]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* gdbtypes.h (TYPE_OBJFILE_OWNED, TYPE_OWNER): New macros.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4a399546
UW
104static struct value *ensure_lval (struct value *,
105 struct gdbarch *, CORE_ADDR *);
14f9c5c9 106
d2e4a39e 107static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 108 struct gdbarch *, CORE_ADDR *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
76a01679 111 struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
4c4b4cd2 114static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 115
76a01679 116static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 117 struct block *);
14f9c5c9 118
4c4b4cd2
PH
119static int num_defns_collected (struct obstack *);
120
121static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 122
d2e4a39e 123static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
124 *, const char *, int,
125 domain_enum, int);
14f9c5c9 126
4c4b4cd2 127static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
d2e4a39e 130static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 131 struct symbol *, struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
4c4b4cd2
PH
135static char *ada_op_name (enum exp_opcode);
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
153 struct block *);
154
4c4b4cd2 155static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 156 int, int, int *);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
d2e4a39e 168static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 169 struct type *);
14f9c5c9 170
d2e4a39e 171static struct type *to_static_fixed_type (struct type *);
f192137b 172static struct type *static_unwrap_type (struct type *type);
14f9c5c9 173
d2e4a39e 174static struct value *unwrap_value (struct value *);
14f9c5c9 175
d2e4a39e 176static struct type *packed_array_type (struct type *, long *);
14f9c5c9 177
d2e4a39e 178static struct type *decode_packed_array_type (struct type *);
14f9c5c9 179
d2e4a39e 180static struct value *decode_packed_array (struct value *);
14f9c5c9 181
d2e4a39e 182static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 183 struct value **);
14f9c5c9 184
52ce6436
PH
185static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *get_var_value (char *, char *);
14f9c5c9 191
d2e4a39e 192static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 193
d2e4a39e 194static int equiv_types (struct type *, struct type *);
14f9c5c9 195
d2e4a39e 196static int is_name_suffix (const char *);
14f9c5c9 197
d2e4a39e 198static int wild_match (const char *, int, const char *);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
4c4b4cd2
PH
211static struct value *ada_search_struct_field (char *, struct value *, int,
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
76a01679 217static int find_struct_field (char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
219
220static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
221 struct value *);
222
223static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 224
4c4b4cd2
PH
225static int ada_resolve_function (struct ada_symbol_info *, int,
226 struct value **, int, const char *,
227 struct type *);
228
229static struct value *ada_coerce_to_simple_array (struct value *);
230
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
242 struct expression *, int *, enum noside);
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
4c4b4cd2
PH
268\f
269
76a01679 270
4c4b4cd2 271/* Maximum-sized dynamic type. */
14f9c5c9
AS
272static unsigned int varsize_limit;
273
4c4b4cd2
PH
274/* FIXME: brobecker/2003-09-17: No longer a const because it is
275 returned by a function that does not return a const char *. */
276static char *ada_completer_word_break_characters =
277#ifdef VMS
278 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
279#else
14f9c5c9 280 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 281#endif
14f9c5c9 282
4c4b4cd2 283/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 284static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 285 = "__gnat_ada_main_program_name";
14f9c5c9 286
4c4b4cd2
PH
287/* Limit on the number of warnings to raise per expression evaluation. */
288static int warning_limit = 2;
289
290/* Number of warning messages issued; reset to 0 by cleanups after
291 expression evaluation. */
292static int warnings_issued = 0;
293
294static const char *known_runtime_file_name_patterns[] = {
295 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
296};
297
298static const char *known_auxiliary_function_name_patterns[] = {
299 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
300};
301
302/* Space for allocating results of ada_lookup_symbol_list. */
303static struct obstack symbol_list_obstack;
304
305 /* Utilities */
306
41d27058
JB
307/* Given DECODED_NAME a string holding a symbol name in its
308 decoded form (ie using the Ada dotted notation), returns
309 its unqualified name. */
310
311static const char *
312ada_unqualified_name (const char *decoded_name)
313{
314 const char *result = strrchr (decoded_name, '.');
315
316 if (result != NULL)
317 result++; /* Skip the dot... */
318 else
319 result = decoded_name;
320
321 return result;
322}
323
324/* Return a string starting with '<', followed by STR, and '>'.
325 The result is good until the next call. */
326
327static char *
328add_angle_brackets (const char *str)
329{
330 static char *result = NULL;
331
332 xfree (result);
88c15c34 333 result = xstrprintf ("<%s>", str);
41d27058
JB
334 return result;
335}
96d887e8 336
4c4b4cd2
PH
337static char *
338ada_get_gdb_completer_word_break_characters (void)
339{
340 return ada_completer_word_break_characters;
341}
342
e79af960
JB
343/* Print an array element index using the Ada syntax. */
344
345static void
346ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 347 const struct value_print_options *options)
e79af960 348{
79a45b7d 349 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
350 fprintf_filtered (stream, " => ");
351}
352
4c4b4cd2
PH
353/* Read the string located at ADDR from the inferior and store the
354 result into BUF. */
355
356static void
14f9c5c9
AS
357extract_string (CORE_ADDR addr, char *buf)
358{
d2e4a39e 359 int char_index = 0;
14f9c5c9 360
4c4b4cd2
PH
361 /* Loop, reading one byte at a time, until we reach the '\000'
362 end-of-string marker. */
d2e4a39e
AS
363 do
364 {
365 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 366 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
367 char_index++;
368 }
369 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
370}
371
f27cf670 372/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 373 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 374 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 375
f27cf670
AS
376void *
377grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 378{
d2e4a39e
AS
379 if (*size < min_size)
380 {
381 *size *= 2;
382 if (*size < min_size)
4c4b4cd2 383 *size = min_size;
f27cf670 384 vect = xrealloc (vect, *size * element_size);
d2e4a39e 385 }
f27cf670 386 return vect;
14f9c5c9
AS
387}
388
389/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 390 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
391
392static int
ebf56fd3 393field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
394{
395 int len = strlen (target);
d2e4a39e 396 return
4c4b4cd2
PH
397 (strncmp (field_name, target, len) == 0
398 && (field_name[len] == '\0'
399 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
400 && strcmp (field_name + strlen (field_name) - 6,
401 "___XVN") != 0)));
14f9c5c9
AS
402}
403
404
872c8b51
JB
405/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
406 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
407 and return its index. This function also handles fields whose name
408 have ___ suffixes because the compiler sometimes alters their name
409 by adding such a suffix to represent fields with certain constraints.
410 If the field could not be found, return a negative number if
411 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
412
413int
414ada_get_field_index (const struct type *type, const char *field_name,
415 int maybe_missing)
416{
417 int fieldno;
872c8b51
JB
418 struct type *struct_type = check_typedef ((struct type *) type);
419
420 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
421 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
422 return fieldno;
423
424 if (!maybe_missing)
323e0a4a 425 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 426 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
427
428 return -1;
429}
430
431/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
432
433int
d2e4a39e 434ada_name_prefix_len (const char *name)
14f9c5c9
AS
435{
436 if (name == NULL)
437 return 0;
d2e4a39e 438 else
14f9c5c9 439 {
d2e4a39e 440 const char *p = strstr (name, "___");
14f9c5c9 441 if (p == NULL)
4c4b4cd2 442 return strlen (name);
14f9c5c9 443 else
4c4b4cd2 444 return p - name;
14f9c5c9
AS
445 }
446}
447
4c4b4cd2
PH
448/* Return non-zero if SUFFIX is a suffix of STR.
449 Return zero if STR is null. */
450
14f9c5c9 451static int
d2e4a39e 452is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
453{
454 int len1, len2;
455 if (str == NULL)
456 return 0;
457 len1 = strlen (str);
458 len2 = strlen (suffix);
4c4b4cd2 459 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
460}
461
4c4b4cd2
PH
462/* The contents of value VAL, treated as a value of type TYPE. The
463 result is an lval in memory if VAL is. */
14f9c5c9 464
d2e4a39e 465static struct value *
4c4b4cd2 466coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 467{
61ee279c 468 type = ada_check_typedef (type);
df407dfe 469 if (value_type (val) == type)
4c4b4cd2 470 return val;
d2e4a39e 471 else
14f9c5c9 472 {
4c4b4cd2
PH
473 struct value *result;
474
475 /* Make sure that the object size is not unreasonable before
476 trying to allocate some memory for it. */
714e53ab 477 check_size (type);
4c4b4cd2
PH
478
479 result = allocate_value (type);
74bcbdf3 480 set_value_component_location (result, val);
9bbda503
AC
481 set_value_bitsize (result, value_bitsize (val));
482 set_value_bitpos (result, value_bitpos (val));
42ae5230 483 set_value_address (result, value_address (val));
d69fe07e 484 if (value_lazy (val)
df407dfe 485 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 486 set_value_lazy (result, 1);
d2e4a39e 487 else
0fd88904 488 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 489 TYPE_LENGTH (type));
14f9c5c9
AS
490 return result;
491 }
492}
493
fc1a4b47
AC
494static const gdb_byte *
495cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
496{
497 if (valaddr == NULL)
498 return NULL;
499 else
500 return valaddr + offset;
501}
502
503static CORE_ADDR
ebf56fd3 504cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
505{
506 if (address == 0)
507 return 0;
d2e4a39e 508 else
14f9c5c9
AS
509 return address + offset;
510}
511
4c4b4cd2
PH
512/* Issue a warning (as for the definition of warning in utils.c, but
513 with exactly one argument rather than ...), unless the limit on the
514 number of warnings has passed during the evaluation of the current
515 expression. */
a2249542 516
77109804
AC
517/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
518 provided by "complaint". */
519static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
520
14f9c5c9 521static void
a2249542 522lim_warning (const char *format, ...)
14f9c5c9 523{
a2249542
MK
524 va_list args;
525 va_start (args, format);
526
4c4b4cd2
PH
527 warnings_issued += 1;
528 if (warnings_issued <= warning_limit)
a2249542
MK
529 vwarning (format, args);
530
531 va_end (args);
4c4b4cd2
PH
532}
533
714e53ab
PH
534/* Issue an error if the size of an object of type T is unreasonable,
535 i.e. if it would be a bad idea to allocate a value of this type in
536 GDB. */
537
538static void
539check_size (const struct type *type)
540{
541 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 542 error (_("object size is larger than varsize-limit"));
714e53ab
PH
543}
544
545
c3e5cd34
PH
546/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
547 gdbtypes.h, but some of the necessary definitions in that file
548 seem to have gone missing. */
549
550/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 551static LONGEST
c3e5cd34 552max_of_size (int size)
4c4b4cd2 553{
76a01679
JB
554 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
555 return top_bit | (top_bit - 1);
4c4b4cd2
PH
556}
557
c3e5cd34 558/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 559static LONGEST
c3e5cd34 560min_of_size (int size)
4c4b4cd2 561{
c3e5cd34 562 return -max_of_size (size) - 1;
4c4b4cd2
PH
563}
564
c3e5cd34 565/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 566static ULONGEST
c3e5cd34 567umax_of_size (int size)
4c4b4cd2 568{
76a01679
JB
569 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
570 return top_bit | (top_bit - 1);
4c4b4cd2
PH
571}
572
c3e5cd34
PH
573/* Maximum value of integral type T, as a signed quantity. */
574static LONGEST
575max_of_type (struct type *t)
4c4b4cd2 576{
c3e5cd34
PH
577 if (TYPE_UNSIGNED (t))
578 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
579 else
580 return max_of_size (TYPE_LENGTH (t));
581}
582
583/* Minimum value of integral type T, as a signed quantity. */
584static LONGEST
585min_of_type (struct type *t)
586{
587 if (TYPE_UNSIGNED (t))
588 return 0;
589 else
590 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
591}
592
593/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 594static LONGEST
4c4b4cd2
PH
595discrete_type_high_bound (struct type *type)
596{
76a01679 597 switch (TYPE_CODE (type))
4c4b4cd2
PH
598 {
599 case TYPE_CODE_RANGE:
690cc4eb 600 return TYPE_HIGH_BOUND (type);
4c4b4cd2 601 case TYPE_CODE_ENUM:
690cc4eb
PH
602 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
603 case TYPE_CODE_BOOL:
604 return 1;
605 case TYPE_CODE_CHAR:
76a01679 606 case TYPE_CODE_INT:
690cc4eb 607 return max_of_type (type);
4c4b4cd2 608 default:
323e0a4a 609 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
610 }
611}
612
613/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 614static LONGEST
4c4b4cd2
PH
615discrete_type_low_bound (struct type *type)
616{
76a01679 617 switch (TYPE_CODE (type))
4c4b4cd2
PH
618 {
619 case TYPE_CODE_RANGE:
690cc4eb 620 return TYPE_LOW_BOUND (type);
4c4b4cd2 621 case TYPE_CODE_ENUM:
690cc4eb
PH
622 return TYPE_FIELD_BITPOS (type, 0);
623 case TYPE_CODE_BOOL:
624 return 0;
625 case TYPE_CODE_CHAR:
76a01679 626 case TYPE_CODE_INT:
690cc4eb 627 return min_of_type (type);
4c4b4cd2 628 default:
323e0a4a 629 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
630 }
631}
632
633/* The identity on non-range types. For range types, the underlying
76a01679 634 non-range scalar type. */
4c4b4cd2
PH
635
636static struct type *
637base_type (struct type *type)
638{
639 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
640 {
76a01679
JB
641 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
642 return type;
4c4b4cd2
PH
643 type = TYPE_TARGET_TYPE (type);
644 }
645 return type;
14f9c5c9 646}
4c4b4cd2 647\f
76a01679 648
4c4b4cd2 649 /* Language Selection */
14f9c5c9
AS
650
651/* If the main program is in Ada, return language_ada, otherwise return LANG
652 (the main program is in Ada iif the adainit symbol is found).
653
4c4b4cd2 654 MAIN_PST is not used. */
d2e4a39e 655
14f9c5c9 656enum language
d2e4a39e 657ada_update_initial_language (enum language lang,
4c4b4cd2 658 struct partial_symtab *main_pst)
14f9c5c9 659{
d2e4a39e 660 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
661 (struct objfile *) NULL) != NULL)
662 return language_ada;
14f9c5c9
AS
663
664 return lang;
665}
96d887e8
PH
666
667/* If the main procedure is written in Ada, then return its name.
668 The result is good until the next call. Return NULL if the main
669 procedure doesn't appear to be in Ada. */
670
671char *
672ada_main_name (void)
673{
674 struct minimal_symbol *msym;
f9bc20b9 675 static char *main_program_name = NULL;
6c038f32 676
96d887e8
PH
677 /* For Ada, the name of the main procedure is stored in a specific
678 string constant, generated by the binder. Look for that symbol,
679 extract its address, and then read that string. If we didn't find
680 that string, then most probably the main procedure is not written
681 in Ada. */
682 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
683
684 if (msym != NULL)
685 {
f9bc20b9
JB
686 CORE_ADDR main_program_name_addr;
687 int err_code;
688
96d887e8
PH
689 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
690 if (main_program_name_addr == 0)
323e0a4a 691 error (_("Invalid address for Ada main program name."));
96d887e8 692
f9bc20b9
JB
693 xfree (main_program_name);
694 target_read_string (main_program_name_addr, &main_program_name,
695 1024, &err_code);
696
697 if (err_code != 0)
698 return NULL;
96d887e8
PH
699 return main_program_name;
700 }
701
702 /* The main procedure doesn't seem to be in Ada. */
703 return NULL;
704}
14f9c5c9 705\f
4c4b4cd2 706 /* Symbols */
d2e4a39e 707
4c4b4cd2
PH
708/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
709 of NULLs. */
14f9c5c9 710
d2e4a39e
AS
711const struct ada_opname_map ada_opname_table[] = {
712 {"Oadd", "\"+\"", BINOP_ADD},
713 {"Osubtract", "\"-\"", BINOP_SUB},
714 {"Omultiply", "\"*\"", BINOP_MUL},
715 {"Odivide", "\"/\"", BINOP_DIV},
716 {"Omod", "\"mod\"", BINOP_MOD},
717 {"Orem", "\"rem\"", BINOP_REM},
718 {"Oexpon", "\"**\"", BINOP_EXP},
719 {"Olt", "\"<\"", BINOP_LESS},
720 {"Ole", "\"<=\"", BINOP_LEQ},
721 {"Ogt", "\">\"", BINOP_GTR},
722 {"Oge", "\">=\"", BINOP_GEQ},
723 {"Oeq", "\"=\"", BINOP_EQUAL},
724 {"One", "\"/=\"", BINOP_NOTEQUAL},
725 {"Oand", "\"and\"", BINOP_BITWISE_AND},
726 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
727 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
728 {"Oconcat", "\"&\"", BINOP_CONCAT},
729 {"Oabs", "\"abs\"", UNOP_ABS},
730 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
731 {"Oadd", "\"+\"", UNOP_PLUS},
732 {"Osubtract", "\"-\"", UNOP_NEG},
733 {NULL, NULL}
14f9c5c9
AS
734};
735
4c4b4cd2
PH
736/* The "encoded" form of DECODED, according to GNAT conventions.
737 The result is valid until the next call to ada_encode. */
738
14f9c5c9 739char *
4c4b4cd2 740ada_encode (const char *decoded)
14f9c5c9 741{
4c4b4cd2
PH
742 static char *encoding_buffer = NULL;
743 static size_t encoding_buffer_size = 0;
d2e4a39e 744 const char *p;
14f9c5c9 745 int k;
d2e4a39e 746
4c4b4cd2 747 if (decoded == NULL)
14f9c5c9
AS
748 return NULL;
749
4c4b4cd2
PH
750 GROW_VECT (encoding_buffer, encoding_buffer_size,
751 2 * strlen (decoded) + 10);
14f9c5c9
AS
752
753 k = 0;
4c4b4cd2 754 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 755 {
cdc7bb92 756 if (*p == '.')
4c4b4cd2
PH
757 {
758 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
759 k += 2;
760 }
14f9c5c9 761 else if (*p == '"')
4c4b4cd2
PH
762 {
763 const struct ada_opname_map *mapping;
764
765 for (mapping = ada_opname_table;
1265e4aa
JB
766 mapping->encoded != NULL
767 && strncmp (mapping->decoded, p,
768 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
769 ;
770 if (mapping->encoded == NULL)
323e0a4a 771 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
772 strcpy (encoding_buffer + k, mapping->encoded);
773 k += strlen (mapping->encoded);
774 break;
775 }
d2e4a39e 776 else
4c4b4cd2
PH
777 {
778 encoding_buffer[k] = *p;
779 k += 1;
780 }
14f9c5c9
AS
781 }
782
4c4b4cd2
PH
783 encoding_buffer[k] = '\0';
784 return encoding_buffer;
14f9c5c9
AS
785}
786
787/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
788 quotes, unfolded, but with the quotes stripped away. Result good
789 to next call. */
790
d2e4a39e
AS
791char *
792ada_fold_name (const char *name)
14f9c5c9 793{
d2e4a39e 794 static char *fold_buffer = NULL;
14f9c5c9
AS
795 static size_t fold_buffer_size = 0;
796
797 int len = strlen (name);
d2e4a39e 798 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
799
800 if (name[0] == '\'')
801 {
d2e4a39e
AS
802 strncpy (fold_buffer, name + 1, len - 2);
803 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
804 }
805 else
806 {
807 int i;
808 for (i = 0; i <= len; i += 1)
4c4b4cd2 809 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
810 }
811
812 return fold_buffer;
813}
814
529cad9c
PH
815/* Return nonzero if C is either a digit or a lowercase alphabet character. */
816
817static int
818is_lower_alphanum (const char c)
819{
820 return (isdigit (c) || (isalpha (c) && islower (c)));
821}
822
29480c32
JB
823/* Remove either of these suffixes:
824 . .{DIGIT}+
825 . ${DIGIT}+
826 . ___{DIGIT}+
827 . __{DIGIT}+.
828 These are suffixes introduced by the compiler for entities such as
829 nested subprogram for instance, in order to avoid name clashes.
830 They do not serve any purpose for the debugger. */
831
832static void
833ada_remove_trailing_digits (const char *encoded, int *len)
834{
835 if (*len > 1 && isdigit (encoded[*len - 1]))
836 {
837 int i = *len - 2;
838 while (i > 0 && isdigit (encoded[i]))
839 i--;
840 if (i >= 0 && encoded[i] == '.')
841 *len = i;
842 else if (i >= 0 && encoded[i] == '$')
843 *len = i;
844 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
845 *len = i - 2;
846 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
847 *len = i - 1;
848 }
849}
850
851/* Remove the suffix introduced by the compiler for protected object
852 subprograms. */
853
854static void
855ada_remove_po_subprogram_suffix (const char *encoded, int *len)
856{
857 /* Remove trailing N. */
858
859 /* Protected entry subprograms are broken into two
860 separate subprograms: The first one is unprotected, and has
861 a 'N' suffix; the second is the protected version, and has
862 the 'P' suffix. The second calls the first one after handling
863 the protection. Since the P subprograms are internally generated,
864 we leave these names undecoded, giving the user a clue that this
865 entity is internal. */
866
867 if (*len > 1
868 && encoded[*len - 1] == 'N'
869 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
870 *len = *len - 1;
871}
872
873/* If ENCODED follows the GNAT entity encoding conventions, then return
874 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
875 replaced by ENCODED.
14f9c5c9 876
4c4b4cd2 877 The resulting string is valid until the next call of ada_decode.
29480c32 878 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
879 is returned. */
880
881const char *
882ada_decode (const char *encoded)
14f9c5c9
AS
883{
884 int i, j;
885 int len0;
d2e4a39e 886 const char *p;
4c4b4cd2 887 char *decoded;
14f9c5c9 888 int at_start_name;
4c4b4cd2
PH
889 static char *decoding_buffer = NULL;
890 static size_t decoding_buffer_size = 0;
d2e4a39e 891
29480c32
JB
892 /* The name of the Ada main procedure starts with "_ada_".
893 This prefix is not part of the decoded name, so skip this part
894 if we see this prefix. */
4c4b4cd2
PH
895 if (strncmp (encoded, "_ada_", 5) == 0)
896 encoded += 5;
14f9c5c9 897
29480c32
JB
898 /* If the name starts with '_', then it is not a properly encoded
899 name, so do not attempt to decode it. Similarly, if the name
900 starts with '<', the name should not be decoded. */
4c4b4cd2 901 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
902 goto Suppress;
903
4c4b4cd2 904 len0 = strlen (encoded);
4c4b4cd2 905
29480c32
JB
906 ada_remove_trailing_digits (encoded, &len0);
907 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 908
4c4b4cd2
PH
909 /* Remove the ___X.* suffix if present. Do not forget to verify that
910 the suffix is located before the current "end" of ENCODED. We want
911 to avoid re-matching parts of ENCODED that have previously been
912 marked as discarded (by decrementing LEN0). */
913 p = strstr (encoded, "___");
914 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
915 {
916 if (p[3] == 'X')
4c4b4cd2 917 len0 = p - encoded;
14f9c5c9 918 else
4c4b4cd2 919 goto Suppress;
14f9c5c9 920 }
4c4b4cd2 921
29480c32
JB
922 /* Remove any trailing TKB suffix. It tells us that this symbol
923 is for the body of a task, but that information does not actually
924 appear in the decoded name. */
925
4c4b4cd2 926 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 927 len0 -= 3;
76a01679 928
29480c32
JB
929 /* Remove trailing "B" suffixes. */
930 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
931
4c4b4cd2 932 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
933 len0 -= 1;
934
4c4b4cd2 935 /* Make decoded big enough for possible expansion by operator name. */
29480c32 936
4c4b4cd2
PH
937 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
938 decoded = decoding_buffer;
14f9c5c9 939
29480c32
JB
940 /* Remove trailing __{digit}+ or trailing ${digit}+. */
941
4c4b4cd2 942 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 943 {
4c4b4cd2
PH
944 i = len0 - 2;
945 while ((i >= 0 && isdigit (encoded[i]))
946 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
947 i -= 1;
948 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
949 len0 = i - 1;
950 else if (encoded[i] == '$')
951 len0 = i;
d2e4a39e 952 }
14f9c5c9 953
29480c32
JB
954 /* The first few characters that are not alphabetic are not part
955 of any encoding we use, so we can copy them over verbatim. */
956
4c4b4cd2
PH
957 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
958 decoded[j] = encoded[i];
14f9c5c9
AS
959
960 at_start_name = 1;
961 while (i < len0)
962 {
29480c32 963 /* Is this a symbol function? */
4c4b4cd2
PH
964 if (at_start_name && encoded[i] == 'O')
965 {
966 int k;
967 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
968 {
969 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
970 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
971 op_len - 1) == 0)
972 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
973 {
974 strcpy (decoded + j, ada_opname_table[k].decoded);
975 at_start_name = 0;
976 i += op_len;
977 j += strlen (ada_opname_table[k].decoded);
978 break;
979 }
980 }
981 if (ada_opname_table[k].encoded != NULL)
982 continue;
983 }
14f9c5c9
AS
984 at_start_name = 0;
985
529cad9c
PH
986 /* Replace "TK__" with "__", which will eventually be translated
987 into "." (just below). */
988
4c4b4cd2
PH
989 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
990 i += 2;
529cad9c 991
29480c32
JB
992 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
993 be translated into "." (just below). These are internal names
994 generated for anonymous blocks inside which our symbol is nested. */
995
996 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
997 && encoded [i+2] == 'B' && encoded [i+3] == '_'
998 && isdigit (encoded [i+4]))
999 {
1000 int k = i + 5;
1001
1002 while (k < len0 && isdigit (encoded[k]))
1003 k++; /* Skip any extra digit. */
1004
1005 /* Double-check that the "__B_{DIGITS}+" sequence we found
1006 is indeed followed by "__". */
1007 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1008 i = k;
1009 }
1010
529cad9c
PH
1011 /* Remove _E{DIGITS}+[sb] */
1012
1013 /* Just as for protected object subprograms, there are 2 categories
1014 of subprograms created by the compiler for each entry. The first
1015 one implements the actual entry code, and has a suffix following
1016 the convention above; the second one implements the barrier and
1017 uses the same convention as above, except that the 'E' is replaced
1018 by a 'B'.
1019
1020 Just as above, we do not decode the name of barrier functions
1021 to give the user a clue that the code he is debugging has been
1022 internally generated. */
1023
1024 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1025 && isdigit (encoded[i+2]))
1026 {
1027 int k = i + 3;
1028
1029 while (k < len0 && isdigit (encoded[k]))
1030 k++;
1031
1032 if (k < len0
1033 && (encoded[k] == 'b' || encoded[k] == 's'))
1034 {
1035 k++;
1036 /* Just as an extra precaution, make sure that if this
1037 suffix is followed by anything else, it is a '_'.
1038 Otherwise, we matched this sequence by accident. */
1039 if (k == len0
1040 || (k < len0 && encoded[k] == '_'))
1041 i = k;
1042 }
1043 }
1044
1045 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1046 the GNAT front-end in protected object subprograms. */
1047
1048 if (i < len0 + 3
1049 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1050 {
1051 /* Backtrack a bit up until we reach either the begining of
1052 the encoded name, or "__". Make sure that we only find
1053 digits or lowercase characters. */
1054 const char *ptr = encoded + i - 1;
1055
1056 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1057 ptr--;
1058 if (ptr < encoded
1059 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1060 i++;
1061 }
1062
4c4b4cd2
PH
1063 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1064 {
29480c32
JB
1065 /* This is a X[bn]* sequence not separated from the previous
1066 part of the name with a non-alpha-numeric character (in other
1067 words, immediately following an alpha-numeric character), then
1068 verify that it is placed at the end of the encoded name. If
1069 not, then the encoding is not valid and we should abort the
1070 decoding. Otherwise, just skip it, it is used in body-nested
1071 package names. */
4c4b4cd2
PH
1072 do
1073 i += 1;
1074 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1075 if (i < len0)
1076 goto Suppress;
1077 }
cdc7bb92 1078 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1079 {
29480c32 1080 /* Replace '__' by '.'. */
4c4b4cd2
PH
1081 decoded[j] = '.';
1082 at_start_name = 1;
1083 i += 2;
1084 j += 1;
1085 }
14f9c5c9 1086 else
4c4b4cd2 1087 {
29480c32
JB
1088 /* It's a character part of the decoded name, so just copy it
1089 over. */
4c4b4cd2
PH
1090 decoded[j] = encoded[i];
1091 i += 1;
1092 j += 1;
1093 }
14f9c5c9 1094 }
4c4b4cd2 1095 decoded[j] = '\000';
14f9c5c9 1096
29480c32
JB
1097 /* Decoded names should never contain any uppercase character.
1098 Double-check this, and abort the decoding if we find one. */
1099
4c4b4cd2
PH
1100 for (i = 0; decoded[i] != '\0'; i += 1)
1101 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1102 goto Suppress;
1103
4c4b4cd2
PH
1104 if (strcmp (decoded, encoded) == 0)
1105 return encoded;
1106 else
1107 return decoded;
14f9c5c9
AS
1108
1109Suppress:
4c4b4cd2
PH
1110 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1111 decoded = decoding_buffer;
1112 if (encoded[0] == '<')
1113 strcpy (decoded, encoded);
14f9c5c9 1114 else
88c15c34 1115 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1116 return decoded;
1117
1118}
1119
1120/* Table for keeping permanent unique copies of decoded names. Once
1121 allocated, names in this table are never released. While this is a
1122 storage leak, it should not be significant unless there are massive
1123 changes in the set of decoded names in successive versions of a
1124 symbol table loaded during a single session. */
1125static struct htab *decoded_names_store;
1126
1127/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1128 in the language-specific part of GSYMBOL, if it has not been
1129 previously computed. Tries to save the decoded name in the same
1130 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1131 in any case, the decoded symbol has a lifetime at least that of
1132 GSYMBOL).
1133 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1134 const, but nevertheless modified to a semantically equivalent form
1135 when a decoded name is cached in it.
76a01679 1136*/
4c4b4cd2 1137
76a01679
JB
1138char *
1139ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1140{
76a01679 1141 char **resultp =
4c4b4cd2
PH
1142 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1143 if (*resultp == NULL)
1144 {
1145 const char *decoded = ada_decode (gsymbol->name);
714835d5 1146 if (gsymbol->obj_section != NULL)
76a01679 1147 {
714835d5
UW
1148 struct objfile *objf = gsymbol->obj_section->objfile;
1149 *resultp = obsavestring (decoded, strlen (decoded),
1150 &objf->objfile_obstack);
76a01679 1151 }
4c4b4cd2 1152 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1153 case, we put the result on the heap. Since we only decode
1154 when needed, we hope this usually does not cause a
1155 significant memory leak (FIXME). */
4c4b4cd2 1156 if (*resultp == NULL)
76a01679
JB
1157 {
1158 char **slot = (char **) htab_find_slot (decoded_names_store,
1159 decoded, INSERT);
1160 if (*slot == NULL)
1161 *slot = xstrdup (decoded);
1162 *resultp = *slot;
1163 }
4c4b4cd2 1164 }
14f9c5c9 1165
4c4b4cd2
PH
1166 return *resultp;
1167}
76a01679 1168
2c0b251b 1169static char *
76a01679 1170ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1171{
1172 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1173}
1174
1175/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1176 suffixes that encode debugging information or leading _ada_ on
1177 SYM_NAME (see is_name_suffix commentary for the debugging
1178 information that is ignored). If WILD, then NAME need only match a
1179 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1180 either argument is NULL. */
14f9c5c9 1181
2c0b251b 1182static int
d2e4a39e 1183ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1184{
1185 if (sym_name == NULL || name == NULL)
1186 return 0;
1187 else if (wild)
1188 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1189 else
1190 {
1191 int len_name = strlen (name);
4c4b4cd2
PH
1192 return (strncmp (sym_name, name, len_name) == 0
1193 && is_name_suffix (sym_name + len_name))
1194 || (strncmp (sym_name, "_ada_", 5) == 0
1195 && strncmp (sym_name + 5, name, len_name) == 0
1196 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1197 }
14f9c5c9 1198}
14f9c5c9 1199\f
d2e4a39e 1200
4c4b4cd2 1201 /* Arrays */
14f9c5c9 1202
4c4b4cd2 1203/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1204
d2e4a39e
AS
1205static char *bound_name[] = {
1206 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1207 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1208};
1209
1210/* Maximum number of array dimensions we are prepared to handle. */
1211
4c4b4cd2 1212#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1213
4c4b4cd2 1214/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1215
1216static void
ebf56fd3 1217modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1218{
4c4b4cd2 1219 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1220}
1221
1222
4c4b4cd2
PH
1223/* The desc_* routines return primitive portions of array descriptors
1224 (fat pointers). */
14f9c5c9
AS
1225
1226/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1227 level of indirection, if needed. */
1228
d2e4a39e
AS
1229static struct type *
1230desc_base_type (struct type *type)
14f9c5c9
AS
1231{
1232 if (type == NULL)
1233 return NULL;
61ee279c 1234 type = ada_check_typedef (type);
1265e4aa
JB
1235 if (type != NULL
1236 && (TYPE_CODE (type) == TYPE_CODE_PTR
1237 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1238 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1239 else
1240 return type;
1241}
1242
4c4b4cd2
PH
1243/* True iff TYPE indicates a "thin" array pointer type. */
1244
14f9c5c9 1245static int
d2e4a39e 1246is_thin_pntr (struct type *type)
14f9c5c9 1247{
d2e4a39e 1248 return
14f9c5c9
AS
1249 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1250 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1251}
1252
4c4b4cd2
PH
1253/* The descriptor type for thin pointer type TYPE. */
1254
d2e4a39e
AS
1255static struct type *
1256thin_descriptor_type (struct type *type)
14f9c5c9 1257{
d2e4a39e 1258 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1259 if (base_type == NULL)
1260 return NULL;
1261 if (is_suffix (ada_type_name (base_type), "___XVE"))
1262 return base_type;
d2e4a39e 1263 else
14f9c5c9 1264 {
d2e4a39e 1265 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1266 if (alt_type == NULL)
4c4b4cd2 1267 return base_type;
14f9c5c9 1268 else
4c4b4cd2 1269 return alt_type;
14f9c5c9
AS
1270 }
1271}
1272
4c4b4cd2
PH
1273/* A pointer to the array data for thin-pointer value VAL. */
1274
d2e4a39e
AS
1275static struct value *
1276thin_data_pntr (struct value *val)
14f9c5c9 1277{
df407dfe 1278 struct type *type = value_type (val);
556bdfd4
UW
1279 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1280 data_type = lookup_pointer_type (data_type);
1281
14f9c5c9 1282 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1283 return value_cast (data_type, value_copy (val));
d2e4a39e 1284 else
42ae5230 1285 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1286}
1287
4c4b4cd2
PH
1288/* True iff TYPE indicates a "thick" array pointer type. */
1289
14f9c5c9 1290static int
d2e4a39e 1291is_thick_pntr (struct type *type)
14f9c5c9
AS
1292{
1293 type = desc_base_type (type);
1294 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1295 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1296}
1297
4c4b4cd2
PH
1298/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1299 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1300
d2e4a39e
AS
1301static struct type *
1302desc_bounds_type (struct type *type)
14f9c5c9 1303{
d2e4a39e 1304 struct type *r;
14f9c5c9
AS
1305
1306 type = desc_base_type (type);
1307
1308 if (type == NULL)
1309 return NULL;
1310 else if (is_thin_pntr (type))
1311 {
1312 type = thin_descriptor_type (type);
1313 if (type == NULL)
4c4b4cd2 1314 return NULL;
14f9c5c9
AS
1315 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1316 if (r != NULL)
61ee279c 1317 return ada_check_typedef (r);
14f9c5c9
AS
1318 }
1319 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1320 {
1321 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1322 if (r != NULL)
61ee279c 1323 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1324 }
1325 return NULL;
1326}
1327
1328/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1329 one, a pointer to its bounds data. Otherwise NULL. */
1330
d2e4a39e
AS
1331static struct value *
1332desc_bounds (struct value *arr)
14f9c5c9 1333{
df407dfe 1334 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1335 if (is_thin_pntr (type))
14f9c5c9 1336 {
d2e4a39e 1337 struct type *bounds_type =
4c4b4cd2 1338 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1339 LONGEST addr;
1340
4cdfadb1 1341 if (bounds_type == NULL)
323e0a4a 1342 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1343
1344 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1345 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1346 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1347 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1348 addr = value_as_long (arr);
d2e4a39e 1349 else
42ae5230 1350 addr = value_address (arr);
14f9c5c9 1351
d2e4a39e 1352 return
4c4b4cd2
PH
1353 value_from_longest (lookup_pointer_type (bounds_type),
1354 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1355 }
1356
1357 else if (is_thick_pntr (type))
d2e4a39e 1358 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1359 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1360 else
1361 return NULL;
1362}
1363
4c4b4cd2
PH
1364/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1365 position of the field containing the address of the bounds data. */
1366
14f9c5c9 1367static int
d2e4a39e 1368fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1369{
1370 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1371}
1372
1373/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1374 size of the field containing the address of the bounds data. */
1375
14f9c5c9 1376static int
d2e4a39e 1377fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1378{
1379 type = desc_base_type (type);
1380
d2e4a39e 1381 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1382 return TYPE_FIELD_BITSIZE (type, 1);
1383 else
61ee279c 1384 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1385}
1386
4c4b4cd2 1387/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1388 pointer to one, the type of its array data (a array-with-no-bounds type);
1389 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1390 data. */
4c4b4cd2 1391
d2e4a39e 1392static struct type *
556bdfd4 1393desc_data_target_type (struct type *type)
14f9c5c9
AS
1394{
1395 type = desc_base_type (type);
1396
4c4b4cd2 1397 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1398 if (is_thin_pntr (type))
556bdfd4 1399 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1400 else if (is_thick_pntr (type))
556bdfd4
UW
1401 {
1402 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1403
1404 if (data_type
1405 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1406 return TYPE_TARGET_TYPE (data_type);
1407 }
1408
1409 return NULL;
14f9c5c9
AS
1410}
1411
1412/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1413 its array data. */
4c4b4cd2 1414
d2e4a39e
AS
1415static struct value *
1416desc_data (struct value *arr)
14f9c5c9 1417{
df407dfe 1418 struct type *type = value_type (arr);
14f9c5c9
AS
1419 if (is_thin_pntr (type))
1420 return thin_data_pntr (arr);
1421 else if (is_thick_pntr (type))
d2e4a39e 1422 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1423 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1424 else
1425 return NULL;
1426}
1427
1428
1429/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1430 position of the field containing the address of the data. */
1431
14f9c5c9 1432static int
d2e4a39e 1433fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1434{
1435 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1436}
1437
1438/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1439 size of the field containing the address of the data. */
1440
14f9c5c9 1441static int
d2e4a39e 1442fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1443{
1444 type = desc_base_type (type);
1445
1446 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1447 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1448 else
14f9c5c9
AS
1449 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1450}
1451
4c4b4cd2 1452/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1453 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1454 bound, if WHICH is 1. The first bound is I=1. */
1455
d2e4a39e
AS
1456static struct value *
1457desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1458{
d2e4a39e 1459 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1460 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1461}
1462
1463/* If BOUNDS is an array-bounds structure type, return the bit position
1464 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1465 bound, if WHICH is 1. The first bound is I=1. */
1466
14f9c5c9 1467static int
d2e4a39e 1468desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1469{
d2e4a39e 1470 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1471}
1472
1473/* If BOUNDS is an array-bounds structure type, return the bit field size
1474 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1475 bound, if WHICH is 1. The first bound is I=1. */
1476
76a01679 1477static int
d2e4a39e 1478desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1479{
1480 type = desc_base_type (type);
1481
d2e4a39e
AS
1482 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1483 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1484 else
1485 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1486}
1487
1488/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1489 Ith bound (numbering from 1). Otherwise, NULL. */
1490
d2e4a39e
AS
1491static struct type *
1492desc_index_type (struct type *type, int i)
14f9c5c9
AS
1493{
1494 type = desc_base_type (type);
1495
1496 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1497 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1498 else
14f9c5c9
AS
1499 return NULL;
1500}
1501
4c4b4cd2
PH
1502/* The number of index positions in the array-bounds type TYPE.
