]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Fix my ChangeLog entry date.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
d2e4a39e 82static struct type *desc_data_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
d2e4a39e 129static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 130
4c4b4cd2 131static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 132 struct type *);
14f9c5c9 133
d2e4a39e 134static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 135 struct symbol *, struct block *);
14f9c5c9 136
d2e4a39e 137static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 138
4c4b4cd2
PH
139static char *ada_op_name (enum exp_opcode);
140
141static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 142
d2e4a39e 143static int numeric_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int integer_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int scalar_type_p (struct type *);
14f9c5c9 148
d2e4a39e 149static int discrete_type_p (struct type *);
14f9c5c9 150
aeb5907d
JB
151static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
4c4b4cd2 159static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 160 int, int, int *);
4c4b4cd2 161
d2e4a39e 162static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 163 int *, enum noside);
14f9c5c9 164
d2e4a39e 165static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 166
d2e4a39e 167static int is_dynamic_field (struct type *, int);
14f9c5c9 168
10a2c479 169static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 170 const gdb_byte *,
4c4b4cd2
PH
171 CORE_ADDR, struct value *);
172
173static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 174
d2e4a39e 175static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 176 struct objfile *);
14f9c5c9 177
d2e4a39e 178static struct type *to_static_fixed_type (struct type *);
f192137b 179static struct type *static_unwrap_type (struct type *type);
14f9c5c9 180
d2e4a39e 181static struct value *unwrap_value (struct value *);
14f9c5c9 182
d2e4a39e 183static struct type *packed_array_type (struct type *, long *);
14f9c5c9 184
d2e4a39e 185static struct type *decode_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *decode_packed_array (struct value *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
52ce6436
PH
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
d2e4a39e 205static int wild_match (const char *, int, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static struct value *ada_coerce_to_simple_array (struct value *);
237
238static int ada_is_direct_array_type (struct type *);
239
72d5681a
PH
240static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
714e53ab
PH
242
243static void check_size (const struct type *);
52ce6436
PH
244
245static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
4c4b4cd2
PH
275\f
276
76a01679 277
4c4b4cd2 278/* Maximum-sized dynamic type. */
14f9c5c9
AS
279static unsigned int varsize_limit;
280
4c4b4cd2
PH
281/* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283static char *ada_completer_word_break_characters =
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
301static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
305static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
309/* Space for allocating results of ada_lookup_symbol_list. */
310static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
41d27058
JB
314/* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318static const char *
319ada_unqualified_name (const char *decoded_name)
320{
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329}
330
331/* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334static char *
335add_angle_brackets (const char *str)
336{
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344}
96d887e8 345
4c4b4cd2
PH
346static char *
347ada_get_gdb_completer_word_break_characters (void)
348{
349 return ada_completer_word_break_characters;
350}
351
e79af960
JB
352/* Print an array element index using the Ada syntax. */
353
354static void
355ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 356 const struct value_print_options *options)
e79af960 357{
79a45b7d 358 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
359 fprintf_filtered (stream, " => ");
360}
361
4c4b4cd2
PH
362/* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365static void
14f9c5c9
AS
366extract_string (CORE_ADDR addr, char *buf)
367{
d2e4a39e 368 int char_index = 0;
14f9c5c9 369
4c4b4cd2
PH
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
d2e4a39e
AS
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 375 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
379}
380
f27cf670 381/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 383 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 384
f27cf670
AS
385void *
386grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 387{
d2e4a39e
AS
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
4c4b4cd2 392 *size = min_size;
f27cf670 393 vect = xrealloc (vect, *size * element_size);
d2e4a39e 394 }
f27cf670 395 return vect;
14f9c5c9
AS
396}
397
398/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 399 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
400
401static int
ebf56fd3 402field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
403{
404 int len = strlen (target);
d2e4a39e 405 return
4c4b4cd2
PH
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
14f9c5c9
AS
411}
412
413
4c4b4cd2
PH
414/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421int
422ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424{
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
323e0a4a 431 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
432 field_name, TYPE_NAME (type));
433
434 return -1;
435}
436
437/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
438
439int
d2e4a39e 440ada_name_prefix_len (const char *name)
14f9c5c9
AS
441{
442 if (name == NULL)
443 return 0;
d2e4a39e 444 else
14f9c5c9 445 {
d2e4a39e 446 const char *p = strstr (name, "___");
14f9c5c9 447 if (p == NULL)
4c4b4cd2 448 return strlen (name);
14f9c5c9 449 else
4c4b4cd2 450 return p - name;
14f9c5c9
AS
451 }
452}
453
4c4b4cd2
PH
454/* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
14f9c5c9 457static int
d2e4a39e 458is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
459{
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
4c4b4cd2 465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
466}
467
4c4b4cd2
PH
468/* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
14f9c5c9 470
d2e4a39e 471static struct value *
4c4b4cd2 472coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 473{
61ee279c 474 type = ada_check_typedef (type);
df407dfe 475 if (value_type (val) == type)
4c4b4cd2 476 return val;
d2e4a39e 477 else
14f9c5c9 478 {
4c4b4cd2
PH
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
714e53ab 483 check_size (type);
4c4b4cd2
PH
484
485 result = allocate_value (type);
74bcbdf3 486 set_value_component_location (result, val);
9bbda503
AC
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
74bcbdf3 489 VALUE_ADDRESS (result) += value_offset (val);
d69fe07e 490 if (value_lazy (val)
df407dfe 491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 492 set_value_lazy (result, 1);
d2e4a39e 493 else
0fd88904 494 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 495 TYPE_LENGTH (type));
14f9c5c9
AS
496 return result;
497 }
498}
499
fc1a4b47
AC
500static const gdb_byte *
501cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
502{
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507}
508
509static CORE_ADDR
ebf56fd3 510cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
511{
512 if (address == 0)
513 return 0;
d2e4a39e 514 else
14f9c5c9
AS
515 return address + offset;
516}
517
4c4b4cd2
PH
518/* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
a2249542 522
77109804
AC
523/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
14f9c5c9 527static void
a2249542 528lim_warning (const char *format, ...)
14f9c5c9 529{
a2249542
MK
530 va_list args;
531 va_start (args, format);
532
4c4b4cd2
PH
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
a2249542
MK
535 vwarning (format, args);
536
537 va_end (args);
4c4b4cd2
PH
538}
539
714e53ab
PH
540/* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544static void
545check_size (const struct type *type)
546{
547 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 548 error (_("object size is larger than varsize-limit"));
714e53ab
PH
549}
550
551
c3e5cd34
PH
552/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 557static LONGEST
c3e5cd34 558max_of_size (int size)
4c4b4cd2 559{
76a01679
JB
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
4c4b4cd2
PH
562}
563
c3e5cd34 564/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 565static LONGEST
c3e5cd34 566min_of_size (int size)
4c4b4cd2 567{
c3e5cd34 568 return -max_of_size (size) - 1;
4c4b4cd2
PH
569}
570
c3e5cd34 571/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 572static ULONGEST
c3e5cd34 573umax_of_size (int size)
4c4b4cd2 574{
76a01679
JB
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
4c4b4cd2
PH
577}
578
c3e5cd34
PH
579/* Maximum value of integral type T, as a signed quantity. */
580static LONGEST
581max_of_type (struct type *t)
4c4b4cd2 582{
c3e5cd34
PH
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587}
588
589/* Minimum value of integral type T, as a signed quantity. */
590static LONGEST
591min_of_type (struct type *t)
592{
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
597}
598
599/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 600static LONGEST
4c4b4cd2
PH
601discrete_type_high_bound (struct type *type)
602{
76a01679 603 switch (TYPE_CODE (type))
4c4b4cd2
PH
604 {
605 case TYPE_CODE_RANGE:
690cc4eb 606 return TYPE_HIGH_BOUND (type);
4c4b4cd2 607 case TYPE_CODE_ENUM:
690cc4eb
PH
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
76a01679 612 case TYPE_CODE_INT:
690cc4eb 613 return max_of_type (type);
4c4b4cd2 614 default:
323e0a4a 615 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
616 }
617}
618
619/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 620static LONGEST
4c4b4cd2
PH
621discrete_type_low_bound (struct type *type)
622{
76a01679 623 switch (TYPE_CODE (type))
4c4b4cd2
PH
624 {
625 case TYPE_CODE_RANGE:
690cc4eb 626 return TYPE_LOW_BOUND (type);
4c4b4cd2 627 case TYPE_CODE_ENUM:
690cc4eb
PH
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
76a01679 632 case TYPE_CODE_INT:
690cc4eb 633 return min_of_type (type);
4c4b4cd2 634 default:
323e0a4a 635 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
636 }
637}
638
639/* The identity on non-range types. For range types, the underlying
76a01679 640 non-range scalar type. */
4c4b4cd2
PH
641
642static struct type *
643base_type (struct type *type)
644{
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
76a01679
JB
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
4c4b4cd2
PH
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
14f9c5c9 652}
4c4b4cd2 653\f
76a01679 654
4c4b4cd2 655 /* Language Selection */
14f9c5c9
AS
656
657/* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
4c4b4cd2 660 MAIN_PST is not used. */
d2e4a39e 661
14f9c5c9 662enum language
d2e4a39e 663ada_update_initial_language (enum language lang,
4c4b4cd2 664 struct partial_symtab *main_pst)
14f9c5c9 665{
d2e4a39e 666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
14f9c5c9
AS
669
670 return lang;
671}
96d887e8
PH
672
673/* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677char *
678ada_main_name (void)
679{
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
6c038f32 683
96d887e8
PH
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
323e0a4a 695 error (_("Invalid address for Ada main program name."));
96d887e8
PH
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703}
14f9c5c9 704\f
4c4b4cd2 705 /* Symbols */
d2e4a39e 706
4c4b4cd2
PH
707/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
14f9c5c9 709
d2e4a39e
AS
710const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
14f9c5c9
AS
733};
734
4c4b4cd2
PH
735/* Return non-zero if STR should be suppressed in info listings. */
736
14f9c5c9 737static int
d2e4a39e 738is_suppressed_name (const char *str)
14f9c5c9 739{
4c4b4cd2 740 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
741 str += 5;
742 if (str[0] == '_' || str[0] == '\000')
743 return 1;
744 else
745 {
d2e4a39e
AS
746 const char *p;
747 const char *suffix = strstr (str, "___");
14f9c5c9 748 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 749 return 1;
14f9c5c9 750 if (suffix == NULL)
4c4b4cd2 751 suffix = str + strlen (str);
d2e4a39e 752 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
753 if (isupper (*p))
754 {
755 int i;
756 if (p[0] == 'X' && p[-1] != '_')
757 goto OK;
758 if (*p != 'O')
759 return 1;
760 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
761 if (strncmp (ada_opname_table[i].encoded, p,
762 strlen (ada_opname_table[i].encoded)) == 0)
763 goto OK;
764 return 1;
765 OK:;
766 }
14f9c5c9
AS
767 return 0;
768 }
769}
770
4c4b4cd2
PH
771/* The "encoded" form of DECODED, according to GNAT conventions.
772 The result is valid until the next call to ada_encode. */
773
14f9c5c9 774char *
4c4b4cd2 775ada_encode (const char *decoded)
14f9c5c9 776{
4c4b4cd2
PH
777 static char *encoding_buffer = NULL;
778 static size_t encoding_buffer_size = 0;
d2e4a39e 779 const char *p;
14f9c5c9 780 int k;
d2e4a39e 781
4c4b4cd2 782 if (decoded == NULL)
14f9c5c9
AS
783 return NULL;
784
4c4b4cd2
PH
785 GROW_VECT (encoding_buffer, encoding_buffer_size,
786 2 * strlen (decoded) + 10);
14f9c5c9
AS
787
788 k = 0;
4c4b4cd2 789 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 790 {
cdc7bb92 791 if (*p == '.')
4c4b4cd2
PH
792 {
793 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
794 k += 2;
795 }
14f9c5c9 796 else if (*p == '"')
4c4b4cd2
PH
797 {
798 const struct ada_opname_map *mapping;
799
800 for (mapping = ada_opname_table;
1265e4aa
JB
801 mapping->encoded != NULL
802 && strncmp (mapping->decoded, p,
803 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
804 ;
805 if (mapping->encoded == NULL)
323e0a4a 806 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
807 strcpy (encoding_buffer + k, mapping->encoded);
808 k += strlen (mapping->encoded);
809 break;
810 }
d2e4a39e 811 else
4c4b4cd2
PH
812 {
813 encoding_buffer[k] = *p;
814 k += 1;
815 }
14f9c5c9
AS
816 }
817
4c4b4cd2
PH
818 encoding_buffer[k] = '\0';
819 return encoding_buffer;
14f9c5c9
AS
820}
821
822/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
823 quotes, unfolded, but with the quotes stripped away. Result good
824 to next call. */
825
d2e4a39e
AS
826char *
827ada_fold_name (const char *name)
14f9c5c9 828{
d2e4a39e 829 static char *fold_buffer = NULL;
14f9c5c9
AS
830 static size_t fold_buffer_size = 0;
831
832 int len = strlen (name);
d2e4a39e 833 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
834
835 if (name[0] == '\'')
836 {
d2e4a39e
AS
837 strncpy (fold_buffer, name + 1, len - 2);
838 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
839 }
840 else
841 {
842 int i;
843 for (i = 0; i <= len; i += 1)
4c4b4cd2 844 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
845 }
846
847 return fold_buffer;
848}
849
529cad9c
PH
850/* Return nonzero if C is either a digit or a lowercase alphabet character. */
851
852static int
853is_lower_alphanum (const char c)
854{
855 return (isdigit (c) || (isalpha (c) && islower (c)));
856}
857
29480c32
JB
858/* Remove either of these suffixes:
859 . .{DIGIT}+
860 . ${DIGIT}+
861 . ___{DIGIT}+
862 . __{DIGIT}+.
863 These are suffixes introduced by the compiler for entities such as
864 nested subprogram for instance, in order to avoid name clashes.
865 They do not serve any purpose for the debugger. */
866
867static void
868ada_remove_trailing_digits (const char *encoded, int *len)
869{
870 if (*len > 1 && isdigit (encoded[*len - 1]))
871 {
872 int i = *len - 2;
873 while (i > 0 && isdigit (encoded[i]))
874 i--;
875 if (i >= 0 && encoded[i] == '.')
876 *len = i;
877 else if (i >= 0 && encoded[i] == '$')
878 *len = i;
879 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
880 *len = i - 2;
881 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
882 *len = i - 1;
883 }
884}
885
886/* Remove the suffix introduced by the compiler for protected object
887 subprograms. */
888
889static void
890ada_remove_po_subprogram_suffix (const char *encoded, int *len)
891{
892 /* Remove trailing N. */
893
894 /* Protected entry subprograms are broken into two
895 separate subprograms: The first one is unprotected, and has
896 a 'N' suffix; the second is the protected version, and has
897 the 'P' suffix. The second calls the first one after handling
898 the protection. Since the P subprograms are internally generated,
899 we leave these names undecoded, giving the user a clue that this
900 entity is internal. */
901
902 if (*len > 1
903 && encoded[*len - 1] == 'N'
904 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
905 *len = *len - 1;
906}
907
908/* If ENCODED follows the GNAT entity encoding conventions, then return
909 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
910 replaced by ENCODED.
14f9c5c9 911
4c4b4cd2 912 The resulting string is valid until the next call of ada_decode.
29480c32 913 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
914 is returned. */
915
916const char *
917ada_decode (const char *encoded)
14f9c5c9
AS
918{
919 int i, j;
920 int len0;
d2e4a39e 921 const char *p;
4c4b4cd2 922 char *decoded;
14f9c5c9 923 int at_start_name;
4c4b4cd2
PH
924 static char *decoding_buffer = NULL;
925 static size_t decoding_buffer_size = 0;
d2e4a39e 926
29480c32
JB
927 /* The name of the Ada main procedure starts with "_ada_".
928 This prefix is not part of the decoded name, so skip this part
929 if we see this prefix. */
4c4b4cd2
PH
930 if (strncmp (encoded, "_ada_", 5) == 0)
931 encoded += 5;
14f9c5c9 932
29480c32
JB
933 /* If the name starts with '_', then it is not a properly encoded
934 name, so do not attempt to decode it. Similarly, if the name
935 starts with '<', the name should not be decoded. */
4c4b4cd2 936 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
937 goto Suppress;
938
4c4b4cd2 939 len0 = strlen (encoded);
4c4b4cd2 940
29480c32
JB
941 ada_remove_trailing_digits (encoded, &len0);
942 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 943
4c4b4cd2
PH
944 /* Remove the ___X.* suffix if present. Do not forget to verify that
945 the suffix is located before the current "end" of ENCODED. We want
946 to avoid re-matching parts of ENCODED that have previously been
947 marked as discarded (by decrementing LEN0). */
948 p = strstr (encoded, "___");
949 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
950 {
951 if (p[3] == 'X')
4c4b4cd2 952 len0 = p - encoded;
14f9c5c9 953 else
4c4b4cd2 954 goto Suppress;
14f9c5c9 955 }
4c4b4cd2 956
29480c32
JB
957 /* Remove any trailing TKB suffix. It tells us that this symbol
958 is for the body of a task, but that information does not actually
959 appear in the decoded name. */
960
4c4b4cd2 961 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 962 len0 -= 3;
76a01679 963
29480c32
JB
964 /* Remove trailing "B" suffixes. */
965 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
966
4c4b4cd2 967 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
968 len0 -= 1;
969
4c4b4cd2 970 /* Make decoded big enough for possible expansion by operator name. */
29480c32 971
4c4b4cd2
PH
972 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
973 decoded = decoding_buffer;
14f9c5c9 974
29480c32
JB
975 /* Remove trailing __{digit}+ or trailing ${digit}+. */
976
4c4b4cd2 977 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 978 {
4c4b4cd2
PH
979 i = len0 - 2;
980 while ((i >= 0 && isdigit (encoded[i]))
981 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
982 i -= 1;
983 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
984 len0 = i - 1;
985 else if (encoded[i] == '$')
986 len0 = i;
d2e4a39e 987 }
14f9c5c9 988
29480c32
JB
989 /* The first few characters that are not alphabetic are not part
990 of any encoding we use, so we can copy them over verbatim. */
991
4c4b4cd2
PH
992 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
993 decoded[j] = encoded[i];
14f9c5c9
AS
994
995 at_start_name = 1;
996 while (i < len0)
997 {
29480c32 998 /* Is this a symbol function? */
4c4b4cd2
PH
999 if (at_start_name && encoded[i] == 'O')
1000 {
1001 int k;
1002 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1003 {
1004 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1005 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1006 op_len - 1) == 0)
1007 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1008 {
1009 strcpy (decoded + j, ada_opname_table[k].decoded);
1010 at_start_name = 0;
1011 i += op_len;
1012 j += strlen (ada_opname_table[k].decoded);
1013 break;
1014 }
1015 }
1016 if (ada_opname_table[k].encoded != NULL)
1017 continue;
1018 }
14f9c5c9
AS
1019 at_start_name = 0;
1020
529cad9c
PH
1021 /* Replace "TK__" with "__", which will eventually be translated
1022 into "." (just below). */
1023
4c4b4cd2
PH
1024 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1025 i += 2;
529cad9c 1026
29480c32
JB
1027 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1028 be translated into "." (just below). These are internal names
1029 generated for anonymous blocks inside which our symbol is nested. */
1030
1031 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1032 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1033 && isdigit (encoded [i+4]))
1034 {
1035 int k = i + 5;
1036
1037 while (k < len0 && isdigit (encoded[k]))
1038 k++; /* Skip any extra digit. */
1039
1040 /* Double-check that the "__B_{DIGITS}+" sequence we found
1041 is indeed followed by "__". */
1042 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1043 i = k;
1044 }
1045
529cad9c
PH
1046 /* Remove _E{DIGITS}+[sb] */
1047
1048 /* Just as for protected object subprograms, there are 2 categories
1049 of subprograms created by the compiler for each entry. The first
1050 one implements the actual entry code, and has a suffix following
1051 the convention above; the second one implements the barrier and
1052 uses the same convention as above, except that the 'E' is replaced
1053 by a 'B'.
1054
1055 Just as above, we do not decode the name of barrier functions
1056 to give the user a clue that the code he is debugging has been
1057 internally generated. */
1058
1059 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1060 && isdigit (encoded[i+2]))
1061 {
1062 int k = i + 3;
1063
1064 while (k < len0 && isdigit (encoded[k]))
1065 k++;
1066
1067 if (k < len0
1068 && (encoded[k] == 'b' || encoded[k] == 's'))
1069 {
1070 k++;
1071 /* Just as an extra precaution, make sure that if this
1072 suffix is followed by anything else, it is a '_'.
1073 Otherwise, we matched this sequence by accident. */
1074 if (k == len0
1075 || (k < len0 && encoded[k] == '_'))
1076 i = k;
1077 }
1078 }
1079
1080 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1081 the GNAT front-end in protected object subprograms. */
1082
1083 if (i < len0 + 3
1084 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1085 {
1086 /* Backtrack a bit up until we reach either the begining of
1087 the encoded name, or "__". Make sure that we only find
1088 digits or lowercase characters. */
1089 const char *ptr = encoded + i - 1;
1090
1091 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1092 ptr--;
1093 if (ptr < encoded
1094 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1095 i++;
1096 }
1097
4c4b4cd2
PH
1098 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1099 {
29480c32
JB
1100 /* This is a X[bn]* sequence not separated from the previous
1101 part of the name with a non-alpha-numeric character (in other
1102 words, immediately following an alpha-numeric character), then
1103 verify that it is placed at the end of the encoded name. If
1104 not, then the encoding is not valid and we should abort the
1105 decoding. Otherwise, just skip it, it is used in body-nested
1106 package names. */
4c4b4cd2
PH
1107 do
1108 i += 1;
1109 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1110 if (i < len0)
1111 goto Suppress;
1112 }
cdc7bb92 1113 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1114 {
29480c32 1115 /* Replace '__' by '.'. */
4c4b4cd2
PH
1116 decoded[j] = '.';
1117 at_start_name = 1;
1118 i += 2;
1119 j += 1;
1120 }
14f9c5c9 1121 else
4c4b4cd2 1122 {
29480c32
JB
1123 /* It's a character part of the decoded name, so just copy it
1124 over. */
4c4b4cd2
PH
1125 decoded[j] = encoded[i];
1126 i += 1;
1127 j += 1;
1128 }
14f9c5c9 1129 }
4c4b4cd2 1130 decoded[j] = '\000';
14f9c5c9 1131
29480c32
JB
1132 /* Decoded names should never contain any uppercase character.
1133 Double-check this, and abort the decoding if we find one. */
1134
4c4b4cd2
PH
1135 for (i = 0; decoded[i] != '\0'; i += 1)
1136 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1137 goto Suppress;
1138
4c4b4cd2
PH
1139 if (strcmp (decoded, encoded) == 0)
1140 return encoded;
1141 else
1142 return decoded;
14f9c5c9
AS
1143
1144Suppress:
4c4b4cd2
PH
1145 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1146 decoded = decoding_buffer;
1147 if (encoded[0] == '<')
1148 strcpy (decoded, encoded);
14f9c5c9 1149 else
4c4b4cd2
PH
1150 sprintf (decoded, "<%s>", encoded);
1151 return decoded;
1152
1153}
1154
1155/* Table for keeping permanent unique copies of decoded names. Once
1156 allocated, names in this table are never released. While this is a
1157 storage leak, it should not be significant unless there are massive
1158 changes in the set of decoded names in successive versions of a
1159 symbol table loaded during a single session. */
1160static struct htab *decoded_names_store;
1161
1162/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1163 in the language-specific part of GSYMBOL, if it has not been
1164 previously computed. Tries to save the decoded name in the same
1165 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1166 in any case, the decoded symbol has a lifetime at least that of
1167 GSYMBOL).
1168 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1169 const, but nevertheless modified to a semantically equivalent form
1170 when a decoded name is cached in it.
76a01679 1171*/
4c4b4cd2 1172
76a01679
JB
1173char *
1174ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1175{
76a01679 1176 char **resultp =
4c4b4cd2
PH
1177 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1178 if (*resultp == NULL)
1179 {
1180 const char *decoded = ada_decode (gsymbol->name);
714835d5 1181 if (gsymbol->obj_section != NULL)
76a01679 1182 {
714835d5
UW
1183 struct objfile *objf = gsymbol->obj_section->objfile;
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
76a01679 1186 }
4c4b4cd2 1187 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1188 case, we put the result on the heap. Since we only decode
1189 when needed, we hope this usually does not cause a
1190 significant memory leak (FIXME). */
4c4b4cd2 1191 if (*resultp == NULL)
76a01679
JB
1192 {
1193 char **slot = (char **) htab_find_slot (decoded_names_store,
1194 decoded, INSERT);
1195 if (*slot == NULL)
1196 *slot = xstrdup (decoded);
1197 *resultp = *slot;
1198 }
4c4b4cd2 1199 }
14f9c5c9 1200
4c4b4cd2
PH
1201 return *resultp;
1202}
76a01679
JB
1203
1204char *
1205ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1206{
1207 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1208}
1209
1210/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1211 suffixes that encode debugging information or leading _ada_ on
1212 SYM_NAME (see is_name_suffix commentary for the debugging
1213 information that is ignored). If WILD, then NAME need only match a
1214 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1215 either argument is NULL. */
14f9c5c9
AS
1216
1217int
d2e4a39e 1218ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1219{
1220 if (sym_name == NULL || name == NULL)
1221 return 0;
1222 else if (wild)
1223 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1224 else
1225 {
1226 int len_name = strlen (name);
4c4b4cd2
PH
1227 return (strncmp (sym_name, name, len_name) == 0
1228 && is_name_suffix (sym_name + len_name))
1229 || (strncmp (sym_name, "_ada_", 5) == 0
1230 && strncmp (sym_name + 5, name, len_name) == 0
1231 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1232 }
14f9c5c9
AS
1233}
1234
4c4b4cd2
PH
1235/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1236 suppressed in info listings. */
14f9c5c9
AS
1237
1238int
ebf56fd3 1239ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1240{
176620f1 1241 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1242 return 1;
d2e4a39e 1243 else
4c4b4cd2 1244 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1245}
14f9c5c9 1246\f
d2e4a39e 1247
4c4b4cd2 1248 /* Arrays */
14f9c5c9 1249
4c4b4cd2 1250/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1251
d2e4a39e
AS
1252static char *bound_name[] = {
1253 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1254 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1255};
1256
1257/* Maximum number of array dimensions we are prepared to handle. */
1258
4c4b4cd2 1259#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1260
4c4b4cd2 1261/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1262
1263static void
ebf56fd3 1264modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1265{
4c4b4cd2 1266 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1267}
1268
1269
4c4b4cd2
PH
1270/* The desc_* routines return primitive portions of array descriptors
1271 (fat pointers). */
14f9c5c9
AS
1272
1273/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1274 level of indirection, if needed. */
1275
d2e4a39e
AS
1276static struct type *
1277desc_base_type (struct type *type)
14f9c5c9
AS
1278{
1279 if (type == NULL)
1280 return NULL;
61ee279c 1281 type = ada_check_typedef (type);
1265e4aa
JB
1282 if (type != NULL
1283 && (TYPE_CODE (type) == TYPE_CODE_PTR
1284 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1285 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1286 else
1287 return type;
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thin" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thin_pntr (struct type *type)
14f9c5c9 1294{
d2e4a39e 1295 return
14f9c5c9
AS
1296 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1297 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1298}
1299
4c4b4cd2
PH
1300/* The descriptor type for thin pointer type TYPE. */
1301
d2e4a39e
AS
1302static struct type *
1303thin_descriptor_type (struct type *type)
14f9c5c9 1304{
d2e4a39e 1305 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1306 if (base_type == NULL)
1307 return NULL;
1308 if (is_suffix (ada_type_name (base_type), "___XVE"))
1309 return base_type;
d2e4a39e 1310 else
14f9c5c9 1311 {
d2e4a39e 1312 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1313 if (alt_type == NULL)
4c4b4cd2 1314 return base_type;
14f9c5c9 1315 else
4c4b4cd2 1316 return alt_type;
14f9c5c9
AS
1317 }
1318}
1319
4c4b4cd2
PH
1320/* A pointer to the array data for thin-pointer value VAL. */
1321
d2e4a39e
AS
1322static struct value *
1323thin_data_pntr (struct value *val)
14f9c5c9 1324{
df407dfe 1325 struct type *type = value_type (val);
14f9c5c9 1326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1327 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1328 value_copy (val));
d2e4a39e 1329 else
14f9c5c9 1330 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1331 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1332}
1333
4c4b4cd2
PH
1334/* True iff TYPE indicates a "thick" array pointer type. */
1335
14f9c5c9 1336static int
d2e4a39e 1337is_thick_pntr (struct type *type)
14f9c5c9
AS
1338{
1339 type = desc_base_type (type);
1340 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1341 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1342}
1343
4c4b4cd2
PH
1344/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1345 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1346
d2e4a39e
AS
1347static struct type *
1348desc_bounds_type (struct type *type)
14f9c5c9 1349{
d2e4a39e 1350 struct type *r;
14f9c5c9
AS
1351
1352 type = desc_base_type (type);
1353
1354 if (type == NULL)
1355 return NULL;
1356 else if (is_thin_pntr (type))
1357 {
1358 type = thin_descriptor_type (type);
1359 if (type == NULL)
4c4b4cd2 1360 return NULL;
14f9c5c9
AS
1361 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1362 if (r != NULL)
61ee279c 1363 return ada_check_typedef (r);
14f9c5c9
AS
1364 }
1365 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1366 {
1367 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1368 if (r != NULL)
61ee279c 1369 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1370 }
1371 return NULL;
1372}
1373
1374/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1375 one, a pointer to its bounds data. Otherwise NULL. */
1376
d2e4a39e
AS
1377static struct value *
1378desc_bounds (struct value *arr)
14f9c5c9 1379{
df407dfe 1380 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1381 if (is_thin_pntr (type))
14f9c5c9 1382 {
d2e4a39e 1383 struct type *bounds_type =
4c4b4cd2 1384 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1385 LONGEST addr;
1386
4cdfadb1 1387 if (bounds_type == NULL)
323e0a4a 1388 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1389
1390 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1391 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1392 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1393 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1394 addr = value_as_long (arr);
d2e4a39e 1395 else
df407dfe 1396 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1397
d2e4a39e 1398 return
4c4b4cd2
PH
1399 value_from_longest (lookup_pointer_type (bounds_type),
1400 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1401 }
1402
1403 else if (is_thick_pntr (type))
d2e4a39e 1404 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1405 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1406 else
1407 return NULL;
1408}
1409
4c4b4cd2
PH
1410/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1411 position of the field containing the address of the bounds data. */
1412
14f9c5c9 1413static int
d2e4a39e 1414fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1415{
1416 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1417}
1418
1419/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1420 size of the field containing the address of the bounds data. */
1421
14f9c5c9 1422static int
d2e4a39e 1423fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1424{
1425 type = desc_base_type (type);
1426
d2e4a39e 1427 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1428 return TYPE_FIELD_BITSIZE (type, 1);
1429 else
61ee279c 1430 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1431}
1432
4c4b4cd2 1433/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1434 pointer to one, the type of its array data (a
4c4b4cd2
PH
1435 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1436 ada_type_of_array to get an array type with bounds data. */
1437
d2e4a39e
AS
1438static struct type *
1439desc_data_type (struct type *type)
14f9c5c9
AS
1440{
1441 type = desc_base_type (type);
1442
4c4b4cd2 1443 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1444 if (is_thin_pntr (type))
d2e4a39e
AS
1445 return lookup_pointer_type
1446 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1447 else if (is_thick_pntr (type))
1448 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1449 else
1450 return NULL;
1451}
1452
1453/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1454 its array data. */
4c4b4cd2 1455
d2e4a39e
AS
1456static struct value *
1457desc_data (struct value *arr)
14f9c5c9 1458{
df407dfe 1459 struct type *type = value_type (arr);
14f9c5c9
AS
1460 if (is_thin_pntr (type))
1461 return thin_data_pntr (arr);
1462 else if (is_thick_pntr (type))
d2e4a39e 1463 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1464 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1465 else
1466 return NULL;
1467}
1468
1469
1470/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1471 position of the field containing the address of the data. */
1472
14f9c5c9 1473static int
d2e4a39e 1474fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1475{
1476 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1477}
1478
1479/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1480 size of the field containing the address of the data. */
1481
14f9c5c9 1482static int
d2e4a39e 1483fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1484{
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1489 else
14f9c5c9
AS
1490 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1491}
1492
4c4b4cd2 1493/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1494 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1495 bound, if WHICH is 1. The first bound is I=1. */
1496
d2e4a39e
AS
1497static struct value *
1498desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1499{
d2e4a39e 1500 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1501 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1502}
1503
1504/* If BOUNDS is an array-bounds structure type, return the bit position
1505 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1506 bound, if WHICH is 1. The first bound is I=1. */
1507
14f9c5c9 1508static int
d2e4a39e 1509desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1510{
d2e4a39e 1511 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1512}
1513
1514/* If BOUNDS is an array-bounds structure type, return the bit field size
1515 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1516 bound, if WHICH is 1. The first bound is I=1. */
1517
76a01679 1518static int
d2e4a39e 1519desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1520{
1521 type = desc_base_type (type);
1522
d2e4a39e
AS
1523 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1525 else
1526 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1527}
1528
1529/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1530 Ith bound (numbering from 1). Otherwise, NULL. */
1531
d2e4a39e
AS
1532static struct type *
1533desc_index_type (struct type *type, int i)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536
1537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1538 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1539 else
14f9c5c9
AS
1540 return NULL;
1541}
1542
4c4b4cd2
PH
1543/* The number of index positions in the array-bounds type TYPE.
1544 Return 0 if TYPE is NULL. */
1545
14f9c5c9 1546static int
d2e4a39e 1547desc_arity (struct type *type)
14f9c5c9
AS
1548{
1549 type = desc_base_type (type);
1550
1551 if (type != NULL)
1552 return TYPE_NFIELDS (type) / 2;
1553 return 0;
1554}
1555
4c4b4cd2
PH
1556/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1557 an array descriptor type (representing an unconstrained array
1558 type). */
1559
76a01679
JB
1560static int
1561ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1562{
1563 if (type == NULL)
1564 return 0;
61ee279c 1565 type = ada_check_typedef (type);
4c4b4cd2 1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1567 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1568}
1569
52ce6436
PH
1570/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1571 * to one. */
1572
1573int
1574ada_is_array_type (struct type *type)
1575{
1576 while (type != NULL
1577 && (TYPE_CODE (type) == TYPE_CODE_PTR
1578 || TYPE_CODE (type) == TYPE_CODE_REF))
1579 type = TYPE_TARGET_TYPE (type);
1580 return ada_is_direct_array_type (type);
1581}
1582
4c4b4cd2 1583/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1584
14f9c5c9 1585int
4c4b4cd2 1586ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1587{
1588 if (type == NULL)
1589 return 0;
61ee279c 1590 type = ada_check_typedef (type);
14f9c5c9 1591 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1592 || (TYPE_CODE (type) == TYPE_CODE_PTR
1593 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1594}
1595
4c4b4cd2
PH
1596/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1597
14f9c5c9 1598int
4c4b4cd2 1599ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1600{
d2e4a39e 1601 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1602
1603 if (type == NULL)
1604 return 0;
61ee279c 1605 type = ada_check_typedef (type);
d2e4a39e 1606 return
14f9c5c9
AS
1607 data_type != NULL
1608 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1609 && TYPE_TARGET_TYPE (data_type) != NULL
1610 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1611 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1612 && desc_arity (desc_bounds_type (type)) > 0;
1613}
1614
1615/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1616 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1617 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1618 is still needed. */
1619
14f9c5c9 1620int
ebf56fd3 1621ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1622{
d2e4a39e 1623 return
14f9c5c9
AS
1624 type != NULL
1625 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1626 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1627 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1628 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1629}
1630
1631
4c4b4cd2 1632/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1633 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1634 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1635 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1636 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1637 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1638 a descriptor. */
d2e4a39e
AS
1639struct type *
1640ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1641{
df407dfe
AC
1642 if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array_type (value_type (arr));
14f9c5c9 1644
df407dfe
AC
1645 if (!ada_is_array_descriptor_type (value_type (arr)))
1646 return value_type (arr);
d2e4a39e
AS
1647
1648 if (!bounds)
1649 return
df407dfe 1650 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1651 else
1652 {
d2e4a39e 1653 struct type *elt_type;
14f9c5c9 1654 int arity;
d2e4a39e 1655 struct value *descriptor;
df407dfe 1656 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1657
df407dfe
AC
1658 elt_type = ada_array_element_type (value_type (arr), -1);
1659 arity = ada_array_arity (value_type (arr));
14f9c5c9 1660
d2e4a39e 1661 if (elt_type == NULL || arity == 0)
df407dfe 1662 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1663
1664 descriptor = desc_bounds (arr);
d2e4a39e 1665 if (value_as_long (descriptor) == 0)
4c4b4cd2 1666 return NULL;
d2e4a39e 1667 while (arity > 0)
4c4b4cd2
PH
1668 {
1669 struct type *range_type = alloc_type (objf);
1670 struct type *array_type = alloc_type (objf);
1671 struct value *low = desc_one_bound (descriptor, arity, 0);
1672 struct value *high = desc_one_bound (descriptor, arity, 1);
1673 arity -= 1;
1674
df407dfe 1675 create_range_type (range_type, value_type (low),
529cad9c
PH
1676 longest_to_int (value_as_long (low)),
1677 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1678 elt_type = create_array_type (array_type, elt_type, range_type);
1679 }
14f9c5c9
AS
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683}
1684
1685/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
d2e4a39e
AS
1690struct value *
1691ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1692{
df407dfe 1693 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1694 {
d2e4a39e 1695 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1696 if (arrType == NULL)
4c4b4cd2 1697 return NULL;
14f9c5c9
AS
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
df407dfe 1700 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1701 return decode_packed_array (arr);
1702 else
1703 return arr;
1704}
1705
1706/* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1708 be ARR itself if it already is in the proper form). */
1709
1710static struct value *
d2e4a39e 1711ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1712{
df407dfe 1713 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1714 {
d2e4a39e 1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1716 if (arrVal == NULL)
323e0a4a 1717 error (_("Bounds unavailable for null array pointer."));
529cad9c 1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1719 return value_ind (arrVal);
1720 }
df407dfe 1721 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1722 return decode_packed_array (arr);
d2e4a39e 1723 else
14f9c5c9
AS
1724 return arr;
1725}
1726
1727/* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1729 packing). For other types, is the identity. */
1730
d2e4a39e
AS
1731struct type *
1732ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1733{
d2e4a39e 1734 struct value *mark = value_mark ();
6d84d3d8 1735 struct value *dummy = value_from_longest (builtin_type_int32, 0);
d2e4a39e 1736 struct type *result;
04624583 1737 deprecated_set_value_type (dummy, type);
14f9c5c9 1738 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1739 value_free_to_mark (mark);
14f9c5c9
AS
1740 return result;
1741}
1742
4c4b4cd2
PH
1743/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
14f9c5c9 1745int
d2e4a39e 1746ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1747{
1748 if (type == NULL)
1749 return 0;
4c4b4cd2 1750 type = desc_base_type (type);
61ee279c 1751 type = ada_check_typedef (type);
d2e4a39e 1752 return
14f9c5c9
AS
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755}
1756
1757/* Given that TYPE is a standard GDB array type with all bounds filled
1758 in, and that the element size of its ultimate scalar constituents
1759 (that is, either its elements, or, if it is an array of arrays, its
1760 elements' elements, etc.) is *ELT_BITS, return an identical type,
1761 but with the bit sizes of its elements (and those of any
1762 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1763 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1764 in bits. */
1765
d2e4a39e
AS
1766static struct type *
1767packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1768{
d2e4a39e
AS
1769 struct type *new_elt_type;
1770 struct type *new_type;
14f9c5c9
AS
1771 LONGEST low_bound, high_bound;
1772
61ee279c 1773 type = ada_check_typedef (type);
14f9c5c9
AS
1774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1775 return type;
1776
1777 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1778 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1779 elt_bits);
262452ec 1780 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1781 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1782 TYPE_NAME (new_type) = ada_type_name (type);
1783
262452ec 1784 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1785 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1786 low_bound = high_bound = 0;
1787 if (high_bound < low_bound)
1788 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1789 else
14f9c5c9
AS
1790 {
1791 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1792 TYPE_LENGTH (new_type) =
4c4b4cd2 1793 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1794 }
1795
876cecd0 1796 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1797 return new_type;
1798}
1799
4c4b4cd2
PH
1800/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1801
d2e4a39e
AS
1802static struct type *
1803decode_packed_array_type (struct type *type)
1804{
4c4b4cd2 1805 struct symbol *sym;
d2e4a39e 1806 struct block **blocks;
727e3d2e
JB
1807 char *raw_name = ada_type_name (ada_check_typedef (type));
1808 char *name;
1809 char *tail;
d2e4a39e 1810 struct type *shadow_type;
14f9c5c9
AS
1811 long bits;
1812 int i, n;
1813
727e3d2e
JB
1814 if (!raw_name)
1815 raw_name = ada_type_name (desc_base_type (type));
1816
1817 if (!raw_name)
1818 return NULL;
1819
1820 name = (char *) alloca (strlen (raw_name) + 1);
1821 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1822 type = desc_base_type (type);
1823
14f9c5c9
AS
1824 memcpy (name, raw_name, tail - raw_name);
1825 name[tail - raw_name] = '\000';
1826
4c4b4cd2
PH
1827 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1828 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1829 {
323e0a4a 1830 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1831 return NULL;
1832 }
4c4b4cd2 1833 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1834
1835 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1836 {
323e0a4a 1837 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1838 return NULL;
1839 }
d2e4a39e 1840
14f9c5c9
AS
1841 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1842 {
4c4b4cd2 1843 lim_warning
323e0a4a 1844 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1845 return NULL;
1846 }
d2e4a39e 1847
14f9c5c9
AS
1848 return packed_array_type (shadow_type, &bits);
1849}
1850
4c4b4cd2 1851/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1852 returns a simple array that denotes that array. Its type is a
1853 standard GDB array type except that the BITSIZEs of the array
1854 target types are set to the number of bits in each element, and the
4c4b4cd2 1855 type length is set appropriately. */
14f9c5c9 1856
d2e4a39e
AS
1857static struct value *
1858decode_packed_array (struct value *arr)
14f9c5c9 1859{
4c4b4cd2 1860 struct type *type;
14f9c5c9 1861
4c4b4cd2 1862 arr = ada_coerce_ref (arr);
df407dfe 1863 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1864 arr = ada_value_ind (arr);
1865
df407dfe 1866 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1867 if (type == NULL)
1868 {
323e0a4a 1869 error (_("can't unpack array"));
14f9c5c9
AS
1870 return NULL;
1871 }
61ee279c 1872
32c9a795
MD
1873 if (gdbarch_bits_big_endian (current_gdbarch)
1874 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1875 {
1876 /* This is a (right-justified) modular type representing a packed
1877 array with no wrapper. In order to interpret the value through
1878 the (left-justified) packed array type we just built, we must
1879 first left-justify it. */
1880 int bit_size, bit_pos;
1881 ULONGEST mod;
1882
df407dfe 1883 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1884 bit_size = 0;
1885 while (mod > 0)
1886 {
1887 bit_size += 1;
1888 mod >>= 1;
1889 }
df407dfe 1890 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1891 arr = ada_value_primitive_packed_val (arr, NULL,
1892 bit_pos / HOST_CHAR_BIT,
1893 bit_pos % HOST_CHAR_BIT,
1894 bit_size,
1895 type);
1896 }
1897
4c4b4cd2 1898 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1899}
1900
1901
1902/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1903 given in IND. ARR must be a simple array. */
14f9c5c9 1904
d2e4a39e
AS
1905static struct value *
1906value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1907{
1908 int i;
1909 int bits, elt_off, bit_off;
1910 long elt_total_bit_offset;
d2e4a39e
AS
1911 struct type *elt_type;
1912 struct value *v;
14f9c5c9
AS
1913
1914 bits = 0;
1915 elt_total_bit_offset = 0;
df407dfe 1916 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1917 for (i = 0; i < arity; i += 1)
14f9c5c9 1918 {
d2e4a39e 1919 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1920 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1921 error
323e0a4a 1922 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1923 else
4c4b4cd2
PH
1924 {
1925 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1926 LONGEST lowerbound, upperbound;
1927 LONGEST idx;
1928
1929 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1930 {
323e0a4a 1931 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1932 lowerbound = upperbound = 0;
1933 }
1934
3cb382c9 1935 idx = pos_atr (ind[i]);
4c4b4cd2 1936 if (idx < lowerbound || idx > upperbound)
323e0a4a 1937 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1938 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1939 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1940 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1941 }
14f9c5c9
AS
1942 }
1943 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1944 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1945
1946 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1947 bits, elt_type);
14f9c5c9
AS
1948 return v;
1949}
1950
4c4b4cd2 1951/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1952
1953static int
d2e4a39e 1954has_negatives (struct type *type)
14f9c5c9 1955{
d2e4a39e
AS
1956 switch (TYPE_CODE (type))
1957 {
1958 default:
1959 return 0;
1960 case TYPE_CODE_INT:
1961 return !TYPE_UNSIGNED (type);
1962 case TYPE_CODE_RANGE:
1963 return TYPE_LOW_BOUND (type) < 0;
1964 }
14f9c5c9 1965}
d2e4a39e 1966
14f9c5c9
AS
1967
1968/* Create a new value of type TYPE from the contents of OBJ starting
1969 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1970 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1971 assigning through the result will set the field fetched from.
