]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
Add Guile as an extension language.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0e9f083f 23#include <string.h>
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
a53b64ea 35#include "varobj.h"
14f9c5c9
AS
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2 45#include "completer.h"
53ce3c39 46#include <sys/stat.h>
14f9c5c9 47#include "ui-out.h"
fe898f56 48#include "block.h"
04714b91 49#include "infcall.h"
de4f826b 50#include "dictionary.h"
60250e8b 51#include "exceptions.h"
f7f9143b
JB
52#include "annotate.h"
53#include "valprint.h"
9bbc9174 54#include "source.h"
0259addd 55#include "observer.h"
2ba95b9b 56#include "vec.h"
692465f1 57#include "stack.h"
fa864999 58#include "gdb_vecs.h"
79d43c61 59#include "typeprint.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
0fcd72ba 65#include "cli/cli-utils.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
c6044dd1
JB
311/* Maintenance-related settings for this module. */
312
313static struct cmd_list_element *maint_set_ada_cmdlist;
314static struct cmd_list_element *maint_show_ada_cmdlist;
315
316/* Implement the "maintenance set ada" (prefix) command. */
317
318static void
319maint_set_ada_cmd (char *args, int from_tty)
320{
321 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
322}
323
324/* Implement the "maintenance show ada" (prefix) command. */
325
326static void
327maint_show_ada_cmd (char *args, int from_tty)
328{
329 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
330}
331
332/* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334static int ada_ignore_descriptive_types_p = 0;
335
e802dbe0
JB
336 /* Inferior-specific data. */
337
338/* Per-inferior data for this module. */
339
340struct ada_inferior_data
341{
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type;
3eecfa55
JB
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info;
e802dbe0
JB
352};
353
354/* Our key to this module's inferior data. */
355static const struct inferior_data *ada_inferior_data;
356
357/* A cleanup routine for our inferior data. */
358static void
359ada_inferior_data_cleanup (struct inferior *inf, void *arg)
360{
361 struct ada_inferior_data *data;
362
363 data = inferior_data (inf, ada_inferior_data);
364 if (data != NULL)
365 xfree (data);
366}
367
368/* Return our inferior data for the given inferior (INF).
369
370 This function always returns a valid pointer to an allocated
371 ada_inferior_data structure. If INF's inferior data has not
372 been previously set, this functions creates a new one with all
373 fields set to zero, sets INF's inferior to it, and then returns
374 a pointer to that newly allocated ada_inferior_data. */
375
376static struct ada_inferior_data *
377get_ada_inferior_data (struct inferior *inf)
378{
379 struct ada_inferior_data *data;
380
381 data = inferior_data (inf, ada_inferior_data);
382 if (data == NULL)
383 {
41bf6aca 384 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
385 set_inferior_data (inf, ada_inferior_data, data);
386 }
387
388 return data;
389}
390
391/* Perform all necessary cleanups regarding our module's inferior data
392 that is required after the inferior INF just exited. */
393
394static void
395ada_inferior_exit (struct inferior *inf)
396{
397 ada_inferior_data_cleanup (inf, NULL);
398 set_inferior_data (inf, ada_inferior_data, NULL);
399}
400
4c4b4cd2
PH
401 /* Utilities */
402
720d1a40 403/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 404 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
405
406 Normally, we really expect a typedef type to only have 1 typedef layer.
407 In other words, we really expect the target type of a typedef type to be
408 a non-typedef type. This is particularly true for Ada units, because
409 the language does not have a typedef vs not-typedef distinction.
410 In that respect, the Ada compiler has been trying to eliminate as many
411 typedef definitions in the debugging information, since they generally
412 do not bring any extra information (we still use typedef under certain
413 circumstances related mostly to the GNAT encoding).
414
415 Unfortunately, we have seen situations where the debugging information
416 generated by the compiler leads to such multiple typedef layers. For
417 instance, consider the following example with stabs:
418
419 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
420 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
421
422 This is an error in the debugging information which causes type
423 pck__float_array___XUP to be defined twice, and the second time,
424 it is defined as a typedef of a typedef.
425
426 This is on the fringe of legality as far as debugging information is
427 concerned, and certainly unexpected. But it is easy to handle these
428 situations correctly, so we can afford to be lenient in this case. */
429
430static struct type *
431ada_typedef_target_type (struct type *type)
432{
433 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
434 type = TYPE_TARGET_TYPE (type);
435 return type;
436}
437
41d27058
JB
438/* Given DECODED_NAME a string holding a symbol name in its
439 decoded form (ie using the Ada dotted notation), returns
440 its unqualified name. */
441
442static const char *
443ada_unqualified_name (const char *decoded_name)
444{
445 const char *result = strrchr (decoded_name, '.');
446
447 if (result != NULL)
448 result++; /* Skip the dot... */
449 else
450 result = decoded_name;
451
452 return result;
453}
454
455/* Return a string starting with '<', followed by STR, and '>'.
456 The result is good until the next call. */
457
458static char *
459add_angle_brackets (const char *str)
460{
461 static char *result = NULL;
462
463 xfree (result);
88c15c34 464 result = xstrprintf ("<%s>", str);
41d27058
JB
465 return result;
466}
96d887e8 467
4c4b4cd2
PH
468static char *
469ada_get_gdb_completer_word_break_characters (void)
470{
471 return ada_completer_word_break_characters;
472}
473
e79af960
JB
474/* Print an array element index using the Ada syntax. */
475
476static void
477ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 478 const struct value_print_options *options)
e79af960 479{
79a45b7d 480 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
481 fprintf_filtered (stream, " => ");
482}
483
f27cf670 484/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 485 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 486 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 487
f27cf670
AS
488void *
489grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 490{
d2e4a39e
AS
491 if (*size < min_size)
492 {
493 *size *= 2;
494 if (*size < min_size)
4c4b4cd2 495 *size = min_size;
f27cf670 496 vect = xrealloc (vect, *size * element_size);
d2e4a39e 497 }
f27cf670 498 return vect;
14f9c5c9
AS
499}
500
501/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 502 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
503
504static int
ebf56fd3 505field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
506{
507 int len = strlen (target);
5b4ee69b 508
d2e4a39e 509 return
4c4b4cd2
PH
510 (strncmp (field_name, target, len) == 0
511 && (field_name[len] == '\0'
512 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
513 && strcmp (field_name + strlen (field_name) - 6,
514 "___XVN") != 0)));
14f9c5c9
AS
515}
516
517
872c8b51
JB
518/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
519 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
520 and return its index. This function also handles fields whose name
521 have ___ suffixes because the compiler sometimes alters their name
522 by adding such a suffix to represent fields with certain constraints.
523 If the field could not be found, return a negative number if
524 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
525
526int
527ada_get_field_index (const struct type *type, const char *field_name,
528 int maybe_missing)
529{
530 int fieldno;
872c8b51
JB
531 struct type *struct_type = check_typedef ((struct type *) type);
532
533 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
534 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
535 return fieldno;
536
537 if (!maybe_missing)
323e0a4a 538 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 539 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
540
541 return -1;
542}
543
544/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
545
546int
d2e4a39e 547ada_name_prefix_len (const char *name)
14f9c5c9
AS
548{
549 if (name == NULL)
550 return 0;
d2e4a39e 551 else
14f9c5c9 552 {
d2e4a39e 553 const char *p = strstr (name, "___");
5b4ee69b 554
14f9c5c9 555 if (p == NULL)
4c4b4cd2 556 return strlen (name);
14f9c5c9 557 else
4c4b4cd2 558 return p - name;
14f9c5c9
AS
559 }
560}
561
4c4b4cd2
PH
562/* Return non-zero if SUFFIX is a suffix of STR.