1503 Return 0 if TYPE is NULL. */
1504
14f9c5c9 1505static int
d2e4a39e 1506desc_arity (struct type *type)
14f9c5c9
AS
1507{
1508 type = desc_base_type (type);
1509
1510 if (type != NULL)
1511 return TYPE_NFIELDS (type) / 2;
1512 return 0;
1513}
1514
4c4b4cd2
PH
1515/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1516 an array descriptor type (representing an unconstrained array
1517 type). */
1518
76a01679
JB
1519static int
1520ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1521{
1522 if (type == NULL)
1523 return 0;
61ee279c 1524 type = ada_check_typedef (type);
4c4b4cd2 1525 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1526 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1527}
1528
52ce6436
PH
1529/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1530 * to one. */
1531
2c0b251b 1532static int
52ce6436
PH
1533ada_is_array_type (struct type *type)
1534{
1535 while (type != NULL
1536 && (TYPE_CODE (type) == TYPE_CODE_PTR
1537 || TYPE_CODE (type) == TYPE_CODE_REF))
1538 type = TYPE_TARGET_TYPE (type);
1539 return ada_is_direct_array_type (type);
1540}
1541
4c4b4cd2 1542/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1543
14f9c5c9 1544int
4c4b4cd2 1545ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1546{
1547 if (type == NULL)
1548 return 0;
61ee279c 1549 type = ada_check_typedef (type);
14f9c5c9 1550 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1551 || (TYPE_CODE (type) == TYPE_CODE_PTR
1552 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1553}
1554
4c4b4cd2
PH
1555/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1556
14f9c5c9 1557int
4c4b4cd2 1558ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1559{
556bdfd4 1560 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1561
1562 if (type == NULL)
1563 return 0;
61ee279c 1564 type = ada_check_typedef (type);
556bdfd4
UW
1565 return (data_type != NULL
1566 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1567 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1568}
1569
1570/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1571 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1572 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1573 is still needed. */
1574
14f9c5c9 1575int
ebf56fd3 1576ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1577{
d2e4a39e 1578 return
14f9c5c9
AS
1579 type != NULL
1580 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1581 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1582 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1583 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1584}
1585
1586
4c4b4cd2 1587/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1588 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1589 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1590 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1591 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1592 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1593 a descriptor. */
d2e4a39e
AS
1594struct type *
1595ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1596{
df407dfe
AC
1597 if (ada_is_packed_array_type (value_type (arr)))
1598 return decode_packed_array_type (value_type (arr));
14f9c5c9 1599
df407dfe
AC
1600 if (!ada_is_array_descriptor_type (value_type (arr)))
1601 return value_type (arr);
d2e4a39e
AS
1602
1603 if (!bounds)
1604 return
556bdfd4 1605 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1606 else
1607 {
d2e4a39e 1608 struct type *elt_type;
14f9c5c9 1609 int arity;
d2e4a39e 1610 struct value *descriptor;
14f9c5c9 1611
df407dfe
AC
1612 elt_type = ada_array_element_type (value_type (arr), -1);
1613 arity = ada_array_arity (value_type (arr));
14f9c5c9 1614
d2e4a39e 1615 if (elt_type == NULL || arity == 0)
df407dfe 1616 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1617
1618 descriptor = desc_bounds (arr);
d2e4a39e 1619 if (value_as_long (descriptor) == 0)
4c4b4cd2 1620 return NULL;
d2e4a39e 1621 while (arity > 0)
4c4b4cd2 1622 {
e9bb382b
UW
1623 struct type *range_type = alloc_type_copy (value_type (arr));
1624 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1625 struct value *low = desc_one_bound (descriptor, arity, 0);
1626 struct value *high = desc_one_bound (descriptor, arity, 1);
1627 arity -= 1;
1628
df407dfe 1629 create_range_type (range_type, value_type (low),
529cad9c
PH
1630 longest_to_int (value_as_long (low)),
1631 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1632 elt_type = create_array_type (array_type, elt_type, range_type);
1633 }
14f9c5c9
AS
1634
1635 return lookup_pointer_type (elt_type);
1636 }
1637}
1638
1639/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1640 Otherwise, returns either a standard GDB array with bounds set
1641 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1642 GDB array. Returns NULL if ARR is a null fat pointer. */
1643
d2e4a39e
AS
1644struct value *
1645ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1646{
df407dfe 1647 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1648 {
d2e4a39e 1649 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1650 if (arrType == NULL)
4c4b4cd2 1651 return NULL;
14f9c5c9
AS
1652 return value_cast (arrType, value_copy (desc_data (arr)));
1653 }
df407dfe 1654 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1655 return decode_packed_array (arr);
1656 else
1657 return arr;
1658}
1659
1660/* If ARR does not represent an array, returns ARR unchanged.
1661 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1662 be ARR itself if it already is in the proper form). */
1663
1664static struct value *
d2e4a39e 1665ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1666{
df407dfe 1667 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1668 {
d2e4a39e 1669 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1670 if (arrVal == NULL)
323e0a4a 1671 error (_("Bounds unavailable for null array pointer."));
529cad9c 1672 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1673 return value_ind (arrVal);
1674 }
df407dfe 1675 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1676 return decode_packed_array (arr);
d2e4a39e 1677 else
14f9c5c9
AS
1678 return arr;
1679}
1680
1681/* If TYPE represents a GNAT array type, return it translated to an
1682 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1683 packing). For other types, is the identity. */
1684
d2e4a39e
AS
1685struct type *
1686ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1687{
17280b9f
UW
1688 if (ada_is_packed_array_type (type))
1689 return decode_packed_array_type (type);
1690
1691 if (ada_is_array_descriptor_type (type))
556bdfd4 1692 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1693
1694 return type;
14f9c5c9
AS
1695}
1696
4c4b4cd2
PH
1697/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1698
14f9c5c9 1699int
d2e4a39e 1700ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1701{
1702 if (type == NULL)
1703 return 0;
4c4b4cd2 1704 type = desc_base_type (type);
61ee279c 1705 type = ada_check_typedef (type);
d2e4a39e 1706 return
14f9c5c9
AS
1707 ada_type_name (type) != NULL
1708 && strstr (ada_type_name (type), "___XP") != NULL;
1709}
1710
1711/* Given that TYPE is a standard GDB array type with all bounds filled
1712 in, and that the element size of its ultimate scalar constituents
1713 (that is, either its elements, or, if it is an array of arrays, its
1714 elements' elements, etc.) is *ELT_BITS, return an identical type,
1715 but with the bit sizes of its elements (and those of any
1716 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1717 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1718 in bits. */
1719
d2e4a39e
AS
1720static struct type *
1721packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1722{
d2e4a39e
AS
1723 struct type *new_elt_type;
1724 struct type *new_type;
14f9c5c9
AS
1725 LONGEST low_bound, high_bound;
1726
61ee279c 1727 type = ada_check_typedef (type);
14f9c5c9
AS
1728 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1729 return type;
1730
e9bb382b 1731 new_type = alloc_type_copy (type);
61ee279c 1732 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1733 elt_bits);
262452ec 1734 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1735 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1736 TYPE_NAME (new_type) = ada_type_name (type);
1737
262452ec 1738 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1739 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1740 low_bound = high_bound = 0;
1741 if (high_bound < low_bound)
1742 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1743 else
14f9c5c9
AS
1744 {
1745 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1746 TYPE_LENGTH (new_type) =
4c4b4cd2 1747 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1748 }
1749
876cecd0 1750 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1751 return new_type;
1752}
1753
4c4b4cd2
PH
1754/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1755
d2e4a39e
AS
1756static struct type *
1757decode_packed_array_type (struct type *type)
1758{
4c4b4cd2 1759 struct symbol *sym;
d2e4a39e 1760 struct block **blocks;
727e3d2e
JB
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *name;
1763 char *tail;
d2e4a39e 1764 struct type *shadow_type;
14f9c5c9
AS
1765 long bits;
1766 int i, n;
1767
727e3d2e
JB
1768 if (!raw_name)
1769 raw_name = ada_type_name (desc_base_type (type));
1770
1771 if (!raw_name)
1772 return NULL;
1773
1774 name = (char *) alloca (strlen (raw_name) + 1);
1775 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1776 type = desc_base_type (type);
1777
14f9c5c9
AS
1778 memcpy (name, raw_name, tail - raw_name);
1779 name[tail - raw_name] = '\000';
1780
4c4b4cd2
PH
1781 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1782 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1783 {
323e0a4a 1784 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1785 return NULL;
1786 }
4c4b4cd2 1787 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1788 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1789
1790 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1791 {
323e0a4a 1792 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1793 return NULL;
1794 }
d2e4a39e 1795
14f9c5c9
AS
1796 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1797 {
4c4b4cd2 1798 lim_warning
323e0a4a 1799 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1800 return NULL;
1801 }
d2e4a39e 1802
14f9c5c9
AS
1803 return packed_array_type (shadow_type, &bits);
1804}
1805
4c4b4cd2 1806/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1807 returns a simple array that denotes that array. Its type is a
1808 standard GDB array type except that the BITSIZEs of the array
1809 target types are set to the number of bits in each element, and the
4c4b4cd2 1810 type length is set appropriately. */
14f9c5c9 1811
d2e4a39e
AS
1812static struct value *
1813decode_packed_array (struct value *arr)
14f9c5c9 1814{
4c4b4cd2 1815 struct type *type;
14f9c5c9 1816
4c4b4cd2 1817 arr = ada_coerce_ref (arr);
284614f0
JB
1818
1819 /* If our value is a pointer, then dererence it. Make sure that
1820 this operation does not cause the target type to be fixed, as
1821 this would indirectly cause this array to be decoded. The rest
1822 of the routine assumes that the array hasn't been decoded yet,
1823 so we use the basic "value_ind" routine to perform the dereferencing,
1824 as opposed to using "ada_value_ind". */
df407dfe 1825 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1826 arr = value_ind (arr);
4c4b4cd2 1827
df407dfe 1828 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1829 if (type == NULL)
1830 {
323e0a4a 1831 error (_("can't unpack array"));
14f9c5c9
AS
1832 return NULL;
1833 }
61ee279c 1834
32c9a795
MD
1835 if (gdbarch_bits_big_endian (current_gdbarch)
1836 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1837 {
1838 /* This is a (right-justified) modular type representing a packed
1839 array with no wrapper. In order to interpret the value through
1840 the (left-justified) packed array type we just built, we must
1841 first left-justify it. */
1842 int bit_size, bit_pos;
1843 ULONGEST mod;
1844
df407dfe 1845 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1846 bit_size = 0;
1847 while (mod > 0)
1848 {
1849 bit_size += 1;
1850 mod >>= 1;
1851 }
df407dfe 1852 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1853 arr = ada_value_primitive_packed_val (arr, NULL,
1854 bit_pos / HOST_CHAR_BIT,
1855 bit_pos % HOST_CHAR_BIT,
1856 bit_size,
1857 type);
1858 }
1859
4c4b4cd2 1860 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1861}
1862
1863
1864/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1865 given in IND. ARR must be a simple array. */
14f9c5c9 1866
d2e4a39e
AS
1867static struct value *
1868value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1869{
1870 int i;
1871 int bits, elt_off, bit_off;
1872 long elt_total_bit_offset;
d2e4a39e
AS
1873 struct type *elt_type;
1874 struct value *v;
14f9c5c9
AS
1875
1876 bits = 0;
1877 elt_total_bit_offset = 0;
df407dfe 1878 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1879 for (i = 0; i < arity; i += 1)
14f9c5c9 1880 {
d2e4a39e 1881 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1882 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1883 error
323e0a4a 1884 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1885 else
4c4b4cd2
PH
1886 {
1887 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1888 LONGEST lowerbound, upperbound;
1889 LONGEST idx;
1890
1891 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1892 {
323e0a4a 1893 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1894 lowerbound = upperbound = 0;
1895 }
1896
3cb382c9 1897 idx = pos_atr (ind[i]);
4c4b4cd2 1898 if (idx < lowerbound || idx > upperbound)
323e0a4a 1899 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1900 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1901 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1902 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1903 }
14f9c5c9
AS
1904 }
1905 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1906 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1907
1908 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1909 bits, elt_type);
14f9c5c9
AS
1910 return v;
1911}
1912
4c4b4cd2 1913/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1914
1915static int
d2e4a39e 1916has_negatives (struct type *type)
14f9c5c9 1917{
d2e4a39e
AS
1918 switch (TYPE_CODE (type))
1919 {
1920 default:
1921 return 0;
1922 case TYPE_CODE_INT:
1923 return !TYPE_UNSIGNED (type);
1924 case TYPE_CODE_RANGE:
1925 return TYPE_LOW_BOUND (type) < 0;
1926 }
14f9c5c9 1927}
d2e4a39e 1928
14f9c5c9
AS
1929
1930/* Create a new value of type TYPE from the contents of OBJ starting
1931 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1932 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1933 assigning through the result will set the field fetched from.
1934 VALADDR is ignored unless OBJ is NULL, in which case,
1935 VALADDR+OFFSET must address the start of storage containing the
1936 packed value. The value returned in this case is never an lval.
1937 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1938
d2e4a39e 1939struct value *
fc1a4b47 1940ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1941 long offset, int bit_offset, int bit_size,
4c4b4cd2 1942 struct type *type)
14f9c5c9 1943{
d2e4a39e 1944 struct value *v;
4c4b4cd2
PH
1945 int src, /* Index into the source area */
1946 targ, /* Index into the target area */
1947 srcBitsLeft, /* Number of source bits left to move */
1948 nsrc, ntarg, /* Number of source and target bytes */
1949 unusedLS, /* Number of bits in next significant
1950 byte of source that are unused */
1951 accumSize; /* Number of meaningful bits in accum */
1952 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1953 unsigned char *unpacked;
4c4b4cd2 1954 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1955 unsigned char sign;
1956 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1957 /* Transmit bytes from least to most significant; delta is the direction
1958 the indices move. */
32c9a795 1959 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1960
61ee279c 1961 type = ada_check_typedef (type);
14f9c5c9
AS
1962
1963 if (obj == NULL)
1964 {
1965 v = allocate_value (type);
d2e4a39e 1966 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1967 }
9214ee5f 1968 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1969 {
1970 v = value_at (type,
42ae5230 1971 value_address (obj) + offset);
d2e4a39e 1972 bytes = (unsigned char *) alloca (len);
42ae5230 1973 read_memory (value_address (v), bytes, len);
14f9c5c9 1974 }
d2e4a39e 1975 else
14f9c5c9
AS
1976 {
1977 v = allocate_value (type);
0fd88904 1978 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1979 }
d2e4a39e
AS
1980
1981 if (obj != NULL)
14f9c5c9 1982 {
42ae5230 1983 CORE_ADDR new_addr;
74bcbdf3 1984 set_value_component_location (v, obj);
42ae5230 1985 new_addr = value_address (obj) + offset;
9bbda503
AC
1986 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1987 set_value_bitsize (v, bit_size);
df407dfe 1988 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1989 {
42ae5230 1990 ++new_addr;
9bbda503 1991 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1992 }
42ae5230 1993 set_value_address (v, new_addr);
14f9c5c9
AS
1994 }
1995 else
9bbda503 1996 set_value_bitsize (v, bit_size);
0fd88904 1997 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
1998
1999 srcBitsLeft = bit_size;
2000 nsrc = len;
2001 ntarg = TYPE_LENGTH (type);
2002 sign = 0;
2003 if (bit_size == 0)
2004 {
2005 memset (unpacked, 0, TYPE_LENGTH (type));
2006 return v;
2007 }
32c9a795 2008 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2009 {
d2e4a39e 2010 src = len - 1;
1265e4aa
JB
2011 if (has_negatives (type)
2012 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2013 sign = ~0;
d2e4a39e
AS
2014
2015 unusedLS =
4c4b4cd2
PH
2016 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2017 % HOST_CHAR_BIT;
14f9c5c9
AS
2018
2019 switch (TYPE_CODE (type))
4c4b4cd2
PH
2020 {
2021 case TYPE_CODE_ARRAY:
2022 case TYPE_CODE_UNION:
2023 case TYPE_CODE_STRUCT:
2024 /* Non-scalar values must be aligned at a byte boundary... */
2025 accumSize =
2026 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2027 /* ... And are placed at the beginning (most-significant) bytes
2028 of the target. */
529cad9c 2029 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2030 ntarg = targ + 1;
4c4b4cd2
PH
2031 break;
2032 default:
2033 accumSize = 0;
2034 targ = TYPE_LENGTH (type) - 1;
2035 break;
2036 }
14f9c5c9 2037 }
d2e4a39e 2038 else
14f9c5c9
AS
2039 {
2040 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2041
2042 src = targ = 0;
2043 unusedLS = bit_offset;
2044 accumSize = 0;
2045
d2e4a39e 2046 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2047 sign = ~0;
14f9c5c9 2048 }
d2e4a39e 2049
14f9c5c9
AS
2050 accum = 0;
2051 while (nsrc > 0)
2052 {
2053 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2054 part of the value. */
d2e4a39e 2055 unsigned int unusedMSMask =
4c4b4cd2
PH
2056 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2057 1;
2058 /* Sign-extend bits for this byte. */
14f9c5c9 2059 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2060 accum |=
4c4b4cd2 2061 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2062 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2063 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2064 {
2065 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2066 accumSize -= HOST_CHAR_BIT;
2067 accum >>= HOST_CHAR_BIT;
2068 ntarg -= 1;
2069 targ += delta;
2070 }
14f9c5c9
AS
2071 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2072 unusedLS = 0;
2073 nsrc -= 1;
2074 src += delta;
2075 }
2076 while (ntarg > 0)
2077 {
2078 accum |= sign << accumSize;
2079 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2080 accumSize -= HOST_CHAR_BIT;
2081 accum >>= HOST_CHAR_BIT;
2082 ntarg -= 1;
2083 targ += delta;
2084 }
2085
2086 return v;
2087}
d2e4a39e 2088
14f9c5c9
AS
2089/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2090 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2091 not overlap. */
14f9c5c9 2092static void
fc1a4b47 2093move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2094 int src_offset, int n)
14f9c5c9
AS
2095{
2096 unsigned int accum, mask;
2097 int accum_bits, chunk_size;
2098
2099 target += targ_offset / HOST_CHAR_BIT;
2100 targ_offset %= HOST_CHAR_BIT;
2101 source += src_offset / HOST_CHAR_BIT;
2102 src_offset %= HOST_CHAR_BIT;
32c9a795 2103 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2104 {
2105 accum = (unsigned char) *source;
2106 source += 1;
2107 accum_bits = HOST_CHAR_BIT - src_offset;
2108
d2e4a39e 2109 while (n > 0)
4c4b4cd2
PH
2110 {
2111 int unused_right;
2112 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2113 accum_bits += HOST_CHAR_BIT;
2114 source += 1;
2115 chunk_size = HOST_CHAR_BIT - targ_offset;
2116 if (chunk_size > n)
2117 chunk_size = n;
2118 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2119 mask = ((1 << chunk_size) - 1) << unused_right;
2120 *target =
2121 (*target & ~mask)
2122 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2123 n -= chunk_size;
2124 accum_bits -= chunk_size;
2125 target += 1;
2126 targ_offset = 0;
2127 }
14f9c5c9
AS
2128 }
2129 else
2130 {
2131 accum = (unsigned char) *source >> src_offset;
2132 source += 1;
2133 accum_bits = HOST_CHAR_BIT - src_offset;
2134
d2e4a39e 2135 while (n > 0)
4c4b4cd2
PH
2136 {
2137 accum = accum + ((unsigned char) *source << accum_bits);
2138 accum_bits += HOST_CHAR_BIT;
2139 source += 1;
2140 chunk_size = HOST_CHAR_BIT - targ_offset;
2141 if (chunk_size > n)
2142 chunk_size = n;
2143 mask = ((1 << chunk_size) - 1) << targ_offset;
2144 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2145 n -= chunk_size;
2146 accum_bits -= chunk_size;
2147 accum >>= chunk_size;
2148 target += 1;
2149 targ_offset = 0;
2150 }
14f9c5c9
AS
2151 }
2152}
2153
14f9c5c9
AS
2154/* Store the contents of FROMVAL into the location of TOVAL.
2155 Return a new value with the location of TOVAL and contents of
2156 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2157 floating-point or non-scalar types. */
14f9c5c9 2158
d2e4a39e
AS
2159static struct value *
2160ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2161{
df407dfe
AC
2162 struct type *type = value_type (toval);
2163 int bits = value_bitsize (toval);
14f9c5c9 2164
52ce6436
PH
2165 toval = ada_coerce_ref (toval);
2166 fromval = ada_coerce_ref (fromval);
2167
2168 if (ada_is_direct_array_type (value_type (toval)))
2169 toval = ada_coerce_to_simple_array (toval);
2170 if (ada_is_direct_array_type (value_type (fromval)))
2171 fromval = ada_coerce_to_simple_array (fromval);
2172
88e3b34b 2173 if (!deprecated_value_modifiable (toval))
323e0a4a 2174 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2175
d2e4a39e 2176 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2177 && bits > 0
d2e4a39e 2178 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2179 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2180 {
df407dfe
AC
2181 int len = (value_bitpos (toval)
2182 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2183 int from_size;
d2e4a39e
AS
2184 char *buffer = (char *) alloca (len);
2185 struct value *val;
42ae5230 2186 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2187
2188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2189 fromval = value_cast (type, fromval);
14f9c5c9 2190
52ce6436 2191 read_memory (to_addr, buffer, len);
aced2898
PH
2192 from_size = value_bitsize (fromval);
2193 if (from_size == 0)
2194 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2195 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2196 move_bits (buffer, value_bitpos (toval),
aced2898 2197 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2198 else
0fd88904 2199 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2200 0, bits);
52ce6436
PH
2201 write_memory (to_addr, buffer, len);
2202 if (deprecated_memory_changed_hook)
2203 deprecated_memory_changed_hook (to_addr, len);
2204
14f9c5c9 2205 val = value_copy (toval);
0fd88904 2206 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2207 TYPE_LENGTH (type));
04624583 2208 deprecated_set_value_type (val, type);
d2e4a39e 2209
14f9c5c9
AS
2210 return val;
2211 }
2212
2213 return value_assign (toval, fromval);
2214}
2215
2216
52ce6436
PH
2217/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2218 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2219 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2220 * COMPONENT, and not the inferior's memory. The current contents
2221 * of COMPONENT are ignored. */
2222static void
2223value_assign_to_component (struct value *container, struct value *component,
2224 struct value *val)
2225{
2226 LONGEST offset_in_container =
42ae5230 2227 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2228 int bit_offset_in_container =
2229 value_bitpos (component) - value_bitpos (container);
2230 int bits;
2231
2232 val = value_cast (value_type (component), val);
2233
2234 if (value_bitsize (component) == 0)
2235 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2236 else
2237 bits = value_bitsize (component);
2238
32c9a795 2239 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2240 move_bits (value_contents_writeable (container) + offset_in_container,
2241 value_bitpos (container) + bit_offset_in_container,
2242 value_contents (val),
2243 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2244 bits);
2245 else
2246 move_bits (value_contents_writeable (container) + offset_in_container,
2247 value_bitpos (container) + bit_offset_in_container,
2248 value_contents (val), 0, bits);
2249}
2250
4c4b4cd2
PH
2251/* The value of the element of array ARR at the ARITY indices given in IND.
2252 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2253 thereto. */
2254
d2e4a39e
AS
2255struct value *
2256ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2257{
2258 int k;
d2e4a39e
AS
2259 struct value *elt;
2260 struct type *elt_type;
14f9c5c9
AS
2261
2262 elt = ada_coerce_to_simple_array (arr);
2263
df407dfe 2264 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2265 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2266 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2267 return value_subscript_packed (elt, arity, ind);
2268
2269 for (k = 0; k < arity; k += 1)
2270 {
2271 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2272 error (_("too many subscripts (%d expected)"), k);
2497b498 2273 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2274 }
2275 return elt;
2276}
2277
2278/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2279 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2280 IND. Does not read the entire array into memory. */
14f9c5c9 2281
2c0b251b 2282static struct value *
d2e4a39e 2283ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2284 struct value **ind)
14f9c5c9
AS
2285{
2286 int k;
2287
2288 for (k = 0; k < arity; k += 1)
2289 {
2290 LONGEST lwb, upb;
14f9c5c9
AS
2291
2292 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2293 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2294 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2295 value_copy (arr));
14f9c5c9 2296 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2297 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2298 type = TYPE_TARGET_TYPE (type);
2299 }
2300
2301 return value_ind (arr);
2302}
2303
0b5d8877 2304/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2305 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2306 elements starting at index LOW. The lower bound of this array is LOW, as
2307 per Ada rules. */
0b5d8877 2308static struct value *
f5938064
JG
2309ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2310 int low, int high)
0b5d8877 2311{
6c038f32 2312 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2313 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2314 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2315 struct type *index_type =
2316 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2317 low, high);
6c038f32 2318 struct type *slice_type =
0b5d8877 2319 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2320 return value_at_lazy (slice_type, base);
0b5d8877
PH
2321}
2322
2323
2324static struct value *
2325ada_value_slice (struct value *array, int low, int high)
2326{
df407dfe 2327 struct type *type = value_type (array);
6c038f32 2328 struct type *index_type =
0b5d8877 2329 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2330 struct type *slice_type =
0b5d8877 2331 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2332 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2333}
2334
14f9c5c9
AS
2335/* If type is a record type in the form of a standard GNAT array
2336 descriptor, returns the number of dimensions for type. If arr is a
2337 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2338 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2339
2340int
d2e4a39e 2341ada_array_arity (struct type *type)
14f9c5c9
AS
2342{
2343 int arity;
2344
2345 if (type == NULL)
2346 return 0;
2347
2348 type = desc_base_type (type);
2349
2350 arity = 0;
d2e4a39e 2351 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2352 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2353 else
2354 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2355 {
4c4b4cd2 2356 arity += 1;
61ee279c 2357 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2358 }
d2e4a39e 2359
14f9c5c9
AS
2360 return arity;
2361}
2362
2363/* If TYPE is a record type in the form of a standard GNAT array
2364 descriptor or a simple array type, returns the element type for
2365 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2366 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2367
d2e4a39e
AS
2368struct type *
2369ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2370{
2371 type = desc_base_type (type);
2372
d2e4a39e 2373 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2374 {
2375 int k;
d2e4a39e 2376 struct type *p_array_type;
14f9c5c9 2377
556bdfd4 2378 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2379
2380 k = ada_array_arity (type);
2381 if (k == 0)
4c4b4cd2 2382 return NULL;
d2e4a39e 2383
4c4b4cd2 2384 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2385 if (nindices >= 0 && k > nindices)
4c4b4cd2 2386 k = nindices;
d2e4a39e 2387 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2388 {
61ee279c 2389 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2390 k -= 1;
2391 }
14f9c5c9
AS
2392 return p_array_type;
2393 }
2394 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2395 {
2396 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2397 {
2398 type = TYPE_TARGET_TYPE (type);
2399 nindices -= 1;
2400 }
14f9c5c9
AS
2401 return type;
2402 }
2403
2404 return NULL;
2405}
2406
4c4b4cd2 2407/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2408 Does not examine memory. Throws an error if N is invalid or TYPE
2409 is not an array type. NAME is the name of the Ada attribute being
2410 evaluated ('range, 'first, 'last, or 'length); it is used in building
2411 the error message. */
14f9c5c9 2412
1eea4ebd
UW
2413static struct type *
2414ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2415{
4c4b4cd2
PH
2416 struct type *result_type;
2417
14f9c5c9
AS
2418 type = desc_base_type (type);
2419
1eea4ebd
UW
2420 if (n < 0 || n > ada_array_arity (type))
2421 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2422
4c4b4cd2 2423 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2424 {
2425 int i;
2426
2427 for (i = 1; i < n; i += 1)
4c4b4cd2 2428 type = TYPE_TARGET_TYPE (type);
262452ec 2429 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2430 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2431 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2432 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2433 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2434 result_type = NULL;
14f9c5c9 2435 }
d2e4a39e 2436 else
1eea4ebd
UW
2437 {
2438 result_type = desc_index_type (desc_bounds_type (type), n);
2439 if (result_type == NULL)
2440 error (_("attempt to take bound of something that is not an array"));
2441 }
2442
2443 return result_type;
14f9c5c9
AS
2444}
2445
2446/* Given that arr is an array type, returns the lower bound of the
2447 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2448 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2449 array-descriptor type. It works for other arrays with bounds supplied
2450 by run-time quantities other than discriminants. */
14f9c5c9 2451
abb68b3e 2452static LONGEST
1eea4ebd 2453ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2454{
1ce677a4 2455 struct type *type, *elt_type, *index_type_desc, *index_type;
262452ec 2456 LONGEST retval;
1ce677a4 2457 int i;
262452ec
JK
2458
2459 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2460
2461 if (ada_is_packed_array_type (arr_type))
2462 arr_type = decode_packed_array_type (arr_type);
2463
4c4b4cd2 2464 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2465 return (LONGEST) - which;
14f9c5c9
AS
2466
2467 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2468 type = TYPE_TARGET_TYPE (arr_type);
2469 else
2470 type = arr_type;
2471
1ce677a4
UW
2472 elt_type = type;
2473 for (i = n; i > 1; i--)
2474 elt_type = TYPE_TARGET_TYPE (type);
2475
14f9c5c9 2476 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2477 if (index_type_desc != NULL)
2478 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2479 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2480 else
1ce677a4 2481 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec
JK
2482
2483 switch (TYPE_CODE (index_type))
14f9c5c9 2484 {
262452ec
JK
2485 case TYPE_CODE_RANGE:
2486 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2487 : TYPE_HIGH_BOUND (index_type);
2488 break;
2489 case TYPE_CODE_ENUM:
2490 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2491 : TYPE_FIELD_BITPOS (index_type,
2492 TYPE_NFIELDS (index_type) - 1);
2493 break;
2494 default:
2495 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2496 }
abb68b3e 2497
262452ec 2498 return retval;
14f9c5c9
AS
2499}
2500
2501/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2502 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2503 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2504 supplied by run-time quantities other than discriminants. */
14f9c5c9 2505
1eea4ebd 2506static LONGEST
4dc81987 2507ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2508{
df407dfe 2509 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2510
2511 if (ada_is_packed_array_type (arr_type))
2512 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2513 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2514 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2515 else
1eea4ebd 2516 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2517}
2518
2519/* Given that arr is an array value, returns the length of the
2520 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2521 supplied by run-time quantities other than discriminants.
2522 Does not work for arrays indexed by enumeration types with representation
2523 clauses at the moment. */
14f9c5c9 2524
1eea4ebd 2525static LONGEST
d2e4a39e 2526ada_array_length (struct value *arr, int n)
14f9c5c9 2527{
df407dfe 2528 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 return ada_array_length (decode_packed_array (arr), n);
2532
4c4b4cd2 2533 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2534 return (ada_array_bound_from_type (arr_type, n, 1)
2535 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2536 else
1eea4ebd
UW
2537 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2538 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2539}
2540
2541/* An empty array whose type is that of ARR_TYPE (an array type),
2542 with bounds LOW to LOW-1. */
2543
2544static struct value *
2545empty_array (struct type *arr_type, int low)
2546{
6c038f32 2547 struct type *index_type =
0b5d8877
PH
2548 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2549 low, low - 1);
2550 struct type *elt_type = ada_array_element_type (arr_type, 1);
2551 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2552}
14f9c5c9 2553\f
d2e4a39e 2554
4c4b4cd2 2555 /* Name resolution */
14f9c5c9 2556
4c4b4cd2
PH
2557/* The "decoded" name for the user-definable Ada operator corresponding
2558 to OP. */
14f9c5c9 2559
d2e4a39e 2560static const char *
4c4b4cd2 2561ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2562{
2563 int i;
2564
4c4b4cd2 2565 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2566 {
2567 if (ada_opname_table[i].op == op)
4c4b4cd2 2568 return ada_opname_table[i].decoded;
14f9c5c9 2569 }
323e0a4a 2570 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2571}
2572
2573
4c4b4cd2
PH
2574/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2575 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2576 undefined namespace) and converts operators that are
2577 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2578 non-null, it provides a preferred result type [at the moment, only
2579 type void has any effect---causing procedures to be preferred over
2580 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2581 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2582
4c4b4cd2
PH
2583static void
2584resolve (struct expression **expp, int void_context_p)
14f9c5c9 2585{
30b15541
UW
2586 struct type *context_type = NULL;
2587 int pc = 0;
2588
2589 if (void_context_p)
2590 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2591
2592 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2593}
2594
4c4b4cd2
PH
2595/* Resolve the operator of the subexpression beginning at
2596 position *POS of *EXPP. "Resolving" consists of replacing
2597 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2598 with their resolutions, replacing built-in operators with
2599 function calls to user-defined operators, where appropriate, and,
2600 when DEPROCEDURE_P is non-zero, converting function-valued variables
2601 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2602 are as in ada_resolve, above. */
14f9c5c9 2603
d2e4a39e 2604static struct value *
4c4b4cd2 2605resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2606 struct type *context_type)
14f9c5c9
AS
2607{
2608 int pc = *pos;
2609 int i;
4c4b4cd2 2610 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2611 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2612 struct value **argvec; /* Vector of operand types (alloca'ed). */
2613 int nargs; /* Number of operands. */
52ce6436 2614 int oplen;
14f9c5c9
AS
2615
2616 argvec = NULL;
2617 nargs = 0;
2618 exp = *expp;
2619
52ce6436
PH
2620 /* Pass one: resolve operands, saving their types and updating *pos,
2621 if needed. */
14f9c5c9
AS
2622 switch (op)
2623 {
4c4b4cd2
PH
2624 case OP_FUNCALL:
2625 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2626 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2627 *pos += 7;
4c4b4cd2
PH
2628 else
2629 {
2630 *pos += 3;
2631 resolve_subexp (expp, pos, 0, NULL);
2632 }
2633 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2634 break;
2635
14f9c5c9 2636 case UNOP_ADDR:
4c4b4cd2
PH
2637 *pos += 1;
2638 resolve_subexp (expp, pos, 0, NULL);
2639 break;
2640
52ce6436
PH
2641 case UNOP_QUAL:
2642 *pos += 3;
17466c1a 2643 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2644 break;
2645
52ce6436 2646 case OP_ATR_MODULUS:
4c4b4cd2
PH
2647 case OP_ATR_SIZE:
2648 case OP_ATR_TAG:
4c4b4cd2
PH
2649 case OP_ATR_FIRST:
2650 case OP_ATR_LAST:
2651 case OP_ATR_LENGTH:
2652 case OP_ATR_POS:
2653 case OP_ATR_VAL:
4c4b4cd2
PH
2654 case OP_ATR_MIN:
2655 case OP_ATR_MAX:
52ce6436
PH
2656 case TERNOP_IN_RANGE:
2657 case BINOP_IN_BOUNDS:
2658 case UNOP_IN_RANGE:
2659 case OP_AGGREGATE:
2660 case OP_OTHERS:
2661 case OP_CHOICES:
2662 case OP_POSITIONAL:
2663 case OP_DISCRETE_RANGE:
2664 case OP_NAME:
2665 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2666 *pos += oplen;
14f9c5c9
AS
2667 break;
2668
2669 case BINOP_ASSIGN:
2670 {
4c4b4cd2
PH
2671 struct value *arg1;
2672
2673 *pos += 1;
2674 arg1 = resolve_subexp (expp, pos, 0, NULL);
2675 if (arg1 == NULL)
2676 resolve_subexp (expp, pos, 1, NULL);
2677 else
df407dfe 2678 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2679 break;
14f9c5c9
AS
2680 }
2681
4c4b4cd2 2682 case UNOP_CAST:
4c4b4cd2
PH
2683 *pos += 3;
2684 nargs = 1;
2685 break;
14f9c5c9 2686
4c4b4cd2
PH
2687 case BINOP_ADD:
2688 case BINOP_SUB:
2689 case BINOP_MUL:
2690 case BINOP_DIV:
2691 case BINOP_REM:
2692 case BINOP_MOD:
2693 case BINOP_EXP:
2694 case BINOP_CONCAT:
2695 case BINOP_LOGICAL_AND:
2696 case BINOP_LOGICAL_OR:
2697 case BINOP_BITWISE_AND:
2698 case BINOP_BITWISE_IOR:
2699 case BINOP_BITWISE_XOR:
14f9c5c9 2700
4c4b4cd2
PH
2701 case BINOP_EQUAL:
2702 case BINOP_NOTEQUAL:
2703 case BINOP_LESS:
2704 case BINOP_GTR:
2705 case BINOP_LEQ:
2706 case BINOP_GEQ:
14f9c5c9 2707
4c4b4cd2
PH
2708 case BINOP_REPEAT:
2709 case BINOP_SUBSCRIPT:
2710 case BINOP_COMMA:
40c8aaa9
JB
2711 *pos += 1;
2712 nargs = 2;
2713 break;
14f9c5c9 2714
4c4b4cd2
PH
2715 case UNOP_NEG:
2716 case UNOP_PLUS:
2717 case UNOP_LOGICAL_NOT:
2718 case UNOP_ABS:
2719 case UNOP_IND:
2720 *pos += 1;
2721 nargs = 1;
2722 break;
14f9c5c9 2723
4c4b4cd2
PH
2724 case OP_LONG:
2725 case OP_DOUBLE:
2726 case OP_VAR_VALUE:
2727 *pos += 4;
2728 break;
14f9c5c9 2729
4c4b4cd2
PH
2730 case OP_TYPE:
2731 case OP_BOOL:
2732 case OP_LAST:
4c4b4cd2
PH
2733 case OP_INTERNALVAR:
2734 *pos += 3;
2735 break;
14f9c5c9 2736
4c4b4cd2
PH
2737 case UNOP_MEMVAL:
2738 *pos += 3;
2739 nargs = 1;
2740 break;
2741
67f3407f
DJ
2742 case OP_REGISTER:
2743 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2744 break;
2745
4c4b4cd2
PH
2746 case STRUCTOP_STRUCT:
2747 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2748 nargs = 1;
2749 break;
2750
4c4b4cd2 2751 case TERNOP_SLICE:
4c4b4cd2
PH
2752 *pos += 1;
2753 nargs = 3;
2754 break;
2755
52ce6436 2756 case OP_STRING:
14f9c5c9 2757 break;
4c4b4cd2
PH
2758
2759 default:
323e0a4a 2760 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2761 }
2762
76a01679 2763 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2764 for (i = 0; i < nargs; i += 1)
2765 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2766 argvec[i] = NULL;
2767 exp = *expp;
2768
2769 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2770 switch (op)
2771 {
2772 default:
2773 break;
2774
14f9c5c9 2775 case OP_VAR_VALUE:
4c4b4cd2 2776 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2777 {
2778 struct ada_symbol_info *candidates;
2779 int n_candidates;
2780
2781 n_candidates =
2782 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2783 (exp->elts[pc + 2].symbol),
2784 exp->elts[pc + 1].block, VAR_DOMAIN,
2785 &candidates);
2786
2787 if (n_candidates > 1)
2788 {
2789 /* Types tend to get re-introduced locally, so if there
2790 are any local symbols that are not types, first filter
2791 out all types. */
2792 int j;
2793 for (j = 0; j < n_candidates; j += 1)
2794 switch (SYMBOL_CLASS (candidates[j].sym))
2795 {
2796 case LOC_REGISTER:
2797 case LOC_ARG:
2798 case LOC_REF_ARG:
76a01679
JB
2799 case LOC_REGPARM_ADDR:
2800 case LOC_LOCAL:
76a01679 2801 case LOC_COMPUTED:
76a01679
JB
2802 goto FoundNonType;
2803 default:
2804 break;
2805 }
2806 FoundNonType:
2807 if (j < n_candidates)
2808 {
2809 j = 0;
2810 while (j < n_candidates)
2811 {
2812 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2813 {
2814 candidates[j] = candidates[n_candidates - 1];
2815 n_candidates -= 1;
2816 }
2817 else
2818 j += 1;
2819 }
2820 }
2821 }
2822
2823 if (n_candidates == 0)
323e0a4a 2824 error (_("No definition found for %s"),
76a01679
JB
2825 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2826 else if (n_candidates == 1)
2827 i = 0;
2828 else if (deprocedure_p
2829 && !is_nonfunction (candidates, n_candidates))
2830 {
06d5cf63
JB
2831 i = ada_resolve_function
2832 (candidates, n_candidates, NULL, 0,
2833 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2834 context_type);
76a01679 2835 if (i < 0)
323e0a4a 2836 error (_("Could not find a match for %s"),
76a01679
JB
2837 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2838 }
2839 else
2840 {
323e0a4a 2841 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2842 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2843 user_select_syms (candidates, n_candidates, 1);
2844 i = 0;
2845 }
2846
2847 exp->elts[pc + 1].block = candidates[i].block;
2848 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2849 if (innermost_block == NULL
2850 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2851 innermost_block = candidates[i].block;
2852 }
2853
2854 if (deprocedure_p
2855 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2856 == TYPE_CODE_FUNC))
2857 {
2858 replace_operator_with_call (expp, pc, 0, 0,
2859 exp->elts[pc + 2].symbol,
2860 exp->elts[pc + 1].block);
2861 exp = *expp;
2862 }
14f9c5c9
AS
2863 break;
2864
2865 case OP_FUNCALL:
2866 {
4c4b4cd2 2867 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2868 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2869 {
2870 struct ada_symbol_info *candidates;
2871 int n_candidates;
2872
2873 n_candidates =
76a01679
JB
2874 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2875 (exp->elts[pc + 5].symbol),
2876 exp->elts[pc + 4].block, VAR_DOMAIN,
2877 &candidates);
4c4b4cd2
PH
2878 if (n_candidates == 1)
2879 i = 0;
2880 else
2881 {
06d5cf63
JB
2882 i = ada_resolve_function
2883 (candidates, n_candidates,
2884 argvec, nargs,
2885 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2886 context_type);
4c4b4cd2 2887 if (i < 0)
323e0a4a 2888 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2889 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2890 }
2891
2892 exp->elts[pc + 4].block = candidates[i].block;
2893 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2894 if (innermost_block == NULL
2895 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2896 innermost_block = candidates[i].block;
2897 }
14f9c5c9
AS
2898 }
2899 break;
2900 case BINOP_ADD:
2901 case BINOP_SUB:
2902 case BINOP_MUL:
2903 case BINOP_DIV:
2904 case BINOP_REM:
2905 case BINOP_MOD:
2906 case BINOP_CONCAT:
2907 case BINOP_BITWISE_AND:
2908 case BINOP_BITWISE_IOR:
2909 case BINOP_BITWISE_XOR:
2910 case BINOP_EQUAL:
2911 case BINOP_NOTEQUAL:
2912 case BINOP_LESS:
2913 case BINOP_GTR:
2914 case BINOP_LEQ:
2915 case BINOP_GEQ:
2916 case BINOP_EXP:
2917 case UNOP_NEG:
2918 case UNOP_PLUS:
2919 case UNOP_LOGICAL_NOT:
2920 case UNOP_ABS:
2921 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2922 {
2923 struct ada_symbol_info *candidates;
2924 int n_candidates;
2925
2926 n_candidates =
2927 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2928 (struct block *) NULL, VAR_DOMAIN,
2929 &candidates);
2930 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2931 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2932 if (i < 0)
2933 break;
2934
76a01679
JB
2935 replace_operator_with_call (expp, pc, nargs, 1,
2936 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2937 exp = *expp;
2938 }
14f9c5c9 2939 break;
4c4b4cd2
PH
2940
2941 case OP_TYPE:
b3dbf008 2942 case OP_REGISTER:
4c4b4cd2 2943 return NULL;
14f9c5c9
AS
2944 }
2945
2946 *pos = pc;
2947 return evaluate_subexp_type (exp, pos);
2948}
2949
2950/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2951 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2952 a non-pointer. A type of 'void' (which is never a valid expression type)
2953 by convention matches anything. */
14f9c5c9 2954/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2955 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2956
2957static int
4dc81987 2958ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2959{
61ee279c
PH
2960 ftype = ada_check_typedef (ftype);
2961 atype = ada_check_typedef (atype);
14f9c5c9
AS
2962
2963 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2964 ftype = TYPE_TARGET_TYPE (ftype);
2965 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2966 atype = TYPE_TARGET_TYPE (atype);
2967
d2e4a39e 2968 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2969 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2970 return 1;
2971
d2e4a39e 2972 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2973 {
2974 default:
2975 return 1;
2976 case TYPE_CODE_PTR:
2977 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2978 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2979 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2980 else
1265e4aa
JB
2981 return (may_deref
2982 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2983 case TYPE_CODE_INT:
2984 case TYPE_CODE_ENUM:
2985 case TYPE_CODE_RANGE:
2986 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2987 {
2988 case TYPE_CODE_INT:
2989 case TYPE_CODE_ENUM:
2990 case TYPE_CODE_RANGE:
2991 return 1;
2992 default:
2993 return 0;
2994 }
14f9c5c9
AS
2995
2996 case TYPE_CODE_ARRAY:
d2e4a39e 2997 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 2998 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
2999
3000 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3001 if (ada_is_array_descriptor_type (ftype))
3002 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3003 || ada_is_array_descriptor_type (atype));
14f9c5c9 3004 else
4c4b4cd2
PH
3005 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3006 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3007
3008 case TYPE_CODE_UNION:
3009 case TYPE_CODE_FLT:
3010 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3011 }
3012}
3013
3014/* Return non-zero if the formals of FUNC "sufficiently match" the
3015 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3016 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3017 argument function. */
14f9c5c9
AS
3018
3019static int
d2e4a39e 3020ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3021{
3022 int i;
d2e4a39e 3023 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3024
1265e4aa
JB
3025 if (SYMBOL_CLASS (func) == LOC_CONST
3026 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3027 return (n_actuals == 0);
3028 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3029 return 0;
3030
3031 if (TYPE_NFIELDS (func_type) != n_actuals)
3032 return 0;
3033
3034 for (i = 0; i < n_actuals; i += 1)
3035 {
4c4b4cd2 3036 if (actuals[i] == NULL)
76a01679
JB
3037 return 0;
3038 else
3039 {
61ee279c 3040 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3041 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3042
76a01679
JB
3043 if (!ada_type_match (ftype, atype, 1))
3044 return 0;
3045 }
14f9c5c9
AS
3046 }
3047 return 1;
3048}
3049
3050/* False iff function type FUNC_TYPE definitely does not produce a value
3051 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3052 FUNC_TYPE is not a valid function type with a non-null return type
3053 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3054
3055static int
d2e4a39e 3056return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3057{
d2e4a39e 3058 struct type *return_type;
14f9c5c9
AS
3059
3060 if (func_type == NULL)
3061 return 1;
3062
4c4b4cd2
PH
3063 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3064 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3065 else
3066 return_type = base_type (func_type);
14f9c5c9
AS
3067 if (return_type == NULL)
3068 return 1;
3069
4c4b4cd2 3070 context_type = base_type (context_type);
14f9c5c9
AS
3071
3072 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3073 return context_type == NULL || return_type == context_type;
3074 else if (context_type == NULL)
3075 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3076 else
3077 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3078}
3079
3080
4c4b4cd2 3081/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3082 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3083 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3084 that returns that type, then eliminate matches that don't. If
3085 CONTEXT_TYPE is void and there is at least one match that does not
3086 return void, eliminate all matches that do.
