text, const char *word,
cb8e9b97 6395 int wild_match_p, int encoded_p)
41d27058
JB
6396{
6397 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6398 wild_match_p, encoded_p);
41d27058
JB
6399 char *completion;
6400
6401 if (match == NULL)
6402 return;
6403
6404 /* We found a match, so add the appropriate completion to the given
6405 string vector. */
6406
6407 if (word == orig_text)
6408 {
224c3ddb 6409 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6410 strcpy (completion, match);
6411 }
6412 else if (word > orig_text)
6413 {
6414 /* Return some portion of sym_name. */
224c3ddb 6415 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6416 strcpy (completion, match + (word - orig_text));
6417 }
6418 else
6419 {
6420 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6421 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6422 strncpy (completion, word, orig_text - word);
6423 completion[orig_text - word] = '\0';
6424 strcat (completion, match);
6425 }
6426
d6565258 6427 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6428}
6429
ccefe4c4 6430/* An object of this type is passed as the user_data argument to the
bb4142cf 6431 expand_symtabs_matching method. */
ccefe4c4
TT
6432struct add_partial_datum
6433{
6434 VEC(char_ptr) **completions;
6f937416 6435 const char *text;
ccefe4c4 6436 int text_len;
6f937416
PA
6437 const char *text0;
6438 const char *word;
ccefe4c4
TT
6439 int wild_match;
6440 int encoded;
6441};
6442
bb4142cf
DE
6443/* A callback for expand_symtabs_matching. */
6444
7b08b9eb 6445static int
bb4142cf 6446ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4 6447{
9a3c8263 6448 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
7b08b9eb
JK
6449
6450 return symbol_completion_match (name, data->text, data->text_len,
6451 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6452}
6453
49c4e619
TT
6454/* Return a list of possible symbol names completing TEXT0. WORD is
6455 the entire command on which completion is made. */
41d27058 6456
49c4e619 6457static VEC (char_ptr) *
6f937416
PA
6458ada_make_symbol_completion_list (const char *text0, const char *word,
6459 enum type_code code)
41d27058
JB
6460{
6461 char *text;
6462 int text_len;
b1ed564a
JB
6463 int wild_match_p;
6464 int encoded_p;
2ba95b9b 6465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058 6466 struct symbol *sym;
43f3e411 6467 struct compunit_symtab *s;
41d27058
JB
6468 struct minimal_symbol *msymbol;
6469 struct objfile *objfile;
3977b71f 6470 const struct block *b, *surrounding_static_block = 0;
41d27058 6471 int i;
8157b174 6472 struct block_iterator iter;
b8fea896 6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6474
2f68a895
TT
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
41d27058
JB
6477 if (text0[0] == '<')
6478 {
6479 text = xstrdup (text0);
6480 make_cleanup (xfree, text);
6481 text_len = strlen (text);
b1ed564a
JB
6482 wild_match_p = 0;
6483 encoded_p = 1;
41d27058
JB
6484 }
6485 else
6486 {
6487 text = xstrdup (ada_encode (text0));
6488 make_cleanup (xfree, text);
6489 text_len = strlen (text);
6490 for (i = 0; i < text_len; i++)
6491 text[i] = tolower (text[i]);
6492
b1ed564a 6493 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6494 /* If the name contains a ".", then the user is entering a fully
6495 qualified entity name, and the match must not be done in wild
6496 mode. Similarly, if the user wants to complete what looks like
6497 an encoded name, the match must not be done in wild mode. */
b1ed564a 6498 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6499 }
6500
6501 /* First, look at the partial symtab symbols. */
41d27058 6502 {
ccefe4c4
TT
6503 struct add_partial_datum data;
6504
6505 data.completions = &completions;
6506 data.text = text;
6507 data.text_len = text_len;
6508 data.text0 = text0;
6509 data.word = word;
b1ed564a
JB
6510 data.wild_match = wild_match_p;
6511 data.encoded = encoded_p;
276d885b
GB
6512 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6513 ALL_DOMAIN, &data);
41d27058
JB
6514 }
6515
6516 /* At this point scan through the misc symbol vectors and add each
6517 symbol you find to the list. Eventually we want to ignore
6518 anything that isn't a text symbol (everything else will be
6519 handled by the psymtab code above). */
6520
6521 ALL_MSYMBOLS (objfile, msymbol)
6522 {
6523 QUIT;
efd66ac6 6524 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6525 text, text_len, text0, word, wild_match_p,
6526 encoded_p);
41d27058
JB
6527 }
6528
6529 /* Search upwards from currently selected frame (so that we can
6530 complete on local vars. */
6531
6532 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6533 {
6534 if (!BLOCK_SUPERBLOCK (b))
6535 surrounding_static_block = b; /* For elmin of dups */
6536
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
d6565258 6539 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6540 text, text_len, text0, word,
b1ed564a 6541 wild_match_p, encoded_p);
41d27058
JB
6542 }
6543 }
6544
6545 /* Go through the symtabs and check the externs and statics for
43f3e411 6546 symbols which match. */
41d27058 6547
43f3e411 6548 ALL_COMPUNITS (objfile, s)
41d27058
JB
6549 {
6550 QUIT;
43f3e411 6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6552 ALL_BLOCK_SYMBOLS (b, iter, sym)
6553 {
d6565258 6554 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6555 text, text_len, text0, word,
b1ed564a 6556 wild_match_p, encoded_p);
41d27058
JB
6557 }
6558 }
6559
43f3e411 6560 ALL_COMPUNITS (objfile, s)
41d27058
JB
6561 {
6562 QUIT;
43f3e411 6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
d6565258 6569 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6570 text, text_len, text0, word,
b1ed564a 6571 wild_match_p, encoded_p);
41d27058
JB
6572 }
6573 }
6574
b8fea896 6575 do_cleanups (old_chain);
49c4e619 6576 return completions;
41d27058
JB
6577}
6578
963a6417 6579 /* Field Access */
96d887e8 6580
73fb9985
JB
6581/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6582 for tagged types. */
6583
6584static int
6585ada_is_dispatch_table_ptr_type (struct type *type)
6586{
0d5cff50 6587 const char *name;
73fb9985
JB
6588
6589 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6590 return 0;
6591
6592 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6593 if (name == NULL)
6594 return 0;
6595
6596 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6597}
6598
ac4a2da4
JG
6599/* Return non-zero if TYPE is an interface tag. */
6600
6601static int
6602ada_is_interface_tag (struct type *type)
6603{
6604 const char *name = TYPE_NAME (type);
6605
6606 if (name == NULL)
6607 return 0;
6608
6609 return (strcmp (name, "ada__tags__interface_tag") == 0);
6610}
6611
963a6417
PH
6612/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6613 to be invisible to users. */
96d887e8 6614
963a6417
PH
6615int
6616ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6617{
963a6417
PH
6618 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6619 return 1;
ffde82bf 6620
73fb9985
JB
6621 /* Check the name of that field. */
6622 {
6623 const char *name = TYPE_FIELD_NAME (type, field_num);
6624
6625 /* Anonymous field names should not be printed.
6626 brobecker/2007-02-20: I don't think this can actually happen
6627 but we don't want to print the value of annonymous fields anyway. */
6628 if (name == NULL)
6629 return 1;
6630
ffde82bf
JB
6631 /* Normally, fields whose name start with an underscore ("_")
6632 are fields that have been internally generated by the compiler,
6633 and thus should not be printed. The "_parent" field is special,
6634 however: This is a field internally generated by the compiler
6635 for tagged types, and it contains the components inherited from
6636 the parent type. This field should not be printed as is, but
6637 should not be ignored either. */
61012eef 6638 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6639 return 1;
6640 }
6641
ac4a2da4
JG
6642 /* If this is the dispatch table of a tagged type or an interface tag,
6643 then ignore. */
73fb9985 6644 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6645 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6646 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6647 return 1;
6648
6649 /* Not a special field, so it should not be ignored. */
6650 return 0;
963a6417 6651}
96d887e8 6652
963a6417 6653/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6654 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6655
963a6417
PH
6656int
6657ada_is_tagged_type (struct type *type, int refok)
6658{
6659 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6660}
96d887e8 6661
963a6417 6662/* True iff TYPE represents the type of X'Tag */
96d887e8 6663
963a6417
PH
6664int
6665ada_is_tag_type (struct type *type)
6666{
460efde1
JB
6667 type = ada_check_typedef (type);
6668
963a6417
PH
6669 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6670 return 0;
6671 else
96d887e8 6672 {
963a6417 6673 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6674
963a6417
PH
6675 return (name != NULL
6676 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6677 }
96d887e8
PH
6678}
6679
963a6417 6680/* The type of the tag on VAL. */
76a01679 6681
963a6417
PH
6682struct type *
6683ada_tag_type (struct value *val)
96d887e8 6684{
df407dfe 6685 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6686}
96d887e8 6687
b50d69b5
JG
6688/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6689 retired at Ada 05). */
6690
6691static int
6692is_ada95_tag (struct value *tag)
6693{
6694 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6695}
6696
963a6417 6697/* The value of the tag on VAL. */
96d887e8 6698
963a6417
PH
6699struct value *
6700ada_value_tag (struct value *val)
6701{
03ee6b2e 6702 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6703}
6704
963a6417
PH
6705/* The value of the tag on the object of type TYPE whose contents are
6706 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6707 ADDRESS. */
96d887e8 6708
963a6417 6709static struct value *
10a2c479 6710value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6711 const gdb_byte *valaddr,
963a6417 6712 CORE_ADDR address)
96d887e8 6713{
b5385fc0 6714 int tag_byte_offset;
963a6417 6715 struct type *tag_type;
5b4ee69b 6716
963a6417 6717 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6718 NULL, NULL, NULL))
96d887e8 6719 {
fc1a4b47 6720 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6721 ? NULL
6722 : valaddr + tag_byte_offset);
963a6417 6723 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6724
963a6417 6725 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6726 }
963a6417
PH
6727 return NULL;
6728}
96d887e8 6729
963a6417
PH
6730static struct type *
6731type_from_tag (struct value *tag)
6732{
6733 const char *type_name = ada_tag_name (tag);
5b4ee69b 6734
963a6417
PH
6735 if (type_name != NULL)
6736 return ada_find_any_type (ada_encode (type_name));
6737 return NULL;
6738}
96d887e8 6739
b50d69b5
JG
6740/* Given a value OBJ of a tagged type, return a value of this
6741 type at the base address of the object. The base address, as
6742 defined in Ada.Tags, it is the address of the primary tag of
6743 the object, and therefore where the field values of its full
6744 view can be fetched. */
6745
6746struct value *
6747ada_tag_value_at_base_address (struct value *obj)
6748{
b50d69b5
JG
6749 struct value *val;
6750 LONGEST offset_to_top = 0;
6751 struct type *ptr_type, *obj_type;
6752 struct value *tag;
6753 CORE_ADDR base_address;
6754
6755 obj_type = value_type (obj);
6756
6757 /* It is the responsability of the caller to deref pointers. */
6758
6759 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6760 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6761 return obj;
6762
6763 tag = ada_value_tag (obj);
6764 if (!tag)
6765 return obj;
6766
6767 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6768
6769 if (is_ada95_tag (tag))
6770 return obj;
6771
6772 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6773 ptr_type = lookup_pointer_type (ptr_type);
6774 val = value_cast (ptr_type, tag);
6775 if (!val)
6776 return obj;
6777
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6782
492d29ea 6783 TRY
b50d69b5
JG
6784 {
6785 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6786 }
6787
492d29ea
PA
6788 CATCH (e, RETURN_MASK_ERROR)
6789 {
6790 return obj;
6791 }
6792 END_CATCH
b50d69b5
JG
6793
6794 /* If offset is null, nothing to do. */
6795
6796 if (offset_to_top == 0)
6797 return obj;
6798
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6801 now. */
6802
6803 if (offset_to_top == -1)
6804 return obj;
6805
6806 base_address = value_address (obj) - offset_to_top;
6807 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6808
6809 /* Make sure that we have a proper tag at the new address.
6810 Otherwise, offset_to_top is bogus (which can happen when
6811 the object is not initialized yet). */
6812
6813 if (!tag)
6814 return obj;
6815
6816 obj_type = type_from_tag (tag);
6817
6818 if (!obj_type)
6819 return obj;
6820
6821 return value_from_contents_and_address (obj_type, NULL, base_address);
6822}
6823
1b611343
JB
6824/* Return the "ada__tags__type_specific_data" type. */
6825
6826static struct type *
6827ada_get_tsd_type (struct inferior *inf)
963a6417 6828{
1b611343 6829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6830
1b611343
JB
6831 if (data->tsd_type == 0)
6832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6833 return data->tsd_type;
6834}
529cad9c 6835
1b611343
JB
6836/* Return the TSD (type-specific data) associated to the given TAG.
6837 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6838
1b611343 6839 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6840
1b611343
JB
6841static struct value *
6842ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6843{
4c4b4cd2 6844 struct value *val;
1b611343 6845 struct type *type;
5b4ee69b 6846
1b611343
JB
6847 /* First option: The TSD is simply stored as a field of our TAG.
6848 Only older versions of GNAT would use this format, but we have
6849 to test it first, because there are no visible markers for
6850 the current approach except the absence of that field. */
529cad9c 6851
1b611343
JB
6852 val = ada_value_struct_elt (tag, "tsd", 1);
6853 if (val)
6854 return val;
e802dbe0 6855
1b611343
JB
6856 /* Try the second representation for the dispatch table (in which
6857 there is no explicit 'tsd' field in the referent of the tag pointer,
6858 and instead the tsd pointer is stored just before the dispatch
6859 table. */
e802dbe0 6860
1b611343
JB
6861 type = ada_get_tsd_type (current_inferior());
6862 if (type == NULL)
6863 return NULL;
6864 type = lookup_pointer_type (lookup_pointer_type (type));
6865 val = value_cast (type, tag);
6866 if (val == NULL)
6867 return NULL;
6868 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6869}
6870
1b611343
JB
6871/* Given the TSD of a tag (type-specific data), return a string
6872 containing the name of the associated type.
6873
6874 The returned value is good until the next call. May return NULL
6875 if we are unable to determine the tag name. */
6876
6877static char *
6878ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6879{
529cad9c
PH
6880 static char name[1024];
6881 char *p;
1b611343 6882 struct value *val;
529cad9c 6883
1b611343 6884 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6885 if (val == NULL)
1b611343 6886 return NULL;
4c4b4cd2
PH
6887 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6888 for (p = name; *p != '\0'; p += 1)
6889 if (isalpha (*p))
6890 *p = tolower (*p);
1b611343 6891 return name;
4c4b4cd2
PH
6892}
6893
6894/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6895 a C string.
6896
6897 Return NULL if the TAG is not an Ada tag, or if we were unable to
6898 determine the name of that tag. The result is good until the next
6899 call. */
4c4b4cd2
PH
6900
6901const char *
6902ada_tag_name (struct value *tag)
6903{
1b611343 6904 char *name = NULL;
5b4ee69b 6905
df407dfe 6906 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6907 return NULL;
1b611343
JB
6908
6909 /* It is perfectly possible that an exception be raised while trying
6910 to determine the TAG's name, even under normal circumstances:
6911 The associated variable may be uninitialized or corrupted, for
6912 instance. We do not let any exception propagate past this point.
6913 instead we return NULL.
6914
6915 We also do not print the error message either (which often is very
6916 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6917 the caller print a more meaningful message if necessary. */
492d29ea 6918 TRY
1b611343
JB
6919 {
6920 struct value *tsd = ada_get_tsd_from_tag (tag);
6921
6922 if (tsd != NULL)
6923 name = ada_tag_name_from_tsd (tsd);
6924 }
492d29ea
PA
6925 CATCH (e, RETURN_MASK_ERROR)
6926 {
6927 }
6928 END_CATCH
1b611343
JB
6929
6930 return name;
4c4b4cd2
PH
6931}
6932
6933/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6934
d2e4a39e 6935struct type *
ebf56fd3 6936ada_parent_type (struct type *type)
14f9c5c9
AS
6937{
6938 int i;
6939
61ee279c 6940 type = ada_check_typedef (type);
14f9c5c9
AS
6941
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return NULL;
6944
6945 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6946 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6947 {
6948 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6949
6950 /* If the _parent field is a pointer, then dereference it. */
6951 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6952 parent_type = TYPE_TARGET_TYPE (parent_type);
6953 /* If there is a parallel XVS type, get the actual base type. */
6954 parent_type = ada_get_base_type (parent_type);
6955
6956 return ada_check_typedef (parent_type);
6957 }
14f9c5c9
AS
6958
6959 return NULL;
6960}
6961
4c4b4cd2
PH
6962/* True iff field number FIELD_NUM of structure type TYPE contains the
6963 parent-type (inherited) fields of a derived type. Assumes TYPE is
6964 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6965
6966int
ebf56fd3 6967ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6968{
61ee279c 6969 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6970
4c4b4cd2 6971 return (name != NULL
61012eef
GB
6972 && (startswith (name, "PARENT")
6973 || startswith (name, "_parent")));
14f9c5c9
AS
6974}
6975
4c4b4cd2 6976/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6977 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6978 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6979 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6980 structures. */
14f9c5c9
AS
6981
6982int
ebf56fd3 6983ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6984{
d2e4a39e 6985 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6986
dddc0e16
JB
6987 if (name != NULL && strcmp (name, "RETVAL") == 0)
6988 {
6989 /* This happens in functions with "out" or "in out" parameters
6990 which are passed by copy. For such functions, GNAT describes
6991 the function's return type as being a struct where the return
6992 value is in a field called RETVAL, and where the other "out"
6993 or "in out" parameters are fields of that struct. This is not
6994 a wrapper. */
6995 return 0;
6996 }
6997
d2e4a39e 6998 return (name != NULL
61012eef 6999 && (startswith (name, "PARENT")
4c4b4cd2 7000 || strcmp (name, "REP") == 0
61012eef 7001 || startswith (name, "_parent")
4c4b4cd2 7002 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7003}
7004
4c4b4cd2
PH
7005/* True iff field number FIELD_NUM of structure or union type TYPE
7006 is a variant wrapper. Assumes TYPE is a structure type with at least
7007 FIELD_NUM+1 fields. */
14f9c5c9
AS
7008
7009int
ebf56fd3 7010ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7011{
d2e4a39e 7012 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7013
14f9c5c9 7014 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7015 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7016 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7017 == TYPE_CODE_UNION)));
14f9c5c9
AS
7018}
7019
7020/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7021 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7022 returns the type of the controlling discriminant for the variant.
7023 May return NULL if the type could not be found. */
14f9c5c9 7024
d2e4a39e 7025struct type *
ebf56fd3 7026ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7027{
d2e4a39e 7028 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7029
7c964f07 7030 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7031}
7032
4c4b4cd2 7033/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7034 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7035 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7036
7037int
ebf56fd3 7038ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7039{
d2e4a39e 7040 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7041
14f9c5c9
AS
7042 return (name != NULL && name[0] == 'O');
7043}
7044
7045/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7046 returns the name of the discriminant controlling the variant.
7047 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7048
d2e4a39e 7049char *
ebf56fd3 7050ada_variant_discrim_name (struct type *type0)
14f9c5c9 7051{
d2e4a39e 7052 static char *result = NULL;
14f9c5c9 7053 static size_t result_len = 0;
d2e4a39e
AS
7054 struct type *type;
7055 const char *name;
7056 const char *discrim_end;
7057 const char *discrim_start;
14f9c5c9
AS
7058
7059 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7060 type = TYPE_TARGET_TYPE (type0);
7061 else
7062 type = type0;
7063
7064 name = ada_type_name (type);
7065
7066 if (name == NULL || name[0] == '\000')
7067 return "";
7068
7069 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7070 discrim_end -= 1)
7071 {
61012eef 7072 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7073 break;
14f9c5c9
AS
7074 }
7075 if (discrim_end == name)
7076 return "";
7077
d2e4a39e 7078 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7079 discrim_start -= 1)
7080 {
d2e4a39e 7081 if (discrim_start == name + 1)
4c4b4cd2 7082 return "";
76a01679 7083 if ((discrim_start > name + 3
61012eef 7084 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7085 || discrim_start[-1] == '.')
7086 break;
14f9c5c9
AS
7087 }
7088
7089 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7090 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7091 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7092 return result;
7093}
7094
4c4b4cd2
PH
7095/* Scan STR for a subtype-encoded number, beginning at position K.
7096 Put the position of the character just past the number scanned in
7097 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7098 Return 1 if there was a valid number at the given position, and 0
7099 otherwise. A "subtype-encoded" number consists of the absolute value
7100 in decimal, followed by the letter 'm' to indicate a negative number.
7101 Assumes 0m does not occur. */
14f9c5c9
AS
7102
7103int
d2e4a39e 7104ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7105{
7106 ULONGEST RU;
7107
d2e4a39e 7108 if (!isdigit (str[k]))
14f9c5c9
AS
7109 return 0;
7110
4c4b4cd2 7111 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7112 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7113 LONGEST. */
14f9c5c9
AS
7114 RU = 0;
7115 while (isdigit (str[k]))
7116 {
d2e4a39e 7117 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7118 k += 1;
7119 }
7120
d2e4a39e 7121 if (str[k] == 'm')
14f9c5c9
AS
7122 {
7123 if (R != NULL)
4c4b4cd2 7124 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7125 k += 1;
7126 }
7127 else if (R != NULL)
7128 *R = (LONGEST) RU;
7129
4c4b4cd2 7130 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7131 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7132 number representable as a LONGEST (although either would probably work
7133 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7134 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7135
7136 if (new_k != NULL)
7137 *new_k = k;
7138 return 1;
7139}
7140
4c4b4cd2
PH
7141/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7142 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7143 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7144
d2e4a39e 7145int
ebf56fd3 7146ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7147{
d2e4a39e 7148 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7149 int p;
7150
7151 p = 0;
7152 while (1)
7153 {
d2e4a39e 7154 switch (name[p])
4c4b4cd2
PH
7155 {
7156 case '\0':
7157 return 0;
7158 case 'S':
7159 {
7160 LONGEST W;
5b4ee69b 7161
4c4b4cd2
PH
7162 if (!ada_scan_number (name, p + 1, &W, &p))
7163 return 0;
7164 if (val == W)
7165 return 1;
7166 break;
7167 }
7168 case 'R':
7169 {
7170 LONGEST L, U;
5b4ee69b 7171
4c4b4cd2
PH
7172 if (!ada_scan_number (name, p + 1, &L, &p)
7173 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7174 return 0;
7175 if (val >= L && val <= U)
7176 return 1;
7177 break;
7178 }
7179 case 'O':
7180 return 1;
7181 default:
7182 return 0;
7183 }
7184 }
7185}
7186
0963b4bd 7187/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7188
7189/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7190 ARG_TYPE, extract and return the value of one of its (non-static)
7191 fields. FIELDNO says which field. Differs from value_primitive_field
7192 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7193
4c4b4cd2 7194static struct value *
d2e4a39e 7195ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7196 struct type *arg_type)
14f9c5c9 7197{
14f9c5c9
AS
7198 struct type *type;
7199
61ee279c 7200 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7201 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7202
4c4b4cd2 7203 /* Handle packed fields. */
14f9c5c9
AS
7204
7205 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7206 {
7207 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7208 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7209
0fd88904 7210 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7211 offset + bit_pos / 8,
7212 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7213 }
7214 else
7215 return value_primitive_field (arg1, offset, fieldno, arg_type);
7216}
7217
52ce6436
PH
7218/* Find field with name NAME in object of type TYPE. If found,
7219 set the following for each argument that is non-null:
7220 - *FIELD_TYPE_P to the field's type;
7221 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7222 an object of that type;
7223 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7224 - *BIT_SIZE_P to its size in bits if the field is packed, and
7225 0 otherwise;
7226 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7227 fields up to but not including the desired field, or by the total
7228 number of fields if not found. A NULL value of NAME never
7229 matches; the function just counts visible fields in this case.
7230
0963b4bd 7231 Returns 1 if found, 0 otherwise. */
52ce6436 7232
4c4b4cd2 7233static int
0d5cff50 7234find_struct_field (const char *name, struct type *type, int offset,
76a01679 7235 struct type **field_type_p,
52ce6436
PH
7236 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7237 int *index_p)
4c4b4cd2
PH
7238{
7239 int i;
7240
61ee279c 7241 type = ada_check_typedef (type);
76a01679 7242
52ce6436
PH
7243 if (field_type_p != NULL)
7244 *field_type_p = NULL;
7245 if (byte_offset_p != NULL)
d5d6fca5 7246 *byte_offset_p = 0;
52ce6436
PH
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = 0;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = 0;
7251
7252 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7253 {
7254 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7255 int fld_offset = offset + bit_pos / 8;
0d5cff50 7256 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7257
4c4b4cd2
PH
7258 if (t_field_name == NULL)
7259 continue;
7260
52ce6436 7261 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7262 {
7263 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7264
52ce6436
PH
7265 if (field_type_p != NULL)
7266 *field_type_p = TYPE_FIELD_TYPE (type, i);
7267 if (byte_offset_p != NULL)
7268 *byte_offset_p = fld_offset;
7269 if (bit_offset_p != NULL)
7270 *bit_offset_p = bit_pos % 8;
7271 if (bit_size_p != NULL)
7272 *bit_size_p = bit_size;
76a01679
JB
7273 return 1;
7274 }
4c4b4cd2
PH
7275 else if (ada_is_wrapper_field (type, i))
7276 {
52ce6436
PH
7277 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7278 field_type_p, byte_offset_p, bit_offset_p,
7279 bit_size_p, index_p))
76a01679
JB
7280 return 1;
7281 }
4c4b4cd2
PH
7282 else if (ada_is_variant_part (type, i))
7283 {
52ce6436
PH
7284 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7285 fixed type?? */
4c4b4cd2 7286 int j;
52ce6436
PH
7287 struct type *field_type
7288 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7289
52ce6436 7290 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7291 {
76a01679
JB
7292 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7293 fld_offset
7294 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7295 field_type_p, byte_offset_p,
52ce6436 7296 bit_offset_p, bit_size_p, index_p))
76a01679 7297 return 1;
4c4b4cd2
PH
7298 }
7299 }
52ce6436
PH
7300 else if (index_p != NULL)
7301 *index_p += 1;
4c4b4cd2
PH
7302 }
7303 return 0;
7304}
7305
0963b4bd 7306/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7307
52ce6436
PH
7308static int
7309num_visible_fields (struct type *type)
7310{
7311 int n;
5b4ee69b 7312
52ce6436
PH
7313 n = 0;
7314 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7315 return n;
7316}
14f9c5c9 7317
4c4b4cd2 7318/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7319 and search in it assuming it has (class) type TYPE.
7320 If found, return value, else return NULL.
7321
4c4b4cd2 7322 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7323
4c4b4cd2 7324static struct value *
108d56a4 7325ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7326 struct type *type)
14f9c5c9
AS
7327{
7328 int i;
14f9c5c9 7329
5b4ee69b 7330 type = ada_check_typedef (type);
52ce6436 7331 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7332 {
0d5cff50 7333 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7334
7335 if (t_field_name == NULL)
4c4b4cd2 7336 continue;
14f9c5c9
AS
7337
7338 else if (field_name_match (t_field_name, name))
4c4b4cd2 7339 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7340
7341 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7342 {
0963b4bd 7343 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7344 ada_search_struct_field (name, arg,
7345 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7346 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7347
4c4b4cd2
PH
7348 if (v != NULL)
7349 return v;
7350 }
14f9c5c9
AS
7351
7352 else if (ada_is_variant_part (type, i))
4c4b4cd2 7353 {
0963b4bd 7354 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7355 int j;
5b4ee69b
MS
7356 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7357 i));
4c4b4cd2
PH
7358 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7359
52ce6436 7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7361 {
0963b4bd
MS
7362 struct value *v = ada_search_struct_field /* Force line
7363 break. */
06d5cf63
JB
7364 (name, arg,
7365 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7366 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7367
4c4b4cd2
PH
7368 if (v != NULL)
7369 return v;
7370 }
7371 }
14f9c5c9
AS
7372 }
7373 return NULL;
7374}
d2e4a39e 7375
52ce6436
PH
7376static struct value *ada_index_struct_field_1 (int *, struct value *,
7377 int, struct type *);
7378
7379
7380/* Return field #INDEX in ARG, where the index is that returned by
7381 * find_struct_field through its INDEX_P argument. Adjust the address
7382 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7383 * If found, return value, else return NULL. */
52ce6436
PH
7384
7385static struct value *
7386ada_index_struct_field (int index, struct value *arg, int offset,
7387 struct type *type)
7388{
7389 return ada_index_struct_field_1 (&index, arg, offset, type);
7390}
7391
7392
7393/* Auxiliary function for ada_index_struct_field. Like
7394 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7395 * *INDEX_P. */
52ce6436
PH
7396
7397static struct value *
7398ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7399 struct type *type)
7400{
7401 int i;
7402 type = ada_check_typedef (type);
7403
7404 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7405 {
7406 if (TYPE_FIELD_NAME (type, i) == NULL)
7407 continue;
7408 else if (ada_is_wrapper_field (type, i))
7409 {
0963b4bd 7410 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7411 ada_index_struct_field_1 (index_p, arg,
7412 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7413 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7414
52ce6436
PH
7415 if (v != NULL)
7416 return v;
7417 }
7418
7419 else if (ada_is_variant_part (type, i))
7420 {
7421 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7422 find_struct_field. */
52ce6436
PH
7423 error (_("Cannot assign this kind of variant record"));
7424 }
7425 else if (*index_p == 0)
7426 return ada_value_primitive_field (arg, offset, i, type);
7427 else
7428 *index_p -= 1;
7429 }
7430 return NULL;
7431}
7432
4c4b4cd2
PH
7433/* Given ARG, a value of type (pointer or reference to a)*
7434 structure/union, extract the component named NAME from the ultimate
7435 target structure/union and return it as a value with its
f5938064 7436 appropriate type.
14f9c5c9 7437
4c4b4cd2
PH
7438 The routine searches for NAME among all members of the structure itself
7439 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7440 (e.g., '_parent').