563 Return zero if STR is null. */
564
14f9c5c9 565static int
d2e4a39e 566is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
567{
568 int len1, len2;
5b4ee69b 569
14f9c5c9
AS
570 if (str == NULL)
571 return 0;
572 len1 = strlen (str);
573 len2 = strlen (suffix);
4c4b4cd2 574 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
575}
576
4c4b4cd2
PH
577/* The contents of value VAL, treated as a value of type TYPE. The
578 result is an lval in memory if VAL is. */
14f9c5c9 579
d2e4a39e 580static struct value *
4c4b4cd2 581coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 582{
61ee279c 583 type = ada_check_typedef (type);
df407dfe 584 if (value_type (val) == type)
4c4b4cd2 585 return val;
d2e4a39e 586 else
14f9c5c9 587 {
4c4b4cd2
PH
588 struct value *result;
589
590 /* Make sure that the object size is not unreasonable before
591 trying to allocate some memory for it. */
714e53ab 592 check_size (type);
4c4b4cd2 593
41e8491f
JK
594 if (value_lazy (val)
595 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
596 result = allocate_value_lazy (type);
597 else
598 {
599 result = allocate_value (type);
600 memcpy (value_contents_raw (result), value_contents (val),
601 TYPE_LENGTH (type));
602 }
74bcbdf3 603 set_value_component_location (result, val);
9bbda503
AC
604 set_value_bitsize (result, value_bitsize (val));
605 set_value_bitpos (result, value_bitpos (val));
42ae5230 606 set_value_address (result, value_address (val));
eca07816 607 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
608 return result;
609 }
610}
611
fc1a4b47
AC
612static const gdb_byte *
613cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
614{
615 if (valaddr == NULL)
616 return NULL;
617 else
618 return valaddr + offset;
619}
620
621static CORE_ADDR
ebf56fd3 622cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
623{
624 if (address == 0)
625 return 0;
d2e4a39e 626 else
14f9c5c9
AS
627 return address + offset;
628}
629
4c4b4cd2
PH
630/* Issue a warning (as for the definition of warning in utils.c, but
631 with exactly one argument rather than ...), unless the limit on the
632 number of warnings has passed during the evaluation of the current
633 expression. */
a2249542 634
77109804
AC
635/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
636 provided by "complaint". */
a0b31db1 637static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 638
14f9c5c9 639static void
a2249542 640lim_warning (const char *format, ...)
14f9c5c9 641{
a2249542 642 va_list args;
a2249542 643
5b4ee69b 644 va_start (args, format);
4c4b4cd2
PH
645 warnings_issued += 1;
646 if (warnings_issued <= warning_limit)
a2249542
MK
647 vwarning (format, args);
648
649 va_end (args);
4c4b4cd2
PH
650}
651
714e53ab
PH
652/* Issue an error if the size of an object of type T is unreasonable,
653 i.e. if it would be a bad idea to allocate a value of this type in
654 GDB. */
655
656static void
657check_size (const struct type *type)
658{
659 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 660 error (_("object size is larger than varsize-limit"));
714e53ab
PH
661}
662
0963b4bd 663/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 664static LONGEST
c3e5cd34 665max_of_size (int size)
4c4b4cd2 666{
76a01679 667 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 668
76a01679 669 return top_bit | (top_bit - 1);
4c4b4cd2
PH
670}
671
0963b4bd 672/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 673static LONGEST
c3e5cd34 674min_of_size (int size)
4c4b4cd2 675{
c3e5cd34 676 return -max_of_size (size) - 1;
4c4b4cd2
PH
677}
678
0963b4bd 679/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 680static ULONGEST
c3e5cd34 681umax_of_size (int size)
4c4b4cd2 682{
76a01679 683 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 684
76a01679 685 return top_bit | (top_bit - 1);
4c4b4cd2
PH
686}
687
0963b4bd 688/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
689static LONGEST
690max_of_type (struct type *t)
4c4b4cd2 691{
c3e5cd34
PH
692 if (TYPE_UNSIGNED (t))
693 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
694 else
695 return max_of_size (TYPE_LENGTH (t));
696}
697
0963b4bd 698/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
699static LONGEST
700min_of_type (struct type *t)
701{
702 if (TYPE_UNSIGNED (t))
703 return 0;
704 else
705 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
706}
707
708/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
709LONGEST
710ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 711{
76a01679 712 switch (TYPE_CODE (type))
4c4b4cd2
PH
713 {
714 case TYPE_CODE_RANGE:
690cc4eb 715 return TYPE_HIGH_BOUND (type);
4c4b4cd2 716 case TYPE_CODE_ENUM:
14e75d8e 717 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
718 case TYPE_CODE_BOOL:
719 return 1;
720 case TYPE_CODE_CHAR:
76a01679 721 case TYPE_CODE_INT:
690cc4eb 722 return max_of_type (type);
4c4b4cd2 723 default:
43bbcdc2 724 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
725 }
726}
727
14e75d8e 728/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
729LONGEST
730ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 731{
76a01679 732 switch (TYPE_CODE (type))
4c4b4cd2
PH
733 {
734 case TYPE_CODE_RANGE:
690cc4eb 735 return TYPE_LOW_BOUND (type);
4c4b4cd2 736 case TYPE_CODE_ENUM:
14e75d8e 737 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
738 case TYPE_CODE_BOOL:
739 return 0;
740 case TYPE_CODE_CHAR:
76a01679 741 case TYPE_CODE_INT:
690cc4eb 742 return min_of_type (type);
4c4b4cd2 743 default:
43bbcdc2 744 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
745 }
746}
747
748/* The identity on non-range types. For range types, the underlying
76a01679 749 non-range scalar type. */
4c4b4cd2
PH
750
751static struct type *
18af8284 752get_base_type (struct type *type)
4c4b4cd2
PH
753{
754 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
755 {
76a01679
JB
756 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
757 return type;
4c4b4cd2
PH
758 type = TYPE_TARGET_TYPE (type);
759 }
760 return type;
14f9c5c9 761}
41246937
JB
762
763/* Return a decoded version of the given VALUE. This means returning
764 a value whose type is obtained by applying all the GNAT-specific
765 encondings, making the resulting type a static but standard description
766 of the initial type. */
767
768struct value *
769ada_get_decoded_value (struct value *value)
770{
771 struct type *type = ada_check_typedef (value_type (value));
772
773 if (ada_is_array_descriptor_type (type)
774 || (ada_is_constrained_packed_array_type (type)
775 && TYPE_CODE (type) != TYPE_CODE_PTR))
776 {
777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
778 value = ada_coerce_to_simple_array_ptr (value);
779 else
780 value = ada_coerce_to_simple_array (value);
781 }
782 else
783 value = ada_to_fixed_value (value);
784
785 return value;
786}
787
788/* Same as ada_get_decoded_value, but with the given TYPE.
789 Because there is no associated actual value for this type,
790 the resulting type might be a best-effort approximation in
791 the case of dynamic types. */
792
793struct type *
794ada_get_decoded_type (struct type *type)
795{
796 type = to_static_fixed_type (type);
797 if (ada_is_constrained_packed_array_type (type))
798 type = ada_coerce_to_simple_array_type (type);
799 return type;
800}
801
4c4b4cd2 802\f
76a01679 803
4c4b4cd2 804 /* Language Selection */
14f9c5c9
AS
805
806/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 807 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 808
14f9c5c9 809enum language
ccefe4c4 810ada_update_initial_language (enum language lang)
14f9c5c9 811{
d2e4a39e 812 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
813 (struct objfile *) NULL) != NULL)
814 return language_ada;
14f9c5c9
AS
815
816 return lang;
817}
96d887e8
PH
818
819/* If the main procedure is written in Ada, then return its name.