1972 VALADDR is ignored unless OBJ is NULL, in which case,
1973 VALADDR+OFFSET must address the start of storage containing the
1974 packed value. The value returned in this case is never an lval.
1975 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1976
d2e4a39e 1977struct value *
fc1a4b47 1978ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1979 long offset, int bit_offset, int bit_size,
4c4b4cd2 1980 struct type *type)
14f9c5c9 1981{
d2e4a39e 1982 struct value *v;
4c4b4cd2
PH
1983 int src, /* Index into the source area */
1984 targ, /* Index into the target area */
1985 srcBitsLeft, /* Number of source bits left to move */
1986 nsrc, ntarg, /* Number of source and target bytes */
1987 unusedLS, /* Number of bits in next significant
1988 byte of source that are unused */
1989 accumSize; /* Number of meaningful bits in accum */
1990 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1991 unsigned char *unpacked;
4c4b4cd2 1992 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1993 unsigned char sign;
1994 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1995 /* Transmit bytes from least to most significant; delta is the direction
1996 the indices move. */
32c9a795 1997 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1998
61ee279c 1999 type = ada_check_typedef (type);
14f9c5c9
AS
2000
2001 if (obj == NULL)
2002 {
2003 v = allocate_value (type);
d2e4a39e 2004 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2005 }
9214ee5f 2006 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2007 {
2008 v = value_at (type,
df407dfe 2009 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2010 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2011 read_memory (VALUE_ADDRESS (v), bytes, len);
2012 }
d2e4a39e 2013 else
14f9c5c9
AS
2014 {
2015 v = allocate_value (type);
0fd88904 2016 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2017 }
d2e4a39e
AS
2018
2019 if (obj != NULL)
14f9c5c9 2020 {
74bcbdf3
PA
2021 set_value_component_location (v, obj);
2022 VALUE_ADDRESS (v) += value_offset (obj) + offset;
9bbda503
AC
2023 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2024 set_value_bitsize (v, bit_size);
df407dfe 2025 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2026 {
2027 VALUE_ADDRESS (v) += 1;
9bbda503 2028 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2029 }
14f9c5c9
AS
2030 }
2031 else
9bbda503 2032 set_value_bitsize (v, bit_size);
0fd88904 2033 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2034
2035 srcBitsLeft = bit_size;
2036 nsrc = len;
2037 ntarg = TYPE_LENGTH (type);
2038 sign = 0;
2039 if (bit_size == 0)
2040 {
2041 memset (unpacked, 0, TYPE_LENGTH (type));
2042 return v;
2043 }
32c9a795 2044 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2045 {
d2e4a39e 2046 src = len - 1;
1265e4aa
JB
2047 if (has_negatives (type)
2048 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2049 sign = ~0;
d2e4a39e
AS
2050
2051 unusedLS =
4c4b4cd2
PH
2052 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2053 % HOST_CHAR_BIT;
14f9c5c9
AS
2054
2055 switch (TYPE_CODE (type))
4c4b4cd2
PH
2056 {
2057 case TYPE_CODE_ARRAY:
2058 case TYPE_CODE_UNION:
2059 case TYPE_CODE_STRUCT:
2060 /* Non-scalar values must be aligned at a byte boundary... */
2061 accumSize =
2062 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2063 /* ... And are placed at the beginning (most-significant) bytes
2064 of the target. */
529cad9c 2065 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2066 break;
2067 default:
2068 accumSize = 0;
2069 targ = TYPE_LENGTH (type) - 1;
2070 break;
2071 }
14f9c5c9 2072 }
d2e4a39e 2073 else
14f9c5c9
AS
2074 {
2075 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2076
2077 src = targ = 0;
2078 unusedLS = bit_offset;
2079 accumSize = 0;
2080
d2e4a39e 2081 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2082 sign = ~0;
14f9c5c9 2083 }
d2e4a39e 2084
14f9c5c9
AS
2085 accum = 0;
2086 while (nsrc > 0)
2087 {
2088 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2089 part of the value. */
d2e4a39e 2090 unsigned int unusedMSMask =
4c4b4cd2
PH
2091 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2092 1;
2093 /* Sign-extend bits for this byte. */
14f9c5c9 2094 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2095 accum |=
4c4b4cd2 2096 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2097 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2098 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2099 {
2100 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2101 accumSize -= HOST_CHAR_BIT;
2102 accum >>= HOST_CHAR_BIT;
2103 ntarg -= 1;
2104 targ += delta;
2105 }
14f9c5c9
AS
2106 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2107 unusedLS = 0;
2108 nsrc -= 1;
2109 src += delta;
2110 }
2111 while (ntarg > 0)
2112 {
2113 accum |= sign << accumSize;
2114 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2115 accumSize -= HOST_CHAR_BIT;
2116 accum >>= HOST_CHAR_BIT;
2117 ntarg -= 1;
2118 targ += delta;
2119 }
2120
2121 return v;
2122}
d2e4a39e 2123
14f9c5c9
AS
2124/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2125 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2126 not overlap. */
14f9c5c9 2127static void
fc1a4b47 2128move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2129 int src_offset, int n)
14f9c5c9
AS
2130{
2131 unsigned int accum, mask;
2132 int accum_bits, chunk_size;
2133
2134 target += targ_offset / HOST_CHAR_BIT;
2135 targ_offset %= HOST_CHAR_BIT;
2136 source += src_offset / HOST_CHAR_BIT;
2137 src_offset %= HOST_CHAR_BIT;
32c9a795 2138 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2139 {
2140 accum = (unsigned char) *source;
2141 source += 1;
2142 accum_bits = HOST_CHAR_BIT - src_offset;
2143
d2e4a39e 2144 while (n > 0)
4c4b4cd2
PH
2145 {
2146 int unused_right;
2147 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2148 accum_bits += HOST_CHAR_BIT;
2149 source += 1;
2150 chunk_size = HOST_CHAR_BIT - targ_offset;
2151 if (chunk_size > n)
2152 chunk_size = n;
2153 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2154 mask = ((1 << chunk_size) - 1) << unused_right;
2155 *target =
2156 (*target & ~mask)
2157 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2158 n -= chunk_size;
2159 accum_bits -= chunk_size;
2160 target += 1;
2161 targ_offset = 0;
2162 }
14f9c5c9
AS
2163 }
2164 else
2165 {
2166 accum = (unsigned char) *source >> src_offset;
2167 source += 1;
2168 accum_bits = HOST_CHAR_BIT - src_offset;
2169
d2e4a39e 2170 while (n > 0)
4c4b4cd2
PH
2171 {
2172 accum = accum + ((unsigned char) *source << accum_bits);
2173 accum_bits += HOST_CHAR_BIT;
2174 source += 1;
2175 chunk_size = HOST_CHAR_BIT - targ_offset;
2176 if (chunk_size > n)
2177 chunk_size = n;
2178 mask = ((1 << chunk_size) - 1) << targ_offset;
2179 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2180 n -= chunk_size;
2181 accum_bits -= chunk_size;
2182 accum >>= chunk_size;
2183 target += 1;
2184 targ_offset = 0;
2185 }
14f9c5c9
AS
2186 }
2187}
2188
14f9c5c9
AS
2189/* Store the contents of FROMVAL into the location of TOVAL.
2190 Return a new value with the location of TOVAL and contents of
2191 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2192 floating-point or non-scalar types. */
14f9c5c9 2193
d2e4a39e
AS
2194static struct value *
2195ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2196{
df407dfe
AC
2197 struct type *type = value_type (toval);
2198 int bits = value_bitsize (toval);
14f9c5c9 2199
52ce6436
PH
2200 toval = ada_coerce_ref (toval);
2201 fromval = ada_coerce_ref (fromval);
2202
2203 if (ada_is_direct_array_type (value_type (toval)))
2204 toval = ada_coerce_to_simple_array (toval);
2205 if (ada_is_direct_array_type (value_type (fromval)))
2206 fromval = ada_coerce_to_simple_array (fromval);
2207
88e3b34b 2208 if (!deprecated_value_modifiable (toval))
323e0a4a 2209 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2210
d2e4a39e 2211 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2212 && bits > 0
d2e4a39e 2213 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2214 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2215 {
df407dfe
AC
2216 int len = (value_bitpos (toval)
2217 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2218 int from_size;
d2e4a39e
AS
2219 char *buffer = (char *) alloca (len);
2220 struct value *val;
52ce6436 2221 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2222
2223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2224 fromval = value_cast (type, fromval);
14f9c5c9 2225
52ce6436 2226 read_memory (to_addr, buffer, len);
aced2898
PH
2227 from_size = value_bitsize (fromval);
2228 if (from_size == 0)
2229 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2230 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2231 move_bits (buffer, value_bitpos (toval),
aced2898 2232 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2233 else
0fd88904 2234 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2235 0, bits);
52ce6436
PH
2236 write_memory (to_addr, buffer, len);
2237 if (deprecated_memory_changed_hook)
2238 deprecated_memory_changed_hook (to_addr, len);
2239
14f9c5c9 2240 val = value_copy (toval);
0fd88904 2241 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2242 TYPE_LENGTH (type));
04624583 2243 deprecated_set_value_type (val, type);
d2e4a39e 2244
14f9c5c9
AS
2245 return val;
2246 }
2247
2248 return value_assign (toval, fromval);
2249}
2250
2251
52ce6436
PH
2252/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2253 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2254 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2255 * COMPONENT, and not the inferior's memory. The current contents
2256 * of COMPONENT are ignored. */
2257static void
2258value_assign_to_component (struct value *container, struct value *component,
2259 struct value *val)
2260{
2261 LONGEST offset_in_container =
2262 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2263 - VALUE_ADDRESS (container) - value_offset (container));
2264 int bit_offset_in_container =
2265 value_bitpos (component) - value_bitpos (container);
2266 int bits;
2267
2268 val = value_cast (value_type (component), val);
2269
2270 if (value_bitsize (component) == 0)
2271 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2272 else
2273 bits = value_bitsize (component);
2274
32c9a795 2275 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2276 move_bits (value_contents_writeable (container) + offset_in_container,
2277 value_bitpos (container) + bit_offset_in_container,
2278 value_contents (val),
2279 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2280 bits);
2281 else
2282 move_bits (value_contents_writeable (container) + offset_in_container,
2283 value_bitpos (container) + bit_offset_in_container,
2284 value_contents (val), 0, bits);
2285}
2286
4c4b4cd2
PH
2287/* The value of the element of array ARR at the ARITY indices given in IND.
2288 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2289 thereto. */
2290
d2e4a39e
AS
2291struct value *
2292ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2293{
2294 int k;
d2e4a39e
AS
2295 struct value *elt;
2296 struct type *elt_type;
14f9c5c9
AS
2297
2298 elt = ada_coerce_to_simple_array (arr);
2299
df407dfe 2300 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2301 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2302 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2303 return value_subscript_packed (elt, arity, ind);
2304
2305 for (k = 0; k < arity; k += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2308 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2309 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2310 }
2311 return elt;
2312}
2313
2314/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2315 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2316 IND. Does not read the entire array into memory. */
14f9c5c9 2317
d2e4a39e
AS
2318struct value *
2319ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2320 struct value **ind)
14f9c5c9
AS
2321{
2322 int k;
2323
2324 for (k = 0; k < arity; k += 1)
2325 {
2326 LONGEST lwb, upb;
d2e4a39e 2327 struct value *idx;
14f9c5c9
AS
2328
2329 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2330 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2331 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2332 value_copy (arr));
14f9c5c9 2333 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2334 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2335 if (lwb != 0)
89eef114
UW
2336 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2337 BINOP_SUB);
2338
2339 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2340 type = TYPE_TARGET_TYPE (type);
2341 }
2342
2343 return value_ind (arr);
2344}
2345
0b5d8877 2346/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2347 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2348 elements starting at index LOW. The lower bound of this array is LOW, as
2349 per Ada rules. */
0b5d8877 2350static struct value *
f5938064
JG
2351ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2352 int low, int high)
0b5d8877 2353{
6c038f32 2354 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2355 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2356 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2357 struct type *index_type =
2358 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2359 low, high);
6c038f32 2360 struct type *slice_type =
0b5d8877 2361 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2362 return value_at_lazy (slice_type, base);
0b5d8877
PH
2363}
2364
2365
2366static struct value *
2367ada_value_slice (struct value *array, int low, int high)
2368{
df407dfe 2369 struct type *type = value_type (array);
6c038f32 2370 struct type *index_type =
0b5d8877 2371 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2372 struct type *slice_type =
0b5d8877 2373 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2374 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2375}
2376
14f9c5c9
AS
2377/* If type is a record type in the form of a standard GNAT array
2378 descriptor, returns the number of dimensions for type. If arr is a
2379 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2380 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2381
2382int
d2e4a39e 2383ada_array_arity (struct type *type)
14f9c5c9
AS
2384{
2385 int arity;
2386
2387 if (type == NULL)
2388 return 0;
2389
2390 type = desc_base_type (type);
2391
2392 arity = 0;
d2e4a39e 2393 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2394 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2395 else
2396 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2397 {
4c4b4cd2 2398 arity += 1;
61ee279c 2399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2400 }
d2e4a39e 2401
14f9c5c9
AS
2402 return arity;
2403}
2404
2405/* If TYPE is a record type in the form of a standard GNAT array
2406 descriptor or a simple array type, returns the element type for
2407 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2408 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2409
d2e4a39e
AS
2410struct type *
2411ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2412{
2413 type = desc_base_type (type);
2414
d2e4a39e 2415 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2416 {
2417 int k;
d2e4a39e 2418 struct type *p_array_type;
14f9c5c9
AS
2419
2420 p_array_type = desc_data_type (type);
2421
2422 k = ada_array_arity (type);
2423 if (k == 0)
4c4b4cd2 2424 return NULL;
d2e4a39e 2425
4c4b4cd2 2426 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2427 if (nindices >= 0 && k > nindices)
4c4b4cd2 2428 k = nindices;
14f9c5c9 2429 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2430 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2431 {
61ee279c 2432 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2433 k -= 1;
2434 }
14f9c5c9
AS
2435 return p_array_type;
2436 }
2437 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2438 {
2439 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2440 {
2441 type = TYPE_TARGET_TYPE (type);
2442 nindices -= 1;
2443 }
14f9c5c9
AS
2444 return type;
2445 }
2446
2447 return NULL;
2448}
2449
4c4b4cd2
PH
2450/* The type of nth index in arrays of given type (n numbering from 1).
2451 Does not examine memory. */
14f9c5c9 2452
d2e4a39e
AS
2453struct type *
2454ada_index_type (struct type *type, int n)
14f9c5c9 2455{
4c4b4cd2
PH
2456 struct type *result_type;
2457
14f9c5c9
AS
2458 type = desc_base_type (type);
2459
2460 if (n > ada_array_arity (type))
2461 return NULL;
2462
4c4b4cd2 2463 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2464 {
2465 int i;
2466
2467 for (i = 1; i < n; i += 1)
4c4b4cd2 2468 type = TYPE_TARGET_TYPE (type);
262452ec 2469 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2470 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2471 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2472 perhaps stabsread.c would make more sense. */
2473 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2474 result_type = builtin_type_int32;
14f9c5c9 2475
4c4b4cd2 2476 return result_type;
14f9c5c9 2477 }
d2e4a39e 2478 else
14f9c5c9
AS
2479 return desc_index_type (desc_bounds_type (type), n);
2480}
2481
2482/* Given that arr is an array type, returns the lower bound of the
2483 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2484 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2485 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2486 bounds type. It works for other arrays with bounds supplied by
2487 run-time quantities other than discriminants. */
14f9c5c9 2488
abb68b3e 2489static LONGEST
d2e4a39e 2490ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2491 struct type ** typep)
14f9c5c9 2492{
262452ec
JK
2493 struct type *type, *index_type_desc, *index_type;
2494 LONGEST retval;
2495
2496 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
4c4b4cd2 2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2502 {
2503 if (typep != NULL)
6d84d3d8 2504 *typep = builtin_type_int32;
d2e4a39e 2505 return (LONGEST) - which;
14f9c5c9
AS
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2514 if (index_type_desc != NULL)
2515 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2516 NULL, TYPE_OBJFILE (arr_type));
2517 else
14f9c5c9 2518 {
d2e4a39e 2519 while (n > 1)
4c4b4cd2
PH
2520 {
2521 type = TYPE_TARGET_TYPE (type);
2522 n -= 1;
2523 }
14f9c5c9 2524
abb68b3e 2525 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2526 }
262452ec
JK
2527
2528 switch (TYPE_CODE (index_type))
14f9c5c9 2529 {
262452ec
JK
2530 case TYPE_CODE_RANGE:
2531 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2532 : TYPE_HIGH_BOUND (index_type);
2533 break;
2534 case TYPE_CODE_ENUM:
2535 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1);
2538 break;
2539 default:
2540 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2541 }
abb68b3e 2542
262452ec
JK
2543 if (typep != NULL)
2544 *typep = index_type;
abb68b3e 2545
262452ec 2546 return retval;
14f9c5c9
AS
2547}
2548
2549/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2550 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2551 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2552 supplied by run-time quantities other than discriminants. */
14f9c5c9 2553
d2e4a39e 2554struct value *
4dc81987 2555ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2556{
df407dfe 2557 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2558
2559 if (ada_is_packed_array_type (arr_type))
2560 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2561 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2562 {
d2e4a39e 2563 struct type *type;
14f9c5c9
AS
2564 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2565 return value_from_longest (type, v);
2566 }
2567 else
2568 return desc_one_bound (desc_bounds (arr), n, which);
2569}
2570
2571/* Given that arr is an array value, returns the length of the
2572 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2573 supplied by run-time quantities other than discriminants.
2574 Does not work for arrays indexed by enumeration types with representation
2575 clauses at the moment. */
14f9c5c9 2576
d2e4a39e
AS
2577struct value *
2578ada_array_length (struct value *arr, int n)
14f9c5c9 2579{
df407dfe 2580 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2581
2582 if (ada_is_packed_array_type (arr_type))
2583 return ada_array_length (decode_packed_array (arr), n);
2584
4c4b4cd2 2585 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2586 {
d2e4a39e 2587 struct type *type;
14f9c5c9 2588 LONGEST v =
4c4b4cd2
PH
2589 ada_array_bound_from_type (arr_type, n, 1, &type) -
2590 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2591 return value_from_longest (type, v);
2592 }
2593 else
d2e4a39e 2594 return
030b4912 2595 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2596 value_as_long (desc_one_bound (desc_bounds (arr),
2597 n, 1))
2598 - value_as_long (desc_one_bound (desc_bounds (arr),
2599 n, 0)) + 1);
2600}
2601
2602/* An empty array whose type is that of ARR_TYPE (an array type),
2603 with bounds LOW to LOW-1. */
2604
2605static struct value *
2606empty_array (struct type *arr_type, int low)
2607{
6c038f32 2608 struct type *index_type =
0b5d8877
PH
2609 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2610 low, low - 1);
2611 struct type *elt_type = ada_array_element_type (arr_type, 1);
2612 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2613}
14f9c5c9 2614\f
d2e4a39e 2615
4c4b4cd2 2616 /* Name resolution */
14f9c5c9 2617
4c4b4cd2
PH
2618/* The "decoded" name for the user-definable Ada operator corresponding
2619 to OP. */
14f9c5c9 2620
d2e4a39e 2621static const char *
4c4b4cd2 2622ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2623{
2624 int i;
2625
4c4b4cd2 2626 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2627 {
2628 if (ada_opname_table[i].op == op)
4c4b4cd2 2629 return ada_opname_table[i].decoded;
14f9c5c9 2630 }
323e0a4a 2631 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2632}
2633
2634
4c4b4cd2
PH
2635/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2636 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2637 undefined namespace) and converts operators that are
2638 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2639 non-null, it provides a preferred result type [at the moment, only
2640 type void has any effect---causing procedures to be preferred over
2641 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2642 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2643
4c4b4cd2
PH
2644static void
2645resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2646{
2647 int pc;
2648 pc = 0;
4c4b4cd2 2649 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2650}
2651
4c4b4cd2
PH
2652/* Resolve the operator of the subexpression beginning at
2653 position *POS of *EXPP. "Resolving" consists of replacing
2654 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2655 with their resolutions, replacing built-in operators with
2656 function calls to user-defined operators, where appropriate, and,
2657 when DEPROCEDURE_P is non-zero, converting function-valued variables
2658 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2659 are as in ada_resolve, above. */
14f9c5c9 2660
d2e4a39e 2661static struct value *
4c4b4cd2 2662resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2663 struct type *context_type)
14f9c5c9
AS
2664{
2665 int pc = *pos;
2666 int i;
4c4b4cd2 2667 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2668 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2669 struct value **argvec; /* Vector of operand types (alloca'ed). */
2670 int nargs; /* Number of operands. */
52ce6436 2671 int oplen;
14f9c5c9
AS
2672
2673 argvec = NULL;
2674 nargs = 0;
2675 exp = *expp;
2676
52ce6436
PH
2677 /* Pass one: resolve operands, saving their types and updating *pos,
2678 if needed. */
14f9c5c9
AS
2679 switch (op)
2680 {
4c4b4cd2
PH
2681 case OP_FUNCALL:
2682 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2683 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2684 *pos += 7;
4c4b4cd2
PH
2685 else
2686 {
2687 *pos += 3;
2688 resolve_subexp (expp, pos, 0, NULL);
2689 }
2690 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2691 break;
2692
14f9c5c9 2693 case UNOP_ADDR:
4c4b4cd2
PH
2694 *pos += 1;
2695 resolve_subexp (expp, pos, 0, NULL);
2696 break;
2697
52ce6436
PH
2698 case UNOP_QUAL:
2699 *pos += 3;
2700 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2701 break;
2702
52ce6436 2703 case OP_ATR_MODULUS:
4c4b4cd2
PH
2704 case OP_ATR_SIZE:
2705 case OP_ATR_TAG:
4c4b4cd2
PH
2706 case OP_ATR_FIRST:
2707 case OP_ATR_LAST:
2708 case OP_ATR_LENGTH:
2709 case OP_ATR_POS:
2710 case OP_ATR_VAL:
4c4b4cd2
PH
2711 case OP_ATR_MIN:
2712 case OP_ATR_MAX:
52ce6436
PH
2713 case TERNOP_IN_RANGE:
2714 case BINOP_IN_BOUNDS:
2715 case UNOP_IN_RANGE:
2716 case OP_AGGREGATE:
2717 case OP_OTHERS:
2718 case OP_CHOICES:
2719 case OP_POSITIONAL:
2720 case OP_DISCRETE_RANGE:
2721 case OP_NAME:
2722 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2723 *pos += oplen;
14f9c5c9
AS
2724 break;
2725
2726 case BINOP_ASSIGN:
2727 {
4c4b4cd2
PH
2728 struct value *arg1;
2729
2730 *pos += 1;
2731 arg1 = resolve_subexp (expp, pos, 0, NULL);
2732 if (arg1 == NULL)
2733 resolve_subexp (expp, pos, 1, NULL);
2734 else
df407dfe 2735 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2736 break;
14f9c5c9
AS
2737 }
2738
4c4b4cd2 2739 case UNOP_CAST:
4c4b4cd2
PH
2740 *pos += 3;
2741 nargs = 1;
2742 break;
14f9c5c9 2743
4c4b4cd2
PH
2744 case BINOP_ADD:
2745 case BINOP_SUB:
2746 case BINOP_MUL:
2747 case BINOP_DIV:
2748 case BINOP_REM:
2749 case BINOP_MOD:
2750 case BINOP_EXP:
2751 case BINOP_CONCAT:
2752 case BINOP_LOGICAL_AND:
2753 case BINOP_LOGICAL_OR:
2754 case BINOP_BITWISE_AND:
2755 case BINOP_BITWISE_IOR:
2756 case BINOP_BITWISE_XOR:
14f9c5c9 2757
4c4b4cd2
PH
2758 case BINOP_EQUAL:
2759 case BINOP_NOTEQUAL:
2760 case BINOP_LESS:
2761 case BINOP_GTR:
2762 case BINOP_LEQ:
2763 case BINOP_GEQ:
14f9c5c9 2764
4c4b4cd2
PH
2765 case BINOP_REPEAT:
2766 case BINOP_SUBSCRIPT:
2767 case BINOP_COMMA:
40c8aaa9
JB
2768 *pos += 1;
2769 nargs = 2;
2770 break;
14f9c5c9 2771
4c4b4cd2
PH
2772 case UNOP_NEG:
2773 case UNOP_PLUS:
2774 case UNOP_LOGICAL_NOT:
2775 case UNOP_ABS:
2776 case UNOP_IND:
2777 *pos += 1;
2778 nargs = 1;
2779 break;
14f9c5c9 2780
4c4b4cd2
PH
2781 case OP_LONG:
2782 case OP_DOUBLE:
2783 case OP_VAR_VALUE:
2784 *pos += 4;
2785 break;
14f9c5c9 2786
4c4b4cd2
PH
2787 case OP_TYPE:
2788 case OP_BOOL:
2789 case OP_LAST:
4c4b4cd2
PH
2790 case OP_INTERNALVAR:
2791 *pos += 3;
2792 break;
14f9c5c9 2793
4c4b4cd2
PH
2794 case UNOP_MEMVAL:
2795 *pos += 3;
2796 nargs = 1;
2797 break;
2798
67f3407f
DJ
2799 case OP_REGISTER:
2800 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2801 break;
2802
4c4b4cd2
PH
2803 case STRUCTOP_STRUCT:
2804 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2805 nargs = 1;
2806 break;
2807
4c4b4cd2 2808 case TERNOP_SLICE:
4c4b4cd2
PH
2809 *pos += 1;
2810 nargs = 3;
2811 break;
2812
52ce6436 2813 case OP_STRING:
14f9c5c9 2814 break;
4c4b4cd2
PH
2815
2816 default:
323e0a4a 2817 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2818 }
2819
76a01679 2820 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2821 for (i = 0; i < nargs; i += 1)
2822 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2823 argvec[i] = NULL;
2824 exp = *expp;
2825
2826 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2827 switch (op)
2828 {
2829 default:
2830 break;
2831
14f9c5c9 2832 case OP_VAR_VALUE:
4c4b4cd2 2833 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2834 {
2835 struct ada_symbol_info *candidates;
2836 int n_candidates;
2837
2838 n_candidates =
2839 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2840 (exp->elts[pc + 2].symbol),
2841 exp->elts[pc + 1].block, VAR_DOMAIN,
2842 &candidates);
2843
2844 if (n_candidates > 1)
2845 {
2846 /* Types tend to get re-introduced locally, so if there
2847 are any local symbols that are not types, first filter
2848 out all types. */
2849 int j;
2850 for (j = 0; j < n_candidates; j += 1)
2851 switch (SYMBOL_CLASS (candidates[j].sym))
2852 {
2853 case LOC_REGISTER:
2854 case LOC_ARG:
2855 case LOC_REF_ARG:
76a01679
JB
2856 case LOC_REGPARM_ADDR:
2857 case LOC_LOCAL:
76a01679 2858 case LOC_COMPUTED:
76a01679
JB
2859 goto FoundNonType;
2860 default:
2861 break;
2862 }
2863 FoundNonType:
2864 if (j < n_candidates)
2865 {
2866 j = 0;
2867 while (j < n_candidates)
2868 {
2869 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2870 {
2871 candidates[j] = candidates[n_candidates - 1];
2872 n_candidates -= 1;
2873 }
2874 else
2875 j += 1;
2876 }
2877 }
2878 }
2879
2880 if (n_candidates == 0)
323e0a4a 2881 error (_("No definition found for %s"),
76a01679
JB
2882 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2883 else if (n_candidates == 1)
2884 i = 0;
2885 else if (deprocedure_p
2886 && !is_nonfunction (candidates, n_candidates))
2887 {
06d5cf63
JB
2888 i = ada_resolve_function
2889 (candidates, n_candidates, NULL, 0,
2890 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2891 context_type);
76a01679 2892 if (i < 0)
323e0a4a 2893 error (_("Could not find a match for %s"),
76a01679
JB
2894 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 }
2896 else
2897 {
323e0a4a 2898 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2899 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2900 user_select_syms (candidates, n_candidates, 1);
2901 i = 0;
2902 }
2903
2904 exp->elts[pc + 1].block = candidates[i].block;
2905 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2906 if (innermost_block == NULL
2907 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2908 innermost_block = candidates[i].block;
2909 }
2910
2911 if (deprocedure_p
2912 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2913 == TYPE_CODE_FUNC))
2914 {
2915 replace_operator_with_call (expp, pc, 0, 0,
2916 exp->elts[pc + 2].symbol,
2917 exp->elts[pc + 1].block);
2918 exp = *expp;
2919 }
14f9c5c9
AS
2920 break;
2921
2922 case OP_FUNCALL:
2923 {
4c4b4cd2 2924 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2925 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2926 {
2927 struct ada_symbol_info *candidates;
2928 int n_candidates;
2929
2930 n_candidates =
76a01679
JB
2931 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2932 (exp->elts[pc + 5].symbol),
2933 exp->elts[pc + 4].block, VAR_DOMAIN,
2934 &candidates);
4c4b4cd2
PH
2935 if (n_candidates == 1)
2936 i = 0;
2937 else
2938 {
06d5cf63
JB
2939 i = ada_resolve_function
2940 (candidates, n_candidates,
2941 argvec, nargs,
2942 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2943 context_type);
4c4b4cd2 2944 if (i < 0)
323e0a4a 2945 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2946 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2947 }
2948
2949 exp->elts[pc + 4].block = candidates[i].block;
2950 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2951 if (innermost_block == NULL
2952 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2953 innermost_block = candidates[i].block;
2954 }
14f9c5c9
AS
2955 }
2956 break;
2957 case BINOP_ADD:
2958 case BINOP_SUB:
2959 case BINOP_MUL:
2960 case BINOP_DIV:
2961 case BINOP_REM:
2962 case BINOP_MOD:
2963 case BINOP_CONCAT:
2964 case BINOP_BITWISE_AND:
2965 case BINOP_BITWISE_IOR:
2966 case BINOP_BITWISE_XOR:
2967 case BINOP_EQUAL:
2968 case BINOP_NOTEQUAL:
2969 case BINOP_LESS:
2970 case BINOP_GTR:
2971 case BINOP_LEQ:
2972 case BINOP_GEQ:
2973 case BINOP_EXP:
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2979 {
2980 struct ada_symbol_info *candidates;
2981 int n_candidates;
2982
2983 n_candidates =
2984 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2985 (struct block *) NULL, VAR_DOMAIN,
2986 &candidates);
2987 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2988 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2989 if (i < 0)
2990 break;
2991
76a01679
JB
2992 replace_operator_with_call (expp, pc, nargs, 1,
2993 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2994 exp = *expp;
2995 }
14f9c5c9 2996 break;
4c4b4cd2
PH
2997
2998 case OP_TYPE:
b3dbf008 2999 case OP_REGISTER:
4c4b4cd2 3000 return NULL;
14f9c5c9
AS
3001 }
3002
3003 *pos = pc;
3004 return evaluate_subexp_type (exp, pos);
3005}
3006
3007/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3008 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3009 a non-pointer. A type of 'void' (which is never a valid expression type)
3010 by convention matches anything. */
14f9c5c9 3011/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3012 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3013
3014static int
4dc81987 3015ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3016{
61ee279c
PH
3017 ftype = ada_check_typedef (ftype);
3018 atype = ada_check_typedef (atype);
14f9c5c9
AS
3019
3020 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3021 ftype = TYPE_TARGET_TYPE (ftype);
3022 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3023 atype = TYPE_TARGET_TYPE (atype);
3024
d2e4a39e 3025 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3026 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3027 return 1;
3028
d2e4a39e 3029 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3030 {
3031 default:
3032 return 1;
3033 case TYPE_CODE_PTR:
3034 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3035 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3036 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3037 else
1265e4aa
JB
3038 return (may_deref
3039 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3040 case TYPE_CODE_INT:
3041 case TYPE_CODE_ENUM:
3042 case TYPE_CODE_RANGE:
3043 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3044 {
3045 case TYPE_CODE_INT:
3046 case TYPE_CODE_ENUM:
3047 case TYPE_CODE_RANGE:
3048 return 1;
3049 default:
3050 return 0;
3051 }
14f9c5c9
AS
3052
3053 case TYPE_CODE_ARRAY:
d2e4a39e 3054 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3055 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3056
3057 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3058 if (ada_is_array_descriptor_type (ftype))
3059 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3060 || ada_is_array_descriptor_type (atype));
14f9c5c9 3061 else
4c4b4cd2
PH
3062 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3063 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3064
3065 case TYPE_CODE_UNION:
3066 case TYPE_CODE_FLT:
3067 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3068 }
3069}
3070
3071/* Return non-zero if the formals of FUNC "sufficiently match" the
3072 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3073 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3074 argument function. */
14f9c5c9
AS
3075
3076static int
d2e4a39e 3077ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3078{
3079 int i;
d2e4a39e 3080 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3081
1265e4aa
JB
3082 if (SYMBOL_CLASS (func) == LOC_CONST
3083 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3084 return (n_actuals == 0);
3085 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3086 return 0;
3087
3088 if (TYPE_NFIELDS (func_type) != n_actuals)
3089 return 0;
3090
3091 for (i = 0; i < n_actuals; i += 1)
3092 {
4c4b4cd2 3093 if (actuals[i] == NULL)
76a01679
JB
3094 return 0;
3095 else
3096 {
61ee279c 3097 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3098 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3099
76a01679
JB
3100 if (!ada_type_match (ftype, atype, 1))
3101 return 0;
3102 }
14f9c5c9
AS
3103 }
3104 return 1;
3105}
3106
3107/* False iff function type FUNC_TYPE definitely does not produce a value
3108 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3109 FUNC_TYPE is not a valid function type with a non-null return type
3110 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3111
3112static int
d2e4a39e 3113return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3114{
d2e4a39e 3115 struct type *return_type;
14f9c5c9
AS
3116
3117 if (func_type == NULL)
3118 return 1;
3119
4c4b4cd2
PH
3120 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3121 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3122 else
3123 return_type = base_type (func_type);
14f9c5c9
AS
3124 if (return_type == NULL)
3125 return 1;
3126
4c4b4cd2 3127 context_type = base_type (context_type);
14f9c5c9
AS
3128
3129 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3130 return context_type == NULL || return_type == context_type;
3131 else if (context_type == NULL)
3132 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3133 else
3134 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3135}
3136
3137
4c4b4cd2 3138/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3139 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3140 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3141 that returns that type, then eliminate matches that don't. If
3142 CONTEXT_TYPE is void and there is at least one match that does not
3143 return void, eliminate all matches that do.