7441
03ee6b2e
PH
7442 If NO_ERR, then simply return NULL in case of error, rather than
7443 calling error. */
14f9c5c9 7444
d2e4a39e 7445struct value *
03ee6b2e 7446ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7447{
4c4b4cd2 7448 struct type *t, *t1;
d2e4a39e 7449 struct value *v;
14f9c5c9 7450
4c4b4cd2 7451 v = NULL;
df407dfe 7452 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7453 if (TYPE_CODE (t) == TYPE_CODE_REF)
7454 {
7455 t1 = TYPE_TARGET_TYPE (t);
7456 if (t1 == NULL)
03ee6b2e 7457 goto BadValue;
61ee279c 7458 t1 = ada_check_typedef (t1);
4c4b4cd2 7459 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7460 {
994b9211 7461 arg = coerce_ref (arg);
76a01679
JB
7462 t = t1;
7463 }
4c4b4cd2 7464 }
14f9c5c9 7465
4c4b4cd2
PH
7466 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7467 {
7468 t1 = TYPE_TARGET_TYPE (t);
7469 if (t1 == NULL)
03ee6b2e 7470 goto BadValue;
61ee279c 7471 t1 = ada_check_typedef (t1);
4c4b4cd2 7472 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7473 {
7474 arg = value_ind (arg);
7475 t = t1;
7476 }
4c4b4cd2 7477 else
76a01679 7478 break;
4c4b4cd2 7479 }
14f9c5c9 7480
4c4b4cd2 7481 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7482 goto BadValue;
14f9c5c9 7483
4c4b4cd2
PH
7484 if (t1 == t)
7485 v = ada_search_struct_field (name, arg, 0, t);
7486 else
7487 {
7488 int bit_offset, bit_size, byte_offset;
7489 struct type *field_type;
7490 CORE_ADDR address;
7491
76a01679 7492 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7493 address = value_address (ada_value_ind (arg));
4c4b4cd2 7494 else
b50d69b5 7495 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7496
1ed6ede0 7497 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7498 if (find_struct_field (name, t1, 0,
7499 &field_type, &byte_offset, &bit_offset,
52ce6436 7500 &bit_size, NULL))
76a01679
JB
7501 {
7502 if (bit_size != 0)
7503 {
714e53ab
PH
7504 if (TYPE_CODE (t) == TYPE_CODE_REF)
7505 arg = ada_coerce_ref (arg);
7506 else
7507 arg = ada_value_ind (arg);
76a01679
JB
7508 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7509 bit_offset, bit_size,
7510 field_type);
7511 }
7512 else
f5938064 7513 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7514 }
7515 }
7516
03ee6b2e
PH
7517 if (v != NULL || no_err)
7518 return v;
7519 else
323e0a4a 7520 error (_("There is no member named %s."), name);
14f9c5c9 7521
03ee6b2e
PH
7522 BadValue:
7523 if (no_err)
7524 return NULL;
7525 else
0963b4bd
MS
7526 error (_("Attempt to extract a component of "
7527 "a value that is not a record."));
14f9c5c9
AS
7528}
7529
7530/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7531 If DISPP is non-null, add its byte displacement from the beginning of a
7532 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7533 work for packed fields).
7534
7535 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7536 followed by "___".
14f9c5c9 7537
0963b4bd 7538 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7539 be a (pointer or reference)+ to a struct or union, and the
7540 ultimate target type will be searched.
14f9c5c9
AS
7541
7542 Looks recursively into variant clauses and parent types.
7543
4c4b4cd2
PH
7544 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7545 TYPE is not a type of the right kind. */
14f9c5c9 7546
4c4b4cd2 7547static struct type *
76a01679
JB
7548ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7549 int noerr, int *dispp)
14f9c5c9
AS
7550{
7551 int i;
7552
7553 if (name == NULL)
7554 goto BadName;
7555
76a01679 7556 if (refok && type != NULL)
4c4b4cd2
PH
7557 while (1)
7558 {
61ee279c 7559 type = ada_check_typedef (type);
76a01679
JB
7560 if (TYPE_CODE (type) != TYPE_CODE_PTR
7561 && TYPE_CODE (type) != TYPE_CODE_REF)
7562 break;
7563 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7564 }
14f9c5c9 7565
76a01679 7566 if (type == NULL
1265e4aa
JB
7567 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7568 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7569 {
4c4b4cd2 7570 if (noerr)
76a01679 7571 return NULL;
4c4b4cd2 7572 else
76a01679
JB
7573 {
7574 target_terminal_ours ();
7575 gdb_flush (gdb_stdout);
323e0a4a
AC
7576 if (type == NULL)
7577 error (_("Type (null) is not a structure or union type"));
7578 else
7579 {
7580 /* XXX: type_sprint */
7581 fprintf_unfiltered (gdb_stderr, _("Type "));
7582 type_print (type, "", gdb_stderr, -1);
7583 error (_(" is not a structure or union type"));
7584 }
76a01679 7585 }
14f9c5c9
AS
7586 }
7587
7588 type = to_static_fixed_type (type);
7589
7590 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7591 {
0d5cff50 7592 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7593 struct type *t;
7594 int disp;
d2e4a39e 7595
14f9c5c9 7596 if (t_field_name == NULL)
4c4b4cd2 7597 continue;
14f9c5c9
AS
7598
7599 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7600 {
7601 if (dispp != NULL)
7602 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7603 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7604 }
14f9c5c9
AS
7605
7606 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7607 {
7608 disp = 0;
7609 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7610 0, 1, &disp);
7611 if (t != NULL)
7612 {
7613 if (dispp != NULL)
7614 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7615 return t;
7616 }
7617 }
14f9c5c9
AS
7618
7619 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7620 {
7621 int j;
5b4ee69b
MS
7622 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7623 i));
4c4b4cd2
PH
7624
7625 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7626 {
b1f33ddd
JB
7627 /* FIXME pnh 2008/01/26: We check for a field that is
7628 NOT wrapped in a struct, since the compiler sometimes
7629 generates these for unchecked variant types. Revisit
0963b4bd 7630 if the compiler changes this practice. */
0d5cff50 7631 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7632 disp = 0;
b1f33ddd
JB
7633 if (v_field_name != NULL
7634 && field_name_match (v_field_name, name))
460efde1 7635 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7636 else
0963b4bd
MS
7637 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7638 j),
b1f33ddd
JB
7639 name, 0, 1, &disp);
7640
4c4b4cd2
PH
7641 if (t != NULL)
7642 {
7643 if (dispp != NULL)
7644 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7645 return t;
7646 }
7647 }
7648 }
14f9c5c9
AS
7649
7650 }
7651
7652BadName:
d2e4a39e 7653 if (!noerr)
14f9c5c9
AS
7654 {
7655 target_terminal_ours ();
7656 gdb_flush (gdb_stdout);
323e0a4a
AC
7657 if (name == NULL)
7658 {
7659 /* XXX: type_sprint */
7660 fprintf_unfiltered (gdb_stderr, _("Type "));
7661 type_print (type, "", gdb_stderr, -1);
7662 error (_(" has no component named <null>"));
7663 }
7664 else
7665 {
7666 /* XXX: type_sprint */
7667 fprintf_unfiltered (gdb_stderr, _("Type "));
7668 type_print (type, "", gdb_stderr, -1);
7669 error (_(" has no component named %s"), name);
7670 }
14f9c5c9
AS
7671 }
7672
7673 return NULL;
7674}
7675
b1f33ddd
JB
7676/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7677 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7678 represents an unchecked union (that is, the variant part of a
0963b4bd 7679 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7680
7681static int
7682is_unchecked_variant (struct type *var_type, struct type *outer_type)
7683{
7684 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7685
b1f33ddd
JB
7686 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7687 == NULL);
7688}
7689
7690
14f9c5c9
AS
7691/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7692 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7693 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7694 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7695
d2e4a39e 7696int
ebf56fd3 7697ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7698 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7699{
7700 int others_clause;
7701 int i;
d2e4a39e 7702 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7703 struct value *outer;
7704 struct value *discrim;
14f9c5c9
AS
7705 LONGEST discrim_val;
7706
012370f6
TT
7707 /* Using plain value_from_contents_and_address here causes problems
7708 because we will end up trying to resolve a type that is currently
7709 being constructed. */
7710 outer = value_from_contents_and_address_unresolved (outer_type,
7711 outer_valaddr, 0);
0c281816
JB
7712 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7713 if (discrim == NULL)
14f9c5c9 7714 return -1;
0c281816 7715 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7716
7717 others_clause = -1;
7718 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7719 {
7720 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7721 others_clause = i;
14f9c5c9 7722 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7723 return i;
14f9c5c9
AS
7724 }
7725
7726 return others_clause;
7727}
d2e4a39e 7728\f
14f9c5c9
AS
7729
7730
4c4b4cd2 7731 /* Dynamic-Sized Records */
14f9c5c9
AS
7732
7733/* Strategy: The type ostensibly attached to a value with dynamic size
7734 (i.e., a size that is not statically recorded in the debugging
7735 data) does not accurately reflect the size or layout of the value.
7736 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7737 conventional types that are constructed on the fly. */
14f9c5c9
AS
7738
7739/* There is a subtle and tricky problem here. In general, we cannot
7740 determine the size of dynamic records without its data. However,
7741 the 'struct value' data structure, which GDB uses to represent
7742 quantities in the inferior process (the target), requires the size
7743 of the type at the time of its allocation in order to reserve space
7744 for GDB's internal copy of the data. That's why the
7745 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7746 rather than struct value*s.
14f9c5c9
AS
7747
7748 However, GDB's internal history variables ($1, $2, etc.) are
7749 struct value*s containing internal copies of the data that are not, in
7750 general, the same as the data at their corresponding addresses in
7751 the target. Fortunately, the types we give to these values are all
7752 conventional, fixed-size types (as per the strategy described
7753 above), so that we don't usually have to perform the
7754 'to_fixed_xxx_type' conversions to look at their values.
7755 Unfortunately, there is one exception: if one of the internal
7756 history variables is an array whose elements are unconstrained
7757 records, then we will need to create distinct fixed types for each
7758 element selected. */
7759
7760/* The upshot of all of this is that many routines take a (type, host
7761 address, target address) triple as arguments to represent a value.
7762 The host address, if non-null, is supposed to contain an internal
7763 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7764 target at the target address. */
14f9c5c9
AS
7765
7766/* Assuming that VAL0 represents a pointer value, the result of
7767 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7768 dynamic-sized types. */
14f9c5c9 7769
d2e4a39e
AS
7770struct value *
7771ada_value_ind (struct value *val0)
14f9c5c9 7772{
c48db5ca 7773 struct value *val = value_ind (val0);
5b4ee69b 7774
b50d69b5
JG
7775 if (ada_is_tagged_type (value_type (val), 0))
7776 val = ada_tag_value_at_base_address (val);
7777
4c4b4cd2 7778 return ada_to_fixed_value (val);
14f9c5c9
AS
7779}
7780
7781/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7782 qualifiers on VAL0. */
7783
d2e4a39e
AS
7784static struct value *
7785ada_coerce_ref (struct value *val0)
7786{
df407dfe 7787 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7788 {
7789 struct value *val = val0;
5b4ee69b 7790
994b9211 7791 val = coerce_ref (val);
b50d69b5
JG
7792
7793 if (ada_is_tagged_type (value_type (val), 0))
7794 val = ada_tag_value_at_base_address (val);
7795
4c4b4cd2 7796 return ada_to_fixed_value (val);
d2e4a39e
AS
7797 }
7798 else
14f9c5c9
AS
7799 return val0;
7800}
7801
7802/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7803 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7804
7805static unsigned int
ebf56fd3 7806align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7807{
7808 return (off + alignment - 1) & ~(alignment - 1);
7809}
7810
4c4b4cd2 7811/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7812
7813static unsigned int
ebf56fd3 7814field_alignment (struct type *type, int f)
14f9c5c9 7815{
d2e4a39e 7816 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7817 int len;
14f9c5c9
AS
7818 int align_offset;
7819
64a1bf19
JB
7820 /* The field name should never be null, unless the debugging information
7821 is somehow malformed. In this case, we assume the field does not
7822 require any alignment. */
7823 if (name == NULL)
7824 return 1;
7825
7826 len = strlen (name);
7827
4c4b4cd2
PH
7828 if (!isdigit (name[len - 1]))
7829 return 1;
14f9c5c9 7830
d2e4a39e 7831 if (isdigit (name[len - 2]))
14f9c5c9
AS
7832 align_offset = len - 2;
7833 else
7834 align_offset = len - 1;
7835
61012eef 7836 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7837 return TARGET_CHAR_BIT;
7838
4c4b4cd2
PH
7839 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7840}
7841
852dff6c 7842/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7843
852dff6c
JB
7844static struct symbol *
7845ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7846{
7847 struct symbol *sym;
7848
7849 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7850 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7851 return sym;
7852
4186eb54
KS
7853 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7854 return sym;
14f9c5c9
AS
7855}
7856
dddfab26
UW
7857/* Find a type named NAME. Ignores ambiguity. This routine will look
7858 solely for types defined by debug info, it will not search the GDB
7859 primitive types. */
4c4b4cd2 7860
852dff6c 7861static struct type *
ebf56fd3 7862ada_find_any_type (const char *name)
14f9c5c9 7863{
852dff6c 7864 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7865
14f9c5c9 7866 if (sym != NULL)
dddfab26 7867 return SYMBOL_TYPE (sym);
14f9c5c9 7868
dddfab26 7869 return NULL;
14f9c5c9
AS
7870}
7871
739593e0
JB
7872/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7873 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7874 symbol, in which case it is returned. Otherwise, this looks for
7875 symbols whose name is that of NAME_SYM suffixed with "___XR".
7876 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7877
7878struct symbol *
270140bd 7879ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7880{
739593e0 7881 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7882 struct symbol *sym;
7883
739593e0
JB
7884 if (strstr (name, "___XR") != NULL)
7885 return name_sym;
7886
aeb5907d
JB
7887 sym = find_old_style_renaming_symbol (name, block);
7888
7889 if (sym != NULL)
7890 return sym;
7891
0963b4bd 7892 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7893 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7894 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7895 return sym;
7896 else
7897 return NULL;
7898}
7899
7900static struct symbol *
270140bd 7901find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7902{
7f0df278 7903 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7904 char *rename;
7905
7906 if (function_sym != NULL)
7907 {
7908 /* If the symbol is defined inside a function, NAME is not fully
7909 qualified. This means we need to prepend the function name
7910 as well as adding the ``___XR'' suffix to build the name of
7911 the associated renaming symbol. */
0d5cff50 7912 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7913 /* Function names sometimes contain suffixes used
7914 for instance to qualify nested subprograms. When building
7915 the XR type name, we need to make sure that this suffix is
7916 not included. So do not include any suffix in the function
7917 name length below. */
69fadcdf 7918 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7919 const int rename_len = function_name_len + 2 /* "__" */
7920 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7921
529cad9c 7922 /* Strip the suffix if necessary. */
69fadcdf
JB
7923 ada_remove_trailing_digits (function_name, &function_name_len);
7924 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7925 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7926
4c4b4cd2
PH
7927 /* Library-level functions are a special case, as GNAT adds
7928 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7929 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7930 have this prefix, so we need to skip this prefix if present. */
7931 if (function_name_len > 5 /* "_ada_" */
7932 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7933 {
7934 function_name += 5;
7935 function_name_len -= 5;
7936 }
4c4b4cd2
PH
7937
7938 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7939 strncpy (rename, function_name, function_name_len);
7940 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7941 "__%s___XR", name);
4c4b4cd2
PH
7942 }
7943 else
7944 {
7945 const int rename_len = strlen (name) + 6;
5b4ee69b 7946
4c4b4cd2 7947 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7948 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7949 }
7950
852dff6c 7951 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7952}
7953
14f9c5c9 7954/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7955 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7956 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7957 otherwise return 0. */
7958
14f9c5c9 7959int
d2e4a39e 7960ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7961{
7962 if (type1 == NULL)
7963 return 1;
7964 else if (type0 == NULL)
7965 return 0;
7966 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7967 return 1;
7968 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7969 return 0;
4c4b4cd2
PH
7970 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7971 return 1;
ad82864c 7972 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7973 return 1;
4c4b4cd2
PH
7974 else if (ada_is_array_descriptor_type (type0)
7975 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7976 return 1;
aeb5907d
JB
7977 else
7978 {
7979 const char *type0_name = type_name_no_tag (type0);
7980 const char *type1_name = type_name_no_tag (type1);
7981
7982 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7983 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7984 return 1;
7985 }
14f9c5c9
AS
7986 return 0;
7987}
7988
7989/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7990 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7991
0d5cff50 7992const char *
d2e4a39e 7993ada_type_name (struct type *type)
14f9c5c9 7994{
d2e4a39e 7995 if (type == NULL)
14f9c5c9
AS
7996 return NULL;
7997 else if (TYPE_NAME (type) != NULL)
7998 return TYPE_NAME (type);
7999 else
8000 return TYPE_TAG_NAME (type);
8001}
8002
b4ba55a1
JB
8003/* Search the list of "descriptive" types associated to TYPE for a type
8004 whose name is NAME. */
8005
8006static struct type *
8007find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8008{
931e5bc3 8009 struct type *result, *tmp;
b4ba55a1 8010
c6044dd1
JB
8011 if (ada_ignore_descriptive_types_p)
8012 return NULL;
8013
b4ba55a1
JB
8014 /* If there no descriptive-type info, then there is no parallel type
8015 to be found. */
8016 if (!HAVE_GNAT_AUX_INFO (type))
8017 return NULL;
8018
8019 result = TYPE_DESCRIPTIVE_TYPE (type);
8020 while (result != NULL)
8021 {
0d5cff50 8022 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8023
8024 if (result_name == NULL)
8025 {
8026 warning (_("unexpected null name on descriptive type"));
8027 return NULL;
8028 }
8029
8030 /* If the names match, stop. */
8031 if (strcmp (result_name, name) == 0)
8032 break;
8033
8034 /* Otherwise, look at the next item on the list, if any. */
8035 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8036 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8037 else
8038 tmp = NULL;
8039
8040 /* If not found either, try after having resolved the typedef. */
8041 if (tmp != NULL)
8042 result = tmp;
b4ba55a1 8043 else
931e5bc3 8044 {
f168693b 8045 result = check_typedef (result);
931e5bc3
JG
8046 if (HAVE_GNAT_AUX_INFO (result))
8047 result = TYPE_DESCRIPTIVE_TYPE (result);
8048 else
8049 result = NULL;
8050 }
b4ba55a1
JB
8051 }
8052
8053 /* If we didn't find a match, see whether this is a packed array. With
8054 older compilers, the descriptive type information is either absent or
8055 irrelevant when it comes to packed arrays so the above lookup fails.
8056 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8057 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8058 return ada_find_any_type (name);
8059
8060 return result;
8061}
8062
8063/* Find a parallel type to TYPE with the specified NAME, using the
8064 descriptive type taken from the debugging information, if available,
8065 and otherwise using the (slower) name-based method. */
8066
8067static struct type *
8068ada_find_parallel_type_with_name (struct type *type, const char *name)
8069{
8070 struct type *result = NULL;
8071
8072 if (HAVE_GNAT_AUX_INFO (type))
8073 result = find_parallel_type_by_descriptive_type (type, name);
8074 else
8075 result = ada_find_any_type (name);
8076
8077 return result;
8078}
8079
8080/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8081 SUFFIX to the name of TYPE. */
14f9c5c9 8082
d2e4a39e 8083struct type *
ebf56fd3 8084ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8085{
0d5cff50 8086 char *name;
fe978cb0 8087 const char *type_name = ada_type_name (type);
14f9c5c9 8088 int len;
d2e4a39e 8089
fe978cb0 8090 if (type_name == NULL)
14f9c5c9
AS
8091 return NULL;
8092
fe978cb0 8093 len = strlen (type_name);
14f9c5c9 8094
b4ba55a1 8095 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8096
fe978cb0 8097 strcpy (name, type_name);
14f9c5c9
AS
8098 strcpy (name + len, suffix);
8099
b4ba55a1 8100 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8101}
8102
14f9c5c9 8103/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8104 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8105
d2e4a39e
AS
8106static struct type *
8107dynamic_template_type (struct type *type)
14f9c5c9 8108{
61ee279c 8109 type = ada_check_typedef (type);
14f9c5c9
AS
8110
8111 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8112 || ada_type_name (type) == NULL)
14f9c5c9 8113 return NULL;
d2e4a39e 8114 else
14f9c5c9
AS
8115 {
8116 int len = strlen (ada_type_name (type));
5b4ee69b 8117
4c4b4cd2
PH
8118 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8119 return type;
14f9c5c9 8120 else
4c4b4cd2 8121 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8122 }
8123}
8124
8125/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8126 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8127
d2e4a39e
AS
8128static int
8129is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8130{
8131 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8132
d2e4a39e 8133 return name != NULL
14f9c5c9
AS
8134 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8135 && strstr (name, "___XVL") != NULL;
8136}
8137
4c4b4cd2
PH
8138/* The index of the variant field of TYPE, or -1 if TYPE does not
8139 represent a variant record type. */
14f9c5c9 8140
d2e4a39e 8141static int
4c4b4cd2 8142variant_field_index (struct type *type)
14f9c5c9
AS
8143{
8144 int f;
8145
4c4b4cd2
PH
8146 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8147 return -1;
8148
8149 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8150 {
8151 if (ada_is_variant_part (type, f))
8152 return f;
8153 }
8154 return -1;
14f9c5c9
AS
8155}
8156
4c4b4cd2
PH
8157/* A record type with no fields. */
8158
d2e4a39e 8159static struct type *
fe978cb0 8160empty_record (struct type *templ)
14f9c5c9 8161{
fe978cb0 8162 struct type *type = alloc_type_copy (templ);
5b4ee69b 8163
14f9c5c9
AS
8164 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8165 TYPE_NFIELDS (type) = 0;
8166 TYPE_FIELDS (type) = NULL;
b1f33ddd 8167 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8168 TYPE_NAME (type) = "<empty>";
8169 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8170 TYPE_LENGTH (type) = 0;
8171 return type;
8172}
8173
8174/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8175 the value of type TYPE at VALADDR or ADDRESS (see comments at
8176 the beginning of this section) VAL according to GNAT conventions.
8177 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8178 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8179 an outer-level type (i.e., as opposed to a branch of a variant.) A
8180 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8181 of the variant.
14f9c5c9 8182
4c4b4cd2
PH
8183 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8184 length are not statically known are discarded. As a consequence,
8185 VALADDR, ADDRESS and DVAL0 are ignored.
8186
8187 NOTE: Limitations: For now, we assume that dynamic fields and
8188 variants occupy whole numbers of bytes. However, they need not be
8189 byte-aligned. */
8190
8191struct type *
10a2c479 8192ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8193 const gdb_byte *valaddr,
4c4b4cd2
PH
8194 CORE_ADDR address, struct value *dval0,
8195 int keep_dynamic_fields)
14f9c5c9 8196{
d2e4a39e
AS
8197 struct value *mark = value_mark ();
8198 struct value *dval;
8199 struct type *rtype;
14f9c5c9 8200 int nfields, bit_len;
4c4b4cd2 8201 int variant_field;
14f9c5c9 8202 long off;
d94e4f4f 8203 int fld_bit_len;
14f9c5c9
AS
8204 int f;
8205
4c4b4cd2
PH
8206 /* Compute the number of fields in this record type that are going
8207 to be processed: unless keep_dynamic_fields, this includes only
8208 fields whose position and length are static will be processed. */
8209 if (keep_dynamic_fields)
8210 nfields = TYPE_NFIELDS (type);
8211 else
8212 {
8213 nfields = 0;
76a01679 8214 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8215 && !ada_is_variant_part (type, nfields)
8216 && !is_dynamic_field (type, nfields))
8217 nfields++;
8218 }
8219
e9bb382b 8220 rtype = alloc_type_copy (type);
14f9c5c9
AS
8221 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8222 INIT_CPLUS_SPECIFIC (rtype);
8223 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8224 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8225 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8226 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8227 TYPE_NAME (rtype) = ada_type_name (type);
8228 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8229 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8230
d2e4a39e
AS
8231 off = 0;
8232 bit_len = 0;
4c4b4cd2
PH
8233 variant_field = -1;
8234
14f9c5c9
AS
8235 for (f = 0; f < nfields; f += 1)
8236 {
6c038f32
PH
8237 off = align_value (off, field_alignment (type, f))
8238 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8239 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8240 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8241
d2e4a39e 8242 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8243 {
8244 variant_field = f;
d94e4f4f 8245 fld_bit_len = 0;
4c4b4cd2 8246 }
14f9c5c9 8247 else if (is_dynamic_field (type, f))
4c4b4cd2 8248 {
284614f0
JB
8249 const gdb_byte *field_valaddr = valaddr;
8250 CORE_ADDR field_address = address;
8251 struct type *field_type =
8252 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8253
4c4b4cd2 8254 if (dval0 == NULL)
b5304971
JG
8255 {
8256 /* rtype's length is computed based on the run-time
8257 value of discriminants. If the discriminants are not
8258 initialized, the type size may be completely bogus and
0963b4bd 8259 GDB may fail to allocate a value for it. So check the
b5304971 8260 size first before creating the value. */
c1b5a1a6 8261 ada_ensure_varsize_limit (rtype);
012370f6
TT
8262 /* Using plain value_from_contents_and_address here
8263 causes problems because we will end up trying to
8264 resolve a type that is currently being
8265 constructed. */
8266 dval = value_from_contents_and_address_unresolved (rtype,
8267 valaddr,
8268 address);
9f1f738a 8269 rtype = value_type (dval);
b5304971 8270 }
4c4b4cd2
PH
8271 else
8272 dval = dval0;
8273
284614f0
JB
8274 /* If the type referenced by this field is an aligner type, we need
8275 to unwrap that aligner type, because its size might not be set.
8276 Keeping the aligner type would cause us to compute the wrong
8277 size for this field, impacting the offset of the all the fields
8278 that follow this one. */
8279 if (ada_is_aligner_type (field_type))
8280 {
8281 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8282
8283 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8284 field_address = cond_offset_target (field_address, field_offset);
8285 field_type = ada_aligned_type (field_type);
8286 }
8287
8288 field_valaddr = cond_offset_host (field_valaddr,
8289 off / TARGET_CHAR_BIT);
8290 field_address = cond_offset_target (field_address,
8291 off / TARGET_CHAR_BIT);
8292
8293 /* Get the fixed type of the field. Note that, in this case,
8294 we do not want to get the real type out of the tag: if
8295 the current field is the parent part of a tagged record,
8296 we will get the tag of the object. Clearly wrong: the real
8297 type of the parent is not the real type of the child. We
8298 would end up in an infinite loop. */
8299 field_type = ada_get_base_type (field_type);
8300 field_type = ada_to_fixed_type (field_type, field_valaddr,
8301 field_address, dval, 0);
27f2a97b
JB
8302 /* If the field size is already larger than the maximum
8303 object size, then the record itself will necessarily
8304 be larger than the maximum object size. We need to make
8305 this check now, because the size might be so ridiculously
8306 large (due to an uninitialized variable in the inferior)
8307 that it would cause an overflow when adding it to the
8308 record size. */
c1b5a1a6 8309 ada_ensure_varsize_limit (field_type);
284614f0
JB
8310
8311 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8312 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8313 /* The multiplication can potentially overflow. But because
8314 the field length has been size-checked just above, and
8315 assuming that the maximum size is a reasonable value,
8316 an overflow should not happen in practice. So rather than
8317 adding overflow recovery code to this already complex code,
8318 we just assume that it's not going to happen. */
d94e4f4f 8319 fld_bit_len =
4c4b4cd2
PH
8320 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8321 }
14f9c5c9 8322 else
4c4b4cd2 8323 {
5ded5331
JB
8324 /* Note: If this field's type is a typedef, it is important
8325 to preserve the typedef layer.