820 The result is good until the next call. Return NULL if the main
821 procedure doesn't appear to be in Ada. */
822
823char *
824ada_main_name (void)
825{
826 struct minimal_symbol *msym;
f9bc20b9 827 static char *main_program_name = NULL;
6c038f32 828
96d887e8
PH
829 /* For Ada, the name of the main procedure is stored in a specific
830 string constant, generated by the binder. Look for that symbol,
831 extract its address, and then read that string. If we didn't find
832 that string, then most probably the main procedure is not written
833 in Ada. */
834 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
835
836 if (msym != NULL)
837 {
f9bc20b9
JB
838 CORE_ADDR main_program_name_addr;
839 int err_code;
840
96d887e8
PH
841 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
842 if (main_program_name_addr == 0)
323e0a4a 843 error (_("Invalid address for Ada main program name."));
96d887e8 844
f9bc20b9
JB
845 xfree (main_program_name);
846 target_read_string (main_program_name_addr, &main_program_name,
847 1024, &err_code);
848
849 if (err_code != 0)
850 return NULL;
96d887e8
PH
851 return main_program_name;
852 }
853
854 /* The main procedure doesn't seem to be in Ada. */
855 return NULL;
856}
14f9c5c9 857\f
4c4b4cd2 858 /* Symbols */
d2e4a39e 859
4c4b4cd2
PH
860/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
861 of NULLs. */
14f9c5c9 862
d2e4a39e
AS
863const struct ada_opname_map ada_opname_table[] = {
864 {"Oadd", "\"+\"", BINOP_ADD},
865 {"Osubtract", "\"-\"", BINOP_SUB},
866 {"Omultiply", "\"*\"", BINOP_MUL},
867 {"Odivide", "\"/\"", BINOP_DIV},
868 {"Omod", "\"mod\"", BINOP_MOD},
869 {"Orem", "\"rem\"", BINOP_REM},
870 {"Oexpon", "\"**\"", BINOP_EXP},
871 {"Olt", "\"<\"", BINOP_LESS},
872 {"Ole", "\"<=\"", BINOP_LEQ},
873 {"Ogt", "\">\"", BINOP_GTR},
874 {"Oge", "\">=\"", BINOP_GEQ},
875 {"Oeq", "\"=\"", BINOP_EQUAL},
876 {"One", "\"/=\"", BINOP_NOTEQUAL},
877 {"Oand", "\"and\"", BINOP_BITWISE_AND},
878 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
879 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
880 {"Oconcat", "\"&\"", BINOP_CONCAT},
881 {"Oabs", "\"abs\"", UNOP_ABS},
882 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
883 {"Oadd", "\"+\"", UNOP_PLUS},
884 {"Osubtract", "\"-\"", UNOP_NEG},
885 {NULL, NULL}
14f9c5c9
AS
886};
887
4c4b4cd2
PH
888/* The "encoded" form of DECODED, according to GNAT conventions.
889 The result is valid until the next call to ada_encode. */
890
14f9c5c9 891char *
4c4b4cd2 892ada_encode (const char *decoded)
14f9c5c9 893{
4c4b4cd2
PH
894 static char *encoding_buffer = NULL;
895 static size_t encoding_buffer_size = 0;
d2e4a39e 896 const char *p;
14f9c5c9 897 int k;
d2e4a39e 898
4c4b4cd2 899 if (decoded == NULL)
14f9c5c9
AS
900 return NULL;
901
4c4b4cd2
PH
902 GROW_VECT (encoding_buffer, encoding_buffer_size,
903 2 * strlen (decoded) + 10);
14f9c5c9
AS
904
905 k = 0;
4c4b4cd2 906 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 907 {
cdc7bb92 908 if (*p == '.')
4c4b4cd2
PH
909 {
910 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
911 k += 2;
912 }
14f9c5c9 913 else if (*p == '"')
4c4b4cd2
PH
914 {
915 const struct ada_opname_map *mapping;
916
917 for (mapping = ada_opname_table;
1265e4aa
JB
918 mapping->encoded != NULL
919 && strncmp (mapping->decoded, p,
920 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
921 ;
922 if (mapping->encoded == NULL)
323e0a4a 923 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
924 strcpy (encoding_buffer + k, mapping->encoded);
925 k += strlen (mapping->encoded);
926 break;
927 }
d2e4a39e 928 else
4c4b4cd2
PH
929 {
930 encoding_buffer[k] = *p;
931 k += 1;
932 }
14f9c5c9
AS
933 }
934
4c4b4cd2
PH
935 encoding_buffer[k] = '\0';
936 return encoding_buffer;
14f9c5c9
AS
937}
938
939/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
940 quotes, unfolded, but with the quotes stripped away. Result good
941 to next call. */
942
d2e4a39e
AS
943char *
944ada_fold_name (const char *name)
14f9c5c9 945{
d2e4a39e 946 static char *fold_buffer = NULL;
14f9c5c9
AS
947 static size_t fold_buffer_size = 0;
948
949 int len = strlen (name);
d2e4a39e 950 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
951
952 if (name[0] == '\'')
953 {
d2e4a39e
AS
954 strncpy (fold_buffer, name + 1, len - 2);
955 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
956 }
957 else
958 {
959 int i;
5b4ee69b 960
14f9c5c9 961 for (i = 0; i <= len; i += 1)
4c4b4cd2 962 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
963 }
964
965 return fold_buffer;
966}
967
529cad9c
PH
968/* Return nonzero if C is either a digit or a lowercase alphabet character. */
969
970static int
971is_lower_alphanum (const char c)
972{
973 return (isdigit (c) || (isalpha (c) && islower (c)));
974}
975
c90092fe
JB
976/* ENCODED is the linkage name of a symbol and LEN contains its length.
977 This function saves in LEN the length of that same symbol name but
978 without either of these suffixes:
29480c32
JB
979 . .{DIGIT}+
980 . ${DIGIT}+
981 . ___{DIGIT}+
982 . __{DIGIT}+.
c90092fe 983
29480c32
JB
984 These are suffixes introduced by the compiler for entities such as
985 nested subprogram for instance, in order to avoid name clashes.
986 They do not serve any purpose for the debugger. */
987
988static void
989ada_remove_trailing_digits (const char *encoded, int *len)
990{
991 if (*len > 1 && isdigit (encoded[*len - 1]))
992 {
993 int i = *len - 2;
5b4ee69b 994
29480c32
JB
995 while (i > 0 && isdigit (encoded[i]))
996 i--;
997 if (i >= 0 && encoded[i] == '.')
998 *len = i;
999 else if (i >= 0 && encoded[i] == '$')
1000 *len = i;
1001 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1002 *len = i - 2;
1003 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1004 *len = i - 1;
1005 }
1006}
1007
1008/* Remove the suffix introduced by the compiler for protected object
1009 subprograms. */
1010
1011static void
1012ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1013{
1014 /* Remove trailing N. */
1015
1016 /* Protected entry subprograms are broken into two
1017 separate subprograms: The first one is unprotected, and has
1018 a 'N' suffix; the second is the protected version, and has
0963b4bd 1019 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1020 the protection. Since the P subprograms are internally generated,
1021 we leave these names undecoded, giving the user a clue that this
1022 entity is internal. */
1023
1024 if (*len > 1
1025 && encoded[*len - 1] == 'N'
1026 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1027 *len = *len - 1;
1028}
1029
69fadcdf
JB
1030/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1031
1032static void
1033ada_remove_Xbn_suffix (const char *encoded, int *len)
1034{
1035 int i = *len - 1;
1036
1037 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1038 i--;
1039
1040 if (encoded[i] != 'X')
1041 return;
1042
1043 if (i == 0)
1044 return;
1045
1046 if (isalnum (encoded[i-1]))
1047 *len = i;
1048}
1049
29480c32
JB
1050/* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED.
14f9c5c9 1053
4c4b4cd2 1054 The resulting string is valid until the next call of ada_decode.
29480c32 1055 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1056 is returned. */
1057
1058const char *
1059ada_decode (const char *encoded)
14f9c5c9
AS
1060{
1061 int i, j;
1062 int len0;
d2e4a39e 1063 const char *p;
4c4b4cd2 1064 char *decoded;
14f9c5c9 1065 int at_start_name;
4c4b4cd2
PH
1066 static char *decoding_buffer = NULL;
1067 static size_t decoding_buffer_size = 0;
d2e4a39e 1068
29480c32
JB
1069 /* The name of the Ada main procedure starts with "_ada_".