3144
14f9c5c9
AS
3145 Asks the user if there is more than one match remaining. Returns -1
3146 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3147 solely for messages. May re-arrange and modify SYMS in
3148 the process; the index returned is for the modified vector. */
14f9c5c9 3149
4c4b4cd2
PH
3150static int
3151ada_resolve_function (struct ada_symbol_info syms[],
3152 int nsyms, struct value **args, int nargs,
3153 const char *name, struct type *context_type)
14f9c5c9
AS
3154{
3155 int k;
4c4b4cd2 3156 int m; /* Number of hits */
d2e4a39e
AS
3157 struct type *fallback;
3158 struct type *return_type;
14f9c5c9
AS
3159
3160 return_type = context_type;
3161 if (context_type == NULL)
3162 fallback = builtin_type_void;
3163 else
3164 fallback = NULL;
3165
d2e4a39e 3166 m = 0;
14f9c5c9
AS
3167 while (1)
3168 {
3169 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3170 {
61ee279c 3171 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3172
3173 if (ada_args_match (syms[k].sym, args, nargs)
3174 && return_match (type, return_type))
3175 {
3176 syms[m] = syms[k];
3177 m += 1;
3178 }
3179 }
14f9c5c9 3180 if (m > 0 || return_type == fallback)
4c4b4cd2 3181 break;
14f9c5c9 3182 else
4c4b4cd2 3183 return_type = fallback;
14f9c5c9
AS
3184 }
3185
3186 if (m == 0)
3187 return -1;
3188 else if (m > 1)
3189 {
323e0a4a 3190 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3191 user_select_syms (syms, m, 1);
14f9c5c9
AS
3192 return 0;
3193 }
3194 return 0;
3195}
3196
4c4b4cd2
PH
3197/* Returns true (non-zero) iff decoded name N0 should appear before N1
3198 in a listing of choices during disambiguation (see sort_choices, below).
3199 The idea is that overloadings of a subprogram name from the
3200 same package should sort in their source order. We settle for ordering
3201 such symbols by their trailing number (__N or $N). */
3202
14f9c5c9 3203static int
4c4b4cd2 3204encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3205{
3206 if (N1 == NULL)
3207 return 0;
3208 else if (N0 == NULL)
3209 return 1;
3210 else
3211 {
3212 int k0, k1;
d2e4a39e 3213 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3214 ;
d2e4a39e 3215 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3216 ;
d2e4a39e 3217 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3218 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3219 {
3220 int n0, n1;
3221 n0 = k0;
3222 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3223 n0 -= 1;
3224 n1 = k1;
3225 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3226 n1 -= 1;
3227 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3228 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3229 }
14f9c5c9
AS
3230 return (strcmp (N0, N1) < 0);
3231 }
3232}
d2e4a39e 3233
4c4b4cd2
PH
3234/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3235 encoded names. */
3236
d2e4a39e 3237static void
4c4b4cd2 3238sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3239{
4c4b4cd2 3240 int i;
d2e4a39e 3241 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3242 {
4c4b4cd2 3243 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3244 int j;
3245
d2e4a39e 3246 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3247 {
3248 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3249 SYMBOL_LINKAGE_NAME (sym.sym)))
3250 break;
3251 syms[j + 1] = syms[j];
3252 }
d2e4a39e 3253 syms[j + 1] = sym;
14f9c5c9
AS
3254 }
3255}
3256
4c4b4cd2
PH
3257/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
14f9c5c9
AS
3261
3262/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3263 to be re-integrated one of these days. */
14f9c5c9
AS
3264
3265int
4c4b4cd2 3266user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3267{
3268 int i;
d2e4a39e 3269 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3272 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3273
3274 if (max_results < 1)
323e0a4a 3275 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3276 if (nsyms <= 1)
3277 return nsyms;
3278
717d2f5a
JB
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281canceled because the command is ambiguous\n\
3282See set/show multiple-symbol."));
3283
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
3289
323e0a4a 3290 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3291 if (max_results > 1)
323e0a4a 3292 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3293
4c4b4cd2 3294 sort_choices (syms, nsyms);
14f9c5c9
AS
3295
3296 for (i = 0; i < nsyms; i += 1)
3297 {
4c4b4cd2
PH
3298 if (syms[i].sym == NULL)
3299 continue;
3300
3301 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3302 {
76a01679
JB
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3305 if (sal.symtab == NULL)
3306 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3307 i + first_choice,
3308 SYMBOL_PRINT_NAME (syms[i].sym),
3309 sal.line);
3310 else
3311 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym),
3313 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3314 continue;
3315 }
d2e4a39e 3316 else
4c4b4cd2
PH
3317 {
3318 int is_enumeral =
3319 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3320 && SYMBOL_TYPE (syms[i].sym) != NULL
3321 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3322 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3323
3324 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3325 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3329 else if (is_enumeral
3330 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3331 {
a3f17187 3332 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3333 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3334 gdb_stdout, -1, 0);
323e0a4a 3335 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3336 SYMBOL_PRINT_NAME (syms[i].sym));
3337 }
3338 else if (symtab != NULL)
3339 printf_unfiltered (is_enumeral
323e0a4a
AC
3340 ? _("[%d] %s in %s (enumeral)\n")
3341 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3342 i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 symtab->filename);
3345 else
3346 printf_unfiltered (is_enumeral
323e0a4a
AC
3347 ? _("[%d] %s (enumeral)\n")
3348 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3349 i + first_choice,
3350 SYMBOL_PRINT_NAME (syms[i].sym));
3351 }
14f9c5c9 3352 }
d2e4a39e 3353
14f9c5c9 3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3355 "overload-choice");
14f9c5c9
AS
3356
3357 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3358 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3359
3360 return n_chosen;
3361}
3362
3363/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3364 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3365 order in CHOICES[0 .. N-1], and return N.
3366
3367 The user types choices as a sequence of numbers on one line
3368 separated by blanks, encoding them as follows:
3369
4c4b4cd2 3370 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3371 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3372 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3373
4c4b4cd2 3374 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3375
3376 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3377 prompts (for use with the -f switch). */
14f9c5c9
AS
3378
3379int
d2e4a39e 3380get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3381 int is_all_choice, char *annotation_suffix)
14f9c5c9 3382{
d2e4a39e 3383 char *args;
0bcd0149 3384 char *prompt;
14f9c5c9
AS
3385 int n_chosen;
3386 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3387
14f9c5c9
AS
3388 prompt = getenv ("PS2");
3389 if (prompt == NULL)
0bcd0149 3390 prompt = "> ";
14f9c5c9 3391
0bcd0149 3392 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3393
14f9c5c9 3394 if (args == NULL)
323e0a4a 3395 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3396
3397 n_chosen = 0;
76a01679 3398
4c4b4cd2
PH
3399 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3400 order, as given in args. Choices are validated. */
14f9c5c9
AS
3401 while (1)
3402 {
d2e4a39e 3403 char *args2;
14f9c5c9
AS
3404 int choice, j;
3405
3406 while (isspace (*args))
4c4b4cd2 3407 args += 1;
14f9c5c9 3408 if (*args == '\0' && n_chosen == 0)
323e0a4a 3409 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3410 else if (*args == '\0')
4c4b4cd2 3411 break;
14f9c5c9
AS
3412
3413 choice = strtol (args, &args2, 10);
d2e4a39e 3414 if (args == args2 || choice < 0
4c4b4cd2 3415 || choice > n_choices + first_choice - 1)
323e0a4a 3416 error (_("Argument must be choice number"));
14f9c5c9
AS
3417 args = args2;
3418
d2e4a39e 3419 if (choice == 0)
323e0a4a 3420 error (_("cancelled"));
14f9c5c9
AS
3421
3422 if (choice < first_choice)
4c4b4cd2
PH
3423 {
3424 n_chosen = n_choices;
3425 for (j = 0; j < n_choices; j += 1)
3426 choices[j] = j;
3427 break;
3428 }
14f9c5c9
AS
3429 choice -= first_choice;
3430
d2e4a39e 3431 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3432 {
3433 }
14f9c5c9
AS
3434
3435 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3436 {
3437 int k;
3438 for (k = n_chosen - 1; k > j; k -= 1)
3439 choices[k + 1] = choices[k];
3440 choices[j + 1] = choice;
3441 n_chosen += 1;
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (n_chosen > max_results)
323e0a4a 3446 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3447
14f9c5c9
AS
3448 return n_chosen;
3449}
3450
4c4b4cd2
PH
3451/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3452 on the function identified by SYM and BLOCK, and taking NARGS
3453 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3454
3455static void
d2e4a39e 3456replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3457 int oplen, struct symbol *sym,
3458 struct block *block)
14f9c5c9
AS
3459{
3460 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3461 symbol, -oplen for operator being replaced). */
d2e4a39e 3462 struct expression *newexp = (struct expression *)
14f9c5c9 3463 xmalloc (sizeof (struct expression)
4c4b4cd2 3464 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3465 struct expression *exp = *expp;
14f9c5c9
AS
3466
3467 newexp->nelts = exp->nelts + 7 - oplen;
3468 newexp->language_defn = exp->language_defn;
3469 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3470 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3471 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3472
3473 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3474 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3475
3476 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3477 newexp->elts[pc + 4].block = block;
3478 newexp->elts[pc + 5].symbol = sym;
3479
3480 *expp = newexp;
aacb1f0a 3481 xfree (exp);
d2e4a39e 3482}
14f9c5c9
AS
3483
3484/* Type-class predicates */
3485
4c4b4cd2
PH
3486/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3487 or FLOAT). */
14f9c5c9
AS
3488
3489static int
d2e4a39e 3490numeric_type_p (struct type *type)
14f9c5c9
AS
3491{
3492 if (type == NULL)
3493 return 0;
d2e4a39e
AS
3494 else
3495 {
3496 switch (TYPE_CODE (type))
4c4b4cd2
PH
3497 {
3498 case TYPE_CODE_INT:
3499 case TYPE_CODE_FLT:
3500 return 1;
3501 case TYPE_CODE_RANGE:
3502 return (type == TYPE_TARGET_TYPE (type)
3503 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3504 default:
3505 return 0;
3506 }
d2e4a39e 3507 }
14f9c5c9
AS
3508}
3509
4c4b4cd2 3510/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3511
3512static int
d2e4a39e 3513integer_type_p (struct type *type)
14f9c5c9
AS
3514{
3515 if (type == NULL)
3516 return 0;
d2e4a39e
AS
3517 else
3518 {
3519 switch (TYPE_CODE (type))
4c4b4cd2
PH
3520 {
3521 case TYPE_CODE_INT:
3522 return 1;
3523 case TYPE_CODE_RANGE:
3524 return (type == TYPE_TARGET_TYPE (type)
3525 || integer_type_p (TYPE_TARGET_TYPE (type)));
3526 default:
3527 return 0;
3528 }
d2e4a39e 3529 }
14f9c5c9
AS
3530}
3531
4c4b4cd2 3532/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3533
3534static int
d2e4a39e 3535scalar_type_p (struct type *type)
14f9c5c9
AS
3536{
3537 if (type == NULL)
3538 return 0;
d2e4a39e
AS
3539 else
3540 {
3541 switch (TYPE_CODE (type))
4c4b4cd2
PH
3542 {
3543 case TYPE_CODE_INT:
3544 case TYPE_CODE_RANGE:
3545 case TYPE_CODE_ENUM:
3546 case TYPE_CODE_FLT:
3547 return 1;
3548 default:
3549 return 0;
3550 }
d2e4a39e 3551 }
14f9c5c9
AS
3552}
3553
4c4b4cd2 3554/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3555
3556static int
d2e4a39e 3557discrete_type_p (struct type *type)
14f9c5c9
AS
3558{
3559 if (type == NULL)
3560 return 0;
d2e4a39e
AS
3561 else
3562 {
3563 switch (TYPE_CODE (type))
4c4b4cd2
PH
3564 {
3565 case TYPE_CODE_INT:
3566 case TYPE_CODE_RANGE:
3567 case TYPE_CODE_ENUM:
3568 return 1;
3569 default:
3570 return 0;
3571 }
d2e4a39e 3572 }
14f9c5c9
AS
3573}
3574
4c4b4cd2
PH
3575/* Returns non-zero if OP with operands in the vector ARGS could be
3576 a user-defined function. Errs on the side of pre-defined operators
3577 (i.e., result 0). */
14f9c5c9
AS
3578
3579static int
d2e4a39e 3580possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3581{
76a01679 3582 struct type *type0 =
df407dfe 3583 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3584 struct type *type1 =
df407dfe 3585 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3586
4c4b4cd2
PH
3587 if (type0 == NULL)
3588 return 0;
3589
14f9c5c9
AS
3590 switch (op)
3591 {
3592 default:
3593 return 0;
3594
3595 case BINOP_ADD:
3596 case BINOP_SUB:
3597 case BINOP_MUL:
3598 case BINOP_DIV:
d2e4a39e 3599 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3600
3601 case BINOP_REM:
3602 case BINOP_MOD:
3603 case BINOP_BITWISE_AND:
3604 case BINOP_BITWISE_IOR:
3605 case BINOP_BITWISE_XOR:
d2e4a39e 3606 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3607
3608 case BINOP_EQUAL:
3609 case BINOP_NOTEQUAL:
3610 case BINOP_LESS:
3611 case BINOP_GTR:
3612 case BINOP_LEQ:
3613 case BINOP_GEQ:
d2e4a39e 3614 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3615
3616 case BINOP_CONCAT:
ee90b9ab 3617 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3618
3619 case BINOP_EXP:
d2e4a39e 3620 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3621
3622 case UNOP_NEG:
3623 case UNOP_PLUS:
3624 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3625 case UNOP_ABS:
3626 return (!numeric_type_p (type0));
14f9c5c9
AS
3627
3628 }
3629}
3630\f
4c4b4cd2 3631 /* Renaming */
14f9c5c9 3632
aeb5907d
JB
3633/* NOTES:
3634
3635 1. In the following, we assume that a renaming type's name may
3636 have an ___XD suffix. It would be nice if this went away at some
3637 point.
3638 2. We handle both the (old) purely type-based representation of
3639 renamings and the (new) variable-based encoding. At some point,
3640 it is devoutly to be hoped that the former goes away
3641 (FIXME: hilfinger-2007-07-09).
3642 3. Subprogram renamings are not implemented, although the XRS
3643 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3644
3645/* If SYM encodes a renaming,
3646
3647 <renaming> renames <renamed entity>,
3648
3649 sets *LEN to the length of the renamed entity's name,
3650 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3651 the string describing the subcomponent selected from the renamed
3652 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3653 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3654 are undefined). Otherwise, returns a value indicating the category
3655 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3656 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3657 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3658 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3659 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3660 may be NULL, in which case they are not assigned.
3661
3662 [Currently, however, GCC does not generate subprogram renamings.] */
3663
3664enum ada_renaming_category
3665ada_parse_renaming (struct symbol *sym,
3666 const char **renamed_entity, int *len,
3667 const char **renaming_expr)
3668{
3669 enum ada_renaming_category kind;
3670 const char *info;
3671 const char *suffix;
3672
3673 if (sym == NULL)
3674 return ADA_NOT_RENAMING;
3675 switch (SYMBOL_CLASS (sym))
14f9c5c9 3676 {
aeb5907d
JB
3677 default:
3678 return ADA_NOT_RENAMING;
3679 case LOC_TYPEDEF:
3680 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3681 renamed_entity, len, renaming_expr);
3682 case LOC_LOCAL:
3683 case LOC_STATIC:
3684 case LOC_COMPUTED:
3685 case LOC_OPTIMIZED_OUT:
3686 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3687 if (info == NULL)
3688 return ADA_NOT_RENAMING;
3689 switch (info[5])
3690 {
3691 case '_':
3692 kind = ADA_OBJECT_RENAMING;
3693 info += 6;
3694 break;
3695 case 'E':
3696 kind = ADA_EXCEPTION_RENAMING;
3697 info += 7;
3698 break;
3699 case 'P':
3700 kind = ADA_PACKAGE_RENAMING;
3701 info += 7;
3702 break;
3703 case 'S':
3704 kind = ADA_SUBPROGRAM_RENAMING;
3705 info += 7;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
14f9c5c9 3710 }
4c4b4cd2 3711
aeb5907d
JB
3712 if (renamed_entity != NULL)
3713 *renamed_entity = info;
3714 suffix = strstr (info, "___XE");
3715 if (suffix == NULL || suffix == info)
3716 return ADA_NOT_RENAMING;
3717 if (len != NULL)
3718 *len = strlen (info) - strlen (suffix);
3719 suffix += 5;
3720 if (renaming_expr != NULL)
3721 *renaming_expr = suffix;
3722 return kind;
3723}
3724
3725/* Assuming TYPE encodes a renaming according to the old encoding in
3726 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3727 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3728 ADA_NOT_RENAMING otherwise. */
3729static enum ada_renaming_category
3730parse_old_style_renaming (struct type *type,
3731 const char **renamed_entity, int *len,
3732 const char **renaming_expr)
3733{
3734 enum ada_renaming_category kind;
3735 const char *name;
3736 const char *info;
3737 const char *suffix;
14f9c5c9 3738
aeb5907d
JB
3739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3740 || TYPE_NFIELDS (type) != 1)
3741 return ADA_NOT_RENAMING;
14f9c5c9 3742
aeb5907d
JB
3743 name = type_name_no_tag (type);
3744 if (name == NULL)
3745 return ADA_NOT_RENAMING;
3746
3747 name = strstr (name, "___XR");
3748 if (name == NULL)
3749 return ADA_NOT_RENAMING;
3750 switch (name[5])
3751 {
3752 case '\0':
3753 case '_':
3754 kind = ADA_OBJECT_RENAMING;
3755 break;
3756 case 'E':
3757 kind = ADA_EXCEPTION_RENAMING;
3758 break;
3759 case 'P':
3760 kind = ADA_PACKAGE_RENAMING;
3761 break;
3762 case 'S':
3763 kind = ADA_SUBPROGRAM_RENAMING;
3764 break;
3765 default:
3766 return ADA_NOT_RENAMING;
3767 }
14f9c5c9 3768
aeb5907d
JB
3769 info = TYPE_FIELD_NAME (type, 0);
3770 if (info == NULL)
3771 return ADA_NOT_RENAMING;
3772 if (renamed_entity != NULL)
3773 *renamed_entity = info;
3774 suffix = strstr (info, "___XE");
3775 if (renaming_expr != NULL)
3776 *renaming_expr = suffix + 5;
3777 if (suffix == NULL || suffix == info)
3778 return ADA_NOT_RENAMING;
3779 if (len != NULL)
3780 *len = suffix - info;
3781 return kind;
3782}
52ce6436 3783
14f9c5c9 3784\f
d2e4a39e 3785
4c4b4cd2 3786 /* Evaluation: Function Calls */
14f9c5c9 3787
4c4b4cd2
PH
3788/* Return an lvalue containing the value VAL. This is the identity on
3789 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3790 on the stack, using and updating *SP as the stack pointer, and
3791 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3792
d2e4a39e 3793static struct value *
4c4b4cd2 3794ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3795{
c3e5cd34
PH
3796 if (! VALUE_LVAL (val))
3797 {
df407dfe 3798 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3799
3800 /* The following is taken from the structure-return code in
3801 call_function_by_hand. FIXME: Therefore, some refactoring seems
3802 indicated. */
4d1e7dd1 3803 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3804 {
3805 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3806 reserving sufficient space. */
3807 *sp -= len;
3808 if (gdbarch_frame_align_p (current_gdbarch))
3809 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3810 VALUE_ADDRESS (val) = *sp;
3811 }
3812 else
3813 {
3814 /* Stack grows upward. Align the frame, allocate space, and
3815 then again, re-align the frame. */
3816 if (gdbarch_frame_align_p (current_gdbarch))
3817 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3818 VALUE_ADDRESS (val) = *sp;
3819 *sp += len;
3820 if (gdbarch_frame_align_p (current_gdbarch))
3821 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3822 }
a84a8a0d 3823 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3824
990a07ab 3825 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3826 }
14f9c5c9
AS
3827
3828 return val;
3829}
3830
3831/* Return the value ACTUAL, converted to be an appropriate value for a
3832 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3833 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3834 values not residing in memory, updating it as needed. */
14f9c5c9 3835
a93c0eb6
JB
3836struct value *
3837ada_convert_actual (struct value *actual, struct type *formal_type0,
3838 CORE_ADDR *sp)
14f9c5c9 3839{
df407dfe 3840 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3841 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3842 struct type *formal_target =
3843 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3844 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3845 struct type *actual_target =
3846 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3847 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3848
4c4b4cd2 3849 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3850 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3851 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3852 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3853 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3854 {
a84a8a0d 3855 struct value *result;
14f9c5c9 3856 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3857 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3858 result = desc_data (actual);
14f9c5c9 3859 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3860 {
3861 if (VALUE_LVAL (actual) != lval_memory)
3862 {
3863 struct value *val;
df407dfe 3864 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3865 val = allocate_value (actual_type);
990a07ab 3866 memcpy ((char *) value_contents_raw (val),
0fd88904 3867 (char *) value_contents (actual),
4c4b4cd2
PH
3868 TYPE_LENGTH (actual_type));
3869 actual = ensure_lval (val, sp);
3870 }
a84a8a0d 3871 result = value_addr (actual);
4c4b4cd2 3872 }
a84a8a0d
JB
3873 else
3874 return actual;
3875 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3876 }
3877 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3878 return ada_value_ind (actual);
3879
3880 return actual;
3881}
3882
3883
4c4b4cd2
PH
3884/* Push a descriptor of type TYPE for array value ARR on the stack at
3885 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3886 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3887 to-descriptor type rather than a descriptor type), a struct value *
3888 representing a pointer to this descriptor. */
14f9c5c9 3889
d2e4a39e
AS
3890static struct value *
3891make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3892{
d2e4a39e
AS
3893 struct type *bounds_type = desc_bounds_type (type);
3894 struct type *desc_type = desc_base_type (type);
3895 struct value *descriptor = allocate_value (desc_type);
3896 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3897 int i;
d2e4a39e 3898
df407dfe 3899 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3900 {
0fd88904 3901 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3902 value_as_long (ada_array_bound (arr, i, 0)),
3903 desc_bound_bitpos (bounds_type, i, 0),
3904 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3905 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3906 value_as_long (ada_array_bound (arr, i, 1)),
3907 desc_bound_bitpos (bounds_type, i, 1),
3908 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3909 }
d2e4a39e 3910
4c4b4cd2 3911 bounds = ensure_lval (bounds, sp);
d2e4a39e 3912
0fd88904 3913 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3914 VALUE_ADDRESS (ensure_lval (arr, sp)),
3915 fat_pntr_data_bitpos (desc_type),
3916 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3917
0fd88904 3918 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3919 VALUE_ADDRESS (bounds),
3920 fat_pntr_bounds_bitpos (desc_type),
3921 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3922
4c4b4cd2 3923 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3924
3925 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3926 return value_addr (descriptor);
3927 else
3928 return descriptor;
3929}
14f9c5c9 3930\f
963a6417
PH
3931/* Dummy definitions for an experimental caching module that is not
3932 * used in the public sources. */
96d887e8 3933
96d887e8
PH
3934static int
3935lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3936 struct symbol **sym, struct block **block)
96d887e8
PH
3937{
3938 return 0;
3939}
3940
3941static void
3942cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3943 struct block *block)
96d887e8
PH
3944{
3945}
4c4b4cd2
PH
3946\f
3947 /* Symbol Lookup */
3948
3949/* Return the result of a standard (literal, C-like) lookup of NAME in
3950 given DOMAIN, visible from lexical block BLOCK. */
3951
3952static struct symbol *
3953standard_lookup (const char *name, const struct block *block,
3954 domain_enum domain)
3955{
3956 struct symbol *sym;
4c4b4cd2 3957
2570f2b7 3958 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3959 return sym;
2570f2b7
UW
3960 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3961 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3962 return sym;
3963}
3964
3965
3966/* Non-zero iff there is at least one non-function/non-enumeral symbol
3967 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3968 since they contend in overloading in the same way. */
3969static int
3970is_nonfunction (struct ada_symbol_info syms[], int n)
3971{
3972 int i;
3973
3974 for (i = 0; i < n; i += 1)
3975 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3976 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3977 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3978 return 1;
3979
3980 return 0;
3981}
3982
3983/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3984 struct types. Otherwise, they may not. */
14f9c5c9
AS
3985
3986static int
d2e4a39e 3987equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3988{
d2e4a39e 3989 if (type0 == type1)
14f9c5c9 3990 return 1;
d2e4a39e 3991 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3992 || TYPE_CODE (type0) != TYPE_CODE (type1))
3993 return 0;
d2e4a39e 3994 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3995 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3996 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3997 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3998 return 1;
d2e4a39e 3999
14f9c5c9
AS
4000 return 0;
4001}
4002
4003/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4004 no more defined than that of SYM1. */
14f9c5c9
AS
4005
4006static int
d2e4a39e 4007lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4008{
4009 if (sym0 == sym1)
4010 return 1;
176620f1 4011 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4012 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4013 return 0;
4014
d2e4a39e 4015 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4016 {
4017 case LOC_UNDEF:
4018 return 1;
4019 case LOC_TYPEDEF:
4020 {
4c4b4cd2
PH
4021 struct type *type0 = SYMBOL_TYPE (sym0);
4022 struct type *type1 = SYMBOL_TYPE (sym1);
4023 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4024 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4025 int len0 = strlen (name0);
4026 return
4027 TYPE_CODE (type0) == TYPE_CODE (type1)
4028 && (equiv_types (type0, type1)
4029 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4030 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4031 }
4032 case LOC_CONST:
4033 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4034 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4035 default:
4036 return 0;
14f9c5c9
AS
4037 }
4038}
4039
4c4b4cd2
PH
4040/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4041 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4042
4043static void
76a01679
JB
4044add_defn_to_vec (struct obstack *obstackp,
4045 struct symbol *sym,
2570f2b7 4046 struct block *block)
14f9c5c9
AS
4047{
4048 int i;
4049 size_t tmp;
4c4b4cd2 4050 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4051
529cad9c
PH
4052 /* Do not try to complete stub types, as the debugger is probably
4053 already scanning all symbols matching a certain name at the
4054 time when this function is called. Trying to replace the stub
4055 type by its associated full type will cause us to restart a scan
4056 which may lead to an infinite recursion. Instead, the client
4057 collecting the matching symbols will end up collecting several
4058 matches, with at least one of them complete. It can then filter
4059 out the stub ones if needed. */
4060
4c4b4cd2
PH
4061 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4062 {
4063 if (lesseq_defined_than (sym, prevDefns[i].sym))
4064 return;
4065 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4066 {
4067 prevDefns[i].sym = sym;
4068 prevDefns[i].block = block;
4c4b4cd2 4069 return;
76a01679 4070 }
4c4b4cd2
PH
4071 }
4072
4073 {
4074 struct ada_symbol_info info;
4075
4076 info.sym = sym;
4077 info.block = block;
4c4b4cd2
PH
4078 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4079 }
4080}
4081
4082/* Number of ada_symbol_info structures currently collected in
4083 current vector in *OBSTACKP. */
4084
76a01679
JB
4085static int
4086num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4087{
4088 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4089}
4090
4091/* Vector of ada_symbol_info structures currently collected in current
4092 vector in *OBSTACKP. If FINISH, close off the vector and return
4093 its final address. */
4094
76a01679 4095static struct ada_symbol_info *
4c4b4cd2
PH
4096defns_collected (struct obstack *obstackp, int finish)
4097{
4098 if (finish)
4099 return obstack_finish (obstackp);
4100 else
4101 return (struct ada_symbol_info *) obstack_base (obstackp);
4102}
4103
96d887e8
PH
4104/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4105 Check the global symbols if GLOBAL, the static symbols if not.
4106 Do wild-card match if WILD. */
4c4b4cd2 4107
96d887e8
PH
4108static struct partial_symbol *
4109ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4110 int global, domain_enum namespace, int wild)
4c4b4cd2 4111{
96d887e8
PH
4112 struct partial_symbol **start;
4113 int name_len = strlen (name);
4114 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4115 int i;
4c4b4cd2 4116
96d887e8 4117 if (length == 0)
4c4b4cd2 4118 {
96d887e8 4119 return (NULL);
4c4b4cd2
PH
4120 }
4121
96d887e8
PH
4122 start = (global ?
4123 pst->objfile->global_psymbols.list + pst->globals_offset :
4124 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4125
96d887e8 4126 if (wild)
4c4b4cd2 4127 {
96d887e8
PH
4128 for (i = 0; i < length; i += 1)
4129 {
4130 struct partial_symbol *psym = start[i];
4c4b4cd2 4131
5eeb2539
AR
4132 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4133 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4134 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4135 return psym;
4136 }
4137 return NULL;
4c4b4cd2 4138 }
96d887e8
PH
4139 else
4140 {
4141 if (global)
4142 {
4143 int U;
4144 i = 0;
4145 U = length - 1;
4146 while (U - i > 4)
4147 {
4148 int M = (U + i) >> 1;
4149 struct partial_symbol *psym = start[M];
4150 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4151 i = M + 1;
4152 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4153 U = M - 1;
4154 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4155 i = M + 1;
4156 else
4157 U = M;
4158 }
4159 }
4160 else
4161 i = 0;
4c4b4cd2 4162
96d887e8
PH
4163 while (i < length)
4164 {
4165 struct partial_symbol *psym = start[i];
4c4b4cd2 4166
5eeb2539
AR
4167 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4168 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4169 {
4170 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4171
96d887e8
PH
4172 if (cmp < 0)
4173 {
4174 if (global)
4175 break;
4176 }
4177 else if (cmp == 0
4178 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4179 + name_len))
96d887e8
PH
4180 return psym;
4181 }
4182 i += 1;
4183 }
4c4b4cd2 4184
96d887e8
PH
4185 if (global)
4186 {
4187 int U;
4188 i = 0;
4189 U = length - 1;
4190 while (U - i > 4)
4191 {
4192 int M = (U + i) >> 1;
4193 struct partial_symbol *psym = start[M];
4194 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4195 i = M + 1;
4196 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4197 U = M - 1;
4198 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4199 i = M + 1;
4200 else
4201 U = M;
4202 }
4203 }
4204 else
4205 i = 0;
4c4b4cd2 4206
96d887e8
PH
4207 while (i < length)
4208 {
4209 struct partial_symbol *psym = start[i];
4c4b4cd2 4210
5eeb2539
AR
4211 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4212 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4213 {
4214 int cmp;
4c4b4cd2 4215
96d887e8
PH
4216 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4217 if (cmp == 0)
4218 {
4219 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4220 if (cmp == 0)
4221 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4222 name_len);
96d887e8 4223 }
4c4b4cd2 4224
96d887e8
PH
4225 if (cmp < 0)
4226 {
4227 if (global)
4228 break;
4229 }
4230 else if (cmp == 0
4231 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4232 + name_len + 5))
96d887e8
PH
4233 return psym;
4234 }
4235 i += 1;
4236 }
4237 }
4238 return NULL;
4c4b4cd2
PH
4239}
4240
96d887e8 4241/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4242
96d887e8
PH
4243static struct symtab *
4244symtab_for_sym (struct symbol *sym)
4c4b4cd2 4245{
96d887e8
PH
4246 struct symtab *s;
4247 struct objfile *objfile;
4248 struct block *b;
4249 struct symbol *tmp_sym;
4250 struct dict_iterator iter;
4251 int j;
4c4b4cd2 4252
11309657 4253 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4254 {
4255 switch (SYMBOL_CLASS (sym))
4256 {
4257 case LOC_CONST:
4258 case LOC_STATIC:
4259 case LOC_TYPEDEF:
4260 case LOC_REGISTER:
4261 case LOC_LABEL:
4262 case LOC_BLOCK:
4263 case LOC_CONST_BYTES:
76a01679
JB
4264 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4265 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4266 return s;
4267 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4268 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4269 return s;
96d887e8
PH
4270 break;
4271 default:
4272 break;
4273 }
4274 switch (SYMBOL_CLASS (sym))
4275 {
4276 case LOC_REGISTER:
4277 case LOC_ARG:
4278 case LOC_REF_ARG:
96d887e8
PH
4279 case LOC_REGPARM_ADDR:
4280 case LOC_LOCAL:
4281 case LOC_TYPEDEF:
96d887e8 4282 case LOC_COMPUTED:
76a01679
JB
4283 for (j = FIRST_LOCAL_BLOCK;
4284 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4285 {
4286 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4287 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4288 return s;
4289 }
4290 break;
96d887e8
PH
4291 default:
4292 break;
4293 }
4294 }
4295 return NULL;
4c4b4cd2
PH
4296}
4297
96d887e8
PH
4298/* Return a minimal symbol matching NAME according to Ada decoding
4299 rules. Returns NULL if there is no such minimal symbol. Names
4300 prefixed with "standard__" are handled specially: "standard__" is
4301 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4302
96d887e8
PH
4303struct minimal_symbol *
4304ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4305{
4c4b4cd2 4306 struct objfile *objfile;
96d887e8
PH
4307 struct minimal_symbol *msymbol;
4308 int wild_match;
4c4b4cd2 4309
96d887e8 4310 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4311 {
96d887e8 4312 name += sizeof ("standard__") - 1;
4c4b4cd2 4313 wild_match = 0;
4c4b4cd2
PH
4314 }
4315 else
96d887e8 4316 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4317
96d887e8
PH
4318 ALL_MSYMBOLS (objfile, msymbol)
4319 {
4320 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4321 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4322 return msymbol;
4323 }
4c4b4cd2 4324
96d887e8
PH
4325 return NULL;
4326}
4c4b4cd2 4327
96d887e8
PH
4328/* For all subprograms that statically enclose the subprogram of the
4329 selected frame, add symbols matching identifier NAME in DOMAIN
4330 and their blocks to the list of data in OBSTACKP, as for
4331 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4332 wildcard prefix. */
4c4b4cd2 4333
96d887e8
PH
4334static void
4335add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4336 const char *name, domain_enum namespace,
96d887e8
PH
4337 int wild_match)
4338{
96d887e8 4339}
14f9c5c9 4340
96d887e8
PH
4341/* True if TYPE is definitely an artificial type supplied to a symbol
4342 for which no debugging information was given in the symbol file. */
14f9c5c9 4343
96d887e8
PH
4344static int
4345is_nondebugging_type (struct type *type)
4346{
4347 char *name = ada_type_name (type);
4348 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4349}
4c4b4cd2 4350
96d887e8
PH
4351/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4352 duplicate other symbols in the list (The only case I know of where
4353 this happens is when object files containing stabs-in-ecoff are
4354 linked with files containing ordinary ecoff debugging symbols (or no
4355 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4356 Returns the number of items in the modified list. */
4c4b4cd2 4357
96d887e8
PH
4358static int
4359remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4360{
4361 int i, j;
4c4b4cd2 4362
96d887e8
PH
4363 i = 0;
4364 while (i < nsyms)
4365 {
339c13b6
JB
4366 int remove = 0;
4367
4368 /* If two symbols have the same name and one of them is a stub type,
4369 the get rid of the stub. */
4370
4371 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4372 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4373 {
4374 for (j = 0; j < nsyms; j++)
4375 {
4376 if (j != i
4377 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4378 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4379 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4380 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4381 remove = 1;
4382 }
4383 }
4384
4385 /* Two symbols with the same name, same class and same address
4386 should be identical. */
4387
4388 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4389 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4390 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4391 {
4392 for (j = 0; j < nsyms; j += 1)
4393 {
4394 if (i != j
4395 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4396 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4397 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4398 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4399 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4400 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4401 remove = 1;
4c4b4cd2 4402 }
4c4b4cd2 4403 }
339c13b6
JB
4404
4405 if (remove)
4406 {
4407 for (j = i + 1; j < nsyms; j += 1)
4408 syms[j - 1] = syms[j];
4409 nsyms -= 1;
4410 }
4411
96d887e8 4412 i += 1;
14f9c5c9 4413 }
96d887e8 4414 return nsyms;
14f9c5c9
AS
4415}
4416
96d887e8
PH
4417/* Given a type that corresponds to a renaming entity, use the type name
4418 to extract the scope (package name or function name, fully qualified,
4419 and following the GNAT encoding convention) where this renaming has been
4420 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4421
96d887e8
PH
4422static char *
4423xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4424{
96d887e8
PH
4425 /* The renaming types adhere to the following convention:
4426 <scope>__<rename>___<XR extension>.
4427 So, to extract the scope, we search for the "___XR" extension,
4428 and then backtrack until we find the first "__". */
76a01679 4429
96d887e8
PH
4430 const char *name = type_name_no_tag (renaming_type);
4431 char *suffix = strstr (name, "___XR");
4432 char *last;
4433 int scope_len;
4434 char *scope;
14f9c5c9 4435
96d887e8
PH
4436 /* Now, backtrack a bit until we find the first "__". Start looking
4437 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4438
96d887e8
PH
4439 for (last = suffix - 3; last > name; last--)
4440 if (last[0] == '_' && last[1] == '_')
4441 break;
76a01679 4442
96d887e8 4443 /* Make a copy of scope and return it. */
14f9c5c9 4444
96d887e8
PH
4445 scope_len = last - name;
4446 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4447
96d887e8
PH
4448 strncpy (scope, name, scope_len);
4449 scope[scope_len] = '\0';
4c4b4cd2 4450
96d887e8 4451 return scope;
4c4b4cd2
PH
4452}
4453
96d887e8 4454/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4455
96d887e8
PH
4456static int
4457is_package_name (const char *name)
4c4b4cd2 4458{
96d887e8
PH
4459 /* Here, We take advantage of the fact that no symbols are generated
4460 for packages, while symbols are generated for each function.
4461 So the condition for NAME represent a package becomes equivalent
4462 to NAME not existing in our list of symbols. There is only one
4463 small complication with library-level functions (see below). */
4c4b4cd2 4464
96d887e8 4465 char *fun_name;
76a01679 4466
96d887e8
PH
4467 /* If it is a function that has not been defined at library level,
4468 then we should be able to look it up in the symbols. */
4469 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4470 return 0;
14f9c5c9 4471
96d887e8
PH
4472 /* Library-level function names start with "_ada_". See if function
4473 "_ada_" followed by NAME can be found. */
14f9c5c9 4474
96d887e8 4475 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4476 functions names cannot contain "__" in them. */
96d887e8
PH
4477 if (strstr (name, "__") != NULL)
4478 return 0;
4c4b4cd2 4479
b435e160 4480 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4481
96d887e8
PH
4482 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4483}
14f9c5c9 4484
96d887e8 4485/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4486 not visible from FUNCTION_NAME. */
14f9c5c9 4487
96d887e8 4488static int
aeb5907d 4489old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4490{
aeb5907d
JB
4491 char *scope;
4492
4493 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4494 return 0;
4495
4496 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4497
96d887e8 4498 make_cleanup (xfree, scope);
14f9c5c9 4499
96d887e8
PH
4500 /* If the rename has been defined in a package, then it is visible. */
4501 if (is_package_name (scope))
aeb5907d 4502 return 0;
14f9c5c9 4503
96d887e8
PH
4504 /* Check that the rename is in the current function scope by checking
4505 that its name starts with SCOPE. */
76a01679 4506
96d887e8
PH
4507 /* If the function name starts with "_ada_", it means that it is
4508 a library-level function. Strip this prefix before doing the
4509 comparison, as the encoding for the renaming does not contain
4510 this prefix. */
4511 if (strncmp (function_name, "_ada_", 5) == 0)
4512 function_name += 5;
f26caa11 4513
aeb5907d 4514 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4515}
4516
aeb5907d
JB
4517/* Remove entries from SYMS that corresponds to a renaming entity that
4518 is not visible from the function associated with CURRENT_BLOCK or
4519 that is superfluous due to the presence of more specific renaming
4520 information. Places surviving symbols in the initial entries of
4521 SYMS and returns the number of surviving symbols.
96d887e8
PH
4522
4523 Rationale:
aeb5907d
JB
4524 First, in cases where an object renaming is implemented as a
4525 reference variable, GNAT may produce both the actual reference
4526 variable and the renaming encoding. In this case, we discard the
4527 latter.