8326
8327 Otherwise, we might be transforming a typedef to a fat
8328 pointer (encoding a pointer to an unconstrained array),
8329 into a basic fat pointer (encoding an unconstrained
8330 array). As both types are implemented using the same
8331 structure, the typedef is the only clue which allows us
8332 to distinguish between the two options. Stripping it
8333 would prevent us from printing this field appropriately. */
8334 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8335 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8336 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8337 fld_bit_len =
4c4b4cd2
PH
8338 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8339 else
5ded5331
JB
8340 {
8341 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8342
8343 /* We need to be careful of typedefs when computing
8344 the length of our field. If this is a typedef,
8345 get the length of the target type, not the length
8346 of the typedef. */
8347 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8348 field_type = ada_typedef_target_type (field_type);
8349
8350 fld_bit_len =
8351 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8352 }
4c4b4cd2 8353 }
14f9c5c9 8354 if (off + fld_bit_len > bit_len)
4c4b4cd2 8355 bit_len = off + fld_bit_len;
d94e4f4f 8356 off += fld_bit_len;
4c4b4cd2
PH
8357 TYPE_LENGTH (rtype) =
8358 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8359 }
4c4b4cd2
PH
8360
8361 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8362 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8363 the record. This can happen in the presence of representation
8364 clauses. */
8365 if (variant_field >= 0)
8366 {
8367 struct type *branch_type;
8368
8369 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8370
8371 if (dval0 == NULL)
9f1f738a 8372 {
012370f6
TT
8373 /* Using plain value_from_contents_and_address here causes
8374 problems because we will end up trying to resolve a type
8375 that is currently being constructed. */
8376 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8377 address);
9f1f738a
SA
8378 rtype = value_type (dval);
8379 }
4c4b4cd2
PH
8380 else
8381 dval = dval0;
8382
8383 branch_type =
8384 to_fixed_variant_branch_type
8385 (TYPE_FIELD_TYPE (type, variant_field),
8386 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8387 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8388 if (branch_type == NULL)
8389 {
8390 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8391 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8392 TYPE_NFIELDS (rtype) -= 1;
8393 }
8394 else
8395 {
8396 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8397 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8398 fld_bit_len =
8399 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8400 TARGET_CHAR_BIT;
8401 if (off + fld_bit_len > bit_len)
8402 bit_len = off + fld_bit_len;
8403 TYPE_LENGTH (rtype) =
8404 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8405 }
8406 }
8407
714e53ab
PH
8408 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8409 should contain the alignment of that record, which should be a strictly
8410 positive value. If null or negative, then something is wrong, most
8411 probably in the debug info. In that case, we don't round up the size
0963b4bd 8412 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8413 the current RTYPE length might be good enough for our purposes. */
8414 if (TYPE_LENGTH (type) <= 0)
8415 {
323e0a4a
AC
8416 if (TYPE_NAME (rtype))
8417 warning (_("Invalid type size for `%s' detected: %d."),
8418 TYPE_NAME (rtype), TYPE_LENGTH (type));
8419 else
8420 warning (_("Invalid type size for <unnamed> detected: %d."),
8421 TYPE_LENGTH (type));
714e53ab
PH
8422 }
8423 else
8424 {
8425 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8426 TYPE_LENGTH (type));
8427 }
14f9c5c9
AS
8428
8429 value_free_to_mark (mark);
d2e4a39e 8430 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8431 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8432 return rtype;
8433}
8434
4c4b4cd2
PH
8435/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8436 of 1. */
14f9c5c9 8437
d2e4a39e 8438static struct type *
fc1a4b47 8439template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8440 CORE_ADDR address, struct value *dval0)
8441{
8442 return ada_template_to_fixed_record_type_1 (type, valaddr,
8443 address, dval0, 1);
8444}
8445
8446/* An ordinary record type in which ___XVL-convention fields and
8447 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8448 static approximations, containing all possible fields. Uses
8449 no runtime values. Useless for use in values, but that's OK,
8450 since the results are used only for type determinations. Works on both
8451 structs and unions. Representation note: to save space, we memorize
8452 the result of this function in the TYPE_TARGET_TYPE of the
8453 template type. */
8454
8455static struct type *
8456template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8457{
8458 struct type *type;
8459 int nfields;
8460 int f;
8461
9e195661
PMR
8462 /* No need no do anything if the input type is already fixed. */
8463 if (TYPE_FIXED_INSTANCE (type0))
8464 return type0;
8465
8466 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8467 if (TYPE_TARGET_TYPE (type0) != NULL)
8468 return TYPE_TARGET_TYPE (type0);
8469
9e195661 8470 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8471 type = type0;
9e195661
PMR
8472 nfields = TYPE_NFIELDS (type0);
8473
8474 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8475 recompute all over next time. */
8476 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8477
8478 for (f = 0; f < nfields; f += 1)
8479 {
460efde1 8480 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8481 struct type *new_type;
14f9c5c9 8482
4c4b4cd2 8483 if (is_dynamic_field (type0, f))
460efde1
JB
8484 {
8485 field_type = ada_check_typedef (field_type);
8486 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8487 }
14f9c5c9 8488 else
f192137b 8489 new_type = static_unwrap_type (field_type);
9e195661
PMR
8490
8491 if (new_type != field_type)
8492 {
8493 /* Clone TYPE0 only the first time we get a new field type. */
8494 if (type == type0)
8495 {
8496 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8497 TYPE_CODE (type) = TYPE_CODE (type0);
8498 INIT_CPLUS_SPECIFIC (type);
8499 TYPE_NFIELDS (type) = nfields;
8500 TYPE_FIELDS (type) = (struct field *)
8501 TYPE_ALLOC (type, nfields * sizeof (struct field));
8502 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8503 sizeof (struct field) * nfields);
8504 TYPE_NAME (type) = ada_type_name (type0);
8505 TYPE_TAG_NAME (type) = NULL;
8506 TYPE_FIXED_INSTANCE (type) = 1;
8507 TYPE_LENGTH (type) = 0;
8508 }
8509 TYPE_FIELD_TYPE (type, f) = new_type;
8510 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8511 }
14f9c5c9 8512 }
9e195661 8513
14f9c5c9
AS
8514 return type;
8515}
8516
4c4b4cd2 8517/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8518 whose address in memory is ADDRESS, returns a revision of TYPE,
8519 which should be a non-dynamic-sized record, in which the variant
8520 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8521 for discriminant values in DVAL0, which can be NULL if the record
8522 contains the necessary discriminant values. */
8523
d2e4a39e 8524static struct type *
fc1a4b47 8525to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8526 CORE_ADDR address, struct value *dval0)
14f9c5c9 8527{
d2e4a39e 8528 struct value *mark = value_mark ();
4c4b4cd2 8529 struct value *dval;
d2e4a39e 8530 struct type *rtype;
14f9c5c9
AS
8531 struct type *branch_type;
8532 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8533 int variant_field = variant_field_index (type);
14f9c5c9 8534
4c4b4cd2 8535 if (variant_field == -1)
14f9c5c9
AS
8536 return type;
8537
4c4b4cd2 8538 if (dval0 == NULL)
9f1f738a
SA
8539 {
8540 dval = value_from_contents_and_address (type, valaddr, address);
8541 type = value_type (dval);
8542 }
4c4b4cd2
PH
8543 else
8544 dval = dval0;
8545
e9bb382b 8546 rtype = alloc_type_copy (type);
14f9c5c9 8547 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8548 INIT_CPLUS_SPECIFIC (rtype);
8549 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8550 TYPE_FIELDS (rtype) =
8551 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8552 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8553 sizeof (struct field) * nfields);
14f9c5c9
AS
8554 TYPE_NAME (rtype) = ada_type_name (type);
8555 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8556 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8557 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8558
4c4b4cd2
PH
8559 branch_type = to_fixed_variant_branch_type
8560 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8561 cond_offset_host (valaddr,
4c4b4cd2
PH
8562 TYPE_FIELD_BITPOS (type, variant_field)
8563 / TARGET_CHAR_BIT),
d2e4a39e 8564 cond_offset_target (address,
4c4b4cd2
PH
8565 TYPE_FIELD_BITPOS (type, variant_field)
8566 / TARGET_CHAR_BIT), dval);
d2e4a39e 8567 if (branch_type == NULL)
14f9c5c9 8568 {
4c4b4cd2 8569 int f;
5b4ee69b 8570
4c4b4cd2
PH
8571 for (f = variant_field + 1; f < nfields; f += 1)
8572 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8573 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8574 }
8575 else
8576 {
4c4b4cd2
PH
8577 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8578 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8579 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8580 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8581 }
4c4b4cd2 8582 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8583
4c4b4cd2 8584 value_free_to_mark (mark);
14f9c5c9
AS
8585 return rtype;
8586}
8587
8588/* An ordinary record type (with fixed-length fields) that describes
8589 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8590 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8591 should be in DVAL, a record value; it may be NULL if the object
8592 at ADDR itself contains any necessary discriminant values.
8593 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8594 values from the record are needed. Except in the case that DVAL,
8595 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8596 unchecked) is replaced by a particular branch of the variant.
8597
8598 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8599 is questionable and may be removed. It can arise during the
8600 processing of an unconstrained-array-of-record type where all the
8601 variant branches have exactly the same size. This is because in
8602 such cases, the compiler does not bother to use the XVS convention
8603 when encoding the record. I am currently dubious of this
8604 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8605
d2e4a39e 8606static struct type *
fc1a4b47 8607to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8608 CORE_ADDR address, struct value *dval)
14f9c5c9 8609{
d2e4a39e 8610 struct type *templ_type;
14f9c5c9 8611
876cecd0 8612 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8613 return type0;
8614
d2e4a39e 8615 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8616
8617 if (templ_type != NULL)
8618 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8619 else if (variant_field_index (type0) >= 0)
8620 {
8621 if (dval == NULL && valaddr == NULL && address == 0)
8622 return type0;
8623 return to_record_with_fixed_variant_part (type0, valaddr, address,
8624 dval);
8625 }
14f9c5c9
AS
8626 else
8627 {
876cecd0 8628 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8629 return type0;
8630 }
8631
8632}
8633
8634/* An ordinary record type (with fixed-length fields) that describes
8635 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8636 union type. Any necessary discriminants' values should be in DVAL,
8637 a record value. That is, this routine selects the appropriate
8638 branch of the union at ADDR according to the discriminant value
b1f33ddd 8639 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8640 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8641
d2e4a39e 8642static struct type *
fc1a4b47 8643to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8644 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8645{
8646 int which;
d2e4a39e
AS
8647 struct type *templ_type;
8648 struct type *var_type;
14f9c5c9
AS
8649
8650 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8651 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8652 else
14f9c5c9
AS
8653 var_type = var_type0;
8654
8655 templ_type = ada_find_parallel_type (var_type, "___XVU");
8656
8657 if (templ_type != NULL)
8658 var_type = templ_type;
8659
b1f33ddd
JB
8660 if (is_unchecked_variant (var_type, value_type (dval)))
8661 return var_type0;
d2e4a39e
AS
8662 which =
8663 ada_which_variant_applies (var_type,
0fd88904 8664 value_type (dval), value_contents (dval));
14f9c5c9
AS
8665
8666 if (which < 0)
e9bb382b 8667 return empty_record (var_type);
14f9c5c9 8668 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8669 return to_fixed_record_type
d2e4a39e
AS
8670 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8671 valaddr, address, dval);
4c4b4cd2 8672 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8673 return
8674 to_fixed_record_type
8675 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8676 else
8677 return TYPE_FIELD_TYPE (var_type, which);
8678}
8679
8908fca5
JB
8680/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8681 ENCODING_TYPE, a type following the GNAT conventions for discrete
8682 type encodings, only carries redundant information. */
8683
8684static int
8685ada_is_redundant_range_encoding (struct type *range_type,
8686 struct type *encoding_type)
8687{
8688 struct type *fixed_range_type;
108d56a4 8689 const char *bounds_str;
8908fca5
JB
8690 int n;
8691 LONGEST lo, hi;
8692
8693 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8694
005e2509
JB
8695 if (TYPE_CODE (get_base_type (range_type))
8696 != TYPE_CODE (get_base_type (encoding_type)))
8697 {
8698 /* The compiler probably used a simple base type to describe
8699 the range type instead of the range's actual base type,
8700 expecting us to get the real base type from the encoding
8701 anyway. In this situation, the encoding cannot be ignored
8702 as redundant. */
8703 return 0;
8704 }
8705
8908fca5
JB
8706 if (is_dynamic_type (range_type))
8707 return 0;
8708
8709 if (TYPE_NAME (encoding_type) == NULL)
8710 return 0;
8711
8712 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8713 if (bounds_str == NULL)
8714 return 0;
8715
8716 n = 8; /* Skip "___XDLU_". */
8717 if (!ada_scan_number (bounds_str, n, &lo, &n))
8718 return 0;
8719 if (TYPE_LOW_BOUND (range_type) != lo)
8720 return 0;
8721
8722 n += 2; /* Skip the "__" separator between the two bounds. */
8723 if (!ada_scan_number (bounds_str, n, &hi, &n))
8724 return 0;
8725 if (TYPE_HIGH_BOUND (range_type) != hi)
8726 return 0;
8727
8728 return 1;
8729}
8730
8731/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8732 a type following the GNAT encoding for describing array type
8733 indices, only carries redundant information. */
8734
8735static int
8736ada_is_redundant_index_type_desc (struct type *array_type,
8737 struct type *desc_type)
8738{
8739 struct type *this_layer = check_typedef (array_type);
8740 int i;
8741
8742 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8743 {
8744 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8745 TYPE_FIELD_TYPE (desc_type, i)))
8746 return 0;
8747 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8748 }
8749
8750 return 1;
8751}
8752
14f9c5c9
AS
8753/* Assuming that TYPE0 is an array type describing the type of a value
8754 at ADDR, and that DVAL describes a record containing any
8755 discriminants used in TYPE0, returns a type for the value that
8756 contains no dynamic components (that is, no components whose sizes
8757 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8758 true, gives an error message if the resulting type's size is over
4c4b4cd2 8759 varsize_limit. */
14f9c5c9 8760
d2e4a39e
AS
8761static struct type *
8762to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8763 int ignore_too_big)
14f9c5c9 8764{
d2e4a39e
AS
8765 struct type *index_type_desc;
8766 struct type *result;
ad82864c 8767 int constrained_packed_array_p;
931e5bc3 8768 static const char *xa_suffix = "___XA";
14f9c5c9 8769
b0dd7688 8770 type0 = ada_check_typedef (type0);
284614f0 8771 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8772 return type0;
14f9c5c9 8773
ad82864c
JB
8774 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8775 if (constrained_packed_array_p)
8776 type0 = decode_constrained_packed_array_type (type0);
284614f0 8777
931e5bc3
JG
8778 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8779
8780 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8781 encoding suffixed with 'P' may still be generated. If so,
8782 it should be used to find the XA type. */
8783
8784 if (index_type_desc == NULL)
8785 {
1da0522e 8786 const char *type_name = ada_type_name (type0);
931e5bc3 8787
1da0522e 8788 if (type_name != NULL)
931e5bc3 8789 {
1da0522e 8790 const int len = strlen (type_name);
931e5bc3
JG
8791 char *name = (char *) alloca (len + strlen (xa_suffix));
8792
1da0522e 8793 if (type_name[len - 1] == 'P')
931e5bc3 8794 {
1da0522e 8795 strcpy (name, type_name);
931e5bc3
JG
8796 strcpy (name + len - 1, xa_suffix);
8797 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8798 }
8799 }
8800 }
8801
28c85d6c 8802 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8803 if (index_type_desc != NULL
8804 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8805 {
8806 /* Ignore this ___XA parallel type, as it does not bring any
8807 useful information. This allows us to avoid creating fixed
8808 versions of the array's index types, which would be identical
8809 to the original ones. This, in turn, can also help avoid
8810 the creation of fixed versions of the array itself. */
8811 index_type_desc = NULL;
8812 }
8813
14f9c5c9
AS
8814 if (index_type_desc == NULL)
8815 {
61ee279c 8816 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8817
14f9c5c9 8818 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8819 depend on the contents of the array in properly constructed
8820 debugging data. */
529cad9c
PH
8821 /* Create a fixed version of the array element type.
8822 We're not providing the address of an element here,
e1d5a0d2 8823 and thus the actual object value cannot be inspected to do
529cad9c
PH
8824 the conversion. This should not be a problem, since arrays of
8825 unconstrained objects are not allowed. In particular, all
8826 the elements of an array of a tagged type should all be of
8827 the same type specified in the debugging info. No need to
8828 consult the object tag. */
1ed6ede0 8829 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8830
284614f0
JB
8831 /* Make sure we always create a new array type when dealing with
8832 packed array types, since we're going to fix-up the array
8833 type length and element bitsize a little further down. */
ad82864c 8834 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8835 result = type0;
14f9c5c9 8836 else
e9bb382b 8837 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8838 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8839 }
8840 else
8841 {
8842 int i;
8843 struct type *elt_type0;
8844
8845 elt_type0 = type0;
8846 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8847 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8848
8849 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8850 depend on the contents of the array in properly constructed
8851 debugging data. */
529cad9c
PH
8852 /* Create a fixed version of the array element type.
8853 We're not providing the address of an element here,
e1d5a0d2 8854 and thus the actual object value cannot be inspected to do
529cad9c
PH
8855 the conversion. This should not be a problem, since arrays of
8856 unconstrained objects are not allowed. In particular, all
8857 the elements of an array of a tagged type should all be of
8858 the same type specified in the debugging info. No need to
8859 consult the object tag. */
1ed6ede0
JB
8860 result =
8861 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8862
8863 elt_type0 = type0;
14f9c5c9 8864 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8865 {
8866 struct type *range_type =
28c85d6c 8867 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8868
e9bb382b 8869 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8870 result, range_type);
1ce677a4 8871 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8872 }
d2e4a39e 8873 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8874 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8875 }
8876
2e6fda7d
JB
8877 /* We want to preserve the type name. This can be useful when
8878 trying to get the type name of a value that has already been
8879 printed (for instance, if the user did "print VAR; whatis $". */
8880 TYPE_NAME (result) = TYPE_NAME (type0);
8881
ad82864c 8882 if (constrained_packed_array_p)
284614f0
JB
8883 {
8884 /* So far, the resulting type has been created as if the original
8885 type was a regular (non-packed) array type. As a result, the
8886 bitsize of the array elements needs to be set again, and the array
8887 length needs to be recomputed based on that bitsize. */
8888 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8889 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8890
8891 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8892 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8893 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8894 TYPE_LENGTH (result)++;
8895 }
8896
876cecd0 8897 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8898 return result;
d2e4a39e 8899}
14f9c5c9
AS
8900
8901
8902/* A standard type (containing no dynamically sized components)
8903 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8904 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8905 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8906 ADDRESS or in VALADDR contains these discriminants.
8907
1ed6ede0
JB
8908 If CHECK_TAG is not null, in the case of tagged types, this function
8909 attempts to locate the object's tag and use it to compute the actual
8910 type. However, when ADDRESS is null, we cannot use it to determine the
8911 location of the tag, and therefore compute the tagged type's actual type.
8912 So we return the tagged type without consulting the tag. */
529cad9c 8913
f192137b
JB
8914static struct type *
8915ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8916 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8917{
61ee279c 8918 type = ada_check_typedef (type);
d2e4a39e
AS
8919 switch (TYPE_CODE (type))
8920 {
8921 default:
14f9c5c9 8922 return type;
d2e4a39e 8923 case TYPE_CODE_STRUCT:
4c4b4cd2 8924 {
76a01679 8925 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8926 struct type *fixed_record_type =
8927 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8928
529cad9c
PH
8929 /* If STATIC_TYPE is a tagged type and we know the object's address,
8930 then we can determine its tag, and compute the object's actual
0963b4bd 8931 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8932 type (the parent part of the record may have dynamic fields
8933 and the way the location of _tag is expressed may depend on
8934 them). */
529cad9c 8935
1ed6ede0 8936 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8937 {
b50d69b5
JG
8938 struct value *tag =
8939 value_tag_from_contents_and_address
8940 (fixed_record_type,
8941 valaddr,
8942 address);
8943 struct type *real_type = type_from_tag (tag);
8944 struct value *obj =
8945 value_from_contents_and_address (fixed_record_type,
8946 valaddr,
8947 address);
9f1f738a 8948 fixed_record_type = value_type (obj);
76a01679 8949 if (real_type != NULL)
b50d69b5
JG
8950 return to_fixed_record_type
8951 (real_type, NULL,
8952 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8953 }
4af88198
JB
8954
8955 /* Check to see if there is a parallel ___XVZ variable.
8956 If there is, then it provides the actual size of our type. */
8957 else if (ada_type_name (fixed_record_type) != NULL)
8958 {
0d5cff50 8959 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8960 char *xvz_name
8961 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8962 int xvz_found = 0;
8963 LONGEST size;
8964
88c15c34 8965 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8966 size = get_int_var_value (xvz_name, &xvz_found);
8967 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8968 {
8969 fixed_record_type = copy_type (fixed_record_type);
8970 TYPE_LENGTH (fixed_record_type) = size;
8971
8972 /* The FIXED_RECORD_TYPE may have be a stub. We have
8973 observed this when the debugging info is STABS, and
8974 apparently it is something that is hard to fix.
8975
8976 In practice, we don't need the actual type definition
8977 at all, because the presence of the XVZ variable allows us
8978 to assume that there must be a XVS type as well, which we
8979 should be able to use later, when we need the actual type
8980 definition.
8981
8982 In the meantime, pretend that the "fixed" type we are
8983 returning is NOT a stub, because this can cause trouble
8984 when using this type to create new types targeting it.
8985 Indeed, the associated creation routines often check
8986 whether the target type is a stub and will try to replace
0963b4bd 8987 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8988 might cause the new type to have the wrong size too.
8989 Consider the case of an array, for instance, where the size
8990 of the array is computed from the number of elements in
8991 our array multiplied by the size of its element. */
8992 TYPE_STUB (fixed_record_type) = 0;
8993 }
8994 }
1ed6ede0 8995 return fixed_record_type;
4c4b4cd2 8996 }
d2e4a39e 8997 case TYPE_CODE_ARRAY:
4c4b4cd2 8998 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8999 case TYPE_CODE_UNION:
9000 if (dval == NULL)
4c4b4cd2 9001 return type;
d2e4a39e 9002 else
4c4b4cd2 9003 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9004 }
14f9c5c9
AS
9005}
9006
f192137b
JB
9007/* The same as ada_to_fixed_type_1, except that it preserves the type
9008 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9009
9010 The typedef layer needs be preserved in order to differentiate between
9011 arrays and array pointers when both types are implemented using the same
9012 fat pointer. In the array pointer case, the pointer is encoded as
9013 a typedef of the pointer type. For instance, considering:
9014
9015 type String_Access is access String;
9016 S1 : String_Access := null;
9017
9018 To the debugger, S1 is defined as a typedef of type String. But
9019 to the user, it is a pointer. So if the user tries to print S1,
9020 we should not dereference the array, but print the array address
9021 instead.
9022
9023 If we didn't preserve the typedef layer, we would lose the fact that
9024 the type is to be presented as a pointer (needs de-reference before
9025 being printed). And we would also use the source-level type name. */
f192137b
JB
9026
9027struct type *
9028ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9029 CORE_ADDR address, struct value *dval, int check_tag)
9030
9031{
9032 struct type *fixed_type =
9033 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9034
96dbd2c1
JB
9035 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9036 then preserve the typedef layer.
9037
9038 Implementation note: We can only check the main-type portion of
9039 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9040 from TYPE now returns a type that has the same instance flags
9041 as TYPE. For instance, if TYPE is a "typedef const", and its
9042 target type is a "struct", then the typedef elimination will return
9043 a "const" version of the target type. See check_typedef for more
9044 details about how the typedef layer elimination is done.
9045
9046 brobecker/2010-11-19: It seems to me that the only case where it is
9047 useful to preserve the typedef layer is when dealing with fat pointers.
9048 Perhaps, we could add a check for that and preserve the typedef layer
9049 only in that situation. But this seems unecessary so far, probably
9050 because we call check_typedef/ada_check_typedef pretty much everywhere.
9051 */
f192137b 9052 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9053 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9054 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9055 return type;
9056
9057 return fixed_type;
9058}
9059
14f9c5c9 9060/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9061 TYPE0, but based on no runtime data. */
14f9c5c9 9062
d2e4a39e
AS
9063static struct type *
9064to_static_fixed_type (struct type *type0)
14f9c5c9 9065{
d2e4a39e 9066 struct type *type;
14f9c5c9
AS
9067
9068 if (type0 == NULL)
9069 return NULL;
9070
876cecd0 9071 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9072 return type0;
9073
61ee279c 9074 type0 = ada_check_typedef (type0);
d2e4a39e 9075
14f9c5c9
AS
9076 switch (TYPE_CODE (type0))
9077 {
9078 default:
9079 return type0;
9080 case TYPE_CODE_STRUCT:
9081 type = dynamic_template_type (type0);
d2e4a39e 9082 if (type != NULL)
4c4b4cd2
PH
9083 return template_to_static_fixed_type (type);
9084 else
9085 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9086 case TYPE_CODE_UNION:
9087 type = ada_find_parallel_type (type0, "___XVU");
9088 if (type != NULL)
4c4b4cd2
PH
9089 return template_to_static_fixed_type (type);
9090 else
9091 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9092 }
9093}
9094
4c4b4cd2
PH
9095/* A static approximation of TYPE with all type wrappers removed. */
9096
d2e4a39e
AS
9097static struct type *
9098static_unwrap_type (struct type *type)
14f9c5c9
AS
9099{
9100 if (ada_is_aligner_type (type))
9101 {
61ee279c 9102 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9103 if (ada_type_name (type1) == NULL)
4c4b4cd2 9104 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9105
9106 return static_unwrap_type (type1);
9107 }
d2e4a39e 9108 else
14f9c5c9 9109 {
d2e4a39e 9110 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9111
d2e4a39e 9112 if (raw_real_type == type)
4c4b4cd2 9113 return type;
14f9c5c9 9114 else
4c4b4cd2 9115 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9116 }
9117}
9118
9119/* In some cases, incomplete and private types require
4c4b4cd2 9120 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9121 type Foo;
9122 type FooP is access Foo;
9123 V: FooP;
9124 type Foo is array ...;
4c4b4cd2 9125 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9126 cross-references to such types, we instead substitute for FooP a
9127 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9128 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9129
9130/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9131 exists, otherwise TYPE. */
9132
d2e4a39e 9133struct type *
61ee279c 9134ada_check_typedef (struct type *type)
14f9c5c9 9135{
727e3d2e
JB
9136 if (type == NULL)
9137 return NULL;
9138
720d1a40
JB
9139 /* If our type is a typedef type of a fat pointer, then we're done.
9140 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9141 what allows us to distinguish between fat pointers that represent
9142 array types, and fat pointers that represent array access types
9143 (in both cases, the compiler implements them as fat pointers). */
9144 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9145 && is_thick_pntr (ada_typedef_target_type (type)))
9146 return type;
9147
f168693b 9148 type = check_typedef (type);
14f9c5c9 9149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9150 || !TYPE_STUB (type)
14f9c5c9
AS
9151 || TYPE_TAG_NAME (type) == NULL)
9152 return type;
d2e4a39e 9153 else
14f9c5c9 9154 {
0d5cff50 9155 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9156 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9157
05e522ef
JB
9158 if (type1 == NULL)
9159 return type;
9160
9161 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9162 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9163 types, only for the typedef-to-array types). If that's the case,
9164 strip the typedef layer. */
9165 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9166 type1 = ada_check_typedef (type1);
9167
9168 return type1;
14f9c5c9
AS
9169 }
9170}
9171
9172/* A value representing the data at VALADDR/ADDRESS as described by
9173 type TYPE0, but with a standard (static-sized) type that correctly
9174 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9175 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9176 creation of struct values]. */
14f9c5c9 9177
4c4b4cd2
PH
9178static struct value *
9179ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9180 struct value *val0)
14f9c5c9 9181{
1ed6ede0 9182 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9183
14f9c5c9
AS
9184 if (type == type0 && val0 != NULL)
9185 return val0;
d2e4a39e 9186 else
4c4b4cd2
PH
9187 return value_from_contents_and_address (type, 0, address);
9188}
9189
9190/* A value representing VAL, but with a standard (static-sized) type
9191 that correctly describes it. Does not necessarily create a new
9192 value. */
9193
0c3acc09 9194struct value *
4c4b4cd2
PH
9195ada_to_fixed_value (struct value *val)
9196{
c48db5ca
JB
9197 val = unwrap_value (val);
9198 val = ada_to_fixed_value_create (value_type (val),
9199 value_address (val),
9200 val);
9201 return val;
14f9c5c9 9202}
d2e4a39e 9203\f
14f9c5c9 9204
14f9c5c9
AS
9205/* Attributes */
9206
4c4b4cd2
PH
9207/* Table mapping attribute numbers to names.
9208 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9209
d2e4a39e 9210static const char *attribute_names[] = {
14f9c5c9
AS
9211 "<?>",
9212
d2e4a39e 9213 "first",
14f9c5c9
AS
9214 "last",
9215 "length",
9216 "image",
14f9c5c9
AS
9217 "max",
9218 "min",
4c4b4cd2
PH
9219 "modulus",
9220 "pos",
9221 "size",
9222 "tag",
14f9c5c9 9223 "val",
14f9c5c9
AS
9224 0
9225};
9226
d2e4a39e 9227const char *
4c4b4cd2 9228ada_attribute_name (enum exp_opcode n)
14f9c5c9 9229{
4c4b4cd2
PH
9230 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9231 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9232 else
9233 return attribute_names[0];
9234}
9235
4c4b4cd2 9236/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9237
4c4b4cd2
PH
9238static LONGEST
9239pos_atr (struct value *arg)
14f9c5c9 9240{
24209737
PH
9241 struct value *val = coerce_ref (arg);
9242 struct type *type = value_type (val);
aa715135 9243 LONGEST result;
14f9c5c9 9244
d2e4a39e 9245 if (!discrete_type_p (type))
323e0a4a 9246 error (_("'POS only defined on discrete types"));
14f9c5c9 9247
aa715135
JG
9248 if (!discrete_position (type, value_as_long (val), &result))
9249 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9250
aa715135 9251 return result;
4c4b4cd2
PH
9252}
9253
9254static struct value *
3cb382c9 9255value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9256{
3cb382c9 9257 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9258}
9259
4c4b4cd2 9260/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9261
d2e4a39e
AS
9262static struct value *
9263value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9264{
d2e4a39e 9265 if (!discrete_type_p (type))
323e0a4a 9266 error (_("'VAL only defined on discrete types"));
df407dfe 9267 if (!integer_type_p (value_type (arg)))
323e0a4a 9268 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9269
9270 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9271 {
9272 long pos = value_as_long (arg);
5b4ee69b 9273
14f9c5c9 9274 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9275 error (_("argument to 'VAL out of range"));
14e75d8e 9276 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9277 }
9278 else
9279 return value_from_longest (type, value_as_long (arg));
9280}
14f9c5c9 9281\f
d2e4a39e 9282
4c4b4cd2 9283 /* Evaluation */
14f9c5c9 9284
4c4b4cd2
PH
9285/* True if TYPE appears to be an Ada character type.
9286 [At the moment, this is true only for Character and Wide_Character;
9287 It is a heuristic test that could stand improvement]. */
14f9c5c9 9288
d2e4a39e
AS
9289int
9290ada_is_character_type (struct type *type)
14f9c5c9 9291{
7b9f71f2
JB
9292 const char *name;
9293
9294 /* If the type code says it's a character, then assume it really is,
9295 and don't check any further. */
9296 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9297 return 1;
9298
9299 /* Otherwise, assume it's a character type iff it is a discrete type
9300 with a known character type name. */
9301 name = ada_type_name (type);
9302 return (name != NULL
9303 && (TYPE_CODE (type) == TYPE_CODE_INT
9304 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9305 && (strcmp (name, "character") == 0
9306 || strcmp (name, "wide_character") == 0
5a517ebd 9307 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9308 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9309}
9310
4c4b4cd2 9311/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9312
9313int
ebf56fd3 9314ada_is_string_type (struct type *type)
14f9c5c9 9315{
61ee279c 9316 type = ada_check_typedef (type);
d2e4a39e 9317 if (type != NULL
14f9c5c9 9318 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9319 && (ada_is_simple_array_type (type)
9320 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9321 && ada_array_arity (type) == 1)
9322 {
9323 struct type *elttype = ada_array_element_type (type, 1);
9324
9325 return ada_is_character_type (elttype);
9326 }
d2e4a39e 9327 else
14f9c5c9
AS
9328 return 0;
9329}
9330
5bf03f13
JB
9331/* The compiler sometimes provides a parallel XVS type for a given
9332 PAD type. Normally, it is safe to follow the PAD type directly,
9333 but older versions of the compiler have a bug that causes the offset
9334 of its "F" field to be wrong. Following that field in that case
9335 would lead to incorrect results, but this can be worked around
9336 by ignoring the PAD type and using the associated XVS type instead.