1070 This prefix is not part of the decoded name, so skip this part
1071 if we see this prefix. */
4c4b4cd2
PH
1072 if (strncmp (encoded, "_ada_", 5) == 0)
1073 encoded += 5;
14f9c5c9 1074
29480c32
JB
1075 /* If the name starts with '_', then it is not a properly encoded
1076 name, so do not attempt to decode it. Similarly, if the name
1077 starts with '<', the name should not be decoded. */
4c4b4cd2 1078 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1079 goto Suppress;
1080
4c4b4cd2 1081 len0 = strlen (encoded);
4c4b4cd2 1082
29480c32
JB
1083 ada_remove_trailing_digits (encoded, &len0);
1084 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1085
4c4b4cd2
PH
1086 /* Remove the ___X.* suffix if present. Do not forget to verify that
1087 the suffix is located before the current "end" of ENCODED. We want
1088 to avoid re-matching parts of ENCODED that have previously been
1089 marked as discarded (by decrementing LEN0). */
1090 p = strstr (encoded, "___");
1091 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1092 {
1093 if (p[3] == 'X')
4c4b4cd2 1094 len0 = p - encoded;
14f9c5c9 1095 else
4c4b4cd2 1096 goto Suppress;
14f9c5c9 1097 }
4c4b4cd2 1098
29480c32
JB
1099 /* Remove any trailing TKB suffix. It tells us that this symbol
1100 is for the body of a task, but that information does not actually
1101 appear in the decoded name. */
1102
4c4b4cd2 1103 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1104 len0 -= 3;
76a01679 1105
a10967fa
JB
1106 /* Remove any trailing TB suffix. The TB suffix is slightly different
1107 from the TKB suffix because it is used for non-anonymous task
1108 bodies. */
1109
1110 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1111 len0 -= 2;
1112
29480c32
JB
1113 /* Remove trailing "B" suffixes. */
1114 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1115
4c4b4cd2 1116 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1117 len0 -= 1;
1118
4c4b4cd2 1119 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1120
4c4b4cd2
PH
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1122 decoded = decoding_buffer;
14f9c5c9 1123
29480c32
JB
1124 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1125
4c4b4cd2 1126 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1127 {
4c4b4cd2
PH
1128 i = len0 - 2;
1129 while ((i >= 0 && isdigit (encoded[i]))
1130 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1131 i -= 1;
1132 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1133 len0 = i - 1;
1134 else if (encoded[i] == '$')
1135 len0 = i;
d2e4a39e 1136 }
14f9c5c9 1137
29480c32
JB
1138 /* The first few characters that are not alphabetic are not part
1139 of any encoding we use, so we can copy them over verbatim. */
1140
4c4b4cd2
PH
1141 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1142 decoded[j] = encoded[i];
14f9c5c9
AS
1143
1144 at_start_name = 1;
1145 while (i < len0)
1146 {
29480c32 1147 /* Is this a symbol function? */
4c4b4cd2
PH
1148 if (at_start_name && encoded[i] == 'O')
1149 {
1150 int k;
5b4ee69b 1151
4c4b4cd2
PH
1152 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1153 {
1154 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1155 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1156 op_len - 1) == 0)
1157 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1158 {
1159 strcpy (decoded + j, ada_opname_table[k].decoded);
1160 at_start_name = 0;
1161 i += op_len;
1162 j += strlen (ada_opname_table[k].decoded);
1163 break;
1164 }
1165 }
1166 if (ada_opname_table[k].encoded != NULL)
1167 continue;
1168 }
14f9c5c9
AS
1169 at_start_name = 0;
1170
529cad9c
PH
1171 /* Replace "TK__" with "__", which will eventually be translated
1172 into "." (just below). */
1173
4c4b4cd2
PH
1174 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1175 i += 2;
529cad9c 1176
29480c32
JB
1177 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1178 be translated into "." (just below). These are internal names
1179 generated for anonymous blocks inside which our symbol is nested. */
1180
1181 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1182 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1183 && isdigit (encoded [i+4]))
1184 {
1185 int k = i + 5;
1186
1187 while (k < len0 && isdigit (encoded[k]))
1188 k++; /* Skip any extra digit. */
1189
1190 /* Double-check that the "__B_{DIGITS}+" sequence we found
1191 is indeed followed by "__". */
1192 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1193 i = k;
1194 }
1195
529cad9c
PH
1196 /* Remove _E{DIGITS}+[sb] */
1197
1198 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1199 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1200 one implements the actual entry code, and has a suffix following
1201 the convention above; the second one implements the barrier and
1202 uses the same convention as above, except that the 'E' is replaced
1203 by a 'B'.
1204
1205 Just as above, we do not decode the name of barrier functions
1206 to give the user a clue that the code he is debugging has been
1207 internally generated. */
1208
1209 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1210 && isdigit (encoded[i+2]))
1211 {
1212 int k = i + 3;
1213
1214 while (k < len0 && isdigit (encoded[k]))
1215 k++;
1216
1217 if (k < len0
1218 && (encoded[k] == 'b' || encoded[k] == 's'))
1219 {
1220 k++;
1221 /* Just as an extra precaution, make sure that if this
1222 suffix is followed by anything else, it is a '_'.
1223 Otherwise, we matched this sequence by accident. */
1224 if (k == len0
1225 || (k < len0 && encoded[k] == '_'))
1226 i = k;
1227 }
1228 }
1229
1230 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1231 the GNAT front-end in protected object subprograms. */
1232
1233 if (i < len0 + 3
1234 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1235 {
1236 /* Backtrack a bit up until we reach either the begining of
1237 the encoded name, or "__". Make sure that we only find
1238 digits or lowercase characters. */
1239 const char *ptr = encoded + i - 1;
1240
1241 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1242 ptr--;
1243 if (ptr < encoded
1244 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1245 i++;
1246 }
1247
4c4b4cd2
PH
1248 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1249 {
29480c32
JB
1250 /* This is a X[bn]* sequence not separated from the previous
1251 part of the name with a non-alpha-numeric character (in other
1252 words, immediately following an alpha-numeric character), then
1253 verify that it is placed at the end of the encoded name. If
1254 not, then the encoding is not valid and we should abort the
1255 decoding. Otherwise, just skip it, it is used in body-nested
1256 package names. */
4c4b4cd2
PH
1257 do
1258 i += 1;
1259 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1260 if (i < len0)
1261 goto Suppress;
1262 }
cdc7bb92 1263 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1264 {
29480c32 1265 /* Replace '__' by '.'. */
4c4b4cd2
PH
1266 decoded[j] = '.';
1267 at_start_name = 1;
1268 i += 2;
1269 j += 1;
1270 }
14f9c5c9 1271 else
4c4b4cd2 1272 {
29480c32
JB
1273 /* It's a character part of the decoded name, so just copy it
1274 over. */
4c4b4cd2
PH
1275 decoded[j] = encoded[i];
1276 i += 1;
1277 j += 1;
1278 }
14f9c5c9 1279 }
4c4b4cd2 1280 decoded[j] = '\000';
14f9c5c9 1281
29480c32
JB
1282 /* Decoded names should never contain any uppercase character.
1283 Double-check this, and abort the decoding if we find one. */
1284
4c4b4cd2
PH
1285 for (i = 0; decoded[i] != '\0'; i += 1)
1286 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1287 goto Suppress;
1288
4c4b4cd2
PH
1289 if (strcmp (decoded, encoded) == 0)
1290 return encoded;
1291 else
1292 return decoded;
14f9c5c9
AS
1293
1294Suppress:
4c4b4cd2
PH
1295 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1296 decoded = decoding_buffer;
1297 if (encoded[0] == '<')
1298 strcpy (decoded, encoded);
14f9c5c9 1299 else
88c15c34 1300 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1301 return decoded;
1302
1303}
1304
1305/* Table for keeping permanent unique copies of decoded names. Once
1306 allocated, names in this table are never released. While this is a
1307 storage leak, it should not be significant unless there are massive
1308 changes in the set of decoded names in successive versions of a
1309 symbol table loaded during a single session. */
1310static struct htab *decoded_names_store;
1311
1312/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1313 in the language-specific part of GSYMBOL, if it has not been
1314 previously computed. Tries to save the decoded name in the same
1315 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1316 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1317 GSYMBOL).