4528
4529 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4530 entity. Unfortunately, STABS currently does not support the definition
4531 of types that are local to a given lexical block, so all renamings types
4532 are emitted at library level. As a consequence, if an application
4533 contains two renaming entities using the same name, and a user tries to
4534 print the value of one of these entities, the result of the ada symbol
4535 lookup will also contain the wrong renaming type.
f26caa11 4536
96d887e8
PH
4537 This function partially covers for this limitation by attempting to
4538 remove from the SYMS list renaming symbols that should be visible
4539 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4540 method with the current information available. The implementation
4541 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4542
4543 - When the user tries to print a rename in a function while there
4544 is another rename entity defined in a package: Normally, the
4545 rename in the function has precedence over the rename in the
4546 package, so the latter should be removed from the list. This is
4547 currently not the case.
4548
4549 - This function will incorrectly remove valid renames if
4550 the CURRENT_BLOCK corresponds to a function which symbol name
4551 has been changed by an "Export" pragma. As a consequence,
4552 the user will be unable to print such rename entities. */
4c4b4cd2 4553
14f9c5c9 4554static int
aeb5907d
JB
4555remove_irrelevant_renamings (struct ada_symbol_info *syms,
4556 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4557{
4558 struct symbol *current_function;
4559 char *current_function_name;
4560 int i;
aeb5907d
JB
4561 int is_new_style_renaming;
4562
4563 /* If there is both a renaming foo___XR... encoded as a variable and
4564 a simple variable foo in the same block, discard the latter.
4565 First, zero out such symbols, then compress. */
4566 is_new_style_renaming = 0;
4567 for (i = 0; i < nsyms; i += 1)
4568 {
4569 struct symbol *sym = syms[i].sym;
4570 struct block *block = syms[i].block;
4571 const char *name;
4572 const char *suffix;
4573
4574 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4575 continue;
4576 name = SYMBOL_LINKAGE_NAME (sym);
4577 suffix = strstr (name, "___XR");
4578
4579 if (suffix != NULL)
4580 {
4581 int name_len = suffix - name;
4582 int j;
4583 is_new_style_renaming = 1;
4584 for (j = 0; j < nsyms; j += 1)
4585 if (i != j && syms[j].sym != NULL
4586 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4587 name_len) == 0
4588 && block == syms[j].block)
4589 syms[j].sym = NULL;
4590 }
4591 }
4592 if (is_new_style_renaming)
4593 {
4594 int j, k;
4595
4596 for (j = k = 0; j < nsyms; j += 1)
4597 if (syms[j].sym != NULL)
4598 {
4599 syms[k] = syms[j];
4600 k += 1;
4601 }
4602 return k;
4603 }
4c4b4cd2
PH
4604
4605 /* Extract the function name associated to CURRENT_BLOCK.
4606 Abort if unable to do so. */
76a01679 4607
4c4b4cd2
PH
4608 if (current_block == NULL)
4609 return nsyms;
76a01679 4610
7f0df278 4611 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4612 if (current_function == NULL)
4613 return nsyms;
4614
4615 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4616 if (current_function_name == NULL)
4617 return nsyms;
4618
4619 /* Check each of the symbols, and remove it from the list if it is
4620 a type corresponding to a renaming that is out of the scope of
4621 the current block. */
4622
4623 i = 0;
4624 while (i < nsyms)
4625 {
aeb5907d
JB
4626 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4627 == ADA_OBJECT_RENAMING
4628 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4629 {
4630 int j;
aeb5907d 4631 for (j = i + 1; j < nsyms; j += 1)
76a01679 4632 syms[j - 1] = syms[j];
4c4b4cd2
PH
4633 nsyms -= 1;
4634 }
4635 else
4636 i += 1;
4637 }
4638
4639 return nsyms;
4640}
4641
339c13b6
JB
4642/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4643 whose name and domain match NAME and DOMAIN respectively.
4644 If no match was found, then extend the search to "enclosing"
4645 routines (in other words, if we're inside a nested function,
4646 search the symbols defined inside the enclosing functions).
4647
4648 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4649
4650static void
4651ada_add_local_symbols (struct obstack *obstackp, const char *name,
4652 struct block *block, domain_enum domain,
4653 int wild_match)
4654{
4655 int block_depth = 0;
4656
4657 while (block != NULL)
4658 {
4659 block_depth += 1;
4660 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4661
4662 /* If we found a non-function match, assume that's the one. */
4663 if (is_nonfunction (defns_collected (obstackp, 0),
4664 num_defns_collected (obstackp)))
4665 return;
4666
4667 block = BLOCK_SUPERBLOCK (block);
4668 }
4669
4670 /* If no luck so far, try to find NAME as a local symbol in some lexically
4671 enclosing subprogram. */
4672 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4673 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4674}
4675
4676/* Add to OBSTACKP all non-local symbols whose name and domain match
4677 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4678 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4679
4680static void
4681ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4682 domain_enum domain, int global,
4683 int wild_match)
4684{
4685 struct objfile *objfile;
4686 struct partial_symtab *ps;
4687
4688 ALL_PSYMTABS (objfile, ps)
4689 {
4690 QUIT;
4691 if (ps->readin
4692 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4693 {
4694 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4695 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4696
4697 if (s == NULL || !s->primary)
4698 continue;
4699 ada_add_block_symbols (obstackp,
4700 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4701 name, domain, objfile, wild_match);
4702 }
4703 }
4704}
4705
4c4b4cd2
PH
4706/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4707 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4708 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4709 indicating the symbols found and the blocks and symbol tables (if
4710 any) in which they were found. This vector are transient---good only to
4711 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4712 symbol match within the nest of blocks whose innermost member is BLOCK0,
4713 is the one match returned (no other matches in that or
4714 enclosing blocks is returned). If there are any matches in or
4715 surrounding BLOCK0, then these alone are returned. Otherwise, the
4716 search extends to global and file-scope (static) symbol tables.
4717 Names prefixed with "standard__" are handled specially: "standard__"
4718 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4719
4720int
4c4b4cd2 4721ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4722 domain_enum namespace,
4723 struct ada_symbol_info **results)
14f9c5c9
AS
4724{
4725 struct symbol *sym;
14f9c5c9 4726 struct block *block;
4c4b4cd2 4727 const char *name;
4c4b4cd2 4728 int wild_match;
14f9c5c9 4729 int cacheIfUnique;
4c4b4cd2 4730 int ndefns;
14f9c5c9 4731
4c4b4cd2
PH
4732 obstack_free (&symbol_list_obstack, NULL);
4733 obstack_init (&symbol_list_obstack);
14f9c5c9 4734
14f9c5c9
AS
4735 cacheIfUnique = 0;
4736
4737 /* Search specified block and its superiors. */
4738
4c4b4cd2
PH
4739 wild_match = (strstr (name0, "__") == NULL);
4740 name = name0;
76a01679
JB
4741 block = (struct block *) block0; /* FIXME: No cast ought to be
4742 needed, but adding const will
4743 have a cascade effect. */
339c13b6
JB
4744
4745 /* Special case: If the user specifies a symbol name inside package
4746 Standard, do a non-wild matching of the symbol name without
4747 the "standard__" prefix. This was primarily introduced in order
4748 to allow the user to specifically access the standard exceptions
4749 using, for instance, Standard.Constraint_Error when Constraint_Error
4750 is ambiguous (due to the user defining its own Constraint_Error
4751 entity inside its program). */
4c4b4cd2
PH
4752 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4753 {
4754 wild_match = 0;
4755 block = NULL;
4756 name = name0 + sizeof ("standard__") - 1;
4757 }
4758
339c13b6 4759 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4760
339c13b6
JB
4761 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4762 wild_match);
4c4b4cd2 4763 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4764 goto done;
d2e4a39e 4765
339c13b6
JB
4766 /* No non-global symbols found. Check our cache to see if we have
4767 already performed this search before. If we have, then return
4768 the same result. */
4769
14f9c5c9 4770 cacheIfUnique = 1;
2570f2b7 4771 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4772 {
4773 if (sym != NULL)
2570f2b7 4774 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4775 goto done;
4776 }
14f9c5c9 4777
339c13b6
JB
4778 /* Search symbols from all global blocks. */
4779
4780 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4781 wild_match);
d2e4a39e 4782
4c4b4cd2 4783 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4784 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4785
4c4b4cd2 4786 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4787 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4788 wild_match);
14f9c5c9 4789
4c4b4cd2
PH
4790done:
4791 ndefns = num_defns_collected (&symbol_list_obstack);
4792 *results = defns_collected (&symbol_list_obstack, 1);
4793
4794 ndefns = remove_extra_symbols (*results, ndefns);
4795
d2e4a39e 4796 if (ndefns == 0)
2570f2b7 4797 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4798
4c4b4cd2 4799 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4800 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4801
aeb5907d 4802 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4803
14f9c5c9
AS
4804 return ndefns;
4805}
4806
d2e4a39e 4807struct symbol *
aeb5907d 4808ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4809 domain_enum namespace, struct block **block_found)
14f9c5c9 4810{
4c4b4cd2 4811 struct ada_symbol_info *candidates;
14f9c5c9
AS
4812 int n_candidates;
4813
aeb5907d 4814 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4815
4816 if (n_candidates == 0)
4817 return NULL;
4c4b4cd2 4818
aeb5907d
JB
4819 if (block_found != NULL)
4820 *block_found = candidates[0].block;
4c4b4cd2 4821
21b556f4 4822 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4823}
4824
4825/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4826 scope and in global scopes, or NULL if none. NAME is folded and
4827 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4828 choosing the first symbol if there are multiple choices.
4829 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4830 table in which the symbol was found (in both cases, these
4831 assignments occur only if the pointers are non-null). */
4832struct symbol *
4833ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4834 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4835{
4836 if (is_a_field_of_this != NULL)
4837 *is_a_field_of_this = 0;
4838
4839 return
4840 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4841 block0, namespace, NULL);
4c4b4cd2 4842}
14f9c5c9 4843
4c4b4cd2
PH
4844static struct symbol *
4845ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4846 const char *linkage_name,
4847 const struct block *block,
21b556f4 4848 const domain_enum domain)
4c4b4cd2
PH
4849{
4850 if (linkage_name == NULL)
4851 linkage_name = name;
76a01679 4852 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4853 NULL);
14f9c5c9
AS
4854}
4855
4856
4c4b4cd2
PH
4857/* True iff STR is a possible encoded suffix of a normal Ada name
4858 that is to be ignored for matching purposes. Suffixes of parallel
4859 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4860 are given by any of the regular expressions:
4c4b4cd2 4861
babe1480
JB
4862 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4863 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4864 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4865 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4866
4867 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4868 match is performed. This sequence is used to differentiate homonyms,
4869 is an optional part of a valid name suffix. */
4c4b4cd2 4870
14f9c5c9 4871static int
d2e4a39e 4872is_name_suffix (const char *str)
14f9c5c9
AS
4873{
4874 int k;
4c4b4cd2
PH
4875 const char *matching;
4876 const int len = strlen (str);
4877
babe1480
JB
4878 /* Skip optional leading __[0-9]+. */
4879
4c4b4cd2
PH
4880 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4881 {
babe1480
JB
4882 str += 3;
4883 while (isdigit (str[0]))
4884 str += 1;
4c4b4cd2 4885 }
babe1480
JB
4886
4887 /* [.$][0-9]+ */
4c4b4cd2 4888
babe1480 4889 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4890 {
babe1480 4891 matching = str + 1;
4c4b4cd2
PH
4892 while (isdigit (matching[0]))
4893 matching += 1;
4894 if (matching[0] == '\0')
4895 return 1;
4896 }
4897
4898 /* ___[0-9]+ */
babe1480 4899
4c4b4cd2
PH
4900 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4901 {
4902 matching = str + 3;
4903 while (isdigit (matching[0]))
4904 matching += 1;
4905 if (matching[0] == '\0')
4906 return 1;
4907 }
4908
529cad9c
PH
4909#if 0
4910 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4911 with a N at the end. Unfortunately, the compiler uses the same
4912 convention for other internal types it creates. So treating
4913 all entity names that end with an "N" as a name suffix causes
4914 some regressions. For instance, consider the case of an enumerated
4915 type. To support the 'Image attribute, it creates an array whose
4916 name ends with N.
4917 Having a single character like this as a suffix carrying some
4918 information is a bit risky. Perhaps we should change the encoding
4919 to be something like "_N" instead. In the meantime, do not do
4920 the following check. */
4921 /* Protected Object Subprograms */
4922 if (len == 1 && str [0] == 'N')
4923 return 1;
4924#endif
4925
4926 /* _E[0-9]+[bs]$ */
4927 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4928 {
4929 matching = str + 3;
4930 while (isdigit (matching[0]))
4931 matching += 1;
4932 if ((matching[0] == 'b' || matching[0] == 's')
4933 && matching [1] == '\0')
4934 return 1;
4935 }
4936
4c4b4cd2
PH
4937 /* ??? We should not modify STR directly, as we are doing below. This
4938 is fine in this case, but may become problematic later if we find
4939 that this alternative did not work, and want to try matching
4940 another one from the begining of STR. Since we modified it, we
4941 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4942 if (str[0] == 'X')
4943 {
4944 str += 1;
d2e4a39e 4945 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4946 {
4947 if (str[0] != 'n' && str[0] != 'b')
4948 return 0;
4949 str += 1;
4950 }
14f9c5c9 4951 }
babe1480 4952
14f9c5c9
AS
4953 if (str[0] == '\000')
4954 return 1;
babe1480 4955
d2e4a39e 4956 if (str[0] == '_')
14f9c5c9
AS
4957 {
4958 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4959 return 0;
d2e4a39e 4960 if (str[2] == '_')
4c4b4cd2 4961 {
61ee279c
PH
4962 if (strcmp (str + 3, "JM") == 0)
4963 return 1;
4964 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4965 the LJM suffix in favor of the JM one. But we will
4966 still accept LJM as a valid suffix for a reasonable
4967 amount of time, just to allow ourselves to debug programs
4968 compiled using an older version of GNAT. */
4c4b4cd2
PH
4969 if (strcmp (str + 3, "LJM") == 0)
4970 return 1;
4971 if (str[3] != 'X')
4972 return 0;
1265e4aa
JB
4973 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4974 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4975 return 1;
4976 if (str[4] == 'R' && str[5] != 'T')
4977 return 1;
4978 return 0;
4979 }
4980 if (!isdigit (str[2]))
4981 return 0;
4982 for (k = 3; str[k] != '\0'; k += 1)
4983 if (!isdigit (str[k]) && str[k] != '_')
4984 return 0;
14f9c5c9
AS
4985 return 1;
4986 }
4c4b4cd2 4987 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4988 {
4c4b4cd2
PH
4989 for (k = 2; str[k] != '\0'; k += 1)
4990 if (!isdigit (str[k]) && str[k] != '_')
4991 return 0;
14f9c5c9
AS
4992 return 1;
4993 }
4994 return 0;
4995}
d2e4a39e 4996
aeb5907d
JB
4997/* Return non-zero if the string starting at NAME and ending before
4998 NAME_END contains no capital letters. */
529cad9c
PH
4999
5000static int
5001is_valid_name_for_wild_match (const char *name0)
5002{
5003 const char *decoded_name = ada_decode (name0);
5004 int i;
5005
5823c3ef
JB
5006 /* If the decoded name starts with an angle bracket, it means that
5007 NAME0 does not follow the GNAT encoding format. It should then
5008 not be allowed as a possible wild match. */
5009 if (decoded_name[0] == '<')
5010 return 0;
5011
529cad9c
PH
5012 for (i=0; decoded_name[i] != '\0'; i++)
5013 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5014 return 0;
5015
5016 return 1;
5017}
5018
4c4b4cd2
PH
5019/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5020 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5021 informational suffixes of NAME (i.e., for which is_name_suffix is
5022 true). */
5023
14f9c5c9 5024static int
4c4b4cd2 5025wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 5026{
5823c3ef
JB
5027 char* match;
5028 const char* start;
5029 start = name0;
5030 while (1)
14f9c5c9 5031 {
5823c3ef
JB
5032 match = strstr (start, patn0);
5033 if (match == NULL)
5034 return 0;
5035 if ((match == name0
5036 || match[-1] == '.'
5037 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5038 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5039 && is_name_suffix (match + patn_len))
5040 return (match == name0 || is_valid_name_for_wild_match (name0));
5041 start = match + 1;
96d887e8 5042 }
96d887e8
PH
5043}
5044
5045
5046/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5047 vector *defn_symbols, updating the list of symbols in OBSTACKP
5048 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5049 OBJFILE is the section containing BLOCK.
5050 SYMTAB is recorded with each symbol added. */
5051
5052static void
5053ada_add_block_symbols (struct obstack *obstackp,
76a01679 5054 struct block *block, const char *name,
96d887e8 5055 domain_enum domain, struct objfile *objfile,
2570f2b7 5056 int wild)
96d887e8
PH
5057{
5058 struct dict_iterator iter;
5059 int name_len = strlen (name);
5060 /* A matching argument symbol, if any. */
5061 struct symbol *arg_sym;
5062 /* Set true when we find a matching non-argument symbol. */
5063 int found_sym;
5064 struct symbol *sym;
5065
5066 arg_sym = NULL;
5067 found_sym = 0;
5068 if (wild)
5069 {
5070 struct symbol *sym;
5071 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5072 {
5eeb2539
AR
5073 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5074 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5076 {
2a2d4dc3
AS
5077 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5078 continue;
5079 else if (SYMBOL_IS_ARGUMENT (sym))
5080 arg_sym = sym;
5081 else
5082 {
76a01679
JB
5083 found_sym = 1;
5084 add_defn_to_vec (obstackp,
5085 fixup_symbol_section (sym, objfile),
2570f2b7 5086 block);
76a01679
JB
5087 }
5088 }
5089 }
96d887e8
PH
5090 }
5091 else
5092 {
5093 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5094 {
5eeb2539
AR
5095 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5096 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5097 {
5098 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5101 {
2a2d4dc3
AS
5102 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5103 {
5104 if (SYMBOL_IS_ARGUMENT (sym))
5105 arg_sym = sym;
5106 else
5107 {
5108 found_sym = 1;
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (sym, objfile),
5111 block);
5112 }
5113 }
76a01679
JB
5114 }
5115 }
5116 }
96d887e8
PH
5117 }
5118
5119 if (!found_sym && arg_sym != NULL)
5120 {
76a01679
JB
5121 add_defn_to_vec (obstackp,
5122 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5123 block);
96d887e8
PH
5124 }
5125
5126 if (!wild)
5127 {
5128 arg_sym = NULL;
5129 found_sym = 0;
5130
5131 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5132 {
5eeb2539
AR
5133 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5134 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5135 {
5136 int cmp;
5137
5138 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5139 if (cmp == 0)
5140 {
5141 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5142 if (cmp == 0)
5143 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5144 name_len);
5145 }
5146
5147 if (cmp == 0
5148 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5149 {
2a2d4dc3
AS
5150 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5151 {
5152 if (SYMBOL_IS_ARGUMENT (sym))
5153 arg_sym = sym;
5154 else
5155 {
5156 found_sym = 1;
5157 add_defn_to_vec (obstackp,
5158 fixup_symbol_section (sym, objfile),
5159 block);
5160 }
5161 }
76a01679
JB
5162 }
5163 }
76a01679 5164 }
96d887e8
PH
5165
5166 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5167 They aren't parameters, right? */
5168 if (!found_sym && arg_sym != NULL)
5169 {
5170 add_defn_to_vec (obstackp,
76a01679 5171 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5172 block);
96d887e8
PH
5173 }
5174 }
5175}
5176\f
41d27058
JB
5177
5178 /* Symbol Completion */
5179
5180/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5181 name in a form that's appropriate for the completion. The result
5182 does not need to be deallocated, but is only good until the next call.
5183
5184 TEXT_LEN is equal to the length of TEXT.
5185 Perform a wild match if WILD_MATCH is set.
5186 ENCODED should be set if TEXT represents the start of a symbol name
5187 in its encoded form. */
5188
5189static const char *
5190symbol_completion_match (const char *sym_name,
5191 const char *text, int text_len,
5192 int wild_match, int encoded)
5193{
5194 char *result;
5195 const int verbatim_match = (text[0] == '<');
5196 int match = 0;
5197
5198 if (verbatim_match)
5199 {
5200 /* Strip the leading angle bracket. */
5201 text = text + 1;
5202 text_len--;
5203 }
5204
5205 /* First, test against the fully qualified name of the symbol. */
5206
5207 if (strncmp (sym_name, text, text_len) == 0)
5208 match = 1;
5209
5210 if (match && !encoded)
5211 {
5212 /* One needed check before declaring a positive match is to verify
5213 that iff we are doing a verbatim match, the decoded version
5214 of the symbol name starts with '<'. Otherwise, this symbol name
5215 is not a suitable completion. */
5216 const char *sym_name_copy = sym_name;
5217 int has_angle_bracket;
5218
5219 sym_name = ada_decode (sym_name);
5220 has_angle_bracket = (sym_name[0] == '<');
5221 match = (has_angle_bracket == verbatim_match);
5222 sym_name = sym_name_copy;
5223 }
5224
5225 if (match && !verbatim_match)
5226 {
5227 /* When doing non-verbatim match, another check that needs to
5228 be done is to verify that the potentially matching symbol name
5229 does not include capital letters, because the ada-mode would
5230 not be able to understand these symbol names without the
5231 angle bracket notation. */
5232 const char *tmp;
5233
5234 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5235 if (*tmp != '\0')
5236 match = 0;
5237 }
5238
5239 /* Second: Try wild matching... */
5240
5241 if (!match && wild_match)
5242 {
5243 /* Since we are doing wild matching, this means that TEXT
5244 may represent an unqualified symbol name. We therefore must
5245 also compare TEXT against the unqualified name of the symbol. */
5246 sym_name = ada_unqualified_name (ada_decode (sym_name));
5247
5248 if (strncmp (sym_name, text, text_len) == 0)
5249 match = 1;
5250 }
5251
5252 /* Finally: If we found a mach, prepare the result to return. */
5253
5254 if (!match)
5255 return NULL;
5256
5257 if (verbatim_match)
5258 sym_name = add_angle_brackets (sym_name);
5259
5260 if (!encoded)
5261 sym_name = ada_decode (sym_name);
5262
5263 return sym_name;
5264}
5265
2ba95b9b
JB
5266typedef char *char_ptr;
5267DEF_VEC_P (char_ptr);
5268
41d27058
JB
5269/* A companion function to ada_make_symbol_completion_list().
5270 Check if SYM_NAME represents a symbol which name would be suitable
5271 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5272 it is appended at the end of the given string vector SV.
5273
5274 ORIG_TEXT is the string original string from the user command
5275 that needs to be completed. WORD is the entire command on which
5276 completion should be performed. These two parameters are used to
5277 determine which part of the symbol name should be added to the
5278 completion vector.
5279 if WILD_MATCH is set, then wild matching is performed.
5280 ENCODED should be set if TEXT represents a symbol name in its
5281 encoded formed (in which case the completion should also be
5282 encoded). */
5283
5284static void
d6565258 5285symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5286 const char *sym_name,
5287 const char *text, int text_len,
5288 const char *orig_text, const char *word,
5289 int wild_match, int encoded)
5290{
5291 const char *match = symbol_completion_match (sym_name, text, text_len,
5292 wild_match, encoded);
5293 char *completion;
5294
5295 if (match == NULL)
5296 return;
5297
5298 /* We found a match, so add the appropriate completion to the given
5299 string vector. */
5300
5301 if (word == orig_text)
5302 {
5303 completion = xmalloc (strlen (match) + 5);
5304 strcpy (completion, match);
5305 }
5306 else if (word > orig_text)
5307 {
5308 /* Return some portion of sym_name. */
5309 completion = xmalloc (strlen (match) + 5);
5310 strcpy (completion, match + (word - orig_text));
5311 }
5312 else
5313 {
5314 /* Return some of ORIG_TEXT plus sym_name. */
5315 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5316 strncpy (completion, word, orig_text - word);
5317 completion[orig_text - word] = '\0';
5318 strcat (completion, match);
5319 }
5320
d6565258 5321 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5322}
5323
5324/* Return a list of possible symbol names completing TEXT0. The list
5325 is NULL terminated. WORD is the entire command on which completion
5326 is made. */
5327
5328static char **
5329ada_make_symbol_completion_list (char *text0, char *word)
5330{
5331 char *text;
5332 int text_len;
5333 int wild_match;
5334 int encoded;
2ba95b9b 5335 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5336 struct symbol *sym;
5337 struct symtab *s;
5338 struct partial_symtab *ps;
5339 struct minimal_symbol *msymbol;
5340 struct objfile *objfile;
5341 struct block *b, *surrounding_static_block = 0;
5342 int i;
5343 struct dict_iterator iter;
5344
5345 if (text0[0] == '<')
5346 {
5347 text = xstrdup (text0);
5348 make_cleanup (xfree, text);
5349 text_len = strlen (text);
5350 wild_match = 0;
5351 encoded = 1;
5352 }
5353 else
5354 {
5355 text = xstrdup (ada_encode (text0));
5356 make_cleanup (xfree, text);
5357 text_len = strlen (text);
5358 for (i = 0; i < text_len; i++)
5359 text[i] = tolower (text[i]);
5360
5361 encoded = (strstr (text0, "__") != NULL);
5362 /* If the name contains a ".", then the user is entering a fully
5363 qualified entity name, and the match must not be done in wild
5364 mode. Similarly, if the user wants to complete what looks like
5365 an encoded name, the match must not be done in wild mode. */
5366 wild_match = (strchr (text0, '.') == NULL && !encoded);
5367 }
5368
5369 /* First, look at the partial symtab symbols. */
5370 ALL_PSYMTABS (objfile, ps)
5371 {
5372 struct partial_symbol **psym;
5373
5374 /* If the psymtab's been read in we'll get it when we search
5375 through the blockvector. */
5376 if (ps->readin)
5377 continue;
5378
5379 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5380 psym < (objfile->global_psymbols.list + ps->globals_offset
5381 + ps->n_global_syms); psym++)
5382 {
5383 QUIT;
d6565258 5384 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5385 text, text_len, text0, word,
5386 wild_match, encoded);
5387 }
5388
5389 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5390 psym < (objfile->static_psymbols.list + ps->statics_offset
5391 + ps->n_static_syms); psym++)
5392 {
5393 QUIT;
d6565258 5394 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5395 text, text_len, text0, word,
5396 wild_match, encoded);
5397 }
5398 }
5399
5400 /* At this point scan through the misc symbol vectors and add each
5401 symbol you find to the list. Eventually we want to ignore
5402 anything that isn't a text symbol (everything else will be
5403 handled by the psymtab code above). */
5404
5405 ALL_MSYMBOLS (objfile, msymbol)
5406 {
5407 QUIT;
d6565258 5408 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5409 text, text_len, text0, word, wild_match, encoded);
5410 }
5411
5412 /* Search upwards from currently selected frame (so that we can
5413 complete on local vars. */
5414
5415 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5416 {
5417 if (!BLOCK_SUPERBLOCK (b))
5418 surrounding_static_block = b; /* For elmin of dups */
5419
5420 ALL_BLOCK_SYMBOLS (b, iter, sym)
5421 {
d6565258 5422 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5423 text, text_len, text0, word,
5424 wild_match, encoded);
5425 }
5426 }
5427
5428 /* Go through the symtabs and check the externs and statics for
5429 symbols which match. */
5430
5431 ALL_SYMTABS (objfile, s)
5432 {
5433 QUIT;
5434 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5435 ALL_BLOCK_SYMBOLS (b, iter, sym)
5436 {
d6565258 5437 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5438 text, text_len, text0, word,
5439 wild_match, encoded);
5440 }
5441 }
5442
5443 ALL_SYMTABS (objfile, s)
5444 {
5445 QUIT;
5446 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5447 /* Don't do this block twice. */
5448 if (b == surrounding_static_block)
5449 continue;
5450 ALL_BLOCK_SYMBOLS (b, iter, sym)
5451 {
d6565258 5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5453 text, text_len, text0, word,
5454 wild_match, encoded);
5455 }
5456 }
5457
5458 /* Append the closing NULL entry. */
2ba95b9b 5459 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5460
2ba95b9b
JB
5461 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5462 return the copy. It's unfortunate that we have to make a copy
5463 of an array that we're about to destroy, but there is nothing much
5464 we can do about it. Fortunately, it's typically not a very large
5465 array. */
5466 {
5467 const size_t completions_size =
5468 VEC_length (char_ptr, completions) * sizeof (char *);
5469 char **result = malloc (completions_size);
5470
5471 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5472
5473 VEC_free (char_ptr, completions);
5474 return result;
5475 }
41d27058
JB
5476}
5477
963a6417 5478 /* Field Access */
96d887e8 5479
73fb9985
JB
5480/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5481 for tagged types. */
5482
5483static int
5484ada_is_dispatch_table_ptr_type (struct type *type)
5485{
5486 char *name;
5487
5488 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5489 return 0;
5490
5491 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5492 if (name == NULL)
5493 return 0;
5494
5495 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5496}
5497
963a6417
PH
5498/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5499 to be invisible to users. */
96d887e8 5500
963a6417
PH
5501int
5502ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5503{
963a6417
PH
5504 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5505 return 1;
73fb9985
JB
5506
5507 /* Check the name of that field. */
5508 {
5509 const char *name = TYPE_FIELD_NAME (type, field_num);
5510
5511 /* Anonymous field names should not be printed.
5512 brobecker/2007-02-20: I don't think this can actually happen
5513 but we don't want to print the value of annonymous fields anyway. */
5514 if (name == NULL)
5515 return 1;
5516
5517 /* A field named "_parent" is internally generated by GNAT for
5518 tagged types, and should not be printed either. */
5519 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5520 return 1;
5521 }
5522
5523 /* If this is the dispatch table of a tagged type, then ignore. */
5524 if (ada_is_tagged_type (type, 1)
5525 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5526 return 1;
5527
5528 /* Not a special field, so it should not be ignored. */
5529 return 0;
963a6417 5530}
96d887e8 5531
963a6417
PH
5532/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5533 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5534
963a6417
PH
5535int
5536ada_is_tagged_type (struct type *type, int refok)
5537{
5538 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5539}
96d887e8 5540
963a6417 5541/* True iff TYPE represents the type of X'Tag */
96d887e8 5542
963a6417
PH
5543int
5544ada_is_tag_type (struct type *type)
5545{
5546 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5547 return 0;
5548 else
96d887e8 5549 {
963a6417
PH
5550 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5551 return (name != NULL
5552 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5553 }
96d887e8
PH
5554}
5555
963a6417 5556/* The type of the tag on VAL. */
76a01679 5557
963a6417
PH
5558struct type *
5559ada_tag_type (struct value *val)
96d887e8 5560{
df407dfe 5561 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5562}
96d887e8 5563
963a6417 5564/* The value of the tag on VAL. */
96d887e8 5565
963a6417
PH
5566struct value *
5567ada_value_tag (struct value *val)
5568{
03ee6b2e 5569 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5570}
5571
963a6417
PH
5572/* The value of the tag on the object of type TYPE whose contents are
5573 saved at VALADDR, if it is non-null, or is at memory address
5574 ADDRESS. */
96d887e8 5575
963a6417 5576static struct value *
10a2c479 5577value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5578 const gdb_byte *valaddr,
963a6417 5579 CORE_ADDR address)
96d887e8 5580{
963a6417
PH
5581 int tag_byte_offset, dummy1, dummy2;
5582 struct type *tag_type;
5583 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5584 NULL, NULL, NULL))
96d887e8 5585 {
fc1a4b47 5586 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5587 ? NULL
5588 : valaddr + tag_byte_offset);
963a6417 5589 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5590
963a6417 5591 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5592 }
963a6417
PH
5593 return NULL;
5594}
96d887e8 5595
963a6417
PH
5596static struct type *
5597type_from_tag (struct value *tag)
5598{
5599 const char *type_name = ada_tag_name (tag);
5600 if (type_name != NULL)
5601 return ada_find_any_type (ada_encode (type_name));
5602 return NULL;
5603}
96d887e8 5604
963a6417
PH
5605struct tag_args
5606{
5607 struct value *tag;
5608 char *name;
5609};
4c4b4cd2 5610
529cad9c
PH
5611
5612static int ada_tag_name_1 (void *);
5613static int ada_tag_name_2 (struct tag_args *);
5614
4c4b4cd2
PH
5615/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5616 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5617 The value stored in ARGS->name is valid until the next call to
5618 ada_tag_name_1. */
5619
5620static int
5621ada_tag_name_1 (void *args0)
5622{
5623 struct tag_args *args = (struct tag_args *) args0;
5624 static char name[1024];
76a01679 5625 char *p;
4c4b4cd2
PH
5626 struct value *val;
5627 args->name = NULL;
03ee6b2e 5628 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5629 if (val == NULL)
5630 return ada_tag_name_2 (args);
03ee6b2e 5631 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5632 if (val == NULL)
5633 return 0;
5634 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5635 for (p = name; *p != '\0'; p += 1)
5636 if (isalpha (*p))
5637 *p = tolower (*p);
5638 args->name = name;
5639 return 0;
5640}
5641
5642/* Utility function for ada_tag_name_1 that tries the second
5643 representation for the dispatch table (in which there is no
5644 explicit 'tsd' field in the referent of the tag pointer, and instead
5645 the tsd pointer is stored just before the dispatch table. */
5646
5647static int
5648ada_tag_name_2 (struct tag_args *args)
5649{
5650 struct type *info_type;
5651 static char name[1024];
5652 char *p;
5653 struct value *val, *valp;
5654
5655 args->name = NULL;
5656 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5657 if (info_type == NULL)
5658 return 0;
5659 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5660 valp = value_cast (info_type, args->tag);
5661 if (valp == NULL)
5662 return 0;
89eef114
UW
5663 val = value_ind (value_ptradd (valp,
5664 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5665 if (val == NULL)
5666 return 0;
03ee6b2e 5667 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5668 if (val == NULL)
5669 return 0;
5670 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5671 for (p = name; *p != '\0'; p += 1)
5672 if (isalpha (*p))
5673 *p = tolower (*p);
5674 args->name = name;
5675 return 0;
5676}
5677
5678/* The type name of the dynamic type denoted by the 'tag value TAG, as
5679 * a C string. */
5680
5681const char *
5682ada_tag_name (struct value *tag)
5683{
5684 struct tag_args args;
df407dfe 5685 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5686 return NULL;
76a01679 5687 args.tag = tag;
4c4b4cd2
PH
5688 args.name = NULL;
5689 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5690 return args.name;
5691}
5692
5693/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5694
d2e4a39e 5695struct type *
ebf56fd3 5696ada_parent_type (struct type *type)
14f9c5c9
AS
5697{
5698 int i;
5699
61ee279c 5700 type = ada_check_typedef (type);
14f9c5c9
AS
5701
5702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5703 return NULL;
5704
5705 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5706 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5707 {
5708 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5709
5710 /* If the _parent field is a pointer, then dereference it. */
5711 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5712 parent_type = TYPE_TARGET_TYPE (parent_type);
5713 /* If there is a parallel XVS type, get the actual base type. */
5714 parent_type = ada_get_base_type (parent_type);
5715
5716 return ada_check_typedef (parent_type);
5717 }
14f9c5c9
AS
5718
5719 return NULL;
5720}
5721
4c4b4cd2
PH
5722/* True iff field number FIELD_NUM of structure type TYPE contains the
5723 parent-type (inherited) fields of a derived type. Assumes TYPE is
5724 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5725
5726int
ebf56fd3 5727ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5728{
61ee279c 5729 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5730 return (name != NULL
5731 && (strncmp (name, "PARENT", 6) == 0
5732 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5733}
5734
4c4b4cd2 5735/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5736 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5737 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5738 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5739 structures. */
14f9c5c9
AS
5740
5741int
ebf56fd3 5742ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5743{
d2e4a39e
AS
5744 const char *name = TYPE_FIELD_NAME (type, field_num);
5745 return (name != NULL
4c4b4cd2
PH
5746 && (strncmp (name, "PARENT", 6) == 0
5747 || strcmp (name, "REP") == 0
5748 || strncmp (name, "_parent", 7) == 0
5749 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5750}
5751
4c4b4cd2
PH
5752/* True iff field number FIELD_NUM of structure or union type TYPE
5753 is a variant wrapper. Assumes TYPE is a structure type with at least
5754 FIELD_NUM+1 fields. */
14f9c5c9
AS
5755
5756int
ebf56fd3 5757ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5758{
d2e4a39e 5759 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5760 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5761 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5762 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5763 == TYPE_CODE_UNION)));
14f9c5c9
AS
5764}
5765
5766/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5767 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5768 returns the type of the controlling discriminant for the variant. */
5769
d2e4a39e 5770struct type *
ebf56fd3 5771ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5772{
d2e4a39e 5773 char *name = ada_variant_discrim_name (var_type);
76a01679 5774 struct type *type =
4c4b4cd2 5775 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5776 if (type == NULL)
6d84d3d8 5777 return builtin_type_int32;
14f9c5c9
AS
5778 else
5779 return type;
5780}
5781
4c4b4cd2 5782/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5784 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5785
5786int
ebf56fd3 5787ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5788{
d2e4a39e 5789 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5790 return (name != NULL && name[0] == 'O');
5791}
5792
5793/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5794 returns the name of the discriminant controlling the variant.
5795 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5796
d2e4a39e 5797char *
ebf56fd3 5798ada_variant_discrim_name (struct type *type0)
14f9c5c9 5799{
d2e4a39e 5800 static char *result = NULL;
14f9c5c9 5801 static size_t result_len = 0;
d2e4a39e
AS
5802 struct type *type;
5803 const char *name;
5804 const char *discrim_end;
5805 const char *discrim_start;
14f9c5c9
AS
5806
5807 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5808 type = TYPE_TARGET_TYPE (type0);
5809 else
5810 type = type0;
5811
5812 name = ada_type_name (type);
5813
5814 if (name == NULL || name[0] == '\000')
5815 return "";
5816
5817 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5818 discrim_end -= 1)
5819 {
4c4b4cd2
PH
5820 if (strncmp (discrim_end, "___XVN", 6) == 0)
5821 break;
14f9c5c9
AS
5822 }
5823 if (discrim_end == name)
5824 return "";
5825
d2e4a39e 5826 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5827 discrim_start -= 1)
5828 {
d2e4a39e 5829 if (discrim_start == name + 1)
4c4b4cd2 5830 return "";
76a01679 5831 if ((discrim_start > name + 3
4c4b4cd2
PH
5832 && strncmp (discrim_start - 3, "___", 3) == 0)
5833 || discrim_start[-1] == '.')
5834 break;
14f9c5c9
AS
5835 }
5836
5837 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5838 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5839 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5840 return result;
5841}
5842
4c4b4cd2
PH
5843/* Scan STR for a subtype-encoded number, beginning at position K.
5844 Put the position of the character just past the number scanned in
5845 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5846 Return 1 if there was a valid number at the given position, and 0
5847 otherwise. A "subtype-encoded" number consists of the absolute value
5848 in decimal, followed by the letter 'm' to indicate a negative number.