9337
9338 Set to True if the debugger should trust the contents of PAD types.
9339 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9340static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9341
9342/* True if TYPE is a struct type introduced by the compiler to force the
9343 alignment of a value. Such types have a single field with a
4c4b4cd2 9344 distinctive name. */
14f9c5c9
AS
9345
9346int
ebf56fd3 9347ada_is_aligner_type (struct type *type)
14f9c5c9 9348{
61ee279c 9349 type = ada_check_typedef (type);
714e53ab 9350
5bf03f13 9351 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9352 return 0;
9353
14f9c5c9 9354 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9355 && TYPE_NFIELDS (type) == 1
9356 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9357}
9358
9359/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9360 the parallel type. */
14f9c5c9 9361
d2e4a39e
AS
9362struct type *
9363ada_get_base_type (struct type *raw_type)
14f9c5c9 9364{
d2e4a39e
AS
9365 struct type *real_type_namer;
9366 struct type *raw_real_type;
14f9c5c9
AS
9367
9368 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9369 return raw_type;
9370
284614f0
JB
9371 if (ada_is_aligner_type (raw_type))
9372 /* The encoding specifies that we should always use the aligner type.
9373 So, even if this aligner type has an associated XVS type, we should
9374 simply ignore it.
9375
9376 According to the compiler gurus, an XVS type parallel to an aligner
9377 type may exist because of a stabs limitation. In stabs, aligner
9378 types are empty because the field has a variable-sized type, and
9379 thus cannot actually be used as an aligner type. As a result,
9380 we need the associated parallel XVS type to decode the type.
9381 Since the policy in the compiler is to not change the internal
9382 representation based on the debugging info format, we sometimes
9383 end up having a redundant XVS type parallel to the aligner type. */
9384 return raw_type;
9385
14f9c5c9 9386 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9387 if (real_type_namer == NULL
14f9c5c9
AS
9388 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9389 || TYPE_NFIELDS (real_type_namer) != 1)
9390 return raw_type;
9391
f80d3ff2
JB
9392 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9393 {
9394 /* This is an older encoding form where the base type needs to be
9395 looked up by name. We prefer the newer enconding because it is
9396 more efficient. */
9397 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9398 if (raw_real_type == NULL)
9399 return raw_type;
9400 else
9401 return raw_real_type;
9402 }
9403
9404 /* The field in our XVS type is a reference to the base type. */
9405 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9406}
14f9c5c9 9407
4c4b4cd2 9408/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9409
d2e4a39e
AS
9410struct type *
9411ada_aligned_type (struct type *type)
14f9c5c9
AS
9412{
9413 if (ada_is_aligner_type (type))
9414 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9415 else
9416 return ada_get_base_type (type);
9417}
9418
9419
9420/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9421 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9422
fc1a4b47
AC
9423const gdb_byte *
9424ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9425{
d2e4a39e 9426 if (ada_is_aligner_type (type))
14f9c5c9 9427 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9428 valaddr +
9429 TYPE_FIELD_BITPOS (type,
9430 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9431 else
9432 return valaddr;
9433}
9434
4c4b4cd2
PH
9435
9436
14f9c5c9 9437/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9438 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9439const char *
9440ada_enum_name (const char *name)
14f9c5c9 9441{
4c4b4cd2
PH
9442 static char *result;
9443 static size_t result_len = 0;
e6a959d6 9444 const char *tmp;
14f9c5c9 9445
4c4b4cd2
PH
9446 /* First, unqualify the enumeration name:
9447 1. Search for the last '.' character. If we find one, then skip
177b42fe 9448 all the preceding characters, the unqualified name starts
76a01679 9449 right after that dot.
4c4b4cd2 9450 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9451 translates dots into "__". Search forward for double underscores,
9452 but stop searching when we hit an overloading suffix, which is
9453 of the form "__" followed by digits. */
4c4b4cd2 9454
c3e5cd34
PH
9455 tmp = strrchr (name, '.');
9456 if (tmp != NULL)
4c4b4cd2
PH
9457 name = tmp + 1;
9458 else
14f9c5c9 9459 {
4c4b4cd2
PH
9460 while ((tmp = strstr (name, "__")) != NULL)
9461 {
9462 if (isdigit (tmp[2]))
9463 break;
9464 else
9465 name = tmp + 2;
9466 }
14f9c5c9
AS
9467 }
9468
9469 if (name[0] == 'Q')
9470 {
14f9c5c9 9471 int v;
5b4ee69b 9472
14f9c5c9 9473 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9474 {
9475 if (sscanf (name + 2, "%x", &v) != 1)
9476 return name;
9477 }
14f9c5c9 9478 else
4c4b4cd2 9479 return name;
14f9c5c9 9480
4c4b4cd2 9481 GROW_VECT (result, result_len, 16);
14f9c5c9 9482 if (isascii (v) && isprint (v))
88c15c34 9483 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9484 else if (name[1] == 'U')
88c15c34 9485 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9486 else
88c15c34 9487 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9488
9489 return result;
9490 }
d2e4a39e 9491 else
4c4b4cd2 9492 {
c3e5cd34
PH
9493 tmp = strstr (name, "__");
9494 if (tmp == NULL)
9495 tmp = strstr (name, "$");
9496 if (tmp != NULL)
4c4b4cd2
PH
9497 {
9498 GROW_VECT (result, result_len, tmp - name + 1);
9499 strncpy (result, name, tmp - name);
9500 result[tmp - name] = '\0';
9501 return result;
9502 }
9503
9504 return name;
9505 }
14f9c5c9
AS
9506}
9507
14f9c5c9
AS
9508/* Evaluate the subexpression of EXP starting at *POS as for
9509 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9510 expression. */
14f9c5c9 9511
d2e4a39e
AS
9512static struct value *
9513evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9514{
4b27a620 9515 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9516}
9517
9518/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9519 value it wraps. */
14f9c5c9 9520
d2e4a39e
AS
9521static struct value *
9522unwrap_value (struct value *val)
14f9c5c9 9523{
df407dfe 9524 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9525
14f9c5c9
AS
9526 if (ada_is_aligner_type (type))
9527 {
de4d072f 9528 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9529 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9530
14f9c5c9 9531 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9532 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9533
9534 return unwrap_value (v);
9535 }
d2e4a39e 9536 else
14f9c5c9 9537 {
d2e4a39e 9538 struct type *raw_real_type =
61ee279c 9539 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9540
5bf03f13
JB
9541 /* If there is no parallel XVS or XVE type, then the value is
9542 already unwrapped. Return it without further modification. */
9543 if ((type == raw_real_type)
9544 && ada_find_parallel_type (type, "___XVE") == NULL)
9545 return val;
14f9c5c9 9546
d2e4a39e 9547 return
4c4b4cd2
PH
9548 coerce_unspec_val_to_type
9549 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9550 value_address (val),
1ed6ede0 9551 NULL, 1));
14f9c5c9
AS
9552 }
9553}
d2e4a39e
AS
9554
9555static struct value *
9556cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9557{
9558 LONGEST val;
9559
df407dfe 9560 if (type == value_type (arg))
14f9c5c9 9561 return arg;
df407dfe 9562 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9563 val = ada_float_to_fixed (type,
df407dfe 9564 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9565 value_as_long (arg)));
d2e4a39e 9566 else
14f9c5c9 9567 {
a53b7a21 9568 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9569
14f9c5c9
AS
9570 val = ada_float_to_fixed (type, argd);
9571 }
9572
9573 return value_from_longest (type, val);
9574}
9575
d2e4a39e 9576static struct value *
a53b7a21 9577cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9578{
df407dfe 9579 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9580 value_as_long (arg));
5b4ee69b 9581
a53b7a21 9582 return value_from_double (type, val);
14f9c5c9
AS
9583}
9584
d99dcf51
JB
9585/* Given two array types T1 and T2, return nonzero iff both arrays
9586 contain the same number of elements. */
9587
9588static int
9589ada_same_array_size_p (struct type *t1, struct type *t2)
9590{
9591 LONGEST lo1, hi1, lo2, hi2;
9592
9593 /* Get the array bounds in order to verify that the size of
9594 the two arrays match. */
9595 if (!get_array_bounds (t1, &lo1, &hi1)
9596 || !get_array_bounds (t2, &lo2, &hi2))
9597 error (_("unable to determine array bounds"));
9598
9599 /* To make things easier for size comparison, normalize a bit
9600 the case of empty arrays by making sure that the difference
9601 between upper bound and lower bound is always -1. */
9602 if (lo1 > hi1)
9603 hi1 = lo1 - 1;
9604 if (lo2 > hi2)
9605 hi2 = lo2 - 1;
9606
9607 return (hi1 - lo1 == hi2 - lo2);
9608}
9609
9610/* Assuming that VAL is an array of integrals, and TYPE represents
9611 an array with the same number of elements, but with wider integral
9612 elements, return an array "casted" to TYPE. In practice, this
9613 means that the returned array is built by casting each element
9614 of the original array into TYPE's (wider) element type. */
9615
9616static struct value *
9617ada_promote_array_of_integrals (struct type *type, struct value *val)
9618{
9619 struct type *elt_type = TYPE_TARGET_TYPE (type);
9620 LONGEST lo, hi;
9621 struct value *res;
9622 LONGEST i;
9623
9624 /* Verify that both val and type are arrays of scalars, and
9625 that the size of val's elements is smaller than the size
9626 of type's element. */
9627 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9628 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9629 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9630 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9631 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9632 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9633
9634 if (!get_array_bounds (type, &lo, &hi))
9635 error (_("unable to determine array bounds"));
9636
9637 res = allocate_value (type);
9638
9639 /* Promote each array element. */
9640 for (i = 0; i < hi - lo + 1; i++)
9641 {
9642 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9643
9644 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9645 value_contents_all (elt), TYPE_LENGTH (elt_type));
9646 }
9647
9648 return res;
9649}
9650
4c4b4cd2
PH
9651/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9652 return the converted value. */
9653
d2e4a39e
AS
9654static struct value *
9655coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9656{
df407dfe 9657 struct type *type2 = value_type (val);
5b4ee69b 9658
14f9c5c9
AS
9659 if (type == type2)
9660 return val;
9661
61ee279c
PH
9662 type2 = ada_check_typedef (type2);
9663 type = ada_check_typedef (type);
14f9c5c9 9664
d2e4a39e
AS
9665 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9666 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9667 {
9668 val = ada_value_ind (val);
df407dfe 9669 type2 = value_type (val);
14f9c5c9
AS
9670 }
9671
d2e4a39e 9672 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9673 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9674 {
d99dcf51
JB
9675 if (!ada_same_array_size_p (type, type2))
9676 error (_("cannot assign arrays of different length"));
9677
9678 if (is_integral_type (TYPE_TARGET_TYPE (type))
9679 && is_integral_type (TYPE_TARGET_TYPE (type2))
9680 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9681 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9682 {
9683 /* Allow implicit promotion of the array elements to
9684 a wider type. */
9685 return ada_promote_array_of_integrals (type, val);
9686 }
9687
9688 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9689 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9690 error (_("Incompatible types in assignment"));
04624583 9691 deprecated_set_value_type (val, type);
14f9c5c9 9692 }
d2e4a39e 9693 return val;
14f9c5c9
AS
9694}
9695
4c4b4cd2
PH
9696static struct value *
9697ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9698{
9699 struct value *val;
9700 struct type *type1, *type2;
9701 LONGEST v, v1, v2;
9702
994b9211
AC
9703 arg1 = coerce_ref (arg1);
9704 arg2 = coerce_ref (arg2);
18af8284
JB
9705 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9706 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9707
76a01679
JB
9708 if (TYPE_CODE (type1) != TYPE_CODE_INT
9709 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9710 return value_binop (arg1, arg2, op);
9711
76a01679 9712 switch (op)
4c4b4cd2
PH
9713 {
9714 case BINOP_MOD:
9715 case BINOP_DIV:
9716 case BINOP_REM:
9717 break;
9718 default:
9719 return value_binop (arg1, arg2, op);
9720 }
9721
9722 v2 = value_as_long (arg2);
9723 if (v2 == 0)
323e0a4a 9724 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9725
9726 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9727 return value_binop (arg1, arg2, op);
9728
9729 v1 = value_as_long (arg1);
9730 switch (op)
9731 {
9732 case BINOP_DIV:
9733 v = v1 / v2;
76a01679
JB
9734 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9735 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9736 break;
9737 case BINOP_REM:
9738 v = v1 % v2;
76a01679
JB
9739 if (v * v1 < 0)
9740 v -= v2;
4c4b4cd2
PH
9741 break;
9742 default:
9743 /* Should not reach this point. */
9744 v = 0;
9745 }
9746
9747 val = allocate_value (type1);
990a07ab 9748 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9749 TYPE_LENGTH (value_type (val)),
9750 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9751 return val;
9752}
9753
9754static int
9755ada_value_equal (struct value *arg1, struct value *arg2)
9756{
df407dfe
AC
9757 if (ada_is_direct_array_type (value_type (arg1))
9758 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9759 {
f58b38bf
JB
9760 /* Automatically dereference any array reference before
9761 we attempt to perform the comparison. */
9762 arg1 = ada_coerce_ref (arg1);
9763 arg2 = ada_coerce_ref (arg2);
9764
4c4b4cd2
PH
9765 arg1 = ada_coerce_to_simple_array (arg1);
9766 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9767 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9768 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9769 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9770 /* FIXME: The following works only for types whose
76a01679
JB
9771 representations use all bits (no padding or undefined bits)
9772 and do not have user-defined equality. */
9773 return
df407dfe 9774 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9775 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9776 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9777 }
9778 return value_equal (arg1, arg2);
9779}
9780
52ce6436
PH
9781/* Total number of component associations in the aggregate starting at
9782 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9783 OP_AGGREGATE. */
52ce6436
PH
9784
9785static int
9786num_component_specs (struct expression *exp, int pc)
9787{
9788 int n, m, i;
5b4ee69b 9789
52ce6436
PH
9790 m = exp->elts[pc + 1].longconst;
9791 pc += 3;
9792 n = 0;
9793 for (i = 0; i < m; i += 1)
9794 {
9795 switch (exp->elts[pc].opcode)
9796 {
9797 default:
9798 n += 1;
9799 break;
9800 case OP_CHOICES:
9801 n += exp->elts[pc + 1].longconst;
9802 break;
9803 }
9804 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9805 }
9806 return n;
9807}
9808
9809/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9810 component of LHS (a simple array or a record), updating *POS past
9811 the expression, assuming that LHS is contained in CONTAINER. Does
9812 not modify the inferior's memory, nor does it modify LHS (unless
9813 LHS == CONTAINER). */
9814
9815static void
9816assign_component (struct value *container, struct value *lhs, LONGEST index,
9817 struct expression *exp, int *pos)
9818{
9819 struct value *mark = value_mark ();
9820 struct value *elt;
5b4ee69b 9821
52ce6436
PH
9822 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9823 {
22601c15
UW
9824 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9825 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9826
52ce6436
PH
9827 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9828 }
9829 else
9830 {
9831 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9832 elt = ada_to_fixed_value (elt);
52ce6436
PH
9833 }
9834
9835 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9836 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9837 else
9838 value_assign_to_component (container, elt,
9839 ada_evaluate_subexp (NULL, exp, pos,
9840 EVAL_NORMAL));
9841
9842 value_free_to_mark (mark);
9843}
9844
9845/* Assuming that LHS represents an lvalue having a record or array
9846 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9847 of that aggregate's value to LHS, advancing *POS past the
9848 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9849 lvalue containing LHS (possibly LHS itself). Does not modify
9850 the inferior's memory, nor does it modify the contents of
0963b4bd 9851 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9852
9853static struct value *
9854assign_aggregate (struct value *container,
9855 struct value *lhs, struct expression *exp,
9856 int *pos, enum noside noside)
9857{
9858 struct type *lhs_type;
9859 int n = exp->elts[*pos+1].longconst;
9860 LONGEST low_index, high_index;
9861 int num_specs;
9862 LONGEST *indices;
9863 int max_indices, num_indices;
52ce6436 9864 int i;
52ce6436
PH
9865
9866 *pos += 3;
9867 if (noside != EVAL_NORMAL)
9868 {
52ce6436
PH
9869 for (i = 0; i < n; i += 1)
9870 ada_evaluate_subexp (NULL, exp, pos, noside);
9871 return container;
9872 }
9873
9874 container = ada_coerce_ref (container);
9875 if (ada_is_direct_array_type (value_type (container)))
9876 container = ada_coerce_to_simple_array (container);
9877 lhs = ada_coerce_ref (lhs);
9878 if (!deprecated_value_modifiable (lhs))
9879 error (_("Left operand of assignment is not a modifiable lvalue."));
9880
9881 lhs_type = value_type (lhs);
9882 if (ada_is_direct_array_type (lhs_type))
9883 {
9884 lhs = ada_coerce_to_simple_array (lhs);
9885 lhs_type = value_type (lhs);
9886 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9887 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9888 }
9889 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9890 {
9891 low_index = 0;
9892 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9893 }
9894 else
9895 error (_("Left-hand side must be array or record."));
9896
9897 num_specs = num_component_specs (exp, *pos - 3);
9898 max_indices = 4 * num_specs + 4;
8d749320 9899 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9900 indices[0] = indices[1] = low_index - 1;
9901 indices[2] = indices[3] = high_index + 1;
9902 num_indices = 4;
9903
9904 for (i = 0; i < n; i += 1)
9905 {
9906 switch (exp->elts[*pos].opcode)
9907 {
1fbf5ada
JB
9908 case OP_CHOICES:
9909 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9910 &num_indices, max_indices,
9911 low_index, high_index);
9912 break;
9913 case OP_POSITIONAL:
9914 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9915 &num_indices, max_indices,
9916 low_index, high_index);
1fbf5ada
JB
9917 break;
9918 case OP_OTHERS:
9919 if (i != n-1)
9920 error (_("Misplaced 'others' clause"));
9921 aggregate_assign_others (container, lhs, exp, pos, indices,
9922 num_indices, low_index, high_index);
9923 break;
9924 default:
9925 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9926 }
9927 }
9928
9929 return container;
9930}
9931
9932/* Assign into the component of LHS indexed by the OP_POSITIONAL
9933 construct at *POS, updating *POS past the construct, given that
9934 the positions are relative to lower bound LOW, where HIGH is the
9935 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9936 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9937 assign_aggregate. */
52ce6436
PH
9938static void
9939aggregate_assign_positional (struct value *container,
9940 struct value *lhs, struct expression *exp,
9941 int *pos, LONGEST *indices, int *num_indices,
9942 int max_indices, LONGEST low, LONGEST high)
9943{
9944 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9945
9946 if (ind - 1 == high)
e1d5a0d2 9947 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9948 if (ind <= high)
9949 {
9950 add_component_interval (ind, ind, indices, num_indices, max_indices);
9951 *pos += 3;
9952 assign_component (container, lhs, ind, exp, pos);
9953 }
9954 else
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956}
9957
9958/* Assign into the components of LHS indexed by the OP_CHOICES
9959 construct at *POS, updating *POS past the construct, given that
9960 the allowable indices are LOW..HIGH. Record the indices assigned
9961 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9962 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9963static void
9964aggregate_assign_from_choices (struct value *container,
9965 struct value *lhs, struct expression *exp,
9966 int *pos, LONGEST *indices, int *num_indices,
9967 int max_indices, LONGEST low, LONGEST high)
9968{
9969 int j;
9970 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9971 int choice_pos, expr_pc;
9972 int is_array = ada_is_direct_array_type (value_type (lhs));
9973
9974 choice_pos = *pos += 3;
9975
9976 for (j = 0; j < n_choices; j += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9978 expr_pc = *pos;
9979 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9980
9981 for (j = 0; j < n_choices; j += 1)
9982 {
9983 LONGEST lower, upper;
9984 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9985
52ce6436
PH
9986 if (op == OP_DISCRETE_RANGE)
9987 {
9988 choice_pos += 1;
9989 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9990 EVAL_NORMAL));
9991 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9992 EVAL_NORMAL));
9993 }
9994 else if (is_array)
9995 {
9996 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9997 EVAL_NORMAL));
9998 upper = lower;
9999 }
10000 else
10001 {
10002 int ind;
0d5cff50 10003 const char *name;
5b4ee69b 10004
52ce6436
PH
10005 switch (op)
10006 {
10007 case OP_NAME:
10008 name = &exp->elts[choice_pos + 2].string;
10009 break;
10010 case OP_VAR_VALUE:
10011 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10012 break;
10013 default:
10014 error (_("Invalid record component association."));
10015 }
10016 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10017 ind = 0;
10018 if (! find_struct_field (name, value_type (lhs), 0,
10019 NULL, NULL, NULL, NULL, &ind))
10020 error (_("Unknown component name: %s."), name);
10021 lower = upper = ind;
10022 }
10023
10024 if (lower <= upper && (lower < low || upper > high))
10025 error (_("Index in component association out of bounds."));
10026
10027 add_component_interval (lower, upper, indices, num_indices,
10028 max_indices);
10029 while (lower <= upper)
10030 {
10031 int pos1;
5b4ee69b 10032
52ce6436
PH
10033 pos1 = expr_pc;
10034 assign_component (container, lhs, lower, exp, &pos1);
10035 lower += 1;
10036 }
10037 }
10038}
10039
10040/* Assign the value of the expression in the OP_OTHERS construct in
10041 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10042 have not been previously assigned. The index intervals already assigned
10043 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10044 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10045static void
10046aggregate_assign_others (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int num_indices,
10049 LONGEST low, LONGEST high)
10050{
10051 int i;
5ce64950 10052 int expr_pc = *pos + 1;
52ce6436
PH
10053
10054 for (i = 0; i < num_indices - 2; i += 2)
10055 {
10056 LONGEST ind;
5b4ee69b 10057
52ce6436
PH
10058 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10059 {
5ce64950 10060 int localpos;
5b4ee69b 10061
5ce64950
MS
10062 localpos = expr_pc;
10063 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10064 }
10065 }
10066 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10067}
10068
10069/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10070 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10071 modifying *SIZE as needed. It is an error if *SIZE exceeds
10072 MAX_SIZE. The resulting intervals do not overlap. */
10073static void
10074add_component_interval (LONGEST low, LONGEST high,
10075 LONGEST* indices, int *size, int max_size)
10076{
10077 int i, j;
5b4ee69b 10078
52ce6436
PH
10079 for (i = 0; i < *size; i += 2) {
10080 if (high >= indices[i] && low <= indices[i + 1])
10081 {
10082 int kh;
5b4ee69b 10083
52ce6436
PH
10084 for (kh = i + 2; kh < *size; kh += 2)
10085 if (high < indices[kh])
10086 break;
10087 if (low < indices[i])
10088 indices[i] = low;
10089 indices[i + 1] = indices[kh - 1];
10090 if (high > indices[i + 1])
10091 indices[i + 1] = high;
10092 memcpy (indices + i + 2, indices + kh, *size - kh);
10093 *size -= kh - i - 2;
10094 return;
10095 }
10096 else if (high < indices[i])
10097 break;
10098 }
10099
10100 if (*size == max_size)
10101 error (_("Internal error: miscounted aggregate components."));
10102 *size += 2;
10103 for (j = *size-1; j >= i+2; j -= 1)
10104 indices[j] = indices[j - 2];
10105 indices[i] = low;
10106 indices[i + 1] = high;
10107}
10108
6e48bd2c
JB
10109/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10110 is different. */
10111
10112static struct value *
10113ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10114{
10115 if (type == ada_check_typedef (value_type (arg2)))
10116 return arg2;
10117
10118 if (ada_is_fixed_point_type (type))
10119 return (cast_to_fixed (type, arg2));
10120
10121 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10122 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10123
10124 return value_cast (type, arg2);
10125}
10126
284614f0
JB
10127/* Evaluating Ada expressions, and printing their result.
10128 ------------------------------------------------------
10129
21649b50
JB
10130 1. Introduction:
10131 ----------------
10132
284614f0
JB
10133 We usually evaluate an Ada expression in order to print its value.
10134 We also evaluate an expression in order to print its type, which
10135 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10136 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10137 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10138 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10139 similar.
10140
10141 Evaluating expressions is a little more complicated for Ada entities
10142 than it is for entities in languages such as C. The main reason for
10143 this is that Ada provides types whose definition might be dynamic.
10144 One example of such types is variant records. Or another example
10145 would be an array whose bounds can only be known at run time.
10146
10147 The following description is a general guide as to what should be
10148 done (and what should NOT be done) in order to evaluate an expression
10149 involving such types, and when. This does not cover how the semantic
10150 information is encoded by GNAT as this is covered separatly. For the
10151 document used as the reference for the GNAT encoding, see exp_dbug.ads
10152 in the GNAT sources.
10153
10154 Ideally, we should embed each part of this description next to its
10155 associated code. Unfortunately, the amount of code is so vast right
10156 now that it's hard to see whether the code handling a particular
10157 situation might be duplicated or not. One day, when the code is
10158 cleaned up, this guide might become redundant with the comments
10159 inserted in the code, and we might want to remove it.
10160
21649b50
JB
10161 2. ``Fixing'' an Entity, the Simple Case:
10162 -----------------------------------------
10163
284614f0
JB
10164 When evaluating Ada expressions, the tricky issue is that they may
10165 reference entities whose type contents and size are not statically
10166 known. Consider for instance a variant record:
10167
10168 type Rec (Empty : Boolean := True) is record
10169 case Empty is
10170 when True => null;
10171 when False => Value : Integer;
10172 end case;
10173 end record;
10174 Yes : Rec := (Empty => False, Value => 1);
10175 No : Rec := (empty => True);
10176
10177 The size and contents of that record depends on the value of the
10178 descriminant (Rec.Empty). At this point, neither the debugging
10179 information nor the associated type structure in GDB are able to
10180 express such dynamic types. So what the debugger does is to create
10181 "fixed" versions of the type that applies to the specific object.
10182 We also informally refer to this opperation as "fixing" an object,
10183 which means creating its associated fixed type.
10184
10185 Example: when printing the value of variable "Yes" above, its fixed
10186 type would look like this:
10187
10188 type Rec is record
10189 Empty : Boolean;
10190 Value : Integer;
10191 end record;
10192
10193 On the other hand, if we printed the value of "No", its fixed type
10194 would become:
10195
10196 type Rec is record
10197 Empty : Boolean;
10198 end record;
10199
10200 Things become a little more complicated when trying to fix an entity
10201 with a dynamic type that directly contains another dynamic type,
10202 such as an array of variant records, for instance. There are
10203 two possible cases: Arrays, and records.
10204
21649b50
JB
10205 3. ``Fixing'' Arrays:
10206 ---------------------
10207
10208 The type structure in GDB describes an array in terms of its bounds,
10209 and the type of its elements. By design, all elements in the array
10210 have the same type and we cannot represent an array of variant elements
10211 using the current type structure in GDB. When fixing an array,
10212 we cannot fix the array element, as we would potentially need one
10213 fixed type per element of the array. As a result, the best we can do
10214 when fixing an array is to produce an array whose bounds and size
10215 are correct (allowing us to read it from memory), but without having
10216 touched its element type. Fixing each element will be done later,
10217 when (if) necessary.
10218
10219 Arrays are a little simpler to handle than records, because the same
10220 amount of memory is allocated for each element of the array, even if
1b536f04 10221 the amount of space actually used by each element differs from element
21649b50 10222 to element. Consider for instance the following array of type Rec:
284614f0
JB
10223
10224 type Rec_Array is array (1 .. 2) of Rec;
10225
1b536f04
JB
10226 The actual amount of memory occupied by each element might be different
10227 from element to element, depending on the value of their discriminant.
21649b50 10228 But the amount of space reserved for each element in the array remains
1b536f04 10229 fixed regardless. So we simply need to compute that size using
21649b50
JB
10230 the debugging information available, from which we can then determine
10231 the array size (we multiply the number of elements of the array by
10232 the size of each element).
10233
10234 The simplest case is when we have an array of a constrained element
10235 type. For instance, consider the following type declarations:
10236
10237 type Bounded_String (Max_Size : Integer) is
10238 Length : Integer;
10239 Buffer : String (1 .. Max_Size);
10240 end record;
10241 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10242
10243 In this case, the compiler describes the array as an array of
10244 variable-size elements (identified by its XVS suffix) for which
10245 the size can be read in the parallel XVZ variable.
10246
10247 In the case of an array of an unconstrained element type, the compiler
10248 wraps the array element inside a private PAD type. This type should not
10249 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10250 that we also use the adjective "aligner" in our code to designate
10251 these wrapper types.
10252
1b536f04 10253 In some cases, the size allocated for each element is statically
21649b50
JB
10254 known. In that case, the PAD type already has the correct size,
10255 and the array element should remain unfixed.
10256
10257 But there are cases when this size is not statically known.
10258 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10259
10260 type Dynamic is array (1 .. Five) of Integer;
10261 type Wrapper (Has_Length : Boolean := False) is record
10262 Data : Dynamic;
10263 case Has_Length is
10264 when True => Length : Integer;
10265 when False => null;
10266 end case;
10267 end record;
10268 type Wrapper_Array is array (1 .. 2) of Wrapper;
10269
10270 Hello : Wrapper_Array := (others => (Has_Length => True,
10271 Data => (others => 17),
10272 Length => 1));
10273
10274
10275 The debugging info would describe variable Hello as being an
10276 array of a PAD type. The size of that PAD type is not statically
10277 known, but can be determined using a parallel XVZ variable.
10278 In that case, a copy of the PAD type with the correct size should
10279 be used for the fixed array.
10280
21649b50
JB
10281 3. ``Fixing'' record type objects:
10282 ----------------------------------
10283
10284 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10285 record types. In this case, in order to compute the associated
10286 fixed type, we need to determine the size and offset of each of
10287 its components. This, in turn, requires us to compute the fixed
10288 type of each of these components.
10289
10290 Consider for instance the example:
10291
10292 type Bounded_String (Max_Size : Natural) is record
10293 Str : String (1 .. Max_Size);
10294 Length : Natural;
10295 end record;
10296 My_String : Bounded_String (Max_Size => 10);
10297
10298 In that case, the position of field "Length" depends on the size
10299 of field Str, which itself depends on the value of the Max_Size
21649b50 10300 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10301 we need to fix the type of field Str. Therefore, fixing a variant
10302 record requires us to fix each of its components.