4c4b4cd2
PH
1318 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1319 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1320 when a decoded name is cached in it. */
4c4b4cd2 1321
45e6c716 1322const char *
f85f34ed 1323ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1324{
f85f34ed
TT
1325 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1326 const char **resultp =
1327 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1328
f85f34ed 1329 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1330 {
1331 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1332 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1333
f85f34ed 1334 gsymbol->ada_mangled = 1;
5b4ee69b 1335
f85f34ed
TT
1336 if (obstack != NULL)
1337 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1338 else
76a01679 1339 {
f85f34ed
TT
1340 /* Sometimes, we can't find a corresponding objfile, in
1341 which case, we put the result on the heap. Since we only
1342 decode when needed, we hope this usually does not cause a
1343 significant memory leak (FIXME). */
1344
76a01679
JB
1345 char **slot = (char **) htab_find_slot (decoded_names_store,
1346 decoded, INSERT);
5b4ee69b 1347
76a01679
JB
1348 if (*slot == NULL)
1349 *slot = xstrdup (decoded);
1350 *resultp = *slot;
1351 }
4c4b4cd2 1352 }
14f9c5c9 1353
4c4b4cd2
PH
1354 return *resultp;
1355}
76a01679 1356
2c0b251b 1357static char *
76a01679 1358ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1359{
1360 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1361}
1362
1363/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1364 suffixes that encode debugging information or leading _ada_ on
1365 SYM_NAME (see is_name_suffix commentary for the debugging
1366 information that is ignored). If WILD, then NAME need only match a
1367 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1368 either argument is NULL. */
14f9c5c9 1369
2c0b251b 1370static int
40658b94 1371match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1372{
1373 if (sym_name == NULL || name == NULL)
1374 return 0;
1375 else if (wild)
73589123 1376 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1377 else
1378 {
1379 int len_name = strlen (name);
5b4ee69b 1380
4c4b4cd2
PH
1381 return (strncmp (sym_name, name, len_name) == 0
1382 && is_name_suffix (sym_name + len_name))
1383 || (strncmp (sym_name, "_ada_", 5) == 0
1384 && strncmp (sym_name + 5, name, len_name) == 0
1385 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1386 }
14f9c5c9 1387}
14f9c5c9 1388\f
d2e4a39e 1389
4c4b4cd2 1390 /* Arrays */
14f9c5c9 1391
28c85d6c
JB
1392/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1393 generated by the GNAT compiler to describe the index type used
1394 for each dimension of an array, check whether it follows the latest
1395 known encoding. If not, fix it up to conform to the latest encoding.
1396 Otherwise, do nothing. This function also does nothing if
1397 INDEX_DESC_TYPE is NULL.
1398
1399 The GNAT encoding used to describle the array index type evolved a bit.
1400 Initially, the information would be provided through the name of each
1401 field of the structure type only, while the type of these fields was
1402 described as unspecified and irrelevant. The debugger was then expected
1403 to perform a global type lookup using the name of that field in order
1404 to get access to the full index type description. Because these global
1405 lookups can be very expensive, the encoding was later enhanced to make
1406 the global lookup unnecessary by defining the field type as being
1407 the full index type description.
1408
1409 The purpose of this routine is to allow us to support older versions
1410 of the compiler by detecting the use of the older encoding, and by
1411 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1412 we essentially replace each field's meaningless type by the associated
1413 index subtype). */
1414
1415void
1416ada_fixup_array_indexes_type (struct type *index_desc_type)
1417{
1418 int i;
1419
1420 if (index_desc_type == NULL)
1421 return;
1422 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1423
1424 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1425 to check one field only, no need to check them all). If not, return
1426 now.
1427
1428 If our INDEX_DESC_TYPE was generated using the older encoding,
1429 the field type should be a meaningless integer type whose name
1430 is not equal to the field name. */
1431 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1432 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1433 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1434 return;
1435
1436 /* Fixup each field of INDEX_DESC_TYPE. */
1437 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1438 {
0d5cff50 1439 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1440 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1441
1442 if (raw_type)
1443 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1444 }
1445}
1446
4c4b4cd2 1447/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1448
d2e4a39e
AS
1449static char *bound_name[] = {
1450 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1451 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1452};
1453
1454/* Maximum number of array dimensions we are prepared to handle. */
1455
4c4b4cd2 1456#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1457
14f9c5c9 1458
4c4b4cd2
PH
1459/* The desc_* routines return primitive portions of array descriptors
1460 (fat pointers). */
14f9c5c9
AS
1461
1462/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1463 level of indirection, if needed. */
1464
d2e4a39e
AS
1465static struct type *
1466desc_base_type (struct type *type)
14f9c5c9
AS
1467{
1468 if (type == NULL)
1469 return NULL;
61ee279c 1470 type = ada_check_typedef (type);
720d1a40
JB
1471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1472 type = ada_typedef_target_type (type);
1473
1265e4aa
JB
1474 if (type != NULL
1475 && (TYPE_CODE (type) == TYPE_CODE_PTR
1476 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1477 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1478 else
1479 return type;
1480}
1481
4c4b4cd2
PH
1482/* True iff TYPE indicates a "thin" array pointer type. */
1483
14f9c5c9 1484static int
d2e4a39e 1485is_thin_pntr (struct type *type)
14f9c5c9 1486{
d2e4a39e 1487 return
14f9c5c9
AS
1488 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1489 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1490}
1491
4c4b4cd2
PH
1492/* The descriptor type for thin pointer type TYPE. */
1493
d2e4a39e
AS
1494static struct type *
1495thin_descriptor_type (struct type *type)
14f9c5c9 1496{
d2e4a39e 1497 struct type *base_type = desc_base_type (type);
5b4ee69b 1498
14f9c5c9
AS
1499 if (base_type == NULL)
1500 return NULL;
1501 if (is_suffix (ada_type_name (base_type), "___XVE"))
1502 return base_type;
d2e4a39e 1503 else
14f9c5c9 1504 {
d2e4a39e 1505 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1506
14f9c5c9 1507 if (alt_type == NULL)
4c4b4cd2 1508 return base_type;
14f9c5c9 1509 else
4c4b4cd2 1510 return alt_type;
14f9c5c9
AS
1511 }
1512}
1513
4c4b4cd2
PH
1514/* A pointer to the array data for thin-pointer value VAL. */
1515
d2e4a39e
AS
1516static struct value *
1517thin_data_pntr (struct value *val)
14f9c5c9 1518{
828292f2 1519 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1520 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1521
556bdfd4
UW
1522 data_type = lookup_pointer_type (data_type);
1523
14f9c5c9 1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1525 return value_cast (data_type, value_copy (val));
d2e4a39e 1526 else
42ae5230 1527 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1528}
1529
4c4b4cd2
PH
1530/* True iff TYPE indicates a "thick" array pointer type. */
1531
14f9c5c9 1532static int
d2e4a39e 1533is_thick_pntr (struct type *type)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1537 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1538}
1539
4c4b4cd2
PH
1540/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1541 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1542
d2e4a39e
AS
1543static struct type *
1544desc_bounds_type (struct type *type)
14f9c5c9 1545{
d2e4a39e 1546 struct type *r;
14f9c5c9
AS
1547
1548 type = desc_base_type (type);
1549
1550 if (type == NULL)
1551 return NULL;
1552 else if (is_thin_pntr (type))
1553 {
1554 type = thin_descriptor_type (type);
1555 if (type == NULL)
4c4b4cd2 1556 return NULL;
14f9c5c9
AS
1557 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1558 if (r != NULL)
61ee279c 1559 return ada_check_typedef (r);
14f9c5c9
AS
1560 }
1561 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1562 {
1563 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1564 if (r != NULL)
61ee279c 1565 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1566 }
1567 return NULL;
1568}
1569
1570/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1571 one, a pointer to its bounds data. Otherwise NULL. */
1572
d2e4a39e
AS
1573static struct value *
1574desc_bounds (struct value *arr)
14f9c5c9 1575{
df407dfe 1576 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1577
d2e4a39e 1578 if (is_thin_pntr (type))
14f9c5c9 1579 {
d2e4a39e 1580 struct type *bounds_type =
4c4b4cd2 1581 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1582 LONGEST addr;
1583
4cdfadb1 1584 if (bounds_type == NULL)
323e0a4a 1585 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1586
1587 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1588 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1589 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1590 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1591 addr = value_as_long (arr);
d2e4a39e 1592 else
42ae5230 1593 addr = value_address (arr);
14f9c5c9 1594
d2e4a39e 1595 return
4c4b4cd2
PH
1596 value_from_longest (lookup_pointer_type (bounds_type),
1597 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1598 }
1599
1600 else if (is_thick_pntr (type))
05e522ef
JB
1601 {
1602 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1603 _("Bad GNAT array descriptor"));
1604 struct type *p_bounds_type = value_type (p_bounds);
1605
1606 if (p_bounds_type
1607 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1608 {
1609 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1610
1611 if (TYPE_STUB (target_type))
1612 p_bounds = value_cast (lookup_pointer_type
1613 (ada_check_typedef (target_type)),
1614 p_bounds);
1615 }
1616 else
1617 error (_("Bad GNAT array descriptor"));
1618
1619 return p_bounds;
1620 }
14f9c5c9
AS
1621 else
1622 return NULL;
1623}
1624
4c4b4cd2
PH
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the bounds data. */
1627
14f9c5c9 1628static int