3087
14f9c5c9
AS
3088 Asks the user if there is more than one match remaining. Returns -1
3089 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3090 solely for messages. May re-arrange and modify SYMS in
3091 the process; the index returned is for the modified vector. */
14f9c5c9 3092
4c4b4cd2
PH
3093static int
3094ada_resolve_function (struct ada_symbol_info syms[],
3095 int nsyms, struct value **args, int nargs,
3096 const char *name, struct type *context_type)
14f9c5c9 3097{
30b15541 3098 int fallback;
14f9c5c9 3099 int k;
4c4b4cd2 3100 int m; /* Number of hits */
14f9c5c9 3101
d2e4a39e 3102 m = 0;
30b15541
UW
3103 /* In the first pass of the loop, we only accept functions matching
3104 context_type. If none are found, we add a second pass of the loop
3105 where every function is accepted. */
3106 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3107 {
3108 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3109 {
61ee279c 3110 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3111
3112 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3113 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3114 {
3115 syms[m] = syms[k];
3116 m += 1;
3117 }
3118 }
14f9c5c9
AS
3119 }
3120
3121 if (m == 0)
3122 return -1;
3123 else if (m > 1)
3124 {
323e0a4a 3125 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3126 user_select_syms (syms, m, 1);
14f9c5c9
AS
3127 return 0;
3128 }
3129 return 0;
3130}
3131
4c4b4cd2
PH
3132/* Returns true (non-zero) iff decoded name N0 should appear before N1
3133 in a listing of choices during disambiguation (see sort_choices, below).
3134 The idea is that overloadings of a subprogram name from the
3135 same package should sort in their source order. We settle for ordering
3136 such symbols by their trailing number (__N or $N). */
3137
14f9c5c9 3138static int
4c4b4cd2 3139encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3140{
3141 if (N1 == NULL)
3142 return 0;
3143 else if (N0 == NULL)
3144 return 1;
3145 else
3146 {
3147 int k0, k1;
d2e4a39e 3148 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3149 ;
d2e4a39e 3150 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3151 ;
d2e4a39e 3152 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3153 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3154 {
3155 int n0, n1;
3156 n0 = k0;
3157 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3158 n0 -= 1;
3159 n1 = k1;
3160 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 n1 -= 1;
3162 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3163 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 }
14f9c5c9
AS
3165 return (strcmp (N0, N1) < 0);
3166 }
3167}
d2e4a39e 3168
4c4b4cd2
PH
3169/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3170 encoded names. */
3171
d2e4a39e 3172static void
4c4b4cd2 3173sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3174{
4c4b4cd2 3175 int i;
d2e4a39e 3176 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3177 {
4c4b4cd2 3178 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3179 int j;
3180
d2e4a39e 3181 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3182 {
3183 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3184 SYMBOL_LINKAGE_NAME (sym.sym)))
3185 break;
3186 syms[j + 1] = syms[j];
3187 }
d2e4a39e 3188 syms[j + 1] = sym;
14f9c5c9
AS
3189 }
3190}
3191
4c4b4cd2
PH
3192/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3193 by asking the user (if necessary), returning the number selected,
3194 and setting the first elements of SYMS items. Error if no symbols
3195 selected. */
14f9c5c9
AS
3196
3197/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3198 to be re-integrated one of these days. */
14f9c5c9
AS
3199
3200int
4c4b4cd2 3201user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3202{
3203 int i;
d2e4a39e 3204 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3205 int n_chosen;
3206 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3207 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3208
3209 if (max_results < 1)
323e0a4a 3210 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3211 if (nsyms <= 1)
3212 return nsyms;
3213
717d2f5a
JB
3214 if (select_mode == multiple_symbols_cancel)
3215 error (_("\
3216canceled because the command is ambiguous\n\
3217See set/show multiple-symbol."));
3218
3219 /* If select_mode is "all", then return all possible symbols.
3220 Only do that if more than one symbol can be selected, of course.
3221 Otherwise, display the menu as usual. */
3222 if (select_mode == multiple_symbols_all && max_results > 1)
3223 return nsyms;
3224
323e0a4a 3225 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3226 if (max_results > 1)
323e0a4a 3227 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3228
4c4b4cd2 3229 sort_choices (syms, nsyms);
14f9c5c9
AS
3230
3231 for (i = 0; i < nsyms; i += 1)
3232 {
4c4b4cd2
PH
3233 if (syms[i].sym == NULL)
3234 continue;
3235
3236 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3237 {
76a01679
JB
3238 struct symtab_and_line sal =
3239 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3240 if (sal.symtab == NULL)
3241 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3242 i + first_choice,
3243 SYMBOL_PRINT_NAME (syms[i].sym),
3244 sal.line);
3245 else
3246 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3247 SYMBOL_PRINT_NAME (syms[i].sym),
3248 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3249 continue;
3250 }
d2e4a39e 3251 else
4c4b4cd2
PH
3252 {
3253 int is_enumeral =
3254 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3255 && SYMBOL_TYPE (syms[i].sym) != NULL
3256 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3257 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3258
3259 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3260 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3261 i + first_choice,
3262 SYMBOL_PRINT_NAME (syms[i].sym),
3263 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3264 else if (is_enumeral
3265 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3266 {
a3f17187 3267 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3268 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3269 gdb_stdout, -1, 0);
323e0a4a 3270 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3271 SYMBOL_PRINT_NAME (syms[i].sym));
3272 }
3273 else if (symtab != NULL)
3274 printf_unfiltered (is_enumeral
323e0a4a
AC
3275 ? _("[%d] %s in %s (enumeral)\n")
3276 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3277 i + first_choice,
3278 SYMBOL_PRINT_NAME (syms[i].sym),
3279 symtab->filename);
3280 else
3281 printf_unfiltered (is_enumeral
323e0a4a
AC
3282 ? _("[%d] %s (enumeral)\n")
3283 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3284 i + first_choice,
3285 SYMBOL_PRINT_NAME (syms[i].sym));
3286 }
14f9c5c9 3287 }
d2e4a39e 3288
14f9c5c9 3289 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3290 "overload-choice");
14f9c5c9
AS
3291
3292 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3293 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3294
3295 return n_chosen;
3296}
3297
3298/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3299 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3300 order in CHOICES[0 .. N-1], and return N.
3301
3302 The user types choices as a sequence of numbers on one line
3303 separated by blanks, encoding them as follows:
3304
4c4b4cd2 3305 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3306 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3307 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3308
4c4b4cd2 3309 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3310
3311 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3312 prompts (for use with the -f switch). */
14f9c5c9
AS
3313
3314int
d2e4a39e 3315get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3316 int is_all_choice, char *annotation_suffix)
14f9c5c9 3317{
d2e4a39e 3318 char *args;
0bcd0149 3319 char *prompt;
14f9c5c9
AS
3320 int n_chosen;
3321 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3322
14f9c5c9
AS
3323 prompt = getenv ("PS2");
3324 if (prompt == NULL)
0bcd0149 3325 prompt = "> ";
14f9c5c9 3326
0bcd0149 3327 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3328
14f9c5c9 3329 if (args == NULL)
323e0a4a 3330 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3331
3332 n_chosen = 0;
76a01679 3333
4c4b4cd2
PH
3334 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3335 order, as given in args. Choices are validated. */
14f9c5c9
AS
3336 while (1)
3337 {
d2e4a39e 3338 char *args2;
14f9c5c9
AS
3339 int choice, j;
3340
3341 while (isspace (*args))
4c4b4cd2 3342 args += 1;
14f9c5c9 3343 if (*args == '\0' && n_chosen == 0)
323e0a4a 3344 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3345 else if (*args == '\0')
4c4b4cd2 3346 break;
14f9c5c9
AS
3347
3348 choice = strtol (args, &args2, 10);
d2e4a39e 3349 if (args == args2 || choice < 0
4c4b4cd2 3350 || choice > n_choices + first_choice - 1)
323e0a4a 3351 error (_("Argument must be choice number"));
14f9c5c9
AS
3352 args = args2;
3353
d2e4a39e 3354 if (choice == 0)
323e0a4a 3355 error (_("cancelled"));
14f9c5c9
AS
3356
3357 if (choice < first_choice)
4c4b4cd2
PH
3358 {
3359 n_chosen = n_choices;
3360 for (j = 0; j < n_choices; j += 1)
3361 choices[j] = j;
3362 break;
3363 }
14f9c5c9
AS
3364 choice -= first_choice;
3365
d2e4a39e 3366 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3367 {
3368 }
14f9c5c9
AS
3369
3370 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3371 {
3372 int k;
3373 for (k = n_chosen - 1; k > j; k -= 1)
3374 choices[k + 1] = choices[k];
3375 choices[j + 1] = choice;
3376 n_chosen += 1;
3377 }
14f9c5c9
AS
3378 }
3379
3380 if (n_chosen > max_results)
323e0a4a 3381 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3382
14f9c5c9
AS
3383 return n_chosen;
3384}
3385
4c4b4cd2
PH
3386/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3387 on the function identified by SYM and BLOCK, and taking NARGS
3388 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3389
3390static void
d2e4a39e 3391replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3392 int oplen, struct symbol *sym,
3393 struct block *block)
14f9c5c9
AS
3394{
3395 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3396 symbol, -oplen for operator being replaced). */
d2e4a39e 3397 struct expression *newexp = (struct expression *)
14f9c5c9 3398 xmalloc (sizeof (struct expression)
4c4b4cd2 3399 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3400 struct expression *exp = *expp;
14f9c5c9
AS
3401
3402 newexp->nelts = exp->nelts + 7 - oplen;
3403 newexp->language_defn = exp->language_defn;
3404 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3405 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3406 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3407
3408 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3409 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3410
3411 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3412 newexp->elts[pc + 4].block = block;
3413 newexp->elts[pc + 5].symbol = sym;
3414
3415 *expp = newexp;
aacb1f0a 3416 xfree (exp);
d2e4a39e 3417}
14f9c5c9
AS
3418
3419/* Type-class predicates */
3420
4c4b4cd2
PH
3421/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3422 or FLOAT). */
14f9c5c9
AS
3423
3424static int
d2e4a39e 3425numeric_type_p (struct type *type)
14f9c5c9
AS
3426{
3427 if (type == NULL)
3428 return 0;
d2e4a39e
AS
3429 else
3430 {
3431 switch (TYPE_CODE (type))
4c4b4cd2
PH
3432 {
3433 case TYPE_CODE_INT:
3434 case TYPE_CODE_FLT:
3435 return 1;
3436 case TYPE_CODE_RANGE:
3437 return (type == TYPE_TARGET_TYPE (type)
3438 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3439 default:
3440 return 0;
3441 }
d2e4a39e 3442 }
14f9c5c9
AS
3443}
3444
4c4b4cd2 3445/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3446
3447static int
d2e4a39e 3448integer_type_p (struct type *type)
14f9c5c9
AS
3449{
3450 if (type == NULL)
3451 return 0;
d2e4a39e
AS
3452 else
3453 {
3454 switch (TYPE_CODE (type))
4c4b4cd2
PH
3455 {
3456 case TYPE_CODE_INT:
3457 return 1;
3458 case TYPE_CODE_RANGE:
3459 return (type == TYPE_TARGET_TYPE (type)
3460 || integer_type_p (TYPE_TARGET_TYPE (type)));
3461 default:
3462 return 0;
3463 }
d2e4a39e 3464 }
14f9c5c9
AS
3465}
3466
4c4b4cd2 3467/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3468
3469static int
d2e4a39e 3470scalar_type_p (struct type *type)
14f9c5c9
AS
3471{
3472 if (type == NULL)
3473 return 0;
d2e4a39e
AS
3474 else
3475 {
3476 switch (TYPE_CODE (type))
4c4b4cd2
PH
3477 {
3478 case TYPE_CODE_INT:
3479 case TYPE_CODE_RANGE:
3480 case TYPE_CODE_ENUM:
3481 case TYPE_CODE_FLT:
3482 return 1;
3483 default:
3484 return 0;
3485 }
d2e4a39e 3486 }
14f9c5c9
AS
3487}
3488
4c4b4cd2 3489/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3490
3491static int
d2e4a39e 3492discrete_type_p (struct type *type)
14f9c5c9
AS
3493{
3494 if (type == NULL)
3495 return 0;
d2e4a39e
AS
3496 else
3497 {
3498 switch (TYPE_CODE (type))
4c4b4cd2
PH
3499 {
3500 case TYPE_CODE_INT:
3501 case TYPE_CODE_RANGE:
3502 case TYPE_CODE_ENUM:
3503 return 1;
3504 default:
3505 return 0;
3506 }
d2e4a39e 3507 }
14f9c5c9
AS
3508}
3509
4c4b4cd2
PH
3510/* Returns non-zero if OP with operands in the vector ARGS could be
3511 a user-defined function. Errs on the side of pre-defined operators
3512 (i.e., result 0). */
14f9c5c9
AS
3513
3514static int
d2e4a39e 3515possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3516{
76a01679 3517 struct type *type0 =
df407dfe 3518 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3519 struct type *type1 =
df407dfe 3520 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3521
4c4b4cd2
PH
3522 if (type0 == NULL)
3523 return 0;
3524
14f9c5c9
AS
3525 switch (op)
3526 {
3527 default:
3528 return 0;
3529
3530 case BINOP_ADD:
3531 case BINOP_SUB:
3532 case BINOP_MUL:
3533 case BINOP_DIV:
d2e4a39e 3534 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3535
3536 case BINOP_REM:
3537 case BINOP_MOD:
3538 case BINOP_BITWISE_AND:
3539 case BINOP_BITWISE_IOR:
3540 case BINOP_BITWISE_XOR:
d2e4a39e 3541 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3542
3543 case BINOP_EQUAL:
3544 case BINOP_NOTEQUAL:
3545 case BINOP_LESS:
3546 case BINOP_GTR:
3547 case BINOP_LEQ:
3548 case BINOP_GEQ:
d2e4a39e 3549 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3550
3551 case BINOP_CONCAT:
ee90b9ab 3552 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3553
3554 case BINOP_EXP:
d2e4a39e 3555 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3556
3557 case UNOP_NEG:
3558 case UNOP_PLUS:
3559 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3560 case UNOP_ABS:
3561 return (!numeric_type_p (type0));
14f9c5c9
AS
3562
3563 }
3564}
3565\f
4c4b4cd2 3566 /* Renaming */
14f9c5c9 3567
aeb5907d
JB
3568/* NOTES:
3569
3570 1. In the following, we assume that a renaming type's name may
3571 have an ___XD suffix. It would be nice if this went away at some
3572 point.
3573 2. We handle both the (old) purely type-based representation of
3574 renamings and the (new) variable-based encoding. At some point,
3575 it is devoutly to be hoped that the former goes away
3576 (FIXME: hilfinger-2007-07-09).
3577 3. Subprogram renamings are not implemented, although the XRS
3578 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3579
3580/* If SYM encodes a renaming,
3581
3582 <renaming> renames <renamed entity>,
3583
3584 sets *LEN to the length of the renamed entity's name,
3585 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3586 the string describing the subcomponent selected from the renamed
3587 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3588 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3589 are undefined). Otherwise, returns a value indicating the category
3590 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3591 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3592 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3593 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3594 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3595 may be NULL, in which case they are not assigned.
3596
3597 [Currently, however, GCC does not generate subprogram renamings.] */
3598
3599enum ada_renaming_category
3600ada_parse_renaming (struct symbol *sym,
3601 const char **renamed_entity, int *len,
3602 const char **renaming_expr)
3603{
3604 enum ada_renaming_category kind;
3605 const char *info;
3606 const char *suffix;
3607
3608 if (sym == NULL)
3609 return ADA_NOT_RENAMING;
3610 switch (SYMBOL_CLASS (sym))
14f9c5c9 3611 {
aeb5907d
JB
3612 default:
3613 return ADA_NOT_RENAMING;
3614 case LOC_TYPEDEF:
3615 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3616 renamed_entity, len, renaming_expr);
3617 case LOC_LOCAL:
3618 case LOC_STATIC:
3619 case LOC_COMPUTED:
3620 case LOC_OPTIMIZED_OUT:
3621 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3622 if (info == NULL)
3623 return ADA_NOT_RENAMING;
3624 switch (info[5])
3625 {
3626 case '_':
3627 kind = ADA_OBJECT_RENAMING;
3628 info += 6;
3629 break;
3630 case 'E':
3631 kind = ADA_EXCEPTION_RENAMING;
3632 info += 7;
3633 break;
3634 case 'P':
3635 kind = ADA_PACKAGE_RENAMING;
3636 info += 7;
3637 break;
3638 case 'S':
3639 kind = ADA_SUBPROGRAM_RENAMING;
3640 info += 7;
3641 break;
3642 default:
3643 return ADA_NOT_RENAMING;
3644 }
14f9c5c9 3645 }
4c4b4cd2 3646
aeb5907d
JB
3647 if (renamed_entity != NULL)
3648 *renamed_entity = info;
3649 suffix = strstr (info, "___XE");
3650 if (suffix == NULL || suffix == info)
3651 return ADA_NOT_RENAMING;
3652 if (len != NULL)
3653 *len = strlen (info) - strlen (suffix);
3654 suffix += 5;
3655 if (renaming_expr != NULL)
3656 *renaming_expr = suffix;
3657 return kind;
3658}
3659
3660/* Assuming TYPE encodes a renaming according to the old encoding in
3661 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3662 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3663 ADA_NOT_RENAMING otherwise. */
3664static enum ada_renaming_category
3665parse_old_style_renaming (struct type *type,
3666 const char **renamed_entity, int *len,
3667 const char **renaming_expr)
3668{
3669 enum ada_renaming_category kind;
3670 const char *name;
3671 const char *info;
3672 const char *suffix;
14f9c5c9 3673
aeb5907d
JB
3674 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3675 || TYPE_NFIELDS (type) != 1)
3676 return ADA_NOT_RENAMING;
14f9c5c9 3677
aeb5907d
JB
3678 name = type_name_no_tag (type);
3679 if (name == NULL)
3680 return ADA_NOT_RENAMING;
3681
3682 name = strstr (name, "___XR");
3683 if (name == NULL)
3684 return ADA_NOT_RENAMING;
3685 switch (name[5])
3686 {
3687 case '\0':
3688 case '_':
3689 kind = ADA_OBJECT_RENAMING;
3690 break;
3691 case 'E':
3692 kind = ADA_EXCEPTION_RENAMING;
3693 break;
3694 case 'P':
3695 kind = ADA_PACKAGE_RENAMING;
3696 break;
3697 case 'S':
3698 kind = ADA_SUBPROGRAM_RENAMING;
3699 break;
3700 default:
3701 return ADA_NOT_RENAMING;
3702 }
14f9c5c9 3703
aeb5907d
JB
3704 info = TYPE_FIELD_NAME (type, 0);
3705 if (info == NULL)
3706 return ADA_NOT_RENAMING;
3707 if (renamed_entity != NULL)
3708 *renamed_entity = info;
3709 suffix = strstr (info, "___XE");
3710 if (renaming_expr != NULL)
3711 *renaming_expr = suffix + 5;
3712 if (suffix == NULL || suffix == info)
3713 return ADA_NOT_RENAMING;
3714 if (len != NULL)
3715 *len = suffix - info;
3716 return kind;
3717}
52ce6436 3718
14f9c5c9 3719\f
d2e4a39e 3720
4c4b4cd2 3721 /* Evaluation: Function Calls */
14f9c5c9 3722
4c4b4cd2
PH
3723/* Return an lvalue containing the value VAL. This is the identity on
3724 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3725 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3726 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3727
d2e4a39e 3728static struct value *
4a399546 3729ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3730{
c3e5cd34
PH
3731 if (! VALUE_LVAL (val))
3732 {
df407dfe 3733 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3734
3735 /* The following is taken from the structure-return code in
3736 call_function_by_hand. FIXME: Therefore, some refactoring seems
3737 indicated. */
4a399546 3738 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3739 {
42ae5230 3740 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3741 reserving sufficient space. */
3742 *sp -= len;
4a399546
UW
3743 if (gdbarch_frame_align_p (gdbarch))
3744 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3745 set_value_address (val, *sp);
c3e5cd34
PH
3746 }
3747 else
3748 {
3749 /* Stack grows upward. Align the frame, allocate space, and
3750 then again, re-align the frame. */
4a399546
UW
3751 if (gdbarch_frame_align_p (gdbarch))
3752 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3753 set_value_address (val, *sp);
c3e5cd34 3754 *sp += len;
4a399546
UW
3755 if (gdbarch_frame_align_p (gdbarch))
3756 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3757 }
a84a8a0d 3758 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3759
42ae5230 3760 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3761 }
14f9c5c9
AS
3762
3763 return val;
3764}
3765
3766/* Return the value ACTUAL, converted to be an appropriate value for a
3767 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3768 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3769 values not residing in memory, updating it as needed. */
14f9c5c9 3770
a93c0eb6
JB
3771struct value *
3772ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3773 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3774{
df407dfe 3775 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3776 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3777 struct type *formal_target =
3778 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3779 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3780 struct type *actual_target =
3781 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3782 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3783
4c4b4cd2 3784 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3785 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3786 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3787 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3788 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3789 {
a84a8a0d 3790 struct value *result;
14f9c5c9 3791 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3792 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3793 result = desc_data (actual);
14f9c5c9 3794 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3795 {
3796 if (VALUE_LVAL (actual) != lval_memory)
3797 {
3798 struct value *val;
df407dfe 3799 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3800 val = allocate_value (actual_type);
990a07ab 3801 memcpy ((char *) value_contents_raw (val),
0fd88904 3802 (char *) value_contents (actual),
4c4b4cd2 3803 TYPE_LENGTH (actual_type));
4a399546 3804 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3805 }
a84a8a0d 3806 result = value_addr (actual);
4c4b4cd2 3807 }
a84a8a0d
JB
3808 else
3809 return actual;
3810 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3811 }
3812 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3813 return ada_value_ind (actual);
3814
3815 return actual;
3816}
3817
3818
4c4b4cd2
PH
3819/* Push a descriptor of type TYPE for array value ARR on the stack at
3820 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3821 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3822 to-descriptor type rather than a descriptor type), a struct value *
3823 representing a pointer to this descriptor. */
14f9c5c9 3824
d2e4a39e 3825static struct value *
4a399546
UW
3826make_array_descriptor (struct type *type, struct value *arr,
3827 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3828{
d2e4a39e
AS
3829 struct type *bounds_type = desc_bounds_type (type);
3830 struct type *desc_type = desc_base_type (type);
3831 struct value *descriptor = allocate_value (desc_type);
3832 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3833 int i;
d2e4a39e 3834
df407dfe 3835 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3836 {
0fd88904 3837 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3838 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3839 desc_bound_bitpos (bounds_type, i, 0),
3840 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3841 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3842 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3843 desc_bound_bitpos (bounds_type, i, 1),
3844 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3845 }
d2e4a39e 3846
4a399546 3847 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3848
0fd88904 3849 modify_general_field (value_contents_writeable (descriptor),
4a399546 3850 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3851 fat_pntr_data_bitpos (desc_type),
3852 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3853
0fd88904 3854 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3855 value_address (bounds),
4c4b4cd2
PH
3856 fat_pntr_bounds_bitpos (desc_type),
3857 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3858
4a399546 3859 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3860
3861 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3862 return value_addr (descriptor);
3863 else
3864 return descriptor;
3865}
14f9c5c9 3866\f
963a6417
PH
3867/* Dummy definitions for an experimental caching module that is not
3868 * used in the public sources. */
96d887e8 3869
96d887e8
PH
3870static int
3871lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3872 struct symbol **sym, struct block **block)
96d887e8
PH
3873{
3874 return 0;
3875}
3876
3877static void
3878cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3879 struct block *block)
96d887e8
PH
3880{
3881}
4c4b4cd2
PH
3882\f
3883 /* Symbol Lookup */
3884
3885/* Return the result of a standard (literal, C-like) lookup of NAME in
3886 given DOMAIN, visible from lexical block BLOCK. */
3887
3888static struct symbol *
3889standard_lookup (const char *name, const struct block *block,
3890 domain_enum domain)
3891{
3892 struct symbol *sym;
4c4b4cd2 3893
2570f2b7 3894 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3895 return sym;
2570f2b7
UW
3896 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3897 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3898 return sym;
3899}
3900
3901
3902/* Non-zero iff there is at least one non-function/non-enumeral symbol
3903 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3904 since they contend in overloading in the same way. */
3905static int
3906is_nonfunction (struct ada_symbol_info syms[], int n)
3907{
3908 int i;
3909
3910 for (i = 0; i < n; i += 1)
3911 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3912 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3913 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3914 return 1;
3915
3916 return 0;
3917}
3918
3919/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3920 struct types. Otherwise, they may not. */
14f9c5c9
AS
3921
3922static int
d2e4a39e 3923equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3924{
d2e4a39e 3925 if (type0 == type1)
14f9c5c9 3926 return 1;
d2e4a39e 3927 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3928 || TYPE_CODE (type0) != TYPE_CODE (type1))
3929 return 0;
d2e4a39e 3930 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3931 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3932 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3933 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3934 return 1;
d2e4a39e 3935
14f9c5c9
AS
3936 return 0;
3937}
3938
3939/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3940 no more defined than that of SYM1. */
14f9c5c9
AS
3941
3942static int
d2e4a39e 3943lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3944{
3945 if (sym0 == sym1)
3946 return 1;
176620f1 3947 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3948 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3949 return 0;
3950
d2e4a39e 3951 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3952 {
3953 case LOC_UNDEF:
3954 return 1;
3955 case LOC_TYPEDEF:
3956 {
4c4b4cd2
PH
3957 struct type *type0 = SYMBOL_TYPE (sym0);
3958 struct type *type1 = SYMBOL_TYPE (sym1);
3959 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3960 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3961 int len0 = strlen (name0);
3962 return
3963 TYPE_CODE (type0) == TYPE_CODE (type1)
3964 && (equiv_types (type0, type1)
3965 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3966 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3967 }
3968 case LOC_CONST:
3969 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3970 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3971 default:
3972 return 0;
14f9c5c9
AS
3973 }
3974}
3975
4c4b4cd2
PH
3976/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3977 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3978
3979static void
76a01679
JB
3980add_defn_to_vec (struct obstack *obstackp,
3981 struct symbol *sym,
2570f2b7 3982 struct block *block)
14f9c5c9
AS
3983{
3984 int i;
3985 size_t tmp;
4c4b4cd2 3986 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3987
529cad9c
PH
3988 /* Do not try to complete stub types, as the debugger is probably
3989 already scanning all symbols matching a certain name at the
3990 time when this function is called. Trying to replace the stub
3991 type by its associated full type will cause us to restart a scan
3992 which may lead to an infinite recursion. Instead, the client
3993 collecting the matching symbols will end up collecting several
3994 matches, with at least one of them complete. It can then filter
3995 out the stub ones if needed. */
3996
4c4b4cd2
PH
3997 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3998 {
3999 if (lesseq_defined_than (sym, prevDefns[i].sym))
4000 return;
4001 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4002 {
4003 prevDefns[i].sym = sym;
4004 prevDefns[i].block = block;
4c4b4cd2 4005 return;
76a01679 4006 }
4c4b4cd2
PH
4007 }
4008
4009 {
4010 struct ada_symbol_info info;
4011
4012 info.sym = sym;
4013 info.block = block;
4c4b4cd2
PH
4014 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4015 }
4016}
4017
4018/* Number of ada_symbol_info structures currently collected in
4019 current vector in *OBSTACKP. */
4020
76a01679
JB
4021static int
4022num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4023{
4024 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4025}
4026
4027/* Vector of ada_symbol_info structures currently collected in current
4028 vector in *OBSTACKP. If FINISH, close off the vector and return
4029 its final address. */
4030
76a01679 4031static struct ada_symbol_info *
4c4b4cd2
PH
4032defns_collected (struct obstack *obstackp, int finish)
4033{
4034 if (finish)
4035 return obstack_finish (obstackp);
4036 else
4037 return (struct ada_symbol_info *) obstack_base (obstackp);
4038}
4039
96d887e8
PH
4040/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4041 Check the global symbols if GLOBAL, the static symbols if not.
4042 Do wild-card match if WILD. */
4c4b4cd2 4043
96d887e8
PH
4044static struct partial_symbol *
4045ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4046 int global, domain_enum namespace, int wild)
4c4b4cd2 4047{
96d887e8
PH
4048 struct partial_symbol **start;
4049 int name_len = strlen (name);
4050 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4051 int i;
4c4b4cd2 4052
96d887e8 4053 if (length == 0)
4c4b4cd2 4054 {
96d887e8 4055 return (NULL);
4c4b4cd2
PH
4056 }
4057
96d887e8
PH
4058 start = (global ?
4059 pst->objfile->global_psymbols.list + pst->globals_offset :
4060 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4061
96d887e8 4062 if (wild)
4c4b4cd2 4063 {
96d887e8
PH
4064 for (i = 0; i < length; i += 1)
4065 {
4066 struct partial_symbol *psym = start[i];
4c4b4cd2 4067
5eeb2539
AR
4068 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4069 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4070 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4071 return psym;
4072 }
4073 return NULL;
4c4b4cd2 4074 }
96d887e8
PH
4075 else
4076 {
4077 if (global)
4078 {
4079 int U;
4080 i = 0;
4081 U = length - 1;
4082 while (U - i > 4)
4083 {
4084 int M = (U + i) >> 1;
4085 struct partial_symbol *psym = start[M];
4086 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4087 i = M + 1;
4088 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4089 U = M - 1;
4090 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4091 i = M + 1;
4092 else
4093 U = M;
4094 }
4095 }
4096 else
4097 i = 0;
4c4b4cd2 4098
96d887e8
PH
4099 while (i < length)
4100 {
4101 struct partial_symbol *psym = start[i];
4c4b4cd2 4102
5eeb2539
AR
4103 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4104 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4105 {
4106 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4107
96d887e8
PH
4108 if (cmp < 0)
4109 {
4110 if (global)
4111 break;
4112 }
4113 else if (cmp == 0
4114 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4115 + name_len))
96d887e8
PH
4116 return psym;
4117 }
4118 i += 1;
4119 }
4c4b4cd2 4120
96d887e8
PH
4121 if (global)
4122 {
4123 int U;
4124 i = 0;
4125 U = length - 1;
4126 while (U - i > 4)
4127 {
4128 int M = (U + i) >> 1;
4129 struct partial_symbol *psym = start[M];
4130 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4131 i = M + 1;
4132 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4133 U = M - 1;
4134 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4135 i = M + 1;
4136 else
4137 U = M;
4138 }
4139 }
4140 else
4141 i = 0;
4c4b4cd2 4142
96d887e8
PH
4143 while (i < length)
4144 {
4145 struct partial_symbol *psym = start[i];
4c4b4cd2 4146
5eeb2539
AR
4147 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4148 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4149 {
4150 int cmp;
4c4b4cd2 4151
96d887e8
PH
4152 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4153 if (cmp == 0)
4154 {
4155 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4156 if (cmp == 0)
4157 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4158 name_len);
96d887e8 4159 }
4c4b4cd2 4160
96d887e8
PH
4161 if (cmp < 0)
4162 {
4163 if (global)
4164 break;
4165 }
4166 else if (cmp == 0
4167 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4168 + name_len + 5))
96d887e8
PH
4169 return psym;
4170 }
4171 i += 1;
4172 }
4173 }
4174 return NULL;
4c4b4cd2
PH
4175}
4176
96d887e8
PH
4177/* Return a minimal symbol matching NAME according to Ada decoding
4178 rules. Returns NULL if there is no such minimal symbol. Names
4179 prefixed with "standard__" are handled specially: "standard__" is
4180 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4181
96d887e8
PH
4182struct minimal_symbol *
4183ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4184{
4c4b4cd2 4185 struct objfile *objfile;
96d887e8
PH
4186 struct minimal_symbol *msymbol;
4187 int wild_match;
4c4b4cd2 4188
96d887e8 4189 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4190 {
96d887e8 4191 name += sizeof ("standard__") - 1;
4c4b4cd2 4192 wild_match = 0;
4c4b4cd2
PH
4193 }
4194 else
96d887e8 4195 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4196
96d887e8
PH
4197 ALL_MSYMBOLS (objfile, msymbol)
4198 {
4199 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4200 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4201 return msymbol;
4202 }
4c4b4cd2 4203
96d887e8
PH
4204 return NULL;
4205}
4c4b4cd2 4206
96d887e8
PH
4207/* For all subprograms that statically enclose the subprogram of the
4208 selected frame, add symbols matching identifier NAME in DOMAIN
4209 and their blocks to the list of data in OBSTACKP, as for
4210 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4211 wildcard prefix. */
4c4b4cd2 4212
96d887e8
PH
4213static void
4214add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4215 const char *name, domain_enum namespace,
96d887e8
PH
4216 int wild_match)
4217{
96d887e8 4218}
14f9c5c9 4219
96d887e8
PH
4220/* True if TYPE is definitely an artificial type supplied to a symbol
4221 for which no debugging information was given in the symbol file. */
14f9c5c9 4222
96d887e8
PH
4223static int
4224is_nondebugging_type (struct type *type)
4225{
4226 char *name = ada_type_name (type);
4227 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4228}
4c4b4cd2 4229
96d887e8
PH
4230/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4231 duplicate other symbols in the list (The only case I know of where
4232 this happens is when object files containing stabs-in-ecoff are
4233 linked with files containing ordinary ecoff debugging symbols (or no
4234 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4235 Returns the number of items in the modified list. */
4c4b4cd2 4236
96d887e8
PH
4237static int
4238remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4239{
4240 int i, j;
4c4b4cd2 4241
96d887e8
PH
4242 i = 0;
4243 while (i < nsyms)
4244 {
339c13b6
JB
4245 int remove = 0;
4246
4247 /* If two symbols have the same name and one of them is a stub type,
4248 the get rid of the stub. */
4249
4250 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4251 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4252 {
4253 for (j = 0; j < nsyms; j++)
4254 {
4255 if (j != i
4256 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4257 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4258 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4259 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4260 remove = 1;
4261 }
4262 }
4263
4264 /* Two symbols with the same name, same class and same address
4265 should be identical. */
4266
4267 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4268 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4269 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4270 {
4271 for (j = 0; j < nsyms; j += 1)
4272 {
4273 if (i != j
4274 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4275 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4276 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4277 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4278 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4279 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4280 remove = 1;
4c4b4cd2 4281 }
4c4b4cd2 4282 }
339c13b6
JB
4283
4284 if (remove)
4285 {
4286 for (j = i + 1; j < nsyms; j += 1)
4287 syms[j - 1] = syms[j];
4288 nsyms -= 1;
4289 }
4290
96d887e8 4291 i += 1;
14f9c5c9 4292 }
96d887e8 4293 return nsyms;
14f9c5c9
AS
4294}
4295
96d887e8
PH
4296/* Given a type that corresponds to a renaming entity, use the type name
4297 to extract the scope (package name or function name, fully qualified,
4298 and following the GNAT encoding convention) where this renaming has been
4299 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4300
96d887e8
PH
4301static char *
4302xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4303{
96d887e8
PH
4304 /* The renaming types adhere to the following convention:
4305 <scope>__<rename>___<XR extension>.
4306 So, to extract the scope, we search for the "___XR" extension,
4307 and then backtrack until we find the first "__". */
76a01679 4308
96d887e8
PH
4309 const char *name = type_name_no_tag (renaming_type);
4310 char *suffix = strstr (name, "___XR");
4311 char *last;
4312 int scope_len;
4313 char *scope;
14f9c5c9 4314
96d887e8
PH
4315 /* Now, backtrack a bit until we find the first "__". Start looking
4316 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4317
96d887e8
PH
4318 for (last = suffix - 3; last > name; last--)
4319 if (last[0] == '_' && last[1] == '_')
4320 break;
76a01679 4321
96d887e8 4322 /* Make a copy of scope and return it. */
14f9c5c9 4323
96d887e8
PH
4324 scope_len = last - name;
4325 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4326
96d887e8
PH
4327 strncpy (scope, name, scope_len);
4328 scope[scope_len] = '\0';
4c4b4cd2 4329
96d887e8 4330 return scope;
4c4b4cd2
PH
4331}
4332
96d887e8 4333/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4334
96d887e8
PH
4335static int
4336is_package_name (const char *name)
4c4b4cd2 4337{
96d887e8
PH
4338 /* Here, We take advantage of the fact that no symbols are generated
4339 for packages, while symbols are generated for each function.
4340 So the condition for NAME represent a package becomes equivalent
4341 to NAME not existing in our list of symbols. There is only one
4342 small complication with library-level functions (see below). */
4c4b4cd2 4343
96d887e8 4344 char *fun_name;
76a01679 4345
96d887e8
PH
4346 /* If it is a function that has not been defined at library level,
4347 then we should be able to look it up in the symbols. */
4348 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4349 return 0;
14f9c5c9 4350
96d887e8
PH
4351 /* Library-level function names start with "_ada_". See if function
4352 "_ada_" followed by NAME can be found. */
14f9c5c9 4353
96d887e8 4354 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4355 functions names cannot contain "__" in them. */
96d887e8
PH
4356 if (strstr (name, "__") != NULL)
4357 return 0;
4c4b4cd2 4358
b435e160 4359 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4360
96d887e8
PH
4361 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4362}
14f9c5c9 4363
96d887e8 4364/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4365 not visible from FUNCTION_NAME. */
14f9c5c9 4366
96d887e8 4367static int
aeb5907d 4368old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4369{
aeb5907d
JB
4370 char *scope;
4371
4372 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4373 return 0;
4374
4375 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4376
96d887e8 4377 make_cleanup (xfree, scope);
14f9c5c9 4378
96d887e8
PH
4379 /* If the rename has been defined in a package, then it is visible. */
4380 if (is_package_name (scope))
aeb5907d 4381 return 0;
14f9c5c9 4382
96d887e8
PH
4383 /* Check that the rename is in the current function scope by checking
4384 that its name starts with SCOPE. */
76a01679 4385
96d887e8
PH
4386 /* If the function name starts with "_ada_", it means that it is
4387 a library-level function. Strip this prefix before doing the
4388 comparison, as the encoding for the renaming does not contain
4389 this prefix. */
4390 if (strncmp (function_name, "_ada_", 5) == 0)
4391 function_name += 5;
f26caa11 4392
aeb5907d 4393 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4394}
4395
aeb5907d
JB
4396/* Remove entries from SYMS that corresponds to a renaming entity that
4397 is not visible from the function associated with CURRENT_BLOCK or
4398 that is superfluous due to the presence of more specific renaming
4399 information. Places surviving symbols in the initial entries of
4400 SYMS and returns the number of surviving symbols.
96d887e8
PH
4401
4402 Rationale:
aeb5907d
JB
4403 First, in cases where an object renaming is implemented as a
4404 reference variable, GNAT may produce both the actual reference
4405 variable and the renaming encoding. In this case, we discard the
4406 latter.
4407
4408 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4409 entity. Unfortunately, STABS currently does not support the definition
4410 of types that are local to a given lexical block, so all renamings types
4411 are emitted at library level. As a consequence, if an application
4412 contains two renaming entities using the same name, and a user tries to
4413 print the value of one of these entities, the result of the ada symbol
4414 lookup will also contain the wrong renaming type.
f26caa11 4415
96d887e8
PH
4416 This function partially covers for this limitation by attempting to
4417 remove from the SYMS list renaming symbols that should be visible
4418 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4419 method with the current information available. The implementation
4420 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4421
4422 - When the user tries to print a rename in a function while there
4423 is another rename entity defined in a package: Normally, the
4424 rename in the function has precedence over the rename in the
4425 package, so the latter should be removed from the list. This is
4426 currently not the case.