10303
10304 However, if a component does not have a dynamic size, the component
10305 should not be fixed. In particular, fields that use a PAD type
10306 should not fixed. Here is an example where this might happen
10307 (assuming type Rec above):
10308
10309 type Container (Big : Boolean) is record
10310 First : Rec;
10311 After : Integer;
10312 case Big is
10313 when True => Another : Integer;
10314 when False => null;
10315 end case;
10316 end record;
10317 My_Container : Container := (Big => False,
10318 First => (Empty => True),
10319 After => 42);
10320
10321 In that example, the compiler creates a PAD type for component First,
10322 whose size is constant, and then positions the component After just
10323 right after it. The offset of component After is therefore constant
10324 in this case.
10325
10326 The debugger computes the position of each field based on an algorithm
10327 that uses, among other things, the actual position and size of the field
21649b50
JB
10328 preceding it. Let's now imagine that the user is trying to print
10329 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10330 end up computing the offset of field After based on the size of the
10331 fixed version of field First. And since in our example First has
10332 only one actual field, the size of the fixed type is actually smaller
10333 than the amount of space allocated to that field, and thus we would
10334 compute the wrong offset of field After.
10335
21649b50
JB
10336 To make things more complicated, we need to watch out for dynamic
10337 components of variant records (identified by the ___XVL suffix in
10338 the component name). Even if the target type is a PAD type, the size
10339 of that type might not be statically known. So the PAD type needs
10340 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10341 we might end up with the wrong size for our component. This can be
10342 observed with the following type declarations:
284614f0
JB
10343
10344 type Octal is new Integer range 0 .. 7;
10345 type Octal_Array is array (Positive range <>) of Octal;
10346 pragma Pack (Octal_Array);
10347
10348 type Octal_Buffer (Size : Positive) is record
10349 Buffer : Octal_Array (1 .. Size);
10350 Length : Integer;
10351 end record;
10352
10353 In that case, Buffer is a PAD type whose size is unset and needs
10354 to be computed by fixing the unwrapped type.
10355
21649b50
JB
10356 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10357 ----------------------------------------------------------
10358
10359 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10360 thus far, be actually fixed?
10361
10362 The answer is: Only when referencing that element. For instance
10363 when selecting one component of a record, this specific component
10364 should be fixed at that point in time. Or when printing the value
10365 of a record, each component should be fixed before its value gets
10366 printed. Similarly for arrays, the element of the array should be
10367 fixed when printing each element of the array, or when extracting
10368 one element out of that array. On the other hand, fixing should
10369 not be performed on the elements when taking a slice of an array!
10370
10371 Note that one of the side-effects of miscomputing the offset and
10372 size of each field is that we end up also miscomputing the size
10373 of the containing type. This can have adverse results when computing
10374 the value of an entity. GDB fetches the value of an entity based
10375 on the size of its type, and thus a wrong size causes GDB to fetch
10376 the wrong amount of memory. In the case where the computed size is
10377 too small, GDB fetches too little data to print the value of our
10378 entiry. Results in this case as unpredicatble, as we usually read
10379 past the buffer containing the data =:-o. */
10380
10381/* Implement the evaluate_exp routine in the exp_descriptor structure
10382 for the Ada language. */
10383
52ce6436 10384static struct value *
ebf56fd3 10385ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10386 int *pos, enum noside noside)
14f9c5c9
AS
10387{
10388 enum exp_opcode op;
b5385fc0 10389 int tem;
14f9c5c9 10390 int pc;
5ec18f2b 10391 int preeval_pos;
14f9c5c9
AS
10392 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10393 struct type *type;
52ce6436 10394 int nargs, oplen;
d2e4a39e 10395 struct value **argvec;
14f9c5c9 10396
d2e4a39e
AS
10397 pc = *pos;
10398 *pos += 1;
14f9c5c9
AS
10399 op = exp->elts[pc].opcode;
10400
d2e4a39e 10401 switch (op)
14f9c5c9
AS
10402 {
10403 default:
10404 *pos -= 1;
6e48bd2c 10405 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10406
10407 if (noside == EVAL_NORMAL)
10408 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10409
10410 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10411 then we need to perform the conversion manually, because
10412 evaluate_subexp_standard doesn't do it. This conversion is
10413 necessary in Ada because the different kinds of float/fixed
10414 types in Ada have different representations.
10415
10416 Similarly, we need to perform the conversion from OP_LONG
10417 ourselves. */
10418 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10419 arg1 = ada_value_cast (expect_type, arg1, noside);
10420
10421 return arg1;
4c4b4cd2
PH
10422
10423 case OP_STRING:
10424 {
76a01679 10425 struct value *result;
5b4ee69b 10426
76a01679
JB
10427 *pos -= 1;
10428 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10429 /* The result type will have code OP_STRING, bashed there from
10430 OP_ARRAY. Bash it back. */
df407dfe
AC
10431 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10432 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10433 return result;
4c4b4cd2 10434 }
14f9c5c9
AS
10435
10436 case UNOP_CAST:
10437 (*pos) += 2;
10438 type = exp->elts[pc + 1].type;
10439 arg1 = evaluate_subexp (type, exp, pos, noside);
10440 if (noside == EVAL_SKIP)
4c4b4cd2 10441 goto nosideret;
6e48bd2c 10442 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10443 return arg1;
10444
4c4b4cd2
PH
10445 case UNOP_QUAL:
10446 (*pos) += 2;
10447 type = exp->elts[pc + 1].type;
10448 return ada_evaluate_subexp (type, exp, pos, noside);
10449
14f9c5c9
AS
10450 case BINOP_ASSIGN:
10451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10452 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10453 {
10454 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10455 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10456 return arg1;
10457 return ada_value_assign (arg1, arg1);
10458 }
003f3813
JB
10459 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10460 except if the lhs of our assignment is a convenience variable.
10461 In the case of assigning to a convenience variable, the lhs
10462 should be exactly the result of the evaluation of the rhs. */
10463 type = value_type (arg1);
10464 if (VALUE_LVAL (arg1) == lval_internalvar)
10465 type = NULL;
10466 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10467 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10468 return arg1;
df407dfe
AC
10469 if (ada_is_fixed_point_type (value_type (arg1)))
10470 arg2 = cast_to_fixed (value_type (arg1), arg2);
10471 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10472 error
323e0a4a 10473 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10474 else
df407dfe 10475 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10476 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10477
10478 case BINOP_ADD:
10479 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10480 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10481 if (noside == EVAL_SKIP)
4c4b4cd2 10482 goto nosideret;
2ac8a782
JB
10483 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10484 return (value_from_longest
10485 (value_type (arg1),
10486 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10487 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10488 return (value_from_longest
10489 (value_type (arg2),
10490 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10491 if ((ada_is_fixed_point_type (value_type (arg1))
10492 || ada_is_fixed_point_type (value_type (arg2)))
10493 && value_type (arg1) != value_type (arg2))
323e0a4a 10494 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10495 /* Do the addition, and cast the result to the type of the first
10496 argument. We cannot cast the result to a reference type, so if
10497 ARG1 is a reference type, find its underlying type. */
10498 type = value_type (arg1);
10499 while (TYPE_CODE (type) == TYPE_CODE_REF)
10500 type = TYPE_TARGET_TYPE (type);
f44316fa 10501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10502 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10503
10504 case BINOP_SUB:
10505 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10507 if (noside == EVAL_SKIP)
4c4b4cd2 10508 goto nosideret;
2ac8a782
JB
10509 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10510 return (value_from_longest
10511 (value_type (arg1),
10512 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10513 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg2),
10516 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10517 if ((ada_is_fixed_point_type (value_type (arg1))
10518 || ada_is_fixed_point_type (value_type (arg2)))
10519 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10520 error (_("Operands of fixed-point subtraction "
10521 "must have the same type"));
b7789565
JB
10522 /* Do the substraction, and cast the result to the type of the first
10523 argument. We cannot cast the result to a reference type, so if
10524 ARG1 is a reference type, find its underlying type. */
10525 type = value_type (arg1);
10526 while (TYPE_CODE (type) == TYPE_CODE_REF)
10527 type = TYPE_TARGET_TYPE (type);
f44316fa 10528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10529 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10530
10531 case BINOP_MUL:
10532 case BINOP_DIV:
e1578042
JB
10533 case BINOP_REM:
10534 case BINOP_MOD:
14f9c5c9
AS
10535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10536 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10537 if (noside == EVAL_SKIP)
4c4b4cd2 10538 goto nosideret;
e1578042 10539 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10540 {
10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10542 return value_zero (value_type (arg1), not_lval);
10543 }
14f9c5c9 10544 else
4c4b4cd2 10545 {
a53b7a21 10546 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10547 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10548 arg1 = cast_from_fixed (type, arg1);
df407dfe 10549 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10550 arg2 = cast_from_fixed (type, arg2);
f44316fa 10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10552 return ada_value_binop (arg1, arg2, op);
10553 }
10554
4c4b4cd2
PH
10555 case BINOP_EQUAL:
10556 case BINOP_NOTEQUAL:
14f9c5c9 10557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10558 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10559 if (noside == EVAL_SKIP)
76a01679 10560 goto nosideret;
4c4b4cd2 10561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10562 tem = 0;
4c4b4cd2 10563 else
f44316fa
UW
10564 {
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 tem = ada_value_equal (arg1, arg2);
10567 }
4c4b4cd2 10568 if (op == BINOP_NOTEQUAL)
76a01679 10569 tem = !tem;
fbb06eb1
UW
10570 type = language_bool_type (exp->language_defn, exp->gdbarch);
10571 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10572
10573 case UNOP_NEG:
10574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10575 if (noside == EVAL_SKIP)
10576 goto nosideret;
df407dfe
AC
10577 else if (ada_is_fixed_point_type (value_type (arg1)))
10578 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10579 else
f44316fa
UW
10580 {
10581 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10582 return value_neg (arg1);
10583 }
4c4b4cd2 10584
2330c6c6
JB
10585 case BINOP_LOGICAL_AND:
10586 case BINOP_LOGICAL_OR:
10587 case UNOP_LOGICAL_NOT:
000d5124
JB
10588 {
10589 struct value *val;
10590
10591 *pos -= 1;
10592 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_cast (type, val);
000d5124 10595 }
2330c6c6
JB
10596
10597 case BINOP_BITWISE_AND:
10598 case BINOP_BITWISE_IOR:
10599 case BINOP_BITWISE_XOR:
000d5124
JB
10600 {
10601 struct value *val;
10602
10603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10604 *pos = pc;
10605 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10606
10607 return value_cast (value_type (arg1), val);
10608 }
2330c6c6 10609
14f9c5c9
AS
10610 case OP_VAR_VALUE:
10611 *pos -= 1;
6799def4 10612
14f9c5c9 10613 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10614 {
10615 *pos += 4;
10616 goto nosideret;
10617 }
da5c522f
JB
10618
10619 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10620 /* Only encountered when an unresolved symbol occurs in a
10621 context other than a function call, in which case, it is
52ce6436 10622 invalid. */
323e0a4a 10623 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10624 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10625
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10627 {
0c1f74cf 10628 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10629 /* Check to see if this is a tagged type. We also need to handle
10630 the case where the type is a reference to a tagged type, but
10631 we have to be careful to exclude pointers to tagged types.
10632 The latter should be shown as usual (as a pointer), whereas
10633 a reference should mostly be transparent to the user. */
10634 if (ada_is_tagged_type (type, 0)
023db19c 10635 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10636 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10637 {
10638 /* Tagged types are a little special in the fact that the real
10639 type is dynamic and can only be determined by inspecting the
10640 object's tag. This means that we need to get the object's
10641 value first (EVAL_NORMAL) and then extract the actual object
10642 type from its tag.
10643
10644 Note that we cannot skip the final step where we extract
10645 the object type from its tag, because the EVAL_NORMAL phase
10646 results in dynamic components being resolved into fixed ones.
10647 This can cause problems when trying to print the type
10648 description of tagged types whose parent has a dynamic size:
10649 We use the type name of the "_parent" component in order
10650 to print the name of the ancestor type in the type description.
10651 If that component had a dynamic size, the resolution into
10652 a fixed type would result in the loss of that type name,
10653 thus preventing us from printing the name of the ancestor
10654 type in the type description. */
10655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10656
10657 if (TYPE_CODE (type) != TYPE_CODE_REF)
10658 {
10659 struct type *actual_type;
10660
10661 actual_type = type_from_tag (ada_value_tag (arg1));
10662 if (actual_type == NULL)
10663 /* If, for some reason, we were unable to determine
10664 the actual type from the tag, then use the static
10665 approximation that we just computed as a fallback.
10666 This can happen if the debugging information is
10667 incomplete, for instance. */
10668 actual_type = type;
10669 return value_zero (actual_type, not_lval);
10670 }
10671 else
10672 {
10673 /* In the case of a ref, ada_coerce_ref takes care
10674 of determining the actual type. But the evaluation
10675 should return a ref as it should be valid to ask
10676 for its address; so rebuild a ref after coerce. */
10677 arg1 = ada_coerce_ref (arg1);
10678 return value_ref (arg1);
10679 }
10680 }
0c1f74cf 10681
84754697
JB
10682 /* Records and unions for which GNAT encodings have been
10683 generated need to be statically fixed as well.
10684 Otherwise, non-static fixing produces a type where
10685 all dynamic properties are removed, which prevents "ptype"
10686 from being able to completely describe the type.
10687 For instance, a case statement in a variant record would be
10688 replaced by the relevant components based on the actual
10689 value of the discriminants. */
10690 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10691 && dynamic_template_type (type) != NULL)
10692 || (TYPE_CODE (type) == TYPE_CODE_UNION
10693 && ada_find_parallel_type (type, "___XVU") != NULL))
10694 {
10695 *pos += 4;
10696 return value_zero (to_static_fixed_type (type), not_lval);
10697 }
4c4b4cd2 10698 }
da5c522f
JB
10699
10700 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10701 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10702
10703 case OP_FUNCALL:
10704 (*pos) += 2;
10705
10706 /* Allocate arg vector, including space for the function to be
10707 called in argvec[0] and a terminating NULL. */
10708 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10709 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10710
10711 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10712 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10713 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10714 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10715 else
10716 {
10717 for (tem = 0; tem <= nargs; tem += 1)
10718 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10719 argvec[tem] = 0;
10720
10721 if (noside == EVAL_SKIP)
10722 goto nosideret;
10723 }
10724
ad82864c
JB
10725 if (ada_is_constrained_packed_array_type
10726 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10727 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10728 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10729 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10730 /* This is a packed array that has already been fixed, and
10731 therefore already coerced to a simple array. Nothing further
10732 to do. */
10733 ;
e6c2c623
PMR
10734 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10735 {
10736 /* Make sure we dereference references so that all the code below
10737 feels like it's really handling the referenced value. Wrapping
10738 types (for alignment) may be there, so make sure we strip them as
10739 well. */
10740 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10741 }
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10743 && VALUE_LVAL (argvec[0]) == lval_memory)
10744 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10745
df407dfe 10746 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10747
10748 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10749 them. So, if this is an array typedef (encoding use for array
10750 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10751 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10752 type = ada_typedef_target_type (type);
10753
4c4b4cd2
PH
10754 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10755 {
61ee279c 10756 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10757 {
10758 case TYPE_CODE_FUNC:
61ee279c 10759 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10760 break;
10761 case TYPE_CODE_ARRAY:
10762 break;
10763 case TYPE_CODE_STRUCT:
10764 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10765 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10766 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10767 break;
10768 default:
323e0a4a 10769 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10770 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10771 break;
10772 }
10773 }
10774
10775 switch (TYPE_CODE (type))
10776 {
10777 case TYPE_CODE_FUNC:
10778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10779 {
10780 struct type *rtype = TYPE_TARGET_TYPE (type);
10781
10782 if (TYPE_GNU_IFUNC (type))
10783 return allocate_value (TYPE_TARGET_TYPE (rtype));
10784 return allocate_value (rtype);
10785 }
4c4b4cd2 10786 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10787 case TYPE_CODE_INTERNAL_FUNCTION:
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10789 /* We don't know anything about what the internal
10790 function might return, but we have to return
10791 something. */
10792 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10793 not_lval);
10794 else
10795 return call_internal_function (exp->gdbarch, exp->language_defn,
10796 argvec[0], nargs, argvec + 1);
10797
4c4b4cd2
PH
10798 case TYPE_CODE_STRUCT:
10799 {
10800 int arity;
10801
4c4b4cd2
PH
10802 arity = ada_array_arity (type);
10803 type = ada_array_element_type (type, nargs);
10804 if (type == NULL)
323e0a4a 10805 error (_("cannot subscript or call a record"));
4c4b4cd2 10806 if (arity != nargs)
323e0a4a 10807 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10809 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10810 return
10811 unwrap_value (ada_value_subscript
10812 (argvec[0], nargs, argvec + 1));
10813 }
10814 case TYPE_CODE_ARRAY:
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
10817 type = ada_array_element_type (type, nargs);
10818 if (type == NULL)
323e0a4a 10819 error (_("element type of array unknown"));
4c4b4cd2 10820 else
0a07e705 10821 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10822 }
10823 return
10824 unwrap_value (ada_value_subscript
10825 (ada_coerce_to_simple_array (argvec[0]),
10826 nargs, argvec + 1));
10827 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 {
deede10c 10830 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10831 type = ada_array_element_type (type, nargs);
10832 if (type == NULL)
323e0a4a 10833 error (_("element type of array unknown"));
4c4b4cd2 10834 else
0a07e705 10835 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10836 }
10837 return
deede10c
JB
10838 unwrap_value (ada_value_ptr_subscript (argvec[0],
10839 nargs, argvec + 1));
4c4b4cd2
PH
10840
10841 default:
e1d5a0d2
PH
10842 error (_("Attempt to index or call something other than an "
10843 "array or function"));
4c4b4cd2
PH
10844 }
10845
10846 case TERNOP_SLICE:
10847 {
10848 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10849 struct value *low_bound_val =
10850 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10851 struct value *high_bound_val =
10852 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10853 LONGEST low_bound;
10854 LONGEST high_bound;
5b4ee69b 10855
994b9211
AC
10856 low_bound_val = coerce_ref (low_bound_val);
10857 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10858 low_bound = value_as_long (low_bound_val);
10859 high_bound = value_as_long (high_bound_val);
963a6417 10860
4c4b4cd2
PH
10861 if (noside == EVAL_SKIP)
10862 goto nosideret;
10863
4c4b4cd2
PH
10864 /* If this is a reference to an aligner type, then remove all
10865 the aligners. */
df407dfe
AC
10866 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10867 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10868 TYPE_TARGET_TYPE (value_type (array)) =
10869 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10870
ad82864c 10871 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10872 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10873
10874 /* If this is a reference to an array or an array lvalue,
10875 convert to a pointer. */
df407dfe
AC
10876 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10877 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10878 && VALUE_LVAL (array) == lval_memory))
10879 array = value_addr (array);
10880
1265e4aa 10881 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10882 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10883 (value_type (array))))
0b5d8877 10884 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10885
10886 array = ada_coerce_to_simple_array_ptr (array);
10887
714e53ab
PH
10888 /* If we have more than one level of pointer indirection,
10889 dereference the value until we get only one level. */
df407dfe
AC
10890 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10891 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10892 == TYPE_CODE_PTR))
10893 array = value_ind (array);
10894
10895 /* Make sure we really do have an array type before going further,
10896 to avoid a SEGV when trying to get the index type or the target
10897 type later down the road if the debug info generated by
10898 the compiler is incorrect or incomplete. */
df407dfe 10899 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10900 error (_("cannot take slice of non-array"));
714e53ab 10901
828292f2
JB
10902 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10903 == TYPE_CODE_PTR)
4c4b4cd2 10904 {
828292f2
JB
10905 struct type *type0 = ada_check_typedef (value_type (array));
10906
0b5d8877 10907 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10908 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10909 else
10910 {
10911 struct type *arr_type0 =
828292f2 10912 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10913
f5938064
JG
10914 return ada_value_slice_from_ptr (array, arr_type0,
10915 longest_to_int (low_bound),
10916 longest_to_int (high_bound));
4c4b4cd2
PH
10917 }
10918 }
10919 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return array;
10921 else if (high_bound < low_bound)
df407dfe 10922 return empty_array (value_type (array), low_bound);
4c4b4cd2 10923 else
529cad9c
PH
10924 return ada_value_slice (array, longest_to_int (low_bound),
10925 longest_to_int (high_bound));
4c4b4cd2 10926 }
14f9c5c9 10927
4c4b4cd2
PH
10928 case UNOP_IN_RANGE:
10929 (*pos) += 2;
10930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10931 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10932
14f9c5c9 10933 if (noside == EVAL_SKIP)
4c4b4cd2 10934 goto nosideret;
14f9c5c9 10935
4c4b4cd2
PH
10936 switch (TYPE_CODE (type))
10937 {
10938 default:
e1d5a0d2
PH
10939 lim_warning (_("Membership test incompletely implemented; "
10940 "always returns true"));
fbb06eb1
UW
10941 type = language_bool_type (exp->language_defn, exp->gdbarch);
10942 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10943
10944 case TYPE_CODE_RANGE:
030b4912
UW
10945 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10946 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10948 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10949 type = language_bool_type (exp->language_defn, exp->gdbarch);
10950 return
10951 value_from_longest (type,
4c4b4cd2
PH
10952 (value_less (arg1, arg3)
10953 || value_equal (arg1, arg3))
10954 && (value_less (arg2, arg1)
10955 || value_equal (arg2, arg1)));
10956 }
10957
10958 case BINOP_IN_BOUNDS:
14f9c5c9 10959 (*pos) += 2;
4c4b4cd2
PH
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10962
4c4b4cd2
PH
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
14f9c5c9 10965
4c4b4cd2 10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10967 {
10968 type = language_bool_type (exp->language_defn, exp->gdbarch);
10969 return value_zero (type, not_lval);
10970 }
14f9c5c9 10971
4c4b4cd2 10972 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10973
1eea4ebd
UW
10974 type = ada_index_type (value_type (arg2), tem, "range");
10975 if (!type)
10976 type = value_type (arg1);
14f9c5c9 10977
1eea4ebd
UW
10978 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10979 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10980
f44316fa
UW
10981 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10982 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10983 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10984 return
fbb06eb1 10985 value_from_longest (type,
4c4b4cd2
PH
10986 (value_less (arg1, arg3)
10987 || value_equal (arg1, arg3))
10988 && (value_less (arg2, arg1)
10989 || value_equal (arg2, arg1)));
10990
10991 case TERNOP_IN_RANGE:
10992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10993 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10995
10996 if (noside == EVAL_SKIP)
10997 goto nosideret;
10998
f44316fa
UW
10999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11000 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11001 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11002 return
fbb06eb1 11003 value_from_longest (type,
4c4b4cd2
PH
11004 (value_less (arg1, arg3)
11005 || value_equal (arg1, arg3))
11006 && (value_less (arg2, arg1)
11007 || value_equal (arg2, arg1)));
11008
11009 case OP_ATR_FIRST:
11010 case OP_ATR_LAST:
11011 case OP_ATR_LENGTH:
11012 {
76a01679 11013 struct type *type_arg;
5b4ee69b 11014
76a01679
JB
11015 if (exp->elts[*pos].opcode == OP_TYPE)
11016 {
11017 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11018 arg1 = NULL;
5bc23cb3 11019 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11020 }
11021 else
11022 {
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 type_arg = NULL;
11025 }
11026
11027 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11028 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11029 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11030 *pos += 4;
11031
11032 if (noside == EVAL_SKIP)
11033 goto nosideret;
11034
11035 if (type_arg == NULL)
11036 {
11037 arg1 = ada_coerce_ref (arg1);
11038
ad82864c 11039 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11040 arg1 = ada_coerce_to_simple_array (arg1);
11041
aa4fb036 11042 if (op == OP_ATR_LENGTH)
1eea4ebd 11043 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11044 else
11045 {
11046 type = ada_index_type (value_type (arg1), tem,
11047 ada_attribute_name (op));
11048 if (type == NULL)
11049 type = builtin_type (exp->gdbarch)->builtin_int;
11050 }
76a01679
JB
11051
11052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11053 return allocate_value (type);
76a01679
JB
11054
11055 switch (op)
11056 {
11057 default: /* Should never happen. */
323e0a4a 11058 error (_("unexpected attribute encountered"));
76a01679 11059 case OP_ATR_FIRST:
1eea4ebd
UW
11060 return value_from_longest
11061 (type, ada_array_bound (arg1, tem, 0));
76a01679 11062 case OP_ATR_LAST:
1eea4ebd
UW
11063 return value_from_longest
11064 (type, ada_array_bound (arg1, tem, 1));
76a01679 11065 case OP_ATR_LENGTH:
1eea4ebd
UW
11066 return value_from_longest
11067 (type, ada_array_length (arg1, tem));
76a01679
JB
11068 }
11069 }
11070 else if (discrete_type_p (type_arg))
11071 {
11072 struct type *range_type;
0d5cff50 11073 const char *name = ada_type_name (type_arg);
5b4ee69b 11074
76a01679
JB
11075 range_type = NULL;
11076 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11077 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11078 if (range_type == NULL)
11079 range_type = type_arg;
11080 switch (op)
11081 {
11082 default:
323e0a4a 11083 error (_("unexpected attribute encountered"));
76a01679 11084 case OP_ATR_FIRST:
690cc4eb 11085 return value_from_longest
43bbcdc2 11086 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11087 case OP_ATR_LAST:
690cc4eb 11088 return value_from_longest
43bbcdc2 11089 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11090 case OP_ATR_LENGTH:
323e0a4a 11091 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11092 }
11093 }
11094 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11095 error (_("unimplemented type attribute"));
76a01679
JB
11096 else
11097 {
11098 LONGEST low, high;
11099
ad82864c
JB
11100 if (ada_is_constrained_packed_array_type (type_arg))
11101 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11102
aa4fb036 11103 if (op == OP_ATR_LENGTH)
1eea4ebd 11104 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11105 else
11106 {
11107 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11108 if (type == NULL)
11109 type = builtin_type (exp->gdbarch)->builtin_int;
11110 }
1eea4ebd 11111
76a01679
JB
11112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11113 return allocate_value (type);
11114
11115 switch (op)
11116 {
11117 default:
323e0a4a 11118 error (_("unexpected attribute encountered"));
76a01679 11119 case OP_ATR_FIRST:
1eea4ebd 11120 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11121 return value_from_longest (type, low);
11122 case OP_ATR_LAST:
1eea4ebd 11123 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11124 return value_from_longest (type, high);
11125 case OP_ATR_LENGTH:
1eea4ebd
UW
11126 low = ada_array_bound_from_type (type_arg, tem, 0);
11127 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11128 return value_from_longest (type, high - low + 1);
11129 }
11130 }
14f9c5c9
AS
11131 }
11132
4c4b4cd2
PH
11133 case OP_ATR_TAG:
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
76a01679 11136 goto nosideret;
4c4b4cd2
PH
11137
11138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11139 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11140
11141 return ada_value_tag (arg1);
11142
11143 case OP_ATR_MIN:
11144 case OP_ATR_MAX:
11145 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11148 if (noside == EVAL_SKIP)
76a01679 11149 goto nosideret;
d2e4a39e 11150 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11151 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11152 else
f44316fa
UW
11153 {
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11155 return value_binop (arg1, arg2,
11156 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11157 }
14f9c5c9 11158
4c4b4cd2
PH
11159 case OP_ATR_MODULUS:
11160 {
31dedfee 11161 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11162
5b4ee69b 11163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
4c4b4cd2 11166
76a01679 11167 if (!ada_is_modular_type (type_arg))
323e0a4a 11168 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11169
76a01679
JB
11170 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11171 ada_modulus (type_arg));
4c4b4cd2
PH
11172 }
11173
11174
11175 case OP_ATR_POS:
11176 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
76a01679 11179 goto nosideret;
3cb382c9
UW
11180 type = builtin_type (exp->gdbarch)->builtin_int;
11181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11182 return value_zero (type, not_lval);
14f9c5c9 11183 else
3cb382c9 11184 return value_pos_atr (type, arg1);
14f9c5c9 11185
4c4b4cd2
PH
11186 case OP_ATR_SIZE:
11187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11188 type = value_type (arg1);
11189
11190 /* If the argument is a reference, then dereference its type, since
11191 the user is really asking for the size of the actual object,
11192 not the size of the pointer. */
11193 if (TYPE_CODE (type) == TYPE_CODE_REF)
11194 type = TYPE_TARGET_TYPE (type);
11195
4c4b4cd2 11196 if (noside == EVAL_SKIP)
76a01679 11197 goto nosideret;
4c4b4cd2 11198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11199 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11200 else
22601c15 11201 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11202 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11203
11204 case OP_ATR_VAL:
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11207 type = exp->elts[pc + 2].type;
14f9c5c9 11208 if (noside == EVAL_SKIP)
76a01679 11209 goto nosideret;
4c4b4cd2 11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11211 return value_zero (type, not_lval);
4c4b4cd2 11212 else
76a01679 11213 return value_val_atr (type, arg1);
4c4b4cd2
PH
11214
11215 case BINOP_EXP:
11216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 if (noside == EVAL_SKIP)
11219 goto nosideret;
11220 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11221 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11222 else
f44316fa
UW
11223 {
11224 /* For integer exponentiation operations,
11225 only promote the first argument. */
11226 if (is_integral_type (value_type (arg2)))
11227 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11228 else
11229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11230
11231 return value_binop (arg1, arg2, op);
11232 }
4c4b4cd2
PH
11233
11234 case UNOP_PLUS:
11235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11236 if (noside == EVAL_SKIP)
11237 goto nosideret;
11238 else
11239 return arg1;
11240
11241 case UNOP_ABS:
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
f44316fa 11245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11246 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11247 return value_neg (arg1);
14f9c5c9 11248 else
4c4b4cd2 11249 return arg1;
14f9c5c9
AS
11250
11251 case UNOP_IND:
5ec18f2b 11252 preeval_pos = *pos;
6b0d7253 11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11254 if (noside == EVAL_SKIP)
4c4b4cd2 11255 goto nosideret;
df407dfe 11256 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11258 {
11259 if (ada_is_array_descriptor_type (type))
11260 /* GDB allows dereferencing GNAT array descriptors. */
11261 {
11262 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11263
4c4b4cd2 11264 if (arrType == NULL)
323e0a4a 11265 error (_("Attempt to dereference null array pointer."));
00a4c844 11266 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11267 }
11268 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11269 || TYPE_CODE (type) == TYPE_CODE_REF
11270 /* In C you can dereference an array to get the 1st elt. */
11271 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11272 {
5ec18f2b
JG
11273 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11274 only be determined by inspecting the object's tag.