d2e4a39e 1629fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1635 size of the field containing the address of the bounds data. */
1636
14f9c5c9 1637static int
d2e4a39e 1638fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1639{
1640 type = desc_base_type (type);
1641
d2e4a39e 1642 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1643 return TYPE_FIELD_BITSIZE (type, 1);
1644 else
61ee279c 1645 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1646}
1647
4c4b4cd2 1648/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1649 pointer to one, the type of its array data (a array-with-no-bounds type);
1650 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1651 data. */
4c4b4cd2 1652
d2e4a39e 1653static struct type *
556bdfd4 1654desc_data_target_type (struct type *type)
14f9c5c9
AS
1655{
1656 type = desc_base_type (type);
1657
4c4b4cd2 1658 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1659 if (is_thin_pntr (type))
556bdfd4 1660 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1661 else if (is_thick_pntr (type))
556bdfd4
UW
1662 {
1663 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1664
1665 if (data_type
1666 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1667 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1668 }
1669
1670 return NULL;
14f9c5c9
AS
1671}
1672
1673/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1674 its array data. */
4c4b4cd2 1675
d2e4a39e
AS
1676static struct value *
1677desc_data (struct value *arr)
14f9c5c9 1678{
df407dfe 1679 struct type *type = value_type (arr);
5b4ee69b 1680
14f9c5c9
AS
1681 if (is_thin_pntr (type))
1682 return thin_data_pntr (arr);
1683 else if (is_thick_pntr (type))
d2e4a39e 1684 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1685 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1686 else
1687 return NULL;
1688}
1689
1690
1691/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1692 position of the field containing the address of the data. */
1693
14f9c5c9 1694static int
d2e4a39e 1695fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1696{
1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1698}
1699
1700/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1701 size of the field containing the address of the data. */
1702
14f9c5c9 1703static int
d2e4a39e 1704fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1705{
1706 type = desc_base_type (type);
1707
1708 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1709 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1710 else
14f9c5c9
AS
1711 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1712}
1713
4c4b4cd2 1714/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1715 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1716 bound, if WHICH is 1. The first bound is I=1. */
1717
d2e4a39e
AS
1718static struct value *
1719desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1720{
d2e4a39e 1721 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1722 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1723}
1724
1725/* If BOUNDS is an array-bounds structure type, return the bit position
1726 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1727 bound, if WHICH is 1. The first bound is I=1. */
1728
14f9c5c9 1729static int
d2e4a39e 1730desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1731{
d2e4a39e 1732 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1733}
1734
1735/* If BOUNDS is an array-bounds structure type, return the bit field size
1736 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1737 bound, if WHICH is 1. The first bound is I=1. */
1738
76a01679 1739static int
d2e4a39e 1740desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
d2e4a39e
AS
1744 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1745 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1746 else
1747 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1748}
1749
1750/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1751 Ith bound (numbering from 1). Otherwise, NULL. */
1752
d2e4a39e
AS
1753static struct type *
1754desc_index_type (struct type *type, int i)
14f9c5c9
AS
1755{
1756 type = desc_base_type (type);
1757
1758 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1759 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1760 else
14f9c5c9
AS
1761 return NULL;
1762}
1763
4c4b4cd2
PH
1764/* The number of index positions in the array-bounds type TYPE.
1765 Return 0 if TYPE is NULL. */
1766
14f9c5c9 1767static int
d2e4a39e 1768desc_arity (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (type != NULL)
1773 return TYPE_NFIELDS (type) / 2;
1774 return 0;
1775}
1776
4c4b4cd2
PH
1777/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1778 an array descriptor type (representing an unconstrained array
1779 type). */
1780
76a01679
JB
1781static int
1782ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1783{
1784 if (type == NULL)
1785 return 0;
61ee279c 1786 type = ada_check_typedef (type);
4c4b4cd2 1787 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1788 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1789}
1790
52ce6436 1791/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1792 * to one. */
52ce6436 1793
2c0b251b 1794static int
52ce6436
PH
1795ada_is_array_type (struct type *type)
1796{
1797 while (type != NULL
1798 && (TYPE_CODE (type) == TYPE_CODE_PTR
1799 || TYPE_CODE (type) == TYPE_CODE_REF))
1800 type = TYPE_TARGET_TYPE (type);
1801 return ada_is_direct_array_type (type);
1802}
1803
4c4b4cd2 1804/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1805
14f9c5c9 1806int
4c4b4cd2 1807ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1808{
1809 if (type == NULL)
1810 return 0;
61ee279c 1811 type = ada_check_typedef (type);
14f9c5c9 1812 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1813 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1814 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1815 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1816}
1817
4c4b4cd2
PH
1818/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1819
14f9c5c9 1820int
4c4b4cd2 1821ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1822{
556bdfd4 1823 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1824
1825 if (type == NULL)
1826 return 0;
61ee279c 1827 type = ada_check_typedef (type);
556bdfd4
UW
1828 return (data_type != NULL
1829 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1830 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1831}
1832
1833/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1834 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1835 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1836 is still needed. */
1837
14f9c5c9 1838int
ebf56fd3 1839ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1840{
d2e4a39e 1841 return
14f9c5c9
AS
1842 type != NULL
1843 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1844 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1845 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1846 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1847}
1848
1849
4c4b4cd2 1850/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1851 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1852 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1853 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1854 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1855 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1856 a descriptor. */
d2e4a39e
AS
1857struct type *
1858ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1859{
ad82864c
JB
1860 if (ada_is_constrained_packed_array_type (value_type (arr)))
1861 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1862
df407dfe
AC
1863 if (!ada_is_array_descriptor_type (value_type (arr)))
1864 return value_type (arr);
d2e4a39e
AS
1865
1866 if (!bounds)
ad82864c
JB
1867 {
1868 struct type *array_type =
1869 ada_check_typedef (desc_data_target_type (value_type (arr)));
1870
1871 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1872 TYPE_FIELD_BITSIZE (array_type, 0) =
1873 decode_packed_array_bitsize (value_type (arr));
1874
1875 return array_type;
1876 }
14f9c5c9
AS
1877 else
1878 {
d2e4a39e 1879 struct type *elt_type;
14f9c5c9 1880 int arity;
d2e4a39e 1881 struct value *descriptor;
14f9c5c9 1882
df407dfe
AC
1883 elt_type = ada_array_element_type (value_type (arr), -1);
1884 arity = ada_array_arity (value_type (arr));
14f9c5c9 1885
d2e4a39e 1886 if (elt_type == NULL || arity == 0)
df407dfe 1887 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1888
1889 descriptor = desc_bounds (arr);
d2e4a39e 1890 if (value_as_long (descriptor) == 0)
4c4b4cd2 1891 return NULL;
d2e4a39e 1892 while (arity > 0)
4c4b4cd2 1893 {
e9bb382b
UW
1894 struct type *range_type = alloc_type_copy (value_type (arr));
1895 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1896 struct value *low = desc_one_bound (descriptor, arity, 0);
1897 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1898
5b4ee69b 1899 arity -= 1;
df407dfe 1900 create_range_type (range_type, value_type (low),
529cad9c
PH
1901 longest_to_int (value_as_long (low)),
1902 longest_to_int (value_as_long (high)));
4c4b4cd2 1903 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1904
1905 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1906 {
1907 /* We need to store the element packed bitsize, as well as
1908 recompute the array size, because it was previously
1909 computed based on the unpacked element size. */
1910 LONGEST lo = value_as_long (low);
1911 LONGEST hi = value_as_long (high);
1912
1913 TYPE_FIELD_BITSIZE (elt_type, 0) =
1914 decode_packed_array_bitsize (value_type (arr));
1915 /* If the array has no element, then the size is already
1916 zero, and does not need to be recomputed. */
1917 if (lo < hi)
1918 {
1919 int array_bitsize =
1920 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1921
1922 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1923 }
1924 }
4c4b4cd2 1925 }
14f9c5c9
AS
1926
1927 return lookup_pointer_type (elt_type);
1928 }
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1932 Otherwise, returns either a standard GDB array with bounds set
1933 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1934 GDB array. Returns NULL if ARR is a null fat pointer. */
1935
d2e4a39e
AS
1936struct value *
1937ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1938{
df407dfe 1939 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1940 {
d2e4a39e 1941 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1942
14f9c5c9 1943 if (arrType == NULL)
4c4b4cd2 1944 return NULL;
14f9c5c9
AS
1945 return value_cast (arrType, value_copy (desc_data (arr)));
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1949 else
1950 return arr;
1951}
1952
1953/* If ARR does not represent an array, returns ARR unchanged.