4427
4428 - This function will incorrectly remove valid renames if
4429 the CURRENT_BLOCK corresponds to a function which symbol name
4430 has been changed by an "Export" pragma. As a consequence,
4431 the user will be unable to print such rename entities. */
4c4b4cd2 4432
14f9c5c9 4433static int
aeb5907d
JB
4434remove_irrelevant_renamings (struct ada_symbol_info *syms,
4435 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4436{
4437 struct symbol *current_function;
4438 char *current_function_name;
4439 int i;
aeb5907d
JB
4440 int is_new_style_renaming;
4441
4442 /* If there is both a renaming foo___XR... encoded as a variable and
4443 a simple variable foo in the same block, discard the latter.
4444 First, zero out such symbols, then compress. */
4445 is_new_style_renaming = 0;
4446 for (i = 0; i < nsyms; i += 1)
4447 {
4448 struct symbol *sym = syms[i].sym;
4449 struct block *block = syms[i].block;
4450 const char *name;
4451 const char *suffix;
4452
4453 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4454 continue;
4455 name = SYMBOL_LINKAGE_NAME (sym);
4456 suffix = strstr (name, "___XR");
4457
4458 if (suffix != NULL)
4459 {
4460 int name_len = suffix - name;
4461 int j;
4462 is_new_style_renaming = 1;
4463 for (j = 0; j < nsyms; j += 1)
4464 if (i != j && syms[j].sym != NULL
4465 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4466 name_len) == 0
4467 && block == syms[j].block)
4468 syms[j].sym = NULL;
4469 }
4470 }
4471 if (is_new_style_renaming)
4472 {
4473 int j, k;
4474
4475 for (j = k = 0; j < nsyms; j += 1)
4476 if (syms[j].sym != NULL)
4477 {
4478 syms[k] = syms[j];
4479 k += 1;
4480 }
4481 return k;
4482 }
4c4b4cd2
PH
4483
4484 /* Extract the function name associated to CURRENT_BLOCK.
4485 Abort if unable to do so. */
76a01679 4486
4c4b4cd2
PH
4487 if (current_block == NULL)
4488 return nsyms;
76a01679 4489
7f0df278 4490 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4491 if (current_function == NULL)
4492 return nsyms;
4493
4494 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4495 if (current_function_name == NULL)
4496 return nsyms;
4497
4498 /* Check each of the symbols, and remove it from the list if it is
4499 a type corresponding to a renaming that is out of the scope of
4500 the current block. */
4501
4502 i = 0;
4503 while (i < nsyms)
4504 {
aeb5907d
JB
4505 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4506 == ADA_OBJECT_RENAMING
4507 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4508 {
4509 int j;
aeb5907d 4510 for (j = i + 1; j < nsyms; j += 1)
76a01679 4511 syms[j - 1] = syms[j];
4c4b4cd2
PH
4512 nsyms -= 1;
4513 }
4514 else
4515 i += 1;
4516 }
4517
4518 return nsyms;
4519}
4520
339c13b6
JB
4521/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4522 whose name and domain match NAME and DOMAIN respectively.
4523 If no match was found, then extend the search to "enclosing"
4524 routines (in other words, if we're inside a nested function,
4525 search the symbols defined inside the enclosing functions).
4526
4527 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4528
4529static void
4530ada_add_local_symbols (struct obstack *obstackp, const char *name,
4531 struct block *block, domain_enum domain,
4532 int wild_match)
4533{
4534 int block_depth = 0;
4535
4536 while (block != NULL)
4537 {
4538 block_depth += 1;
4539 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4540
4541 /* If we found a non-function match, assume that's the one. */
4542 if (is_nonfunction (defns_collected (obstackp, 0),
4543 num_defns_collected (obstackp)))
4544 return;
4545
4546 block = BLOCK_SUPERBLOCK (block);
4547 }
4548
4549 /* If no luck so far, try to find NAME as a local symbol in some lexically
4550 enclosing subprogram. */
4551 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4552 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4553}
4554
4555/* Add to OBSTACKP all non-local symbols whose name and domain match
4556 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4557 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4558
4559static void
4560ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4561 domain_enum domain, int global,
4562 int wild_match)
4563{
4564 struct objfile *objfile;
4565 struct partial_symtab *ps;
4566
4567 ALL_PSYMTABS (objfile, ps)
4568 {
4569 QUIT;
4570 if (ps->readin
4571 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4572 {
4573 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4574 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4575
4576 if (s == NULL || !s->primary)
4577 continue;
4578 ada_add_block_symbols (obstackp,
4579 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4580 name, domain, objfile, wild_match);
4581 }
4582 }
4583}
4584
4c4b4cd2
PH
4585/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4586 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4587 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4588 indicating the symbols found and the blocks and symbol tables (if
4589 any) in which they were found. This vector are transient---good only to
4590 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4591 symbol match within the nest of blocks whose innermost member is BLOCK0,
4592 is the one match returned (no other matches in that or
4593 enclosing blocks is returned). If there are any matches in or
4594 surrounding BLOCK0, then these alone are returned. Otherwise, the
4595 search extends to global and file-scope (static) symbol tables.
4596 Names prefixed with "standard__" are handled specially: "standard__"
4597 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4598
4599int
4c4b4cd2 4600ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4601 domain_enum namespace,
4602 struct ada_symbol_info **results)
14f9c5c9
AS
4603{
4604 struct symbol *sym;
14f9c5c9 4605 struct block *block;
4c4b4cd2 4606 const char *name;
4c4b4cd2 4607 int wild_match;
14f9c5c9 4608 int cacheIfUnique;
4c4b4cd2 4609 int ndefns;
14f9c5c9 4610
4c4b4cd2
PH
4611 obstack_free (&symbol_list_obstack, NULL);
4612 obstack_init (&symbol_list_obstack);
14f9c5c9 4613
14f9c5c9
AS
4614 cacheIfUnique = 0;
4615
4616 /* Search specified block and its superiors. */
4617
4c4b4cd2
PH
4618 wild_match = (strstr (name0, "__") == NULL);
4619 name = name0;
76a01679
JB
4620 block = (struct block *) block0; /* FIXME: No cast ought to be
4621 needed, but adding const will
4622 have a cascade effect. */
339c13b6
JB
4623
4624 /* Special case: If the user specifies a symbol name inside package
4625 Standard, do a non-wild matching of the symbol name without
4626 the "standard__" prefix. This was primarily introduced in order
4627 to allow the user to specifically access the standard exceptions
4628 using, for instance, Standard.Constraint_Error when Constraint_Error
4629 is ambiguous (due to the user defining its own Constraint_Error
4630 entity inside its program). */
4c4b4cd2
PH
4631 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4632 {
4633 wild_match = 0;
4634 block = NULL;
4635 name = name0 + sizeof ("standard__") - 1;
4636 }
4637
339c13b6 4638 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4639
339c13b6
JB
4640 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4641 wild_match);
4c4b4cd2 4642 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4643 goto done;
d2e4a39e 4644
339c13b6
JB
4645 /* No non-global symbols found. Check our cache to see if we have
4646 already performed this search before. If we have, then return
4647 the same result. */
4648
14f9c5c9 4649 cacheIfUnique = 1;
2570f2b7 4650 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4651 {
4652 if (sym != NULL)
2570f2b7 4653 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4654 goto done;
4655 }
14f9c5c9 4656
339c13b6
JB
4657 /* Search symbols from all global blocks. */
4658
4659 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4660 wild_match);
d2e4a39e 4661
4c4b4cd2 4662 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4663 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4664
4c4b4cd2 4665 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4666 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4667 wild_match);
14f9c5c9 4668
4c4b4cd2
PH
4669done:
4670 ndefns = num_defns_collected (&symbol_list_obstack);
4671 *results = defns_collected (&symbol_list_obstack, 1);
4672
4673 ndefns = remove_extra_symbols (*results, ndefns);
4674
d2e4a39e 4675 if (ndefns == 0)
2570f2b7 4676 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4677
4c4b4cd2 4678 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4679 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4680
aeb5907d 4681 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4682
14f9c5c9
AS
4683 return ndefns;
4684}
4685
d2e4a39e 4686struct symbol *
aeb5907d 4687ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4688 domain_enum namespace, struct block **block_found)
14f9c5c9 4689{
4c4b4cd2 4690 struct ada_symbol_info *candidates;
14f9c5c9
AS
4691 int n_candidates;
4692
aeb5907d 4693 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4694
4695 if (n_candidates == 0)
4696 return NULL;
4c4b4cd2 4697
aeb5907d
JB
4698 if (block_found != NULL)
4699 *block_found = candidates[0].block;
4c4b4cd2 4700
21b556f4 4701 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4702}
4703
4704/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4705 scope and in global scopes, or NULL if none. NAME is folded and
4706 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4707 choosing the first symbol if there are multiple choices.
4708 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4709 table in which the symbol was found (in both cases, these
4710 assignments occur only if the pointers are non-null). */
4711struct symbol *
4712ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4713 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4714{
4715 if (is_a_field_of_this != NULL)
4716 *is_a_field_of_this = 0;
4717
4718 return
4719 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4720 block0, namespace, NULL);
4c4b4cd2 4721}
14f9c5c9 4722
4c4b4cd2
PH
4723static struct symbol *
4724ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4725 const char *linkage_name,
4726 const struct block *block,
21b556f4 4727 const domain_enum domain)
4c4b4cd2
PH
4728{
4729 if (linkage_name == NULL)
4730 linkage_name = name;
76a01679 4731 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4732 NULL);
14f9c5c9
AS
4733}
4734
4735
4c4b4cd2
PH
4736/* True iff STR is a possible encoded suffix of a normal Ada name
4737 that is to be ignored for matching purposes. Suffixes of parallel
4738 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4739 are given by any of the regular expressions:
4c4b4cd2 4740
babe1480
JB
4741 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4742 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4743 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4744 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4745
4746 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4747 match is performed. This sequence is used to differentiate homonyms,
4748 is an optional part of a valid name suffix. */
4c4b4cd2 4749
14f9c5c9 4750static int
d2e4a39e 4751is_name_suffix (const char *str)
14f9c5c9
AS
4752{
4753 int k;
4c4b4cd2
PH
4754 const char *matching;
4755 const int len = strlen (str);
4756
babe1480
JB
4757 /* Skip optional leading __[0-9]+. */
4758
4c4b4cd2
PH
4759 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4760 {
babe1480
JB
4761 str += 3;
4762 while (isdigit (str[0]))
4763 str += 1;
4c4b4cd2 4764 }
babe1480
JB
4765
4766 /* [.$][0-9]+ */
4c4b4cd2 4767
babe1480 4768 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4769 {
babe1480 4770 matching = str + 1;
4c4b4cd2
PH
4771 while (isdigit (matching[0]))
4772 matching += 1;
4773 if (matching[0] == '\0')
4774 return 1;
4775 }
4776
4777 /* ___[0-9]+ */
babe1480 4778
4c4b4cd2
PH
4779 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4780 {
4781 matching = str + 3;
4782 while (isdigit (matching[0]))
4783 matching += 1;
4784 if (matching[0] == '\0')
4785 return 1;
4786 }
4787
529cad9c
PH
4788#if 0
4789 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4790 with a N at the end. Unfortunately, the compiler uses the same
4791 convention for other internal types it creates. So treating
4792 all entity names that end with an "N" as a name suffix causes
4793 some regressions. For instance, consider the case of an enumerated
4794 type. To support the 'Image attribute, it creates an array whose
4795 name ends with N.
4796 Having a single character like this as a suffix carrying some
4797 information is a bit risky. Perhaps we should change the encoding
4798 to be something like "_N" instead. In the meantime, do not do
4799 the following check. */
4800 /* Protected Object Subprograms */
4801 if (len == 1 && str [0] == 'N')
4802 return 1;
4803#endif
4804
4805 /* _E[0-9]+[bs]$ */
4806 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4807 {
4808 matching = str + 3;
4809 while (isdigit (matching[0]))
4810 matching += 1;
4811 if ((matching[0] == 'b' || matching[0] == 's')
4812 && matching [1] == '\0')
4813 return 1;
4814 }
4815
4c4b4cd2
PH
4816 /* ??? We should not modify STR directly, as we are doing below. This
4817 is fine in this case, but may become problematic later if we find
4818 that this alternative did not work, and want to try matching
4819 another one from the begining of STR. Since we modified it, we
4820 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4821 if (str[0] == 'X')
4822 {
4823 str += 1;
d2e4a39e 4824 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4825 {
4826 if (str[0] != 'n' && str[0] != 'b')
4827 return 0;
4828 str += 1;
4829 }
14f9c5c9 4830 }
babe1480 4831
14f9c5c9
AS
4832 if (str[0] == '\000')
4833 return 1;
babe1480 4834
d2e4a39e 4835 if (str[0] == '_')
14f9c5c9
AS
4836 {
4837 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4838 return 0;
d2e4a39e 4839 if (str[2] == '_')
4c4b4cd2 4840 {
61ee279c
PH
4841 if (strcmp (str + 3, "JM") == 0)
4842 return 1;
4843 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4844 the LJM suffix in favor of the JM one. But we will
4845 still accept LJM as a valid suffix for a reasonable
4846 amount of time, just to allow ourselves to debug programs
4847 compiled using an older version of GNAT. */
4c4b4cd2
PH
4848 if (strcmp (str + 3, "LJM") == 0)
4849 return 1;
4850 if (str[3] != 'X')
4851 return 0;
1265e4aa
JB
4852 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4853 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4854 return 1;
4855 if (str[4] == 'R' && str[5] != 'T')
4856 return 1;
4857 return 0;
4858 }
4859 if (!isdigit (str[2]))
4860 return 0;
4861 for (k = 3; str[k] != '\0'; k += 1)
4862 if (!isdigit (str[k]) && str[k] != '_')
4863 return 0;
14f9c5c9
AS
4864 return 1;
4865 }
4c4b4cd2 4866 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4867 {
4c4b4cd2
PH
4868 for (k = 2; str[k] != '\0'; k += 1)
4869 if (!isdigit (str[k]) && str[k] != '_')
4870 return 0;
14f9c5c9
AS
4871 return 1;
4872 }
4873 return 0;
4874}
d2e4a39e 4875
aeb5907d
JB
4876/* Return non-zero if the string starting at NAME and ending before
4877 NAME_END contains no capital letters. */
529cad9c
PH
4878
4879static int
4880is_valid_name_for_wild_match (const char *name0)
4881{
4882 const char *decoded_name = ada_decode (name0);
4883 int i;
4884
5823c3ef
JB
4885 /* If the decoded name starts with an angle bracket, it means that
4886 NAME0 does not follow the GNAT encoding format. It should then
4887 not be allowed as a possible wild match. */
4888 if (decoded_name[0] == '<')
4889 return 0;
4890
529cad9c
PH
4891 for (i=0; decoded_name[i] != '\0'; i++)
4892 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4893 return 0;
4894
4895 return 1;
4896}
4897
4c4b4cd2
PH
4898/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4899 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4900 informational suffixes of NAME (i.e., for which is_name_suffix is
4901 true). */
4902
14f9c5c9 4903static int
4c4b4cd2 4904wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4905{
5823c3ef
JB
4906 char* match;
4907 const char* start;
4908 start = name0;
4909 while (1)
14f9c5c9 4910 {
5823c3ef
JB
4911 match = strstr (start, patn0);
4912 if (match == NULL)
4913 return 0;
4914 if ((match == name0
4915 || match[-1] == '.'
4916 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4917 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4918 && is_name_suffix (match + patn_len))
4919 return (match == name0 || is_valid_name_for_wild_match (name0));
4920 start = match + 1;
96d887e8 4921 }
96d887e8
PH
4922}
4923
96d887e8
PH
4924/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4925 vector *defn_symbols, updating the list of symbols in OBSTACKP
4926 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4927 OBJFILE is the section containing BLOCK.
4928 SYMTAB is recorded with each symbol added. */
4929
4930static void
4931ada_add_block_symbols (struct obstack *obstackp,
76a01679 4932 struct block *block, const char *name,
96d887e8 4933 domain_enum domain, struct objfile *objfile,
2570f2b7 4934 int wild)
96d887e8
PH
4935{
4936 struct dict_iterator iter;
4937 int name_len = strlen (name);
4938 /* A matching argument symbol, if any. */
4939 struct symbol *arg_sym;
4940 /* Set true when we find a matching non-argument symbol. */
4941 int found_sym;
4942 struct symbol *sym;
4943
4944 arg_sym = NULL;
4945 found_sym = 0;
4946 if (wild)
4947 {
4948 struct symbol *sym;
4949 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4950 {
5eeb2539
AR
4951 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4952 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4953 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4954 {
2a2d4dc3
AS
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 continue;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 arg_sym = sym;
4959 else
4960 {
76a01679
JB
4961 found_sym = 1;
4962 add_defn_to_vec (obstackp,
4963 fixup_symbol_section (sym, objfile),
2570f2b7 4964 block);
76a01679
JB
4965 }
4966 }
4967 }
96d887e8
PH
4968 }
4969 else
4970 {
4971 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4972 {
5eeb2539
AR
4973 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4974 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4975 {
4976 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4977 if (cmp == 0
4978 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4979 {
2a2d4dc3
AS
4980 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4981 {
4982 if (SYMBOL_IS_ARGUMENT (sym))
4983 arg_sym = sym;
4984 else
4985 {
4986 found_sym = 1;
4987 add_defn_to_vec (obstackp,
4988 fixup_symbol_section (sym, objfile),
4989 block);
4990 }
4991 }
76a01679
JB
4992 }
4993 }
4994 }
96d887e8
PH
4995 }
4996
4997 if (!found_sym && arg_sym != NULL)
4998 {
76a01679
JB
4999 add_defn_to_vec (obstackp,
5000 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5001 block);
96d887e8
PH
5002 }
5003
5004 if (!wild)
5005 {
5006 arg_sym = NULL;
5007 found_sym = 0;
5008
5009 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5010 {
5eeb2539
AR
5011 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5012 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5013 {
5014 int cmp;
5015
5016 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5017 if (cmp == 0)
5018 {
5019 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5020 if (cmp == 0)
5021 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5022 name_len);
5023 }
5024
5025 if (cmp == 0
5026 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5027 {
2a2d4dc3
AS
5028 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5029 {
5030 if (SYMBOL_IS_ARGUMENT (sym))
5031 arg_sym = sym;
5032 else
5033 {
5034 found_sym = 1;
5035 add_defn_to_vec (obstackp,
5036 fixup_symbol_section (sym, objfile),
5037 block);
5038 }
5039 }
76a01679
JB
5040 }
5041 }
76a01679 5042 }
96d887e8
PH
5043
5044 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5045 They aren't parameters, right? */
5046 if (!found_sym && arg_sym != NULL)
5047 {
5048 add_defn_to_vec (obstackp,
76a01679 5049 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5050 block);
96d887e8
PH
5051 }
5052 }
5053}
5054\f
41d27058
JB
5055
5056 /* Symbol Completion */
5057
5058/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5059 name in a form that's appropriate for the completion. The result
5060 does not need to be deallocated, but is only good until the next call.
5061
5062 TEXT_LEN is equal to the length of TEXT.
5063 Perform a wild match if WILD_MATCH is set.
5064 ENCODED should be set if TEXT represents the start of a symbol name
5065 in its encoded form. */
5066
5067static const char *
5068symbol_completion_match (const char *sym_name,
5069 const char *text, int text_len,
5070 int wild_match, int encoded)
5071{
5072 char *result;
5073 const int verbatim_match = (text[0] == '<');
5074 int match = 0;
5075
5076 if (verbatim_match)
5077 {
5078 /* Strip the leading angle bracket. */
5079 text = text + 1;
5080 text_len--;
5081 }
5082
5083 /* First, test against the fully qualified name of the symbol. */
5084
5085 if (strncmp (sym_name, text, text_len) == 0)
5086 match = 1;
5087
5088 if (match && !encoded)
5089 {
5090 /* One needed check before declaring a positive match is to verify
5091 that iff we are doing a verbatim match, the decoded version
5092 of the symbol name starts with '<'. Otherwise, this symbol name
5093 is not a suitable completion. */
5094 const char *sym_name_copy = sym_name;
5095 int has_angle_bracket;
5096
5097 sym_name = ada_decode (sym_name);
5098 has_angle_bracket = (sym_name[0] == '<');
5099 match = (has_angle_bracket == verbatim_match);
5100 sym_name = sym_name_copy;
5101 }
5102
5103 if (match && !verbatim_match)
5104 {
5105 /* When doing non-verbatim match, another check that needs to
5106 be done is to verify that the potentially matching symbol name
5107 does not include capital letters, because the ada-mode would
5108 not be able to understand these symbol names without the
5109 angle bracket notation. */
5110 const char *tmp;
5111
5112 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5113 if (*tmp != '\0')
5114 match = 0;
5115 }
5116
5117 /* Second: Try wild matching... */
5118
5119 if (!match && wild_match)
5120 {
5121 /* Since we are doing wild matching, this means that TEXT
5122 may represent an unqualified symbol name. We therefore must
5123 also compare TEXT against the unqualified name of the symbol. */
5124 sym_name = ada_unqualified_name (ada_decode (sym_name));
5125
5126 if (strncmp (sym_name, text, text_len) == 0)
5127 match = 1;
5128 }
5129
5130 /* Finally: If we found a mach, prepare the result to return. */
5131
5132 if (!match)
5133 return NULL;
5134
5135 if (verbatim_match)
5136 sym_name = add_angle_brackets (sym_name);
5137
5138 if (!encoded)
5139 sym_name = ada_decode (sym_name);
5140
5141 return sym_name;
5142}
5143
2ba95b9b
JB
5144typedef char *char_ptr;
5145DEF_VEC_P (char_ptr);
5146
41d27058
JB
5147/* A companion function to ada_make_symbol_completion_list().
5148 Check if SYM_NAME represents a symbol which name would be suitable
5149 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5150 it is appended at the end of the given string vector SV.
5151
5152 ORIG_TEXT is the string original string from the user command
5153 that needs to be completed. WORD is the entire command on which
5154 completion should be performed. These two parameters are used to
5155 determine which part of the symbol name should be added to the
5156 completion vector.
5157 if WILD_MATCH is set, then wild matching is performed.
5158 ENCODED should be set if TEXT represents a symbol name in its
5159 encoded formed (in which case the completion should also be
5160 encoded). */
5161
5162static void
d6565258 5163symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5164 const char *sym_name,
5165 const char *text, int text_len,
5166 const char *orig_text, const char *word,
5167 int wild_match, int encoded)
5168{
5169 const char *match = symbol_completion_match (sym_name, text, text_len,
5170 wild_match, encoded);
5171 char *completion;
5172
5173 if (match == NULL)
5174 return;
5175
5176 /* We found a match, so add the appropriate completion to the given
5177 string vector. */
5178
5179 if (word == orig_text)
5180 {
5181 completion = xmalloc (strlen (match) + 5);
5182 strcpy (completion, match);
5183 }
5184 else if (word > orig_text)
5185 {
5186 /* Return some portion of sym_name. */
5187 completion = xmalloc (strlen (match) + 5);
5188 strcpy (completion, match + (word - orig_text));
5189 }
5190 else
5191 {
5192 /* Return some of ORIG_TEXT plus sym_name. */
5193 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5194 strncpy (completion, word, orig_text - word);
5195 completion[orig_text - word] = '\0';
5196 strcat (completion, match);
5197 }
5198
d6565258 5199 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5200}
5201
5202/* Return a list of possible symbol names completing TEXT0. The list
5203 is NULL terminated. WORD is the entire command on which completion
5204 is made. */
5205
5206static char **
5207ada_make_symbol_completion_list (char *text0, char *word)
5208{
5209 char *text;
5210 int text_len;
5211 int wild_match;
5212 int encoded;
2ba95b9b 5213 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5214 struct symbol *sym;
5215 struct symtab *s;
5216 struct partial_symtab *ps;
5217 struct minimal_symbol *msymbol;
5218 struct objfile *objfile;
5219 struct block *b, *surrounding_static_block = 0;
5220 int i;
5221 struct dict_iterator iter;
5222
5223 if (text0[0] == '<')
5224 {
5225 text = xstrdup (text0);
5226 make_cleanup (xfree, text);
5227 text_len = strlen (text);
5228 wild_match = 0;
5229 encoded = 1;
5230 }
5231 else
5232 {
5233 text = xstrdup (ada_encode (text0));
5234 make_cleanup (xfree, text);
5235 text_len = strlen (text);
5236 for (i = 0; i < text_len; i++)
5237 text[i] = tolower (text[i]);
5238
5239 encoded = (strstr (text0, "__") != NULL);
5240 /* If the name contains a ".", then the user is entering a fully
5241 qualified entity name, and the match must not be done in wild
5242 mode. Similarly, if the user wants to complete what looks like
5243 an encoded name, the match must not be done in wild mode. */
5244 wild_match = (strchr (text0, '.') == NULL && !encoded);
5245 }
5246
5247 /* First, look at the partial symtab symbols. */
5248 ALL_PSYMTABS (objfile, ps)
5249 {
5250 struct partial_symbol **psym;
5251
5252 /* If the psymtab's been read in we'll get it when we search
5253 through the blockvector. */
5254 if (ps->readin)
5255 continue;
5256
5257 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5258 psym < (objfile->global_psymbols.list + ps->globals_offset
5259 + ps->n_global_syms); psym++)
5260 {
5261 QUIT;
d6565258 5262 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5263 text, text_len, text0, word,
5264 wild_match, encoded);
5265 }
5266
5267 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5268 psym < (objfile->static_psymbols.list + ps->statics_offset
5269 + ps->n_static_syms); psym++)
5270 {
5271 QUIT;
d6565258 5272 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5273 text, text_len, text0, word,
5274 wild_match, encoded);
5275 }
5276 }
5277
5278 /* At this point scan through the misc symbol vectors and add each
5279 symbol you find to the list. Eventually we want to ignore
5280 anything that isn't a text symbol (everything else will be
5281 handled by the psymtab code above). */
5282
5283 ALL_MSYMBOLS (objfile, msymbol)
5284 {
5285 QUIT;
d6565258 5286 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5287 text, text_len, text0, word, wild_match, encoded);
5288 }
5289
5290 /* Search upwards from currently selected frame (so that we can
5291 complete on local vars. */
5292
5293 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5294 {
5295 if (!BLOCK_SUPERBLOCK (b))
5296 surrounding_static_block = b; /* For elmin of dups */
5297
5298 ALL_BLOCK_SYMBOLS (b, iter, sym)
5299 {
d6565258 5300 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5301 text, text_len, text0, word,
5302 wild_match, encoded);
5303 }
5304 }
5305
5306 /* Go through the symtabs and check the externs and statics for
5307 symbols which match. */
5308
5309 ALL_SYMTABS (objfile, s)
5310 {
5311 QUIT;
5312 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5313 ALL_BLOCK_SYMBOLS (b, iter, sym)
5314 {
d6565258 5315 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5316 text, text_len, text0, word,
5317 wild_match, encoded);
5318 }
5319 }
5320
5321 ALL_SYMTABS (objfile, s)
5322 {
5323 QUIT;
5324 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5325 /* Don't do this block twice. */
5326 if (b == surrounding_static_block)
5327 continue;
5328 ALL_BLOCK_SYMBOLS (b, iter, sym)
5329 {
d6565258 5330 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5331 text, text_len, text0, word,
5332 wild_match, encoded);
5333 }
5334 }
5335
5336 /* Append the closing NULL entry. */
2ba95b9b 5337 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5338
2ba95b9b
JB
5339 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5340 return the copy. It's unfortunate that we have to make a copy
5341 of an array that we're about to destroy, but there is nothing much
5342 we can do about it. Fortunately, it's typically not a very large
5343 array. */
5344 {
5345 const size_t completions_size =
5346 VEC_length (char_ptr, completions) * sizeof (char *);
5347 char **result = malloc (completions_size);
5348
5349 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5350
5351 VEC_free (char_ptr, completions);
5352 return result;
5353 }
41d27058
JB
5354}
5355
963a6417 5356 /* Field Access */
96d887e8 5357
73fb9985
JB
5358/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5359 for tagged types. */
5360
5361static int
5362ada_is_dispatch_table_ptr_type (struct type *type)
5363{
5364 char *name;
5365
5366 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5367 return 0;
5368
5369 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5370 if (name == NULL)
5371 return 0;
5372
5373 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5374}
5375
963a6417
PH
5376/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5377 to be invisible to users. */
96d887e8 5378
963a6417
PH
5379int
5380ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5381{
963a6417
PH
5382 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5383 return 1;
73fb9985
JB
5384
5385 /* Check the name of that field. */
5386 {
5387 const char *name = TYPE_FIELD_NAME (type, field_num);
5388
5389 /* Anonymous field names should not be printed.
5390 brobecker/2007-02-20: I don't think this can actually happen
5391 but we don't want to print the value of annonymous fields anyway. */
5392 if (name == NULL)
5393 return 1;
5394
5395 /* A field named "_parent" is internally generated by GNAT for
5396 tagged types, and should not be printed either. */
5397 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5398 return 1;
5399 }
5400
5401 /* If this is the dispatch table of a tagged type, then ignore. */
5402 if (ada_is_tagged_type (type, 1)
5403 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5404 return 1;
5405
5406 /* Not a special field, so it should not be ignored. */
5407 return 0;
963a6417 5408}
96d887e8 5409
963a6417
PH
5410/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5411 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5412
963a6417
PH
5413int
5414ada_is_tagged_type (struct type *type, int refok)
5415{
5416 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5417}
96d887e8 5418
963a6417 5419/* True iff TYPE represents the type of X'Tag */
96d887e8 5420
963a6417
PH
5421int
5422ada_is_tag_type (struct type *type)
5423{
5424 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5425 return 0;
5426 else
96d887e8 5427 {
963a6417
PH
5428 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5429 return (name != NULL
5430 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5431 }
96d887e8
PH
5432}
5433
963a6417 5434/* The type of the tag on VAL. */
76a01679 5435
963a6417
PH
5436struct type *
5437ada_tag_type (struct value *val)
96d887e8 5438{
df407dfe 5439 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5440}
96d887e8 5441
963a6417 5442/* The value of the tag on VAL. */
96d887e8 5443
963a6417
PH
5444struct value *
5445ada_value_tag (struct value *val)
5446{
03ee6b2e 5447 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5448}
5449
963a6417
PH
5450/* The value of the tag on the object of type TYPE whose contents are
5451 saved at VALADDR, if it is non-null, or is at memory address
5452 ADDRESS. */
96d887e8 5453
963a6417 5454static struct value *
10a2c479 5455value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5456 const gdb_byte *valaddr,
963a6417 5457 CORE_ADDR address)
96d887e8 5458{
963a6417
PH
5459 int tag_byte_offset, dummy1, dummy2;
5460 struct type *tag_type;
5461 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5462 NULL, NULL, NULL))
96d887e8 5463 {
fc1a4b47 5464 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5465 ? NULL
5466 : valaddr + tag_byte_offset);
963a6417 5467 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5468
963a6417 5469 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5470 }
963a6417
PH
5471 return NULL;
5472}
96d887e8 5473
963a6417
PH
5474static struct type *
5475type_from_tag (struct value *tag)
5476{
5477 const char *type_name = ada_tag_name (tag);
5478 if (type_name != NULL)
5479 return ada_find_any_type (ada_encode (type_name));
5480 return NULL;
5481}
96d887e8 5482
963a6417
PH
5483struct tag_args
5484{
5485 struct value *tag;
5486 char *name;
5487};
4c4b4cd2 5488
529cad9c
PH
5489
5490static int ada_tag_name_1 (void *);
5491static int ada_tag_name_2 (struct tag_args *);
5492
4c4b4cd2
PH
5493/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5494 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5495 The value stored in ARGS->name is valid until the next call to
5496 ada_tag_name_1. */
5497
5498static int
5499ada_tag_name_1 (void *args0)
5500{
5501 struct tag_args *args = (struct tag_args *) args0;
5502 static char name[1024];
76a01679 5503 char *p;
4c4b4cd2
PH
5504 struct value *val;
5505 args->name = NULL;
03ee6b2e 5506 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5507 if (val == NULL)
5508 return ada_tag_name_2 (args);
03ee6b2e 5509 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5510 if (val == NULL)
5511 return 0;
5512 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5513 for (p = name; *p != '\0'; p += 1)
5514 if (isalpha (*p))
5515 *p = tolower (*p);
5516 args->name = name;
5517 return 0;
5518}
5519
5520/* Utility function for ada_tag_name_1 that tries the second
5521 representation for the dispatch table (in which there is no
5522 explicit 'tsd' field in the referent of the tag pointer, and instead
5523 the tsd pointer is stored just before the dispatch table. */
5524
5525static int
5526ada_tag_name_2 (struct tag_args *args)
5527{
5528 struct type *info_type;
5529 static char name[1024];
5530 char *p;
5531 struct value *val, *valp;
5532
5533 args->name = NULL;
5534 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5535 if (info_type == NULL)
5536 return 0;
5537 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5538 valp = value_cast (info_type, args->tag);
5539 if (valp == NULL)
5540 return 0;
2497b498 5541 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5542 if (val == NULL)
5543 return 0;
03ee6b2e 5544 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5545 if (val == NULL)
5546 return 0;
5547 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5548 for (p = name; *p != '\0'; p += 1)
5549 if (isalpha (*p))
5550 *p = tolower (*p);
5551 args->name = name;
5552 return 0;
5553}
5554
5555/* The type name of the dynamic type denoted by the 'tag value TAG, as
5556 * a C string. */
5557
5558const char *
5559ada_tag_name (struct value *tag)
5560{
5561 struct tag_args args;
df407dfe 5562 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5563 return NULL;
76a01679 5564 args.tag = tag;
4c4b4cd2
PH
5565 args.name = NULL;
5566 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5567 return args.name;
5568}
5569
5570/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5571
d2e4a39e 5572struct type *
ebf56fd3 5573ada_parent_type (struct type *type)
14f9c5c9
AS
5574{
5575 int i;
5576
61ee279c 5577 type = ada_check_typedef (type);
14f9c5c9
AS
5578
5579 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5580 return NULL;
5581
5582 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5583 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5584 {
5585 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5586
5587 /* If the _parent field is a pointer, then dereference it. */
5588 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5589 parent_type = TYPE_TARGET_TYPE (parent_type);
5590 /* If there is a parallel XVS type, get the actual base type. */
5591 parent_type = ada_get_base_type (parent_type);
5592
5593 return ada_check_typedef (parent_type);
5594 }
14f9c5c9
AS
5595
5596 return NULL;
5597}
5598
4c4b4cd2
PH
5599/* True iff field number FIELD_NUM of structure type TYPE contains the
5600 parent-type (inherited) fields of a derived type. Assumes TYPE is
5601 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5602
5603int
ebf56fd3 5604ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5605{
61ee279c 5606 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5607 return (name != NULL
5608 && (strncmp (name, "PARENT", 6) == 0
5609 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5610}
5611
4c4b4cd2 5612/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5613 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5614 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5615 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5616 structures. */
14f9c5c9
AS
5617
5618int
ebf56fd3 5619ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5620{
d2e4a39e
AS
5621 const char *name = TYPE_FIELD_NAME (type, field_num);
5622 return (name != NULL
4c4b4cd2
PH
5623 && (strncmp (name, "PARENT", 6) == 0
5624 || strcmp (name, "REP") == 0
5625 || strncmp (name, "_parent", 7) == 0
5626 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5627}
5628
4c4b4cd2
PH
5629/* True iff field number FIELD_NUM of structure or union type TYPE
5630 is a variant wrapper. Assumes TYPE is a structure type with at least
5631 FIELD_NUM+1 fields. */
14f9c5c9
AS
5632
5633int
ebf56fd3 5634ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5635{
d2e4a39e 5636 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5637 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5638 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5639 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5640 == TYPE_CODE_UNION)));
14f9c5c9
AS
5641}
5642
5643/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5644 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5645 returns the type of the controlling discriminant for the variant.
5646 May return NULL if the type could not be found. */
14f9c5c9 5647
d2e4a39e 5648struct type *
ebf56fd3 5649ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5650{
d2e4a39e 5651 char *name = ada_variant_discrim_name (var_type);
7c964f07 5652 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5653}
5654
4c4b4cd2 5655/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5656 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5657 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5658
5659int
ebf56fd3 5660ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5661{
d2e4a39e 5662 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5663 return (name != NULL && name[0] == 'O');
5664}
5665
5666/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5667 returns the name of the discriminant controlling the variant.
5668 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5669
d2e4a39e 5670char *
ebf56fd3 5671ada_variant_discrim_name (struct type *type0)
14f9c5c9 5672{
d2e4a39e 5673 static char *result = NULL;
14f9c5c9 5674 static size_t result_len = 0;
d2e4a39e
AS
5675 struct type *type;
5676 const char *name;
5677 const char *discrim_end;
5678 const char *discrim_start;
14f9c5c9
AS
5679
5680 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5681 type = TYPE_TARGET_TYPE (type0);
5682 else
5683 type = type0;
5684
5685 name = ada_type_name (type);
5686
5687 if (name == NULL || name[0] == '\000')
5688 return "";
5689
5690 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5691 discrim_end -= 1)
5692 {
4c4b4cd2
PH
5693 if (strncmp (discrim_end, "___XVN", 6) == 0)
5694 break;
14f9c5c9
AS
5695 }
5696 if (discrim_end == name)
5697 return "";
5698
d2e4a39e 5699 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5700 discrim_start -= 1)
5701 {
d2e4a39e 5702 if (discrim_start == name + 1)
4c4b4cd2 5703 return "";
76a01679 5704 if ((discrim_start > name + 3
4c4b4cd2
PH
5705 && strncmp (discrim_start - 3, "___", 3) == 0)
5706 || discrim_start[-1] == '.')
5707 break;
14f9c5c9
AS
5708 }
5709
5710 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5711 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5712 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5713 return result;
5714}
5715
4c4b4cd2
PH
5716/* Scan STR for a subtype-encoded number, beginning at position K.
5717 Put the position of the character just past the number scanned in
5718 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5719 Return 1 if there was a valid number at the given position, and 0
5720 otherwise. A "subtype-encoded" number consists of the absolute value
5721 in decimal, followed by the letter 'm' to indicate a negative number.
5722 Assumes 0m does not occur. */
14f9c5c9
AS
5723
5724int
d2e4a39e 5725ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5726{
5727 ULONGEST RU;
5728
d2e4a39e 5729 if (!isdigit (str[k]))
14f9c5c9
AS
5730 return 0;
5731
4c4b4cd2 5732 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5733 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5734 LONGEST. */
14f9c5c9
AS
5735 RU = 0;
5736 while (isdigit (str[k]))
5737 {
d2e4a39e 5738 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5739 k += 1;
5740 }
5741
d2e4a39e 5742 if (str[k] == 'm')
14f9c5c9
AS
5743 {
5744 if (R != NULL)
4c4b4cd2 5745 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5746 k += 1;
5747 }
5748 else if (R != NULL)
5749 *R = (LONGEST) RU;
5750
4c4b4cd2 5751 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5752 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5753 number representable as a LONGEST (although either would probably work
5754 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5755 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5756
5757 if (new_k != NULL)
5758 *new_k = k;
5759 return 1;
5760}
5761
4c4b4cd2
PH
5762/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5763 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5764 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5765
d2e4a39e 5766int
ebf56fd3 5767ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5768{
d2e4a39e 5769 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5770 int p;
5771
5772 p = 0;
5773 while (1)
5774 {
d2e4a39e 5775 switch (name[p])
4c4b4cd2
PH
5776 {
5777 case '\0':
5778 return 0;
5779 case 'S':
5780 {
5781 LONGEST W;
5782 if (!ada_scan_number (name, p + 1, &W, &p))
5783 return 0;
5784 if (val == W)
5785 return 1;
5786 break;
5787 }
5788 case 'R':
5789 {
5790 LONGEST L, U;
5791 if (!ada_scan_number (name, p + 1, &L, &p)
5792 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5793 return 0;
5794 if (val >= L && val <= U)
5795 return 1;
5796 break;
5797 }
5798 case 'O':
5799 return 1;
5800 default:
5801 return 0;
5802 }
5803 }
5804}
5805
5806/* FIXME: Lots of redundancy below. Try to consolidate. */
5807
5808/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5809 ARG_TYPE, extract and return the value of one of its (non-static)
5810 fields. FIELDNO says which field. Differs from value_primitive_field
5811 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5812
4c4b4cd2 5813static struct value *
d2e4a39e 5814ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5815 struct type *arg_type)
14f9c5c9 5816{
14f9c5c9
AS
5817 struct type *type;
5818
61ee279c 5819 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5820 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5821
4c4b4cd2 5822 /* Handle packed fields. */
14f9c5c9
AS
5823
5824 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5825 {
5826 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5827 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5828
0fd88904 5829 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5830 offset + bit_pos / 8,
5831 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5832 }
5833 else
5834 return value_primitive_field (arg1, offset, fieldno, arg_type);
5835}
5836
52ce6436
PH
5837/* Find field with name NAME in object of type TYPE. If found,
5838 set the following for each argument that is non-null:
5839 - *FIELD_TYPE_P to the field's type;
5840 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5841 an object of that type;
5842 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5843 - *BIT_SIZE_P to its size in bits if the field is packed, and
5844 0 otherwise;
5845 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5846 fields up to but not including the desired field, or by the total
5847 number of fields if not found. A NULL value of NAME never
5848 matches; the function just counts visible fields in this case.