11275 This means that we need to evaluate completely the
11276 expression in order to get its type. */
11277
023db19c
JB
11278 if ((TYPE_CODE (type) == TYPE_CODE_REF
11279 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11280 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11281 {
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11283 EVAL_NORMAL);
11284 type = value_type (ada_value_ind (arg1));
11285 }
11286 else
11287 {
11288 type = to_static_fixed_type
11289 (ada_aligned_type
11290 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11291 }
c1b5a1a6 11292 ada_ensure_varsize_limit (type);
714e53ab
PH
11293 return value_zero (type, lval_memory);
11294 }
4c4b4cd2 11295 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11296 {
11297 /* GDB allows dereferencing an int. */
11298 if (expect_type == NULL)
11299 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11300 lval_memory);
11301 else
11302 {
11303 expect_type =
11304 to_static_fixed_type (ada_aligned_type (expect_type));
11305 return value_zero (expect_type, lval_memory);
11306 }
11307 }
4c4b4cd2 11308 else
323e0a4a 11309 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11310 }
0963b4bd 11311 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11312 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11313
96967637
JB
11314 if (TYPE_CODE (type) == TYPE_CODE_INT)
11315 /* GDB allows dereferencing an int. If we were given
11316 the expect_type, then use that as the target type.
11317 Otherwise, assume that the target type is an int. */
11318 {
11319 if (expect_type != NULL)
11320 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11321 arg1));
11322 else
11323 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11324 (CORE_ADDR) value_as_address (arg1));
11325 }
6b0d7253 11326
4c4b4cd2
PH
11327 if (ada_is_array_descriptor_type (type))
11328 /* GDB allows dereferencing GNAT array descriptors. */
11329 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11330 else
4c4b4cd2 11331 return ada_value_ind (arg1);
14f9c5c9
AS
11332
11333 case STRUCTOP_STRUCT:
11334 tem = longest_to_int (exp->elts[pc + 1].longconst);
11335 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11336 preeval_pos = *pos;
14f9c5c9
AS
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
4c4b4cd2 11339 goto nosideret;
14f9c5c9 11340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11341 {
df407dfe 11342 struct type *type1 = value_type (arg1);
5b4ee69b 11343
76a01679
JB
11344 if (ada_is_tagged_type (type1, 1))
11345 {
11346 type = ada_lookup_struct_elt_type (type1,
11347 &exp->elts[pc + 2].string,
11348 1, 1, NULL);
5ec18f2b
JG
11349
11350 /* If the field is not found, check if it exists in the
11351 extension of this object's type. This means that we
11352 need to evaluate completely the expression. */
11353
76a01679 11354 if (type == NULL)
5ec18f2b
JG
11355 {
11356 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11357 EVAL_NORMAL);
11358 arg1 = ada_value_struct_elt (arg1,
11359 &exp->elts[pc + 2].string,
11360 0);
11361 arg1 = unwrap_value (arg1);
11362 type = value_type (ada_to_fixed_value (arg1));
11363 }
76a01679
JB
11364 }
11365 else
11366 type =
11367 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11368 0, NULL);
11369
11370 return value_zero (ada_aligned_type (type), lval_memory);
11371 }
14f9c5c9 11372 else
284614f0
JB
11373 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11374 arg1 = unwrap_value (arg1);
11375 return ada_to_fixed_value (arg1);
11376
14f9c5c9 11377 case OP_TYPE:
4c4b4cd2
PH
11378 /* The value is not supposed to be used. This is here to make it
11379 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11380 (*pos) += 2;
11381 if (noside == EVAL_SKIP)
4c4b4cd2 11382 goto nosideret;
14f9c5c9 11383 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11384 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11385 else
323e0a4a 11386 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11387
11388 case OP_AGGREGATE:
11389 case OP_CHOICES:
11390 case OP_OTHERS:
11391 case OP_DISCRETE_RANGE:
11392 case OP_POSITIONAL:
11393 case OP_NAME:
11394 if (noside == EVAL_NORMAL)
11395 switch (op)
11396 {
11397 case OP_NAME:
11398 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11399 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11400 case OP_AGGREGATE:
11401 error (_("Aggregates only allowed on the right of an assignment"));
11402 default:
0963b4bd
MS
11403 internal_error (__FILE__, __LINE__,
11404 _("aggregate apparently mangled"));
52ce6436
PH
11405 }
11406
11407 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11408 *pos += oplen - 1;
11409 for (tem = 0; tem < nargs; tem += 1)
11410 ada_evaluate_subexp (NULL, exp, pos, noside);
11411 goto nosideret;
14f9c5c9
AS
11412 }
11413
11414nosideret:
22601c15 11415 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11416}
14f9c5c9 11417\f
d2e4a39e 11418
4c4b4cd2 11419 /* Fixed point */
14f9c5c9
AS
11420
11421/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11422 type name that encodes the 'small and 'delta information.
4c4b4cd2 11423 Otherwise, return NULL. */
14f9c5c9 11424
d2e4a39e 11425static const char *
ebf56fd3 11426fixed_type_info (struct type *type)
14f9c5c9 11427{
d2e4a39e 11428 const char *name = ada_type_name (type);
14f9c5c9
AS
11429 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11430
d2e4a39e
AS
11431 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11432 {
14f9c5c9 11433 const char *tail = strstr (name, "___XF_");
5b4ee69b 11434
14f9c5c9 11435 if (tail == NULL)
4c4b4cd2 11436 return NULL;
d2e4a39e 11437 else
4c4b4cd2 11438 return tail + 5;
14f9c5c9
AS
11439 }
11440 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11441 return fixed_type_info (TYPE_TARGET_TYPE (type));
11442 else
11443 return NULL;
11444}
11445
4c4b4cd2 11446/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11447
11448int
ebf56fd3 11449ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11450{
11451 return fixed_type_info (type) != NULL;
11452}
11453
4c4b4cd2
PH
11454/* Return non-zero iff TYPE represents a System.Address type. */
11455
11456int
11457ada_is_system_address_type (struct type *type)
11458{
11459 return (TYPE_NAME (type)
11460 && strcmp (TYPE_NAME (type), "system__address") == 0);
11461}
11462
14f9c5c9
AS
11463/* Assuming that TYPE is the representation of an Ada fixed-point
11464 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11465 delta cannot be determined. */
14f9c5c9
AS
11466
11467DOUBLEST
ebf56fd3 11468ada_delta (struct type *type)
14f9c5c9
AS
11469{
11470 const char *encoding = fixed_type_info (type);
facc390f 11471 DOUBLEST num, den;
14f9c5c9 11472
facc390f
JB
11473 /* Strictly speaking, num and den are encoded as integer. However,
11474 they may not fit into a long, and they will have to be converted
11475 to DOUBLEST anyway. So scan them as DOUBLEST. */
11476 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11477 &num, &den) < 2)
14f9c5c9 11478 return -1.0;
d2e4a39e 11479 else
facc390f 11480 return num / den;
14f9c5c9
AS
11481}
11482
11483/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11484 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11485
11486static DOUBLEST
ebf56fd3 11487scaling_factor (struct type *type)
14f9c5c9
AS
11488{
11489 const char *encoding = fixed_type_info (type);
facc390f 11490 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11491 int n;
d2e4a39e 11492
facc390f
JB
11493 /* Strictly speaking, num's and den's are encoded as integer. However,
11494 they may not fit into a long, and they will have to be converted
11495 to DOUBLEST anyway. So scan them as DOUBLEST. */
11496 n = sscanf (encoding,
11497 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11498 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11499 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11500
11501 if (n < 2)
11502 return 1.0;
11503 else if (n == 4)
facc390f 11504 return num1 / den1;
d2e4a39e 11505 else
facc390f 11506 return num0 / den0;
14f9c5c9
AS
11507}
11508
11509
11510/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11511 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11512
11513DOUBLEST
ebf56fd3 11514ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11515{
d2e4a39e 11516 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11517}
11518
4c4b4cd2
PH
11519/* The representation of a fixed-point value of type TYPE
11520 corresponding to the value X. */
14f9c5c9
AS
11521
11522LONGEST
ebf56fd3 11523ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11524{
11525 return (LONGEST) (x / scaling_factor (type) + 0.5);
11526}
11527
14f9c5c9 11528\f
d2e4a39e 11529
4c4b4cd2 11530 /* Range types */
14f9c5c9
AS
11531
11532/* Scan STR beginning at position K for a discriminant name, and
11533 return the value of that discriminant field of DVAL in *PX. If
11534 PNEW_K is not null, put the position of the character beyond the
11535 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11536 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11537
11538static int
108d56a4 11539scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11540 int *pnew_k)
14f9c5c9
AS
11541{
11542 static char *bound_buffer = NULL;
11543 static size_t bound_buffer_len = 0;
5da1a4d3 11544 const char *pstart, *pend, *bound;
d2e4a39e 11545 struct value *bound_val;
14f9c5c9
AS
11546
11547 if (dval == NULL || str == NULL || str[k] == '\0')
11548 return 0;
11549
5da1a4d3
SM
11550 pstart = str + k;
11551 pend = strstr (pstart, "__");
14f9c5c9
AS
11552 if (pend == NULL)
11553 {
5da1a4d3 11554 bound = pstart;
14f9c5c9
AS
11555 k += strlen (bound);
11556 }
d2e4a39e 11557 else
14f9c5c9 11558 {
5da1a4d3
SM
11559 int len = pend - pstart;
11560
11561 /* Strip __ and beyond. */
11562 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11563 strncpy (bound_buffer, pstart, len);
11564 bound_buffer[len] = '\0';
11565
14f9c5c9 11566 bound = bound_buffer;
d2e4a39e 11567 k = pend - str;
14f9c5c9 11568 }
d2e4a39e 11569
df407dfe 11570 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11571 if (bound_val == NULL)
11572 return 0;
11573
11574 *px = value_as_long (bound_val);
11575 if (pnew_k != NULL)
11576 *pnew_k = k;
11577 return 1;
11578}
11579
11580/* Value of variable named NAME in the current environment. If
11581 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11582 otherwise causes an error with message ERR_MSG. */
11583
d2e4a39e
AS
11584static struct value *
11585get_var_value (char *name, char *err_msg)
14f9c5c9 11586{
d12307c1 11587 struct block_symbol *syms;
14f9c5c9
AS
11588 int nsyms;
11589
4c4b4cd2 11590 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11591 &syms);
14f9c5c9
AS
11592
11593 if (nsyms != 1)
11594 {
11595 if (err_msg == NULL)
4c4b4cd2 11596 return 0;
14f9c5c9 11597 else
8a3fe4f8 11598 error (("%s"), err_msg);
14f9c5c9
AS
11599 }
11600
d12307c1 11601 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11602}
d2e4a39e 11603
14f9c5c9 11604/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11605 no such variable found, returns 0, and sets *FLAG to 0. If
11606 successful, sets *FLAG to 1. */
11607
14f9c5c9 11608LONGEST
4c4b4cd2 11609get_int_var_value (char *name, int *flag)
14f9c5c9 11610{
4c4b4cd2 11611 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11612
14f9c5c9
AS
11613 if (var_val == 0)
11614 {
11615 if (flag != NULL)
4c4b4cd2 11616 *flag = 0;
14f9c5c9
AS
11617 return 0;
11618 }
11619 else
11620 {
11621 if (flag != NULL)
4c4b4cd2 11622 *flag = 1;
14f9c5c9
AS
11623 return value_as_long (var_val);
11624 }
11625}
d2e4a39e 11626
14f9c5c9
AS
11627
11628/* Return a range type whose base type is that of the range type named
11629 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11630 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11631 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11632 corresponding range type from debug information; fall back to using it
11633 if symbol lookup fails. If a new type must be created, allocate it
11634 like ORIG_TYPE was. The bounds information, in general, is encoded
11635 in NAME, the base type given in the named range type. */
14f9c5c9 11636
d2e4a39e 11637static struct type *
28c85d6c 11638to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11639{
0d5cff50 11640 const char *name;
14f9c5c9 11641 struct type *base_type;
108d56a4 11642 const char *subtype_info;
14f9c5c9 11643
28c85d6c
JB
11644 gdb_assert (raw_type != NULL);
11645 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11646
1ce677a4 11647 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11648 base_type = TYPE_TARGET_TYPE (raw_type);
11649 else
11650 base_type = raw_type;
11651
28c85d6c 11652 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11653 subtype_info = strstr (name, "___XD");
11654 if (subtype_info == NULL)
690cc4eb 11655 {
43bbcdc2
PH
11656 LONGEST L = ada_discrete_type_low_bound (raw_type);
11657 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11658
690cc4eb
PH
11659 if (L < INT_MIN || U > INT_MAX)
11660 return raw_type;
11661 else
0c9c3474
SA
11662 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11663 L, U);
690cc4eb 11664 }
14f9c5c9
AS
11665 else
11666 {
11667 static char *name_buf = NULL;
11668 static size_t name_len = 0;
11669 int prefix_len = subtype_info - name;
11670 LONGEST L, U;
11671 struct type *type;
108d56a4 11672 const char *bounds_str;
14f9c5c9
AS
11673 int n;
11674
11675 GROW_VECT (name_buf, name_len, prefix_len + 5);
11676 strncpy (name_buf, name, prefix_len);
11677 name_buf[prefix_len] = '\0';
11678
11679 subtype_info += 5;
11680 bounds_str = strchr (subtype_info, '_');
11681 n = 1;
11682
d2e4a39e 11683 if (*subtype_info == 'L')
4c4b4cd2
PH
11684 {
11685 if (!ada_scan_number (bounds_str, n, &L, &n)
11686 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11687 return raw_type;
11688 if (bounds_str[n] == '_')
11689 n += 2;
0963b4bd 11690 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11691 n += 1;
11692 subtype_info += 1;
11693 }
d2e4a39e 11694 else
4c4b4cd2
PH
11695 {
11696 int ok;
5b4ee69b 11697
4c4b4cd2
PH
11698 strcpy (name_buf + prefix_len, "___L");
11699 L = get_int_var_value (name_buf, &ok);
11700 if (!ok)
11701 {
323e0a4a 11702 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11703 L = 1;
11704 }
11705 }
14f9c5c9 11706
d2e4a39e 11707 if (*subtype_info == 'U')
4c4b4cd2
PH
11708 {
11709 if (!ada_scan_number (bounds_str, n, &U, &n)
11710 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11711 return raw_type;
11712 }
d2e4a39e 11713 else
4c4b4cd2
PH
11714 {
11715 int ok;
5b4ee69b 11716
4c4b4cd2
PH
11717 strcpy (name_buf + prefix_len, "___U");
11718 U = get_int_var_value (name_buf, &ok);
11719 if (!ok)
11720 {
323e0a4a 11721 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11722 U = L;
11723 }
11724 }
14f9c5c9 11725
0c9c3474
SA
11726 type = create_static_range_type (alloc_type_copy (raw_type),
11727 base_type, L, U);
d2e4a39e 11728 TYPE_NAME (type) = name;
14f9c5c9
AS
11729 return type;
11730 }
11731}
11732
4c4b4cd2
PH
11733/* True iff NAME is the name of a range type. */
11734
14f9c5c9 11735int
d2e4a39e 11736ada_is_range_type_name (const char *name)
14f9c5c9
AS
11737{
11738 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11739}
14f9c5c9 11740\f
d2e4a39e 11741
4c4b4cd2
PH
11742 /* Modular types */
11743
11744/* True iff TYPE is an Ada modular type. */
14f9c5c9 11745
14f9c5c9 11746int
d2e4a39e 11747ada_is_modular_type (struct type *type)
14f9c5c9 11748{
18af8284 11749 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11750
11751 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11752 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11753 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11754}
11755
4c4b4cd2
PH
11756/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11757
61ee279c 11758ULONGEST
0056e4d5 11759ada_modulus (struct type *type)
14f9c5c9 11760{
43bbcdc2 11761 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11762}
d2e4a39e 11763\f
f7f9143b
JB
11764
11765/* Ada exception catchpoint support:
11766 ---------------------------------
11767
11768 We support 3 kinds of exception catchpoints:
11769 . catchpoints on Ada exceptions
11770 . catchpoints on unhandled Ada exceptions
11771 . catchpoints on failed assertions
11772
11773 Exceptions raised during failed assertions, or unhandled exceptions
11774 could perfectly be caught with the general catchpoint on Ada exceptions.
11775 However, we can easily differentiate these two special cases, and having
11776 the option to distinguish these two cases from the rest can be useful
11777 to zero-in on certain situations.
11778
11779 Exception catchpoints are a specialized form of breakpoint,
11780 since they rely on inserting breakpoints inside known routines
11781 of the GNAT runtime. The implementation therefore uses a standard
11782 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11783 of breakpoint_ops.
11784
0259addd
JB
11785 Support in the runtime for exception catchpoints have been changed
11786 a few times already, and these changes affect the implementation
11787 of these catchpoints. In order to be able to support several
11788 variants of the runtime, we use a sniffer that will determine
28010a5d 11789 the runtime variant used by the program being debugged. */
f7f9143b 11790
82eacd52
JB
11791/* Ada's standard exceptions.
11792
11793 The Ada 83 standard also defined Numeric_Error. But there so many
11794 situations where it was unclear from the Ada 83 Reference Manual
11795 (RM) whether Constraint_Error or Numeric_Error should be raised,
11796 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11797 Interpretation saying that anytime the RM says that Numeric_Error
11798 should be raised, the implementation may raise Constraint_Error.
11799 Ada 95 went one step further and pretty much removed Numeric_Error
11800 from the list of standard exceptions (it made it a renaming of
11801 Constraint_Error, to help preserve compatibility when compiling
11802 an Ada83 compiler). As such, we do not include Numeric_Error from
11803 this list of standard exceptions. */
3d0b0fa3
JB
11804
11805static char *standard_exc[] = {
11806 "constraint_error",
11807 "program_error",
11808 "storage_error",
11809 "tasking_error"
11810};
11811
0259addd
JB
11812typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11813
11814/* A structure that describes how to support exception catchpoints
11815 for a given executable. */
11816
11817struct exception_support_info
11818{
11819 /* The name of the symbol to break on in order to insert
11820 a catchpoint on exceptions. */
11821 const char *catch_exception_sym;
11822
11823 /* The name of the symbol to break on in order to insert
11824 a catchpoint on unhandled exceptions. */
11825 const char *catch_exception_unhandled_sym;
11826
11827 /* The name of the symbol to break on in order to insert
11828 a catchpoint on failed assertions. */
11829 const char *catch_assert_sym;
11830
11831 /* Assuming that the inferior just triggered an unhandled exception
11832 catchpoint, this function is responsible for returning the address
11833 in inferior memory where the name of that exception is stored.
11834 Return zero if the address could not be computed. */
11835 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11836};
11837
11838static CORE_ADDR ada_unhandled_exception_name_addr (void);
11839static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11840
11841/* The following exception support info structure describes how to
11842 implement exception catchpoints with the latest version of the
11843 Ada runtime (as of 2007-03-06). */
11844
11845static const struct exception_support_info default_exception_support_info =
11846{
11847 "__gnat_debug_raise_exception", /* catch_exception_sym */
11848 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11849 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11850 ada_unhandled_exception_name_addr
11851};
11852
11853/* The following exception support info structure describes how to
11854 implement exception catchpoints with a slightly older version
11855 of the Ada runtime. */
11856
11857static const struct exception_support_info exception_support_info_fallback =
11858{
11859 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11862 ada_unhandled_exception_name_addr_from_raise
11863};
11864
f17011e0
JB
11865/* Return nonzero if we can detect the exception support routines
11866 described in EINFO.
11867
11868 This function errors out if an abnormal situation is detected
11869 (for instance, if we find the exception support routines, but
11870 that support is found to be incomplete). */
11871
11872static int
11873ada_has_this_exception_support (const struct exception_support_info *einfo)
11874{
11875 struct symbol *sym;
11876
11877 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11878 that should be compiled with debugging information. As a result, we
11879 expect to find that symbol in the symtabs. */
11880
11881 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11882 if (sym == NULL)
a6af7abe
JB
11883 {
11884 /* Perhaps we did not find our symbol because the Ada runtime was
11885 compiled without debugging info, or simply stripped of it.
11886 It happens on some GNU/Linux distributions for instance, where
11887 users have to install a separate debug package in order to get
11888 the runtime's debugging info. In that situation, let the user
11889 know why we cannot insert an Ada exception catchpoint.
11890
11891 Note: Just for the purpose of inserting our Ada exception
11892 catchpoint, we could rely purely on the associated minimal symbol.
11893 But we would be operating in degraded mode anyway, since we are
11894 still lacking the debugging info needed later on to extract
11895 the name of the exception being raised (this name is printed in
11896 the catchpoint message, and is also used when trying to catch
11897 a specific exception). We do not handle this case for now. */
3b7344d5 11898 struct bound_minimal_symbol msym
1c8e84b0
JB
11899 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11900
3b7344d5 11901 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11902 error (_("Your Ada runtime appears to be missing some debugging "
11903 "information.\nCannot insert Ada exception catchpoint "
11904 "in this configuration."));
11905
11906 return 0;
11907 }
f17011e0
JB
11908
11909 /* Make sure that the symbol we found corresponds to a function. */
11910
11911 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
11913 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11914
11915 return 1;
11916}
11917
0259addd
JB
11918/* Inspect the Ada runtime and determine which exception info structure
11919 should be used to provide support for exception catchpoints.
11920
3eecfa55
JB
11921 This function will always set the per-inferior exception_info,
11922 or raise an error. */
0259addd
JB
11923
11924static void
11925ada_exception_support_info_sniffer (void)
11926{
3eecfa55 11927 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11928
11929 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11930 if (data->exception_info != NULL)
0259addd
JB
11931 return;
11932
11933 /* Check the latest (default) exception support info. */
f17011e0 11934 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11935 {
3eecfa55 11936 data->exception_info = &default_exception_support_info;
0259addd
JB
11937 return;
11938 }
11939
11940 /* Try our fallback exception suport info. */
f17011e0 11941 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11942 {
3eecfa55 11943 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11944 return;
11945 }
11946
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11951 applicable. */
11952
ccefe4c4 11953 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11955
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11960
11961 if (ptid_get_pid (inferior_ptid) == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11963
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
0963b4bd 11966 find the run-time symbols. That can mean that we are in
0259addd
JB
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11970
7dda8cff 11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11972}
11973
f7f9143b
JB
11974/* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11977 to most users. */
11978
11979static int
11980is_known_support_routine (struct frame_info *frame)
11981{
4ed6b5be 11982 struct symtab_and_line sal;
55b87a52 11983 char *func_name;
692465f1 11984 enum language func_lang;
f7f9143b 11985 int i;
f35a17b5 11986 const char *fullname;
f7f9143b 11987
4ed6b5be
JB
11988 /* If this code does not have any debugging information (no symtab),
11989 This cannot be any user code. */
f7f9143b 11990
4ed6b5be 11991 find_frame_sal (frame, &sal);
f7f9143b
JB
11992 if (sal.symtab == NULL)
11993 return 1;
11994
4ed6b5be
JB
11995 /* If there is a symtab, but the associated source file cannot be
11996 located, then assume this is not user code: Selecting a frame
11997 for which we cannot display the code would not be very helpful
11998 for the user. This should also take care of case such as VxWorks
11999 where the kernel has some debugging info provided for a few units. */
f7f9143b 12000
f35a17b5
JK
12001 fullname = symtab_to_fullname (sal.symtab);
12002 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12003 return 1;
12004
4ed6b5be
JB
12005 /* Check the unit filename againt the Ada runtime file naming.
12006 We also check the name of the objfile against the name of some
12007 known system libraries that sometimes come with debugging info
12008 too. */
12009
f7f9143b
JB
12010 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12011 {
12012 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12013 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12014 return 1;
eb822aa6
DE
12015 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12016 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12017 return 1;
f7f9143b
JB
12018 }
12019
4ed6b5be 12020 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12021
e9e07ba6 12022 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12023 if (func_name == NULL)
12024 return 1;
12025
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 {
12028 re_comp (known_auxiliary_function_name_patterns[i]);
12029 if (re_exec (func_name))
55b87a52
KS
12030 {
12031 xfree (func_name);
12032 return 1;
12033 }
f7f9143b
JB
12034 }
12035
55b87a52 12036 xfree (func_name);
f7f9143b
JB
12037 return 0;
12038}
12039
12040/* Find the first frame that contains debugging information and that is not
12041 part of the Ada run-time, starting from FI and moving upward. */
12042
0ef643c8 12043void
f7f9143b
JB
12044ada_find_printable_frame (struct frame_info *fi)
12045{
12046 for (; fi != NULL; fi = get_prev_frame (fi))
12047 {
12048 if (!is_known_support_routine (fi))
12049 {
12050 select_frame (fi);
12051 break;
12052 }
12053 }
12054
12055}
12056
12057/* Assuming that the inferior just triggered an unhandled exception
12058 catchpoint, return the address in inferior memory where the name
12059 of the exception is stored.
12060
12061 Return zero if the address could not be computed. */
12062
12063static CORE_ADDR
12064ada_unhandled_exception_name_addr (void)
0259addd
JB
12065{
12066 return parse_and_eval_address ("e.full_name");
12067}
12068
12069/* Same as ada_unhandled_exception_name_addr, except that this function
12070 should be used when the inferior uses an older version of the runtime,
12071 where the exception name needs to be extracted from a specific frame
12072 several frames up in the callstack. */
12073
12074static CORE_ADDR
12075ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12076{
12077 int frame_level;
12078 struct frame_info *fi;
3eecfa55 12079 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12080 struct cleanup *old_chain;
f7f9143b
JB
12081
12082 /* To determine the name of this exception, we need to select
12083 the frame corresponding to RAISE_SYM_NAME. This frame is
12084 at least 3 levels up, so we simply skip the first 3 frames
12085 without checking the name of their associated function. */
12086 fi = get_current_frame ();
12087 for (frame_level = 0; frame_level < 3; frame_level += 1)
12088 if (fi != NULL)
12089 fi = get_prev_frame (fi);
12090
55b87a52 12091 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12092 while (fi != NULL)
12093 {
55b87a52 12094 char *func_name;
692465f1
JB
12095 enum language func_lang;
12096
e9e07ba6 12097 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12098 if (func_name != NULL)
12099 {
12100 make_cleanup (xfree, func_name);
12101
12102 if (strcmp (func_name,
12103 data->exception_info->catch_exception_sym) == 0)
12104 break; /* We found the frame we were looking for... */
12105 fi = get_prev_frame (fi);
12106 }
f7f9143b 12107 }
55b87a52 12108 do_cleanups (old_chain);
f7f9143b
JB
12109
12110 if (fi == NULL)
12111 return 0;
12112
12113 select_frame (fi);
12114 return parse_and_eval_address ("id.full_name");
12115}
12116
12117/* Assuming the inferior just triggered an Ada exception catchpoint
12118 (of any type), return the address in inferior memory where the name
12119 of the exception is stored, if applicable.
12120
12121 Return zero if the address could not be computed, or if not relevant. */
12122
12123static CORE_ADDR
761269c8 12124ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12125 struct breakpoint *b)
12126{
3eecfa55
JB
12127 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12128
f7f9143b
JB
12129 switch (ex)
12130 {
761269c8 12131 case ada_catch_exception:
f7f9143b
JB
12132 return (parse_and_eval_address ("e.full_name"));
12133 break;
12134
761269c8 12135 case ada_catch_exception_unhandled:
3eecfa55 12136 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12137 break;
12138
761269c8 12139 case ada_catch_assert:
f7f9143b
JB
12140 return 0; /* Exception name is not relevant in this case. */
12141 break;
12142
12143 default:
12144 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12145 break;
12146 }
12147
12148 return 0; /* Should never be reached. */
12149}
12150
12151/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12152 any error that ada_exception_name_addr_1 might cause to be thrown.
12153 When an error is intercepted, a warning with the error message is printed,
12154 and zero is returned. */
12155
12156static CORE_ADDR
761269c8 12157ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12158 struct breakpoint *b)
12159{
f7f9143b
JB
12160 CORE_ADDR result = 0;
12161
492d29ea 12162 TRY
f7f9143b
JB
12163 {
12164 result = ada_exception_name_addr_1 (ex, b);
12165 }
12166
492d29ea 12167 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12168 {
12169 warning (_("failed to get exception name: %s"), e.message);
12170 return 0;
12171 }
492d29ea 12172 END_CATCH
f7f9143b
JB
12173
12174 return result;
12175}
12176
28010a5d
PA
12177static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12178
12179/* Ada catchpoints.
12180
12181 In the case of catchpoints on Ada exceptions, the catchpoint will
12182 stop the target on every exception the program throws. When a user
12183 specifies the name of a specific exception, we translate this
12184 request into a condition expression (in text form), and then parse
12185 it into an expression stored in each of the catchpoint's locations.
12186 We then use this condition to check whether the exception that was
12187 raised is the one the user is interested in. If not, then the
12188 target is resumed again. We store the name of the requested
12189 exception, in order to be able to re-set the condition expression
12190 when symbols change. */
12191
12192/* An instance of this type is used to represent an Ada catchpoint
12193 breakpoint location. It includes a "struct bp_location" as a kind
12194 of base class; users downcast to "struct bp_location *" when
12195 needed. */
12196
12197struct ada_catchpoint_location
12198{
12199 /* The base class. */
12200 struct bp_location base;
12201
12202 /* The condition that checks whether the exception that was raised
12203 is the specific exception the user specified on catchpoint
12204 creation. */
12205 struct expression *excep_cond_expr;
12206};
12207
12208/* Implement the DTOR method in the bp_location_ops structure for all
12209 Ada exception catchpoint kinds. */
12210
12211static void
12212ada_catchpoint_location_dtor (struct bp_location *bl)
12213{
12214 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12215
12216 xfree (al->excep_cond_expr);
12217}
12218
12219/* The vtable to be used in Ada catchpoint locations. */
12220
12221static const struct bp_location_ops ada_catchpoint_location_ops =
12222{
12223 ada_catchpoint_location_dtor
12224};
12225
12226/* An instance of this type is used to represent an Ada catchpoint.