5849 Assumes 0m does not occur. */
14f9c5c9
AS
5850
5851int
d2e4a39e 5852ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5853{
5854 ULONGEST RU;
5855
d2e4a39e 5856 if (!isdigit (str[k]))
14f9c5c9
AS
5857 return 0;
5858
4c4b4cd2 5859 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5860 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5861 LONGEST. */
14f9c5c9
AS
5862 RU = 0;
5863 while (isdigit (str[k]))
5864 {
d2e4a39e 5865 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5866 k += 1;
5867 }
5868
d2e4a39e 5869 if (str[k] == 'm')
14f9c5c9
AS
5870 {
5871 if (R != NULL)
4c4b4cd2 5872 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5873 k += 1;
5874 }
5875 else if (R != NULL)
5876 *R = (LONGEST) RU;
5877
4c4b4cd2 5878 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5879 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5880 number representable as a LONGEST (although either would probably work
5881 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5882 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5883
5884 if (new_k != NULL)
5885 *new_k = k;
5886 return 1;
5887}
5888
4c4b4cd2
PH
5889/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5890 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5891 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5892
d2e4a39e 5893int
ebf56fd3 5894ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5895{
d2e4a39e 5896 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5897 int p;
5898
5899 p = 0;
5900 while (1)
5901 {
d2e4a39e 5902 switch (name[p])
4c4b4cd2
PH
5903 {
5904 case '\0':
5905 return 0;
5906 case 'S':
5907 {
5908 LONGEST W;
5909 if (!ada_scan_number (name, p + 1, &W, &p))
5910 return 0;
5911 if (val == W)
5912 return 1;
5913 break;
5914 }
5915 case 'R':
5916 {
5917 LONGEST L, U;
5918 if (!ada_scan_number (name, p + 1, &L, &p)
5919 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5920 return 0;
5921 if (val >= L && val <= U)
5922 return 1;
5923 break;
5924 }
5925 case 'O':
5926 return 1;
5927 default:
5928 return 0;
5929 }
5930 }
5931}
5932
5933/* FIXME: Lots of redundancy below. Try to consolidate. */
5934
5935/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5936 ARG_TYPE, extract and return the value of one of its (non-static)
5937 fields. FIELDNO says which field. Differs from value_primitive_field
5938 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5939
4c4b4cd2 5940static struct value *
d2e4a39e 5941ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5942 struct type *arg_type)
14f9c5c9 5943{
14f9c5c9
AS
5944 struct type *type;
5945
61ee279c 5946 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5947 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5948
4c4b4cd2 5949 /* Handle packed fields. */
14f9c5c9
AS
5950
5951 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5952 {
5953 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5954 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5955
0fd88904 5956 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5957 offset + bit_pos / 8,
5958 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5959 }
5960 else
5961 return value_primitive_field (arg1, offset, fieldno, arg_type);
5962}
5963
52ce6436
PH
5964/* Find field with name NAME in object of type TYPE. If found,
5965 set the following for each argument that is non-null:
5966 - *FIELD_TYPE_P to the field's type;
5967 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5968 an object of that type;
5969 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5970 - *BIT_SIZE_P to its size in bits if the field is packed, and
5971 0 otherwise;
5972 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5973 fields up to but not including the desired field, or by the total
5974 number of fields if not found. A NULL value of NAME never
5975 matches; the function just counts visible fields in this case.
5976
5977 Returns 1 if found, 0 otherwise. */
5978
4c4b4cd2 5979static int
76a01679
JB
5980find_struct_field (char *name, struct type *type, int offset,
5981 struct type **field_type_p,
52ce6436
PH
5982 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5983 int *index_p)
4c4b4cd2
PH
5984{
5985 int i;
5986
61ee279c 5987 type = ada_check_typedef (type);
76a01679 5988
52ce6436
PH
5989 if (field_type_p != NULL)
5990 *field_type_p = NULL;
5991 if (byte_offset_p != NULL)
d5d6fca5 5992 *byte_offset_p = 0;
52ce6436
PH
5993 if (bit_offset_p != NULL)
5994 *bit_offset_p = 0;
5995 if (bit_size_p != NULL)
5996 *bit_size_p = 0;
5997
5998 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5999 {
6000 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6001 int fld_offset = offset + bit_pos / 8;
6002 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6003
4c4b4cd2
PH
6004 if (t_field_name == NULL)
6005 continue;
6006
52ce6436 6007 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6008 {
6009 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6010 if (field_type_p != NULL)
6011 *field_type_p = TYPE_FIELD_TYPE (type, i);
6012 if (byte_offset_p != NULL)
6013 *byte_offset_p = fld_offset;
6014 if (bit_offset_p != NULL)
6015 *bit_offset_p = bit_pos % 8;
6016 if (bit_size_p != NULL)
6017 *bit_size_p = bit_size;
76a01679
JB
6018 return 1;
6019 }
4c4b4cd2
PH
6020 else if (ada_is_wrapper_field (type, i))
6021 {
52ce6436
PH
6022 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6023 field_type_p, byte_offset_p, bit_offset_p,
6024 bit_size_p, index_p))
76a01679
JB
6025 return 1;
6026 }
4c4b4cd2
PH
6027 else if (ada_is_variant_part (type, i))
6028 {
52ce6436
PH
6029 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6030 fixed type?? */
4c4b4cd2 6031 int j;
52ce6436
PH
6032 struct type *field_type
6033 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6034
52ce6436 6035 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6036 {
76a01679
JB
6037 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6038 fld_offset
6039 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6040 field_type_p, byte_offset_p,
52ce6436 6041 bit_offset_p, bit_size_p, index_p))
76a01679 6042 return 1;
4c4b4cd2
PH
6043 }
6044 }
52ce6436
PH
6045 else if (index_p != NULL)
6046 *index_p += 1;
4c4b4cd2
PH
6047 }
6048 return 0;
6049}
6050
52ce6436 6051/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6052
52ce6436
PH
6053static int
6054num_visible_fields (struct type *type)
6055{
6056 int n;
6057 n = 0;
6058 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6059 return n;
6060}
14f9c5c9 6061
4c4b4cd2 6062/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6063 and search in it assuming it has (class) type TYPE.
6064 If found, return value, else return NULL.
6065
4c4b4cd2 6066 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6067
4c4b4cd2 6068static struct value *
d2e4a39e 6069ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6070 struct type *type)
14f9c5c9
AS
6071{
6072 int i;
61ee279c 6073 type = ada_check_typedef (type);
14f9c5c9 6074
52ce6436 6075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6076 {
6077 char *t_field_name = TYPE_FIELD_NAME (type, i);
6078
6079 if (t_field_name == NULL)
4c4b4cd2 6080 continue;
14f9c5c9
AS
6081
6082 else if (field_name_match (t_field_name, name))
4c4b4cd2 6083 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6084
6085 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6086 {
06d5cf63
JB
6087 struct value *v = /* Do not let indent join lines here. */
6088 ada_search_struct_field (name, arg,
6089 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6090 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6091 if (v != NULL)
6092 return v;
6093 }
14f9c5c9
AS
6094
6095 else if (ada_is_variant_part (type, i))
4c4b4cd2 6096 {
52ce6436 6097 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6098 int j;
61ee279c 6099 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6100 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6101
52ce6436 6102 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6103 {
06d5cf63
JB
6104 struct value *v = ada_search_struct_field /* Force line break. */
6105 (name, arg,
6106 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6107 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6108 if (v != NULL)
6109 return v;
6110 }
6111 }
14f9c5c9
AS
6112 }
6113 return NULL;
6114}
d2e4a39e 6115
52ce6436
PH
6116static struct value *ada_index_struct_field_1 (int *, struct value *,
6117 int, struct type *);
6118
6119
6120/* Return field #INDEX in ARG, where the index is that returned by
6121 * find_struct_field through its INDEX_P argument. Adjust the address
6122 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6123 * If found, return value, else return NULL. */
6124
6125static struct value *
6126ada_index_struct_field (int index, struct value *arg, int offset,
6127 struct type *type)
6128{
6129 return ada_index_struct_field_1 (&index, arg, offset, type);
6130}
6131
6132
6133/* Auxiliary function for ada_index_struct_field. Like
6134 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6135 * *INDEX_P. */
6136
6137static struct value *
6138ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6139 struct type *type)
6140{
6141 int i;
6142 type = ada_check_typedef (type);
6143
6144 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6145 {
6146 if (TYPE_FIELD_NAME (type, i) == NULL)
6147 continue;
6148 else if (ada_is_wrapper_field (type, i))
6149 {
6150 struct value *v = /* Do not let indent join lines here. */
6151 ada_index_struct_field_1 (index_p, arg,
6152 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6153 TYPE_FIELD_TYPE (type, i));
6154 if (v != NULL)
6155 return v;
6156 }
6157
6158 else if (ada_is_variant_part (type, i))
6159 {
6160 /* PNH: Do we ever get here? See ada_search_struct_field,
6161 find_struct_field. */
6162 error (_("Cannot assign this kind of variant record"));
6163 }
6164 else if (*index_p == 0)
6165 return ada_value_primitive_field (arg, offset, i, type);
6166 else
6167 *index_p -= 1;
6168 }
6169 return NULL;
6170}
6171
4c4b4cd2
PH
6172/* Given ARG, a value of type (pointer or reference to a)*
6173 structure/union, extract the component named NAME from the ultimate
6174 target structure/union and return it as a value with its
f5938064 6175 appropriate type.
14f9c5c9 6176
4c4b4cd2
PH
6177 The routine searches for NAME among all members of the structure itself
6178 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6179 (e.g., '_parent').
6180
03ee6b2e
PH
6181 If NO_ERR, then simply return NULL in case of error, rather than
6182 calling error. */
14f9c5c9 6183
d2e4a39e 6184struct value *
03ee6b2e 6185ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6186{
4c4b4cd2 6187 struct type *t, *t1;
d2e4a39e 6188 struct value *v;
14f9c5c9 6189
4c4b4cd2 6190 v = NULL;
df407dfe 6191 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6192 if (TYPE_CODE (t) == TYPE_CODE_REF)
6193 {
6194 t1 = TYPE_TARGET_TYPE (t);
6195 if (t1 == NULL)
03ee6b2e 6196 goto BadValue;
61ee279c 6197 t1 = ada_check_typedef (t1);
4c4b4cd2 6198 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6199 {
994b9211 6200 arg = coerce_ref (arg);
76a01679
JB
6201 t = t1;
6202 }
4c4b4cd2 6203 }
14f9c5c9 6204
4c4b4cd2
PH
6205 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6206 {
6207 t1 = TYPE_TARGET_TYPE (t);
6208 if (t1 == NULL)
03ee6b2e 6209 goto BadValue;
61ee279c 6210 t1 = ada_check_typedef (t1);
4c4b4cd2 6211 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6212 {
6213 arg = value_ind (arg);
6214 t = t1;
6215 }
4c4b4cd2 6216 else
76a01679 6217 break;
4c4b4cd2 6218 }
14f9c5c9 6219
4c4b4cd2 6220 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6221 goto BadValue;
14f9c5c9 6222
4c4b4cd2
PH
6223 if (t1 == t)
6224 v = ada_search_struct_field (name, arg, 0, t);
6225 else
6226 {
6227 int bit_offset, bit_size, byte_offset;
6228 struct type *field_type;
6229 CORE_ADDR address;
6230
76a01679
JB
6231 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6232 address = value_as_address (arg);
4c4b4cd2 6233 else
0fd88904 6234 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6235
1ed6ede0 6236 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6237 if (find_struct_field (name, t1, 0,
6238 &field_type, &byte_offset, &bit_offset,
52ce6436 6239 &bit_size, NULL))
76a01679
JB
6240 {
6241 if (bit_size != 0)
6242 {
714e53ab
PH
6243 if (TYPE_CODE (t) == TYPE_CODE_REF)
6244 arg = ada_coerce_ref (arg);
6245 else
6246 arg = ada_value_ind (arg);
76a01679
JB
6247 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6248 bit_offset, bit_size,
6249 field_type);
6250 }
6251 else
f5938064 6252 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6253 }
6254 }
6255
03ee6b2e
PH
6256 if (v != NULL || no_err)
6257 return v;
6258 else
323e0a4a 6259 error (_("There is no member named %s."), name);
14f9c5c9 6260
03ee6b2e
PH
6261 BadValue:
6262 if (no_err)
6263 return NULL;
6264 else
6265 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6266}
6267
6268/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6269 If DISPP is non-null, add its byte displacement from the beginning of a
6270 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6271 work for packed fields).
6272
6273 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6274 followed by "___".
14f9c5c9 6275
4c4b4cd2
PH
6276 TYPE can be either a struct or union. If REFOK, TYPE may also
6277 be a (pointer or reference)+ to a struct or union, and the
6278 ultimate target type will be searched.
14f9c5c9
AS
6279
6280 Looks recursively into variant clauses and parent types.
6281
4c4b4cd2
PH
6282 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6283 TYPE is not a type of the right kind. */
14f9c5c9 6284
4c4b4cd2 6285static struct type *
76a01679
JB
6286ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6287 int noerr, int *dispp)
14f9c5c9
AS
6288{
6289 int i;
6290
6291 if (name == NULL)
6292 goto BadName;
6293
76a01679 6294 if (refok && type != NULL)
4c4b4cd2
PH
6295 while (1)
6296 {
61ee279c 6297 type = ada_check_typedef (type);
76a01679
JB
6298 if (TYPE_CODE (type) != TYPE_CODE_PTR
6299 && TYPE_CODE (type) != TYPE_CODE_REF)
6300 break;
6301 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6302 }
14f9c5c9 6303
76a01679 6304 if (type == NULL
1265e4aa
JB
6305 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6306 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6307 {
4c4b4cd2 6308 if (noerr)
76a01679 6309 return NULL;
4c4b4cd2 6310 else
76a01679
JB
6311 {
6312 target_terminal_ours ();
6313 gdb_flush (gdb_stdout);
323e0a4a
AC
6314 if (type == NULL)
6315 error (_("Type (null) is not a structure or union type"));
6316 else
6317 {
6318 /* XXX: type_sprint */
6319 fprintf_unfiltered (gdb_stderr, _("Type "));
6320 type_print (type, "", gdb_stderr, -1);
6321 error (_(" is not a structure or union type"));
6322 }
76a01679 6323 }
14f9c5c9
AS
6324 }
6325
6326 type = to_static_fixed_type (type);
6327
6328 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6329 {
6330 char *t_field_name = TYPE_FIELD_NAME (type, i);
6331 struct type *t;
6332 int disp;
d2e4a39e 6333
14f9c5c9 6334 if (t_field_name == NULL)
4c4b4cd2 6335 continue;
14f9c5c9
AS
6336
6337 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6338 {
6339 if (dispp != NULL)
6340 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6341 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6342 }
14f9c5c9
AS
6343
6344 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6345 {
6346 disp = 0;
6347 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6348 0, 1, &disp);
6349 if (t != NULL)
6350 {
6351 if (dispp != NULL)
6352 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6353 return t;
6354 }
6355 }
14f9c5c9
AS
6356
6357 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6358 {
6359 int j;
61ee279c 6360 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6361
6362 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6363 {
b1f33ddd
JB
6364 /* FIXME pnh 2008/01/26: We check for a field that is
6365 NOT wrapped in a struct, since the compiler sometimes
6366 generates these for unchecked variant types. Revisit
6367 if the compiler changes this practice. */
6368 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6369 disp = 0;
b1f33ddd
JB
6370 if (v_field_name != NULL
6371 && field_name_match (v_field_name, name))
6372 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6373 else
6374 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6375 name, 0, 1, &disp);
6376
4c4b4cd2
PH
6377 if (t != NULL)
6378 {
6379 if (dispp != NULL)
6380 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6381 return t;
6382 }
6383 }
6384 }
14f9c5c9
AS
6385
6386 }
6387
6388BadName:
d2e4a39e 6389 if (!noerr)
14f9c5c9
AS
6390 {
6391 target_terminal_ours ();
6392 gdb_flush (gdb_stdout);
323e0a4a
AC
6393 if (name == NULL)
6394 {
6395 /* XXX: type_sprint */
6396 fprintf_unfiltered (gdb_stderr, _("Type "));
6397 type_print (type, "", gdb_stderr, -1);
6398 error (_(" has no component named <null>"));
6399 }
6400 else
6401 {
6402 /* XXX: type_sprint */
6403 fprintf_unfiltered (gdb_stderr, _("Type "));
6404 type_print (type, "", gdb_stderr, -1);
6405 error (_(" has no component named %s"), name);
6406 }
14f9c5c9
AS
6407 }
6408
6409 return NULL;
6410}
6411
b1f33ddd
JB
6412/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6413 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6414 represents an unchecked union (that is, the variant part of a
6415 record that is named in an Unchecked_Union pragma). */
6416
6417static int
6418is_unchecked_variant (struct type *var_type, struct type *outer_type)
6419{
6420 char *discrim_name = ada_variant_discrim_name (var_type);
6421 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6422 == NULL);
6423}
6424
6425
14f9c5c9
AS
6426/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6427 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6428 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6429 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6430
d2e4a39e 6431int
ebf56fd3 6432ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6433 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6434{
6435 int others_clause;
6436 int i;
d2e4a39e 6437 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6438 struct value *outer;
6439 struct value *discrim;
14f9c5c9
AS
6440 LONGEST discrim_val;
6441
0c281816
JB
6442 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6443 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6444 if (discrim == NULL)
14f9c5c9 6445 return -1;
0c281816 6446 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6447
6448 others_clause = -1;
6449 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6450 {
6451 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6452 others_clause = i;
14f9c5c9 6453 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6454 return i;
14f9c5c9
AS
6455 }
6456
6457 return others_clause;
6458}
d2e4a39e 6459\f
14f9c5c9
AS
6460
6461
4c4b4cd2 6462 /* Dynamic-Sized Records */
14f9c5c9
AS
6463
6464/* Strategy: The type ostensibly attached to a value with dynamic size
6465 (i.e., a size that is not statically recorded in the debugging
6466 data) does not accurately reflect the size or layout of the value.
6467 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6468 conventional types that are constructed on the fly. */
14f9c5c9
AS
6469
6470/* There is a subtle and tricky problem here. In general, we cannot
6471 determine the size of dynamic records without its data. However,
6472 the 'struct value' data structure, which GDB uses to represent
6473 quantities in the inferior process (the target), requires the size
6474 of the type at the time of its allocation in order to reserve space
6475 for GDB's internal copy of the data. That's why the
6476 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6477 rather than struct value*s.
14f9c5c9
AS
6478
6479 However, GDB's internal history variables ($1, $2, etc.) are
6480 struct value*s containing internal copies of the data that are not, in
6481 general, the same as the data at their corresponding addresses in
6482 the target. Fortunately, the types we give to these values are all
6483 conventional, fixed-size types (as per the strategy described
6484 above), so that we don't usually have to perform the
6485 'to_fixed_xxx_type' conversions to look at their values.
6486 Unfortunately, there is one exception: if one of the internal
6487 history variables is an array whose elements are unconstrained
6488 records, then we will need to create distinct fixed types for each
6489 element selected. */
6490
6491/* The upshot of all of this is that many routines take a (type, host
6492 address, target address) triple as arguments to represent a value.
6493 The host address, if non-null, is supposed to contain an internal
6494 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6495 target at the target address. */
14f9c5c9
AS
6496
6497/* Assuming that VAL0 represents a pointer value, the result of
6498 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6499 dynamic-sized types. */
14f9c5c9 6500
d2e4a39e
AS
6501struct value *
6502ada_value_ind (struct value *val0)
14f9c5c9 6503{
d2e4a39e 6504 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6505 return ada_to_fixed_value (val);
14f9c5c9
AS
6506}
6507
6508/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6509 qualifiers on VAL0. */
6510
d2e4a39e
AS
6511static struct value *
6512ada_coerce_ref (struct value *val0)
6513{
df407dfe 6514 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6515 {
6516 struct value *val = val0;
994b9211 6517 val = coerce_ref (val);
d2e4a39e 6518 val = unwrap_value (val);
4c4b4cd2 6519 return ada_to_fixed_value (val);
d2e4a39e
AS
6520 }
6521 else
14f9c5c9
AS
6522 return val0;
6523}
6524
6525/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6526 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6527
6528static unsigned int
ebf56fd3 6529align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6530{
6531 return (off + alignment - 1) & ~(alignment - 1);
6532}
6533
4c4b4cd2 6534/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6535
6536static unsigned int
ebf56fd3 6537field_alignment (struct type *type, int f)
14f9c5c9 6538{
d2e4a39e 6539 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6540 int len;
14f9c5c9
AS
6541 int align_offset;
6542
64a1bf19
JB
6543 /* The field name should never be null, unless the debugging information
6544 is somehow malformed. In this case, we assume the field does not
6545 require any alignment. */
6546 if (name == NULL)
6547 return 1;
6548
6549 len = strlen (name);
6550
4c4b4cd2
PH
6551 if (!isdigit (name[len - 1]))
6552 return 1;
14f9c5c9 6553
d2e4a39e 6554 if (isdigit (name[len - 2]))
14f9c5c9
AS
6555 align_offset = len - 2;
6556 else
6557 align_offset = len - 1;
6558
4c4b4cd2 6559 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6560 return TARGET_CHAR_BIT;
6561
4c4b4cd2
PH
6562 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6563}
6564
6565/* Find a symbol named NAME. Ignores ambiguity. */
6566
6567struct symbol *
6568ada_find_any_symbol (const char *name)
6569{
6570 struct symbol *sym;
6571
6572 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6573 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6574 return sym;
6575
6576 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6577 return sym;
14f9c5c9
AS
6578}
6579
6580/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6581
d2e4a39e 6582struct type *
ebf56fd3 6583ada_find_any_type (const char *name)
14f9c5c9 6584{
4c4b4cd2 6585 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6586
14f9c5c9
AS
6587 if (sym != NULL)
6588 return SYMBOL_TYPE (sym);
6589
6590 return NULL;
6591}
6592
aeb5907d
JB
6593/* Given NAME and an associated BLOCK, search all symbols for
6594 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6595 associated to NAME. Return this symbol if found, return
6596 NULL otherwise. */
6597
6598struct symbol *
6599ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6600{
6601 struct symbol *sym;
6602
6603 sym = find_old_style_renaming_symbol (name, block);
6604
6605 if (sym != NULL)
6606 return sym;
6607
6608 /* Not right yet. FIXME pnh 7/20/2007. */
6609 sym = ada_find_any_symbol (name);
6610 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6611 return sym;
6612 else
6613 return NULL;
6614}
6615
6616static struct symbol *
6617find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6618{
7f0df278 6619 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6620 char *rename;
6621
6622 if (function_sym != NULL)
6623 {
6624 /* If the symbol is defined inside a function, NAME is not fully
6625 qualified. This means we need to prepend the function name
6626 as well as adding the ``___XR'' suffix to build the name of
6627 the associated renaming symbol. */
6628 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6629 /* Function names sometimes contain suffixes used
6630 for instance to qualify nested subprograms. When building
6631 the XR type name, we need to make sure that this suffix is
6632 not included. So do not include any suffix in the function
6633 name length below. */
6634 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6635 const int rename_len = function_name_len + 2 /* "__" */
6636 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6637
529cad9c
PH
6638 /* Strip the suffix if necessary. */
6639 function_name[function_name_len] = '\0';
6640
4c4b4cd2
PH
6641 /* Library-level functions are a special case, as GNAT adds
6642 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6643 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6644 have this prefix, so we need to skip this prefix if present. */
6645 if (function_name_len > 5 /* "_ada_" */
6646 && strstr (function_name, "_ada_") == function_name)
6647 function_name = function_name + 5;
6648
6649 rename = (char *) alloca (rename_len * sizeof (char));
6650 sprintf (rename, "%s__%s___XR", function_name, name);
6651 }
6652 else
6653 {
6654 const int rename_len = strlen (name) + 6;
6655 rename = (char *) alloca (rename_len * sizeof (char));
6656 sprintf (rename, "%s___XR", name);
6657 }
6658
6659 return ada_find_any_symbol (rename);
6660}
6661
14f9c5c9 6662/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6663 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6664 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6665 otherwise return 0. */
6666
14f9c5c9 6667int
d2e4a39e 6668ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6669{
6670 if (type1 == NULL)
6671 return 1;
6672 else if (type0 == NULL)
6673 return 0;
6674 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6675 return 1;
6676 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6677 return 0;
4c4b4cd2
PH
6678 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6679 return 1;
14f9c5c9
AS
6680 else if (ada_is_packed_array_type (type0))
6681 return 1;
4c4b4cd2
PH
6682 else if (ada_is_array_descriptor_type (type0)
6683 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6684 return 1;
aeb5907d
JB
6685 else
6686 {
6687 const char *type0_name = type_name_no_tag (type0);
6688 const char *type1_name = type_name_no_tag (type1);
6689
6690 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6691 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6692 return 1;
6693 }
14f9c5c9
AS
6694 return 0;
6695}
6696
6697/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6698 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6699
d2e4a39e
AS
6700char *
6701ada_type_name (struct type *type)
14f9c5c9 6702{
d2e4a39e 6703 if (type == NULL)
14f9c5c9
AS
6704 return NULL;
6705 else if (TYPE_NAME (type) != NULL)
6706 return TYPE_NAME (type);
6707 else
6708 return TYPE_TAG_NAME (type);
6709}
6710
6711/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6712 SUFFIX to the name of TYPE. */
14f9c5c9 6713
d2e4a39e 6714struct type *
ebf56fd3 6715ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6716{
d2e4a39e 6717 static char *name;
14f9c5c9 6718 static size_t name_len = 0;
14f9c5c9 6719 int len;
d2e4a39e
AS
6720 char *typename = ada_type_name (type);
6721
14f9c5c9
AS
6722 if (typename == NULL)
6723 return NULL;
6724
6725 len = strlen (typename);
6726
d2e4a39e 6727 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6728
6729 strcpy (name, typename);
6730 strcpy (name + len, suffix);
6731
6732 return ada_find_any_type (name);
6733}
6734
6735
6736/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6737 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6738
d2e4a39e
AS
6739static struct type *
6740dynamic_template_type (struct type *type)
14f9c5c9 6741{
61ee279c 6742 type = ada_check_typedef (type);
14f9c5c9
AS
6743
6744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6745 || ada_type_name (type) == NULL)
14f9c5c9 6746 return NULL;
d2e4a39e 6747 else
14f9c5c9
AS
6748 {
6749 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6751 return type;
14f9c5c9 6752 else
4c4b4cd2 6753 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6754 }
6755}
6756
6757/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6759
d2e4a39e
AS
6760static int
6761is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6762{
6763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6764 return name != NULL
14f9c5c9
AS
6765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6766 && strstr (name, "___XVL") != NULL;
6767}
6768
4c4b4cd2
PH
6769/* The index of the variant field of TYPE, or -1 if TYPE does not
6770 represent a variant record type. */
14f9c5c9 6771
d2e4a39e 6772static int
4c4b4cd2 6773variant_field_index (struct type *type)
14f9c5c9
AS
6774{
6775 int f;
6776
4c4b4cd2
PH
6777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6778 return -1;
6779
6780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6781 {
6782 if (ada_is_variant_part (type, f))
6783 return f;
6784 }
6785 return -1;
14f9c5c9
AS
6786}
6787
4c4b4cd2
PH
6788/* A record type with no fields. */
6789
d2e4a39e
AS
6790static struct type *
6791empty_record (struct objfile *objfile)
14f9c5c9 6792{
d2e4a39e 6793 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6794 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6795 TYPE_NFIELDS (type) = 0;
6796 TYPE_FIELDS (type) = NULL;
b1f33ddd 6797 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6798 TYPE_NAME (type) = "<empty>";
6799 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6800 TYPE_LENGTH (type) = 0;
6801 return type;
6802}
6803
6804/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6805 the value of type TYPE at VALADDR or ADDRESS (see comments at
6806 the beginning of this section) VAL according to GNAT conventions.
6807 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6808 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6809 an outer-level type (i.e., as opposed to a branch of a variant.) A
6810 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6811 of the variant.
14f9c5c9 6812
4c4b4cd2
PH
6813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6814 length are not statically known are discarded. As a consequence,
6815 VALADDR, ADDRESS and DVAL0 are ignored.
6816
6817 NOTE: Limitations: For now, we assume that dynamic fields and
6818 variants occupy whole numbers of bytes. However, they need not be
6819 byte-aligned. */
6820
6821struct type *
10a2c479 6822ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6823 const gdb_byte *valaddr,
4c4b4cd2
PH
6824 CORE_ADDR address, struct value *dval0,
6825 int keep_dynamic_fields)
14f9c5c9 6826{
d2e4a39e
AS
6827 struct value *mark = value_mark ();
6828 struct value *dval;
6829 struct type *rtype;
14f9c5c9 6830 int nfields, bit_len;
4c4b4cd2 6831 int variant_field;
14f9c5c9 6832 long off;
4c4b4cd2 6833 int fld_bit_len, bit_incr;
14f9c5c9
AS
6834 int f;
6835
4c4b4cd2
PH
6836 /* Compute the number of fields in this record type that are going
6837 to be processed: unless keep_dynamic_fields, this includes only
6838 fields whose position and length are static will be processed. */
6839 if (keep_dynamic_fields)
6840 nfields = TYPE_NFIELDS (type);
6841 else
6842 {
6843 nfields = 0;
76a01679 6844 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6845 && !ada_is_variant_part (type, nfields)
6846 && !is_dynamic_field (type, nfields))
6847 nfields++;
6848 }
6849
14f9c5c9
AS
6850 rtype = alloc_type (TYPE_OBJFILE (type));
6851 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6852 INIT_CPLUS_SPECIFIC (rtype);
6853 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6854 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6855 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6856 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6857 TYPE_NAME (rtype) = ada_type_name (type);
6858 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6859 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6860
d2e4a39e
AS
6861 off = 0;
6862 bit_len = 0;
4c4b4cd2
PH
6863 variant_field = -1;
6864
14f9c5c9
AS
6865 for (f = 0; f < nfields; f += 1)
6866 {
6c038f32
PH
6867 off = align_value (off, field_alignment (type, f))
6868 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6869 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6870 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6871
d2e4a39e 6872 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6873 {
6874 variant_field = f;
6875 fld_bit_len = bit_incr = 0;
6876 }
14f9c5c9 6877 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6878 {
6879 if (dval0 == NULL)
6880 dval = value_from_contents_and_address (rtype, valaddr, address);
6881 else
6882 dval = dval0;
6883
1ed6ede0
JB
6884 /* Get the fixed type of the field. Note that, in this case, we
6885 do not want to get the real type out of the tag: if the current
6886 field is the parent part of a tagged record, we will get the
6887 tag of the object. Clearly wrong: the real type of the parent
6888 is not the real type of the child. We would end up in an infinite
6889 loop. */
4c4b4cd2
PH
6890 TYPE_FIELD_TYPE (rtype, f) =
6891 ada_to_fixed_type
6892 (ada_get_base_type
6893 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6894 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6895 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6896 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6897 bit_incr = fld_bit_len =
6898 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6899 }
14f9c5c9 6900 else
4c4b4cd2
PH
6901 {
6902 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6903 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6904 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6905 bit_incr = fld_bit_len =
6906 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6907 else
6908 bit_incr = fld_bit_len =
6909 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6910 }
14f9c5c9 6911 if (off + fld_bit_len > bit_len)
4c4b4cd2 6912 bit_len = off + fld_bit_len;
14f9c5c9 6913 off += bit_incr;
4c4b4cd2
PH
6914 TYPE_LENGTH (rtype) =
6915 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6916 }
4c4b4cd2
PH
6917
6918 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6919 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6920 the record. This can happen in the presence of representation
6921 clauses. */
6922 if (variant_field >= 0)
6923 {
6924 struct type *branch_type;
6925
6926 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6927
6928 if (dval0 == NULL)
6929 dval = value_from_contents_and_address (rtype, valaddr, address);
6930 else
6931 dval = dval0;
6932
6933 branch_type =
6934 to_fixed_variant_branch_type
6935 (TYPE_FIELD_TYPE (type, variant_field),
6936 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6937 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6938 if (branch_type == NULL)
6939 {
6940 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6941 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6942 TYPE_NFIELDS (rtype) -= 1;
6943 }
6944 else
6945 {
6946 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6947 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6948 fld_bit_len =
6949 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6950 TARGET_CHAR_BIT;
6951 if (off + fld_bit_len > bit_len)
6952 bit_len = off + fld_bit_len;
6953 TYPE_LENGTH (rtype) =
6954 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6955 }
6956 }
6957
714e53ab
PH
6958 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6959 should contain the alignment of that record, which should be a strictly
6960 positive value. If null or negative, then something is wrong, most
6961 probably in the debug info. In that case, we don't round up the size
6962 of the resulting type. If this record is not part of another structure,
6963 the current RTYPE length might be good enough for our purposes. */
6964 if (TYPE_LENGTH (type) <= 0)
6965 {
323e0a4a
AC
6966 if (TYPE_NAME (rtype))
6967 warning (_("Invalid type size for `%s' detected: %d."),
6968 TYPE_NAME (rtype), TYPE_LENGTH (type));
6969 else
6970 warning (_("Invalid type size for <unnamed> detected: %d."),
6971 TYPE_LENGTH (type));
714e53ab
PH
6972 }
6973 else
6974 {
6975 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6976 TYPE_LENGTH (type));
6977 }
14f9c5c9
AS
6978
6979 value_free_to_mark (mark);
d2e4a39e 6980 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6981 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6982 return rtype;
6983}
6984
4c4b4cd2
PH
6985/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6986 of 1. */
14f9c5c9 6987
d2e4a39e 6988static struct type *
fc1a4b47 6989template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6990 CORE_ADDR address, struct value *dval0)
6991{
6992 return ada_template_to_fixed_record_type_1 (type, valaddr,
6993 address, dval0, 1);
6994}
6995
6996/* An ordinary record type in which ___XVL-convention fields and
6997 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6998 static approximations, containing all possible fields. Uses
6999 no runtime values. Useless for use in values, but that's OK,
7000 since the results are used only for type determinations. Works on both
7001 structs and unions. Representation note: to save space, we memorize
7002 the result of this function in the TYPE_TARGET_TYPE of the
7003 template type. */
7004
7005static struct type *
7006template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7007{
7008 struct type *type;
7009 int nfields;
7010 int f;
7011
4c4b4cd2
PH
7012 if (TYPE_TARGET_TYPE (type0) != NULL)
7013 return TYPE_TARGET_TYPE (type0);
7014
7015 nfields = TYPE_NFIELDS (type0);
7016 type = type0;
14f9c5c9
AS
7017
7018 for (f = 0; f < nfields; f += 1)
7019 {
61ee279c 7020 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7021 struct type *new_type;
14f9c5c9 7022
4c4b4cd2
PH
7023 if (is_dynamic_field (type0, f))
7024 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7025 else
f192137b 7026 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7027 if (type == type0 && new_type != field_type)
7028 {
7029 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7030 TYPE_CODE (type) = TYPE_CODE (type0);
7031 INIT_CPLUS_SPECIFIC (type);
7032 TYPE_NFIELDS (type) = nfields;
7033 TYPE_FIELDS (type) = (struct field *)
7034 TYPE_ALLOC (type, nfields * sizeof (struct field));
7035 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7036 sizeof (struct field) * nfields);
7037 TYPE_NAME (type) = ada_type_name (type0);
7038 TYPE_TAG_NAME (type) = NULL;
876cecd0 7039 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7040 TYPE_LENGTH (type) = 0;
7041 }
7042 TYPE_FIELD_TYPE (type, f) = new_type;
7043 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7044 }
14f9c5c9
AS
7045 return type;
7046}
7047
4c4b4cd2 7048/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7049 whose address in memory is ADDRESS, returns a revision of TYPE,
7050 which should be a non-dynamic-sized record, in which the variant
7051 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7052 for discriminant values in DVAL0, which can be NULL if the record
7053 contains the necessary discriminant values. */
7054
d2e4a39e 7055static struct type *
fc1a4b47 7056to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7057 CORE_ADDR address, struct value *dval0)
14f9c5c9 7058{
d2e4a39e 7059 struct value *mark = value_mark ();
4c4b4cd2 7060 struct value *dval;
d2e4a39e 7061 struct type *rtype;
14f9c5c9
AS
7062 struct type *branch_type;
7063 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7064 int variant_field = variant_field_index (type);
14f9c5c9 7065
4c4b4cd2 7066 if (variant_field == -1)
14f9c5c9
AS
7067 return type;
7068
4c4b4cd2
PH
7069 if (dval0 == NULL)
7070 dval = value_from_contents_and_address (type, valaddr, address);
7071 else
7072 dval = dval0;
7073
14f9c5c9
AS
7074 rtype = alloc_type (TYPE_OBJFILE (type));
7075 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7076 INIT_CPLUS_SPECIFIC (rtype);
7077 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7078 TYPE_FIELDS (rtype) =
7079 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7080 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7081 sizeof (struct field) * nfields);
14f9c5c9
AS
7082 TYPE_NAME (rtype) = ada_type_name (type);
7083 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7084 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7085 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7086
4c4b4cd2
PH
7087 branch_type = to_fixed_variant_branch_type
7088 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7089 cond_offset_host (valaddr,
4c4b4cd2
PH
7090 TYPE_FIELD_BITPOS (type, variant_field)
7091 / TARGET_CHAR_BIT),
d2e4a39e 7092 cond_offset_target (address,
4c4b4cd2
PH
7093 TYPE_FIELD_BITPOS (type, variant_field)
7094 / TARGET_CHAR_BIT), dval);
d2e4a39e 7095 if (branch_type == NULL)
14f9c5c9 7096 {
4c4b4cd2
PH
7097 int f;
7098 for (f = variant_field + 1; f < nfields; f += 1)
7099 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7100 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7101 }
7102 else
7103 {
4c4b4cd2
PH
7104 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7105 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7106 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7107 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7108 }
4c4b4cd2 7109 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7110
4c4b4cd2 7111 value_free_to_mark (mark);
14f9c5c9
AS
7112 return rtype;
7113}
7114
7115/* An ordinary record type (with fixed-length fields) that describes
7116 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7117 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7118 should be in DVAL, a record value; it may be NULL if the object
7119 at ADDR itself contains any necessary discriminant values.
7120 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7121 values from the record are needed. Except in the case that DVAL,
7122 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7123 unchecked) is replaced by a particular branch of the variant.