5849
5850 Returns 1 if found, 0 otherwise. */
5851
4c4b4cd2 5852static int
76a01679
JB
5853find_struct_field (char *name, struct type *type, int offset,
5854 struct type **field_type_p,
52ce6436
PH
5855 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5856 int *index_p)
4c4b4cd2
PH
5857{
5858 int i;
5859
61ee279c 5860 type = ada_check_typedef (type);
76a01679 5861
52ce6436
PH
5862 if (field_type_p != NULL)
5863 *field_type_p = NULL;
5864 if (byte_offset_p != NULL)
d5d6fca5 5865 *byte_offset_p = 0;
52ce6436
PH
5866 if (bit_offset_p != NULL)
5867 *bit_offset_p = 0;
5868 if (bit_size_p != NULL)
5869 *bit_size_p = 0;
5870
5871 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5872 {
5873 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5874 int fld_offset = offset + bit_pos / 8;
5875 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5876
4c4b4cd2
PH
5877 if (t_field_name == NULL)
5878 continue;
5879
52ce6436 5880 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5881 {
5882 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5883 if (field_type_p != NULL)
5884 *field_type_p = TYPE_FIELD_TYPE (type, i);
5885 if (byte_offset_p != NULL)
5886 *byte_offset_p = fld_offset;
5887 if (bit_offset_p != NULL)
5888 *bit_offset_p = bit_pos % 8;
5889 if (bit_size_p != NULL)
5890 *bit_size_p = bit_size;
76a01679
JB
5891 return 1;
5892 }
4c4b4cd2
PH
5893 else if (ada_is_wrapper_field (type, i))
5894 {
52ce6436
PH
5895 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5896 field_type_p, byte_offset_p, bit_offset_p,
5897 bit_size_p, index_p))
76a01679
JB
5898 return 1;
5899 }
4c4b4cd2
PH
5900 else if (ada_is_variant_part (type, i))
5901 {
52ce6436
PH
5902 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5903 fixed type?? */
4c4b4cd2 5904 int j;
52ce6436
PH
5905 struct type *field_type
5906 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5907
52ce6436 5908 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5909 {
76a01679
JB
5910 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5911 fld_offset
5912 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5913 field_type_p, byte_offset_p,
52ce6436 5914 bit_offset_p, bit_size_p, index_p))
76a01679 5915 return 1;
4c4b4cd2
PH
5916 }
5917 }
52ce6436
PH
5918 else if (index_p != NULL)
5919 *index_p += 1;
4c4b4cd2
PH
5920 }
5921 return 0;
5922}
5923
52ce6436 5924/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5925
52ce6436
PH
5926static int
5927num_visible_fields (struct type *type)
5928{
5929 int n;
5930 n = 0;
5931 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5932 return n;
5933}
14f9c5c9 5934
4c4b4cd2 5935/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5936 and search in it assuming it has (class) type TYPE.
5937 If found, return value, else return NULL.
5938
4c4b4cd2 5939 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5940
4c4b4cd2 5941static struct value *
d2e4a39e 5942ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5943 struct type *type)
14f9c5c9
AS
5944{
5945 int i;
61ee279c 5946 type = ada_check_typedef (type);
14f9c5c9 5947
52ce6436 5948 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5949 {
5950 char *t_field_name = TYPE_FIELD_NAME (type, i);
5951
5952 if (t_field_name == NULL)
4c4b4cd2 5953 continue;
14f9c5c9
AS
5954
5955 else if (field_name_match (t_field_name, name))
4c4b4cd2 5956 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5957
5958 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5959 {
06d5cf63
JB
5960 struct value *v = /* Do not let indent join lines here. */
5961 ada_search_struct_field (name, arg,
5962 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5963 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5964 if (v != NULL)
5965 return v;
5966 }
14f9c5c9
AS
5967
5968 else if (ada_is_variant_part (type, i))
4c4b4cd2 5969 {
52ce6436 5970 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5971 int j;
61ee279c 5972 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5973 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5974
52ce6436 5975 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5976 {
06d5cf63
JB
5977 struct value *v = ada_search_struct_field /* Force line break. */
5978 (name, arg,
5979 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5980 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5981 if (v != NULL)
5982 return v;
5983 }
5984 }
14f9c5c9
AS
5985 }
5986 return NULL;
5987}
d2e4a39e 5988
52ce6436
PH
5989static struct value *ada_index_struct_field_1 (int *, struct value *,
5990 int, struct type *);
5991
5992
5993/* Return field #INDEX in ARG, where the index is that returned by
5994 * find_struct_field through its INDEX_P argument. Adjust the address
5995 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5996 * If found, return value, else return NULL. */
5997
5998static struct value *
5999ada_index_struct_field (int index, struct value *arg, int offset,
6000 struct type *type)
6001{
6002 return ada_index_struct_field_1 (&index, arg, offset, type);
6003}
6004
6005
6006/* Auxiliary function for ada_index_struct_field. Like
6007 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6008 * *INDEX_P. */
6009
6010static struct value *
6011ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6012 struct type *type)
6013{
6014 int i;
6015 type = ada_check_typedef (type);
6016
6017 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6018 {
6019 if (TYPE_FIELD_NAME (type, i) == NULL)
6020 continue;
6021 else if (ada_is_wrapper_field (type, i))
6022 {
6023 struct value *v = /* Do not let indent join lines here. */
6024 ada_index_struct_field_1 (index_p, arg,
6025 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6026 TYPE_FIELD_TYPE (type, i));
6027 if (v != NULL)
6028 return v;
6029 }
6030
6031 else if (ada_is_variant_part (type, i))
6032 {
6033 /* PNH: Do we ever get here? See ada_search_struct_field,
6034 find_struct_field. */
6035 error (_("Cannot assign this kind of variant record"));
6036 }
6037 else if (*index_p == 0)
6038 return ada_value_primitive_field (arg, offset, i, type);
6039 else
6040 *index_p -= 1;
6041 }
6042 return NULL;
6043}
6044
4c4b4cd2
PH
6045/* Given ARG, a value of type (pointer or reference to a)*
6046 structure/union, extract the component named NAME from the ultimate
6047 target structure/union and return it as a value with its
f5938064 6048 appropriate type.
14f9c5c9 6049
4c4b4cd2
PH
6050 The routine searches for NAME among all members of the structure itself
6051 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6052 (e.g., '_parent').
6053
03ee6b2e
PH
6054 If NO_ERR, then simply return NULL in case of error, rather than
6055 calling error. */
14f9c5c9 6056
d2e4a39e 6057struct value *
03ee6b2e 6058ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6059{
4c4b4cd2 6060 struct type *t, *t1;
d2e4a39e 6061 struct value *v;
14f9c5c9 6062
4c4b4cd2 6063 v = NULL;
df407dfe 6064 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6065 if (TYPE_CODE (t) == TYPE_CODE_REF)
6066 {
6067 t1 = TYPE_TARGET_TYPE (t);
6068 if (t1 == NULL)
03ee6b2e 6069 goto BadValue;
61ee279c 6070 t1 = ada_check_typedef (t1);
4c4b4cd2 6071 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6072 {
994b9211 6073 arg = coerce_ref (arg);
76a01679
JB
6074 t = t1;
6075 }
4c4b4cd2 6076 }
14f9c5c9 6077
4c4b4cd2
PH
6078 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6079 {
6080 t1 = TYPE_TARGET_TYPE (t);
6081 if (t1 == NULL)
03ee6b2e 6082 goto BadValue;
61ee279c 6083 t1 = ada_check_typedef (t1);
4c4b4cd2 6084 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6085 {
6086 arg = value_ind (arg);
6087 t = t1;
6088 }
4c4b4cd2 6089 else
76a01679 6090 break;
4c4b4cd2 6091 }
14f9c5c9 6092
4c4b4cd2 6093 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6094 goto BadValue;
14f9c5c9 6095
4c4b4cd2
PH
6096 if (t1 == t)
6097 v = ada_search_struct_field (name, arg, 0, t);
6098 else
6099 {
6100 int bit_offset, bit_size, byte_offset;
6101 struct type *field_type;
6102 CORE_ADDR address;
6103
76a01679
JB
6104 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6105 address = value_as_address (arg);
4c4b4cd2 6106 else
0fd88904 6107 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6108
1ed6ede0 6109 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6110 if (find_struct_field (name, t1, 0,
6111 &field_type, &byte_offset, &bit_offset,
52ce6436 6112 &bit_size, NULL))
76a01679
JB
6113 {
6114 if (bit_size != 0)
6115 {
714e53ab
PH
6116 if (TYPE_CODE (t) == TYPE_CODE_REF)
6117 arg = ada_coerce_ref (arg);
6118 else
6119 arg = ada_value_ind (arg);
76a01679
JB
6120 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6121 bit_offset, bit_size,
6122 field_type);
6123 }
6124 else
f5938064 6125 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6126 }
6127 }
6128
03ee6b2e
PH
6129 if (v != NULL || no_err)
6130 return v;
6131 else
323e0a4a 6132 error (_("There is no member named %s."), name);
14f9c5c9 6133
03ee6b2e
PH
6134 BadValue:
6135 if (no_err)
6136 return NULL;
6137 else
6138 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6139}
6140
6141/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6142 If DISPP is non-null, add its byte displacement from the beginning of a
6143 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6144 work for packed fields).
6145
6146 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6147 followed by "___".
14f9c5c9 6148
4c4b4cd2
PH
6149 TYPE can be either a struct or union. If REFOK, TYPE may also
6150 be a (pointer or reference)+ to a struct or union, and the
6151 ultimate target type will be searched.
14f9c5c9
AS
6152
6153 Looks recursively into variant clauses and parent types.
6154
4c4b4cd2
PH
6155 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6156 TYPE is not a type of the right kind. */
14f9c5c9 6157
4c4b4cd2 6158static struct type *
76a01679
JB
6159ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6160 int noerr, int *dispp)
14f9c5c9
AS
6161{
6162 int i;
6163
6164 if (name == NULL)
6165 goto BadName;
6166
76a01679 6167 if (refok && type != NULL)
4c4b4cd2
PH
6168 while (1)
6169 {
61ee279c 6170 type = ada_check_typedef (type);
76a01679
JB
6171 if (TYPE_CODE (type) != TYPE_CODE_PTR
6172 && TYPE_CODE (type) != TYPE_CODE_REF)
6173 break;
6174 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6175 }
14f9c5c9 6176
76a01679 6177 if (type == NULL
1265e4aa
JB
6178 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6179 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6180 {
4c4b4cd2 6181 if (noerr)
76a01679 6182 return NULL;
4c4b4cd2 6183 else
76a01679
JB
6184 {
6185 target_terminal_ours ();
6186 gdb_flush (gdb_stdout);
323e0a4a
AC
6187 if (type == NULL)
6188 error (_("Type (null) is not a structure or union type"));
6189 else
6190 {
6191 /* XXX: type_sprint */
6192 fprintf_unfiltered (gdb_stderr, _("Type "));
6193 type_print (type, "", gdb_stderr, -1);
6194 error (_(" is not a structure or union type"));
6195 }
76a01679 6196 }
14f9c5c9
AS
6197 }
6198
6199 type = to_static_fixed_type (type);
6200
6201 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6202 {
6203 char *t_field_name = TYPE_FIELD_NAME (type, i);
6204 struct type *t;
6205 int disp;
d2e4a39e 6206
14f9c5c9 6207 if (t_field_name == NULL)
4c4b4cd2 6208 continue;
14f9c5c9
AS
6209
6210 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6211 {
6212 if (dispp != NULL)
6213 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6214 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6215 }
14f9c5c9
AS
6216
6217 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6218 {
6219 disp = 0;
6220 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6221 0, 1, &disp);
6222 if (t != NULL)
6223 {
6224 if (dispp != NULL)
6225 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6226 return t;
6227 }
6228 }
14f9c5c9
AS
6229
6230 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6231 {
6232 int j;
61ee279c 6233 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6234
6235 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6236 {
b1f33ddd
JB
6237 /* FIXME pnh 2008/01/26: We check for a field that is
6238 NOT wrapped in a struct, since the compiler sometimes
6239 generates these for unchecked variant types. Revisit
6240 if the compiler changes this practice. */
6241 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6242 disp = 0;
b1f33ddd
JB
6243 if (v_field_name != NULL
6244 && field_name_match (v_field_name, name))
6245 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6246 else
6247 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6248 name, 0, 1, &disp);
6249
4c4b4cd2
PH
6250 if (t != NULL)
6251 {
6252 if (dispp != NULL)
6253 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6254 return t;
6255 }
6256 }
6257 }
14f9c5c9
AS
6258
6259 }
6260
6261BadName:
d2e4a39e 6262 if (!noerr)
14f9c5c9
AS
6263 {
6264 target_terminal_ours ();
6265 gdb_flush (gdb_stdout);
323e0a4a
AC
6266 if (name == NULL)
6267 {
6268 /* XXX: type_sprint */
6269 fprintf_unfiltered (gdb_stderr, _("Type "));
6270 type_print (type, "", gdb_stderr, -1);
6271 error (_(" has no component named <null>"));
6272 }
6273 else
6274 {
6275 /* XXX: type_sprint */
6276 fprintf_unfiltered (gdb_stderr, _("Type "));
6277 type_print (type, "", gdb_stderr, -1);
6278 error (_(" has no component named %s"), name);
6279 }
14f9c5c9
AS
6280 }
6281
6282 return NULL;
6283}
6284
b1f33ddd
JB
6285/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6286 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6287 represents an unchecked union (that is, the variant part of a
6288 record that is named in an Unchecked_Union pragma). */
6289
6290static int
6291is_unchecked_variant (struct type *var_type, struct type *outer_type)
6292{
6293 char *discrim_name = ada_variant_discrim_name (var_type);
6294 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6295 == NULL);
6296}
6297
6298
14f9c5c9
AS
6299/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6300 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6301 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6302 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6303
d2e4a39e 6304int
ebf56fd3 6305ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6306 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6307{
6308 int others_clause;
6309 int i;
d2e4a39e 6310 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6311 struct value *outer;
6312 struct value *discrim;
14f9c5c9
AS
6313 LONGEST discrim_val;
6314
0c281816
JB
6315 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6316 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6317 if (discrim == NULL)
14f9c5c9 6318 return -1;
0c281816 6319 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6320
6321 others_clause = -1;
6322 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6323 {
6324 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6325 others_clause = i;
14f9c5c9 6326 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6327 return i;
14f9c5c9
AS
6328 }
6329
6330 return others_clause;
6331}
d2e4a39e 6332\f
14f9c5c9
AS
6333
6334
4c4b4cd2 6335 /* Dynamic-Sized Records */
14f9c5c9
AS
6336
6337/* Strategy: The type ostensibly attached to a value with dynamic size
6338 (i.e., a size that is not statically recorded in the debugging
6339 data) does not accurately reflect the size or layout of the value.
6340 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6341 conventional types that are constructed on the fly. */
14f9c5c9
AS
6342
6343/* There is a subtle and tricky problem here. In general, we cannot
6344 determine the size of dynamic records without its data. However,
6345 the 'struct value' data structure, which GDB uses to represent
6346 quantities in the inferior process (the target), requires the size
6347 of the type at the time of its allocation in order to reserve space
6348 for GDB's internal copy of the data. That's why the
6349 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6350 rather than struct value*s.
14f9c5c9
AS
6351
6352 However, GDB's internal history variables ($1, $2, etc.) are
6353 struct value*s containing internal copies of the data that are not, in
6354 general, the same as the data at their corresponding addresses in
6355 the target. Fortunately, the types we give to these values are all
6356 conventional, fixed-size types (as per the strategy described
6357 above), so that we don't usually have to perform the
6358 'to_fixed_xxx_type' conversions to look at their values.
6359 Unfortunately, there is one exception: if one of the internal
6360 history variables is an array whose elements are unconstrained
6361 records, then we will need to create distinct fixed types for each
6362 element selected. */
6363
6364/* The upshot of all of this is that many routines take a (type, host
6365 address, target address) triple as arguments to represent a value.
6366 The host address, if non-null, is supposed to contain an internal
6367 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6368 target at the target address. */
14f9c5c9
AS
6369
6370/* Assuming that VAL0 represents a pointer value, the result of
6371 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6372 dynamic-sized types. */
14f9c5c9 6373
d2e4a39e
AS
6374struct value *
6375ada_value_ind (struct value *val0)
14f9c5c9 6376{
d2e4a39e 6377 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6378 return ada_to_fixed_value (val);
14f9c5c9
AS
6379}
6380
6381/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6382 qualifiers on VAL0. */
6383
d2e4a39e
AS
6384static struct value *
6385ada_coerce_ref (struct value *val0)
6386{
df407dfe 6387 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6388 {
6389 struct value *val = val0;
994b9211 6390 val = coerce_ref (val);
d2e4a39e 6391 val = unwrap_value (val);
4c4b4cd2 6392 return ada_to_fixed_value (val);
d2e4a39e
AS
6393 }
6394 else
14f9c5c9
AS
6395 return val0;
6396}
6397
6398/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6399 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6400
6401static unsigned int
ebf56fd3 6402align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6403{
6404 return (off + alignment - 1) & ~(alignment - 1);
6405}
6406
4c4b4cd2 6407/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6408
6409static unsigned int
ebf56fd3 6410field_alignment (struct type *type, int f)
14f9c5c9 6411{
d2e4a39e 6412 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6413 int len;
14f9c5c9
AS
6414 int align_offset;
6415
64a1bf19
JB
6416 /* The field name should never be null, unless the debugging information
6417 is somehow malformed. In this case, we assume the field does not
6418 require any alignment. */
6419 if (name == NULL)
6420 return 1;
6421
6422 len = strlen (name);
6423
4c4b4cd2
PH
6424 if (!isdigit (name[len - 1]))
6425 return 1;
14f9c5c9 6426
d2e4a39e 6427 if (isdigit (name[len - 2]))
14f9c5c9
AS
6428 align_offset = len - 2;
6429 else
6430 align_offset = len - 1;
6431
4c4b4cd2 6432 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6433 return TARGET_CHAR_BIT;
6434
4c4b4cd2
PH
6435 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6436}
6437
6438/* Find a symbol named NAME. Ignores ambiguity. */
6439
6440struct symbol *
6441ada_find_any_symbol (const char *name)
6442{
6443 struct symbol *sym;
6444
6445 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6446 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6447 return sym;
6448
6449 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6450 return sym;
14f9c5c9
AS
6451}
6452
dddfab26
UW
6453/* Find a type named NAME. Ignores ambiguity. This routine will look
6454 solely for types defined by debug info, it will not search the GDB
6455 primitive types. */
4c4b4cd2 6456
d2e4a39e 6457struct type *
ebf56fd3 6458ada_find_any_type (const char *name)
14f9c5c9 6459{
4c4b4cd2 6460 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6461
14f9c5c9 6462 if (sym != NULL)
dddfab26 6463 return SYMBOL_TYPE (sym);
14f9c5c9 6464
dddfab26 6465 return NULL;
14f9c5c9
AS
6466}
6467
aeb5907d
JB
6468/* Given NAME and an associated BLOCK, search all symbols for
6469 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6470 associated to NAME. Return this symbol if found, return
6471 NULL otherwise. */
6472
6473struct symbol *
6474ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6475{
6476 struct symbol *sym;
6477
6478 sym = find_old_style_renaming_symbol (name, block);
6479
6480 if (sym != NULL)
6481 return sym;
6482
6483 /* Not right yet. FIXME pnh 7/20/2007. */
6484 sym = ada_find_any_symbol (name);
6485 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6486 return sym;
6487 else
6488 return NULL;
6489}
6490
6491static struct symbol *
6492find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6493{
7f0df278 6494 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6495 char *rename;
6496
6497 if (function_sym != NULL)
6498 {
6499 /* If the symbol is defined inside a function, NAME is not fully
6500 qualified. This means we need to prepend the function name
6501 as well as adding the ``___XR'' suffix to build the name of
6502 the associated renaming symbol. */
6503 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6504 /* Function names sometimes contain suffixes used
6505 for instance to qualify nested subprograms. When building
6506 the XR type name, we need to make sure that this suffix is
6507 not included. So do not include any suffix in the function
6508 name length below. */
6509 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6510 const int rename_len = function_name_len + 2 /* "__" */
6511 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6512
529cad9c
PH
6513 /* Strip the suffix if necessary. */
6514 function_name[function_name_len] = '\0';
6515
4c4b4cd2
PH
6516 /* Library-level functions are a special case, as GNAT adds
6517 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6518 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6519 have this prefix, so we need to skip this prefix if present. */
6520 if (function_name_len > 5 /* "_ada_" */
6521 && strstr (function_name, "_ada_") == function_name)
6522 function_name = function_name + 5;
6523
6524 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6525 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6526 function_name, name);
4c4b4cd2
PH
6527 }
6528 else
6529 {
6530 const int rename_len = strlen (name) + 6;
6531 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6532 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6533 }
6534
6535 return ada_find_any_symbol (rename);
6536}
6537
14f9c5c9 6538/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6539 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6540 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6541 otherwise return 0. */
6542
14f9c5c9 6543int
d2e4a39e 6544ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6545{
6546 if (type1 == NULL)
6547 return 1;
6548 else if (type0 == NULL)
6549 return 0;
6550 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6551 return 1;
6552 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6553 return 0;
4c4b4cd2
PH
6554 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6555 return 1;
14f9c5c9
AS
6556 else if (ada_is_packed_array_type (type0))
6557 return 1;
4c4b4cd2
PH
6558 else if (ada_is_array_descriptor_type (type0)
6559 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6560 return 1;
aeb5907d
JB
6561 else
6562 {
6563 const char *type0_name = type_name_no_tag (type0);
6564 const char *type1_name = type_name_no_tag (type1);
6565
6566 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6567 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6568 return 1;
6569 }
14f9c5c9
AS
6570 return 0;
6571}
6572
6573/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6574 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6575
d2e4a39e
AS
6576char *
6577ada_type_name (struct type *type)
14f9c5c9 6578{
d2e4a39e 6579 if (type == NULL)
14f9c5c9
AS
6580 return NULL;
6581 else if (TYPE_NAME (type) != NULL)
6582 return TYPE_NAME (type);
6583 else
6584 return TYPE_TAG_NAME (type);
6585}
6586
6587/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6588 SUFFIX to the name of TYPE. */
14f9c5c9 6589
d2e4a39e 6590struct type *
ebf56fd3 6591ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6592{
d2e4a39e 6593 static char *name;
14f9c5c9 6594 static size_t name_len = 0;
14f9c5c9 6595 int len;
d2e4a39e
AS
6596 char *typename = ada_type_name (type);
6597
14f9c5c9
AS
6598 if (typename == NULL)
6599 return NULL;
6600
6601 len = strlen (typename);
6602
d2e4a39e 6603 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6604
6605 strcpy (name, typename);
6606 strcpy (name + len, suffix);
6607
6608 return ada_find_any_type (name);
6609}
6610
6611
6612/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6613 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6614
d2e4a39e
AS
6615static struct type *
6616dynamic_template_type (struct type *type)
14f9c5c9 6617{
61ee279c 6618 type = ada_check_typedef (type);
14f9c5c9
AS
6619
6620 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6621 || ada_type_name (type) == NULL)
14f9c5c9 6622 return NULL;
d2e4a39e 6623 else
14f9c5c9
AS
6624 {
6625 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6626 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6627 return type;
14f9c5c9 6628 else
4c4b4cd2 6629 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6630 }
6631}
6632
6633/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6634 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6635
d2e4a39e
AS
6636static int
6637is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6638{
6639 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6640 return name != NULL
14f9c5c9
AS
6641 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6642 && strstr (name, "___XVL") != NULL;
6643}
6644
4c4b4cd2
PH
6645/* The index of the variant field of TYPE, or -1 if TYPE does not
6646 represent a variant record type. */
14f9c5c9 6647
d2e4a39e 6648static int
4c4b4cd2 6649variant_field_index (struct type *type)
14f9c5c9
AS
6650{
6651 int f;
6652
4c4b4cd2
PH
6653 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6654 return -1;
6655
6656 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6657 {
6658 if (ada_is_variant_part (type, f))
6659 return f;
6660 }
6661 return -1;
14f9c5c9
AS
6662}
6663
4c4b4cd2
PH
6664/* A record type with no fields. */
6665
d2e4a39e 6666static struct type *
e9bb382b 6667empty_record (struct type *template)
14f9c5c9 6668{
e9bb382b 6669 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6670 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6671 TYPE_NFIELDS (type) = 0;
6672 TYPE_FIELDS (type) = NULL;
b1f33ddd 6673 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6674 TYPE_NAME (type) = "<empty>";
6675 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6676 TYPE_LENGTH (type) = 0;
6677 return type;
6678}
6679
6680/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6681 the value of type TYPE at VALADDR or ADDRESS (see comments at
6682 the beginning of this section) VAL according to GNAT conventions.
6683 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6684 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6685 an outer-level type (i.e., as opposed to a branch of a variant.) A
6686 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6687 of the variant.
14f9c5c9 6688
4c4b4cd2
PH
6689 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6690 length are not statically known are discarded. As a consequence,
6691 VALADDR, ADDRESS and DVAL0 are ignored.
6692
6693 NOTE: Limitations: For now, we assume that dynamic fields and
6694 variants occupy whole numbers of bytes. However, they need not be
6695 byte-aligned. */
6696
6697struct type *
10a2c479 6698ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6699 const gdb_byte *valaddr,
4c4b4cd2
PH
6700 CORE_ADDR address, struct value *dval0,
6701 int keep_dynamic_fields)
14f9c5c9 6702{
d2e4a39e
AS
6703 struct value *mark = value_mark ();
6704 struct value *dval;
6705 struct type *rtype;
14f9c5c9 6706 int nfields, bit_len;
4c4b4cd2 6707 int variant_field;
14f9c5c9 6708 long off;
4c4b4cd2 6709 int fld_bit_len, bit_incr;
14f9c5c9
AS
6710 int f;
6711
4c4b4cd2
PH
6712 /* Compute the number of fields in this record type that are going
6713 to be processed: unless keep_dynamic_fields, this includes only
6714 fields whose position and length are static will be processed. */
6715 if (keep_dynamic_fields)
6716 nfields = TYPE_NFIELDS (type);
6717 else
6718 {
6719 nfields = 0;
76a01679 6720 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6721 && !ada_is_variant_part (type, nfields)
6722 && !is_dynamic_field (type, nfields))
6723 nfields++;
6724 }
6725
e9bb382b 6726 rtype = alloc_type_copy (type);
14f9c5c9
AS
6727 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6728 INIT_CPLUS_SPECIFIC (rtype);
6729 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6730 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6731 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6732 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6733 TYPE_NAME (rtype) = ada_type_name (type);
6734 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6735 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6736
d2e4a39e
AS
6737 off = 0;
6738 bit_len = 0;
4c4b4cd2
PH
6739 variant_field = -1;
6740
14f9c5c9
AS
6741 for (f = 0; f < nfields; f += 1)
6742 {
6c038f32
PH
6743 off = align_value (off, field_alignment (type, f))
6744 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6745 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6746 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6747
d2e4a39e 6748 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6749 {
6750 variant_field = f;
6751 fld_bit_len = bit_incr = 0;
6752 }
14f9c5c9 6753 else if (is_dynamic_field (type, f))
4c4b4cd2 6754 {
284614f0
JB
6755 const gdb_byte *field_valaddr = valaddr;
6756 CORE_ADDR field_address = address;
6757 struct type *field_type =
6758 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6759
4c4b4cd2 6760 if (dval0 == NULL)
b5304971
JG
6761 {
6762 /* rtype's length is computed based on the run-time
6763 value of discriminants. If the discriminants are not
6764 initialized, the type size may be completely bogus and
6765 GDB may fail to allocate a value for it. So check the
6766 size first before creating the value. */
6767 check_size (rtype);
6768 dval = value_from_contents_and_address (rtype, valaddr, address);
6769 }
4c4b4cd2
PH
6770 else
6771 dval = dval0;
6772
284614f0
JB
6773 /* If the type referenced by this field is an aligner type, we need
6774 to unwrap that aligner type, because its size might not be set.
6775 Keeping the aligner type would cause us to compute the wrong
6776 size for this field, impacting the offset of the all the fields
6777 that follow this one. */
6778 if (ada_is_aligner_type (field_type))
6779 {
6780 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6781
6782 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6783 field_address = cond_offset_target (field_address, field_offset);
6784 field_type = ada_aligned_type (field_type);
6785 }
6786
6787 field_valaddr = cond_offset_host (field_valaddr,
6788 off / TARGET_CHAR_BIT);
6789 field_address = cond_offset_target (field_address,
6790 off / TARGET_CHAR_BIT);
6791
6792 /* Get the fixed type of the field. Note that, in this case,
6793 we do not want to get the real type out of the tag: if
6794 the current field is the parent part of a tagged record,
6795 we will get the tag of the object. Clearly wrong: the real
6796 type of the parent is not the real type of the child. We
6797 would end up in an infinite loop. */
6798 field_type = ada_get_base_type (field_type);
6799 field_type = ada_to_fixed_type (field_type, field_valaddr,
6800 field_address, dval, 0);
6801
6802 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6803 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6804 bit_incr = fld_bit_len =
6805 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6806 }
14f9c5c9 6807 else
4c4b4cd2
PH
6808 {
6809 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6810 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6811 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6812 bit_incr = fld_bit_len =
6813 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6814 else
6815 bit_incr = fld_bit_len =
6816 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6817 }
14f9c5c9 6818 if (off + fld_bit_len > bit_len)
4c4b4cd2 6819 bit_len = off + fld_bit_len;
14f9c5c9 6820 off += bit_incr;
4c4b4cd2
PH
6821 TYPE_LENGTH (rtype) =
6822 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6823 }
4c4b4cd2
PH
6824
6825 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6826 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6827 the record. This can happen in the presence of representation
6828 clauses. */
6829 if (variant_field >= 0)
6830 {
6831 struct type *branch_type;
6832
6833 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6834
6835 if (dval0 == NULL)
6836 dval = value_from_contents_and_address (rtype, valaddr, address);
6837 else
6838 dval = dval0;
6839
6840 branch_type =
6841 to_fixed_variant_branch_type
6842 (TYPE_FIELD_TYPE (type, variant_field),
6843 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6844 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6845 if (branch_type == NULL)
6846 {
6847 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6848 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6849 TYPE_NFIELDS (rtype) -= 1;
6850 }
6851 else
6852 {
6853 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6854 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6855 fld_bit_len =
6856 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6857 TARGET_CHAR_BIT;
6858 if (off + fld_bit_len > bit_len)
6859 bit_len = off + fld_bit_len;
6860 TYPE_LENGTH (rtype) =
6861 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6862 }
6863 }
6864
714e53ab
PH
6865 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6866 should contain the alignment of that record, which should be a strictly
6867 positive value. If null or negative, then something is wrong, most
6868 probably in the debug info. In that case, we don't round up the size
6869 of the resulting type. If this record is not part of another structure,
6870 the current RTYPE length might be good enough for our purposes. */
6871 if (TYPE_LENGTH (type) <= 0)
6872 {
323e0a4a
AC
6873 if (TYPE_NAME (rtype))
6874 warning (_("Invalid type size for `%s' detected: %d."),
6875 TYPE_NAME (rtype), TYPE_LENGTH (type));
6876 else
6877 warning (_("Invalid type size for <unnamed> detected: %d."),
6878 TYPE_LENGTH (type));
714e53ab
PH
6879 }
6880 else
6881 {
6882 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6883 TYPE_LENGTH (type));
6884 }
14f9c5c9
AS
6885
6886 value_free_to_mark (mark);
d2e4a39e 6887 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6888 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6889 return rtype;
6890}
6891
4c4b4cd2
PH
6892/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6893 of 1. */
14f9c5c9 6894
d2e4a39e 6895static struct type *
fc1a4b47 6896template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6897 CORE_ADDR address, struct value *dval0)
6898{
6899 return ada_template_to_fixed_record_type_1 (type, valaddr,
6900 address, dval0, 1);
6901}
6902
6903/* An ordinary record type in which ___XVL-convention fields and
6904 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6905 static approximations, containing all possible fields. Uses
6906 no runtime values. Useless for use in values, but that's OK,
6907 since the results are used only for type determinations. Works on both
6908 structs and unions. Representation note: to save space, we memorize
6909 the result of this function in the TYPE_TARGET_TYPE of the
6910 template type. */
6911
6912static struct type *
6913template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6914{
6915 struct type *type;
6916 int nfields;
6917 int f;
6918
4c4b4cd2
PH
6919 if (TYPE_TARGET_TYPE (type0) != NULL)
6920 return TYPE_TARGET_TYPE (type0);
6921
6922 nfields = TYPE_NFIELDS (type0);
6923 type = type0;
14f9c5c9
AS
6924
6925 for (f = 0; f < nfields; f += 1)
6926 {
61ee279c 6927 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6928 struct type *new_type;
14f9c5c9 6929
4c4b4cd2
PH
6930 if (is_dynamic_field (type0, f))
6931 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6932 else
f192137b 6933 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6934 if (type == type0 && new_type != field_type)
6935 {
e9bb382b 6936 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
6937 TYPE_CODE (type) = TYPE_CODE (type0);
6938 INIT_CPLUS_SPECIFIC (type);
6939 TYPE_NFIELDS (type) = nfields;
6940 TYPE_FIELDS (type) = (struct field *)
6941 TYPE_ALLOC (type, nfields * sizeof (struct field));
6942 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6943 sizeof (struct field) * nfields);
6944 TYPE_NAME (type) = ada_type_name (type0);
6945 TYPE_TAG_NAME (type) = NULL;
876cecd0 6946 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6947 TYPE_LENGTH (type) = 0;
6948 }
6949 TYPE_FIELD_TYPE (type, f) = new_type;
6950 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6951 }
14f9c5c9
AS
6952 return type;
6953}
6954
4c4b4cd2 6955/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6956 whose address in memory is ADDRESS, returns a revision of TYPE,
6957 which should be a non-dynamic-sized record, in which the variant
6958 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6959 for discriminant values in DVAL0, which can be NULL if the record
6960 contains the necessary discriminant values. */
6961
d2e4a39e 6962static struct type *
fc1a4b47 6963to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6964 CORE_ADDR address, struct value *dval0)
14f9c5c9 6965{
d2e4a39e 6966 struct value *mark = value_mark ();
4c4b4cd2 6967 struct value *dval;
d2e4a39e 6968 struct type *rtype;
14f9c5c9
AS
6969 struct type *branch_type;
6970 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6971 int variant_field = variant_field_index (type);
14f9c5c9 6972
4c4b4cd2 6973 if (variant_field == -1)
14f9c5c9
AS
6974 return type;
6975
4c4b4cd2
PH
6976 if (dval0 == NULL)
6977 dval = value_from_contents_and_address (type, valaddr, address);
6978 else
6979 dval = dval0;
6980
e9bb382b 6981 rtype = alloc_type_copy (type);
14f9c5c9 6982 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6983 INIT_CPLUS_SPECIFIC (rtype);
6984 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6985 TYPE_FIELDS (rtype) =
6986 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6987 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 6988 sizeof (struct field) * nfields);
14f9c5c9
AS
6989 TYPE_NAME (rtype) = ada_type_name (type);
6990 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6991 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
6992 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6993
4c4b4cd2
PH
6994 branch_type = to_fixed_variant_branch_type
6995 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 6996 cond_offset_host (valaddr,
4c4b4cd2
PH
6997 TYPE_FIELD_BITPOS (type, variant_field)
6998 / TARGET_CHAR_BIT),
d2e4a39e 6999 cond_offset_target (address,
4c4b4cd2
PH
7000 TYPE_FIELD_BITPOS (type, variant_field)
7001 / TARGET_CHAR_BIT), dval);
d2e4a39e 7002 if (branch_type == NULL)
14f9c5c9 7003 {
4c4b4cd2
PH
7004 int f;
7005 for (f = variant_field + 1; f < nfields; f += 1)
7006 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7007 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7008 }
7009 else
7010 {
4c4b4cd2
PH
7011 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7012 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7013 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7014 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7015 }
4c4b4cd2 7016 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7017
4c4b4cd2 7018 value_free_to_mark (mark);
14f9c5c9
AS
7019 return rtype;
7020}
7021
7022/* An ordinary record type (with fixed-length fields) that describes
7023 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7024 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7025 should be in DVAL, a record value; it may be NULL if the object
7026 at ADDR itself contains any necessary discriminant values.
7027 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7028 values from the record are needed. Except in the case that DVAL,
7029 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7030 unchecked) is replaced by a particular branch of the variant.
7031
7032 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7033 is questionable and may be removed. It can arise during the
7034 processing of an unconstrained-array-of-record type where all the
7035 variant branches have exactly the same size. This is because in
7036 such cases, the compiler does not bother to use the XVS convention
7037 when encoding the record. I am currently dubious of this
7038 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7039
d2e4a39e 7040static struct type *
fc1a4b47 7041to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7042 CORE_ADDR address, struct value *dval)
14f9c5c9 7043{
d2e4a39e 7044 struct type *templ_type;
14f9c5c9 7045
876cecd0 7046 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7047 return type0;
7048
d2e4a39e 7049 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7050
7051 if (templ_type != NULL)
7052 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7053 else if (variant_field_index (type0) >= 0)
7054 {
7055 if (dval == NULL && valaddr == NULL && address == 0)
7056 return type0;
7057 return to_record_with_fixed_variant_part (type0, valaddr, address,
7058 dval);
7059 }
14f9c5c9
AS
7060 else
7061 {
876cecd0 7062 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7063 return type0;
7064 }
7065
7066}
7067
7068/* An ordinary record type (with fixed-length fields) that describes
7069 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7070 union type. Any necessary discriminants' values should be in DVAL,
7071 a record value. That is, this routine selects the appropriate
7072 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7073 indicated in the union's type name. Returns VAR_TYPE0 itself if
7074 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7075
d2e4a39e 7076static struct type *
fc1a4b47 7077to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7078 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7079{
7080 int which;
d2e4a39e
AS
7081 struct type *templ_type;
7082 struct type *var_type;
14f9c5c9
AS
7083
7084 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7085 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7086 else
14f9c5c9
AS
7087 var_type = var_type0;
7088
7089 templ_type = ada_find_parallel_type (var_type, "___XVU");
7090
7091 if (templ_type != NULL)
7092 var_type = templ_type;
7093
b1f33ddd
JB
7094 if (is_unchecked_variant (var_type, value_type (dval)))
7095 return var_type0;
d2e4a39e
AS
7096 which =
7097 ada_which_variant_applies (var_type,
0fd88904 7098 value_type (dval), value_contents (dval));
14f9c5c9
AS
7099
7100 if (which < 0)
e9bb382b 7101 return empty_record (var_type);
14f9c5c9 7102 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7103 return to_fixed_record_type
d2e4a39e
AS
7104 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7105 valaddr, address, dval);
4c4b4cd2 7106 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7107 return
7108 to_fixed_record_type
7109 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7110 else
7111 return TYPE_FIELD_TYPE (var_type, which);
7112}
7113
7114/* Assuming that TYPE0 is an array type describing the type of a value
7115 at ADDR, and that DVAL describes a record containing any
7116 discriminants used in TYPE0, returns a type for the value that
7117 contains no dynamic components (that is, no components whose sizes
7118 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7119 true, gives an error message if the resulting type's size is over
4c4b4cd2 7120 varsize_limit. */
14f9c5c9 7121
d2e4a39e
AS
7122static struct type *
7123to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7124 int ignore_too_big)
14f9c5c9 7125{
d2e4a39e
AS
7126 struct type *index_type_desc;
7127 struct type *result;
284614f0 7128 int packed_array_p;
14f9c5c9 7129
284614f0 7130 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7131 return type0;
14f9c5c9 7132
284614f0
JB
7133 packed_array_p = ada_is_packed_array_type (type0);
7134 if (packed_array_p)
7135 type0 = decode_packed_array_type (type0);
7136
14f9c5c9
AS
7137 index_type_desc = ada_find_parallel_type (type0, "___XA");
7138 if (index_type_desc == NULL)
7139 {
61ee279c 7140 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7141 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7142 depend on the contents of the array in properly constructed
7143 debugging data. */
529cad9c
PH
7144 /* Create a fixed version of the array element type.
7145 We're not providing the address of an element here,
e1d5a0d2 7146 and thus the actual object value cannot be inspected to do
529cad9c
PH
7147 the conversion. This should not be a problem, since arrays of
7148 unconstrained objects are not allowed. In particular, all
7149 the elements of an array of a tagged type should all be of
7150 the same type specified in the debugging info. No need to
7151 consult the object tag. */
1ed6ede0 7152 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7153
284614f0
JB
7154 /* Make sure we always create a new array type when dealing with
7155 packed array types, since we're going to fix-up the array
7156 type length and element bitsize a little further down. */
7157 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7158 result = type0;
14f9c5c9 7159 else
e9bb382b 7160 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7161 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7162 }
7163 else
7164 {
7165 int i;
7166 struct type *elt_type0;
7167
7168 elt_type0 = type0;
7169 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7170 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7171
7172 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7173 depend on the contents of the array in properly constructed
7174 debugging data. */
529cad9c
PH
7175 /* Create a fixed version of the array element type.
7176 We're not providing the address of an element here,
e1d5a0d2 7177 and thus the actual object value cannot be inspected to do
529cad9c
PH
7178 the conversion. This should not be a problem, since arrays of
7179 unconstrained objects are not allowed. In particular, all
7180 the elements of an array of a tagged type should all be of
7181 the same type specified in the debugging info. No need to
7182 consult the object tag. */
1ed6ede0
JB
7183 result =
7184 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7185
7186 elt_type0 = type0;
14f9c5c9 7187 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7188 {
7189 struct type *range_type =
7190 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7191 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7192 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7193 result, range_type);
1ce677a4 7194 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7195 }
d2e4a39e 7196 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7197 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7198 }
7199
284614f0
JB
7200 if (packed_array_p)
7201 {
7202 /* So far, the resulting type has been created as if the original
7203 type was a regular (non-packed) array type. As a result, the
7204 bitsize of the array elements needs to be set again, and the array
7205 length needs to be recomputed based on that bitsize. */
7206 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7207 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7208
7209 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7210 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7211 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7212 TYPE_LENGTH (result)++;
7213 }
7214
876cecd0 7215 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7216 return result;
d2e4a39e 7217}
14f9c5c9
AS
7218
7219
7220/* A standard type (containing no dynamically sized components)
7221 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7222 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7223 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7224 ADDRESS or in VALADDR contains these discriminants.
7225
1ed6ede0
JB
7226 If CHECK_TAG is not null, in the case of tagged types, this function
7227 attempts to locate the object's tag and use it to compute the actual
7228 type. However, when ADDRESS is null, we cannot use it to determine the
7229 location of the tag, and therefore compute the tagged type's actual type.