12227 It includes a "struct breakpoint" as a kind of base class; users
12228 downcast to "struct breakpoint *" when needed. */
12229
12230struct ada_catchpoint
12231{
12232 /* The base class. */
12233 struct breakpoint base;
12234
12235 /* The name of the specific exception the user specified. */
12236 char *excep_string;
12237};
12238
12239/* Parse the exception condition string in the context of each of the
12240 catchpoint's locations, and store them for later evaluation. */
12241
12242static void
12243create_excep_cond_exprs (struct ada_catchpoint *c)
12244{
12245 struct cleanup *old_chain;
12246 struct bp_location *bl;
12247 char *cond_string;
12248
12249 /* Nothing to do if there's no specific exception to catch. */
12250 if (c->excep_string == NULL)
12251 return;
12252
12253 /* Same if there are no locations... */
12254 if (c->base.loc == NULL)
12255 return;
12256
12257 /* Compute the condition expression in text form, from the specific
12258 expection we want to catch. */
12259 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12260 old_chain = make_cleanup (xfree, cond_string);
12261
12262 /* Iterate over all the catchpoint's locations, and parse an
12263 expression for each. */
12264 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12265 {
12266 struct ada_catchpoint_location *ada_loc
12267 = (struct ada_catchpoint_location *) bl;
12268 struct expression *exp = NULL;
12269
12270 if (!bl->shlib_disabled)
12271 {
bbc13ae3 12272 const char *s;
28010a5d
PA
12273
12274 s = cond_string;
492d29ea 12275 TRY
28010a5d 12276 {
1bb9788d
TT
12277 exp = parse_exp_1 (&s, bl->address,
12278 block_for_pc (bl->address), 0);
28010a5d 12279 }
492d29ea 12280 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12281 {
12282 warning (_("failed to reevaluate internal exception condition "
12283 "for catchpoint %d: %s"),
12284 c->base.number, e.message);
12285 /* There is a bug in GCC on sparc-solaris when building with
12286 optimization which causes EXP to change unexpectedly
12287 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12288 The problem should be fixed starting with GCC 4.9.
12289 In the meantime, work around it by forcing EXP back
12290 to NULL. */
12291 exp = NULL;
12292 }
492d29ea 12293 END_CATCH
28010a5d
PA
12294 }
12295
12296 ada_loc->excep_cond_expr = exp;
12297 }
12298
12299 do_cleanups (old_chain);
12300}
12301
12302/* Implement the DTOR method in the breakpoint_ops structure for all
12303 exception catchpoint kinds. */
12304
12305static void
761269c8 12306dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12307{
12308 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12309
12310 xfree (c->excep_string);
348d480f 12311
2060206e 12312 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
12313}
12314
12315/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12316 structure for all exception catchpoint kinds. */
12317
12318static struct bp_location *
761269c8 12319allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12320 struct breakpoint *self)
12321{
12322 struct ada_catchpoint_location *loc;
12323
12324 loc = XNEW (struct ada_catchpoint_location);
12325 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12326 loc->excep_cond_expr = NULL;
12327 return &loc->base;
12328}
12329
12330/* Implement the RE_SET method in the breakpoint_ops structure for all
12331 exception catchpoint kinds. */
12332
12333static void
761269c8 12334re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12335{
12336 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12337
12338 /* Call the base class's method. This updates the catchpoint's
12339 locations. */
2060206e 12340 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12341
12342 /* Reparse the exception conditional expressions. One for each
12343 location. */
12344 create_excep_cond_exprs (c);
12345}
12346
12347/* Returns true if we should stop for this breakpoint hit. If the
12348 user specified a specific exception, we only want to cause a stop
12349 if the program thrown that exception. */
12350
12351static int
12352should_stop_exception (const struct bp_location *bl)
12353{
12354 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12355 const struct ada_catchpoint_location *ada_loc
12356 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12357 int stop;
12358
12359 /* With no specific exception, should always stop. */
12360 if (c->excep_string == NULL)
12361 return 1;
12362
12363 if (ada_loc->excep_cond_expr == NULL)
12364 {
12365 /* We will have a NULL expression if back when we were creating
12366 the expressions, this location's had failed to parse. */
12367 return 1;
12368 }
12369
12370 stop = 1;
492d29ea 12371 TRY
28010a5d
PA
12372 {
12373 struct value *mark;
12374
12375 mark = value_mark ();
12376 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12377 value_free_to_mark (mark);
12378 }
492d29ea
PA
12379 CATCH (ex, RETURN_MASK_ALL)
12380 {
12381 exception_fprintf (gdb_stderr, ex,
12382 _("Error in testing exception condition:\n"));
12383 }
12384 END_CATCH
12385
28010a5d
PA
12386 return stop;
12387}
12388
12389/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12390 for all exception catchpoint kinds. */
12391
12392static void
761269c8 12393check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12394{
12395 bs->stop = should_stop_exception (bs->bp_location_at);
12396}
12397
f7f9143b
JB
12398/* Implement the PRINT_IT method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12400
12401static enum print_stop_action
761269c8 12402print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12403{
79a45e25 12404 struct ui_out *uiout = current_uiout;
348d480f
PA
12405 struct breakpoint *b = bs->breakpoint_at;
12406
956a9fb9 12407 annotate_catchpoint (b->number);
f7f9143b 12408
956a9fb9 12409 if (ui_out_is_mi_like_p (uiout))
f7f9143b 12410 {
956a9fb9
JB
12411 ui_out_field_string (uiout, "reason",
12412 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12413 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
12414 }
12415
00eb2c4a
JB
12416 ui_out_text (uiout,
12417 b->disposition == disp_del ? "\nTemporary catchpoint "
12418 : "\nCatchpoint ");
956a9fb9
JB
12419 ui_out_field_int (uiout, "bkptno", b->number);
12420 ui_out_text (uiout, ", ");
f7f9143b 12421
f7f9143b
JB
12422 switch (ex)
12423 {
761269c8
JB
12424 case ada_catch_exception:
12425 case ada_catch_exception_unhandled:
956a9fb9
JB
12426 {
12427 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12428 char exception_name[256];
12429
12430 if (addr != 0)
12431 {
c714b426
PA
12432 read_memory (addr, (gdb_byte *) exception_name,
12433 sizeof (exception_name) - 1);
956a9fb9
JB
12434 exception_name [sizeof (exception_name) - 1] = '\0';
12435 }
12436 else
12437 {
12438 /* For some reason, we were unable to read the exception
12439 name. This could happen if the Runtime was compiled
12440 without debugging info, for instance. In that case,
12441 just replace the exception name by the generic string
12442 "exception" - it will read as "an exception" in the
12443 notification we are about to print. */
967cff16 12444 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12445 }
12446 /* In the case of unhandled exception breakpoints, we print
12447 the exception name as "unhandled EXCEPTION_NAME", to make
12448 it clearer to the user which kind of catchpoint just got
12449 hit. We used ui_out_text to make sure that this extra
12450 info does not pollute the exception name in the MI case. */
761269c8 12451 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
12452 ui_out_text (uiout, "unhandled ");
12453 ui_out_field_string (uiout, "exception-name", exception_name);
12454 }
12455 break;
761269c8 12456 case ada_catch_assert:
956a9fb9
JB
12457 /* In this case, the name of the exception is not really
12458 important. Just print "failed assertion" to make it clearer
12459 that his program just hit an assertion-failure catchpoint.
12460 We used ui_out_text because this info does not belong in
12461 the MI output. */
12462 ui_out_text (uiout, "failed assertion");
12463 break;
f7f9143b 12464 }
956a9fb9
JB
12465 ui_out_text (uiout, " at ");
12466 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12467
12468 return PRINT_SRC_AND_LOC;
12469}
12470
12471/* Implement the PRINT_ONE method in the breakpoint_ops structure
12472 for all exception catchpoint kinds. */
12473
12474static void
761269c8 12475print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12476 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12477{
79a45e25 12478 struct ui_out *uiout = current_uiout;
28010a5d 12479 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12480 struct value_print_options opts;
12481
12482 get_user_print_options (&opts);
12483 if (opts.addressprint)
f7f9143b
JB
12484 {
12485 annotate_field (4);
5af949e3 12486 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12487 }
12488
12489 annotate_field (5);
a6d9a66e 12490 *last_loc = b->loc;
f7f9143b
JB
12491 switch (ex)
12492 {
761269c8 12493 case ada_catch_exception:
28010a5d 12494 if (c->excep_string != NULL)
f7f9143b 12495 {
28010a5d
PA
12496 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12497
f7f9143b
JB
12498 ui_out_field_string (uiout, "what", msg);
12499 xfree (msg);
12500 }
12501 else
12502 ui_out_field_string (uiout, "what", "all Ada exceptions");
12503
12504 break;
12505
761269c8 12506 case ada_catch_exception_unhandled:
f7f9143b
JB
12507 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12508 break;
12509
761269c8 12510 case ada_catch_assert:
f7f9143b
JB
12511 ui_out_field_string (uiout, "what", "failed Ada assertions");
12512 break;
12513
12514 default:
12515 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12516 break;
12517 }
12518}
12519
12520/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12521 for all exception catchpoint kinds. */
12522
12523static void
761269c8 12524print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12525 struct breakpoint *b)
12526{
28010a5d 12527 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12528 struct ui_out *uiout = current_uiout;
28010a5d 12529
00eb2c4a
JB
12530 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12531 : _("Catchpoint "));
12532 ui_out_field_int (uiout, "bkptno", b->number);
12533 ui_out_text (uiout, ": ");
12534
f7f9143b
JB
12535 switch (ex)
12536 {
761269c8 12537 case ada_catch_exception:
28010a5d 12538 if (c->excep_string != NULL)
00eb2c4a
JB
12539 {
12540 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12541 struct cleanup *old_chain = make_cleanup (xfree, info);
12542
12543 ui_out_text (uiout, info);
12544 do_cleanups (old_chain);
12545 }
f7f9143b 12546 else
00eb2c4a 12547 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12548 break;
12549
761269c8 12550 case ada_catch_exception_unhandled:
00eb2c4a 12551 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12552 break;
12553
761269c8 12554 case ada_catch_assert:
00eb2c4a 12555 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12556 break;
12557
12558 default:
12559 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12560 break;
12561 }
12562}
12563
6149aea9
PA
12564/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567static void
761269c8 12568print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12569 struct breakpoint *b, struct ui_file *fp)
12570{
28010a5d
PA
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12572
6149aea9
PA
12573 switch (ex)
12574 {
761269c8 12575 case ada_catch_exception:
6149aea9 12576 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12577 if (c->excep_string != NULL)
12578 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12579 break;
12580
761269c8 12581 case ada_catch_exception_unhandled:
78076abc 12582 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12583 break;
12584
761269c8 12585 case ada_catch_assert:
6149aea9
PA
12586 fprintf_filtered (fp, "catch assert");
12587 break;
12588
12589 default:
12590 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12591 }
d9b3f62e 12592 print_recreate_thread (b, fp);
6149aea9
PA
12593}
12594
f7f9143b
JB
12595/* Virtual table for "catch exception" breakpoints. */
12596
28010a5d
PA
12597static void
12598dtor_catch_exception (struct breakpoint *b)
12599{
761269c8 12600 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12601}
12602
12603static struct bp_location *
12604allocate_location_catch_exception (struct breakpoint *self)
12605{
761269c8 12606 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12607}
12608
12609static void
12610re_set_catch_exception (struct breakpoint *b)
12611{
761269c8 12612 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12613}
12614
12615static void
12616check_status_catch_exception (bpstat bs)
12617{
761269c8 12618 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12619}
12620
f7f9143b 12621static enum print_stop_action
348d480f 12622print_it_catch_exception (bpstat bs)
f7f9143b 12623{
761269c8 12624 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12625}
12626
12627static void
a6d9a66e 12628print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12629{
761269c8 12630 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12631}
12632
12633static void
12634print_mention_catch_exception (struct breakpoint *b)
12635{
761269c8 12636 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12637}
12638
6149aea9
PA
12639static void
12640print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12641{
761269c8 12642 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12643}
12644
2060206e 12645static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12646
12647/* Virtual table for "catch exception unhandled" breakpoints. */
12648
28010a5d
PA
12649static void
12650dtor_catch_exception_unhandled (struct breakpoint *b)
12651{
761269c8 12652 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12653}
12654
12655static struct bp_location *
12656allocate_location_catch_exception_unhandled (struct breakpoint *self)
12657{
761269c8 12658 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12659}
12660
12661static void
12662re_set_catch_exception_unhandled (struct breakpoint *b)
12663{
761269c8 12664 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12665}
12666
12667static void
12668check_status_catch_exception_unhandled (bpstat bs)
12669{
761269c8 12670 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12671}
12672
f7f9143b 12673static enum print_stop_action
348d480f 12674print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12675{
761269c8 12676 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12677}
12678
12679static void
a6d9a66e
UW
12680print_one_catch_exception_unhandled (struct breakpoint *b,
12681 struct bp_location **last_loc)
f7f9143b 12682{
761269c8 12683 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12684}
12685
12686static void
12687print_mention_catch_exception_unhandled (struct breakpoint *b)
12688{
761269c8 12689 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12690}
12691
6149aea9
PA
12692static void
12693print_recreate_catch_exception_unhandled (struct breakpoint *b,
12694 struct ui_file *fp)
12695{
761269c8 12696 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12697}
12698
2060206e 12699static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12700
12701/* Virtual table for "catch assert" breakpoints. */
12702
28010a5d
PA
12703static void
12704dtor_catch_assert (struct breakpoint *b)
12705{
761269c8 12706 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12707}
12708
12709static struct bp_location *
12710allocate_location_catch_assert (struct breakpoint *self)
12711{
761269c8 12712 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12713}
12714
12715static void
12716re_set_catch_assert (struct breakpoint *b)
12717{
761269c8 12718 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12719}
12720
12721static void
12722check_status_catch_assert (bpstat bs)
12723{
761269c8 12724 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12725}
12726
f7f9143b 12727static enum print_stop_action
348d480f 12728print_it_catch_assert (bpstat bs)
f7f9143b 12729{
761269c8 12730 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12731}
12732
12733static void
a6d9a66e 12734print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12735{
761269c8 12736 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12737}
12738
12739static void
12740print_mention_catch_assert (struct breakpoint *b)
12741{
761269c8 12742 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12743}
12744
6149aea9
PA
12745static void
12746print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12747{
761269c8 12748 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12749}
12750
2060206e 12751static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12752
f7f9143b
JB
12753/* Return a newly allocated copy of the first space-separated token
12754 in ARGSP, and then adjust ARGSP to point immediately after that
12755 token.
12756
12757 Return NULL if ARGPS does not contain any more tokens. */
12758
12759static char *
12760ada_get_next_arg (char **argsp)
12761{
12762 char *args = *argsp;
12763 char *end;
12764 char *result;
12765
0fcd72ba 12766 args = skip_spaces (args);
f7f9143b
JB
12767 if (args[0] == '\0')
12768 return NULL; /* No more arguments. */
12769
12770 /* Find the end of the current argument. */
12771
0fcd72ba 12772 end = skip_to_space (args);
f7f9143b
JB
12773
12774 /* Adjust ARGSP to point to the start of the next argument. */
12775
12776 *argsp = end;
12777
12778 /* Make a copy of the current argument and return it. */
12779
224c3ddb 12780 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12781 strncpy (result, args, end - args);
12782 result[end - args] = '\0';
12783
12784 return result;
12785}
12786
12787/* Split the arguments specified in a "catch exception" command.
12788 Set EX to the appropriate catchpoint type.
28010a5d 12789 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12790 specified by the user.
12791 If a condition is found at the end of the arguments, the condition
12792 expression is stored in COND_STRING (memory must be deallocated
12793 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12794
12795static void
12796catch_ada_exception_command_split (char *args,
761269c8 12797 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12798 char **excep_string,
12799 char **cond_string)
f7f9143b
JB
12800{
12801 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12802 char *exception_name;
5845583d 12803 char *cond = NULL;
f7f9143b
JB
12804
12805 exception_name = ada_get_next_arg (&args);
5845583d
JB
12806 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12807 {
12808 /* This is not an exception name; this is the start of a condition
12809 expression for a catchpoint on all exceptions. So, "un-get"
12810 this token, and set exception_name to NULL. */
12811 xfree (exception_name);
12812 exception_name = NULL;
12813 args -= 2;
12814 }
f7f9143b
JB
12815 make_cleanup (xfree, exception_name);
12816
5845583d 12817 /* Check to see if we have a condition. */
f7f9143b 12818
0fcd72ba 12819 args = skip_spaces (args);
61012eef 12820 if (startswith (args, "if")
5845583d
JB
12821 && (isspace (args[2]) || args[2] == '\0'))
12822 {
12823 args += 2;
12824 args = skip_spaces (args);
12825
12826 if (args[0] == '\0')
12827 error (_("Condition missing after `if' keyword"));
12828 cond = xstrdup (args);
12829 make_cleanup (xfree, cond);
12830
12831 args += strlen (args);
12832 }
12833
12834 /* Check that we do not have any more arguments. Anything else
12835 is unexpected. */
f7f9143b
JB
12836
12837 if (args[0] != '\0')
12838 error (_("Junk at end of expression"));
12839
12840 discard_cleanups (old_chain);
12841
12842 if (exception_name == NULL)
12843 {
12844 /* Catch all exceptions. */
761269c8 12845 *ex = ada_catch_exception;
28010a5d 12846 *excep_string = NULL;
f7f9143b
JB
12847 }
12848 else if (strcmp (exception_name, "unhandled") == 0)
12849 {
12850 /* Catch unhandled exceptions. */
761269c8 12851 *ex = ada_catch_exception_unhandled;
28010a5d 12852 *excep_string = NULL;
f7f9143b
JB
12853 }
12854 else
12855 {
12856 /* Catch a specific exception. */
761269c8 12857 *ex = ada_catch_exception;
28010a5d 12858 *excep_string = exception_name;
f7f9143b 12859 }
5845583d 12860 *cond_string = cond;
f7f9143b
JB
12861}
12862
12863/* Return the name of the symbol on which we should break in order to
12864 implement a catchpoint of the EX kind. */
12865
12866static const char *
761269c8 12867ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12868{
3eecfa55
JB
12869 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12870
12871 gdb_assert (data->exception_info != NULL);
0259addd 12872
f7f9143b
JB
12873 switch (ex)
12874 {
761269c8 12875 case ada_catch_exception:
3eecfa55 12876 return (data->exception_info->catch_exception_sym);
f7f9143b 12877 break;
761269c8 12878 case ada_catch_exception_unhandled:
3eecfa55 12879 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12880 break;
761269c8 12881 case ada_catch_assert:
3eecfa55 12882 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12883 break;
12884 default:
12885 internal_error (__FILE__, __LINE__,
12886 _("unexpected catchpoint kind (%d)"), ex);
12887 }
12888}
12889
12890/* Return the breakpoint ops "virtual table" used for catchpoints
12891 of the EX kind. */
12892
c0a91b2b 12893static const struct breakpoint_ops *
761269c8 12894ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12895{
12896 switch (ex)
12897 {
761269c8 12898 case ada_catch_exception:
f7f9143b
JB
12899 return (&catch_exception_breakpoint_ops);
12900 break;
761269c8 12901 case ada_catch_exception_unhandled:
f7f9143b
JB
12902 return (&catch_exception_unhandled_breakpoint_ops);
12903 break;
761269c8 12904 case ada_catch_assert:
f7f9143b
JB
12905 return (&catch_assert_breakpoint_ops);
12906 break;
12907 default:
12908 internal_error (__FILE__, __LINE__,
12909 _("unexpected catchpoint kind (%d)"), ex);
12910 }
12911}
12912
12913/* Return the condition that will be used to match the current exception
12914 being raised with the exception that the user wants to catch. This
12915 assumes that this condition is used when the inferior just triggered
12916 an exception catchpoint.
12917
12918 The string returned is a newly allocated string that needs to be
12919 deallocated later. */
12920
12921static char *
28010a5d 12922ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12923{
3d0b0fa3
JB
12924 int i;
12925
0963b4bd 12926 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12927 runtime units that have been compiled without debugging info; if
28010a5d 12928 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12929 exception (e.g. "constraint_error") then, during the evaluation
12930 of the condition expression, the symbol lookup on this name would
0963b4bd 12931 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12932 may then be set only on user-defined exceptions which have the
12933 same not-fully-qualified name (e.g. my_package.constraint_error).
12934
12935 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12936 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12937 exception constraint_error" is rewritten into "catch exception
12938 standard.constraint_error".
12939
12940 If an exception named contraint_error is defined in another package of
12941 the inferior program, then the only way to specify this exception as a
12942 breakpoint condition is to use its fully-qualified named:
12943 e.g. my_package.constraint_error. */
12944
12945 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12946 {
28010a5d 12947 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12948 {
12949 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12950 excep_string);
3d0b0fa3
JB
12951 }
12952 }
28010a5d 12953 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12954}
12955
12956/* Return the symtab_and_line that should be used to insert an exception
12957 catchpoint of the TYPE kind.
12958
28010a5d
PA
12959 EXCEP_STRING should contain the name of a specific exception that
12960 the catchpoint should catch, or NULL otherwise.
f7f9143b 12961
28010a5d
PA
12962 ADDR_STRING returns the name of the function where the real
12963 breakpoint that implements the catchpoints is set, depending on the
12964 type of catchpoint we need to create. */
f7f9143b
JB
12965
12966static struct symtab_and_line
761269c8 12967ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12968 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12969{
12970 const char *sym_name;
12971 struct symbol *sym;
f7f9143b 12972
0259addd
JB
12973 /* First, find out which exception support info to use. */
12974 ada_exception_support_info_sniffer ();
12975
12976 /* Then lookup the function on which we will break in order to catch
f7f9143b 12977 the Ada exceptions requested by the user. */
f7f9143b
JB
12978 sym_name = ada_exception_sym_name (ex);
12979 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12980
f17011e0
JB
12981 /* We can assume that SYM is not NULL at this stage. If the symbol
12982 did not exist, ada_exception_support_info_sniffer would have
12983 raised an exception.
f7f9143b 12984
f17011e0
JB
12985 Also, ada_exception_support_info_sniffer should have already
12986 verified that SYM is a function symbol. */
12987 gdb_assert (sym != NULL);
12988 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12989
12990 /* Set ADDR_STRING. */
f7f9143b
JB
12991 *addr_string = xstrdup (sym_name);
12992
f7f9143b 12993 /* Set OPS. */
4b9eee8c 12994 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12995
f17011e0 12996 return find_function_start_sal (sym, 1);
f7f9143b
JB
12997}
12998
b4a5b78b 12999/* Create an Ada exception catchpoint.
f7f9143b 13000
b4a5b78b 13001 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13002
2df4d1d5
JB
13003 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13004 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13005 of the exception to which this catchpoint applies. When not NULL,
13006 the string must be allocated on the heap, and its deallocation
13007 is no longer the responsibility of the caller.
13008
13009 COND_STRING, if not NULL, is the catchpoint condition. This string
13010 must be allocated on the heap, and its deallocation is no longer
13011 the responsibility of the caller.
f7f9143b 13012
b4a5b78b
JB
13013 TEMPFLAG, if nonzero, means that the underlying breakpoint
13014 should be temporary.
28010a5d 13015
b4a5b78b 13016 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13017
349774ef 13018void
28010a5d 13019create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13020 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13021 char *excep_string,
5845583d 13022 char *cond_string,
28010a5d 13023 int tempflag,
349774ef 13024 int disabled,
28010a5d
PA
13025 int from_tty)
13026{
13027 struct ada_catchpoint *c;
b4a5b78b
JB
13028 char *addr_string = NULL;
13029 const struct breakpoint_ops *ops = NULL;
13030 struct symtab_and_line sal
13031 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
13032
13033 c = XNEW (struct ada_catchpoint);
13034 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 13035 ops, tempflag, disabled, from_tty);
28010a5d
PA
13036 c->excep_string = excep_string;
13037 create_excep_cond_exprs (c);
5845583d
JB
13038 if (cond_string != NULL)
13039 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 13040 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
13041}
13042
9ac4176b
PA
13043/* Implement the "catch exception" command. */
13044
13045static void
13046catch_ada_exception_command (char *arg, int from_tty,
13047 struct cmd_list_element *command)
13048{
13049 struct gdbarch *gdbarch = get_current_arch ();
13050 int tempflag;
761269c8 13051 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13052 char *excep_string = NULL;
5845583d 13053 char *cond_string = NULL;
9ac4176b
PA
13054
13055 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13056
13057 if (!arg)
13058 arg = "";
b4a5b78b
JB
13059 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13060 &cond_string);
13061 create_ada_exception_catchpoint (gdbarch, ex_kind,
13062 excep_string, cond_string,
349774ef
JB
13063 tempflag, 1 /* enabled */,
13064 from_tty);
9ac4176b
PA
13065}
13066
b4a5b78b 13067/* Split the arguments specified in a "catch assert" command.
5845583d 13068
b4a5b78b
JB
13069 ARGS contains the command's arguments (or the empty string if
13070 no arguments were passed).
5845583d
JB
13071
13072 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13073 (the memory needs to be deallocated after use). */
5845583d 13074
b4a5b78b
JB
13075static void
13076catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 13077{
5845583d 13078 args = skip_spaces (args);
f7f9143b 13079
5845583d 13080 /* Check whether a condition was provided. */
61012eef 13081 if (startswith (args, "if")
5845583d 13082 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13083 {
5845583d 13084 args += 2;
0fcd72ba 13085 args = skip_spaces (args);
5845583d
JB
13086 if (args[0] == '\0')
13087 error (_("condition missing after `if' keyword"));
13088 *cond_string = xstrdup (args);
f7f9143b
JB
13089 }
13090
5845583d
JB
13091 /* Otherwise, there should be no other argument at the end of
13092 the command. */
13093 else if (args[0] != '\0')
13094 error (_("Junk at end of arguments."));
f7f9143b
JB
13095}
13096
9ac4176b
PA
13097/* Implement the "catch assert" command. */
13098
13099static void
13100catch_assert_command (char *arg, int from_tty,
13101 struct cmd_list_element *command)
13102{
13103 struct gdbarch *gdbarch = get_current_arch ();
13104 int tempflag;
5845583d 13105 char *cond_string = NULL;
9ac4176b
PA
13106
13107 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13108
13109 if (!arg)
13110 arg = "";
b4a5b78b 13111 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13112 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13113 NULL, cond_string,
349774ef
JB
13114 tempflag, 1 /* enabled */,
13115 from_tty);
9ac4176b 13116}
778865d3
JB
13117
13118/* Return non-zero if the symbol SYM is an Ada exception object. */
13119
13120static int
13121ada_is_exception_sym (struct symbol *sym)
13122{
13123 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13124
13125 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13126 && SYMBOL_CLASS (sym) != LOC_BLOCK
13127 && SYMBOL_CLASS (sym) != LOC_CONST
13128 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13129 && type_name != NULL && strcmp (type_name, "exception") == 0);
13130}
13131
13132/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13133 Ada exception object. This matches all exceptions except the ones
13134 defined by the Ada language. */
13135
13136static int
13137ada_is_non_standard_exception_sym (struct symbol *sym)
13138{
13139 int i;
13140
13141 if (!ada_is_exception_sym (sym))
13142 return 0;
13143
13144 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13145 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13146 return 0; /* A standard exception. */
13147
13148 /* Numeric_Error is also a standard exception, so exclude it.
13149 See the STANDARD_EXC description for more details as to why
13150 this exception is not listed in that array. */
13151 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13152 return 0;
13153
13154 return 1;
13155}
13156
13157/* A helper function for qsort, comparing two struct ada_exc_info
13158 objects.
13159
13160 The comparison is determined first by exception name, and then
13161 by exception address. */
13162
13163static int
13164compare_ada_exception_info (const void *a, const void *b)
13165{
13166 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13167 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13168 int result;
13169
13170 result = strcmp (exc_a->name, exc_b->name);
13171 if (result != 0)
13172 return result;
13173
13174 if (exc_a->addr < exc_b->addr)
13175 return -1;
13176 if (exc_a->addr > exc_b->addr)
13177 return 1;
13178
13179 return 0;
13180}
13181
13182/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13183 routine, but keeping the first SKIP elements untouched.
13184
13185 All duplicates are also removed. */
13186
13187static void
13188sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13189 int skip)
13190{
13191 struct ada_exc_info *to_sort
13192 = VEC_address (ada_exc_info, *exceptions) + skip;
13193 int to_sort_len
13194 = VEC_length (ada_exc_info, *exceptions) - skip;
13195 int i, j;
13196
13197 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13198 compare_ada_exception_info);
13199
13200 for (i = 1, j = 1; i < to_sort_len; i++)
13201 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13202 to_sort[j++] = to_sort[i];
13203 to_sort_len = j;
13204 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13205}
13206
13207/* A function intended as the "name_matcher" callback in the struct
13208 quick_symbol_functions' expand_symtabs_matching method.
13209
13210 SEARCH_NAME is the symbol's search name.
13211
13212 If USER_DATA is not NULL, it is a pointer to a regext_t object
13213 used to match the symbol (by natural name). Otherwise, when USER_DATA
13214 is null, no filtering is performed, and all symbols are a positive
13215 match. */
13216
13217static int
13218ada_exc_search_name_matches (const char *search_name, void *user_data)
13219{
9a3c8263 13220 regex_t *preg = (regex_t *) user_data;
778865d3
JB
13221
13222 if (preg == NULL)
13223 return 1;
13224
13225 /* In Ada, the symbol "search name" is a linkage name, whereas
13226 the regular expression used to do the matching refers to
13227 the natural name. So match against the decoded name. */
13228 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13229}
13230
13231/* Add all exceptions defined by the Ada standard whose name match
13232 a regular expression.
13233
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13237
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13239 gets pushed. */
13240
13241static void
13242ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13243{
13244 int i;
13245
13246 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13247 {
13248 if (preg == NULL
13249 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13250 {
13251 struct bound_minimal_symbol msymbol
13252 = ada_lookup_simple_minsym (standard_exc[i]);
13253
13254 if (msymbol.minsym != NULL)
13255 {
13256 struct ada_exc_info info
77e371c0 13257 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13258
13259 VEC_safe_push (ada_exc_info, *exceptions, &info);
13260 }
13261 }
13262 }
13263}
13264
13265/* Add all Ada exceptions defined locally and accessible from the given
13266 FRAME.
13267
13268 If PREG is not NULL, then this regexp_t object is used to
13269 perform the symbol name matching. Otherwise, no name-based
13270 filtering is performed.