7124
7125 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7126 is questionable and may be removed. It can arise during the
7127 processing of an unconstrained-array-of-record type where all the
7128 variant branches have exactly the same size. This is because in
7129 such cases, the compiler does not bother to use the XVS convention
7130 when encoding the record. I am currently dubious of this
7131 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7132
d2e4a39e 7133static struct type *
fc1a4b47 7134to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7135 CORE_ADDR address, struct value *dval)
14f9c5c9 7136{
d2e4a39e 7137 struct type *templ_type;
14f9c5c9 7138
876cecd0 7139 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7140 return type0;
7141
d2e4a39e 7142 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7143
7144 if (templ_type != NULL)
7145 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7146 else if (variant_field_index (type0) >= 0)
7147 {
7148 if (dval == NULL && valaddr == NULL && address == 0)
7149 return type0;
7150 return to_record_with_fixed_variant_part (type0, valaddr, address,
7151 dval);
7152 }
14f9c5c9
AS
7153 else
7154 {
876cecd0 7155 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7156 return type0;
7157 }
7158
7159}
7160
7161/* An ordinary record type (with fixed-length fields) that describes
7162 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7163 union type. Any necessary discriminants' values should be in DVAL,
7164 a record value. That is, this routine selects the appropriate
7165 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7166 indicated in the union's type name. Returns VAR_TYPE0 itself if
7167 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7168
d2e4a39e 7169static struct type *
fc1a4b47 7170to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7171 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7172{
7173 int which;
d2e4a39e
AS
7174 struct type *templ_type;
7175 struct type *var_type;
14f9c5c9
AS
7176
7177 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7178 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7179 else
14f9c5c9
AS
7180 var_type = var_type0;
7181
7182 templ_type = ada_find_parallel_type (var_type, "___XVU");
7183
7184 if (templ_type != NULL)
7185 var_type = templ_type;
7186
b1f33ddd
JB
7187 if (is_unchecked_variant (var_type, value_type (dval)))
7188 return var_type0;
d2e4a39e
AS
7189 which =
7190 ada_which_variant_applies (var_type,
0fd88904 7191 value_type (dval), value_contents (dval));
14f9c5c9
AS
7192
7193 if (which < 0)
7194 return empty_record (TYPE_OBJFILE (var_type));
7195 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7196 return to_fixed_record_type
d2e4a39e
AS
7197 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7198 valaddr, address, dval);
4c4b4cd2 7199 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7200 return
7201 to_fixed_record_type
7202 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7203 else
7204 return TYPE_FIELD_TYPE (var_type, which);
7205}
7206
7207/* Assuming that TYPE0 is an array type describing the type of a value
7208 at ADDR, and that DVAL describes a record containing any
7209 discriminants used in TYPE0, returns a type for the value that
7210 contains no dynamic components (that is, no components whose sizes
7211 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7212 true, gives an error message if the resulting type's size is over
4c4b4cd2 7213 varsize_limit. */
14f9c5c9 7214
d2e4a39e
AS
7215static struct type *
7216to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7217 int ignore_too_big)
14f9c5c9 7218{
d2e4a39e
AS
7219 struct type *index_type_desc;
7220 struct type *result;
14f9c5c9 7221
4c4b4cd2 7222 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7223 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7224 return type0;
14f9c5c9
AS
7225
7226 index_type_desc = ada_find_parallel_type (type0, "___XA");
7227 if (index_type_desc == NULL)
7228 {
61ee279c 7229 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7230 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7231 depend on the contents of the array in properly constructed
7232 debugging data. */
529cad9c
PH
7233 /* Create a fixed version of the array element type.
7234 We're not providing the address of an element here,
e1d5a0d2 7235 and thus the actual object value cannot be inspected to do
529cad9c
PH
7236 the conversion. This should not be a problem, since arrays of
7237 unconstrained objects are not allowed. In particular, all
7238 the elements of an array of a tagged type should all be of
7239 the same type specified in the debugging info. No need to
7240 consult the object tag. */
1ed6ede0 7241 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7242
7243 if (elt_type0 == elt_type)
4c4b4cd2 7244 result = type0;
14f9c5c9 7245 else
4c4b4cd2
PH
7246 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7247 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7248 }
7249 else
7250 {
7251 int i;
7252 struct type *elt_type0;
7253
7254 elt_type0 = type0;
7255 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7256 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7257
7258 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7259 depend on the contents of the array in properly constructed
7260 debugging data. */
529cad9c
PH
7261 /* Create a fixed version of the array element type.
7262 We're not providing the address of an element here,
e1d5a0d2 7263 and thus the actual object value cannot be inspected to do
529cad9c
PH
7264 the conversion. This should not be a problem, since arrays of
7265 unconstrained objects are not allowed. In particular, all
7266 the elements of an array of a tagged type should all be of
7267 the same type specified in the debugging info. No need to
7268 consult the object tag. */
1ed6ede0
JB
7269 result =
7270 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7271 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7272 {
7273 struct type *range_type =
7274 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7275 dval, TYPE_OBJFILE (type0));
7276 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7277 result, range_type);
7278 }
d2e4a39e 7279 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7280 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7281 }
7282
876cecd0 7283 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7284 return result;
d2e4a39e 7285}
14f9c5c9
AS
7286
7287
7288/* A standard type (containing no dynamically sized components)
7289 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7290 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7291 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7292 ADDRESS or in VALADDR contains these discriminants.
7293
1ed6ede0
JB
7294 If CHECK_TAG is not null, in the case of tagged types, this function
7295 attempts to locate the object's tag and use it to compute the actual
7296 type. However, when ADDRESS is null, we cannot use it to determine the
7297 location of the tag, and therefore compute the tagged type's actual type.
7298 So we return the tagged type without consulting the tag. */
529cad9c 7299
f192137b
JB
7300static struct type *
7301ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7302 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7303{
61ee279c 7304 type = ada_check_typedef (type);
d2e4a39e
AS
7305 switch (TYPE_CODE (type))
7306 {
7307 default:
14f9c5c9 7308 return type;
d2e4a39e 7309 case TYPE_CODE_STRUCT:
4c4b4cd2 7310 {
76a01679 7311 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7312 struct type *fixed_record_type =
7313 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7314 /* If STATIC_TYPE is a tagged type and we know the object's address,
7315 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7316 type from there. Note that we have to use the fixed record
7317 type (the parent part of the record may have dynamic fields
7318 and the way the location of _tag is expressed may depend on
7319 them). */
529cad9c 7320
1ed6ede0 7321 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7322 {
7323 struct type *real_type =
1ed6ede0
JB
7324 type_from_tag (value_tag_from_contents_and_address
7325 (fixed_record_type,
7326 valaddr,
7327 address));
76a01679 7328 if (real_type != NULL)
1ed6ede0 7329 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7330 }
4af88198
JB
7331
7332 /* Check to see if there is a parallel ___XVZ variable.
7333 If there is, then it provides the actual size of our type. */
7334 else if (ada_type_name (fixed_record_type) != NULL)
7335 {
7336 char *name = ada_type_name (fixed_record_type);
7337 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7338 int xvz_found = 0;
7339 LONGEST size;
7340
7341 sprintf (xvz_name, "%s___XVZ", name);
7342 size = get_int_var_value (xvz_name, &xvz_found);
7343 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7344 {
7345 fixed_record_type = copy_type (fixed_record_type);
7346 TYPE_LENGTH (fixed_record_type) = size;
7347
7348 /* The FIXED_RECORD_TYPE may have be a stub. We have
7349 observed this when the debugging info is STABS, and
7350 apparently it is something that is hard to fix.
7351
7352 In practice, we don't need the actual type definition
7353 at all, because the presence of the XVZ variable allows us
7354 to assume that there must be a XVS type as well, which we
7355 should be able to use later, when we need the actual type
7356 definition.
7357
7358 In the meantime, pretend that the "fixed" type we are
7359 returning is NOT a stub, because this can cause trouble
7360 when using this type to create new types targeting it.
7361 Indeed, the associated creation routines often check
7362 whether the target type is a stub and will try to replace
7363 it, thus using a type with the wrong size. This, in turn,
7364 might cause the new type to have the wrong size too.
7365 Consider the case of an array, for instance, where the size
7366 of the array is computed from the number of elements in
7367 our array multiplied by the size of its element. */
7368 TYPE_STUB (fixed_record_type) = 0;
7369 }
7370 }
1ed6ede0 7371 return fixed_record_type;
4c4b4cd2 7372 }
d2e4a39e 7373 case TYPE_CODE_ARRAY:
4c4b4cd2 7374 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7375 case TYPE_CODE_UNION:
7376 if (dval == NULL)
4c4b4cd2 7377 return type;
d2e4a39e 7378 else
4c4b4cd2 7379 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7380 }
14f9c5c9
AS
7381}
7382
f192137b
JB
7383/* The same as ada_to_fixed_type_1, except that it preserves the type
7384 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7385 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7386
7387struct type *
7388ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7389 CORE_ADDR address, struct value *dval, int check_tag)
7390
7391{
7392 struct type *fixed_type =
7393 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7394
7395 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7396 && TYPE_TARGET_TYPE (type) == fixed_type)
7397 return type;
7398
7399 return fixed_type;
7400}
7401
14f9c5c9 7402/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7403 TYPE0, but based on no runtime data. */
14f9c5c9 7404
d2e4a39e
AS
7405static struct type *
7406to_static_fixed_type (struct type *type0)
14f9c5c9 7407{
d2e4a39e 7408 struct type *type;
14f9c5c9
AS
7409
7410 if (type0 == NULL)
7411 return NULL;
7412
876cecd0 7413 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7414 return type0;
7415
61ee279c 7416 type0 = ada_check_typedef (type0);
d2e4a39e 7417
14f9c5c9
AS
7418 switch (TYPE_CODE (type0))
7419 {
7420 default:
7421 return type0;
7422 case TYPE_CODE_STRUCT:
7423 type = dynamic_template_type (type0);
d2e4a39e 7424 if (type != NULL)
4c4b4cd2
PH
7425 return template_to_static_fixed_type (type);
7426 else
7427 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7428 case TYPE_CODE_UNION:
7429 type = ada_find_parallel_type (type0, "___XVU");
7430 if (type != NULL)
4c4b4cd2
PH
7431 return template_to_static_fixed_type (type);
7432 else
7433 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7434 }
7435}
7436
4c4b4cd2
PH
7437/* A static approximation of TYPE with all type wrappers removed. */
7438
d2e4a39e
AS
7439static struct type *
7440static_unwrap_type (struct type *type)
14f9c5c9
AS
7441{
7442 if (ada_is_aligner_type (type))
7443 {
61ee279c 7444 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7445 if (ada_type_name (type1) == NULL)
4c4b4cd2 7446 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7447
7448 return static_unwrap_type (type1);
7449 }
d2e4a39e 7450 else
14f9c5c9 7451 {
d2e4a39e
AS
7452 struct type *raw_real_type = ada_get_base_type (type);
7453 if (raw_real_type == type)
4c4b4cd2 7454 return type;
14f9c5c9 7455 else
4c4b4cd2 7456 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7457 }
7458}
7459
7460/* In some cases, incomplete and private types require
4c4b4cd2 7461 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7462 type Foo;
7463 type FooP is access Foo;
7464 V: FooP;
7465 type Foo is array ...;
4c4b4cd2 7466 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7467 cross-references to such types, we instead substitute for FooP a
7468 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7469 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7470
7471/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7472 exists, otherwise TYPE. */
7473
d2e4a39e 7474struct type *
61ee279c 7475ada_check_typedef (struct type *type)
14f9c5c9 7476{
727e3d2e
JB
7477 if (type == NULL)
7478 return NULL;
7479
14f9c5c9
AS
7480 CHECK_TYPEDEF (type);
7481 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7482 || !TYPE_STUB (type)
14f9c5c9
AS
7483 || TYPE_TAG_NAME (type) == NULL)
7484 return type;
d2e4a39e 7485 else
14f9c5c9 7486 {
d2e4a39e
AS
7487 char *name = TYPE_TAG_NAME (type);
7488 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7489 return (type1 == NULL) ? type : type1;
7490 }
7491}
7492
7493/* A value representing the data at VALADDR/ADDRESS as described by
7494 type TYPE0, but with a standard (static-sized) type that correctly
7495 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7496 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7497 creation of struct values]. */
14f9c5c9 7498
4c4b4cd2
PH
7499static struct value *
7500ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7501 struct value *val0)
14f9c5c9 7502{
1ed6ede0 7503 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7504 if (type == type0 && val0 != NULL)
7505 return val0;
d2e4a39e 7506 else
4c4b4cd2
PH
7507 return value_from_contents_and_address (type, 0, address);
7508}
7509
7510/* A value representing VAL, but with a standard (static-sized) type
7511 that correctly describes it. Does not necessarily create a new
7512 value. */
7513
7514static struct value *
7515ada_to_fixed_value (struct value *val)
7516{
df407dfe
AC
7517 return ada_to_fixed_value_create (value_type (val),
7518 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7519 val);
14f9c5c9
AS
7520}
7521
4c4b4cd2 7522/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7523 chosen to approximate the real type of VAL as well as possible, but
7524 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7525 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7526
d2e4a39e
AS
7527struct value *
7528ada_to_static_fixed_value (struct value *val)
14f9c5c9 7529{
d2e4a39e 7530 struct type *type =
df407dfe
AC
7531 to_static_fixed_type (static_unwrap_type (value_type (val)));
7532 if (type == value_type (val))
14f9c5c9
AS
7533 return val;
7534 else
4c4b4cd2 7535 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7536}
d2e4a39e 7537\f
14f9c5c9 7538
14f9c5c9
AS
7539/* Attributes */
7540
4c4b4cd2
PH
7541/* Table mapping attribute numbers to names.
7542 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7543
d2e4a39e 7544static const char *attribute_names[] = {
14f9c5c9
AS
7545 "<?>",
7546
d2e4a39e 7547 "first",
14f9c5c9
AS
7548 "last",
7549 "length",
7550 "image",
14f9c5c9
AS
7551 "max",
7552 "min",
4c4b4cd2
PH
7553 "modulus",
7554 "pos",
7555 "size",
7556 "tag",
14f9c5c9 7557 "val",
14f9c5c9
AS
7558 0
7559};
7560
d2e4a39e 7561const char *
4c4b4cd2 7562ada_attribute_name (enum exp_opcode n)
14f9c5c9 7563{
4c4b4cd2
PH
7564 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7565 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7566 else
7567 return attribute_names[0];
7568}
7569
4c4b4cd2 7570/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7571
4c4b4cd2
PH
7572static LONGEST
7573pos_atr (struct value *arg)
14f9c5c9 7574{
24209737
PH
7575 struct value *val = coerce_ref (arg);
7576 struct type *type = value_type (val);
14f9c5c9 7577
d2e4a39e 7578 if (!discrete_type_p (type))
323e0a4a 7579 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7580
7581 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7582 {
7583 int i;
24209737 7584 LONGEST v = value_as_long (val);
14f9c5c9 7585
d2e4a39e 7586 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7587 {
7588 if (v == TYPE_FIELD_BITPOS (type, i))
7589 return i;
7590 }
323e0a4a 7591 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7592 }
7593 else
24209737 7594 return value_as_long (val);
4c4b4cd2
PH
7595}
7596
7597static struct value *
3cb382c9 7598value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7599{
3cb382c9 7600 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7601}
7602
4c4b4cd2 7603/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7604
d2e4a39e
AS
7605static struct value *
7606value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7607{
d2e4a39e 7608 if (!discrete_type_p (type))
323e0a4a 7609 error (_("'VAL only defined on discrete types"));
df407dfe 7610 if (!integer_type_p (value_type (arg)))
323e0a4a 7611 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7612
7613 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7614 {
7615 long pos = value_as_long (arg);
7616 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7617 error (_("argument to 'VAL out of range"));
d2e4a39e 7618 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7619 }
7620 else
7621 return value_from_longest (type, value_as_long (arg));
7622}
14f9c5c9 7623\f
d2e4a39e 7624
4c4b4cd2 7625 /* Evaluation */
14f9c5c9 7626
4c4b4cd2
PH
7627/* True if TYPE appears to be an Ada character type.
7628 [At the moment, this is true only for Character and Wide_Character;
7629 It is a heuristic test that could stand improvement]. */
14f9c5c9 7630
d2e4a39e
AS
7631int
7632ada_is_character_type (struct type *type)
14f9c5c9 7633{
7b9f71f2
JB
7634 const char *name;
7635
7636 /* If the type code says it's a character, then assume it really is,
7637 and don't check any further. */
7638 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7639 return 1;
7640
7641 /* Otherwise, assume it's a character type iff it is a discrete type
7642 with a known character type name. */
7643 name = ada_type_name (type);
7644 return (name != NULL
7645 && (TYPE_CODE (type) == TYPE_CODE_INT
7646 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7647 && (strcmp (name, "character") == 0
7648 || strcmp (name, "wide_character") == 0
5a517ebd 7649 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7650 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7651}
7652
4c4b4cd2 7653/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7654
7655int
ebf56fd3 7656ada_is_string_type (struct type *type)
14f9c5c9 7657{
61ee279c 7658 type = ada_check_typedef (type);
d2e4a39e 7659 if (type != NULL
14f9c5c9 7660 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7661 && (ada_is_simple_array_type (type)
7662 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7663 && ada_array_arity (type) == 1)
7664 {
7665 struct type *elttype = ada_array_element_type (type, 1);
7666
7667 return ada_is_character_type (elttype);
7668 }
d2e4a39e 7669 else
14f9c5c9
AS
7670 return 0;
7671}
7672
7673
7674/* True if TYPE is a struct type introduced by the compiler to force the
7675 alignment of a value. Such types have a single field with a
4c4b4cd2 7676 distinctive name. */
14f9c5c9
AS
7677
7678int
ebf56fd3 7679ada_is_aligner_type (struct type *type)
14f9c5c9 7680{
61ee279c 7681 type = ada_check_typedef (type);
714e53ab
PH
7682
7683 /* If we can find a parallel XVS type, then the XVS type should
7684 be used instead of this type. And hence, this is not an aligner
7685 type. */
7686 if (ada_find_parallel_type (type, "___XVS") != NULL)
7687 return 0;
7688
14f9c5c9 7689 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7690 && TYPE_NFIELDS (type) == 1
7691 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7692}
7693
7694/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7695 the parallel type. */
14f9c5c9 7696
d2e4a39e
AS
7697struct type *
7698ada_get_base_type (struct type *raw_type)
14f9c5c9 7699{
d2e4a39e
AS
7700 struct type *real_type_namer;
7701 struct type *raw_real_type;
14f9c5c9
AS
7702
7703 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7704 return raw_type;
7705
7706 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7707 if (real_type_namer == NULL
14f9c5c9
AS
7708 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7709 || TYPE_NFIELDS (real_type_namer) != 1)
7710 return raw_type;
7711
7712 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7713 if (raw_real_type == NULL)
14f9c5c9
AS
7714 return raw_type;
7715 else
7716 return raw_real_type;
d2e4a39e 7717}
14f9c5c9 7718
4c4b4cd2 7719/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7720
d2e4a39e
AS
7721struct type *
7722ada_aligned_type (struct type *type)
14f9c5c9
AS
7723{
7724 if (ada_is_aligner_type (type))
7725 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7726 else
7727 return ada_get_base_type (type);
7728}
7729
7730
7731/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7732 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7733
fc1a4b47
AC
7734const gdb_byte *
7735ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7736{
d2e4a39e 7737 if (ada_is_aligner_type (type))
14f9c5c9 7738 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7739 valaddr +
7740 TYPE_FIELD_BITPOS (type,
7741 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7742 else
7743 return valaddr;
7744}
7745
4c4b4cd2
PH
7746
7747
14f9c5c9 7748/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7749 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7750const char *
7751ada_enum_name (const char *name)
14f9c5c9 7752{
4c4b4cd2
PH
7753 static char *result;
7754 static size_t result_len = 0;
d2e4a39e 7755 char *tmp;
14f9c5c9 7756
4c4b4cd2
PH
7757 /* First, unqualify the enumeration name:
7758 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7759 all the preceeding characters, the unqualified name starts
7760 right after that dot.
4c4b4cd2 7761 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7762 translates dots into "__". Search forward for double underscores,
7763 but stop searching when we hit an overloading suffix, which is
7764 of the form "__" followed by digits. */
4c4b4cd2 7765
c3e5cd34
PH
7766 tmp = strrchr (name, '.');
7767 if (tmp != NULL)
4c4b4cd2
PH
7768 name = tmp + 1;
7769 else
14f9c5c9 7770 {
4c4b4cd2
PH
7771 while ((tmp = strstr (name, "__")) != NULL)
7772 {
7773 if (isdigit (tmp[2]))
7774 break;
7775 else
7776 name = tmp + 2;
7777 }
14f9c5c9
AS
7778 }
7779
7780 if (name[0] == 'Q')
7781 {
14f9c5c9
AS
7782 int v;
7783 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7784 {
7785 if (sscanf (name + 2, "%x", &v) != 1)
7786 return name;
7787 }
14f9c5c9 7788 else
4c4b4cd2 7789 return name;
14f9c5c9 7790
4c4b4cd2 7791 GROW_VECT (result, result_len, 16);
14f9c5c9 7792 if (isascii (v) && isprint (v))
4c4b4cd2 7793 sprintf (result, "'%c'", v);
14f9c5c9 7794 else if (name[1] == 'U')
4c4b4cd2 7795 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7796 else
4c4b4cd2 7797 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7798
7799 return result;
7800 }
d2e4a39e 7801 else
4c4b4cd2 7802 {
c3e5cd34
PH
7803 tmp = strstr (name, "__");
7804 if (tmp == NULL)
7805 tmp = strstr (name, "$");
7806 if (tmp != NULL)
4c4b4cd2
PH
7807 {
7808 GROW_VECT (result, result_len, tmp - name + 1);
7809 strncpy (result, name, tmp - name);
7810 result[tmp - name] = '\0';
7811 return result;
7812 }
7813
7814 return name;
7815 }
14f9c5c9
AS
7816}
7817
d2e4a39e 7818static struct value *
ebf56fd3 7819evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7820 enum noside noside)
14f9c5c9 7821{
76a01679 7822 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7823 (expect_type, exp, pos, noside);
14f9c5c9
AS
7824}
7825
7826/* Evaluate the subexpression of EXP starting at *POS as for
7827 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7828 expression. */
14f9c5c9 7829
d2e4a39e
AS
7830static struct value *
7831evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7832{
4c4b4cd2 7833 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7834 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7835}
7836
7837/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7838 value it wraps. */
14f9c5c9 7839
d2e4a39e
AS
7840static struct value *
7841unwrap_value (struct value *val)
14f9c5c9 7842{
df407dfe 7843 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7844 if (ada_is_aligner_type (type))
7845 {
de4d072f 7846 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7847 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7848 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7849 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7850
7851 return unwrap_value (v);
7852 }
d2e4a39e 7853 else
14f9c5c9 7854 {
d2e4a39e 7855 struct type *raw_real_type =
61ee279c 7856 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7857
14f9c5c9 7858 if (type == raw_real_type)
4c4b4cd2 7859 return val;
14f9c5c9 7860
d2e4a39e 7861 return
4c4b4cd2
PH
7862 coerce_unspec_val_to_type
7863 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7864 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7865 NULL, 1));
14f9c5c9
AS
7866 }
7867}
d2e4a39e
AS
7868
7869static struct value *
7870cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7871{
7872 LONGEST val;
7873
df407dfe 7874 if (type == value_type (arg))
14f9c5c9 7875 return arg;
df407dfe 7876 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7877 val = ada_float_to_fixed (type,
df407dfe 7878 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7879 value_as_long (arg)));
d2e4a39e 7880 else
14f9c5c9 7881 {
a53b7a21 7882 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7883 val = ada_float_to_fixed (type, argd);
7884 }
7885
7886 return value_from_longest (type, val);
7887}
7888
d2e4a39e 7889static struct value *
a53b7a21 7890cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7891{
df407dfe 7892 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7893 value_as_long (arg));
a53b7a21 7894 return value_from_double (type, val);
14f9c5c9
AS
7895}
7896
4c4b4cd2
PH
7897/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7898 return the converted value. */
7899
d2e4a39e
AS
7900static struct value *
7901coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7902{
df407dfe 7903 struct type *type2 = value_type (val);
14f9c5c9
AS
7904 if (type == type2)
7905 return val;
7906
61ee279c
PH
7907 type2 = ada_check_typedef (type2);
7908 type = ada_check_typedef (type);
14f9c5c9 7909
d2e4a39e
AS
7910 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7911 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7912 {
7913 val = ada_value_ind (val);
df407dfe 7914 type2 = value_type (val);
14f9c5c9
AS
7915 }
7916
d2e4a39e 7917 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7918 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7919 {
7920 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7921 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7922 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7923 error (_("Incompatible types in assignment"));
04624583 7924 deprecated_set_value_type (val, type);
14f9c5c9 7925 }
d2e4a39e 7926 return val;
14f9c5c9
AS
7927}
7928
4c4b4cd2
PH
7929static struct value *
7930ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7931{
7932 struct value *val;
7933 struct type *type1, *type2;
7934 LONGEST v, v1, v2;
7935
994b9211
AC
7936 arg1 = coerce_ref (arg1);
7937 arg2 = coerce_ref (arg2);
df407dfe
AC
7938 type1 = base_type (ada_check_typedef (value_type (arg1)));
7939 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7940
76a01679
JB
7941 if (TYPE_CODE (type1) != TYPE_CODE_INT
7942 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7943 return value_binop (arg1, arg2, op);
7944
76a01679 7945 switch (op)
4c4b4cd2
PH
7946 {
7947 case BINOP_MOD:
7948 case BINOP_DIV:
7949 case BINOP_REM:
7950 break;
7951 default:
7952 return value_binop (arg1, arg2, op);
7953 }
7954
7955 v2 = value_as_long (arg2);
7956 if (v2 == 0)
323e0a4a 7957 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7958
7959 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7960 return value_binop (arg1, arg2, op);
7961
7962 v1 = value_as_long (arg1);
7963 switch (op)
7964 {
7965 case BINOP_DIV:
7966 v = v1 / v2;
76a01679
JB
7967 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7968 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7969 break;
7970 case BINOP_REM:
7971 v = v1 % v2;
76a01679
JB
7972 if (v * v1 < 0)
7973 v -= v2;
4c4b4cd2
PH
7974 break;
7975 default:
7976 /* Should not reach this point. */
7977 v = 0;
7978 }
7979
7980 val = allocate_value (type1);
990a07ab 7981 store_unsigned_integer (value_contents_raw (val),
df407dfe 7982 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7983 return val;
7984}
7985
7986static int
7987ada_value_equal (struct value *arg1, struct value *arg2)
7988{
df407dfe
AC
7989 if (ada_is_direct_array_type (value_type (arg1))
7990 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7991 {
f58b38bf
JB
7992 /* Automatically dereference any array reference before
7993 we attempt to perform the comparison. */
7994 arg1 = ada_coerce_ref (arg1);
7995 arg2 = ada_coerce_ref (arg2);
7996
4c4b4cd2
PH
7997 arg1 = ada_coerce_to_simple_array (arg1);
7998 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7999 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8000 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8001 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8002 /* FIXME: The following works only for types whose
76a01679
JB
8003 representations use all bits (no padding or undefined bits)
8004 and do not have user-defined equality. */
8005 return
df407dfe 8006 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8007 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8008 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8009 }
8010 return value_equal (arg1, arg2);
8011}
8012
52ce6436
PH
8013/* Total number of component associations in the aggregate starting at
8014 index PC in EXP. Assumes that index PC is the start of an
8015 OP_AGGREGATE. */
8016
8017static int
8018num_component_specs (struct expression *exp, int pc)
8019{
8020 int n, m, i;
8021 m = exp->elts[pc + 1].longconst;
8022 pc += 3;
8023 n = 0;
8024 for (i = 0; i < m; i += 1)
8025 {
8026 switch (exp->elts[pc].opcode)
8027 {
8028 default:
8029 n += 1;
8030 break;
8031 case OP_CHOICES:
8032 n += exp->elts[pc + 1].longconst;
8033 break;
8034 }
8035 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8036 }
8037 return n;
8038}
8039
8040/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8041 component of LHS (a simple array or a record), updating *POS past
8042 the expression, assuming that LHS is contained in CONTAINER. Does
8043 not modify the inferior's memory, nor does it modify LHS (unless
8044 LHS == CONTAINER). */
8045
8046static void
8047assign_component (struct value *container, struct value *lhs, LONGEST index,
8048 struct expression *exp, int *pos)
8049{
8050 struct value *mark = value_mark ();
8051 struct value *elt;
8052 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8053 {
6d84d3d8 8054 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8055 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8056 }
8057 else
8058 {
8059 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8060 elt = ada_to_fixed_value (unwrap_value (elt));
8061 }
8062
8063 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8064 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8065 else
8066 value_assign_to_component (container, elt,
8067 ada_evaluate_subexp (NULL, exp, pos,
8068 EVAL_NORMAL));
8069
8070 value_free_to_mark (mark);
8071}
8072
8073/* Assuming that LHS represents an lvalue having a record or array
8074 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8075 of that aggregate's value to LHS, advancing *POS past the
8076 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8077 lvalue containing LHS (possibly LHS itself). Does not modify
8078 the inferior's memory, nor does it modify the contents of
8079 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8080
8081static struct value *
8082assign_aggregate (struct value *container,
8083 struct value *lhs, struct expression *exp,
8084 int *pos, enum noside noside)
8085{
8086 struct type *lhs_type;
8087 int n = exp->elts[*pos+1].longconst;
8088 LONGEST low_index, high_index;
8089 int num_specs;
8090 LONGEST *indices;
8091 int max_indices, num_indices;
8092 int is_array_aggregate;
8093 int i;
8094 struct value *mark = value_mark ();
8095
8096 *pos += 3;
8097 if (noside != EVAL_NORMAL)
8098 {
8099 int i;
8100 for (i = 0; i < n; i += 1)
8101 ada_evaluate_subexp (NULL, exp, pos, noside);
8102 return container;
8103 }
8104
8105 container = ada_coerce_ref (container);
8106 if (ada_is_direct_array_type (value_type (container)))
8107 container = ada_coerce_to_simple_array (container);
8108 lhs = ada_coerce_ref (lhs);
8109 if (!deprecated_value_modifiable (lhs))
8110 error (_("Left operand of assignment is not a modifiable lvalue."));
8111
8112 lhs_type = value_type (lhs);
8113 if (ada_is_direct_array_type (lhs_type))
8114 {
8115 lhs = ada_coerce_to_simple_array (lhs);
8116 lhs_type = value_type (lhs);
8117 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8118 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8119 is_array_aggregate = 1;
8120 }
8121 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8122 {
8123 low_index = 0;
8124 high_index = num_visible_fields (lhs_type) - 1;
8125 is_array_aggregate = 0;
8126 }
8127 else
8128 error (_("Left-hand side must be array or record."));
8129
8130 num_specs = num_component_specs (exp, *pos - 3);
8131 max_indices = 4 * num_specs + 4;
8132 indices = alloca (max_indices * sizeof (indices[0]));
8133 indices[0] = indices[1] = low_index - 1;
8134 indices[2] = indices[3] = high_index + 1;
8135 num_indices = 4;
8136
8137 for (i = 0; i < n; i += 1)
8138 {
8139 switch (exp->elts[*pos].opcode)
8140 {
8141 case OP_CHOICES:
8142 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8143 &num_indices, max_indices,
8144 low_index, high_index);
8145 break;
8146 case OP_POSITIONAL:
8147 aggregate_assign_positional (container, lhs, exp, pos, indices,
8148 &num_indices, max_indices,
8149 low_index, high_index);
8150 break;
8151 case OP_OTHERS:
8152 if (i != n-1)
8153 error (_("Misplaced 'others' clause"));
8154 aggregate_assign_others (container, lhs, exp, pos, indices,
8155 num_indices, low_index, high_index);
8156 break;
8157 default:
8158 error (_("Internal error: bad aggregate clause"));
8159 }
8160 }
8161
8162 return container;
8163}
8164
8165/* Assign into the component of LHS indexed by the OP_POSITIONAL
8166 construct at *POS, updating *POS past the construct, given that
8167 the positions are relative to lower bound LOW, where HIGH is the
8168 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8169 updating *NUM_INDICES as needed. CONTAINER is as for
8170 assign_aggregate. */
8171static void
8172aggregate_assign_positional (struct value *container,
8173 struct value *lhs, struct expression *exp,
8174 int *pos, LONGEST *indices, int *num_indices,
8175 int max_indices, LONGEST low, LONGEST high)
8176{
8177 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8178
8179 if (ind - 1 == high)
e1d5a0d2 8180 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8181 if (ind <= high)
8182 {
8183 add_component_interval (ind, ind, indices, num_indices, max_indices);
8184 *pos += 3;
8185 assign_component (container, lhs, ind, exp, pos);
8186 }
8187 else
8188 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8189}
8190
8191/* Assign into the components of LHS indexed by the OP_CHOICES
8192 construct at *POS, updating *POS past the construct, given that
8193 the allowable indices are LOW..HIGH. Record the indices assigned
8194 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8195 needed. CONTAINER is as for assign_aggregate. */
8196static void
8197aggregate_assign_from_choices (struct value *container,
8198 struct value *lhs, struct expression *exp,
8199 int *pos, LONGEST *indices, int *num_indices,
8200 int max_indices, LONGEST low, LONGEST high)
8201{
8202 int j;
8203 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8204 int choice_pos, expr_pc;
8205 int is_array = ada_is_direct_array_type (value_type (lhs));
8206
8207 choice_pos = *pos += 3;
8208
8209 for (j = 0; j < n_choices; j += 1)
8210 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8211 expr_pc = *pos;
8212 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8213
8214 for (j = 0; j < n_choices; j += 1)
8215 {
8216 LONGEST lower, upper;
8217 enum exp_opcode op = exp->elts[choice_pos].opcode;
8218 if (op == OP_DISCRETE_RANGE)
8219 {
8220 choice_pos += 1;
8221 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8222 EVAL_NORMAL));
8223 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8224 EVAL_NORMAL));
8225 }
8226 else if (is_array)
8227 {
8228 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8229 EVAL_NORMAL));
8230 upper = lower;
8231 }
8232 else
8233 {
8234 int ind;
8235 char *name;
8236 switch (op)
8237 {
8238 case OP_NAME:
8239 name = &exp->elts[choice_pos + 2].string;
8240 break;
8241 case OP_VAR_VALUE:
8242 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8243 break;
8244 default:
8245 error (_("Invalid record component association."));
8246 }
8247 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8248 ind = 0;
8249 if (! find_struct_field (name, value_type (lhs), 0,
8250 NULL, NULL, NULL, NULL, &ind))
8251 error (_("Unknown component name: %s."), name);
8252 lower = upper = ind;
8253 }
8254
8255 if (lower <= upper && (lower < low || upper > high))
8256 error (_("Index in component association out of bounds."));
8257
8258 add_component_interval (lower, upper, indices, num_indices,
8259 max_indices);
8260 while (lower <= upper)
8261 {
8262 int pos1;
8263 pos1 = expr_pc;
8264 assign_component (container, lhs, lower, exp, &pos1);
8265 lower += 1;
8266 }
8267 }
8268}
8269
8270/* Assign the value of the expression in the OP_OTHERS construct in
8271 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8272 have not been previously assigned. The index intervals already assigned
8273 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8274 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8275static void
8276aggregate_assign_others (struct value *container,
8277 struct value *lhs, struct expression *exp,
8278 int *pos, LONGEST *indices, int num_indices,
8279 LONGEST low, LONGEST high)
8280{
8281 int i;
8282 int expr_pc = *pos+1;
8283
8284 for (i = 0; i < num_indices - 2; i += 2)
8285 {
8286 LONGEST ind;
8287 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8288 {
8289 int pos;
8290 pos = expr_pc;
8291 assign_component (container, lhs, ind, exp, &pos);
8292 }
8293 }
8294 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8295}
8296
8297/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8298 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8299 modifying *SIZE as needed. It is an error if *SIZE exceeds
8300 MAX_SIZE. The resulting intervals do not overlap. */
8301static void
8302add_component_interval (LONGEST low, LONGEST high,
8303 LONGEST* indices, int *size, int max_size)
8304{
8305 int i, j;
8306 for (i = 0; i < *size; i += 2) {
8307 if (high >= indices[i] && low <= indices[i + 1])
8308 {
8309 int kh;
8310 for (kh = i + 2; kh < *size; kh += 2)
8311 if (high < indices[kh])
8312 break;
8313 if (low < indices[i])
8314 indices[i] = low;
8315 indices[i + 1] = indices[kh - 1];
8316 if (high > indices[i + 1])
8317 indices[i + 1] = high;
8318 memcpy (indices + i + 2, indices + kh, *size - kh);
8319 *size -= kh - i - 2;
8320 return;
8321 }
8322 else if (high < indices[i])
8323 break;
8324 }
8325
8326 if (*size == max_size)
8327 error (_("Internal error: miscounted aggregate components."));
8328 *size += 2;
8329 for (j = *size-1; j >= i+2; j -= 1)
8330 indices[j] = indices[j - 2];
8331 indices[i] = low;
8332 indices[i + 1] = high;
8333}
8334
6e48bd2c
JB
8335/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8336 is different. */
8337
8338static struct value *
8339ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8340{
8341 if (type == ada_check_typedef (value_type (arg2)))
8342 return arg2;
8343
8344 if (ada_is_fixed_point_type (type))
8345 return (cast_to_fixed (type, arg2));
8346
8347 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8348 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8349
8350 return value_cast (type, arg2);
8351}
8352
52ce6436 8353static struct value *
ebf56fd3 8354ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8355 int *pos, enum noside noside)
14f9c5c9
AS
8356{
8357 enum exp_opcode op;
14f9c5c9
AS
8358 int tem, tem2, tem3;
8359 int pc;
8360 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8361 struct type *type;
52ce6436 8362 int nargs, oplen;
d2e4a39e 8363 struct value **argvec;
14f9c5c9 8364
d2e4a39e
AS
8365 pc = *pos;
8366 *pos += 1;
14f9c5c9
AS
8367 op = exp->elts[pc].opcode;
8368
d2e4a39e 8369 switch (op)
14f9c5c9
AS
8370 {
8371 default:
8372 *pos -= 1;
6e48bd2c
JB
8373 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8374 arg1 = unwrap_value (arg1);
8375
8376 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8377 then we need to perform the conversion manually, because
8378 evaluate_subexp_standard doesn't do it. This conversion is
8379 necessary in Ada because the different kinds of float/fixed
8380 types in Ada have different representations.
8381
8382 Similarly, we need to perform the conversion from OP_LONG
8383 ourselves. */
8384 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8385 arg1 = ada_value_cast (expect_type, arg1, noside);
8386
8387 return arg1;
4c4b4cd2
PH
8388
8389 case OP_STRING:
8390 {
76a01679
JB
8391 struct value *result;
8392 *pos -= 1;
8393 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8394 /* The result type will have code OP_STRING, bashed there from
8395 OP_ARRAY. Bash it back. */
df407dfe
AC
8396 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8397 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8398 return result;
4c4b4cd2 8399 }
14f9c5c9
AS
8400
8401 case UNOP_CAST:
8402 (*pos) += 2;
8403 type = exp->elts[pc + 1].type;
8404 arg1 = evaluate_subexp (type, exp, pos, noside);
8405 if (noside == EVAL_SKIP)
4c4b4cd2 8406 goto nosideret;
6e48bd2c 8407 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8408 return arg1;
8409
4c4b4cd2
PH
8410 case UNOP_QUAL:
8411 (*pos) += 2;
8412 type = exp->elts[pc + 1].type;
8413 return ada_evaluate_subexp (type, exp, pos, noside);
8414
14f9c5c9
AS
8415 case BINOP_ASSIGN:
8416 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8417 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8418 {
8419 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8420 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8421 return arg1;
8422 return ada_value_assign (arg1, arg1);
8423 }
003f3813
JB
8424 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8425 except if the lhs of our assignment is a convenience variable.