1954 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1955 be ARR itself if it already is in the proper form). */
1956
720d1a40 1957struct value *
d2e4a39e 1958ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1959{
df407dfe 1960 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1961 {
d2e4a39e 1962 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1963
14f9c5c9 1964 if (arrVal == NULL)
323e0a4a 1965 error (_("Bounds unavailable for null array pointer."));
529cad9c 1966 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1967 return value_ind (arrVal);
1968 }
ad82864c
JB
1969 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1970 return decode_constrained_packed_array (arr);
d2e4a39e 1971 else
14f9c5c9
AS
1972 return arr;
1973}
1974
1975/* If TYPE represents a GNAT array type, return it translated to an
1976 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1977 packing). For other types, is the identity. */
1978
d2e4a39e
AS
1979struct type *
1980ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (type))
1983 return decode_constrained_packed_array_type (type);
17280b9f
UW
1984
1985 if (ada_is_array_descriptor_type (type))
556bdfd4 1986 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1987
1988 return type;
14f9c5c9
AS
1989}
1990
4c4b4cd2
PH
1991/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1992
ad82864c
JB
1993static int
1994ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1995{
1996 if (type == NULL)
1997 return 0;
4c4b4cd2 1998 type = desc_base_type (type);
61ee279c 1999 type = ada_check_typedef (type);
d2e4a39e 2000 return
14f9c5c9
AS
2001 ada_type_name (type) != NULL
2002 && strstr (ada_type_name (type), "___XP") != NULL;
2003}
2004
ad82864c
JB
2005/* Non-zero iff TYPE represents a standard GNAT constrained
2006 packed-array type. */
2007
2008int
2009ada_is_constrained_packed_array_type (struct type *type)
2010{
2011 return ada_is_packed_array_type (type)
2012 && !ada_is_array_descriptor_type (type);
2013}
2014
2015/* Non-zero iff TYPE represents an array descriptor for a
2016 unconstrained packed-array type. */
2017
2018static int
2019ada_is_unconstrained_packed_array_type (struct type *type)
2020{
2021 return ada_is_packed_array_type (type)
2022 && ada_is_array_descriptor_type (type);
2023}
2024
2025/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2026 return the size of its elements in bits. */
2027
2028static long
2029decode_packed_array_bitsize (struct type *type)
2030{
0d5cff50
DE
2031 const char *raw_name;
2032 const char *tail;
ad82864c
JB
2033 long bits;
2034
720d1a40
JB
2035 /* Access to arrays implemented as fat pointers are encoded as a typedef
2036 of the fat pointer type. We need the name of the fat pointer type
2037 to do the decoding, so strip the typedef layer. */
2038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2039 type = ada_typedef_target_type (type);
2040
2041 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2042 if (!raw_name)
2043 raw_name = ada_type_name (desc_base_type (type));
2044
2045 if (!raw_name)
2046 return 0;
2047
2048 tail = strstr (raw_name, "___XP");
720d1a40 2049 gdb_assert (tail != NULL);
ad82864c
JB
2050
2051 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2052 {
2053 lim_warning
2054 (_("could not understand bit size information on packed array"));
2055 return 0;
2056 }
2057
2058 return bits;
2059}
2060
14f9c5c9
AS
2061/* Given that TYPE is a standard GDB array type with all bounds filled
2062 in, and that the element size of its ultimate scalar constituents
2063 (that is, either its elements, or, if it is an array of arrays, its
2064 elements' elements, etc.) is *ELT_BITS, return an identical type,
2065 but with the bit sizes of its elements (and those of any
2066 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2067 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2068 in bits. */
2069
d2e4a39e 2070static struct type *
ad82864c 2071constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2072{
d2e4a39e
AS
2073 struct type *new_elt_type;
2074 struct type *new_type;
99b1c762
JB
2075 struct type *index_type_desc;
2076 struct type *index_type;
14f9c5c9
AS
2077 LONGEST low_bound, high_bound;
2078
61ee279c 2079 type = ada_check_typedef (type);
14f9c5c9
AS
2080 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2081 return type;
2082
99b1c762
JB
2083 index_type_desc = ada_find_parallel_type (type, "___XA");
2084 if (index_type_desc)
2085 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2086 NULL);
2087 else
2088 index_type = TYPE_INDEX_TYPE (type);
2089
e9bb382b 2090 new_type = alloc_type_copy (type);
ad82864c
JB
2091 new_elt_type =
2092 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2093 elt_bits);
99b1c762 2094 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2095 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2096 TYPE_NAME (new_type) = ada_type_name (type);
2097
99b1c762 2098 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2099 low_bound = high_bound = 0;
2100 if (high_bound < low_bound)
2101 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2102 else
14f9c5c9
AS
2103 {
2104 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2105 TYPE_LENGTH (new_type) =
4c4b4cd2 2106 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2107 }
2108
876cecd0 2109 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2110 return new_type;
2111}
2112
ad82864c
JB
2113/* The array type encoded by TYPE, where
2114 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2115
d2e4a39e 2116static struct type *
ad82864c 2117decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2118{
0d5cff50 2119 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2120 char *name;
0d5cff50 2121 const char *tail;
d2e4a39e 2122 struct type *shadow_type;
14f9c5c9 2123 long bits;
14f9c5c9 2124
727e3d2e
JB
2125 if (!raw_name)
2126 raw_name = ada_type_name (desc_base_type (type));
2127
2128 if (!raw_name)
2129 return NULL;
2130
2131 name = (char *) alloca (strlen (raw_name) + 1);
2132 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2133 type = desc_base_type (type);
2134
14f9c5c9
AS
2135 memcpy (name, raw_name, tail - raw_name);
2136 name[tail - raw_name] = '\000';
2137
b4ba55a1
JB
2138 shadow_type = ada_find_parallel_type_with_name (type, name);
2139
2140 if (shadow_type == NULL)
14f9c5c9 2141 {
323e0a4a 2142 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2143 return NULL;
2144 }
cb249c71 2145 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2146
2147 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2148 {
0963b4bd
MS
2149 lim_warning (_("could not understand bounds "
2150 "information on packed array"));
14f9c5c9
AS
2151 return NULL;
2152 }
d2e4a39e 2153
ad82864c
JB
2154 bits = decode_packed_array_bitsize (type);
2155 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2156}
2157
ad82864c
JB
2158/* Given that ARR is a struct value *indicating a GNAT constrained packed
2159 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2160 standard GDB array type except that the BITSIZEs of the array
2161 target types are set to the number of bits in each element, and the
4c4b4cd2 2162 type length is set appropriately. */
14f9c5c9 2163
d2e4a39e 2164static struct value *
ad82864c 2165decode_constrained_packed_array (struct value *arr)
14f9c5c9 2166{
4c4b4cd2 2167 struct type *type;
14f9c5c9 2168
4c4b4cd2 2169 arr = ada_coerce_ref (arr);
284614f0
JB
2170
2171 /* If our value is a pointer, then dererence it. Make sure that
2172 this operation does not cause the target type to be fixed, as
2173 this would indirectly cause this array to be decoded. The rest
2174 of the routine assumes that the array hasn't been decoded yet,
2175 so we use the basic "value_ind" routine to perform the dereferencing,