7230 So we return the tagged type without consulting the tag. */
529cad9c 7231
f192137b
JB
7232static struct type *
7233ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7234 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7235{
61ee279c 7236 type = ada_check_typedef (type);
d2e4a39e
AS
7237 switch (TYPE_CODE (type))
7238 {
7239 default:
14f9c5c9 7240 return type;
d2e4a39e 7241 case TYPE_CODE_STRUCT:
4c4b4cd2 7242 {
76a01679 7243 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7244 struct type *fixed_record_type =
7245 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7246 /* If STATIC_TYPE is a tagged type and we know the object's address,
7247 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7248 type from there. Note that we have to use the fixed record
7249 type (the parent part of the record may have dynamic fields
7250 and the way the location of _tag is expressed may depend on
7251 them). */
529cad9c 7252
1ed6ede0 7253 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7254 {
7255 struct type *real_type =
1ed6ede0
JB
7256 type_from_tag (value_tag_from_contents_and_address
7257 (fixed_record_type,
7258 valaddr,
7259 address));
76a01679 7260 if (real_type != NULL)
1ed6ede0 7261 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7262 }
4af88198
JB
7263
7264 /* Check to see if there is a parallel ___XVZ variable.
7265 If there is, then it provides the actual size of our type. */
7266 else if (ada_type_name (fixed_record_type) != NULL)
7267 {
7268 char *name = ada_type_name (fixed_record_type);
7269 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7270 int xvz_found = 0;
7271 LONGEST size;
7272
88c15c34 7273 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7274 size = get_int_var_value (xvz_name, &xvz_found);
7275 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7276 {
7277 fixed_record_type = copy_type (fixed_record_type);
7278 TYPE_LENGTH (fixed_record_type) = size;
7279
7280 /* The FIXED_RECORD_TYPE may have be a stub. We have
7281 observed this when the debugging info is STABS, and
7282 apparently it is something that is hard to fix.
7283
7284 In practice, we don't need the actual type definition
7285 at all, because the presence of the XVZ variable allows us
7286 to assume that there must be a XVS type as well, which we
7287 should be able to use later, when we need the actual type
7288 definition.
7289
7290 In the meantime, pretend that the "fixed" type we are
7291 returning is NOT a stub, because this can cause trouble
7292 when using this type to create new types targeting it.
7293 Indeed, the associated creation routines often check
7294 whether the target type is a stub and will try to replace
7295 it, thus using a type with the wrong size. This, in turn,
7296 might cause the new type to have the wrong size too.
7297 Consider the case of an array, for instance, where the size
7298 of the array is computed from the number of elements in
7299 our array multiplied by the size of its element. */
7300 TYPE_STUB (fixed_record_type) = 0;
7301 }
7302 }
1ed6ede0 7303 return fixed_record_type;
4c4b4cd2 7304 }
d2e4a39e 7305 case TYPE_CODE_ARRAY:
4c4b4cd2 7306 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7307 case TYPE_CODE_UNION:
7308 if (dval == NULL)
4c4b4cd2 7309 return type;
d2e4a39e 7310 else
4c4b4cd2 7311 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7312 }
14f9c5c9
AS
7313}
7314
f192137b
JB
7315/* The same as ada_to_fixed_type_1, except that it preserves the type
7316 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7317 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7318
7319struct type *
7320ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7321 CORE_ADDR address, struct value *dval, int check_tag)
7322
7323{
7324 struct type *fixed_type =
7325 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7326
7327 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7328 && TYPE_TARGET_TYPE (type) == fixed_type)
7329 return type;
7330
7331 return fixed_type;
7332}
7333
14f9c5c9 7334/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7335 TYPE0, but based on no runtime data. */
14f9c5c9 7336
d2e4a39e
AS
7337static struct type *
7338to_static_fixed_type (struct type *type0)
14f9c5c9 7339{
d2e4a39e 7340 struct type *type;
14f9c5c9
AS
7341
7342 if (type0 == NULL)
7343 return NULL;
7344
876cecd0 7345 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7346 return type0;
7347
61ee279c 7348 type0 = ada_check_typedef (type0);
d2e4a39e 7349
14f9c5c9
AS
7350 switch (TYPE_CODE (type0))
7351 {
7352 default:
7353 return type0;
7354 case TYPE_CODE_STRUCT:
7355 type = dynamic_template_type (type0);
d2e4a39e 7356 if (type != NULL)
4c4b4cd2
PH
7357 return template_to_static_fixed_type (type);
7358 else
7359 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7360 case TYPE_CODE_UNION:
7361 type = ada_find_parallel_type (type0, "___XVU");
7362 if (type != NULL)
4c4b4cd2
PH
7363 return template_to_static_fixed_type (type);
7364 else
7365 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7366 }
7367}
7368
4c4b4cd2
PH
7369/* A static approximation of TYPE with all type wrappers removed. */
7370
d2e4a39e
AS
7371static struct type *
7372static_unwrap_type (struct type *type)
14f9c5c9
AS
7373{
7374 if (ada_is_aligner_type (type))
7375 {
61ee279c 7376 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7377 if (ada_type_name (type1) == NULL)
4c4b4cd2 7378 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7379
7380 return static_unwrap_type (type1);
7381 }
d2e4a39e 7382 else
14f9c5c9 7383 {
d2e4a39e
AS
7384 struct type *raw_real_type = ada_get_base_type (type);
7385 if (raw_real_type == type)
4c4b4cd2 7386 return type;
14f9c5c9 7387 else
4c4b4cd2 7388 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7389 }
7390}
7391
7392/* In some cases, incomplete and private types require
4c4b4cd2 7393 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7394 type Foo;
7395 type FooP is access Foo;
7396 V: FooP;
7397 type Foo is array ...;
4c4b4cd2 7398 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7399 cross-references to such types, we instead substitute for FooP a
7400 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7401 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7402
7403/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7404 exists, otherwise TYPE. */
7405
d2e4a39e 7406struct type *
61ee279c 7407ada_check_typedef (struct type *type)
14f9c5c9 7408{
727e3d2e
JB
7409 if (type == NULL)
7410 return NULL;
7411
14f9c5c9
AS
7412 CHECK_TYPEDEF (type);
7413 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7414 || !TYPE_STUB (type)
14f9c5c9
AS
7415 || TYPE_TAG_NAME (type) == NULL)
7416 return type;
d2e4a39e 7417 else
14f9c5c9 7418 {
d2e4a39e
AS
7419 char *name = TYPE_TAG_NAME (type);
7420 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7421 return (type1 == NULL) ? type : type1;
7422 }
7423}
7424
7425/* A value representing the data at VALADDR/ADDRESS as described by
7426 type TYPE0, but with a standard (static-sized) type that correctly
7427 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7428 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7429 creation of struct values]. */
14f9c5c9 7430
4c4b4cd2
PH
7431static struct value *
7432ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7433 struct value *val0)
14f9c5c9 7434{
1ed6ede0 7435 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7436 if (type == type0 && val0 != NULL)
7437 return val0;
d2e4a39e 7438 else
4c4b4cd2
PH
7439 return value_from_contents_and_address (type, 0, address);
7440}
7441
7442/* A value representing VAL, but with a standard (static-sized) type
7443 that correctly describes it. Does not necessarily create a new
7444 value. */
7445
7446static struct value *
7447ada_to_fixed_value (struct value *val)
7448{
df407dfe 7449 return ada_to_fixed_value_create (value_type (val),
42ae5230 7450 value_address (val),
4c4b4cd2 7451 val);
14f9c5c9
AS
7452}
7453
4c4b4cd2 7454/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7455 chosen to approximate the real type of VAL as well as possible, but
7456 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7457 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7458
2c0b251b 7459static struct value *
d2e4a39e 7460ada_to_static_fixed_value (struct value *val)
14f9c5c9 7461{
d2e4a39e 7462 struct type *type =
df407dfe
AC
7463 to_static_fixed_type (static_unwrap_type (value_type (val)));
7464 if (type == value_type (val))
14f9c5c9
AS
7465 return val;
7466 else
4c4b4cd2 7467 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7468}
d2e4a39e 7469\f
14f9c5c9 7470
14f9c5c9
AS
7471/* Attributes */
7472
4c4b4cd2
PH
7473/* Table mapping attribute numbers to names.
7474 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7475
d2e4a39e 7476static const char *attribute_names[] = {
14f9c5c9
AS
7477 "<?>",
7478
d2e4a39e 7479 "first",
14f9c5c9
AS
7480 "last",
7481 "length",
7482 "image",
14f9c5c9
AS
7483 "max",
7484 "min",
4c4b4cd2
PH
7485 "modulus",
7486 "pos",
7487 "size",
7488 "tag",
14f9c5c9 7489 "val",
14f9c5c9
AS
7490 0
7491};
7492
d2e4a39e 7493const char *
4c4b4cd2 7494ada_attribute_name (enum exp_opcode n)
14f9c5c9 7495{
4c4b4cd2
PH
7496 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7497 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7498 else
7499 return attribute_names[0];
7500}
7501
4c4b4cd2 7502/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7503
4c4b4cd2
PH
7504static LONGEST
7505pos_atr (struct value *arg)
14f9c5c9 7506{
24209737
PH
7507 struct value *val = coerce_ref (arg);
7508 struct type *type = value_type (val);
14f9c5c9 7509
d2e4a39e 7510 if (!discrete_type_p (type))
323e0a4a 7511 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7512
7513 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7514 {
7515 int i;
24209737 7516 LONGEST v = value_as_long (val);
14f9c5c9 7517
d2e4a39e 7518 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7519 {
7520 if (v == TYPE_FIELD_BITPOS (type, i))
7521 return i;
7522 }
323e0a4a 7523 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7524 }
7525 else
24209737 7526 return value_as_long (val);
4c4b4cd2
PH
7527}
7528
7529static struct value *
3cb382c9 7530value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7531{
3cb382c9 7532 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7533}
7534
4c4b4cd2 7535/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7536
d2e4a39e
AS
7537static struct value *
7538value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7539{
d2e4a39e 7540 if (!discrete_type_p (type))
323e0a4a 7541 error (_("'VAL only defined on discrete types"));
df407dfe 7542 if (!integer_type_p (value_type (arg)))
323e0a4a 7543 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7544
7545 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7546 {
7547 long pos = value_as_long (arg);
7548 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7549 error (_("argument to 'VAL out of range"));
d2e4a39e 7550 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7551 }
7552 else
7553 return value_from_longest (type, value_as_long (arg));
7554}
14f9c5c9 7555\f
d2e4a39e 7556
4c4b4cd2 7557 /* Evaluation */
14f9c5c9 7558
4c4b4cd2
PH
7559/* True if TYPE appears to be an Ada character type.
7560 [At the moment, this is true only for Character and Wide_Character;
7561 It is a heuristic test that could stand improvement]. */
14f9c5c9 7562
d2e4a39e
AS
7563int
7564ada_is_character_type (struct type *type)
14f9c5c9 7565{
7b9f71f2
JB
7566 const char *name;
7567
7568 /* If the type code says it's a character, then assume it really is,
7569 and don't check any further. */
7570 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7571 return 1;
7572
7573 /* Otherwise, assume it's a character type iff it is a discrete type
7574 with a known character type name. */
7575 name = ada_type_name (type);
7576 return (name != NULL
7577 && (TYPE_CODE (type) == TYPE_CODE_INT
7578 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7579 && (strcmp (name, "character") == 0
7580 || strcmp (name, "wide_character") == 0
5a517ebd 7581 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7582 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7583}
7584
4c4b4cd2 7585/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7586
7587int
ebf56fd3 7588ada_is_string_type (struct type *type)
14f9c5c9 7589{
61ee279c 7590 type = ada_check_typedef (type);
d2e4a39e 7591 if (type != NULL
14f9c5c9 7592 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7593 && (ada_is_simple_array_type (type)
7594 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7595 && ada_array_arity (type) == 1)
7596 {
7597 struct type *elttype = ada_array_element_type (type, 1);
7598
7599 return ada_is_character_type (elttype);
7600 }
d2e4a39e 7601 else
14f9c5c9
AS
7602 return 0;
7603}
7604
7605
7606/* True if TYPE is a struct type introduced by the compiler to force the
7607 alignment of a value. Such types have a single field with a
4c4b4cd2 7608 distinctive name. */
14f9c5c9
AS
7609
7610int
ebf56fd3 7611ada_is_aligner_type (struct type *type)
14f9c5c9 7612{
61ee279c 7613 type = ada_check_typedef (type);
714e53ab
PH
7614
7615 /* If we can find a parallel XVS type, then the XVS type should
7616 be used instead of this type. And hence, this is not an aligner
7617 type. */
7618 if (ada_find_parallel_type (type, "___XVS") != NULL)
7619 return 0;
7620
14f9c5c9 7621 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7622 && TYPE_NFIELDS (type) == 1
7623 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7624}
7625
7626/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7627 the parallel type. */
14f9c5c9 7628
d2e4a39e
AS
7629struct type *
7630ada_get_base_type (struct type *raw_type)
14f9c5c9 7631{
d2e4a39e
AS
7632 struct type *real_type_namer;
7633 struct type *raw_real_type;
14f9c5c9
AS
7634
7635 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7636 return raw_type;
7637
284614f0
JB
7638 if (ada_is_aligner_type (raw_type))
7639 /* The encoding specifies that we should always use the aligner type.
7640 So, even if this aligner type has an associated XVS type, we should
7641 simply ignore it.
7642
7643 According to the compiler gurus, an XVS type parallel to an aligner
7644 type may exist because of a stabs limitation. In stabs, aligner
7645 types are empty because the field has a variable-sized type, and
7646 thus cannot actually be used as an aligner type. As a result,
7647 we need the associated parallel XVS type to decode the type.
7648 Since the policy in the compiler is to not change the internal
7649 representation based on the debugging info format, we sometimes
7650 end up having a redundant XVS type parallel to the aligner type. */
7651 return raw_type;
7652
14f9c5c9 7653 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7654 if (real_type_namer == NULL
14f9c5c9
AS
7655 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7656 || TYPE_NFIELDS (real_type_namer) != 1)
7657 return raw_type;
7658
7659 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7660 if (raw_real_type == NULL)
14f9c5c9
AS
7661 return raw_type;
7662 else
7663 return raw_real_type;
d2e4a39e 7664}
14f9c5c9 7665
4c4b4cd2 7666/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7667
d2e4a39e
AS
7668struct type *
7669ada_aligned_type (struct type *type)
14f9c5c9
AS
7670{
7671 if (ada_is_aligner_type (type))
7672 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7673 else
7674 return ada_get_base_type (type);
7675}
7676
7677
7678/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7679 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7680
fc1a4b47
AC
7681const gdb_byte *
7682ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7683{
d2e4a39e 7684 if (ada_is_aligner_type (type))
14f9c5c9 7685 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7686 valaddr +
7687 TYPE_FIELD_BITPOS (type,
7688 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7689 else
7690 return valaddr;
7691}
7692
4c4b4cd2
PH
7693
7694
14f9c5c9 7695/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7696 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7697const char *
7698ada_enum_name (const char *name)
14f9c5c9 7699{
4c4b4cd2
PH
7700 static char *result;
7701 static size_t result_len = 0;
d2e4a39e 7702 char *tmp;
14f9c5c9 7703
4c4b4cd2
PH
7704 /* First, unqualify the enumeration name:
7705 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7706 all the preceeding characters, the unqualified name starts
7707 right after that dot.
4c4b4cd2 7708 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7709 translates dots into "__". Search forward for double underscores,
7710 but stop searching when we hit an overloading suffix, which is
7711 of the form "__" followed by digits. */
4c4b4cd2 7712
c3e5cd34
PH
7713 tmp = strrchr (name, '.');
7714 if (tmp != NULL)
4c4b4cd2
PH
7715 name = tmp + 1;
7716 else
14f9c5c9 7717 {
4c4b4cd2
PH
7718 while ((tmp = strstr (name, "__")) != NULL)
7719 {
7720 if (isdigit (tmp[2]))
7721 break;
7722 else
7723 name = tmp + 2;
7724 }
14f9c5c9
AS
7725 }
7726
7727 if (name[0] == 'Q')
7728 {
14f9c5c9
AS
7729 int v;
7730 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7731 {
7732 if (sscanf (name + 2, "%x", &v) != 1)
7733 return name;
7734 }
14f9c5c9 7735 else
4c4b4cd2 7736 return name;
14f9c5c9 7737
4c4b4cd2 7738 GROW_VECT (result, result_len, 16);
14f9c5c9 7739 if (isascii (v) && isprint (v))
88c15c34 7740 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7741 else if (name[1] == 'U')
88c15c34 7742 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7743 else
88c15c34 7744 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7745
7746 return result;
7747 }
d2e4a39e 7748 else
4c4b4cd2 7749 {
c3e5cd34
PH
7750 tmp = strstr (name, "__");
7751 if (tmp == NULL)
7752 tmp = strstr (name, "$");
7753 if (tmp != NULL)
4c4b4cd2
PH
7754 {
7755 GROW_VECT (result, result_len, tmp - name + 1);
7756 strncpy (result, name, tmp - name);
7757 result[tmp - name] = '\0';
7758 return result;
7759 }
7760
7761 return name;
7762 }
14f9c5c9
AS
7763}
7764
14f9c5c9
AS
7765/* Evaluate the subexpression of EXP starting at *POS as for
7766 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7767 expression. */
14f9c5c9 7768
d2e4a39e
AS
7769static struct value *
7770evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7771{
4b27a620 7772 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7773}
7774
7775/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7776 value it wraps. */
14f9c5c9 7777
d2e4a39e
AS
7778static struct value *
7779unwrap_value (struct value *val)
14f9c5c9 7780{
df407dfe 7781 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7782 if (ada_is_aligner_type (type))
7783 {
de4d072f 7784 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7785 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7786 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7787 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7788
7789 return unwrap_value (v);
7790 }
d2e4a39e 7791 else
14f9c5c9 7792 {
d2e4a39e 7793 struct type *raw_real_type =
61ee279c 7794 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7795
14f9c5c9 7796 if (type == raw_real_type)
4c4b4cd2 7797 return val;
14f9c5c9 7798
d2e4a39e 7799 return
4c4b4cd2
PH
7800 coerce_unspec_val_to_type
7801 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7802 value_address (val),
1ed6ede0 7803 NULL, 1));
14f9c5c9
AS
7804 }
7805}
d2e4a39e
AS
7806
7807static struct value *
7808cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7809{
7810 LONGEST val;
7811
df407dfe 7812 if (type == value_type (arg))
14f9c5c9 7813 return arg;
df407dfe 7814 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7815 val = ada_float_to_fixed (type,
df407dfe 7816 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7817 value_as_long (arg)));
d2e4a39e 7818 else
14f9c5c9 7819 {
a53b7a21 7820 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7821 val = ada_float_to_fixed (type, argd);
7822 }
7823
7824 return value_from_longest (type, val);
7825}
7826
d2e4a39e 7827static struct value *
a53b7a21 7828cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7829{
df407dfe 7830 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7831 value_as_long (arg));
a53b7a21 7832 return value_from_double (type, val);
14f9c5c9
AS
7833}
7834
4c4b4cd2
PH
7835/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7836 return the converted value. */
7837
d2e4a39e
AS
7838static struct value *
7839coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7840{
df407dfe 7841 struct type *type2 = value_type (val);
14f9c5c9
AS
7842 if (type == type2)
7843 return val;
7844
61ee279c
PH
7845 type2 = ada_check_typedef (type2);
7846 type = ada_check_typedef (type);
14f9c5c9 7847
d2e4a39e
AS
7848 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7849 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7850 {
7851 val = ada_value_ind (val);
df407dfe 7852 type2 = value_type (val);
14f9c5c9
AS
7853 }
7854
d2e4a39e 7855 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7856 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7857 {
7858 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7859 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7860 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7861 error (_("Incompatible types in assignment"));
04624583 7862 deprecated_set_value_type (val, type);
14f9c5c9 7863 }
d2e4a39e 7864 return val;
14f9c5c9
AS
7865}
7866
4c4b4cd2
PH
7867static struct value *
7868ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7869{
7870 struct value *val;
7871 struct type *type1, *type2;
7872 LONGEST v, v1, v2;
7873
994b9211
AC
7874 arg1 = coerce_ref (arg1);
7875 arg2 = coerce_ref (arg2);
df407dfe
AC
7876 type1 = base_type (ada_check_typedef (value_type (arg1)));
7877 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7878
76a01679
JB
7879 if (TYPE_CODE (type1) != TYPE_CODE_INT
7880 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7881 return value_binop (arg1, arg2, op);
7882
76a01679 7883 switch (op)
4c4b4cd2
PH
7884 {
7885 case BINOP_MOD:
7886 case BINOP_DIV:
7887 case BINOP_REM:
7888 break;
7889 default:
7890 return value_binop (arg1, arg2, op);
7891 }
7892
7893 v2 = value_as_long (arg2);
7894 if (v2 == 0)
323e0a4a 7895 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7896
7897 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7898 return value_binop (arg1, arg2, op);
7899
7900 v1 = value_as_long (arg1);
7901 switch (op)
7902 {
7903 case BINOP_DIV:
7904 v = v1 / v2;
76a01679
JB
7905 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7906 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7907 break;
7908 case BINOP_REM:
7909 v = v1 % v2;
76a01679
JB
7910 if (v * v1 < 0)
7911 v -= v2;
4c4b4cd2
PH
7912 break;
7913 default:
7914 /* Should not reach this point. */
7915 v = 0;
7916 }
7917
7918 val = allocate_value (type1);
990a07ab 7919 store_unsigned_integer (value_contents_raw (val),
df407dfe 7920 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7921 return val;
7922}
7923
7924static int
7925ada_value_equal (struct value *arg1, struct value *arg2)
7926{
df407dfe
AC
7927 if (ada_is_direct_array_type (value_type (arg1))
7928 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7929 {
f58b38bf
JB
7930 /* Automatically dereference any array reference before
7931 we attempt to perform the comparison. */
7932 arg1 = ada_coerce_ref (arg1);
7933 arg2 = ada_coerce_ref (arg2);
7934
4c4b4cd2
PH
7935 arg1 = ada_coerce_to_simple_array (arg1);
7936 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7937 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7938 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7939 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7940 /* FIXME: The following works only for types whose
76a01679
JB
7941 representations use all bits (no padding or undefined bits)
7942 and do not have user-defined equality. */
7943 return
df407dfe 7944 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7945 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7946 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7947 }
7948 return value_equal (arg1, arg2);
7949}
7950
52ce6436
PH
7951/* Total number of component associations in the aggregate starting at
7952 index PC in EXP. Assumes that index PC is the start of an
7953 OP_AGGREGATE. */
7954
7955static int
7956num_component_specs (struct expression *exp, int pc)
7957{
7958 int n, m, i;
7959 m = exp->elts[pc + 1].longconst;
7960 pc += 3;
7961 n = 0;
7962 for (i = 0; i < m; i += 1)
7963 {
7964 switch (exp->elts[pc].opcode)
7965 {
7966 default:
7967 n += 1;
7968 break;
7969 case OP_CHOICES:
7970 n += exp->elts[pc + 1].longconst;
7971 break;
7972 }
7973 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7974 }
7975 return n;
7976}
7977
7978/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7979 component of LHS (a simple array or a record), updating *POS past
7980 the expression, assuming that LHS is contained in CONTAINER. Does
7981 not modify the inferior's memory, nor does it modify LHS (unless
7982 LHS == CONTAINER). */
7983
7984static void
7985assign_component (struct value *container, struct value *lhs, LONGEST index,
7986 struct expression *exp, int *pos)
7987{
7988 struct value *mark = value_mark ();
7989 struct value *elt;
7990 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7991 {
22601c15
UW
7992 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
7993 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
7994 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7995 }
7996 else
7997 {
7998 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7999 elt = ada_to_fixed_value (unwrap_value (elt));
8000 }
8001
8002 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8003 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8004 else
8005 value_assign_to_component (container, elt,
8006 ada_evaluate_subexp (NULL, exp, pos,
8007 EVAL_NORMAL));
8008
8009 value_free_to_mark (mark);
8010}
8011
8012/* Assuming that LHS represents an lvalue having a record or array
8013 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8014 of that aggregate's value to LHS, advancing *POS past the
8015 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8016 lvalue containing LHS (possibly LHS itself). Does not modify
8017 the inferior's memory, nor does it modify the contents of
8018 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8019
8020static struct value *
8021assign_aggregate (struct value *container,
8022 struct value *lhs, struct expression *exp,
8023 int *pos, enum noside noside)
8024{
8025 struct type *lhs_type;
8026 int n = exp->elts[*pos+1].longconst;
8027 LONGEST low_index, high_index;
8028 int num_specs;
8029 LONGEST *indices;
8030 int max_indices, num_indices;
8031 int is_array_aggregate;
8032 int i;
8033 struct value *mark = value_mark ();
8034
8035 *pos += 3;
8036 if (noside != EVAL_NORMAL)
8037 {
8038 int i;
8039 for (i = 0; i < n; i += 1)
8040 ada_evaluate_subexp (NULL, exp, pos, noside);
8041 return container;
8042 }
8043
8044 container = ada_coerce_ref (container);
8045 if (ada_is_direct_array_type (value_type (container)))
8046 container = ada_coerce_to_simple_array (container);
8047 lhs = ada_coerce_ref (lhs);
8048 if (!deprecated_value_modifiable (lhs))
8049 error (_("Left operand of assignment is not a modifiable lvalue."));
8050
8051 lhs_type = value_type (lhs);
8052 if (ada_is_direct_array_type (lhs_type))
8053 {
8054 lhs = ada_coerce_to_simple_array (lhs);
8055 lhs_type = value_type (lhs);
8056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8058 is_array_aggregate = 1;
8059 }
8060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8061 {
8062 low_index = 0;
8063 high_index = num_visible_fields (lhs_type) - 1;
8064 is_array_aggregate = 0;
8065 }
8066 else
8067 error (_("Left-hand side must be array or record."));
8068
8069 num_specs = num_component_specs (exp, *pos - 3);
8070 max_indices = 4 * num_specs + 4;
8071 indices = alloca (max_indices * sizeof (indices[0]));
8072 indices[0] = indices[1] = low_index - 1;
8073 indices[2] = indices[3] = high_index + 1;
8074 num_indices = 4;
8075
8076 for (i = 0; i < n; i += 1)
8077 {
8078 switch (exp->elts[*pos].opcode)
8079 {
8080 case OP_CHOICES:
8081 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8082 &num_indices, max_indices,
8083 low_index, high_index);
8084 break;
8085 case OP_POSITIONAL:
8086 aggregate_assign_positional (container, lhs, exp, pos, indices,
8087 &num_indices, max_indices,
8088 low_index, high_index);
8089 break;
8090 case OP_OTHERS:
8091 if (i != n-1)
8092 error (_("Misplaced 'others' clause"));
8093 aggregate_assign_others (container, lhs, exp, pos, indices,
8094 num_indices, low_index, high_index);
8095 break;
8096 default:
8097 error (_("Internal error: bad aggregate clause"));
8098 }
8099 }
8100
8101 return container;
8102}
8103
8104/* Assign into the component of LHS indexed by the OP_POSITIONAL
8105 construct at *POS, updating *POS past the construct, given that
8106 the positions are relative to lower bound LOW, where HIGH is the
8107 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8108 updating *NUM_INDICES as needed. CONTAINER is as for
8109 assign_aggregate. */
8110static void
8111aggregate_assign_positional (struct value *container,
8112 struct value *lhs, struct expression *exp,
8113 int *pos, LONGEST *indices, int *num_indices,
8114 int max_indices, LONGEST low, LONGEST high)
8115{
8116 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8117
8118 if (ind - 1 == high)
e1d5a0d2 8119 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8120 if (ind <= high)
8121 {
8122 add_component_interval (ind, ind, indices, num_indices, max_indices);
8123 *pos += 3;
8124 assign_component (container, lhs, ind, exp, pos);
8125 }
8126 else
8127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8128}
8129
8130/* Assign into the components of LHS indexed by the OP_CHOICES
8131 construct at *POS, updating *POS past the construct, given that
8132 the allowable indices are LOW..HIGH. Record the indices assigned
8133 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8134 needed. CONTAINER is as for assign_aggregate. */
8135static void
8136aggregate_assign_from_choices (struct value *container,
8137 struct value *lhs, struct expression *exp,
8138 int *pos, LONGEST *indices, int *num_indices,
8139 int max_indices, LONGEST low, LONGEST high)
8140{
8141 int j;
8142 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8143 int choice_pos, expr_pc;
8144 int is_array = ada_is_direct_array_type (value_type (lhs));
8145
8146 choice_pos = *pos += 3;
8147
8148 for (j = 0; j < n_choices; j += 1)
8149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8150 expr_pc = *pos;
8151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8152
8153 for (j = 0; j < n_choices; j += 1)
8154 {
8155 LONGEST lower, upper;
8156 enum exp_opcode op = exp->elts[choice_pos].opcode;
8157 if (op == OP_DISCRETE_RANGE)
8158 {
8159 choice_pos += 1;
8160 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8161 EVAL_NORMAL));
8162 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8163 EVAL_NORMAL));
8164 }
8165 else if (is_array)
8166 {
8167 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8168 EVAL_NORMAL));
8169 upper = lower;
8170 }
8171 else
8172 {
8173 int ind;
8174 char *name;
8175 switch (op)
8176 {
8177 case OP_NAME:
8178 name = &exp->elts[choice_pos + 2].string;
8179 break;
8180 case OP_VAR_VALUE:
8181 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8182 break;
8183 default:
8184 error (_("Invalid record component association."));
8185 }
8186 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8187 ind = 0;
8188 if (! find_struct_field (name, value_type (lhs), 0,
8189 NULL, NULL, NULL, NULL, &ind))
8190 error (_("Unknown component name: %s."), name);
8191 lower = upper = ind;
8192 }
8193
8194 if (lower <= upper && (lower < low || upper > high))
8195 error (_("Index in component association out of bounds."));
8196
8197 add_component_interval (lower, upper, indices, num_indices,
8198 max_indices);
8199 while (lower <= upper)
8200 {
8201 int pos1;
8202 pos1 = expr_pc;
8203 assign_component (container, lhs, lower, exp, &pos1);
8204 lower += 1;
8205 }
8206 }
8207}
8208
8209/* Assign the value of the expression in the OP_OTHERS construct in
8210 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8211 have not been previously assigned. The index intervals already assigned
8212 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8213 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8214static void
8215aggregate_assign_others (struct value *container,
8216 struct value *lhs, struct expression *exp,
8217 int *pos, LONGEST *indices, int num_indices,
8218 LONGEST low, LONGEST high)
8219{
8220 int i;
8221 int expr_pc = *pos+1;
8222
8223 for (i = 0; i < num_indices - 2; i += 2)
8224 {
8225 LONGEST ind;
8226 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8227 {
8228 int pos;
8229 pos = expr_pc;
8230 assign_component (container, lhs, ind, exp, &pos);
8231 }
8232 }
8233 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8234}
8235
8236/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8237 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8238 modifying *SIZE as needed. It is an error if *SIZE exceeds
8239 MAX_SIZE. The resulting intervals do not overlap. */
8240static void
8241add_component_interval (LONGEST low, LONGEST high,
8242 LONGEST* indices, int *size, int max_size)
8243{
8244 int i, j;
8245 for (i = 0; i < *size; i += 2) {
8246 if (high >= indices[i] && low <= indices[i + 1])
8247 {
8248 int kh;
8249 for (kh = i + 2; kh < *size; kh += 2)
8250 if (high < indices[kh])
8251 break;
8252 if (low < indices[i])
8253 indices[i] = low;
8254 indices[i + 1] = indices[kh - 1];
8255 if (high > indices[i + 1])
8256 indices[i + 1] = high;
8257 memcpy (indices + i + 2, indices + kh, *size - kh);
8258 *size -= kh - i - 2;
8259 return;
8260 }
8261 else if (high < indices[i])
8262 break;
8263 }
8264
8265 if (*size == max_size)
8266 error (_("Internal error: miscounted aggregate components."));
8267 *size += 2;
8268 for (j = *size-1; j >= i+2; j -= 1)
8269 indices[j] = indices[j - 2];
8270 indices[i] = low;
8271 indices[i + 1] = high;
8272}
8273
6e48bd2c
JB
8274/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8275 is different. */
8276
8277static struct value *
8278ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8279{
8280 if (type == ada_check_typedef (value_type (arg2)))
8281 return arg2;
8282
8283 if (ada_is_fixed_point_type (type))
8284 return (cast_to_fixed (type, arg2));
8285
8286 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8287 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8288
8289 return value_cast (type, arg2);
8290}
8291
284614f0
JB
8292/* Evaluating Ada expressions, and printing their result.
8293 ------------------------------------------------------
8294
8295 We usually evaluate an Ada expression in order to print its value.
8296 We also evaluate an expression in order to print its type, which
8297 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8298 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8299 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8300 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8301 similar.
8302
8303 Evaluating expressions is a little more complicated for Ada entities
8304 than it is for entities in languages such as C. The main reason for
8305 this is that Ada provides types whose definition might be dynamic.
8306 One example of such types is variant records. Or another example
8307 would be an array whose bounds can only be known at run time.
8308
8309 The following description is a general guide as to what should be
8310 done (and what should NOT be done) in order to evaluate an expression
8311 involving such types, and when. This does not cover how the semantic
8312 information is encoded by GNAT as this is covered separatly. For the
8313 document used as the reference for the GNAT encoding, see exp_dbug.ads
8314 in the GNAT sources.
8315
8316 Ideally, we should embed each part of this description next to its
8317 associated code. Unfortunately, the amount of code is so vast right
8318 now that it's hard to see whether the code handling a particular
8319 situation might be duplicated or not. One day, when the code is
8320 cleaned up, this guide might become redundant with the comments
8321 inserted in the code, and we might want to remove it.
8322
8323 When evaluating Ada expressions, the tricky issue is that they may
8324 reference entities whose type contents and size are not statically
8325 known. Consider for instance a variant record:
8326
8327 type Rec (Empty : Boolean := True) is record
8328 case Empty is
8329 when True => null;
8330 when False => Value : Integer;
8331 end case;
8332 end record;
8333 Yes : Rec := (Empty => False, Value => 1);
8334 No : Rec := (empty => True);
8335
8336 The size and contents of that record depends on the value of the
8337 descriminant (Rec.Empty). At this point, neither the debugging
8338 information nor the associated type structure in GDB are able to
8339 express such dynamic types. So what the debugger does is to create
8340 "fixed" versions of the type that applies to the specific object.
8341 We also informally refer to this opperation as "fixing" an object,
8342 which means creating its associated fixed type.
8343
8344 Example: when printing the value of variable "Yes" above, its fixed
8345 type would look like this:
8346
8347 type Rec is record
8348 Empty : Boolean;
8349 Value : Integer;
8350 end record;
8351
8352 On the other hand, if we printed the value of "No", its fixed type
8353 would become:
8354
8355 type Rec is record
8356 Empty : Boolean;
8357 end record;
8358
8359 Things become a little more complicated when trying to fix an entity
8360 with a dynamic type that directly contains another dynamic type,
8361 such as an array of variant records, for instance. There are
8362 two possible cases: Arrays, and records.
8363
8364 Arrays are a little simpler to handle, because the same amount of
8365 memory is allocated for each element of the array, even if the amount
8366 of space used by each element changes from element to element.
8367 Consider for instance the following array of type Rec:
8368
8369 type Rec_Array is array (1 .. 2) of Rec;
8370
8371 The type structure in GDB describes an array in terms of its
8372 bounds, and the type of its elements. By design, all elements
8373 in the array have the same type. So we cannot use a fixed type
8374 for the array elements in this case, since the fixed type depends
8375 on the actual value of each element.
8376
8377 Fortunately, what happens in practice is that each element of
8378 the array has the same size, which is the maximum size that
8379 might be needed in order to hold an object of the element type.
8380 And the compiler shows it in the debugging information by wrapping
8381 the array element inside a private PAD type. This type should not
8382 be shown to the user, and must be "unwrap"'ed before printing. Note
8383 that we also use the adjective "aligner" in our code to designate
8384 these wrapper types.
8385
8386 These wrapper types should have a constant size, which is the size
8387 of each element of the array. In the case when the size is statically
8388 known, the PAD type will already have the right size, and the array
8389 element type should remain unfixed. But there are cases when
8390 this size is not statically known. For instance, assuming that
8391 "Five" is an integer variable:
8392
8393 type Dynamic is array (1 .. Five) of Integer;
8394 type Wrapper (Has_Length : Boolean := False) is record
8395 Data : Dynamic;
8396 case Has_Length is
8397 when True => Length : Integer;
8398 when False => null;
8399 end case;
8400 end record;
8401 type Wrapper_Array is array (1 .. 2) of Wrapper;
8402
8403 Hello : Wrapper_Array := (others => (Has_Length => True,
8404 Data => (others => 17),
8405 Length => 1));
8406
8407
8408 The debugging info would describe variable Hello as being an
8409 array of a PAD type. The size of that PAD type is not statically
8410 known, but can be determined using a parallel XVZ variable.
8411 In that case, a copy of the PAD type with the correct size should
8412 be used for the fixed array.
8413
8414 However, things are slightly different in the case of dynamic
8415 record types. In this case, in order to compute the associated
8416 fixed type, we need to determine the size and offset of each of
8417 its components. This, in turn, requires us to compute the fixed
8418 type of each of these components.
8419
8420 Consider for instance the example:
8421
8422 type Bounded_String (Max_Size : Natural) is record
8423 Str : String (1 .. Max_Size);
8424 Length : Natural;
8425 end record;
8426 My_String : Bounded_String (Max_Size => 10);
8427
8428 In that case, the position of field "Length" depends on the size
8429 of field Str, which itself depends on the value of the Max_Size
8430 discriminant. In order to fix the type of variable My_String,
8431 we need to fix the type of field Str. Therefore, fixing a variant
8432 record requires us to fix each of its components.
8433
8434 However, if a component does not have a dynamic size, the component
8435 should not be fixed. In particular, fields that use a PAD type
8436 should not fixed. Here is an example where this might happen
8437 (assuming type Rec above):
8438
8439 type Container (Big : Boolean) is record
8440 First : Rec;
8441 After : Integer;
8442 case Big is
8443 when True => Another : Integer;
8444 when False => null;
8445 end case;
8446 end record;
8447 My_Container : Container := (Big => False,
8448 First => (Empty => True),
8449 After => 42);
8450
8451 In that example, the compiler creates a PAD type for component First,
8452 whose size is constant, and then positions the component After just
8453 right after it. The offset of component After is therefore constant
8454 in this case.
8455
8456 The debugger computes the position of each field based on an algorithm
8457 that uses, among other things, the actual position and size of the field
8458 preceding it. Let's now imagine that the user is trying to print the
8459 value of My_Container. If the type fixing was recursive, we would
8460 end up computing the offset of field After based on the size of the
8461 fixed version of field First. And since in our example First has
8462 only one actual field, the size of the fixed type is actually smaller
8463 than the amount of space allocated to that field, and thus we would
8464 compute the wrong offset of field After.
8465
8466 Unfortunately, we need to watch out for dynamic components of variant
8467 records (identified by the ___XVL suffix in the component name).
8468 Even if the target type is a PAD type, the size of that type might
8469 not be statically known. So the PAD type needs to be unwrapped and
8470 the resulting type needs to be fixed. Otherwise, we might end up
8471 with the wrong size for our component. This can be observed with
8472 the following type declarations:
8473
8474 type Octal is new Integer range 0 .. 7;
8475 type Octal_Array is array (Positive range <>) of Octal;
8476 pragma Pack (Octal_Array);
8477
8478 type Octal_Buffer (Size : Positive) is record
8479 Buffer : Octal_Array (1 .. Size);
8480 Length : Integer;
8481 end record;
8482
8483 In that case, Buffer is a PAD type whose size is unset and needs
8484 to be computed by fixing the unwrapped type.
8485
8486 Lastly, when should the sub-elements of a type that remained unfixed
8487 thus far, be actually fixed?
8488
8489 The answer is: Only when referencing that element. For instance
8490 when selecting one component of a record, this specific component
8491 should be fixed at that point in time. Or when printing the value
8492 of a record, each component should be fixed before its value gets
8493 printed. Similarly for arrays, the element of the array should be
8494 fixed when printing each element of the array, or when extracting
8495 one element out of that array. On the other hand, fixing should
8496 not be performed on the elements when taking a slice of an array!
8497
8498 Note that one of the side-effects of miscomputing the offset and
8499 size of each field is that we end up also miscomputing the size
8500 of the containing type. This can have adverse results when computing
8501 the value of an entity. GDB fetches the value of an entity based
8502 on the size of its type, and thus a wrong size causes GDB to fetch
8503 the wrong amount of memory. In the case where the computed size is
8504 too small, GDB fetches too little data to print the value of our
8505 entiry. Results in this case as unpredicatble, as we usually read
8506 past the buffer containing the data =:-o. */
8507
8508/* Implement the evaluate_exp routine in the exp_descriptor structure
8509 for the Ada language. */
8510
52ce6436 8511static struct value *
ebf56fd3 8512ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8513 int *pos, enum noside noside)
14f9c5c9
AS
8514{
8515 enum exp_opcode op;
14f9c5c9
AS
8516 int tem, tem2, tem3;
8517 int pc;
8518 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8519 struct type *type;
52ce6436 8520 int nargs, oplen;
d2e4a39e 8521 struct value **argvec;
14f9c5c9 8522
d2e4a39e
AS
8523 pc = *pos;
8524 *pos += 1;
14f9c5c9
AS
8525 op = exp->elts[pc].opcode;
8526
d2e4a39e 8527 switch (op)
14f9c5c9
AS
8528 {
8529 default:
8530 *pos -= 1;
6e48bd2c
JB
8531 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8532 arg1 = unwrap_value (arg1);
8533
8534 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8535 then we need to perform the conversion manually, because
8536 evaluate_subexp_standard doesn't do it. This conversion is
8537 necessary in Ada because the different kinds of float/fixed
8538 types in Ada have different representations.