8426 In the case of assigning to a convenience variable, the lhs
8427 should be exactly the result of the evaluation of the rhs. */
8428 type = value_type (arg1);
8429 if (VALUE_LVAL (arg1) == lval_internalvar)
8430 type = NULL;
8431 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8432 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8433 return arg1;
df407dfe
AC
8434 if (ada_is_fixed_point_type (value_type (arg1)))
8435 arg2 = cast_to_fixed (value_type (arg1), arg2);
8436 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8437 error
323e0a4a 8438 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8439 else
df407dfe 8440 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8441 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8442
8443 case BINOP_ADD:
8444 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8445 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8446 if (noside == EVAL_SKIP)
4c4b4cd2 8447 goto nosideret;
2ac8a782
JB
8448 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8449 return (value_from_longest
8450 (value_type (arg1),
8451 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8452 if ((ada_is_fixed_point_type (value_type (arg1))
8453 || ada_is_fixed_point_type (value_type (arg2)))
8454 && value_type (arg1) != value_type (arg2))
323e0a4a 8455 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8456 /* Do the addition, and cast the result to the type of the first
8457 argument. We cannot cast the result to a reference type, so if
8458 ARG1 is a reference type, find its underlying type. */
8459 type = value_type (arg1);
8460 while (TYPE_CODE (type) == TYPE_CODE_REF)
8461 type = TYPE_TARGET_TYPE (type);
f44316fa 8462 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8463 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8464
8465 case BINOP_SUB:
8466 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8467 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8468 if (noside == EVAL_SKIP)
4c4b4cd2 8469 goto nosideret;
2ac8a782
JB
8470 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8471 return (value_from_longest
8472 (value_type (arg1),
8473 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8474 if ((ada_is_fixed_point_type (value_type (arg1))
8475 || ada_is_fixed_point_type (value_type (arg2)))
8476 && value_type (arg1) != value_type (arg2))
323e0a4a 8477 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8478 /* Do the substraction, and cast the result to the type of the first
8479 argument. We cannot cast the result to a reference type, so if
8480 ARG1 is a reference type, find its underlying type. */
8481 type = value_type (arg1);
8482 while (TYPE_CODE (type) == TYPE_CODE_REF)
8483 type = TYPE_TARGET_TYPE (type);
f44316fa 8484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8485 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8486
8487 case BINOP_MUL:
8488 case BINOP_DIV:
8489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8490 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8491 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8492 goto nosideret;
8493 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8494 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8495 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8496 else
4c4b4cd2 8497 {
a53b7a21 8498 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8499 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8500 arg1 = cast_from_fixed (type, arg1);
df407dfe 8501 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8502 arg2 = cast_from_fixed (type, arg2);
f44316fa 8503 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8504 return ada_value_binop (arg1, arg2, op);
8505 }
8506
8507 case BINOP_REM:
8508 case BINOP_MOD:
8509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8510 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8511 if (noside == EVAL_SKIP)
76a01679 8512 goto nosideret;
4c4b4cd2 8513 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8514 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8515 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8516 else
f44316fa
UW
8517 {
8518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8519 return ada_value_binop (arg1, arg2, op);
8520 }
14f9c5c9 8521
4c4b4cd2
PH
8522 case BINOP_EQUAL:
8523 case BINOP_NOTEQUAL:
14f9c5c9 8524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8525 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8526 if (noside == EVAL_SKIP)
76a01679 8527 goto nosideret;
4c4b4cd2 8528 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8529 tem = 0;
4c4b4cd2 8530 else
f44316fa
UW
8531 {
8532 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8533 tem = ada_value_equal (arg1, arg2);
8534 }
4c4b4cd2 8535 if (op == BINOP_NOTEQUAL)
76a01679 8536 tem = !tem;
fbb06eb1
UW
8537 type = language_bool_type (exp->language_defn, exp->gdbarch);
8538 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8539
8540 case UNOP_NEG:
8541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8542 if (noside == EVAL_SKIP)
8543 goto nosideret;
df407dfe
AC
8544 else if (ada_is_fixed_point_type (value_type (arg1)))
8545 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8546 else
f44316fa
UW
8547 {
8548 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8549 return value_neg (arg1);
8550 }
4c4b4cd2 8551
2330c6c6
JB
8552 case BINOP_LOGICAL_AND:
8553 case BINOP_LOGICAL_OR:
8554 case UNOP_LOGICAL_NOT:
000d5124
JB
8555 {
8556 struct value *val;
8557
8558 *pos -= 1;
8559 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8560 type = language_bool_type (exp->language_defn, exp->gdbarch);
8561 return value_cast (type, val);
000d5124 8562 }
2330c6c6
JB
8563
8564 case BINOP_BITWISE_AND:
8565 case BINOP_BITWISE_IOR:
8566 case BINOP_BITWISE_XOR:
000d5124
JB
8567 {
8568 struct value *val;
8569
8570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8571 *pos = pc;
8572 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8573
8574 return value_cast (value_type (arg1), val);
8575 }
2330c6c6 8576
14f9c5c9
AS
8577 case OP_VAR_VALUE:
8578 *pos -= 1;
6799def4 8579
14f9c5c9 8580 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8581 {
8582 *pos += 4;
8583 goto nosideret;
8584 }
8585 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8586 /* Only encountered when an unresolved symbol occurs in a
8587 context other than a function call, in which case, it is
52ce6436 8588 invalid. */
323e0a4a 8589 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8590 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8591 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8592 {
0c1f74cf
JB
8593 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8594 if (ada_is_tagged_type (type, 0))
8595 {
8596 /* Tagged types are a little special in the fact that the real
8597 type is dynamic and can only be determined by inspecting the
8598 object's tag. This means that we need to get the object's
8599 value first (EVAL_NORMAL) and then extract the actual object
8600 type from its tag.
8601
8602 Note that we cannot skip the final step where we extract
8603 the object type from its tag, because the EVAL_NORMAL phase
8604 results in dynamic components being resolved into fixed ones.
8605 This can cause problems when trying to print the type
8606 description of tagged types whose parent has a dynamic size:
8607 We use the type name of the "_parent" component in order
8608 to print the name of the ancestor type in the type description.
8609 If that component had a dynamic size, the resolution into
8610 a fixed type would result in the loss of that type name,
8611 thus preventing us from printing the name of the ancestor
8612 type in the type description. */
8613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8614 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8615 }
8616
4c4b4cd2
PH
8617 *pos += 4;
8618 return value_zero
8619 (to_static_fixed_type
8620 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8621 not_lval);
8622 }
d2e4a39e 8623 else
4c4b4cd2
PH
8624 {
8625 arg1 =
8626 unwrap_value (evaluate_subexp_standard
8627 (expect_type, exp, pos, noside));
8628 return ada_to_fixed_value (arg1);
8629 }
8630
8631 case OP_FUNCALL:
8632 (*pos) += 2;
8633
8634 /* Allocate arg vector, including space for the function to be
8635 called in argvec[0] and a terminating NULL. */
8636 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8637 argvec =
8638 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8639
8640 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8641 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8642 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8643 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8644 else
8645 {
8646 for (tem = 0; tem <= nargs; tem += 1)
8647 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8648 argvec[tem] = 0;
8649
8650 if (noside == EVAL_SKIP)
8651 goto nosideret;
8652 }
8653
df407dfe 8654 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8655 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8656 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8657 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8658 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8659 argvec[0] = value_addr (argvec[0]);
8660
df407dfe 8661 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8662 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8663 {
61ee279c 8664 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8665 {
8666 case TYPE_CODE_FUNC:
61ee279c 8667 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8668 break;
8669 case TYPE_CODE_ARRAY:
8670 break;
8671 case TYPE_CODE_STRUCT:
8672 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8673 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8674 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8675 break;
8676 default:
323e0a4a 8677 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8678 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8679 break;
8680 }
8681 }
8682
8683 switch (TYPE_CODE (type))
8684 {
8685 case TYPE_CODE_FUNC:
8686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8687 return allocate_value (TYPE_TARGET_TYPE (type));
8688 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8689 case TYPE_CODE_STRUCT:
8690 {
8691 int arity;
8692
4c4b4cd2
PH
8693 arity = ada_array_arity (type);
8694 type = ada_array_element_type (type, nargs);
8695 if (type == NULL)
323e0a4a 8696 error (_("cannot subscript or call a record"));
4c4b4cd2 8697 if (arity != nargs)
323e0a4a 8698 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8700 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8701 return
8702 unwrap_value (ada_value_subscript
8703 (argvec[0], nargs, argvec + 1));
8704 }
8705 case TYPE_CODE_ARRAY:
8706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8707 {
8708 type = ada_array_element_type (type, nargs);
8709 if (type == NULL)
323e0a4a 8710 error (_("element type of array unknown"));
4c4b4cd2 8711 else
0a07e705 8712 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8713 }
8714 return
8715 unwrap_value (ada_value_subscript
8716 (ada_coerce_to_simple_array (argvec[0]),
8717 nargs, argvec + 1));
8718 case TYPE_CODE_PTR: /* Pointer to array */
8719 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8720 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8721 {
8722 type = ada_array_element_type (type, nargs);
8723 if (type == NULL)
323e0a4a 8724 error (_("element type of array unknown"));
4c4b4cd2 8725 else
0a07e705 8726 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8727 }
8728 return
8729 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8730 nargs, argvec + 1));
8731
8732 default:
e1d5a0d2
PH
8733 error (_("Attempt to index or call something other than an "
8734 "array or function"));
4c4b4cd2
PH
8735 }
8736
8737 case TERNOP_SLICE:
8738 {
8739 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8740 struct value *low_bound_val =
8741 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8742 struct value *high_bound_val =
8743 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8744 LONGEST low_bound;
8745 LONGEST high_bound;
994b9211
AC
8746 low_bound_val = coerce_ref (low_bound_val);
8747 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8748 low_bound = pos_atr (low_bound_val);
8749 high_bound = pos_atr (high_bound_val);
963a6417 8750
4c4b4cd2
PH
8751 if (noside == EVAL_SKIP)
8752 goto nosideret;
8753
4c4b4cd2
PH
8754 /* If this is a reference to an aligner type, then remove all
8755 the aligners. */
df407dfe
AC
8756 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8757 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8758 TYPE_TARGET_TYPE (value_type (array)) =
8759 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8760
df407dfe 8761 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8762 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8763
8764 /* If this is a reference to an array or an array lvalue,
8765 convert to a pointer. */
df407dfe
AC
8766 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8767 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8768 && VALUE_LVAL (array) == lval_memory))
8769 array = value_addr (array);
8770
1265e4aa 8771 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8772 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8773 (value_type (array))))
0b5d8877 8774 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8775
8776 array = ada_coerce_to_simple_array_ptr (array);
8777
714e53ab
PH
8778 /* If we have more than one level of pointer indirection,
8779 dereference the value until we get only one level. */
df407dfe
AC
8780 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8781 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8782 == TYPE_CODE_PTR))
8783 array = value_ind (array);
8784
8785 /* Make sure we really do have an array type before going further,
8786 to avoid a SEGV when trying to get the index type or the target
8787 type later down the road if the debug info generated by
8788 the compiler is incorrect or incomplete. */
df407dfe 8789 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8790 error (_("cannot take slice of non-array"));
714e53ab 8791
df407dfe 8792 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8793 {
0b5d8877 8794 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8795 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8796 low_bound);
8797 else
8798 {
8799 struct type *arr_type0 =
df407dfe 8800 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8801 NULL, 1);
f5938064
JG
8802 return ada_value_slice_from_ptr (array, arr_type0,
8803 longest_to_int (low_bound),
8804 longest_to_int (high_bound));
4c4b4cd2
PH
8805 }
8806 }
8807 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8808 return array;
8809 else if (high_bound < low_bound)
df407dfe 8810 return empty_array (value_type (array), low_bound);
4c4b4cd2 8811 else
529cad9c
PH
8812 return ada_value_slice (array, longest_to_int (low_bound),
8813 longest_to_int (high_bound));
4c4b4cd2 8814 }
14f9c5c9 8815
4c4b4cd2
PH
8816 case UNOP_IN_RANGE:
8817 (*pos) += 2;
8818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8819 type = exp->elts[pc + 1].type;
14f9c5c9 8820
14f9c5c9 8821 if (noside == EVAL_SKIP)
4c4b4cd2 8822 goto nosideret;
14f9c5c9 8823
4c4b4cd2
PH
8824 switch (TYPE_CODE (type))
8825 {
8826 default:
e1d5a0d2
PH
8827 lim_warning (_("Membership test incompletely implemented; "
8828 "always returns true"));
fbb06eb1
UW
8829 type = language_bool_type (exp->language_defn, exp->gdbarch);
8830 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8831
8832 case TYPE_CODE_RANGE:
030b4912
UW
8833 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8834 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8837 type = language_bool_type (exp->language_defn, exp->gdbarch);
8838 return
8839 value_from_longest (type,
4c4b4cd2
PH
8840 (value_less (arg1, arg3)
8841 || value_equal (arg1, arg3))
8842 && (value_less (arg2, arg1)
8843 || value_equal (arg2, arg1)));
8844 }
8845
8846 case BINOP_IN_BOUNDS:
14f9c5c9 8847 (*pos) += 2;
4c4b4cd2
PH
8848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8849 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8850
4c4b4cd2
PH
8851 if (noside == EVAL_SKIP)
8852 goto nosideret;
14f9c5c9 8853
4c4b4cd2 8854 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8855 {
8856 type = language_bool_type (exp->language_defn, exp->gdbarch);
8857 return value_zero (type, not_lval);
8858 }
14f9c5c9 8859
4c4b4cd2 8860 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8861
df407dfe 8862 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8863 error (_("invalid dimension number to 'range"));
14f9c5c9 8864
4c4b4cd2
PH
8865 arg3 = ada_array_bound (arg2, tem, 1);
8866 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8867
f44316fa
UW
8868 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8870 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8871 return
fbb06eb1 8872 value_from_longest (type,
4c4b4cd2
PH
8873 (value_less (arg1, arg3)
8874 || value_equal (arg1, arg3))
8875 && (value_less (arg2, arg1)
8876 || value_equal (arg2, arg1)));
8877
8878 case TERNOP_IN_RANGE:
8879 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8880 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8881 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8882
8883 if (noside == EVAL_SKIP)
8884 goto nosideret;
8885
f44316fa
UW
8886 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8888 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8889 return
fbb06eb1 8890 value_from_longest (type,
4c4b4cd2
PH
8891 (value_less (arg1, arg3)
8892 || value_equal (arg1, arg3))
8893 && (value_less (arg2, arg1)
8894 || value_equal (arg2, arg1)));
8895
8896 case OP_ATR_FIRST:
8897 case OP_ATR_LAST:
8898 case OP_ATR_LENGTH:
8899 {
76a01679
JB
8900 struct type *type_arg;
8901 if (exp->elts[*pos].opcode == OP_TYPE)
8902 {
8903 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8904 arg1 = NULL;
8905 type_arg = exp->elts[pc + 2].type;
8906 }
8907 else
8908 {
8909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8910 type_arg = NULL;
8911 }
8912
8913 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8914 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8915 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8916 *pos += 4;
8917
8918 if (noside == EVAL_SKIP)
8919 goto nosideret;
8920
8921 if (type_arg == NULL)
8922 {
8923 arg1 = ada_coerce_ref (arg1);
8924
df407dfe 8925 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8926 arg1 = ada_coerce_to_simple_array (arg1);
8927
df407dfe 8928 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8929 error (_("invalid dimension number to '%s"),
76a01679
JB
8930 ada_attribute_name (op));
8931
8932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8933 {
df407dfe 8934 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8935 if (type == NULL)
8936 error
323e0a4a 8937 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8938 return allocate_value (type);
8939 }
8940
8941 switch (op)
8942 {
8943 default: /* Should never happen. */
323e0a4a 8944 error (_("unexpected attribute encountered"));
76a01679
JB
8945 case OP_ATR_FIRST:
8946 return ada_array_bound (arg1, tem, 0);
8947 case OP_ATR_LAST:
8948 return ada_array_bound (arg1, tem, 1);
8949 case OP_ATR_LENGTH:
8950 return ada_array_length (arg1, tem);
8951 }
8952 }
8953 else if (discrete_type_p (type_arg))
8954 {
8955 struct type *range_type;
8956 char *name = ada_type_name (type_arg);
8957 range_type = NULL;
8958 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8959 range_type =
8960 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8961 if (range_type == NULL)
8962 range_type = type_arg;
8963 switch (op)
8964 {
8965 default:
323e0a4a 8966 error (_("unexpected attribute encountered"));
76a01679 8967 case OP_ATR_FIRST:
690cc4eb
PH
8968 return value_from_longest
8969 (range_type, discrete_type_low_bound (range_type));
76a01679 8970 case OP_ATR_LAST:
690cc4eb
PH
8971 return value_from_longest
8972 (range_type, discrete_type_high_bound (range_type));
76a01679 8973 case OP_ATR_LENGTH:
323e0a4a 8974 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8975 }
8976 }
8977 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8978 error (_("unimplemented type attribute"));
76a01679
JB
8979 else
8980 {
8981 LONGEST low, high;
8982
8983 if (ada_is_packed_array_type (type_arg))
8984 type_arg = decode_packed_array_type (type_arg);
8985
8986 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8987 error (_("invalid dimension number to '%s"),
76a01679
JB
8988 ada_attribute_name (op));
8989
8990 type = ada_index_type (type_arg, tem);
8991 if (type == NULL)
8992 error
323e0a4a 8993 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8995 return allocate_value (type);
8996
8997 switch (op)
8998 {
8999 default:
323e0a4a 9000 error (_("unexpected attribute encountered"));
76a01679
JB
9001 case OP_ATR_FIRST:
9002 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9003 return value_from_longest (type, low);
9004 case OP_ATR_LAST:
9005 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9006 return value_from_longest (type, high);
9007 case OP_ATR_LENGTH:
9008 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9009 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9010 return value_from_longest (type, high - low + 1);
9011 }
9012 }
14f9c5c9
AS
9013 }
9014
4c4b4cd2
PH
9015 case OP_ATR_TAG:
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 if (noside == EVAL_SKIP)
76a01679 9018 goto nosideret;
4c4b4cd2
PH
9019
9020 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9021 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9022
9023 return ada_value_tag (arg1);
9024
9025 case OP_ATR_MIN:
9026 case OP_ATR_MAX:
9027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9028 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9029 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 if (noside == EVAL_SKIP)
76a01679 9031 goto nosideret;
d2e4a39e 9032 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9033 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9034 else
f44316fa
UW
9035 {
9036 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9037 return value_binop (arg1, arg2,
9038 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9039 }
14f9c5c9 9040
4c4b4cd2
PH
9041 case OP_ATR_MODULUS:
9042 {
76a01679
JB
9043 struct type *type_arg = exp->elts[pc + 2].type;
9044 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9045
76a01679
JB
9046 if (noside == EVAL_SKIP)
9047 goto nosideret;
4c4b4cd2 9048
76a01679 9049 if (!ada_is_modular_type (type_arg))
323e0a4a 9050 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9051
76a01679
JB
9052 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9053 ada_modulus (type_arg));
4c4b4cd2
PH
9054 }
9055
9056
9057 case OP_ATR_POS:
9058 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9060 if (noside == EVAL_SKIP)
76a01679 9061 goto nosideret;
3cb382c9
UW
9062 type = builtin_type (exp->gdbarch)->builtin_int;
9063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9064 return value_zero (type, not_lval);
14f9c5c9 9065 else
3cb382c9 9066 return value_pos_atr (type, arg1);
14f9c5c9 9067
4c4b4cd2
PH
9068 case OP_ATR_SIZE:
9069 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9070 type = value_type (arg1);
9071
9072 /* If the argument is a reference, then dereference its type, since
9073 the user is really asking for the size of the actual object,
9074 not the size of the pointer. */
9075 if (TYPE_CODE (type) == TYPE_CODE_REF)
9076 type = TYPE_TARGET_TYPE (type);
9077
4c4b4cd2 9078 if (noside == EVAL_SKIP)
76a01679 9079 goto nosideret;
4c4b4cd2 9080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9081 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9082 else
6d2e05aa 9083 return value_from_longest (builtin_type_int32,
8c1c099f 9084 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9085
9086 case OP_ATR_VAL:
9087 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9089 type = exp->elts[pc + 2].type;
14f9c5c9 9090 if (noside == EVAL_SKIP)
76a01679 9091 goto nosideret;
4c4b4cd2 9092 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9093 return value_zero (type, not_lval);
4c4b4cd2 9094 else
76a01679 9095 return value_val_atr (type, arg1);
4c4b4cd2
PH
9096
9097 case BINOP_EXP:
9098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9099 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 if (noside == EVAL_SKIP)
9101 goto nosideret;
9102 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9103 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9104 else
f44316fa
UW
9105 {
9106 /* For integer exponentiation operations,
9107 only promote the first argument. */
9108 if (is_integral_type (value_type (arg2)))
9109 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9110 else
9111 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9112
9113 return value_binop (arg1, arg2, op);
9114 }
4c4b4cd2
PH
9115
9116 case UNOP_PLUS:
9117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9118 if (noside == EVAL_SKIP)
9119 goto nosideret;
9120 else
9121 return arg1;
9122
9123 case UNOP_ABS:
9124 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9125 if (noside == EVAL_SKIP)
9126 goto nosideret;
f44316fa 9127 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9128 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9129 return value_neg (arg1);
14f9c5c9 9130 else
4c4b4cd2 9131 return arg1;
14f9c5c9
AS
9132
9133 case UNOP_IND:
6b0d7253 9134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9135 if (noside == EVAL_SKIP)
4c4b4cd2 9136 goto nosideret;
df407dfe 9137 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9139 {
9140 if (ada_is_array_descriptor_type (type))
9141 /* GDB allows dereferencing GNAT array descriptors. */
9142 {
9143 struct type *arrType = ada_type_of_array (arg1, 0);
9144 if (arrType == NULL)
323e0a4a 9145 error (_("Attempt to dereference null array pointer."));
00a4c844 9146 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9147 }
9148 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9149 || TYPE_CODE (type) == TYPE_CODE_REF
9150 /* In C you can dereference an array to get the 1st elt. */
9151 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9152 {
9153 type = to_static_fixed_type
9154 (ada_aligned_type
9155 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9156 check_size (type);
9157 return value_zero (type, lval_memory);
9158 }
4c4b4cd2 9159 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9160 {
9161 /* GDB allows dereferencing an int. */
9162 if (expect_type == NULL)
9163 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9164 lval_memory);
9165 else
9166 {
9167 expect_type =
9168 to_static_fixed_type (ada_aligned_type (expect_type));
9169 return value_zero (expect_type, lval_memory);
9170 }
9171 }
4c4b4cd2 9172 else
323e0a4a 9173 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9174 }
76a01679 9175 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9176 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9177
96967637
JB
9178 if (TYPE_CODE (type) == TYPE_CODE_INT)
9179 /* GDB allows dereferencing an int. If we were given
9180 the expect_type, then use that as the target type.
9181 Otherwise, assume that the target type is an int. */
9182 {
9183 if (expect_type != NULL)
9184 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9185 arg1));
9186 else
9187 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9188 (CORE_ADDR) value_as_address (arg1));
9189 }
6b0d7253 9190
4c4b4cd2
PH
9191 if (ada_is_array_descriptor_type (type))
9192 /* GDB allows dereferencing GNAT array descriptors. */
9193 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9194 else
4c4b4cd2 9195 return ada_value_ind (arg1);
14f9c5c9
AS
9196
9197 case STRUCTOP_STRUCT:
9198 tem = longest_to_int (exp->elts[pc + 1].longconst);
9199 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9200 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9201 if (noside == EVAL_SKIP)
4c4b4cd2 9202 goto nosideret;
14f9c5c9 9203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9204 {
df407dfe 9205 struct type *type1 = value_type (arg1);
76a01679
JB
9206 if (ada_is_tagged_type (type1, 1))
9207 {
9208 type = ada_lookup_struct_elt_type (type1,
9209 &exp->elts[pc + 2].string,
9210 1, 1, NULL);
9211 if (type == NULL)
9212 /* In this case, we assume that the field COULD exist
9213 in some extension of the type. Return an object of
9214 "type" void, which will match any formal
9215 (see ada_type_match). */
9216 return value_zero (builtin_type_void, lval_memory);
9217 }
9218 else
9219 type =
9220 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9221 0, NULL);
9222
9223 return value_zero (ada_aligned_type (type), lval_memory);
9224 }
14f9c5c9 9225 else
76a01679
JB
9226 return
9227 ada_to_fixed_value (unwrap_value
9228 (ada_value_struct_elt
03ee6b2e 9229 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9230 case OP_TYPE:
4c4b4cd2
PH
9231 /* The value is not supposed to be used. This is here to make it
9232 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9233 (*pos) += 2;
9234 if (noside == EVAL_SKIP)
4c4b4cd2 9235 goto nosideret;
14f9c5c9 9236 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9237 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9238 else
323e0a4a 9239 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9240
9241 case OP_AGGREGATE:
9242 case OP_CHOICES:
9243 case OP_OTHERS:
9244 case OP_DISCRETE_RANGE:
9245 case OP_POSITIONAL:
9246 case OP_NAME:
9247 if (noside == EVAL_NORMAL)
9248 switch (op)
9249 {
9250 case OP_NAME:
9251 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9252 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9253 case OP_AGGREGATE:
9254 error (_("Aggregates only allowed on the right of an assignment"));
9255 default:
e1d5a0d2 9256 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9257 }
9258
9259 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9260 *pos += oplen - 1;
9261 for (tem = 0; tem < nargs; tem += 1)
9262 ada_evaluate_subexp (NULL, exp, pos, noside);
9263 goto nosideret;
14f9c5c9
AS
9264 }
9265
9266nosideret:
cb18ec49 9267 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9268}
14f9c5c9 9269\f
d2e4a39e 9270
4c4b4cd2 9271 /* Fixed point */
14f9c5c9
AS
9272
9273/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9274 type name that encodes the 'small and 'delta information.
4c4b4cd2 9275 Otherwise, return NULL. */
14f9c5c9 9276
d2e4a39e 9277static const char *
ebf56fd3 9278fixed_type_info (struct type *type)
14f9c5c9 9279{
d2e4a39e 9280 const char *name = ada_type_name (type);
14f9c5c9
AS
9281 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9282
d2e4a39e
AS
9283 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9284 {
14f9c5c9
AS
9285 const char *tail = strstr (name, "___XF_");
9286 if (tail == NULL)
4c4b4cd2 9287 return NULL;
d2e4a39e 9288 else
4c4b4cd2 9289 return tail + 5;
14f9c5c9
AS
9290 }
9291 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9292 return fixed_type_info (TYPE_TARGET_TYPE (type));
9293 else
9294 return NULL;
9295}
9296
4c4b4cd2 9297/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9298
9299int
ebf56fd3 9300ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9301{
9302 return fixed_type_info (type) != NULL;
9303}
9304
4c4b4cd2
PH
9305/* Return non-zero iff TYPE represents a System.Address type. */
9306
9307int
9308ada_is_system_address_type (struct type *type)
9309{
9310 return (TYPE_NAME (type)
9311 && strcmp (TYPE_NAME (type), "system__address") == 0);
9312}
9313
14f9c5c9
AS
9314/* Assuming that TYPE is the representation of an Ada fixed-point
9315 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9316 delta cannot be determined. */
14f9c5c9
AS
9317
9318DOUBLEST
ebf56fd3 9319ada_delta (struct type *type)
14f9c5c9
AS
9320{
9321 const char *encoding = fixed_type_info (type);
9322 long num, den;
9323
9324 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9325 return -1.0;
d2e4a39e 9326 else
14f9c5c9
AS
9327 return (DOUBLEST) num / (DOUBLEST) den;
9328}
9329
9330/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9331 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9332
9333static DOUBLEST
ebf56fd3 9334scaling_factor (struct type *type)
14f9c5c9
AS
9335{
9336 const char *encoding = fixed_type_info (type);
9337 unsigned long num0, den0, num1, den1;
9338 int n;
d2e4a39e 9339
14f9c5c9
AS
9340 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9341
9342 if (n < 2)
9343 return 1.0;
9344 else if (n == 4)
9345 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9346 else
14f9c5c9
AS
9347 return (DOUBLEST) num0 / (DOUBLEST) den0;
9348}
9349
9350
9351/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9352 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9353
9354DOUBLEST
ebf56fd3 9355ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9356{
d2e4a39e 9357 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9358}
9359
4c4b4cd2
PH
9360/* The representation of a fixed-point value of type TYPE
9361 corresponding to the value X. */
14f9c5c9
AS
9362
9363LONGEST
ebf56fd3 9364ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9365{
9366 return (LONGEST) (x / scaling_factor (type) + 0.5);
9367}
9368
9369
4c4b4cd2 9370 /* VAX floating formats */
14f9c5c9
AS
9371
9372/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9373 types. */
9374
14f9c5c9 9375int
d2e4a39e 9376ada_is_vax_floating_type (struct type *type)
14f9c5c9 9377{
d2e4a39e 9378 int name_len =
14f9c5c9 9379 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9380 return
14f9c5c9 9381 name_len > 6
d2e4a39e 9382 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9383 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9384 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9385}
9386
9387/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9388 ada_is_vax_floating_point. */
9389
14f9c5c9 9390int
d2e4a39e 9391ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9392{
d2e4a39e 9393 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9394}
9395
4c4b4cd2 9396/* A value representing the special debugging function that outputs
14f9c5c9 9397 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9398 ada_is_vax_floating_type (TYPE). */
9399
d2e4a39e
AS
9400struct value *
9401ada_vax_float_print_function (struct type *type)
9402{
9403 switch (ada_vax_float_type_suffix (type))
9404 {
9405 case 'F':
9406 return get_var_value ("DEBUG_STRING_F", 0);
9407 case 'D':
9408 return get_var_value ("DEBUG_STRING_D", 0);
9409 case 'G':
9410 return get_var_value ("DEBUG_STRING_G", 0);
9411 default:
323e0a4a 9412 error (_("invalid VAX floating-point type"));
d2e4a39e 9413 }
14f9c5c9 9414}
14f9c5c9 9415\f
d2e4a39e 9416
4c4b4cd2 9417 /* Range types */
14f9c5c9
AS
9418
9419/* Scan STR beginning at position K for a discriminant name, and
9420 return the value of that discriminant field of DVAL in *PX. If
9421 PNEW_K is not null, put the position of the character beyond the
9422 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9423 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9424
9425static int
07d8f827 9426scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9427 int *pnew_k)
14f9c5c9
AS
9428{
9429 static char *bound_buffer = NULL;
9430 static size_t bound_buffer_len = 0;
9431 char *bound;
9432 char *pend;
d2e4a39e 9433 struct value *bound_val;
14f9c5c9
AS
9434
9435 if (dval == NULL || str == NULL || str[k] == '\0')
9436 return 0;
9437
d2e4a39e 9438 pend = strstr (str + k, "__");
14f9c5c9
AS
9439 if (pend == NULL)
9440 {
d2e4a39e 9441 bound = str + k;
14f9c5c9
AS
9442 k += strlen (bound);
9443 }
d2e4a39e 9444 else
14f9c5c9 9445 {
d2e4a39e 9446 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9447 bound = bound_buffer;
d2e4a39e
AS
9448 strncpy (bound_buffer, str + k, pend - (str + k));
9449 bound[pend - (str + k)] = '\0';
9450 k = pend - str;
14f9c5c9 9451 }
d2e4a39e 9452
df407dfe 9453 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9454 if (bound_val == NULL)
9455 return 0;
9456
9457 *px = value_as_long (bound_val);
9458 if (pnew_k != NULL)
9459 *pnew_k = k;
9460 return 1;
9461}
9462
9463/* Value of variable named NAME in the current environment. If
9464 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9465 otherwise causes an error with message ERR_MSG. */
9466
d2e4a39e
AS
9467static struct value *
9468get_var_value (char *name, char *err_msg)
14f9c5c9 9469{
4c4b4cd2 9470 struct ada_symbol_info *syms;
14f9c5c9
AS
9471 int nsyms;
9472
4c4b4cd2
PH
9473 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9474 &syms);
14f9c5c9
AS
9475
9476 if (nsyms != 1)
9477 {
9478 if (err_msg == NULL)
4c4b4cd2 9479 return 0;
14f9c5c9 9480 else
8a3fe4f8 9481 error (("%s"), err_msg);
14f9c5c9
AS
9482 }
9483
4c4b4cd2 9484 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9485}
d2e4a39e 9486
14f9c5c9 9487/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9488 no such variable found, returns 0, and sets *FLAG to 0. If
9489 successful, sets *FLAG to 1. */
9490
14f9c5c9 9491LONGEST
4c4b4cd2 9492get_int_var_value (char *name, int *flag)
14f9c5c9 9493{
4c4b4cd2 9494 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9495
14f9c5c9
AS
9496 if (var_val == 0)
9497 {
9498 if (flag != NULL)
4c4b4cd2 9499 *flag = 0;
14f9c5c9
AS
9500 return 0;
9501 }
9502 else
9503 {
9504 if (flag != NULL)
4c4b4cd2 9505 *flag = 1;
14f9c5c9
AS
9506 return value_as_long (var_val);
9507 }
9508}
d2e4a39e 9509
14f9c5c9
AS
9510
9511/* Return a range type whose base type is that of the range type named
9512 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9513 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9514 Extract discriminant values, if needed, from DVAL. If a new type
9515 must be created, allocate in OBJFILE's space. The bounds
9516 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9517 the named range type. */
14f9c5c9 9518
d2e4a39e 9519static struct type *
ebf56fd3 9520to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9521{
9522 struct type *raw_type = ada_find_any_type (name);
9523 struct type *base_type;
d2e4a39e 9524 char *subtype_info;
14f9c5c9
AS
9525
9526 if (raw_type == NULL)
6d84d3d8 9527 base_type = builtin_type_int32;
14f9c5c9
AS
9528 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9529 base_type = TYPE_TARGET_TYPE (raw_type);
9530 else
9531 base_type = raw_type;
9532
9533 subtype_info = strstr (name, "___XD");
9534 if (subtype_info == NULL)
690cc4eb
PH
9535 {
9536 LONGEST L = discrete_type_low_bound (raw_type);
9537 LONGEST U = discrete_type_high_bound (raw_type);
9538 if (L < INT_MIN || U > INT_MAX)
9539 return raw_type;
9540 else
9541 return create_range_type (alloc_type (objfile), raw_type,
9542 discrete_type_low_bound (raw_type),
9543 discrete_type_high_bound (raw_type));
9544 }
14f9c5c9
AS
9545 else
9546 {
9547 static char *name_buf = NULL;
9548 static size_t name_len = 0;
9549 int prefix_len = subtype_info - name;
9550 LONGEST L, U;
9551 struct type *type;
9552 char *bounds_str;
9553 int n;
9554
9555 GROW_VECT (name_buf, name_len, prefix_len + 5);
9556 strncpy (name_buf, name, prefix_len);
9557 name_buf[prefix_len] = '\0';
9558
9559 subtype_info += 5;
9560 bounds_str = strchr (subtype_info, '_');
9561 n = 1;
9562
d2e4a39e 9563 if (*subtype_info == 'L')
4c4b4cd2
PH
9564 {
9565 if (!ada_scan_number (bounds_str, n, &L, &n)
9566 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9567 return raw_type;
9568 if (bounds_str[n] == '_')
9569 n += 2;
9570 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9571 n += 1;
9572 subtype_info += 1;
9573 }
d2e4a39e 9574 else
4c4b4cd2
PH
9575 {
9576 int ok;
9577 strcpy (name_buf + prefix_len, "___L");
9578 L = get_int_var_value (name_buf, &ok);
9579 if (!ok)
9580 {
323e0a4a 9581 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9582 L = 1;
9583 }
9584 }
14f9c5c9 9585
d2e4a39e 9586 if (*subtype_info == 'U')
4c4b4cd2
PH
9587 {
9588 if (!ada_scan_number (bounds_str, n, &U, &n)
9589 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9590 return raw_type;
9591 }
d2e4a39e 9592 else
4c4b4cd2
PH
9593 {
9594 int ok;
9595 strcpy (name_buf + prefix_len, "___U");
9596 U = get_int_var_value (name_buf, &ok);
9597 if (!ok)
9598 {
323e0a4a 9599 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9600 U = L;
9601 }
9602 }
14f9c5c9 9603
d2e4a39e 9604 if (objfile == NULL)
4c4b4cd2 9605 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9606 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9607 TYPE_NAME (type) = name;
14f9c5c9
AS
9608 return type;
9609 }
9610}
9611
4c4b4cd2
PH
9612/* True iff NAME is the name of a range type. */
9613
14f9c5c9 9614int
d2e4a39e 9615ada_is_range_type_name (const char *name)
14f9c5c9
AS
9616{
9617 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9618}
14f9c5c9 9619\f
d2e4a39e 9620
4c4b4cd2
PH
9621 /* Modular types */
9622
9623/* True iff TYPE is an Ada modular type. */
14f9c5c9 9624
14f9c5c9 9625int
d2e4a39e 9626ada_is_modular_type (struct type *type)
14f9c5c9 9627{
4c4b4cd2 9628 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9629
9630 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9631 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9632 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9633}
9634
4c4b4cd2
PH
9635/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9636
61ee279c 9637ULONGEST
d2e4a39e 9638ada_modulus (struct type * type)
14f9c5c9 9639{
d37209fd 9640 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9641}
d2e4a39e 9642\f
f7f9143b
JB
9643
9644/* Ada exception catchpoint support:
9645 ---------------------------------
9646
9647 We support 3 kinds of exception catchpoints:
9648 . catchpoints on Ada exceptions
9649 . catchpoints on unhandled Ada exceptions
9650 . catchpoints on failed assertions
9651
9652 Exceptions raised during failed assertions, or unhandled exceptions
9653 could perfectly be caught with the general catchpoint on Ada exceptions.
9654 However, we can easily differentiate these two special cases, and having
9655 the option to distinguish these two cases from the rest can be useful
9656 to zero-in on certain situations.
9657
9658 Exception catchpoints are a specialized form of breakpoint,
9659 since they rely on inserting breakpoints inside known routines
9660 of the GNAT runtime. The implementation therefore uses a standard
9661 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9662 of breakpoint_ops.
9663
0259addd
JB
9664 Support in the runtime for exception catchpoints have been changed
9665 a few times already, and these changes affect the implementation
9666 of these catchpoints. In order to be able to support several
9667 variants of the runtime, we use a sniffer that will determine
9668 the runtime variant used by the program being debugged.
9669
f7f9143b
JB
9670 At this time, we do not support the use of conditions on Ada exception
9671 catchpoints. The COND and COND_STRING fields are therefore set
9672 to NULL (most of the time, see below).
9673
9674 Conditions where EXP_STRING, COND, and COND_STRING are used:
9675
9676 When a user specifies the name of a specific exception in the case
9677 of catchpoints on Ada exceptions, we store the name of that exception
9678 in the EXP_STRING. We then translate this request into an actual
9679 condition stored in COND_STRING, and then parse it into an expression
9680 stored in COND. */
9681
9682/* The different types of catchpoints that we introduced for catching
9683 Ada exceptions. */
9684
9685enum exception_catchpoint_kind
9686{
9687 ex_catch_exception,
9688 ex_catch_exception_unhandled,
9689 ex_catch_assert
9690};
9691
3d0b0fa3
JB
9692/* Ada's standard exceptions. */
9693
9694static char *standard_exc[] = {
9695 "constraint_error",
9696 "program_error",
9697 "storage_error",
9698 "tasking_error"
9699};
9700
0259addd
JB
9701typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9702
9703/* A structure that describes how to support exception catchpoints
9704 for a given executable. */
9705
9706struct exception_support_info
9707{
9708 /* The name of the symbol to break on in order to insert
9709 a catchpoint on exceptions. */
9710 const char *catch_exception_sym;
9711
9712 /* The name of the symbol to break on in order to insert
9713 a catchpoint on unhandled exceptions. */
9714 const char *catch_exception_unhandled_sym;
9715
9716 /* The name of the symbol to break on in order to insert
9717 a catchpoint on failed assertions. */
9718 const char *catch_assert_sym;
9719
9720 /* Assuming that the inferior just triggered an unhandled exception
9721 catchpoint, this function is responsible for returning the address
9722 in inferior memory where the name of that exception is stored.
9723 Return zero if the address could not be computed. */
9724 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9725};
9726
9727static CORE_ADDR ada_unhandled_exception_name_addr (void);
9728static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9729
9730/* The following exception support info structure describes how to
9731 implement exception catchpoints with the latest version of the
9732 Ada runtime (as of 2007-03-06). */
9733
9734static const struct exception_support_info default_exception_support_info =
9735{
9736 "__gnat_debug_raise_exception", /* catch_exception_sym */
9737 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9738 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9739 ada_unhandled_exception_name_addr
9740};
9741
9742/* The following exception support info structure describes how to
9743 implement exception catchpoints with a slightly older version
9744 of the Ada runtime. */
9745
9746static const struct exception_support_info exception_support_info_fallback =
9747{
9748 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9749 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9750 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9751 ada_unhandled_exception_name_addr_from_raise
9752};
9753
9754/* For each executable, we sniff which exception info structure to use
9755 and cache it in the following global variable. */
9756
9757static const struct exception_support_info *exception_info = NULL;
9758
9759/* Inspect the Ada runtime and determine which exception info structure
9760 should be used to provide support for exception catchpoints.