13271
13272 EXCEPTIONS is a vector of exceptions to which matching exceptions
13273 gets pushed. */
13274
13275static void
13276ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13277 VEC(ada_exc_info) **exceptions)
13278{
3977b71f 13279 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13280
13281 while (block != 0)
13282 {
13283 struct block_iterator iter;
13284 struct symbol *sym;
13285
13286 ALL_BLOCK_SYMBOLS (block, iter, sym)
13287 {
13288 switch (SYMBOL_CLASS (sym))
13289 {
13290 case LOC_TYPEDEF:
13291 case LOC_BLOCK:
13292 case LOC_CONST:
13293 break;
13294 default:
13295 if (ada_is_exception_sym (sym))
13296 {
13297 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13298 SYMBOL_VALUE_ADDRESS (sym)};
13299
13300 VEC_safe_push (ada_exc_info, *exceptions, &info);
13301 }
13302 }
13303 }
13304 if (BLOCK_FUNCTION (block) != NULL)
13305 break;
13306 block = BLOCK_SUPERBLOCK (block);
13307 }
13308}
13309
13310/* Add all exceptions defined globally whose name name match
13311 a regular expression, excluding standard exceptions.
13312
13313 The reason we exclude standard exceptions is that they need
13314 to be handled separately: Standard exceptions are defined inside
13315 a runtime unit which is normally not compiled with debugging info,
13316 and thus usually do not show up in our symbol search. However,
13317 if the unit was in fact built with debugging info, we need to
13318 exclude them because they would duplicate the entry we found
13319 during the special loop that specifically searches for those
13320 standard exceptions.
13321
13322 If PREG is not NULL, then this regexp_t object is used to
13323 perform the symbol name matching. Otherwise, no name-based
13324 filtering is performed.
13325
13326 EXCEPTIONS is a vector of exceptions to which matching exceptions
13327 gets pushed. */
13328
13329static void
13330ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13331{
13332 struct objfile *objfile;
43f3e411 13333 struct compunit_symtab *s;
778865d3 13334
276d885b 13335 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
bb4142cf 13336 VARIABLES_DOMAIN, preg);
778865d3 13337
43f3e411 13338 ALL_COMPUNITS (objfile, s)
778865d3 13339 {
43f3e411 13340 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13341 int i;
13342
13343 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13344 {
13345 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (b, iter, sym)
13350 if (ada_is_non_standard_exception_sym (sym)
13351 && (preg == NULL
13352 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13353 0, NULL, 0) == 0))
13354 {
13355 struct ada_exc_info info
13356 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13357
13358 VEC_safe_push (ada_exc_info, *exceptions, &info);
13359 }
13360 }
13361 }
13362}
13363
13364/* Implements ada_exceptions_list with the regular expression passed
13365 as a regex_t, rather than a string.
13366
13367 If not NULL, PREG is used to filter out exceptions whose names
13368 do not match. Otherwise, all exceptions are listed. */
13369
13370static VEC(ada_exc_info) *
13371ada_exceptions_list_1 (regex_t *preg)
13372{
13373 VEC(ada_exc_info) *result = NULL;
13374 struct cleanup *old_chain
13375 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13376 int prev_len;
13377
13378 /* First, list the known standard exceptions. These exceptions
13379 need to be handled separately, as they are usually defined in
13380 runtime units that have been compiled without debugging info. */
13381
13382 ada_add_standard_exceptions (preg, &result);
13383
13384 /* Next, find all exceptions whose scope is local and accessible
13385 from the currently selected frame. */
13386
13387 if (has_stack_frames ())
13388 {
13389 prev_len = VEC_length (ada_exc_info, result);
13390 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13391 &result);
13392 if (VEC_length (ada_exc_info, result) > prev_len)
13393 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13394 }
13395
13396 /* Add all exceptions whose scope is global. */
13397
13398 prev_len = VEC_length (ada_exc_info, result);
13399 ada_add_global_exceptions (preg, &result);
13400 if (VEC_length (ada_exc_info, result) > prev_len)
13401 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13402
13403 discard_cleanups (old_chain);
13404 return result;
13405}
13406
13407/* Return a vector of ada_exc_info.
13408
13409 If REGEXP is NULL, all exceptions are included in the result.
13410 Otherwise, it should contain a valid regular expression,
13411 and only the exceptions whose names match that regular expression
13412 are included in the result.
13413
13414 The exceptions are sorted in the following order:
13415 - Standard exceptions (defined by the Ada language), in
13416 alphabetical order;
13417 - Exceptions only visible from the current frame, in
13418 alphabetical order;
13419 - Exceptions whose scope is global, in alphabetical order. */
13420
13421VEC(ada_exc_info) *
13422ada_exceptions_list (const char *regexp)
13423{
13424 VEC(ada_exc_info) *result = NULL;
13425 struct cleanup *old_chain = NULL;
13426 regex_t reg;
13427
13428 if (regexp != NULL)
13429 old_chain = compile_rx_or_error (&reg, regexp,
13430 _("invalid regular expression"));
13431
13432 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13433
13434 if (old_chain != NULL)
13435 do_cleanups (old_chain);
13436 return result;
13437}
13438
13439/* Implement the "info exceptions" command. */
13440
13441static void
13442info_exceptions_command (char *regexp, int from_tty)
13443{
13444 VEC(ada_exc_info) *exceptions;
13445 struct cleanup *cleanup;
13446 struct gdbarch *gdbarch = get_current_arch ();
13447 int ix;
13448 struct ada_exc_info *info;
13449
13450 exceptions = ada_exceptions_list (regexp);
13451 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13452
13453 if (regexp != NULL)
13454 printf_filtered
13455 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13456 else
13457 printf_filtered (_("All defined Ada exceptions:\n"));
13458
13459 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13460 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13461
13462 do_cleanups (cleanup);
13463}
13464
4c4b4cd2
PH
13465 /* Operators */
13466/* Information about operators given special treatment in functions
13467 below. */
13468/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13469
13470#define ADA_OPERATORS \
13471 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13472 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13473 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13474 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13475 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13476 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13477 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13478 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13479 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13480 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13481 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13482 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13483 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13484 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13485 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13486 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13487 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13488 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13489 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13490
13491static void
554794dc
SDJ
13492ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13493 int *argsp)
4c4b4cd2
PH
13494{
13495 switch (exp->elts[pc - 1].opcode)
13496 {
76a01679 13497 default:
4c4b4cd2
PH
13498 operator_length_standard (exp, pc, oplenp, argsp);
13499 break;
13500
13501#define OP_DEFN(op, len, args, binop) \
13502 case op: *oplenp = len; *argsp = args; break;
13503 ADA_OPERATORS;
13504#undef OP_DEFN
52ce6436
PH
13505
13506 case OP_AGGREGATE:
13507 *oplenp = 3;
13508 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13509 break;
13510
13511 case OP_CHOICES:
13512 *oplenp = 3;
13513 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13514 break;
4c4b4cd2
PH
13515 }
13516}
13517
c0201579
JK
13518/* Implementation of the exp_descriptor method operator_check. */
13519
13520static int
13521ada_operator_check (struct expression *exp, int pos,
13522 int (*objfile_func) (struct objfile *objfile, void *data),
13523 void *data)
13524{
13525 const union exp_element *const elts = exp->elts;
13526 struct type *type = NULL;
13527
13528 switch (elts[pos].opcode)
13529 {
13530 case UNOP_IN_RANGE:
13531 case UNOP_QUAL:
13532 type = elts[pos + 1].type;
13533 break;
13534
13535 default:
13536 return operator_check_standard (exp, pos, objfile_func, data);
13537 }
13538
13539 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13540
13541 if (type && TYPE_OBJFILE (type)
13542 && (*objfile_func) (TYPE_OBJFILE (type), data))
13543 return 1;
13544
13545 return 0;
13546}
13547
4c4b4cd2
PH
13548static char *
13549ada_op_name (enum exp_opcode opcode)
13550{
13551 switch (opcode)
13552 {
76a01679 13553 default:
4c4b4cd2 13554 return op_name_standard (opcode);
52ce6436 13555
4c4b4cd2
PH
13556#define OP_DEFN(op, len, args, binop) case op: return #op;
13557 ADA_OPERATORS;
13558#undef OP_DEFN
52ce6436
PH
13559
13560 case OP_AGGREGATE:
13561 return "OP_AGGREGATE";
13562 case OP_CHOICES:
13563 return "OP_CHOICES";
13564 case OP_NAME:
13565 return "OP_NAME";
4c4b4cd2
PH
13566 }
13567}
13568
13569/* As for operator_length, but assumes PC is pointing at the first
13570 element of the operator, and gives meaningful results only for the
52ce6436 13571 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13572
13573static void
76a01679
JB
13574ada_forward_operator_length (struct expression *exp, int pc,
13575 int *oplenp, int *argsp)
4c4b4cd2 13576{
76a01679 13577 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13578 {
13579 default:
13580 *oplenp = *argsp = 0;
13581 break;
52ce6436 13582
4c4b4cd2
PH
13583#define OP_DEFN(op, len, args, binop) \
13584 case op: *oplenp = len; *argsp = args; break;
13585 ADA_OPERATORS;
13586#undef OP_DEFN
52ce6436
PH
13587
13588 case OP_AGGREGATE:
13589 *oplenp = 3;
13590 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13591 break;
13592
13593 case OP_CHOICES:
13594 *oplenp = 3;
13595 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13596 break;
13597
13598 case OP_STRING:
13599 case OP_NAME:
13600 {
13601 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13602
52ce6436
PH
13603 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13604 *argsp = 0;
13605 break;
13606 }
4c4b4cd2
PH
13607 }
13608}
13609
13610static int
13611ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13612{
13613 enum exp_opcode op = exp->elts[elt].opcode;
13614 int oplen, nargs;
13615 int pc = elt;
13616 int i;
76a01679 13617
4c4b4cd2
PH
13618 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13619
76a01679 13620 switch (op)
4c4b4cd2 13621 {
76a01679 13622 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13623 case OP_ATR_FIRST:
13624 case OP_ATR_LAST:
13625 case OP_ATR_LENGTH:
13626 case OP_ATR_IMAGE:
13627 case OP_ATR_MAX:
13628 case OP_ATR_MIN:
13629 case OP_ATR_MODULUS:
13630 case OP_ATR_POS:
13631 case OP_ATR_SIZE:
13632 case OP_ATR_TAG:
13633 case OP_ATR_VAL:
13634 break;
13635
13636 case UNOP_IN_RANGE:
13637 case UNOP_QUAL:
323e0a4a
AC
13638 /* XXX: gdb_sprint_host_address, type_sprint */
13639 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13640 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13641 fprintf_filtered (stream, " (");
13642 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13643 fprintf_filtered (stream, ")");
13644 break;
13645 case BINOP_IN_BOUNDS:
52ce6436
PH
13646 fprintf_filtered (stream, " (%d)",
13647 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13648 break;
13649 case TERNOP_IN_RANGE:
13650 break;
13651
52ce6436
PH
13652 case OP_AGGREGATE:
13653 case OP_OTHERS:
13654 case OP_DISCRETE_RANGE:
13655 case OP_POSITIONAL:
13656 case OP_CHOICES:
13657 break;
13658
13659 case OP_NAME:
13660 case OP_STRING:
13661 {
13662 char *name = &exp->elts[elt + 2].string;
13663 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13664
52ce6436
PH
13665 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13666 break;
13667 }
13668
4c4b4cd2
PH
13669 default:
13670 return dump_subexp_body_standard (exp, stream, elt);
13671 }
13672
13673 elt += oplen;
13674 for (i = 0; i < nargs; i += 1)
13675 elt = dump_subexp (exp, stream, elt);
13676
13677 return elt;
13678}
13679
13680/* The Ada extension of print_subexp (q.v.). */
13681
76a01679
JB
13682static void
13683ada_print_subexp (struct expression *exp, int *pos,
13684 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13685{
52ce6436 13686 int oplen, nargs, i;
4c4b4cd2
PH
13687 int pc = *pos;
13688 enum exp_opcode op = exp->elts[pc].opcode;
13689
13690 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13691
52ce6436 13692 *pos += oplen;
4c4b4cd2
PH
13693 switch (op)
13694 {
13695 default:
52ce6436 13696 *pos -= oplen;
4c4b4cd2
PH
13697 print_subexp_standard (exp, pos, stream, prec);
13698 return;
13699
13700 case OP_VAR_VALUE:
4c4b4cd2
PH
13701 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13702 return;
13703
13704 case BINOP_IN_BOUNDS:
323e0a4a 13705 /* XXX: sprint_subexp */
4c4b4cd2 13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13707 fputs_filtered (" in ", stream);
4c4b4cd2 13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13709 fputs_filtered ("'range", stream);
4c4b4cd2 13710 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13711 fprintf_filtered (stream, "(%ld)",
13712 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13713 return;
13714
13715 case TERNOP_IN_RANGE:
4c4b4cd2 13716 if (prec >= PREC_EQUAL)
76a01679 13717 fputs_filtered ("(", stream);
323e0a4a 13718 /* XXX: sprint_subexp */
4c4b4cd2 13719 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13720 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13721 print_subexp (exp, pos, stream, PREC_EQUAL);
13722 fputs_filtered (" .. ", stream);
13723 print_subexp (exp, pos, stream, PREC_EQUAL);
13724 if (prec >= PREC_EQUAL)
76a01679
JB
13725 fputs_filtered (")", stream);
13726 return;
4c4b4cd2
PH
13727
13728 case OP_ATR_FIRST:
13729 case OP_ATR_LAST:
13730 case OP_ATR_LENGTH:
13731 case OP_ATR_IMAGE:
13732 case OP_ATR_MAX:
13733 case OP_ATR_MIN:
13734 case OP_ATR_MODULUS:
13735 case OP_ATR_POS:
13736 case OP_ATR_SIZE:
13737 case OP_ATR_TAG:
13738 case OP_ATR_VAL:
4c4b4cd2 13739 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13740 {
13741 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13742 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13743 &type_print_raw_options);
76a01679
JB
13744 *pos += 3;
13745 }
4c4b4cd2 13746 else
76a01679 13747 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13748 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13749 if (nargs > 1)
76a01679
JB
13750 {
13751 int tem;
5b4ee69b 13752
76a01679
JB
13753 for (tem = 1; tem < nargs; tem += 1)
13754 {
13755 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13756 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13757 }
13758 fputs_filtered (")", stream);
13759 }
4c4b4cd2 13760 return;
14f9c5c9 13761
4c4b4cd2 13762 case UNOP_QUAL:
4c4b4cd2
PH
13763 type_print (exp->elts[pc + 1].type, "", stream, 0);
13764 fputs_filtered ("'(", stream);
13765 print_subexp (exp, pos, stream, PREC_PREFIX);
13766 fputs_filtered (")", stream);
13767 return;
14f9c5c9 13768
4c4b4cd2 13769 case UNOP_IN_RANGE:
323e0a4a 13770 /* XXX: sprint_subexp */
4c4b4cd2 13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13772 fputs_filtered (" in ", stream);
79d43c61
TT
13773 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13774 &type_print_raw_options);
4c4b4cd2 13775 return;
52ce6436
PH
13776
13777 case OP_DISCRETE_RANGE:
13778 print_subexp (exp, pos, stream, PREC_SUFFIX);
13779 fputs_filtered ("..", stream);
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 return;
13782
13783 case OP_OTHERS:
13784 fputs_filtered ("others => ", stream);
13785 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 return;
13787
13788 case OP_CHOICES:
13789 for (i = 0; i < nargs-1; i += 1)
13790 {
13791 if (i > 0)
13792 fputs_filtered ("|", stream);
13793 print_subexp (exp, pos, stream, PREC_SUFFIX);
13794 }
13795 fputs_filtered (" => ", stream);
13796 print_subexp (exp, pos, stream, PREC_SUFFIX);
13797 return;
13798
13799 case OP_POSITIONAL:
13800 print_subexp (exp, pos, stream, PREC_SUFFIX);
13801 return;
13802
13803 case OP_AGGREGATE:
13804 fputs_filtered ("(", stream);
13805 for (i = 0; i < nargs; i += 1)
13806 {
13807 if (i > 0)
13808 fputs_filtered (", ", stream);
13809 print_subexp (exp, pos, stream, PREC_SUFFIX);
13810 }
13811 fputs_filtered (")", stream);
13812 return;
4c4b4cd2
PH
13813 }
13814}
14f9c5c9
AS
13815
13816/* Table mapping opcodes into strings for printing operators
13817 and precedences of the operators. */
13818
d2e4a39e
AS
13819static const struct op_print ada_op_print_tab[] = {
13820 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13821 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13822 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13823 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13824 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13825 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13826 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13827 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13828 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13829 {">=", BINOP_GEQ, PREC_ORDER, 0},
13830 {">", BINOP_GTR, PREC_ORDER, 0},
13831 {"<", BINOP_LESS, PREC_ORDER, 0},
13832 {">>", BINOP_RSH, PREC_SHIFT, 0},
13833 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13834 {"+", BINOP_ADD, PREC_ADD, 0},
13835 {"-", BINOP_SUB, PREC_ADD, 0},
13836 {"&", BINOP_CONCAT, PREC_ADD, 0},
13837 {"*", BINOP_MUL, PREC_MUL, 0},
13838 {"/", BINOP_DIV, PREC_MUL, 0},
13839 {"rem", BINOP_REM, PREC_MUL, 0},
13840 {"mod", BINOP_MOD, PREC_MUL, 0},
13841 {"**", BINOP_EXP, PREC_REPEAT, 0},
13842 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13843 {"-", UNOP_NEG, PREC_PREFIX, 0},
13844 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13845 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13846 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13847 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13848 {".all", UNOP_IND, PREC_SUFFIX, 1},
13849 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13850 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13851 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13852};
13853\f
72d5681a
PH
13854enum ada_primitive_types {
13855 ada_primitive_type_int,
13856 ada_primitive_type_long,
13857 ada_primitive_type_short,
13858 ada_primitive_type_char,
13859 ada_primitive_type_float,
13860 ada_primitive_type_double,
13861 ada_primitive_type_void,
13862 ada_primitive_type_long_long,
13863 ada_primitive_type_long_double,
13864 ada_primitive_type_natural,
13865 ada_primitive_type_positive,
13866 ada_primitive_type_system_address,
13867 nr_ada_primitive_types
13868};
6c038f32
PH
13869
13870static void
d4a9a881 13871ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13872 struct language_arch_info *lai)
13873{
d4a9a881 13874 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13875
72d5681a 13876 lai->primitive_type_vector
d4a9a881 13877 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13878 struct type *);
e9bb382b
UW
13879
13880 lai->primitive_type_vector [ada_primitive_type_int]
13881 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13882 0, "integer");
13883 lai->primitive_type_vector [ada_primitive_type_long]
13884 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13885 0, "long_integer");
13886 lai->primitive_type_vector [ada_primitive_type_short]
13887 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13888 0, "short_integer");
13889 lai->string_char_type
13890 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13891 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13892 lai->primitive_type_vector [ada_primitive_type_float]
13893 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13894 "float", NULL);
13895 lai->primitive_type_vector [ada_primitive_type_double]
13896 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13897 "long_float", NULL);
13898 lai->primitive_type_vector [ada_primitive_type_long_long]
13899 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13900 0, "long_long_integer");
13901 lai->primitive_type_vector [ada_primitive_type_long_double]
13902 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13903 "long_long_float", NULL);
13904 lai->primitive_type_vector [ada_primitive_type_natural]
13905 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13906 0, "natural");
13907 lai->primitive_type_vector [ada_primitive_type_positive]
13908 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13909 0, "positive");
13910 lai->primitive_type_vector [ada_primitive_type_void]
13911 = builtin->builtin_void;
13912
13913 lai->primitive_type_vector [ada_primitive_type_system_address]
13914 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13915 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13916 = "system__address";
fbb06eb1 13917
47e729a8 13918 lai->bool_type_symbol = NULL;
fbb06eb1 13919 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13920}
6c038f32
PH
13921\f
13922 /* Language vector */
13923
13924/* Not really used, but needed in the ada_language_defn. */
13925
13926static void
6c7a06a3 13927emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13928{
6c7a06a3 13929 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13930}
13931
13932static int
410a0ff2 13933parse (struct parser_state *ps)
6c038f32
PH
13934{
13935 warnings_issued = 0;
410a0ff2 13936 return ada_parse (ps);
6c038f32
PH
13937}
13938
13939static const struct exp_descriptor ada_exp_descriptor = {
13940 ada_print_subexp,
13941 ada_operator_length,
c0201579 13942 ada_operator_check,
6c038f32
PH
13943 ada_op_name,
13944 ada_dump_subexp_body,
13945 ada_evaluate_subexp
13946};
13947
1a119f36 13948/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13949 for Ada. */
13950
1a119f36
JB
13951static symbol_name_cmp_ftype
13952ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13953{
13954 if (should_use_wild_match (lookup_name))
13955 return wild_match;
13956 else
13957 return compare_names;
13958}
13959
a5ee536b
JB
13960/* Implement the "la_read_var_value" language_defn method for Ada. */
13961
13962static struct value *
63e43d3a
PMR
13963ada_read_var_value (struct symbol *var, const struct block *var_block,
13964 struct frame_info *frame)
a5ee536b 13965{
3977b71f 13966 const struct block *frame_block = NULL;
a5ee536b
JB
13967 struct symbol *renaming_sym = NULL;
13968
13969 /* The only case where default_read_var_value is not sufficient
13970 is when VAR is a renaming... */
13971 if (frame)
13972 frame_block = get_frame_block (frame, NULL);
13973 if (frame_block)
13974 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13975 if (renaming_sym != NULL)
13976 return ada_read_renaming_var_value (renaming_sym, frame_block);
13977
13978 /* This is a typical case where we expect the default_read_var_value
13979 function to work. */
63e43d3a 13980 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13981}
13982
6c038f32
PH
13983const struct language_defn ada_language_defn = {
13984 "ada", /* Language name */
6abde28f 13985 "Ada",
6c038f32 13986 language_ada,
6c038f32 13987 range_check_off,
6c038f32
PH
13988 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13989 that's not quite what this means. */
6c038f32 13990 array_row_major,
9a044a89 13991 macro_expansion_no,
6c038f32
PH
13992 &ada_exp_descriptor,
13993 parse,
13994 ada_error,
13995 resolve,
13996 ada_printchar, /* Print a character constant */
13997 ada_printstr, /* Function to print string constant */
13998 emit_char, /* Function to print single char (not used) */
6c038f32 13999 ada_print_type, /* Print a type using appropriate syntax */
be942545 14000 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14001 ada_val_print, /* Print a value using appropriate syntax */
14002 ada_value_print, /* Print a top-level value */
a5ee536b 14003 ada_read_var_value, /* la_read_var_value */
6c038f32 14004 NULL, /* Language specific skip_trampoline */
2b2d9e11 14005 NULL, /* name_of_this */
6c038f32
PH
14006 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14007 basic_lookup_transparent_type, /* lookup_transparent_type */
14008 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
14009 NULL, /* Language specific
14010 class_name_from_physname */
6c038f32
PH
14011 ada_op_print_tab, /* expression operators for printing */
14012 0, /* c-style arrays */
14013 1, /* String lower bound */
6c038f32 14014 ada_get_gdb_completer_word_break_characters,
41d27058 14015 ada_make_symbol_completion_list,
72d5681a 14016 ada_language_arch_info,
e79af960 14017 ada_print_array_index,
41f1b697 14018 default_pass_by_reference,
ae6a3a4c 14019 c_get_string,
1a119f36 14020 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14021 ada_iterate_over_symbols,
a53b64ea 14022 &ada_varobj_ops,
bb2ec1b3
TT
14023 NULL,
14024 NULL,
6c038f32
PH
14025 LANG_MAGIC
14026};
14027
2c0b251b
PA
14028/* Provide a prototype to silence -Wmissing-prototypes. */
14029extern initialize_file_ftype _initialize_ada_language;
14030
5bf03f13
JB
14031/* Command-list for the "set/show ada" prefix command. */
14032static struct cmd_list_element *set_ada_list;
14033static struct cmd_list_element *show_ada_list;
14034
14035/* Implement the "set ada" prefix command. */
14036
14037static void
14038set_ada_command (char *arg, int from_tty)
14039{
14040 printf_unfiltered (_(\
14041"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14042 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14043}
14044
14045/* Implement the "show ada" prefix command. */
14046
14047static void
14048show_ada_command (char *args, int from_tty)
14049{
14050 cmd_show_list (show_ada_list, from_tty, "");
14051}
14052
2060206e
PA
14053static void
14054initialize_ada_catchpoint_ops (void)
14055{
14056 struct breakpoint_ops *ops;
14057
14058 initialize_breakpoint_ops ();
14059
14060 ops = &catch_exception_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_exception;
14063 ops->allocate_location = allocate_location_catch_exception;
14064 ops->re_set = re_set_catch_exception;
14065 ops->check_status = check_status_catch_exception;
14066 ops->print_it = print_it_catch_exception;
14067 ops->print_one = print_one_catch_exception;
14068 ops->print_mention = print_mention_catch_exception;
14069 ops->print_recreate = print_recreate_catch_exception;
14070
14071 ops = &catch_exception_unhandled_breakpoint_ops;
14072 *ops = bkpt_breakpoint_ops;
14073 ops->dtor = dtor_catch_exception_unhandled;
14074 ops->allocate_location = allocate_location_catch_exception_unhandled;
14075 ops->re_set = re_set_catch_exception_unhandled;
14076 ops->check_status = check_status_catch_exception_unhandled;
14077 ops->print_it = print_it_catch_exception_unhandled;
14078 ops->print_one = print_one_catch_exception_unhandled;
14079 ops->print_mention = print_mention_catch_exception_unhandled;
14080 ops->print_recreate = print_recreate_catch_exception_unhandled;
14081
14082 ops = &catch_assert_breakpoint_ops;
14083 *ops = bkpt_breakpoint_ops;
14084 ops->dtor = dtor_catch_assert;
14085 ops->allocate_location = allocate_location_catch_assert;
14086 ops->re_set = re_set_catch_assert;
14087 ops->check_status = check_status_catch_assert;
14088 ops->print_it = print_it_catch_assert;
14089 ops->print_one = print_one_catch_assert;
14090 ops->print_mention = print_mention_catch_assert;
14091 ops->print_recreate = print_recreate_catch_assert;
14092}
14093
3d9434b5
JB
14094/* This module's 'new_objfile' observer. */
14095
14096static void
14097ada_new_objfile_observer (struct objfile *objfile)
14098{
14099 ada_clear_symbol_cache ();
14100}
14101
14102/* This module's 'free_objfile' observer. */
14103
14104static void
14105ada_free_objfile_observer (struct objfile *objfile)
14106{
14107 ada_clear_symbol_cache ();
14108}
14109
d2e4a39e 14110void
6c038f32 14111_initialize_ada_language (void)
14f9c5c9 14112{
6c038f32
PH
14113 add_language (&ada_language_defn);
14114
2060206e
PA
14115 initialize_ada_catchpoint_ops ();
14116
5bf03f13
JB
14117 add_prefix_cmd ("ada", no_class, set_ada_command,
14118 _("Prefix command for changing Ada-specfic settings"),
14119 &set_ada_list, "set ada ", 0, &setlist);
14120
14121 add_prefix_cmd ("ada", no_class, show_ada_command,
14122 _("Generic command for showing Ada-specific settings."),
14123 &show_ada_list, "show ada ", 0, &showlist);
14124
14125 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14126 &trust_pad_over_xvs, _("\
14127Enable or disable an optimization trusting PAD types over XVS types"), _("\
14128Show whether an optimization trusting PAD types over XVS types is activated"),
14129 _("\
14130This is related to the encoding used by the GNAT compiler. The debugger\n\
14131should normally trust the contents of PAD types, but certain older versions\n\
14132of GNAT have a bug that sometimes causes the information in the PAD type\n\
14133to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14134work around this bug. It is always safe to turn this option \"off\", but\n\
14135this incurs a slight performance penalty, so it is recommended to NOT change\n\
14136this option to \"off\" unless necessary."),
14137 NULL, NULL, &set_ada_list, &show_ada_list);
14138
9ac4176b
PA
14139 add_catch_command ("exception", _("\
14140Catch Ada exceptions, when raised.\n\
14141With an argument, catch only exceptions with the given name."),
14142 catch_ada_exception_command,
14143 NULL,
14144 CATCH_PERMANENT,
14145 CATCH_TEMPORARY);
14146 add_catch_command ("assert", _("\
14147Catch failed Ada assertions, when raised.\n\
14148With an argument, catch only exceptions with the given name."),
14149 catch_assert_command,
14150 NULL,
14151 CATCH_PERMANENT,
14152 CATCH_TEMPORARY);
14153
6c038f32 14154 varsize_limit = 65536;
6c038f32 14155
778865d3
JB
14156 add_info ("exceptions", info_exceptions_command,
14157 _("\
14158List all Ada exception names.\n\
14159If a regular expression is passed as an argument, only those matching\n\
14160the regular expression are listed."));
14161
c6044dd1
JB
14162 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14163 _("Set Ada maintenance-related variables."),
14164 &maint_set_ada_cmdlist, "maintenance set ada ",
14165 0/*allow-unknown*/, &maintenance_set_cmdlist);
14166
14167 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14168 _("Show Ada maintenance-related variables"),
14169 &maint_show_ada_cmdlist, "maintenance show ada ",
14170 0/*allow-unknown*/, &maintenance_show_cmdlist);
14171
14172 add_setshow_boolean_cmd
14173 ("ignore-descriptive-types", class_maintenance,
14174 &ada_ignore_descriptive_types_p,
14175 _("Set whether descriptive types generated by GNAT should be ignored."),
14176 _("Show whether descriptive types generated by GNAT should be ignored."),
14177 _("\
14178When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14179DWARF attribute."),
14180 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14181
6c038f32
PH
14182 obstack_init (&symbol_list_obstack);
14183
14184 decoded_names_store = htab_create_alloc
14185 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14186 NULL, xcalloc, xfree);
6b69afc4 14187
3d9434b5
JB
14188 /* The ada-lang observers. */
14189 observer_attach_new_objfile (ada_new_objfile_observer);
14190 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14191 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14192
14193 /* Setup various context-specific data. */
e802dbe0 14194 ada_inferior_data
8e260fc0 14195 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14196 ada_pspace_data_handle
14197 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14198}