8539
8540 Similarly, we need to perform the conversion from OP_LONG
8541 ourselves. */
8542 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8543 arg1 = ada_value_cast (expect_type, arg1, noside);
8544
8545 return arg1;
4c4b4cd2
PH
8546
8547 case OP_STRING:
8548 {
76a01679
JB
8549 struct value *result;
8550 *pos -= 1;
8551 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8552 /* The result type will have code OP_STRING, bashed there from
8553 OP_ARRAY. Bash it back. */
df407dfe
AC
8554 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8555 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8556 return result;
4c4b4cd2 8557 }
14f9c5c9
AS
8558
8559 case UNOP_CAST:
8560 (*pos) += 2;
8561 type = exp->elts[pc + 1].type;
8562 arg1 = evaluate_subexp (type, exp, pos, noside);
8563 if (noside == EVAL_SKIP)
4c4b4cd2 8564 goto nosideret;
6e48bd2c 8565 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8566 return arg1;
8567
4c4b4cd2
PH
8568 case UNOP_QUAL:
8569 (*pos) += 2;
8570 type = exp->elts[pc + 1].type;
8571 return ada_evaluate_subexp (type, exp, pos, noside);
8572
14f9c5c9
AS
8573 case BINOP_ASSIGN:
8574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8575 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8576 {
8577 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8578 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8579 return arg1;
8580 return ada_value_assign (arg1, arg1);
8581 }
003f3813
JB
8582 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8583 except if the lhs of our assignment is a convenience variable.
8584 In the case of assigning to a convenience variable, the lhs
8585 should be exactly the result of the evaluation of the rhs. */
8586 type = value_type (arg1);
8587 if (VALUE_LVAL (arg1) == lval_internalvar)
8588 type = NULL;
8589 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8590 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8591 return arg1;
df407dfe
AC
8592 if (ada_is_fixed_point_type (value_type (arg1)))
8593 arg2 = cast_to_fixed (value_type (arg1), arg2);
8594 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8595 error
323e0a4a 8596 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8597 else
df407dfe 8598 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8599 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8600
8601 case BINOP_ADD:
8602 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8603 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8604 if (noside == EVAL_SKIP)
4c4b4cd2 8605 goto nosideret;
2ac8a782
JB
8606 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8607 return (value_from_longest
8608 (value_type (arg1),
8609 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8610 if ((ada_is_fixed_point_type (value_type (arg1))
8611 || ada_is_fixed_point_type (value_type (arg2)))
8612 && value_type (arg1) != value_type (arg2))
323e0a4a 8613 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8614 /* Do the addition, and cast the result to the type of the first
8615 argument. We cannot cast the result to a reference type, so if
8616 ARG1 is a reference type, find its underlying type. */
8617 type = value_type (arg1);
8618 while (TYPE_CODE (type) == TYPE_CODE_REF)
8619 type = TYPE_TARGET_TYPE (type);
f44316fa 8620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8621 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8622
8623 case BINOP_SUB:
8624 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8625 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8626 if (noside == EVAL_SKIP)
4c4b4cd2 8627 goto nosideret;
2ac8a782
JB
8628 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8629 return (value_from_longest
8630 (value_type (arg1),
8631 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8632 if ((ada_is_fixed_point_type (value_type (arg1))
8633 || ada_is_fixed_point_type (value_type (arg2)))
8634 && value_type (arg1) != value_type (arg2))
323e0a4a 8635 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8636 /* Do the substraction, and cast the result to the type of the first
8637 argument. We cannot cast the result to a reference type, so if
8638 ARG1 is a reference type, find its underlying type. */
8639 type = value_type (arg1);
8640 while (TYPE_CODE (type) == TYPE_CODE_REF)
8641 type = TYPE_TARGET_TYPE (type);
f44316fa 8642 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8643 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8644
8645 case BINOP_MUL:
8646 case BINOP_DIV:
e1578042
JB
8647 case BINOP_REM:
8648 case BINOP_MOD:
14f9c5c9
AS
8649 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8650 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8651 if (noside == EVAL_SKIP)
4c4b4cd2 8652 goto nosideret;
e1578042 8653 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8654 {
8655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8656 return value_zero (value_type (arg1), not_lval);
8657 }
14f9c5c9 8658 else
4c4b4cd2 8659 {
a53b7a21 8660 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8661 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8662 arg1 = cast_from_fixed (type, arg1);
df407dfe 8663 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8664 arg2 = cast_from_fixed (type, arg2);
f44316fa 8665 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8666 return ada_value_binop (arg1, arg2, op);
8667 }
8668
4c4b4cd2
PH
8669 case BINOP_EQUAL:
8670 case BINOP_NOTEQUAL:
14f9c5c9 8671 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8672 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8673 if (noside == EVAL_SKIP)
76a01679 8674 goto nosideret;
4c4b4cd2 8675 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8676 tem = 0;
4c4b4cd2 8677 else
f44316fa
UW
8678 {
8679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8680 tem = ada_value_equal (arg1, arg2);
8681 }
4c4b4cd2 8682 if (op == BINOP_NOTEQUAL)
76a01679 8683 tem = !tem;
fbb06eb1
UW
8684 type = language_bool_type (exp->language_defn, exp->gdbarch);
8685 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8686
8687 case UNOP_NEG:
8688 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8689 if (noside == EVAL_SKIP)
8690 goto nosideret;
df407dfe
AC
8691 else if (ada_is_fixed_point_type (value_type (arg1)))
8692 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8693 else
f44316fa
UW
8694 {
8695 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8696 return value_neg (arg1);
8697 }
4c4b4cd2 8698
2330c6c6
JB
8699 case BINOP_LOGICAL_AND:
8700 case BINOP_LOGICAL_OR:
8701 case UNOP_LOGICAL_NOT:
000d5124
JB
8702 {
8703 struct value *val;
8704
8705 *pos -= 1;
8706 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8707 type = language_bool_type (exp->language_defn, exp->gdbarch);
8708 return value_cast (type, val);
000d5124 8709 }
2330c6c6
JB
8710
8711 case BINOP_BITWISE_AND:
8712 case BINOP_BITWISE_IOR:
8713 case BINOP_BITWISE_XOR:
000d5124
JB
8714 {
8715 struct value *val;
8716
8717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8718 *pos = pc;
8719 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8720
8721 return value_cast (value_type (arg1), val);
8722 }
2330c6c6 8723
14f9c5c9
AS
8724 case OP_VAR_VALUE:
8725 *pos -= 1;
6799def4 8726
14f9c5c9 8727 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8728 {
8729 *pos += 4;
8730 goto nosideret;
8731 }
8732 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8733 /* Only encountered when an unresolved symbol occurs in a
8734 context other than a function call, in which case, it is
52ce6436 8735 invalid. */
323e0a4a 8736 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8737 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8738 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8739 {
0c1f74cf
JB
8740 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8741 if (ada_is_tagged_type (type, 0))
8742 {
8743 /* Tagged types are a little special in the fact that the real
8744 type is dynamic and can only be determined by inspecting the
8745 object's tag. This means that we need to get the object's
8746 value first (EVAL_NORMAL) and then extract the actual object
8747 type from its tag.
8748
8749 Note that we cannot skip the final step where we extract
8750 the object type from its tag, because the EVAL_NORMAL phase
8751 results in dynamic components being resolved into fixed ones.
8752 This can cause problems when trying to print the type
8753 description of tagged types whose parent has a dynamic size:
8754 We use the type name of the "_parent" component in order
8755 to print the name of the ancestor type in the type description.
8756 If that component had a dynamic size, the resolution into
8757 a fixed type would result in the loss of that type name,
8758 thus preventing us from printing the name of the ancestor
8759 type in the type description. */
b79819ba
JB
8760 struct type *actual_type;
8761
0c1f74cf 8762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8763 actual_type = type_from_tag (ada_value_tag (arg1));
8764 if (actual_type == NULL)
8765 /* If, for some reason, we were unable to determine
8766 the actual type from the tag, then use the static
8767 approximation that we just computed as a fallback.
8768 This can happen if the debugging information is
8769 incomplete, for instance. */
8770 actual_type = type;
8771
8772 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8773 }
8774
4c4b4cd2
PH
8775 *pos += 4;
8776 return value_zero
8777 (to_static_fixed_type
8778 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8779 not_lval);
8780 }
d2e4a39e 8781 else
4c4b4cd2 8782 {
284614f0
JB
8783 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8784 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8785 return ada_to_fixed_value (arg1);
8786 }
8787
8788 case OP_FUNCALL:
8789 (*pos) += 2;
8790
8791 /* Allocate arg vector, including space for the function to be
8792 called in argvec[0] and a terminating NULL. */
8793 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8794 argvec =
8795 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8796
8797 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8798 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8799 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8800 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8801 else
8802 {
8803 for (tem = 0; tem <= nargs; tem += 1)
8804 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8805 argvec[tem] = 0;
8806
8807 if (noside == EVAL_SKIP)
8808 goto nosideret;
8809 }
8810
df407dfe 8811 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8812 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8813 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8814 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8815 /* This is a packed array that has already been fixed, and
8816 therefore already coerced to a simple array. Nothing further
8817 to do. */
8818 ;
df407dfe
AC
8819 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8820 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8821 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8822 argvec[0] = value_addr (argvec[0]);
8823
df407dfe 8824 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8825 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8826 {
61ee279c 8827 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8828 {
8829 case TYPE_CODE_FUNC:
61ee279c 8830 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8831 break;
8832 case TYPE_CODE_ARRAY:
8833 break;
8834 case TYPE_CODE_STRUCT:
8835 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8836 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8837 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8838 break;
8839 default:
323e0a4a 8840 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8841 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8842 break;
8843 }
8844 }
8845
8846 switch (TYPE_CODE (type))
8847 {
8848 case TYPE_CODE_FUNC:
8849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8850 return allocate_value (TYPE_TARGET_TYPE (type));
8851 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8852 case TYPE_CODE_STRUCT:
8853 {
8854 int arity;
8855
4c4b4cd2
PH
8856 arity = ada_array_arity (type);
8857 type = ada_array_element_type (type, nargs);
8858 if (type == NULL)
323e0a4a 8859 error (_("cannot subscript or call a record"));
4c4b4cd2 8860 if (arity != nargs)
323e0a4a 8861 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8863 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8864 return
8865 unwrap_value (ada_value_subscript
8866 (argvec[0], nargs, argvec + 1));
8867 }
8868 case TYPE_CODE_ARRAY:
8869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8870 {
8871 type = ada_array_element_type (type, nargs);
8872 if (type == NULL)
323e0a4a 8873 error (_("element type of array unknown"));
4c4b4cd2 8874 else
0a07e705 8875 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8876 }
8877 return
8878 unwrap_value (ada_value_subscript
8879 (ada_coerce_to_simple_array (argvec[0]),
8880 nargs, argvec + 1));
8881 case TYPE_CODE_PTR: /* Pointer to array */
8882 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8884 {
8885 type = ada_array_element_type (type, nargs);
8886 if (type == NULL)
323e0a4a 8887 error (_("element type of array unknown"));
4c4b4cd2 8888 else
0a07e705 8889 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8890 }
8891 return
8892 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8893 nargs, argvec + 1));
8894
8895 default:
e1d5a0d2
PH
8896 error (_("Attempt to index or call something other than an "
8897 "array or function"));
4c4b4cd2
PH
8898 }
8899
8900 case TERNOP_SLICE:
8901 {
8902 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8903 struct value *low_bound_val =
8904 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8905 struct value *high_bound_val =
8906 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8907 LONGEST low_bound;
8908 LONGEST high_bound;
994b9211
AC
8909 low_bound_val = coerce_ref (low_bound_val);
8910 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8911 low_bound = pos_atr (low_bound_val);
8912 high_bound = pos_atr (high_bound_val);
963a6417 8913
4c4b4cd2
PH
8914 if (noside == EVAL_SKIP)
8915 goto nosideret;
8916
4c4b4cd2
PH
8917 /* If this is a reference to an aligner type, then remove all
8918 the aligners. */
df407dfe
AC
8919 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8920 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8921 TYPE_TARGET_TYPE (value_type (array)) =
8922 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8923
df407dfe 8924 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8925 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8926
8927 /* If this is a reference to an array or an array lvalue,
8928 convert to a pointer. */
df407dfe
AC
8929 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8930 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8931 && VALUE_LVAL (array) == lval_memory))
8932 array = value_addr (array);
8933
1265e4aa 8934 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8935 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8936 (value_type (array))))
0b5d8877 8937 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8938
8939 array = ada_coerce_to_simple_array_ptr (array);
8940
714e53ab
PH
8941 /* If we have more than one level of pointer indirection,
8942 dereference the value until we get only one level. */
df407dfe
AC
8943 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8944 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8945 == TYPE_CODE_PTR))
8946 array = value_ind (array);
8947
8948 /* Make sure we really do have an array type before going further,
8949 to avoid a SEGV when trying to get the index type or the target
8950 type later down the road if the debug info generated by
8951 the compiler is incorrect or incomplete. */
df407dfe 8952 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8953 error (_("cannot take slice of non-array"));
714e53ab 8954
df407dfe 8955 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8956 {
0b5d8877 8957 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8958 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8959 low_bound);
8960 else
8961 {
8962 struct type *arr_type0 =
df407dfe 8963 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8964 NULL, 1);
f5938064
JG
8965 return ada_value_slice_from_ptr (array, arr_type0,
8966 longest_to_int (low_bound),
8967 longest_to_int (high_bound));
4c4b4cd2
PH
8968 }
8969 }
8970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8971 return array;
8972 else if (high_bound < low_bound)
df407dfe 8973 return empty_array (value_type (array), low_bound);
4c4b4cd2 8974 else
529cad9c
PH
8975 return ada_value_slice (array, longest_to_int (low_bound),
8976 longest_to_int (high_bound));
4c4b4cd2 8977 }
14f9c5c9 8978
4c4b4cd2
PH
8979 case UNOP_IN_RANGE:
8980 (*pos) += 2;
8981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8982 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8983
14f9c5c9 8984 if (noside == EVAL_SKIP)
4c4b4cd2 8985 goto nosideret;
14f9c5c9 8986
4c4b4cd2
PH
8987 switch (TYPE_CODE (type))
8988 {
8989 default:
e1d5a0d2
PH
8990 lim_warning (_("Membership test incompletely implemented; "
8991 "always returns true"));
fbb06eb1
UW
8992 type = language_bool_type (exp->language_defn, exp->gdbarch);
8993 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8994
8995 case TYPE_CODE_RANGE:
030b4912
UW
8996 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8997 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8998 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9000 type = language_bool_type (exp->language_defn, exp->gdbarch);
9001 return
9002 value_from_longest (type,
4c4b4cd2
PH
9003 (value_less (arg1, arg3)
9004 || value_equal (arg1, arg3))
9005 && (value_less (arg2, arg1)
9006 || value_equal (arg2, arg1)));
9007 }
9008
9009 case BINOP_IN_BOUNDS:
14f9c5c9 9010 (*pos) += 2;
4c4b4cd2
PH
9011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9012 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9013
4c4b4cd2
PH
9014 if (noside == EVAL_SKIP)
9015 goto nosideret;
14f9c5c9 9016
4c4b4cd2 9017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9018 {
9019 type = language_bool_type (exp->language_defn, exp->gdbarch);
9020 return value_zero (type, not_lval);
9021 }
14f9c5c9 9022
4c4b4cd2 9023 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9024
1eea4ebd
UW
9025 type = ada_index_type (value_type (arg2), tem, "range");
9026 if (!type)
9027 type = value_type (arg1);
14f9c5c9 9028
1eea4ebd
UW
9029 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9030 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9031
f44316fa
UW
9032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9034 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9035 return
fbb06eb1 9036 value_from_longest (type,
4c4b4cd2
PH
9037 (value_less (arg1, arg3)
9038 || value_equal (arg1, arg3))
9039 && (value_less (arg2, arg1)
9040 || value_equal (arg2, arg1)));
9041
9042 case TERNOP_IN_RANGE:
9043 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9044 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9045 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9046
9047 if (noside == EVAL_SKIP)
9048 goto nosideret;
9049
f44316fa
UW
9050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9052 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9053 return
fbb06eb1 9054 value_from_longest (type,
4c4b4cd2
PH
9055 (value_less (arg1, arg3)
9056 || value_equal (arg1, arg3))
9057 && (value_less (arg2, arg1)
9058 || value_equal (arg2, arg1)));
9059
9060 case OP_ATR_FIRST:
9061 case OP_ATR_LAST:
9062 case OP_ATR_LENGTH:
9063 {
76a01679
JB
9064 struct type *type_arg;
9065 if (exp->elts[*pos].opcode == OP_TYPE)
9066 {
9067 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9068 arg1 = NULL;
5bc23cb3 9069 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9070 }
9071 else
9072 {
9073 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9074 type_arg = NULL;
9075 }
9076
9077 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9078 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9079 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9080 *pos += 4;
9081
9082 if (noside == EVAL_SKIP)
9083 goto nosideret;
9084
9085 if (type_arg == NULL)
9086 {
9087 arg1 = ada_coerce_ref (arg1);
9088
df407dfe 9089 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9090 arg1 = ada_coerce_to_simple_array (arg1);
9091
1eea4ebd
UW
9092 type = ada_index_type (value_type (arg1), tem,
9093 ada_attribute_name (op));
9094 if (type == NULL)
9095 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9096
9097 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9098 return allocate_value (type);
76a01679
JB
9099
9100 switch (op)
9101 {
9102 default: /* Should never happen. */
323e0a4a 9103 error (_("unexpected attribute encountered"));
76a01679 9104 case OP_ATR_FIRST:
1eea4ebd
UW
9105 return value_from_longest
9106 (type, ada_array_bound (arg1, tem, 0));
76a01679 9107 case OP_ATR_LAST:
1eea4ebd
UW
9108 return value_from_longest
9109 (type, ada_array_bound (arg1, tem, 1));
76a01679 9110 case OP_ATR_LENGTH:
1eea4ebd
UW
9111 return value_from_longest
9112 (type, ada_array_length (arg1, tem));
76a01679
JB
9113 }
9114 }
9115 else if (discrete_type_p (type_arg))
9116 {
9117 struct type *range_type;
9118 char *name = ada_type_name (type_arg);
9119 range_type = NULL;
9120 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9121 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9122 if (range_type == NULL)
9123 range_type = type_arg;
9124 switch (op)
9125 {
9126 default:
323e0a4a 9127 error (_("unexpected attribute encountered"));
76a01679 9128 case OP_ATR_FIRST:
690cc4eb
PH
9129 return value_from_longest
9130 (range_type, discrete_type_low_bound (range_type));
76a01679 9131 case OP_ATR_LAST:
690cc4eb
PH
9132 return value_from_longest
9133 (range_type, discrete_type_high_bound (range_type));
76a01679 9134 case OP_ATR_LENGTH:
323e0a4a 9135 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9136 }
9137 }
9138 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9139 error (_("unimplemented type attribute"));
76a01679
JB
9140 else
9141 {
9142 LONGEST low, high;
9143
9144 if (ada_is_packed_array_type (type_arg))
9145 type_arg = decode_packed_array_type (type_arg);
9146
1eea4ebd 9147 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9148 if (type == NULL)
1eea4ebd
UW
9149 type = builtin_type (exp->gdbarch)->builtin_int;
9150
76a01679
JB
9151 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9152 return allocate_value (type);
9153
9154 switch (op)
9155 {
9156 default:
323e0a4a 9157 error (_("unexpected attribute encountered"));
76a01679 9158 case OP_ATR_FIRST:
1eea4ebd 9159 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9160 return value_from_longest (type, low);
9161 case OP_ATR_LAST:
1eea4ebd 9162 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9163 return value_from_longest (type, high);
9164 case OP_ATR_LENGTH:
1eea4ebd
UW
9165 low = ada_array_bound_from_type (type_arg, tem, 0);
9166 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9167 return value_from_longest (type, high - low + 1);
9168 }
9169 }
14f9c5c9
AS
9170 }
9171
4c4b4cd2
PH
9172 case OP_ATR_TAG:
9173 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9174 if (noside == EVAL_SKIP)
76a01679 9175 goto nosideret;
4c4b4cd2
PH
9176
9177 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9178 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9179
9180 return ada_value_tag (arg1);
9181
9182 case OP_ATR_MIN:
9183 case OP_ATR_MAX:
9184 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9187 if (noside == EVAL_SKIP)
76a01679 9188 goto nosideret;
d2e4a39e 9189 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9190 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9191 else
f44316fa
UW
9192 {
9193 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9194 return value_binop (arg1, arg2,
9195 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9196 }
14f9c5c9 9197
4c4b4cd2
PH
9198 case OP_ATR_MODULUS:
9199 {
31dedfee 9200 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9201 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9202
76a01679
JB
9203 if (noside == EVAL_SKIP)
9204 goto nosideret;
4c4b4cd2 9205
76a01679 9206 if (!ada_is_modular_type (type_arg))
323e0a4a 9207 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9208
76a01679
JB
9209 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9210 ada_modulus (type_arg));
4c4b4cd2
PH
9211 }
9212
9213
9214 case OP_ATR_POS:
9215 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9217 if (noside == EVAL_SKIP)
76a01679 9218 goto nosideret;
3cb382c9
UW
9219 type = builtin_type (exp->gdbarch)->builtin_int;
9220 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9221 return value_zero (type, not_lval);
14f9c5c9 9222 else
3cb382c9 9223 return value_pos_atr (type, arg1);
14f9c5c9 9224
4c4b4cd2
PH
9225 case OP_ATR_SIZE:
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9227 type = value_type (arg1);
9228
9229 /* If the argument is a reference, then dereference its type, since
9230 the user is really asking for the size of the actual object,
9231 not the size of the pointer. */
9232 if (TYPE_CODE (type) == TYPE_CODE_REF)
9233 type = TYPE_TARGET_TYPE (type);
9234
4c4b4cd2 9235 if (noside == EVAL_SKIP)
76a01679 9236 goto nosideret;
4c4b4cd2 9237 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9238 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9239 else
22601c15 9240 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9241 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9242
9243 case OP_ATR_VAL:
9244 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9246 type = exp->elts[pc + 2].type;
14f9c5c9 9247 if (noside == EVAL_SKIP)
76a01679 9248 goto nosideret;
4c4b4cd2 9249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9250 return value_zero (type, not_lval);
4c4b4cd2 9251 else
76a01679 9252 return value_val_atr (type, arg1);
4c4b4cd2
PH
9253
9254 case BINOP_EXP:
9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9256 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9257 if (noside == EVAL_SKIP)
9258 goto nosideret;
9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9260 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9261 else
f44316fa
UW
9262 {
9263 /* For integer exponentiation operations,
9264 only promote the first argument. */
9265 if (is_integral_type (value_type (arg2)))
9266 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9267 else
9268 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9269
9270 return value_binop (arg1, arg2, op);
9271 }
4c4b4cd2
PH
9272
9273 case UNOP_PLUS:
9274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9275 if (noside == EVAL_SKIP)
9276 goto nosideret;
9277 else
9278 return arg1;
9279
9280 case UNOP_ABS:
9281 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9282 if (noside == EVAL_SKIP)
9283 goto nosideret;
f44316fa 9284 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9285 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9286 return value_neg (arg1);
14f9c5c9 9287 else
4c4b4cd2 9288 return arg1;
14f9c5c9
AS
9289
9290 case UNOP_IND:
6b0d7253 9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9292 if (noside == EVAL_SKIP)
4c4b4cd2 9293 goto nosideret;
df407dfe 9294 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9295 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9296 {
9297 if (ada_is_array_descriptor_type (type))
9298 /* GDB allows dereferencing GNAT array descriptors. */
9299 {
9300 struct type *arrType = ada_type_of_array (arg1, 0);
9301 if (arrType == NULL)
323e0a4a 9302 error (_("Attempt to dereference null array pointer."));
00a4c844 9303 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9304 }
9305 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9306 || TYPE_CODE (type) == TYPE_CODE_REF
9307 /* In C you can dereference an array to get the 1st elt. */
9308 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9309 {
9310 type = to_static_fixed_type
9311 (ada_aligned_type
9312 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9313 check_size (type);
9314 return value_zero (type, lval_memory);
9315 }
4c4b4cd2 9316 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9317 {
9318 /* GDB allows dereferencing an int. */
9319 if (expect_type == NULL)
9320 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9321 lval_memory);
9322 else
9323 {
9324 expect_type =
9325 to_static_fixed_type (ada_aligned_type (expect_type));
9326 return value_zero (expect_type, lval_memory);
9327 }
9328 }
4c4b4cd2 9329 else
323e0a4a 9330 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9331 }
76a01679 9332 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9333 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9334
96967637
JB
9335 if (TYPE_CODE (type) == TYPE_CODE_INT)
9336 /* GDB allows dereferencing an int. If we were given
9337 the expect_type, then use that as the target type.
9338 Otherwise, assume that the target type is an int. */
9339 {
9340 if (expect_type != NULL)
9341 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9342 arg1));
9343 else
9344 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9345 (CORE_ADDR) value_as_address (arg1));
9346 }
6b0d7253 9347
4c4b4cd2
PH
9348 if (ada_is_array_descriptor_type (type))
9349 /* GDB allows dereferencing GNAT array descriptors. */
9350 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9351 else
4c4b4cd2 9352 return ada_value_ind (arg1);
14f9c5c9
AS
9353
9354 case STRUCTOP_STRUCT:
9355 tem = longest_to_int (exp->elts[pc + 1].longconst);
9356 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9358 if (noside == EVAL_SKIP)
4c4b4cd2 9359 goto nosideret;
14f9c5c9 9360 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9361 {
df407dfe 9362 struct type *type1 = value_type (arg1);
76a01679
JB
9363 if (ada_is_tagged_type (type1, 1))
9364 {
9365 type = ada_lookup_struct_elt_type (type1,
9366 &exp->elts[pc + 2].string,
9367 1, 1, NULL);
9368 if (type == NULL)
9369 /* In this case, we assume that the field COULD exist
9370 in some extension of the type. Return an object of
9371 "type" void, which will match any formal
9372 (see ada_type_match). */
30b15541
UW
9373 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9374 lval_memory);
76a01679
JB
9375 }
9376 else
9377 type =
9378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9379 0, NULL);
9380
9381 return value_zero (ada_aligned_type (type), lval_memory);
9382 }
14f9c5c9 9383 else
284614f0
JB
9384 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9385 arg1 = unwrap_value (arg1);
9386 return ada_to_fixed_value (arg1);
9387
14f9c5c9 9388 case OP_TYPE:
4c4b4cd2
PH
9389 /* The value is not supposed to be used. This is here to make it
9390 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9391 (*pos) += 2;
9392 if (noside == EVAL_SKIP)
4c4b4cd2 9393 goto nosideret;
14f9c5c9 9394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9395 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9396 else
323e0a4a 9397 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9398
9399 case OP_AGGREGATE:
9400 case OP_CHOICES:
9401 case OP_OTHERS:
9402 case OP_DISCRETE_RANGE:
9403 case OP_POSITIONAL:
9404 case OP_NAME:
9405 if (noside == EVAL_NORMAL)
9406 switch (op)
9407 {
9408 case OP_NAME:
9409 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9410 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9411 case OP_AGGREGATE:
9412 error (_("Aggregates only allowed on the right of an assignment"));
9413 default:
e1d5a0d2 9414 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9415 }
9416
9417 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9418 *pos += oplen - 1;
9419 for (tem = 0; tem < nargs; tem += 1)
9420 ada_evaluate_subexp (NULL, exp, pos, noside);
9421 goto nosideret;
14f9c5c9
AS
9422 }
9423
9424nosideret:
22601c15 9425 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9426}
14f9c5c9 9427\f
d2e4a39e 9428
4c4b4cd2 9429 /* Fixed point */
14f9c5c9
AS
9430
9431/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9432 type name that encodes the 'small and 'delta information.
4c4b4cd2 9433 Otherwise, return NULL. */
14f9c5c9 9434
d2e4a39e 9435static const char *
ebf56fd3 9436fixed_type_info (struct type *type)
14f9c5c9 9437{
d2e4a39e 9438 const char *name = ada_type_name (type);
14f9c5c9
AS
9439 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9440
d2e4a39e
AS
9441 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9442 {
14f9c5c9
AS
9443 const char *tail = strstr (name, "___XF_");
9444 if (tail == NULL)
4c4b4cd2 9445 return NULL;
d2e4a39e 9446 else
4c4b4cd2 9447 return tail + 5;
14f9c5c9
AS
9448 }
9449 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9450 return fixed_type_info (TYPE_TARGET_TYPE (type));
9451 else
9452 return NULL;
9453}
9454
4c4b4cd2 9455/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9456
9457int
ebf56fd3 9458ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9459{
9460 return fixed_type_info (type) != NULL;
9461}
9462
4c4b4cd2
PH
9463/* Return non-zero iff TYPE represents a System.Address type. */
9464
9465int
9466ada_is_system_address_type (struct type *type)
9467{
9468 return (TYPE_NAME (type)
9469 && strcmp (TYPE_NAME (type), "system__address") == 0);
9470}
9471
14f9c5c9
AS
9472/* Assuming that TYPE is the representation of an Ada fixed-point
9473 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9474 delta cannot be determined. */
14f9c5c9
AS
9475
9476DOUBLEST
ebf56fd3 9477ada_delta (struct type *type)
14f9c5c9
AS
9478{
9479 const char *encoding = fixed_type_info (type);
facc390f 9480 DOUBLEST num, den;
14f9c5c9 9481
facc390f
JB
9482 /* Strictly speaking, num and den are encoded as integer. However,
9483 they may not fit into a long, and they will have to be converted
9484 to DOUBLEST anyway. So scan them as DOUBLEST. */
9485 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9486 &num, &den) < 2)
14f9c5c9 9487 return -1.0;
d2e4a39e 9488 else
facc390f 9489 return num / den;
14f9c5c9
AS
9490}
9491
9492/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9493 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9494
9495static DOUBLEST
ebf56fd3 9496scaling_factor (struct type *type)
14f9c5c9
AS
9497{
9498 const char *encoding = fixed_type_info (type);
facc390f 9499 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9500 int n;
d2e4a39e 9501
facc390f
JB
9502 /* Strictly speaking, num's and den's are encoded as integer. However,
9503 they may not fit into a long, and they will have to be converted
9504 to DOUBLEST anyway. So scan them as DOUBLEST. */
9505 n = sscanf (encoding,
9506 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9507 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9508 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9509
9510 if (n < 2)
9511 return 1.0;
9512 else if (n == 4)
facc390f 9513 return num1 / den1;
d2e4a39e 9514 else
facc390f 9515 return num0 / den0;
14f9c5c9
AS
9516}
9517
9518
9519/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9520 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9521
9522DOUBLEST
ebf56fd3 9523ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9524{
d2e4a39e 9525 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9526}
9527
4c4b4cd2
PH
9528/* The representation of a fixed-point value of type TYPE
9529 corresponding to the value X. */
14f9c5c9
AS
9530
9531LONGEST
ebf56fd3 9532ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9533{
9534 return (LONGEST) (x / scaling_factor (type) + 0.5);
9535}
9536
9537
4c4b4cd2 9538 /* VAX floating formats */
14f9c5c9
AS
9539
9540/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9541 types. */
9542
14f9c5c9 9543int
d2e4a39e 9544ada_is_vax_floating_type (struct type *type)
14f9c5c9 9545{
d2e4a39e 9546 int name_len =
14f9c5c9 9547 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9548 return
14f9c5c9 9549 name_len > 6
d2e4a39e 9550 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9551 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9552 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9553}
9554
9555/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9556 ada_is_vax_floating_point. */
9557
14f9c5c9 9558int
d2e4a39e 9559ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9560{
d2e4a39e 9561 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9562}
9563
4c4b4cd2 9564/* A value representing the special debugging function that outputs
14f9c5c9 9565 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9566 ada_is_vax_floating_type (TYPE). */
9567
d2e4a39e
AS
9568struct value *
9569ada_vax_float_print_function (struct type *type)
9570{
9571 switch (ada_vax_float_type_suffix (type))
9572 {
9573 case 'F':
9574 return get_var_value ("DEBUG_STRING_F", 0);
9575 case 'D':
9576 return get_var_value ("DEBUG_STRING_D", 0);
9577 case 'G':
9578 return get_var_value ("DEBUG_STRING_G", 0);
9579 default:
323e0a4a 9580 error (_("invalid VAX floating-point type"));
d2e4a39e 9581 }
14f9c5c9 9582}
14f9c5c9 9583\f
d2e4a39e 9584
4c4b4cd2 9585 /* Range types */
14f9c5c9
AS
9586
9587/* Scan STR beginning at position K for a discriminant name, and
9588 return the value of that discriminant field of DVAL in *PX. If
9589 PNEW_K is not null, put the position of the character beyond the
9590 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9591 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9592
9593static int
07d8f827 9594scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9595 int *pnew_k)
14f9c5c9
AS
9596{
9597 static char *bound_buffer = NULL;
9598 static size_t bound_buffer_len = 0;
9599 char *bound;
9600 char *pend;
d2e4a39e 9601 struct value *bound_val;
14f9c5c9
AS
9602
9603 if (dval == NULL || str == NULL || str[k] == '\0')
9604 return 0;
9605
d2e4a39e 9606 pend = strstr (str + k, "__");
14f9c5c9
AS
9607 if (pend == NULL)
9608 {
d2e4a39e 9609 bound = str + k;
14f9c5c9
AS
9610 k += strlen (bound);
9611 }
d2e4a39e 9612 else
14f9c5c9 9613 {
d2e4a39e 9614 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9615 bound = bound_buffer;
d2e4a39e
AS
9616 strncpy (bound_buffer, str + k, pend - (str + k));
9617 bound[pend - (str + k)] = '\0';
9618 k = pend - str;
14f9c5c9 9619 }
d2e4a39e 9620
df407dfe 9621 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9622 if (bound_val == NULL)
9623 return 0;
9624
9625 *px = value_as_long (bound_val);
9626 if (pnew_k != NULL)
9627 *pnew_k = k;
9628 return 1;
9629}
9630
9631/* Value of variable named NAME in the current environment. If
9632 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9633 otherwise causes an error with message ERR_MSG. */
9634
d2e4a39e
AS
9635static struct value *
9636get_var_value (char *name, char *err_msg)
14f9c5c9 9637{
4c4b4cd2 9638 struct ada_symbol_info *syms;
14f9c5c9
AS
9639 int nsyms;
9640
4c4b4cd2
PH
9641 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9642 &syms);
14f9c5c9
AS
9643
9644 if (nsyms != 1)
9645 {
9646 if (err_msg == NULL)
4c4b4cd2 9647 return 0;
14f9c5c9 9648 else
8a3fe4f8 9649 error (("%s"), err_msg);
14f9c5c9
AS
9650 }
9651
4c4b4cd2 9652 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9653}
d2e4a39e 9654
14f9c5c9 9655/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9656 no such variable found, returns 0, and sets *FLAG to 0. If
9657 successful, sets *FLAG to 1. */
9658
14f9c5c9 9659LONGEST
4c4b4cd2 9660get_int_var_value (char *name, int *flag)
14f9c5c9 9661{
4c4b4cd2 9662 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9663
14f9c5c9
AS
9664 if (var_val == 0)
9665 {
9666 if (flag != NULL)
4c4b4cd2 9667 *flag = 0;
14f9c5c9
AS
9668 return 0;
9669 }
9670 else
9671 {
9672 if (flag != NULL)
4c4b4cd2 9673 *flag = 1;
14f9c5c9
AS
9674 return value_as_long (var_val);
9675 }
9676}
d2e4a39e 9677
14f9c5c9
AS
9678
9679/* Return a range type whose base type is that of the range type named
9680 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9681 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9682 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9683 corresponding range type from debug information; fall back to using it
9684 if symbol lookup fails. If a new type must be created, allocate it
9685 like ORIG_TYPE was. The bounds information, in general, is encoded
9686 in NAME, the base type given in the named range type. */
14f9c5c9 9687
d2e4a39e 9688static struct type *
1ce677a4 9689to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9690{
9691 struct type *raw_type = ada_find_any_type (name);
9692 struct type *base_type;
d2e4a39e 9693 char *subtype_info;
14f9c5c9 9694
1ce677a4 9695 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9696 if (raw_type == NULL)
1ce677a4 9697 raw_type = orig_type;
dddfab26 9698
1ce677a4 9699 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9700 base_type = TYPE_TARGET_TYPE (raw_type);
9701 else
9702 base_type = raw_type;
9703
9704 subtype_info = strstr (name, "___XD");
9705 if (subtype_info == NULL)
690cc4eb
PH
9706 {
9707 LONGEST L = discrete_type_low_bound (raw_type);
9708 LONGEST U = discrete_type_high_bound (raw_type);
9709 if (L < INT_MIN || U > INT_MAX)
9710 return raw_type;
9711 else
e9bb382b 9712 return create_range_type (alloc_type_copy (orig_type), raw_type,
690cc4eb
PH
9713 discrete_type_low_bound (raw_type),
9714 discrete_type_high_bound (raw_type));
9715 }
14f9c5c9
AS
9716 else
9717 {
9718 static char *name_buf = NULL;
9719 static size_t name_len = 0;
9720 int prefix_len = subtype_info - name;
9721 LONGEST L, U;
9722 struct type *type;
9723 char *bounds_str;
9724 int n;
9725
9726 GROW_VECT (name_buf, name_len, prefix_len + 5);
9727 strncpy (name_buf, name, prefix_len);
9728 name_buf[prefix_len] = '\0';
9729
9730 subtype_info += 5;
9731 bounds_str = strchr (subtype_info, '_');
9732 n = 1;
9733
d2e4a39e 9734 if (*subtype_info == 'L')
4c4b4cd2
PH
9735 {
9736 if (!ada_scan_number (bounds_str, n, &L, &n)
9737 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9738 return raw_type;
9739 if (bounds_str[n] == '_')
9740 n += 2;
9741 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9742 n += 1;
9743 subtype_info += 1;
9744 }
d2e4a39e 9745 else
4c4b4cd2
PH
9746 {
9747 int ok;
9748 strcpy (name_buf + prefix_len, "___L");
9749 L = get_int_var_value (name_buf, &ok);
9750 if (!ok)
9751 {
323e0a4a 9752 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9753 L = 1;
9754 }
9755 }
14f9c5c9 9756
d2e4a39e 9757 if (*subtype_info == 'U')
4c4b4cd2
PH
9758 {
9759 if (!ada_scan_number (bounds_str, n, &U, &n)
9760 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9761 return raw_type;
9762 }
d2e4a39e 9763 else
4c4b4cd2
PH
9764 {
9765 int ok;
9766 strcpy (name_buf + prefix_len, "___U");
9767 U = get_int_var_value (name_buf, &ok);
9768 if (!ok)
9769 {
323e0a4a 9770 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9771 U = L;
9772 }
9773 }
14f9c5c9 9774
e9bb382b 9775 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9776 TYPE_NAME (type) = name;
14f9c5c9
AS
9777 return type;
9778 }
9779}
9780
4c4b4cd2
PH
9781/* True iff NAME is the name of a range type. */
9782
14f9c5c9 9783int
d2e4a39e 9784ada_is_range_type_name (const char *name)
14f9c5c9
AS
9785{
9786 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9787}
14f9c5c9 9788\f
d2e4a39e 9789
4c4b4cd2
PH
9790 /* Modular types */
9791
9792/* True iff TYPE is an Ada modular type. */
14f9c5c9 9793
14f9c5c9 9794int
d2e4a39e 9795ada_is_modular_type (struct type *type)
14f9c5c9 9796{
4c4b4cd2 9797 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9798
9799 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9800 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9801 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9802}
9803
0056e4d5
JB
9804/* Try to determine the lower and upper bounds of the given modular type
9805 using the type name only. Return non-zero and set L and U as the lower
9806 and upper bounds (respectively) if successful. */
9807
9808int
9809ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9810{
9811 char *name = ada_type_name (type);
9812 char *suffix;
9813 int k;
9814 LONGEST U;
9815
9816 if (name == NULL)
9817 return 0;
9818
9819 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9820 we are looking for static bounds, which means an __XDLU suffix.
9821 Moreover, we know that the lower bound of modular types is always
9822 zero, so the actual suffix should start with "__XDLU_0__", and
9823 then be followed by the upper bound value. */
9824 suffix = strstr (name, "__XDLU_0__");
9825 if (suffix == NULL)
9826 return 0;
9827 k = 10;
9828 if (!ada_scan_number (suffix, k, &U, NULL))
9829 return 0;
9830
9831 *modulus = (ULONGEST) U + 1;
9832 return 1;
9833}
9834
4c4b4cd2
PH
9835/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9836
61ee279c 9837ULONGEST
0056e4d5 9838ada_modulus (struct type *type)
14f9c5c9 9839{
0056e4d5
JB
9840 ULONGEST modulus;
9841
9842 /* Normally, the modulus of a modular type is equal to the value of
9843 its upper bound + 1. However, the upper bound is currently stored
9844 as an int, which is not always big enough to hold the actual bound
9845 value. To workaround this, try to take advantage of the encoding
9846 that GNAT uses with with discrete types. To avoid some unnecessary
9847 parsing, we do this only when the size of TYPE is greater than
9848 the size of the field holding the bound. */
9849 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9850 && ada_modulus_from_name (type, &modulus))
9851 return modulus;
9852
d37209fd 9853 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9854}
d2e4a39e 9855\f
f7f9143b
JB
9856
9857/* Ada exception catchpoint support:
9858 ---------------------------------
9859
9860 We support 3 kinds of exception catchpoints:
9861 . catchpoints on Ada exceptions
9862 . catchpoints on unhandled Ada exceptions
9863 . catchpoints on failed assertions
9864
9865 Exceptions raised during failed assertions, or unhandled exceptions
9866 could perfectly be caught with the general catchpoint on Ada exceptions.
9867 However, we can easily differentiate these two special cases, and having
9868 the option to distinguish these two cases from the rest can be useful
9869 to zero-in on certain situations.
9870
9871 Exception catchpoints are a specialized form of breakpoint,
9872 since they rely on inserting breakpoints inside known routines
9873 of the GNAT runtime. The implementation therefore uses a standard
9874 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9875 of breakpoint_ops.
9876
0259addd
JB
9877 Support in the runtime for exception catchpoints have been changed
9878 a few times already, and these changes affect the implementation
9879 of these catchpoints. In order to be able to support several
9880 variants of the runtime, we use a sniffer that will determine
9881 the runtime variant used by the program being debugged.
9882
f7f9143b
JB
9883 At this time, we do not support the use of conditions on Ada exception
9884 catchpoints. The COND and COND_STRING fields are therefore set
9885 to NULL (most of the time, see below).