9761
9762 This function will always set exception_info, or raise an error. */
9763
9764static void
9765ada_exception_support_info_sniffer (void)
9766{
9767 struct symbol *sym;
9768
9769 /* If the exception info is already known, then no need to recompute it. */
9770 if (exception_info != NULL)
9771 return;
9772
9773 /* Check the latest (default) exception support info. */
9774 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9775 NULL, VAR_DOMAIN);
9776 if (sym != NULL)
9777 {
9778 exception_info = &default_exception_support_info;
9779 return;
9780 }
9781
9782 /* Try our fallback exception suport info. */
9783 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9784 NULL, VAR_DOMAIN);
9785 if (sym != NULL)
9786 {
9787 exception_info = &exception_support_info_fallback;
9788 return;
9789 }
9790
9791 /* Sometimes, it is normal for us to not be able to find the routine
9792 we are looking for. This happens when the program is linked with
9793 the shared version of the GNAT runtime, and the program has not been
9794 started yet. Inform the user of these two possible causes if
9795 applicable. */
9796
9797 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9798 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9799
9800 /* If the symbol does not exist, then check that the program is
9801 already started, to make sure that shared libraries have been
9802 loaded. If it is not started, this may mean that the symbol is
9803 in a shared library. */
9804
9805 if (ptid_get_pid (inferior_ptid) == 0)
9806 error (_("Unable to insert catchpoint. Try to start the program first."));
9807
9808 /* At this point, we know that we are debugging an Ada program and
9809 that the inferior has been started, but we still are not able to
9810 find the run-time symbols. That can mean that we are in
9811 configurable run time mode, or that a-except as been optimized
9812 out by the linker... In any case, at this point it is not worth
9813 supporting this feature. */
9814
9815 error (_("Cannot insert catchpoints in this configuration."));
9816}
9817
9818/* An observer of "executable_changed" events.
9819 Its role is to clear certain cached values that need to be recomputed
9820 each time a new executable is loaded by GDB. */
9821
9822static void
781b42b0 9823ada_executable_changed_observer (void)
0259addd
JB
9824{
9825 /* If the executable changed, then it is possible that the Ada runtime
9826 is different. So we need to invalidate the exception support info
9827 cache. */
9828 exception_info = NULL;
9829}
9830
f7f9143b
JB
9831/* Return the name of the function at PC, NULL if could not find it.
9832 This function only checks the debugging information, not the symbol
9833 table. */
9834
9835static char *
9836function_name_from_pc (CORE_ADDR pc)
9837{
9838 char *func_name;
9839
9840 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9841 return NULL;
9842
9843 return func_name;
9844}
9845
9846/* True iff FRAME is very likely to be that of a function that is
9847 part of the runtime system. This is all very heuristic, but is
9848 intended to be used as advice as to what frames are uninteresting
9849 to most users. */
9850
9851static int
9852is_known_support_routine (struct frame_info *frame)
9853{
4ed6b5be 9854 struct symtab_and_line sal;
f7f9143b
JB
9855 char *func_name;
9856 int i;
f7f9143b 9857
4ed6b5be
JB
9858 /* If this code does not have any debugging information (no symtab),
9859 This cannot be any user code. */
f7f9143b 9860
4ed6b5be 9861 find_frame_sal (frame, &sal);
f7f9143b
JB
9862 if (sal.symtab == NULL)
9863 return 1;
9864
4ed6b5be
JB
9865 /* If there is a symtab, but the associated source file cannot be
9866 located, then assume this is not user code: Selecting a frame
9867 for which we cannot display the code would not be very helpful
9868 for the user. This should also take care of case such as VxWorks
9869 where the kernel has some debugging info provided for a few units. */
f7f9143b 9870
9bbc9174 9871 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9872 return 1;
9873
4ed6b5be
JB
9874 /* Check the unit filename againt the Ada runtime file naming.
9875 We also check the name of the objfile against the name of some
9876 known system libraries that sometimes come with debugging info
9877 too. */
9878
f7f9143b
JB
9879 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9880 {
9881 re_comp (known_runtime_file_name_patterns[i]);
9882 if (re_exec (sal.symtab->filename))
9883 return 1;
4ed6b5be
JB
9884 if (sal.symtab->objfile != NULL
9885 && re_exec (sal.symtab->objfile->name))
9886 return 1;
f7f9143b
JB
9887 }
9888
4ed6b5be 9889 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9890
4ed6b5be 9891 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9892 if (func_name == NULL)
9893 return 1;
9894
9895 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9896 {
9897 re_comp (known_auxiliary_function_name_patterns[i]);
9898 if (re_exec (func_name))
9899 return 1;
9900 }
9901
9902 return 0;
9903}
9904
9905/* Find the first frame that contains debugging information and that is not
9906 part of the Ada run-time, starting from FI and moving upward. */
9907
0ef643c8 9908void
f7f9143b
JB
9909ada_find_printable_frame (struct frame_info *fi)
9910{
9911 for (; fi != NULL; fi = get_prev_frame (fi))
9912 {
9913 if (!is_known_support_routine (fi))
9914 {
9915 select_frame (fi);
9916 break;
9917 }
9918 }
9919
9920}
9921
9922/* Assuming that the inferior just triggered an unhandled exception
9923 catchpoint, return the address in inferior memory where the name
9924 of the exception is stored.
9925
9926 Return zero if the address could not be computed. */
9927
9928static CORE_ADDR
9929ada_unhandled_exception_name_addr (void)
0259addd
JB
9930{
9931 return parse_and_eval_address ("e.full_name");
9932}
9933
9934/* Same as ada_unhandled_exception_name_addr, except that this function
9935 should be used when the inferior uses an older version of the runtime,
9936 where the exception name needs to be extracted from a specific frame
9937 several frames up in the callstack. */
9938
9939static CORE_ADDR
9940ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9941{
9942 int frame_level;
9943 struct frame_info *fi;
9944
9945 /* To determine the name of this exception, we need to select
9946 the frame corresponding to RAISE_SYM_NAME. This frame is
9947 at least 3 levels up, so we simply skip the first 3 frames
9948 without checking the name of their associated function. */
9949 fi = get_current_frame ();
9950 for (frame_level = 0; frame_level < 3; frame_level += 1)
9951 if (fi != NULL)
9952 fi = get_prev_frame (fi);
9953
9954 while (fi != NULL)
9955 {
9956 const char *func_name =
9957 function_name_from_pc (get_frame_address_in_block (fi));
9958 if (func_name != NULL
0259addd 9959 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9960 break; /* We found the frame we were looking for... */
9961 fi = get_prev_frame (fi);
9962 }
9963
9964 if (fi == NULL)
9965 return 0;
9966
9967 select_frame (fi);
9968 return parse_and_eval_address ("id.full_name");
9969}
9970
9971/* Assuming the inferior just triggered an Ada exception catchpoint
9972 (of any type), return the address in inferior memory where the name
9973 of the exception is stored, if applicable.
9974
9975 Return zero if the address could not be computed, or if not relevant. */
9976
9977static CORE_ADDR
9978ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9979 struct breakpoint *b)
9980{
9981 switch (ex)
9982 {
9983 case ex_catch_exception:
9984 return (parse_and_eval_address ("e.full_name"));
9985 break;
9986
9987 case ex_catch_exception_unhandled:
0259addd 9988 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9989 break;
9990
9991 case ex_catch_assert:
9992 return 0; /* Exception name is not relevant in this case. */
9993 break;
9994
9995 default:
9996 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9997 break;
9998 }
9999
10000 return 0; /* Should never be reached. */
10001}
10002
10003/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10004 any error that ada_exception_name_addr_1 might cause to be thrown.
10005 When an error is intercepted, a warning with the error message is printed,
10006 and zero is returned. */
10007
10008static CORE_ADDR
10009ada_exception_name_addr (enum exception_catchpoint_kind ex,
10010 struct breakpoint *b)
10011{
10012 struct gdb_exception e;
10013 CORE_ADDR result = 0;
10014
10015 TRY_CATCH (e, RETURN_MASK_ERROR)
10016 {
10017 result = ada_exception_name_addr_1 (ex, b);
10018 }
10019
10020 if (e.reason < 0)
10021 {
10022 warning (_("failed to get exception name: %s"), e.message);
10023 return 0;
10024 }
10025
10026 return result;
10027}
10028
10029/* Implement the PRINT_IT method in the breakpoint_ops structure
10030 for all exception catchpoint kinds. */
10031
10032static enum print_stop_action
10033print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10034{
10035 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10036 char exception_name[256];
10037
10038 if (addr != 0)
10039 {
10040 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10041 exception_name [sizeof (exception_name) - 1] = '\0';
10042 }
10043
10044 ada_find_printable_frame (get_current_frame ());
10045
10046 annotate_catchpoint (b->number);
10047 switch (ex)
10048 {
10049 case ex_catch_exception:
10050 if (addr != 0)
10051 printf_filtered (_("\nCatchpoint %d, %s at "),
10052 b->number, exception_name);
10053 else
10054 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10055 break;
10056 case ex_catch_exception_unhandled:
10057 if (addr != 0)
10058 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10059 b->number, exception_name);
10060 else
10061 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10062 b->number);
10063 break;
10064 case ex_catch_assert:
10065 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10066 b->number);
10067 break;
10068 }
10069
10070 return PRINT_SRC_AND_LOC;
10071}
10072
10073/* Implement the PRINT_ONE method in the breakpoint_ops structure
10074 for all exception catchpoint kinds. */
10075
10076static void
10077print_one_exception (enum exception_catchpoint_kind ex,
10078 struct breakpoint *b, CORE_ADDR *last_addr)
10079{
79a45b7d
TT
10080 struct value_print_options opts;
10081
10082 get_user_print_options (&opts);
10083 if (opts.addressprint)
f7f9143b
JB
10084 {
10085 annotate_field (4);
10086 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10087 }
10088
10089 annotate_field (5);
10090 *last_addr = b->loc->address;
10091 switch (ex)
10092 {
10093 case ex_catch_exception:
10094 if (b->exp_string != NULL)
10095 {
10096 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10097
10098 ui_out_field_string (uiout, "what", msg);
10099 xfree (msg);
10100 }
10101 else
10102 ui_out_field_string (uiout, "what", "all Ada exceptions");
10103
10104 break;
10105
10106 case ex_catch_exception_unhandled:
10107 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10108 break;
10109
10110 case ex_catch_assert:
10111 ui_out_field_string (uiout, "what", "failed Ada assertions");
10112 break;
10113
10114 default:
10115 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10116 break;
10117 }
10118}
10119
10120/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10121 for all exception catchpoint kinds. */
10122
10123static void
10124print_mention_exception (enum exception_catchpoint_kind ex,
10125 struct breakpoint *b)
10126{
10127 switch (ex)
10128 {
10129 case ex_catch_exception:
10130 if (b->exp_string != NULL)
10131 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10132 b->number, b->exp_string);
10133 else
10134 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10135
10136 break;
10137
10138 case ex_catch_exception_unhandled:
10139 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10140 b->number);
10141 break;
10142
10143 case ex_catch_assert:
10144 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10145 break;
10146
10147 default:
10148 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10149 break;
10150 }
10151}
10152
10153/* Virtual table for "catch exception" breakpoints. */
10154
10155static enum print_stop_action
10156print_it_catch_exception (struct breakpoint *b)
10157{
10158 return print_it_exception (ex_catch_exception, b);
10159}
10160
10161static void
10162print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10163{
10164 print_one_exception (ex_catch_exception, b, last_addr);
10165}
10166
10167static void
10168print_mention_catch_exception (struct breakpoint *b)
10169{
10170 print_mention_exception (ex_catch_exception, b);
10171}
10172
10173static struct breakpoint_ops catch_exception_breakpoint_ops =
10174{
ce78b96d
JB
10175 NULL, /* insert */
10176 NULL, /* remove */
10177 NULL, /* breakpoint_hit */
f7f9143b
JB
10178 print_it_catch_exception,
10179 print_one_catch_exception,
10180 print_mention_catch_exception
10181};
10182
10183/* Virtual table for "catch exception unhandled" breakpoints. */
10184
10185static enum print_stop_action
10186print_it_catch_exception_unhandled (struct breakpoint *b)
10187{
10188 return print_it_exception (ex_catch_exception_unhandled, b);
10189}
10190
10191static void
10192print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10193{
10194 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10195}
10196
10197static void
10198print_mention_catch_exception_unhandled (struct breakpoint *b)
10199{
10200 print_mention_exception (ex_catch_exception_unhandled, b);
10201}
10202
10203static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10204 NULL, /* insert */
10205 NULL, /* remove */
10206 NULL, /* breakpoint_hit */
f7f9143b
JB
10207 print_it_catch_exception_unhandled,
10208 print_one_catch_exception_unhandled,
10209 print_mention_catch_exception_unhandled
10210};
10211
10212/* Virtual table for "catch assert" breakpoints. */
10213
10214static enum print_stop_action
10215print_it_catch_assert (struct breakpoint *b)
10216{
10217 return print_it_exception (ex_catch_assert, b);
10218}
10219
10220static void
10221print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10222{
10223 print_one_exception (ex_catch_assert, b, last_addr);
10224}
10225
10226static void
10227print_mention_catch_assert (struct breakpoint *b)
10228{
10229 print_mention_exception (ex_catch_assert, b);
10230}
10231
10232static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10233 NULL, /* insert */
10234 NULL, /* remove */
10235 NULL, /* breakpoint_hit */
f7f9143b
JB
10236 print_it_catch_assert,
10237 print_one_catch_assert,
10238 print_mention_catch_assert
10239};
10240
10241/* Return non-zero if B is an Ada exception catchpoint. */
10242
10243int
10244ada_exception_catchpoint_p (struct breakpoint *b)
10245{
10246 return (b->ops == &catch_exception_breakpoint_ops
10247 || b->ops == &catch_exception_unhandled_breakpoint_ops
10248 || b->ops == &catch_assert_breakpoint_ops);
10249}
10250
f7f9143b
JB
10251/* Return a newly allocated copy of the first space-separated token
10252 in ARGSP, and then adjust ARGSP to point immediately after that
10253 token.
10254
10255 Return NULL if ARGPS does not contain any more tokens. */
10256
10257static char *
10258ada_get_next_arg (char **argsp)
10259{
10260 char *args = *argsp;
10261 char *end;
10262 char *result;
10263
10264 /* Skip any leading white space. */
10265
10266 while (isspace (*args))
10267 args++;
10268
10269 if (args[0] == '\0')
10270 return NULL; /* No more arguments. */
10271
10272 /* Find the end of the current argument. */
10273
10274 end = args;
10275 while (*end != '\0' && !isspace (*end))
10276 end++;
10277
10278 /* Adjust ARGSP to point to the start of the next argument. */
10279
10280 *argsp = end;
10281
10282 /* Make a copy of the current argument and return it. */
10283
10284 result = xmalloc (end - args + 1);
10285 strncpy (result, args, end - args);
10286 result[end - args] = '\0';
10287
10288 return result;
10289}
10290
10291/* Split the arguments specified in a "catch exception" command.
10292 Set EX to the appropriate catchpoint type.
10293 Set EXP_STRING to the name of the specific exception if
10294 specified by the user. */
10295
10296static void
10297catch_ada_exception_command_split (char *args,
10298 enum exception_catchpoint_kind *ex,
10299 char **exp_string)
10300{
10301 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10302 char *exception_name;
10303
10304 exception_name = ada_get_next_arg (&args);
10305 make_cleanup (xfree, exception_name);
10306
10307 /* Check that we do not have any more arguments. Anything else
10308 is unexpected. */
10309
10310 while (isspace (*args))
10311 args++;
10312
10313 if (args[0] != '\0')
10314 error (_("Junk at end of expression"));
10315
10316 discard_cleanups (old_chain);
10317
10318 if (exception_name == NULL)
10319 {
10320 /* Catch all exceptions. */
10321 *ex = ex_catch_exception;
10322 *exp_string = NULL;
10323 }
10324 else if (strcmp (exception_name, "unhandled") == 0)
10325 {
10326 /* Catch unhandled exceptions. */
10327 *ex = ex_catch_exception_unhandled;
10328 *exp_string = NULL;
10329 }
10330 else
10331 {
10332 /* Catch a specific exception. */
10333 *ex = ex_catch_exception;
10334 *exp_string = exception_name;
10335 }
10336}
10337
10338/* Return the name of the symbol on which we should break in order to
10339 implement a catchpoint of the EX kind. */
10340
10341static const char *
10342ada_exception_sym_name (enum exception_catchpoint_kind ex)
10343{
0259addd
JB
10344 gdb_assert (exception_info != NULL);
10345
f7f9143b
JB
10346 switch (ex)
10347 {
10348 case ex_catch_exception:
0259addd 10349 return (exception_info->catch_exception_sym);
f7f9143b
JB
10350 break;
10351 case ex_catch_exception_unhandled:
0259addd 10352 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10353 break;
10354 case ex_catch_assert:
0259addd 10355 return (exception_info->catch_assert_sym);
f7f9143b
JB
10356 break;
10357 default:
10358 internal_error (__FILE__, __LINE__,
10359 _("unexpected catchpoint kind (%d)"), ex);
10360 }
10361}
10362
10363/* Return the breakpoint ops "virtual table" used for catchpoints
10364 of the EX kind. */
10365
10366static struct breakpoint_ops *
4b9eee8c 10367ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10368{
10369 switch (ex)
10370 {
10371 case ex_catch_exception:
10372 return (&catch_exception_breakpoint_ops);
10373 break;
10374 case ex_catch_exception_unhandled:
10375 return (&catch_exception_unhandled_breakpoint_ops);
10376 break;
10377 case ex_catch_assert:
10378 return (&catch_assert_breakpoint_ops);
10379 break;
10380 default:
10381 internal_error (__FILE__, __LINE__,
10382 _("unexpected catchpoint kind (%d)"), ex);
10383 }
10384}
10385
10386/* Return the condition that will be used to match the current exception
10387 being raised with the exception that the user wants to catch. This
10388 assumes that this condition is used when the inferior just triggered
10389 an exception catchpoint.
10390
10391 The string returned is a newly allocated string that needs to be
10392 deallocated later. */
10393
10394static char *
10395ada_exception_catchpoint_cond_string (const char *exp_string)
10396{
3d0b0fa3
JB
10397 int i;
10398
10399 /* The standard exceptions are a special case. They are defined in
10400 runtime units that have been compiled without debugging info; if
10401 EXP_STRING is the not-fully-qualified name of a standard
10402 exception (e.g. "constraint_error") then, during the evaluation
10403 of the condition expression, the symbol lookup on this name would
10404 *not* return this standard exception. The catchpoint condition
10405 may then be set only on user-defined exceptions which have the
10406 same not-fully-qualified name (e.g. my_package.constraint_error).
10407
10408 To avoid this unexcepted behavior, these standard exceptions are
10409 systematically prefixed by "standard". This means that "catch
10410 exception constraint_error" is rewritten into "catch exception
10411 standard.constraint_error".
10412
10413 If an exception named contraint_error is defined in another package of
10414 the inferior program, then the only way to specify this exception as a
10415 breakpoint condition is to use its fully-qualified named:
10416 e.g. my_package.constraint_error. */
10417
10418 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10419 {
10420 if (strcmp (standard_exc [i], exp_string) == 0)
10421 {
10422 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10423 exp_string);
10424 }
10425 }
f7f9143b
JB
10426 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10427}
10428
10429/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10430
10431static struct expression *
10432ada_parse_catchpoint_condition (char *cond_string,
10433 struct symtab_and_line sal)
10434{
10435 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10436}
10437
10438/* Return the symtab_and_line that should be used to insert an exception
10439 catchpoint of the TYPE kind.
10440
10441 EX_STRING should contain the name of a specific exception
10442 that the catchpoint should catch, or NULL otherwise.
10443
10444 The idea behind all the remaining parameters is that their names match
10445 the name of certain fields in the breakpoint structure that are used to
10446 handle exception catchpoints. This function returns the value to which
10447 these fields should be set, depending on the type of catchpoint we need
10448 to create.
10449
10450 If COND and COND_STRING are both non-NULL, any value they might
10451 hold will be free'ed, and then replaced by newly allocated ones.
10452 These parameters are left untouched otherwise. */
10453
10454static struct symtab_and_line
10455ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10456 char **addr_string, char **cond_string,
10457 struct expression **cond, struct breakpoint_ops **ops)
10458{
10459 const char *sym_name;
10460 struct symbol *sym;
10461 struct symtab_and_line sal;
10462
0259addd
JB
10463 /* First, find out which exception support info to use. */
10464 ada_exception_support_info_sniffer ();
10465
10466 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10467 the Ada exceptions requested by the user. */
10468
10469 sym_name = ada_exception_sym_name (ex);
10470 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10471
10472 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10473 that should be compiled with debugging information. As a result, we
10474 expect to find that symbol in the symtabs. If we don't find it, then
10475 the target most likely does not support Ada exceptions, or we cannot
10476 insert exception breakpoints yet, because the GNAT runtime hasn't been
10477 loaded yet. */
10478
10479 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10480 in such a way that no debugging information is produced for the symbol
10481 we are looking for. In this case, we could search the minimal symbols
10482 as a fall-back mechanism. This would still be operating in degraded
10483 mode, however, as we would still be missing the debugging information
10484 that is needed in order to extract the name of the exception being
10485 raised (this name is printed in the catchpoint message, and is also
10486 used when trying to catch a specific exception). We do not handle
10487 this case for now. */
10488
10489 if (sym == NULL)
0259addd 10490 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10491
10492 /* Make sure that the symbol we found corresponds to a function. */
10493 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10494 error (_("Symbol \"%s\" is not a function (class = %d)"),
10495 sym_name, SYMBOL_CLASS (sym));
10496
10497 sal = find_function_start_sal (sym, 1);
10498
10499 /* Set ADDR_STRING. */
10500
10501 *addr_string = xstrdup (sym_name);
10502
10503 /* Set the COND and COND_STRING (if not NULL). */
10504
10505 if (cond_string != NULL && cond != NULL)
10506 {
10507 if (*cond_string != NULL)
10508 {
10509 xfree (*cond_string);
10510 *cond_string = NULL;
10511 }
10512 if (*cond != NULL)
10513 {
10514 xfree (*cond);
10515 *cond = NULL;
10516 }
10517 if (exp_string != NULL)
10518 {
10519 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10520 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10521 }
10522 }
10523
10524 /* Set OPS. */
4b9eee8c 10525 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10526
10527 return sal;
10528}
10529
10530/* Parse the arguments (ARGS) of the "catch exception" command.
10531
10532 Set TYPE to the appropriate exception catchpoint type.
10533 If the user asked the catchpoint to catch only a specific
10534 exception, then save the exception name in ADDR_STRING.
10535
10536 See ada_exception_sal for a description of all the remaining
10537 function arguments of this function. */
10538
10539struct symtab_and_line
10540ada_decode_exception_location (char *args, char **addr_string,
10541 char **exp_string, char **cond_string,
10542 struct expression **cond,
10543 struct breakpoint_ops **ops)
10544{
10545 enum exception_catchpoint_kind ex;
10546
10547 catch_ada_exception_command_split (args, &ex, exp_string);
10548 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10549 cond, ops);
10550}
10551
10552struct symtab_and_line
10553ada_decode_assert_location (char *args, char **addr_string,
10554 struct breakpoint_ops **ops)
10555{
10556 /* Check that no argument where provided at the end of the command. */
10557
10558 if (args != NULL)
10559 {
10560 while (isspace (*args))
10561 args++;
10562 if (*args != '\0')
10563 error (_("Junk at end of arguments."));
10564 }
10565
10566 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10567 ops);
10568}
10569
4c4b4cd2
PH
10570 /* Operators */
10571/* Information about operators given special treatment in functions
10572 below. */
10573/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10574
10575#define ADA_OPERATORS \
10576 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10577 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10578 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10579 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10580 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10581 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10582 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10583 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10584 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10585 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10586 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10587 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10588 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10589 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10590 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10591 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10592 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10593 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10594 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10595
10596static void
10597ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10598{
10599 switch (exp->elts[pc - 1].opcode)
10600 {
76a01679 10601 default:
4c4b4cd2
PH
10602 operator_length_standard (exp, pc, oplenp, argsp);
10603 break;
10604
10605#define OP_DEFN(op, len, args, binop) \
10606 case op: *oplenp = len; *argsp = args; break;
10607 ADA_OPERATORS;
10608#undef OP_DEFN
52ce6436
PH
10609
10610 case OP_AGGREGATE:
10611 *oplenp = 3;
10612 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10613 break;
10614
10615 case OP_CHOICES:
10616 *oplenp = 3;
10617 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10618 break;
4c4b4cd2
PH
10619 }
10620}
10621
10622static char *
10623ada_op_name (enum exp_opcode opcode)
10624{
10625 switch (opcode)
10626 {
76a01679 10627 default:
4c4b4cd2 10628 return op_name_standard (opcode);
52ce6436 10629
4c4b4cd2
PH
10630#define OP_DEFN(op, len, args, binop) case op: return #op;
10631 ADA_OPERATORS;
10632#undef OP_DEFN
52ce6436
PH
10633
10634 case OP_AGGREGATE:
10635 return "OP_AGGREGATE";
10636 case OP_CHOICES:
10637 return "OP_CHOICES";
10638 case OP_NAME:
10639 return "OP_NAME";
4c4b4cd2
PH
10640 }
10641}
10642
10643/* As for operator_length, but assumes PC is pointing at the first
10644 element of the operator, and gives meaningful results only for the
52ce6436 10645 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10646
10647static void
76a01679
JB
10648ada_forward_operator_length (struct expression *exp, int pc,
10649 int *oplenp, int *argsp)
4c4b4cd2 10650{
76a01679 10651 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10652 {
10653 default:
10654 *oplenp = *argsp = 0;
10655 break;
52ce6436 10656
4c4b4cd2
PH
10657#define OP_DEFN(op, len, args, binop) \
10658 case op: *oplenp = len; *argsp = args; break;
10659 ADA_OPERATORS;
10660#undef OP_DEFN
52ce6436
PH
10661
10662 case OP_AGGREGATE:
10663 *oplenp = 3;
10664 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10665 break;
10666
10667 case OP_CHOICES:
10668 *oplenp = 3;
10669 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10670 break;
10671
10672 case OP_STRING:
10673 case OP_NAME:
10674 {
10675 int len = longest_to_int (exp->elts[pc + 1].longconst);
10676 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10677 *argsp = 0;
10678 break;
10679 }
4c4b4cd2
PH
10680 }
10681}
10682
10683static int
10684ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10685{
10686 enum exp_opcode op = exp->elts[elt].opcode;
10687 int oplen, nargs;
10688 int pc = elt;
10689 int i;
76a01679 10690
4c4b4cd2
PH
10691 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10692
76a01679 10693 switch (op)
4c4b4cd2 10694 {
76a01679 10695 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10696 case OP_ATR_FIRST:
10697 case OP_ATR_LAST:
10698 case OP_ATR_LENGTH:
10699 case OP_ATR_IMAGE:
10700 case OP_ATR_MAX:
10701 case OP_ATR_MIN:
10702 case OP_ATR_MODULUS:
10703 case OP_ATR_POS:
10704 case OP_ATR_SIZE:
10705 case OP_ATR_TAG:
10706 case OP_ATR_VAL:
10707 break;
10708
10709 case UNOP_IN_RANGE:
10710 case UNOP_QUAL:
323e0a4a
AC
10711 /* XXX: gdb_sprint_host_address, type_sprint */
10712 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10713 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10714 fprintf_filtered (stream, " (");
10715 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10716 fprintf_filtered (stream, ")");
10717 break;
10718 case BINOP_IN_BOUNDS:
52ce6436
PH
10719 fprintf_filtered (stream, " (%d)",
10720 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10721 break;
10722 case TERNOP_IN_RANGE:
10723 break;
10724
52ce6436
PH
10725 case OP_AGGREGATE:
10726 case OP_OTHERS:
10727 case OP_DISCRETE_RANGE:
10728 case OP_POSITIONAL:
10729 case OP_CHOICES:
10730 break;
10731
10732 case OP_NAME:
10733 case OP_STRING:
10734 {
10735 char *name = &exp->elts[elt + 2].string;
10736 int len = longest_to_int (exp->elts[elt + 1].longconst);
10737 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10738 break;
10739 }
10740
4c4b4cd2
PH
10741 default:
10742 return dump_subexp_body_standard (exp, stream, elt);
10743 }
10744
10745 elt += oplen;
10746 for (i = 0; i < nargs; i += 1)
10747 elt = dump_subexp (exp, stream, elt);
10748
10749 return elt;
10750}
10751
10752/* The Ada extension of print_subexp (q.v.). */
10753
76a01679
JB
10754static void
10755ada_print_subexp (struct expression *exp, int *pos,
10756 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10757{
52ce6436 10758 int oplen, nargs, i;
4c4b4cd2
PH
10759 int pc = *pos;
10760 enum exp_opcode op = exp->elts[pc].opcode;
10761
10762 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10763
52ce6436 10764 *pos += oplen;
4c4b4cd2
PH
10765 switch (op)
10766 {
10767 default:
52ce6436 10768 *pos -= oplen;
4c4b4cd2
PH
10769 print_subexp_standard (exp, pos, stream, prec);
10770 return;
10771
10772 case OP_VAR_VALUE:
4c4b4cd2
PH
10773 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10774 return;
10775
10776 case BINOP_IN_BOUNDS:
323e0a4a 10777 /* XXX: sprint_subexp */
4c4b4cd2 10778 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10779 fputs_filtered (" in ", stream);
4c4b4cd2 10780 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10781 fputs_filtered ("'range", stream);
4c4b4cd2 10782 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10783 fprintf_filtered (stream, "(%ld)",
10784 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10785 return;
10786
10787 case TERNOP_IN_RANGE:
4c4b4cd2 10788 if (prec >= PREC_EQUAL)
76a01679 10789 fputs_filtered ("(", stream);
323e0a4a 10790 /* XXX: sprint_subexp */
4c4b4cd2 10791 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10792 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10793 print_subexp (exp, pos, stream, PREC_EQUAL);
10794 fputs_filtered (" .. ", stream);
10795 print_subexp (exp, pos, stream, PREC_EQUAL);
10796 if (prec >= PREC_EQUAL)
76a01679
JB
10797 fputs_filtered (")", stream);
10798 return;
4c4b4cd2
PH
10799
10800 case OP_ATR_FIRST:
10801 case OP_ATR_LAST:
10802 case OP_ATR_LENGTH:
10803 case OP_ATR_IMAGE:
10804 case OP_ATR_MAX:
10805 case OP_ATR_MIN:
10806 case OP_ATR_MODULUS:
10807 case OP_ATR_POS:
10808 case OP_ATR_SIZE:
10809 case OP_ATR_TAG:
10810 case OP_ATR_VAL:
4c4b4cd2 10811 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10812 {
10813 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10814 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10815 *pos += 3;
10816 }
4c4b4cd2 10817 else
76a01679 10818 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10819 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10820 if (nargs > 1)
76a01679
JB
10821 {
10822 int tem;
10823 for (tem = 1; tem < nargs; tem += 1)
10824 {
10825 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10826 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10827 }
10828 fputs_filtered (")", stream);
10829 }
4c4b4cd2 10830 return;
14f9c5c9 10831
4c4b4cd2 10832 case UNOP_QUAL:
4c4b4cd2
PH
10833 type_print (exp->elts[pc + 1].type, "", stream, 0);
10834 fputs_filtered ("'(", stream);
10835 print_subexp (exp, pos, stream, PREC_PREFIX);
10836 fputs_filtered (")", stream);
10837 return;
14f9c5c9 10838
4c4b4cd2 10839 case UNOP_IN_RANGE:
323e0a4a 10840 /* XXX: sprint_subexp */
4c4b4cd2 10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10842 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10843 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10844 return;
52ce6436
PH
10845
10846 case OP_DISCRETE_RANGE:
10847 print_subexp (exp, pos, stream, PREC_SUFFIX);
10848 fputs_filtered ("..", stream);
10849 print_subexp (exp, pos, stream, PREC_SUFFIX);
10850 return;
10851
10852 case OP_OTHERS:
10853 fputs_filtered ("others => ", stream);
10854 print_subexp (exp, pos, stream, PREC_SUFFIX);
10855 return;
10856
10857 case OP_CHOICES:
10858 for (i = 0; i < nargs-1; i += 1)
10859 {
10860 if (i > 0)
10861 fputs_filtered ("|", stream);
10862 print_subexp (exp, pos, stream, PREC_SUFFIX);
10863 }
10864 fputs_filtered (" => ", stream);
10865 print_subexp (exp, pos, stream, PREC_SUFFIX);
10866 return;
10867
10868 case OP_POSITIONAL:
10869 print_subexp (exp, pos, stream, PREC_SUFFIX);
10870 return;
10871
10872 case OP_AGGREGATE:
10873 fputs_filtered ("(", stream);
10874 for (i = 0; i < nargs; i += 1)
10875 {
10876 if (i > 0)
10877 fputs_filtered (", ", stream);
10878 print_subexp (exp, pos, stream, PREC_SUFFIX);
10879 }
10880 fputs_filtered (")", stream);
10881 return;
4c4b4cd2
PH
10882 }
10883}
14f9c5c9
AS
10884
10885/* Table mapping opcodes into strings for printing operators
10886 and precedences of the operators. */
10887
d2e4a39e
AS
10888static const struct op_print ada_op_print_tab[] = {
10889 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10890 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10891 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10892 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10893 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10894 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10895 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10896 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10897 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10898 {">=", BINOP_GEQ, PREC_ORDER, 0},
10899 {">", BINOP_GTR, PREC_ORDER, 0},
10900 {"<", BINOP_LESS, PREC_ORDER, 0},
10901 {">>", BINOP_RSH, PREC_SHIFT, 0},
10902 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10903 {"+", BINOP_ADD, PREC_ADD, 0},
10904 {"-", BINOP_SUB, PREC_ADD, 0},
10905 {"&", BINOP_CONCAT, PREC_ADD, 0},
10906 {"*", BINOP_MUL, PREC_MUL, 0},
10907 {"/", BINOP_DIV, PREC_MUL, 0},
10908 {"rem", BINOP_REM, PREC_MUL, 0},
10909 {"mod", BINOP_MOD, PREC_MUL, 0},
10910 {"**", BINOP_EXP, PREC_REPEAT, 0},
10911 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10912 {"-", UNOP_NEG, PREC_PREFIX, 0},
10913 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10914 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10915 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10916 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10917 {".all", UNOP_IND, PREC_SUFFIX, 1},
10918 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10919 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10920 {NULL, 0, 0, 0}
14f9c5c9
AS
10921};
10922\f
72d5681a
PH
10923enum ada_primitive_types {
10924 ada_primitive_type_int,
10925 ada_primitive_type_long,
10926 ada_primitive_type_short,
10927 ada_primitive_type_char,
10928 ada_primitive_type_float,
10929 ada_primitive_type_double,
10930 ada_primitive_type_void,
10931 ada_primitive_type_long_long,
10932 ada_primitive_type_long_double,
10933 ada_primitive_type_natural,
10934 ada_primitive_type_positive,
10935 ada_primitive_type_system_address,
10936 nr_ada_primitive_types
10937};
6c038f32
PH
10938
10939static void
d4a9a881 10940ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10941 struct language_arch_info *lai)
10942{
d4a9a881 10943 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10944 lai->primitive_type_vector
d4a9a881 10945 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10946 struct type *);
10947 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10948 init_type (TYPE_CODE_INT,
d4a9a881 10949 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10950 0, "integer", (struct objfile *) NULL);
72d5681a 10951 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10952 init_type (TYPE_CODE_INT,
d4a9a881 10953 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10954 0, "long_integer", (struct objfile *) NULL);
72d5681a 10955 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10956 init_type (TYPE_CODE_INT,
d4a9a881 10957 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10958 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10959 lai->string_char_type =
10960 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10961 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10962 0, "character", (struct objfile *) NULL);
72d5681a 10963 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10964 init_type (TYPE_CODE_FLT,
d4a9a881 10965 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10966 0, "float", (struct objfile *) NULL);
72d5681a 10967 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10968 init_type (TYPE_CODE_FLT,
d4a9a881 10969 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10970 0, "long_float", (struct objfile *) NULL);
72d5681a 10971 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10972 init_type (TYPE_CODE_INT,
d4a9a881 10973 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10974 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10975 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10976 init_type (TYPE_CODE_FLT,
d4a9a881 10977 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10978 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10979 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10980 init_type (TYPE_CODE_INT,
d4a9a881 10981 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10982 0, "natural", (struct objfile *) NULL);
72d5681a 10983 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10984 init_type (TYPE_CODE_INT,
d4a9a881 10985 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10986 0, "positive", (struct objfile *) NULL);
72d5681a 10987 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10988
72d5681a 10989 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10990 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10991 (struct objfile *) NULL));
72d5681a
PH
10992 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10993 = "system__address";
fbb06eb1
UW
10994
10995 lai->bool_type_symbol = "boolean";
10996 lai->bool_type_default = builtin->builtin_bool;
6c038f32 10997}
6c038f32
PH
10998\f
10999 /* Language vector */
11000
11001/* Not really used, but needed in the ada_language_defn. */
11002
11003static void
11004emit_char (int c, struct ui_file *stream, int quoter)
11005{
11006 ada_emit_char (c, stream, quoter, 1);
11007}
11008
11009static int
11010parse (void)
11011{
11012 warnings_issued = 0;
11013 return ada_parse ();
11014}
11015
11016static const struct exp_descriptor ada_exp_descriptor = {
11017 ada_print_subexp,
11018 ada_operator_length,
11019 ada_op_name,
11020 ada_dump_subexp_body,
11021 ada_evaluate_subexp
11022};
11023
11024const struct language_defn ada_language_defn = {
11025 "ada", /* Language name */
11026 language_ada,
6c038f32
PH
11027 range_check_off,
11028 type_check_off,
11029 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11030 that's not quite what this means. */
6c038f32 11031 array_row_major,
9a044a89 11032 macro_expansion_no,
6c038f32
PH
11033 &ada_exp_descriptor,
11034 parse,
11035 ada_error,
11036 resolve,
11037 ada_printchar, /* Print a character constant */
11038 ada_printstr, /* Function to print string constant */
11039 emit_char, /* Function to print single char (not used) */
6c038f32 11040 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11041 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11042 ada_val_print, /* Print a value using appropriate syntax */
11043 ada_value_print, /* Print a top-level value */
11044 NULL, /* Language specific skip_trampoline */
2b2d9e11 11045 NULL, /* name_of_this */
6c038f32
PH
11046 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11047 basic_lookup_transparent_type, /* lookup_transparent_type */
11048 ada_la_decode, /* Language specific symbol demangler */
11049 NULL, /* Language specific class_name_from_physname */
11050 ada_op_print_tab, /* expression operators for printing */
11051 0, /* c-style arrays */
11052 1, /* String lower bound */
6c038f32 11053 ada_get_gdb_completer_word_break_characters,
41d27058 11054 ada_make_symbol_completion_list,
72d5681a 11055 ada_language_arch_info,
e79af960 11056 ada_print_array_index,
41f1b697 11057 default_pass_by_reference,
6c038f32
PH
11058 LANG_MAGIC
11059};
11060
d2e4a39e 11061void
6c038f32 11062_initialize_ada_language (void)
14f9c5c9 11063{
6c038f32
PH
11064 add_language (&ada_language_defn);
11065
11066 varsize_limit = 65536;
6c038f32
PH
11067
11068 obstack_init (&symbol_list_obstack);
11069
11070 decoded_names_store = htab_create_alloc
11071 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11072 NULL, xcalloc, xfree);
6b69afc4
JB
11073
11074 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11075}