9886
9887 Conditions where EXP_STRING, COND, and COND_STRING are used:
9888
9889 When a user specifies the name of a specific exception in the case
9890 of catchpoints on Ada exceptions, we store the name of that exception
9891 in the EXP_STRING. We then translate this request into an actual
9892 condition stored in COND_STRING, and then parse it into an expression
9893 stored in COND. */
9894
9895/* The different types of catchpoints that we introduced for catching
9896 Ada exceptions. */
9897
9898enum exception_catchpoint_kind
9899{
9900 ex_catch_exception,
9901 ex_catch_exception_unhandled,
9902 ex_catch_assert
9903};
9904
3d0b0fa3
JB
9905/* Ada's standard exceptions. */
9906
9907static char *standard_exc[] = {
9908 "constraint_error",
9909 "program_error",
9910 "storage_error",
9911 "tasking_error"
9912};
9913
0259addd
JB
9914typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9915
9916/* A structure that describes how to support exception catchpoints
9917 for a given executable. */
9918
9919struct exception_support_info
9920{
9921 /* The name of the symbol to break on in order to insert
9922 a catchpoint on exceptions. */
9923 const char *catch_exception_sym;
9924
9925 /* The name of the symbol to break on in order to insert
9926 a catchpoint on unhandled exceptions. */
9927 const char *catch_exception_unhandled_sym;
9928
9929 /* The name of the symbol to break on in order to insert
9930 a catchpoint on failed assertions. */
9931 const char *catch_assert_sym;
9932
9933 /* Assuming that the inferior just triggered an unhandled exception
9934 catchpoint, this function is responsible for returning the address
9935 in inferior memory where the name of that exception is stored.
9936 Return zero if the address could not be computed. */
9937 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9938};
9939
9940static CORE_ADDR ada_unhandled_exception_name_addr (void);
9941static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9942
9943/* The following exception support info structure describes how to
9944 implement exception catchpoints with the latest version of the
9945 Ada runtime (as of 2007-03-06). */
9946
9947static const struct exception_support_info default_exception_support_info =
9948{
9949 "__gnat_debug_raise_exception", /* catch_exception_sym */
9950 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9951 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9952 ada_unhandled_exception_name_addr
9953};
9954
9955/* The following exception support info structure describes how to
9956 implement exception catchpoints with a slightly older version
9957 of the Ada runtime. */
9958
9959static const struct exception_support_info exception_support_info_fallback =
9960{
9961 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9962 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9963 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9964 ada_unhandled_exception_name_addr_from_raise
9965};
9966
9967/* For each executable, we sniff which exception info structure to use
9968 and cache it in the following global variable. */
9969
9970static const struct exception_support_info *exception_info = NULL;
9971
9972/* Inspect the Ada runtime and determine which exception info structure
9973 should be used to provide support for exception catchpoints.
9974
9975 This function will always set exception_info, or raise an error. */
9976
9977static void
9978ada_exception_support_info_sniffer (void)
9979{
9980 struct symbol *sym;
9981
9982 /* If the exception info is already known, then no need to recompute it. */
9983 if (exception_info != NULL)
9984 return;
9985
9986 /* Check the latest (default) exception support info. */
9987 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9988 NULL, VAR_DOMAIN);
9989 if (sym != NULL)
9990 {
9991 exception_info = &default_exception_support_info;
9992 return;
9993 }
9994
9995 /* Try our fallback exception suport info. */
9996 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9997 NULL, VAR_DOMAIN);
9998 if (sym != NULL)
9999 {
10000 exception_info = &exception_support_info_fallback;
10001 return;
10002 }
10003
10004 /* Sometimes, it is normal for us to not be able to find the routine
10005 we are looking for. This happens when the program is linked with
10006 the shared version of the GNAT runtime, and the program has not been
10007 started yet. Inform the user of these two possible causes if
10008 applicable. */
10009
10010 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10011 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10012
10013 /* If the symbol does not exist, then check that the program is
10014 already started, to make sure that shared libraries have been
10015 loaded. If it is not started, this may mean that the symbol is
10016 in a shared library. */
10017
10018 if (ptid_get_pid (inferior_ptid) == 0)
10019 error (_("Unable to insert catchpoint. Try to start the program first."));
10020
10021 /* At this point, we know that we are debugging an Ada program and
10022 that the inferior has been started, but we still are not able to
10023 find the run-time symbols. That can mean that we are in
10024 configurable run time mode, or that a-except as been optimized
10025 out by the linker... In any case, at this point it is not worth
10026 supporting this feature. */
10027
10028 error (_("Cannot insert catchpoints in this configuration."));
10029}
10030
10031/* An observer of "executable_changed" events.
10032 Its role is to clear certain cached values that need to be recomputed
10033 each time a new executable is loaded by GDB. */
10034
10035static void
781b42b0 10036ada_executable_changed_observer (void)
0259addd
JB
10037{
10038 /* If the executable changed, then it is possible that the Ada runtime
10039 is different. So we need to invalidate the exception support info
10040 cache. */
10041 exception_info = NULL;
10042}
10043
f7f9143b
JB
10044/* Return the name of the function at PC, NULL if could not find it.
10045 This function only checks the debugging information, not the symbol
10046 table. */
10047
10048static char *
10049function_name_from_pc (CORE_ADDR pc)
10050{
10051 char *func_name;
10052
10053 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10054 return NULL;
10055
10056 return func_name;
10057}
10058
10059/* True iff FRAME is very likely to be that of a function that is
10060 part of the runtime system. This is all very heuristic, but is
10061 intended to be used as advice as to what frames are uninteresting
10062 to most users. */
10063
10064static int
10065is_known_support_routine (struct frame_info *frame)
10066{
4ed6b5be 10067 struct symtab_and_line sal;
f7f9143b
JB
10068 char *func_name;
10069 int i;
f7f9143b 10070
4ed6b5be
JB
10071 /* If this code does not have any debugging information (no symtab),
10072 This cannot be any user code. */
f7f9143b 10073
4ed6b5be 10074 find_frame_sal (frame, &sal);
f7f9143b
JB
10075 if (sal.symtab == NULL)
10076 return 1;
10077
4ed6b5be
JB
10078 /* If there is a symtab, but the associated source file cannot be
10079 located, then assume this is not user code: Selecting a frame
10080 for which we cannot display the code would not be very helpful
10081 for the user. This should also take care of case such as VxWorks
10082 where the kernel has some debugging info provided for a few units. */
f7f9143b 10083
9bbc9174 10084 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10085 return 1;
10086
4ed6b5be
JB
10087 /* Check the unit filename againt the Ada runtime file naming.
10088 We also check the name of the objfile against the name of some
10089 known system libraries that sometimes come with debugging info
10090 too. */
10091
f7f9143b
JB
10092 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10093 {
10094 re_comp (known_runtime_file_name_patterns[i]);
10095 if (re_exec (sal.symtab->filename))
10096 return 1;
4ed6b5be
JB
10097 if (sal.symtab->objfile != NULL
10098 && re_exec (sal.symtab->objfile->name))
10099 return 1;
f7f9143b
JB
10100 }
10101
4ed6b5be 10102 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10103
4ed6b5be 10104 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10105 if (func_name == NULL)
10106 return 1;
10107
10108 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10109 {
10110 re_comp (known_auxiliary_function_name_patterns[i]);
10111 if (re_exec (func_name))
10112 return 1;
10113 }
10114
10115 return 0;
10116}
10117
10118/* Find the first frame that contains debugging information and that is not
10119 part of the Ada run-time, starting from FI and moving upward. */
10120
0ef643c8 10121void
f7f9143b
JB
10122ada_find_printable_frame (struct frame_info *fi)
10123{
10124 for (; fi != NULL; fi = get_prev_frame (fi))
10125 {
10126 if (!is_known_support_routine (fi))
10127 {
10128 select_frame (fi);
10129 break;
10130 }
10131 }
10132
10133}
10134
10135/* Assuming that the inferior just triggered an unhandled exception
10136 catchpoint, return the address in inferior memory where the name
10137 of the exception is stored.
10138
10139 Return zero if the address could not be computed. */
10140
10141static CORE_ADDR
10142ada_unhandled_exception_name_addr (void)
0259addd
JB
10143{
10144 return parse_and_eval_address ("e.full_name");
10145}
10146
10147/* Same as ada_unhandled_exception_name_addr, except that this function
10148 should be used when the inferior uses an older version of the runtime,
10149 where the exception name needs to be extracted from a specific frame
10150 several frames up in the callstack. */
10151
10152static CORE_ADDR
10153ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10154{
10155 int frame_level;
10156 struct frame_info *fi;
10157
10158 /* To determine the name of this exception, we need to select
10159 the frame corresponding to RAISE_SYM_NAME. This frame is
10160 at least 3 levels up, so we simply skip the first 3 frames
10161 without checking the name of their associated function. */
10162 fi = get_current_frame ();
10163 for (frame_level = 0; frame_level < 3; frame_level += 1)
10164 if (fi != NULL)
10165 fi = get_prev_frame (fi);
10166
10167 while (fi != NULL)
10168 {
10169 const char *func_name =
10170 function_name_from_pc (get_frame_address_in_block (fi));
10171 if (func_name != NULL
0259addd 10172 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10173 break; /* We found the frame we were looking for... */
10174 fi = get_prev_frame (fi);
10175 }
10176
10177 if (fi == NULL)
10178 return 0;
10179
10180 select_frame (fi);
10181 return parse_and_eval_address ("id.full_name");
10182}
10183
10184/* Assuming the inferior just triggered an Ada exception catchpoint
10185 (of any type), return the address in inferior memory where the name
10186 of the exception is stored, if applicable.
10187
10188 Return zero if the address could not be computed, or if not relevant. */
10189
10190static CORE_ADDR
10191ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10192 struct breakpoint *b)
10193{
10194 switch (ex)
10195 {
10196 case ex_catch_exception:
10197 return (parse_and_eval_address ("e.full_name"));
10198 break;
10199
10200 case ex_catch_exception_unhandled:
0259addd 10201 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10202 break;
10203
10204 case ex_catch_assert:
10205 return 0; /* Exception name is not relevant in this case. */
10206 break;
10207
10208 default:
10209 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10210 break;
10211 }
10212
10213 return 0; /* Should never be reached. */
10214}
10215
10216/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10217 any error that ada_exception_name_addr_1 might cause to be thrown.
10218 When an error is intercepted, a warning with the error message is printed,
10219 and zero is returned. */
10220
10221static CORE_ADDR
10222ada_exception_name_addr (enum exception_catchpoint_kind ex,
10223 struct breakpoint *b)
10224{
10225 struct gdb_exception e;
10226 CORE_ADDR result = 0;
10227
10228 TRY_CATCH (e, RETURN_MASK_ERROR)
10229 {
10230 result = ada_exception_name_addr_1 (ex, b);
10231 }
10232
10233 if (e.reason < 0)
10234 {
10235 warning (_("failed to get exception name: %s"), e.message);
10236 return 0;
10237 }
10238
10239 return result;
10240}
10241
10242/* Implement the PRINT_IT method in the breakpoint_ops structure
10243 for all exception catchpoint kinds. */
10244
10245static enum print_stop_action
10246print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10247{
10248 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10249 char exception_name[256];
10250
10251 if (addr != 0)
10252 {
10253 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10254 exception_name [sizeof (exception_name) - 1] = '\0';
10255 }
10256
10257 ada_find_printable_frame (get_current_frame ());
10258
10259 annotate_catchpoint (b->number);
10260 switch (ex)
10261 {
10262 case ex_catch_exception:
10263 if (addr != 0)
10264 printf_filtered (_("\nCatchpoint %d, %s at "),
10265 b->number, exception_name);
10266 else
10267 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10268 break;
10269 case ex_catch_exception_unhandled:
10270 if (addr != 0)
10271 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10272 b->number, exception_name);
10273 else
10274 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10275 b->number);
10276 break;
10277 case ex_catch_assert:
10278 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10279 b->number);
10280 break;
10281 }
10282
10283 return PRINT_SRC_AND_LOC;
10284}
10285
10286/* Implement the PRINT_ONE method in the breakpoint_ops structure
10287 for all exception catchpoint kinds. */
10288
10289static void
10290print_one_exception (enum exception_catchpoint_kind ex,
10291 struct breakpoint *b, CORE_ADDR *last_addr)
10292{
79a45b7d
TT
10293 struct value_print_options opts;
10294
10295 get_user_print_options (&opts);
10296 if (opts.addressprint)
f7f9143b
JB
10297 {
10298 annotate_field (4);
10299 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10300 }
10301
10302 annotate_field (5);
10303 *last_addr = b->loc->address;
10304 switch (ex)
10305 {
10306 case ex_catch_exception:
10307 if (b->exp_string != NULL)
10308 {
10309 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10310
10311 ui_out_field_string (uiout, "what", msg);
10312 xfree (msg);
10313 }
10314 else
10315 ui_out_field_string (uiout, "what", "all Ada exceptions");
10316
10317 break;
10318
10319 case ex_catch_exception_unhandled:
10320 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10321 break;
10322
10323 case ex_catch_assert:
10324 ui_out_field_string (uiout, "what", "failed Ada assertions");
10325 break;
10326
10327 default:
10328 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10329 break;
10330 }
10331}
10332
10333/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10334 for all exception catchpoint kinds. */
10335
10336static void
10337print_mention_exception (enum exception_catchpoint_kind ex,
10338 struct breakpoint *b)
10339{
10340 switch (ex)
10341 {
10342 case ex_catch_exception:
10343 if (b->exp_string != NULL)
10344 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10345 b->number, b->exp_string);
10346 else
10347 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10348
10349 break;
10350
10351 case ex_catch_exception_unhandled:
10352 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10353 b->number);
10354 break;
10355
10356 case ex_catch_assert:
10357 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10358 break;
10359
10360 default:
10361 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10362 break;
10363 }
10364}
10365
10366/* Virtual table for "catch exception" breakpoints. */
10367
10368static enum print_stop_action
10369print_it_catch_exception (struct breakpoint *b)
10370{
10371 return print_it_exception (ex_catch_exception, b);
10372}
10373
10374static void
10375print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10376{
10377 print_one_exception (ex_catch_exception, b, last_addr);
10378}
10379
10380static void
10381print_mention_catch_exception (struct breakpoint *b)
10382{
10383 print_mention_exception (ex_catch_exception, b);
10384}
10385
10386static struct breakpoint_ops catch_exception_breakpoint_ops =
10387{
ce78b96d
JB
10388 NULL, /* insert */
10389 NULL, /* remove */
10390 NULL, /* breakpoint_hit */
f7f9143b
JB
10391 print_it_catch_exception,
10392 print_one_catch_exception,
10393 print_mention_catch_exception
10394};
10395
10396/* Virtual table for "catch exception unhandled" breakpoints. */
10397
10398static enum print_stop_action
10399print_it_catch_exception_unhandled (struct breakpoint *b)
10400{
10401 return print_it_exception (ex_catch_exception_unhandled, b);
10402}
10403
10404static void
10405print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10406{
10407 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10408}
10409
10410static void
10411print_mention_catch_exception_unhandled (struct breakpoint *b)
10412{
10413 print_mention_exception (ex_catch_exception_unhandled, b);
10414}
10415
10416static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10417 NULL, /* insert */
10418 NULL, /* remove */
10419 NULL, /* breakpoint_hit */
f7f9143b
JB
10420 print_it_catch_exception_unhandled,
10421 print_one_catch_exception_unhandled,
10422 print_mention_catch_exception_unhandled
10423};
10424
10425/* Virtual table for "catch assert" breakpoints. */
10426
10427static enum print_stop_action
10428print_it_catch_assert (struct breakpoint *b)
10429{
10430 return print_it_exception (ex_catch_assert, b);
10431}
10432
10433static void
10434print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10435{
10436 print_one_exception (ex_catch_assert, b, last_addr);
10437}
10438
10439static void
10440print_mention_catch_assert (struct breakpoint *b)
10441{
10442 print_mention_exception (ex_catch_assert, b);
10443}
10444
10445static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10446 NULL, /* insert */
10447 NULL, /* remove */
10448 NULL, /* breakpoint_hit */
f7f9143b
JB
10449 print_it_catch_assert,
10450 print_one_catch_assert,
10451 print_mention_catch_assert
10452};
10453
10454/* Return non-zero if B is an Ada exception catchpoint. */
10455
10456int
10457ada_exception_catchpoint_p (struct breakpoint *b)
10458{
10459 return (b->ops == &catch_exception_breakpoint_ops
10460 || b->ops == &catch_exception_unhandled_breakpoint_ops
10461 || b->ops == &catch_assert_breakpoint_ops);
10462}
10463
f7f9143b
JB
10464/* Return a newly allocated copy of the first space-separated token
10465 in ARGSP, and then adjust ARGSP to point immediately after that
10466 token.
10467
10468 Return NULL if ARGPS does not contain any more tokens. */
10469
10470static char *
10471ada_get_next_arg (char **argsp)
10472{
10473 char *args = *argsp;
10474 char *end;
10475 char *result;
10476
10477 /* Skip any leading white space. */
10478
10479 while (isspace (*args))
10480 args++;
10481
10482 if (args[0] == '\0')
10483 return NULL; /* No more arguments. */
10484
10485 /* Find the end of the current argument. */
10486
10487 end = args;
10488 while (*end != '\0' && !isspace (*end))
10489 end++;
10490
10491 /* Adjust ARGSP to point to the start of the next argument. */
10492
10493 *argsp = end;
10494
10495 /* Make a copy of the current argument and return it. */
10496
10497 result = xmalloc (end - args + 1);
10498 strncpy (result, args, end - args);
10499 result[end - args] = '\0';
10500
10501 return result;
10502}
10503
10504/* Split the arguments specified in a "catch exception" command.
10505 Set EX to the appropriate catchpoint type.
10506 Set EXP_STRING to the name of the specific exception if
10507 specified by the user. */
10508
10509static void
10510catch_ada_exception_command_split (char *args,
10511 enum exception_catchpoint_kind *ex,
10512 char **exp_string)
10513{
10514 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10515 char *exception_name;
10516
10517 exception_name = ada_get_next_arg (&args);
10518 make_cleanup (xfree, exception_name);
10519
10520 /* Check that we do not have any more arguments. Anything else
10521 is unexpected. */
10522
10523 while (isspace (*args))
10524 args++;
10525
10526 if (args[0] != '\0')
10527 error (_("Junk at end of expression"));
10528
10529 discard_cleanups (old_chain);
10530
10531 if (exception_name == NULL)
10532 {
10533 /* Catch all exceptions. */
10534 *ex = ex_catch_exception;
10535 *exp_string = NULL;
10536 }
10537 else if (strcmp (exception_name, "unhandled") == 0)
10538 {
10539 /* Catch unhandled exceptions. */
10540 *ex = ex_catch_exception_unhandled;
10541 *exp_string = NULL;
10542 }
10543 else
10544 {
10545 /* Catch a specific exception. */
10546 *ex = ex_catch_exception;
10547 *exp_string = exception_name;
10548 }
10549}
10550
10551/* Return the name of the symbol on which we should break in order to
10552 implement a catchpoint of the EX kind. */
10553
10554static const char *
10555ada_exception_sym_name (enum exception_catchpoint_kind ex)
10556{
0259addd
JB
10557 gdb_assert (exception_info != NULL);
10558
f7f9143b
JB
10559 switch (ex)
10560 {
10561 case ex_catch_exception:
0259addd 10562 return (exception_info->catch_exception_sym);
f7f9143b
JB
10563 break;
10564 case ex_catch_exception_unhandled:
0259addd 10565 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10566 break;
10567 case ex_catch_assert:
0259addd 10568 return (exception_info->catch_assert_sym);
f7f9143b
JB
10569 break;
10570 default:
10571 internal_error (__FILE__, __LINE__,
10572 _("unexpected catchpoint kind (%d)"), ex);
10573 }
10574}
10575
10576/* Return the breakpoint ops "virtual table" used for catchpoints
10577 of the EX kind. */
10578
10579static struct breakpoint_ops *
4b9eee8c 10580ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10581{
10582 switch (ex)
10583 {
10584 case ex_catch_exception:
10585 return (&catch_exception_breakpoint_ops);
10586 break;
10587 case ex_catch_exception_unhandled:
10588 return (&catch_exception_unhandled_breakpoint_ops);
10589 break;
10590 case ex_catch_assert:
10591 return (&catch_assert_breakpoint_ops);
10592 break;
10593 default:
10594 internal_error (__FILE__, __LINE__,
10595 _("unexpected catchpoint kind (%d)"), ex);
10596 }
10597}
10598
10599/* Return the condition that will be used to match the current exception
10600 being raised with the exception that the user wants to catch. This
10601 assumes that this condition is used when the inferior just triggered
10602 an exception catchpoint.
10603
10604 The string returned is a newly allocated string that needs to be
10605 deallocated later. */
10606
10607static char *
10608ada_exception_catchpoint_cond_string (const char *exp_string)
10609{
3d0b0fa3
JB
10610 int i;
10611
10612 /* The standard exceptions are a special case. They are defined in
10613 runtime units that have been compiled without debugging info; if
10614 EXP_STRING is the not-fully-qualified name of a standard
10615 exception (e.g. "constraint_error") then, during the evaluation
10616 of the condition expression, the symbol lookup on this name would
10617 *not* return this standard exception. The catchpoint condition
10618 may then be set only on user-defined exceptions which have the
10619 same not-fully-qualified name (e.g. my_package.constraint_error).
10620
10621 To avoid this unexcepted behavior, these standard exceptions are
10622 systematically prefixed by "standard". This means that "catch
10623 exception constraint_error" is rewritten into "catch exception
10624 standard.constraint_error".
10625
10626 If an exception named contraint_error is defined in another package of
10627 the inferior program, then the only way to specify this exception as a
10628 breakpoint condition is to use its fully-qualified named:
10629 e.g. my_package.constraint_error. */
10630
10631 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10632 {
10633 if (strcmp (standard_exc [i], exp_string) == 0)
10634 {
10635 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10636 exp_string);
10637 }
10638 }
f7f9143b
JB
10639 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10640}
10641
10642/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10643
10644static struct expression *
10645ada_parse_catchpoint_condition (char *cond_string,
10646 struct symtab_and_line sal)
10647{
10648 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10649}
10650
10651/* Return the symtab_and_line that should be used to insert an exception
10652 catchpoint of the TYPE kind.
10653
10654 EX_STRING should contain the name of a specific exception
10655 that the catchpoint should catch, or NULL otherwise.
10656
10657 The idea behind all the remaining parameters is that their names match
10658 the name of certain fields in the breakpoint structure that are used to
10659 handle exception catchpoints. This function returns the value to which
10660 these fields should be set, depending on the type of catchpoint we need
10661 to create.
10662
10663 If COND and COND_STRING are both non-NULL, any value they might
10664 hold will be free'ed, and then replaced by newly allocated ones.
10665 These parameters are left untouched otherwise. */
10666
10667static struct symtab_and_line
10668ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10669 char **addr_string, char **cond_string,
10670 struct expression **cond, struct breakpoint_ops **ops)
10671{
10672 const char *sym_name;
10673 struct symbol *sym;
10674 struct symtab_and_line sal;
10675
0259addd
JB
10676 /* First, find out which exception support info to use. */
10677 ada_exception_support_info_sniffer ();
10678
10679 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10680 the Ada exceptions requested by the user. */
10681
10682 sym_name = ada_exception_sym_name (ex);
10683 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10684
10685 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10686 that should be compiled with debugging information. As a result, we
10687 expect to find that symbol in the symtabs. If we don't find it, then
10688 the target most likely does not support Ada exceptions, or we cannot
10689 insert exception breakpoints yet, because the GNAT runtime hasn't been
10690 loaded yet. */
10691
10692 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10693 in such a way that no debugging information is produced for the symbol
10694 we are looking for. In this case, we could search the minimal symbols
10695 as a fall-back mechanism. This would still be operating in degraded
10696 mode, however, as we would still be missing the debugging information
10697 that is needed in order to extract the name of the exception being
10698 raised (this name is printed in the catchpoint message, and is also
10699 used when trying to catch a specific exception). We do not handle
10700 this case for now. */
10701
10702 if (sym == NULL)
0259addd 10703 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10704
10705 /* Make sure that the symbol we found corresponds to a function. */
10706 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10707 error (_("Symbol \"%s\" is not a function (class = %d)"),
10708 sym_name, SYMBOL_CLASS (sym));
10709
10710 sal = find_function_start_sal (sym, 1);
10711
10712 /* Set ADDR_STRING. */
10713
10714 *addr_string = xstrdup (sym_name);
10715
10716 /* Set the COND and COND_STRING (if not NULL). */
10717
10718 if (cond_string != NULL && cond != NULL)
10719 {
10720 if (*cond_string != NULL)
10721 {
10722 xfree (*cond_string);
10723 *cond_string = NULL;
10724 }
10725 if (*cond != NULL)
10726 {
10727 xfree (*cond);
10728 *cond = NULL;
10729 }
10730 if (exp_string != NULL)
10731 {
10732 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10733 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10734 }
10735 }
10736
10737 /* Set OPS. */
4b9eee8c 10738 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10739
10740 return sal;
10741}
10742
10743/* Parse the arguments (ARGS) of the "catch exception" command.
10744
10745 Set TYPE to the appropriate exception catchpoint type.
10746 If the user asked the catchpoint to catch only a specific
10747 exception, then save the exception name in ADDR_STRING.
10748
10749 See ada_exception_sal for a description of all the remaining
10750 function arguments of this function. */
10751
10752struct symtab_and_line
10753ada_decode_exception_location (char *args, char **addr_string,
10754 char **exp_string, char **cond_string,
10755 struct expression **cond,
10756 struct breakpoint_ops **ops)
10757{
10758 enum exception_catchpoint_kind ex;
10759
10760 catch_ada_exception_command_split (args, &ex, exp_string);
10761 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10762 cond, ops);
10763}
10764
10765struct symtab_and_line
10766ada_decode_assert_location (char *args, char **addr_string,
10767 struct breakpoint_ops **ops)
10768{
10769 /* Check that no argument where provided at the end of the command. */
10770
10771 if (args != NULL)
10772 {
10773 while (isspace (*args))
10774 args++;
10775 if (*args != '\0')
10776 error (_("Junk at end of arguments."));
10777 }
10778
10779 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10780 ops);
10781}
10782
4c4b4cd2
PH
10783 /* Operators */
10784/* Information about operators given special treatment in functions
10785 below. */
10786/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10787
10788#define ADA_OPERATORS \
10789 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10790 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10791 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10792 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10793 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10794 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10795 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10796 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10797 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10798 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10799 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10800 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10801 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10802 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10803 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10804 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10805 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10806 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10807 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10808
10809static void
10810ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10811{
10812 switch (exp->elts[pc - 1].opcode)
10813 {
76a01679 10814 default:
4c4b4cd2
PH
10815 operator_length_standard (exp, pc, oplenp, argsp);
10816 break;
10817
10818#define OP_DEFN(op, len, args, binop) \
10819 case op: *oplenp = len; *argsp = args; break;
10820 ADA_OPERATORS;
10821#undef OP_DEFN
52ce6436
PH
10822
10823 case OP_AGGREGATE:
10824 *oplenp = 3;
10825 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10826 break;
10827
10828 case OP_CHOICES:
10829 *oplenp = 3;
10830 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10831 break;
4c4b4cd2
PH
10832 }
10833}
10834
10835static char *
10836ada_op_name (enum exp_opcode opcode)
10837{
10838 switch (opcode)
10839 {
76a01679 10840 default:
4c4b4cd2 10841 return op_name_standard (opcode);
52ce6436 10842
4c4b4cd2
PH
10843#define OP_DEFN(op, len, args, binop) case op: return #op;
10844 ADA_OPERATORS;
10845#undef OP_DEFN
52ce6436
PH
10846
10847 case OP_AGGREGATE:
10848 return "OP_AGGREGATE";
10849 case OP_CHOICES:
10850 return "OP_CHOICES";
10851 case OP_NAME:
10852 return "OP_NAME";
4c4b4cd2
PH
10853 }
10854}
10855
10856/* As for operator_length, but assumes PC is pointing at the first
10857 element of the operator, and gives meaningful results only for the
52ce6436 10858 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10859
10860static void
76a01679
JB
10861ada_forward_operator_length (struct expression *exp, int pc,
10862 int *oplenp, int *argsp)
4c4b4cd2 10863{
76a01679 10864 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10865 {
10866 default:
10867 *oplenp = *argsp = 0;
10868 break;
52ce6436 10869
4c4b4cd2
PH
10870#define OP_DEFN(op, len, args, binop) \
10871 case op: *oplenp = len; *argsp = args; break;
10872 ADA_OPERATORS;
10873#undef OP_DEFN
52ce6436
PH
10874
10875 case OP_AGGREGATE:
10876 *oplenp = 3;
10877 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10878 break;
10879
10880 case OP_CHOICES:
10881 *oplenp = 3;
10882 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10883 break;
10884
10885 case OP_STRING:
10886 case OP_NAME:
10887 {
10888 int len = longest_to_int (exp->elts[pc + 1].longconst);
10889 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10890 *argsp = 0;
10891 break;
10892 }
4c4b4cd2
PH
10893 }
10894}
10895
10896static int
10897ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10898{
10899 enum exp_opcode op = exp->elts[elt].opcode;
10900 int oplen, nargs;
10901 int pc = elt;
10902 int i;
76a01679 10903
4c4b4cd2
PH
10904 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10905
76a01679 10906 switch (op)
4c4b4cd2 10907 {
76a01679 10908 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10909 case OP_ATR_FIRST:
10910 case OP_ATR_LAST:
10911 case OP_ATR_LENGTH:
10912 case OP_ATR_IMAGE:
10913 case OP_ATR_MAX:
10914 case OP_ATR_MIN:
10915 case OP_ATR_MODULUS:
10916 case OP_ATR_POS:
10917 case OP_ATR_SIZE:
10918 case OP_ATR_TAG:
10919 case OP_ATR_VAL:
10920 break;
10921
10922 case UNOP_IN_RANGE:
10923 case UNOP_QUAL:
323e0a4a
AC
10924 /* XXX: gdb_sprint_host_address, type_sprint */
10925 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10926 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10927 fprintf_filtered (stream, " (");
10928 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10929 fprintf_filtered (stream, ")");
10930 break;
10931 case BINOP_IN_BOUNDS:
52ce6436
PH
10932 fprintf_filtered (stream, " (%d)",
10933 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10934 break;
10935 case TERNOP_IN_RANGE:
10936 break;
10937
52ce6436
PH
10938 case OP_AGGREGATE:
10939 case OP_OTHERS:
10940 case OP_DISCRETE_RANGE:
10941 case OP_POSITIONAL:
10942 case OP_CHOICES:
10943 break;
10944
10945 case OP_NAME:
10946 case OP_STRING:
10947 {
10948 char *name = &exp->elts[elt + 2].string;
10949 int len = longest_to_int (exp->elts[elt + 1].longconst);
10950 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10951 break;
10952 }
10953
4c4b4cd2
PH
10954 default:
10955 return dump_subexp_body_standard (exp, stream, elt);
10956 }
10957
10958 elt += oplen;
10959 for (i = 0; i < nargs; i += 1)
10960 elt = dump_subexp (exp, stream, elt);
10961
10962 return elt;
10963}
10964
10965/* The Ada extension of print_subexp (q.v.). */
10966
76a01679
JB
10967static void
10968ada_print_subexp (struct expression *exp, int *pos,
10969 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10970{
52ce6436 10971 int oplen, nargs, i;
4c4b4cd2
PH
10972 int pc = *pos;
10973 enum exp_opcode op = exp->elts[pc].opcode;
10974
10975 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10976
52ce6436 10977 *pos += oplen;
4c4b4cd2
PH
10978 switch (op)
10979 {
10980 default:
52ce6436 10981 *pos -= oplen;
4c4b4cd2
PH
10982 print_subexp_standard (exp, pos, stream, prec);
10983 return;
10984
10985 case OP_VAR_VALUE:
4c4b4cd2
PH
10986 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10987 return;
10988
10989 case BINOP_IN_BOUNDS:
323e0a4a 10990 /* XXX: sprint_subexp */
4c4b4cd2 10991 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10992 fputs_filtered (" in ", stream);
4c4b4cd2 10993 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10994 fputs_filtered ("'range", stream);
4c4b4cd2 10995 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10996 fprintf_filtered (stream, "(%ld)",
10997 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10998 return;
10999
11000 case TERNOP_IN_RANGE:
4c4b4cd2 11001 if (prec >= PREC_EQUAL)
76a01679 11002 fputs_filtered ("(", stream);
323e0a4a 11003 /* XXX: sprint_subexp */
4c4b4cd2 11004 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11005 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11006 print_subexp (exp, pos, stream, PREC_EQUAL);
11007 fputs_filtered (" .. ", stream);
11008 print_subexp (exp, pos, stream, PREC_EQUAL);
11009 if (prec >= PREC_EQUAL)
76a01679
JB
11010 fputs_filtered (")", stream);
11011 return;
4c4b4cd2
PH
11012
11013 case OP_ATR_FIRST:
11014 case OP_ATR_LAST:
11015 case OP_ATR_LENGTH:
11016 case OP_ATR_IMAGE:
11017 case OP_ATR_MAX:
11018 case OP_ATR_MIN:
11019 case OP_ATR_MODULUS:
11020 case OP_ATR_POS:
11021 case OP_ATR_SIZE:
11022 case OP_ATR_TAG:
11023 case OP_ATR_VAL:
4c4b4cd2 11024 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11025 {
11026 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11027 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11028 *pos += 3;
11029 }
4c4b4cd2 11030 else
76a01679 11031 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11032 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11033 if (nargs > 1)
76a01679
JB
11034 {
11035 int tem;
11036 for (tem = 1; tem < nargs; tem += 1)
11037 {
11038 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11039 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11040 }
11041 fputs_filtered (")", stream);
11042 }
4c4b4cd2 11043 return;
14f9c5c9 11044
4c4b4cd2 11045 case UNOP_QUAL:
4c4b4cd2
PH
11046 type_print (exp->elts[pc + 1].type, "", stream, 0);
11047 fputs_filtered ("'(", stream);
11048 print_subexp (exp, pos, stream, PREC_PREFIX);
11049 fputs_filtered (")", stream);
11050 return;
14f9c5c9 11051
4c4b4cd2 11052 case UNOP_IN_RANGE:
323e0a4a 11053 /* XXX: sprint_subexp */
4c4b4cd2 11054 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11055 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11056 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11057 return;
52ce6436
PH
11058
11059 case OP_DISCRETE_RANGE:
11060 print_subexp (exp, pos, stream, PREC_SUFFIX);
11061 fputs_filtered ("..", stream);
11062 print_subexp (exp, pos, stream, PREC_SUFFIX);
11063 return;
11064
11065 case OP_OTHERS:
11066 fputs_filtered ("others => ", stream);
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 return;
11069
11070 case OP_CHOICES:
11071 for (i = 0; i < nargs-1; i += 1)
11072 {
11073 if (i > 0)
11074 fputs_filtered ("|", stream);
11075 print_subexp (exp, pos, stream, PREC_SUFFIX);
11076 }
11077 fputs_filtered (" => ", stream);
11078 print_subexp (exp, pos, stream, PREC_SUFFIX);
11079 return;
11080
11081 case OP_POSITIONAL:
11082 print_subexp (exp, pos, stream, PREC_SUFFIX);
11083 return;
11084
11085 case OP_AGGREGATE:
11086 fputs_filtered ("(", stream);
11087 for (i = 0; i < nargs; i += 1)
11088 {
11089 if (i > 0)
11090 fputs_filtered (", ", stream);
11091 print_subexp (exp, pos, stream, PREC_SUFFIX);
11092 }
11093 fputs_filtered (")", stream);
11094 return;
4c4b4cd2
PH
11095 }
11096}
14f9c5c9
AS
11097
11098/* Table mapping opcodes into strings for printing operators
11099 and precedences of the operators. */
11100
d2e4a39e
AS
11101static const struct op_print ada_op_print_tab[] = {
11102 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11103 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11104 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11105 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11106 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11107 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11108 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11109 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11110 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11111 {">=", BINOP_GEQ, PREC_ORDER, 0},
11112 {">", BINOP_GTR, PREC_ORDER, 0},
11113 {"<", BINOP_LESS, PREC_ORDER, 0},
11114 {">>", BINOP_RSH, PREC_SHIFT, 0},
11115 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11116 {"+", BINOP_ADD, PREC_ADD, 0},
11117 {"-", BINOP_SUB, PREC_ADD, 0},
11118 {"&", BINOP_CONCAT, PREC_ADD, 0},
11119 {"*", BINOP_MUL, PREC_MUL, 0},
11120 {"/", BINOP_DIV, PREC_MUL, 0},
11121 {"rem", BINOP_REM, PREC_MUL, 0},
11122 {"mod", BINOP_MOD, PREC_MUL, 0},
11123 {"**", BINOP_EXP, PREC_REPEAT, 0},
11124 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11125 {"-", UNOP_NEG, PREC_PREFIX, 0},
11126 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11127 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11128 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11129 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11130 {".all", UNOP_IND, PREC_SUFFIX, 1},
11131 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11132 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11133 {NULL, 0, 0, 0}
14f9c5c9
AS
11134};
11135\f
72d5681a
PH
11136enum ada_primitive_types {
11137 ada_primitive_type_int,
11138 ada_primitive_type_long,
11139 ada_primitive_type_short,
11140 ada_primitive_type_char,
11141 ada_primitive_type_float,
11142 ada_primitive_type_double,
11143 ada_primitive_type_void,
11144 ada_primitive_type_long_long,
11145 ada_primitive_type_long_double,
11146 ada_primitive_type_natural,
11147 ada_primitive_type_positive,
11148 ada_primitive_type_system_address,
11149 nr_ada_primitive_types
11150};
6c038f32
PH
11151
11152static void
d4a9a881 11153ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11154 struct language_arch_info *lai)
11155{
d4a9a881 11156 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11157 lai->primitive_type_vector
d4a9a881 11158 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11159 struct type *);
e9bb382b
UW
11160
11161 lai->primitive_type_vector [ada_primitive_type_int]
11162 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11163 0, "integer");
11164 lai->primitive_type_vector [ada_primitive_type_long]
11165 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11166 0, "long_integer");
11167 lai->primitive_type_vector [ada_primitive_type_short]
11168 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11169 0, "short_integer");
11170 lai->string_char_type
11171 = lai->primitive_type_vector [ada_primitive_type_char]
11172 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11173 lai->primitive_type_vector [ada_primitive_type_float]
11174 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11175 "float", NULL);
11176 lai->primitive_type_vector [ada_primitive_type_double]
11177 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11178 "long_float", NULL);
11179 lai->primitive_type_vector [ada_primitive_type_long_long]
11180 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11181 0, "long_long_integer");
11182 lai->primitive_type_vector [ada_primitive_type_long_double]
11183 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11184 "long_long_float", NULL);
11185 lai->primitive_type_vector [ada_primitive_type_natural]
11186 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11187 0, "natural");
11188 lai->primitive_type_vector [ada_primitive_type_positive]
11189 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11190 0, "positive");
11191 lai->primitive_type_vector [ada_primitive_type_void]
11192 = builtin->builtin_void;
11193
11194 lai->primitive_type_vector [ada_primitive_type_system_address]
11195 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11196 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11197 = "system__address";
fbb06eb1 11198
47e729a8 11199 lai->bool_type_symbol = NULL;
fbb06eb1 11200 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11201}
6c038f32
PH
11202\f
11203 /* Language vector */
11204
11205/* Not really used, but needed in the ada_language_defn. */
11206
11207static void
6c7a06a3 11208emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11209{
6c7a06a3 11210 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11211}
11212
11213static int
11214parse (void)
11215{
11216 warnings_issued = 0;
11217 return ada_parse ();
11218}
11219
11220static const struct exp_descriptor ada_exp_descriptor = {
11221 ada_print_subexp,
11222 ada_operator_length,
11223 ada_op_name,
11224 ada_dump_subexp_body,
11225 ada_evaluate_subexp
11226};
11227
11228const struct language_defn ada_language_defn = {
11229 "ada", /* Language name */
11230 language_ada,
6c038f32
PH
11231 range_check_off,
11232 type_check_off,
11233 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11234 that's not quite what this means. */
6c038f32 11235 array_row_major,
9a044a89 11236 macro_expansion_no,
6c038f32
PH
11237 &ada_exp_descriptor,
11238 parse,
11239 ada_error,
11240 resolve,
11241 ada_printchar, /* Print a character constant */
11242 ada_printstr, /* Function to print string constant */
11243 emit_char, /* Function to print single char (not used) */
6c038f32 11244 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11245 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11246 ada_val_print, /* Print a value using appropriate syntax */
11247 ada_value_print, /* Print a top-level value */
11248 NULL, /* Language specific skip_trampoline */
2b2d9e11 11249 NULL, /* name_of_this */
6c038f32
PH
11250 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11251 basic_lookup_transparent_type, /* lookup_transparent_type */
11252 ada_la_decode, /* Language specific symbol demangler */
11253 NULL, /* Language specific class_name_from_physname */
11254 ada_op_print_tab, /* expression operators for printing */
11255 0, /* c-style arrays */
11256 1, /* String lower bound */
6c038f32 11257 ada_get_gdb_completer_word_break_characters,
41d27058 11258 ada_make_symbol_completion_list,
72d5681a 11259 ada_language_arch_info,
e79af960 11260 ada_print_array_index,
41f1b697 11261 default_pass_by_reference,
ae6a3a4c 11262 c_get_string,
6c038f32
PH
11263 LANG_MAGIC
11264};
11265
2c0b251b
PA
11266/* Provide a prototype to silence -Wmissing-prototypes. */
11267extern initialize_file_ftype _initialize_ada_language;
11268
d2e4a39e 11269void
6c038f32 11270_initialize_ada_language (void)
14f9c5c9 11271{
6c038f32
PH
11272 add_language (&ada_language_defn);
11273
11274 varsize_limit = 65536;
6c038f32
PH
11275
11276 obstack_init (&symbol_list_obstack);
11277
11278 decoded_names_store = htab_create_alloc
11279 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11280 NULL, xcalloc, xfree);
6b69afc4
JB
11281
11282 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11283}