2176 as opposed to using "ada_value_ind". */
828292f2 2177 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2178 arr = value_ind (arr);
4c4b4cd2 2179
ad82864c 2180 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2181 if (type == NULL)
2182 {
323e0a4a 2183 error (_("can't unpack array"));
14f9c5c9
AS
2184 return NULL;
2185 }
61ee279c 2186
50810684 2187 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2188 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2189 {
2190 /* This is a (right-justified) modular type representing a packed
2191 array with no wrapper. In order to interpret the value through
2192 the (left-justified) packed array type we just built, we must
2193 first left-justify it. */
2194 int bit_size, bit_pos;
2195 ULONGEST mod;
2196
df407dfe 2197 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2198 bit_size = 0;
2199 while (mod > 0)
2200 {
2201 bit_size += 1;
2202 mod >>= 1;
2203 }
df407dfe 2204 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2205 arr = ada_value_primitive_packed_val (arr, NULL,
2206 bit_pos / HOST_CHAR_BIT,
2207 bit_pos % HOST_CHAR_BIT,
2208 bit_size,
2209 type);
2210 }
2211
4c4b4cd2 2212 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2213}
2214
2215
2216/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2217 given in IND. ARR must be a simple array. */
14f9c5c9 2218
d2e4a39e
AS
2219static struct value *
2220value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2221{
2222 int i;
2223 int bits, elt_off, bit_off;
2224 long elt_total_bit_offset;
d2e4a39e
AS
2225 struct type *elt_type;
2226 struct value *v;
14f9c5c9
AS
2227
2228 bits = 0;
2229 elt_total_bit_offset = 0;
df407dfe 2230 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2231 for (i = 0; i < arity; i += 1)
14f9c5c9 2232 {
d2e4a39e 2233 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2234 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2235 error
0963b4bd
MS
2236 (_("attempt to do packed indexing of "
2237 "something other than a packed array"));
14f9c5c9 2238 else
4c4b4cd2
PH
2239 {
2240 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2241 LONGEST lowerbound, upperbound;
2242 LONGEST idx;
2243
2244 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2245 {
323e0a4a 2246 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2247 lowerbound = upperbound = 0;
2248 }
2249
3cb382c9 2250 idx = pos_atr (ind[i]);
4c4b4cd2 2251 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2252 lim_warning (_("packed array index %ld out of bounds"),
2253 (long) idx);
4c4b4cd2
PH
2254 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2255 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2256 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2257 }
14f9c5c9
AS
2258 }
2259 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2260 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2261
2262 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2263 bits, elt_type);
14f9c5c9
AS
2264 return v;
2265}
2266
4c4b4cd2 2267/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2268
2269static int
d2e4a39e 2270has_negatives (struct type *type)
14f9c5c9 2271{
d2e4a39e
AS
2272 switch (TYPE_CODE (type))
2273 {
2274 default:
2275 return 0;
2276 case TYPE_CODE_INT:
2277 return !TYPE_UNSIGNED (type);
2278 case TYPE_CODE_RANGE:
2279 return TYPE_LOW_BOUND (type) < 0;
2280 }
14f9c5c9 2281}
d2e4a39e 2282
14f9c5c9
AS
2283
2284/* Create a new value of type TYPE from the contents of OBJ starting
2285 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2286 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2287 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2288 VALADDR is ignored unless OBJ is NULL, in which case,
2289 VALADDR+OFFSET must address the start of storage containing the
2290 packed value. The value returned in this case is never an lval.
2291 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2292
d2e4a39e 2293struct value *
fc1a4b47 2294ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2295 long offset, int bit_offset, int bit_size,
4c4b4cd2 2296 struct type *type)
14f9c5c9 2297{
d2e4a39e 2298 struct value *v;
4c4b4cd2
PH
2299 int src, /* Index into the source area */
2300 targ, /* Index into the target area */
2301 srcBitsLeft, /* Number of source bits left to move */
2302 nsrc, ntarg, /* Number of source and target bytes */
2303 unusedLS, /* Number of bits in next significant
2304 byte of source that are unused */
2305 accumSize; /* Number of meaningful bits in accum */
2306 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2307 unsigned char *unpacked;
4c4b4cd2 2308 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2309 unsigned char sign;
2310 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2311 /* Transmit bytes from least to most significant; delta is the direction
2312 the indices move. */
50810684 2313 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2314
61ee279c 2315 type = ada_check_typedef (type);
14f9c5c9
AS
2316
2317 if (obj == NULL)
2318 {
2319 v = allocate_value (type);
d2e4a39e 2320 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2321 }
9214ee5f 2322 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2323 {
53ba8333 2324 v = value_at (type, value_address (obj));
d2e4a39e 2325 bytes = (unsigned char *) alloca (len);
53ba8333 2326 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2327 }
d2e4a39e 2328 else
14f9c5c9
AS
2329 {
2330 v = allocate_value (type);
0fd88904 2331 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2332 }
d2e4a39e
AS
2333
2334 if (obj != NULL)
14f9c5c9 2335 {
53ba8333 2336 long new_offset = offset;
5b4ee69b 2337
74bcbdf3 2338 set_value_component_location (v, obj);
9bbda503
AC
2339 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2340 set_value_bitsize (v, bit_size);
df407dfe 2341 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2342 {
53ba8333 2343 ++new_offset;
9bbda503 2344 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2345 }
53ba8333
JB
2346 set_value_offset (v, new_offset);
2347
2348 /* Also set the parent value. This is needed when trying to
2349 assign a new value (in inferior memory). */
2350 set_value_parent (v, obj);
14f9c5c9
AS
2351 }
2352 else
9bbda503 2353 set_value_bitsize (v, bit_size);
0fd88904 2354 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2355
2356 srcBitsLeft = bit_size;
2357 nsrc = len;
2358 ntarg = TYPE_LENGTH (type);
2359 sign = 0;
2360 if (bit_size == 0)
2361 {
2362 memset (unpacked, 0, TYPE_LENGTH (type));
2363 return v;
2364 }
50810684 2365 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2366 {
d2e4a39e 2367 src = len - 1;
1265e4aa
JB
2368 if (has_negatives (type)
2369 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2370 sign = ~0;
d2e4a39e
AS
2371
2372 unusedLS =
4c4b4cd2
PH
2373 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2374 % HOST_CHAR_BIT;
14f9c5c9
AS
2375
2376 switch (TYPE_CODE (type))
4c4b4cd2
PH
2377 {
2378 case TYPE_CODE_ARRAY:
2379 case TYPE_CODE_UNION:
2380 case TYPE_CODE_STRUCT:
2381 /* Non-scalar values must be aligned at a byte boundary... */
2382 accumSize =
2383 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2384 /* ... And are placed at the beginning (most-significant) bytes
2385 of the target. */
529cad9c 2386 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2387 ntarg = targ + 1;
4c4b4cd2
PH
2388 break;
2389 default:
2390 accumSize = 0;
2391 targ = TYPE_LENGTH (type) - 1;
2392 break;
2393 }
14f9c5c9 2394 }
d2e4a39e 2395 else
14f9c5c9
AS
2396 {
2397 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2398
2399 src = targ = 0;
2400 unusedLS = bit_offset;
2401 accumSize = 0;
2402
d2e4a39e 2403 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2404 sign = ~0;
14f9c5c9 2405 }
d2e4a39e 2406
14f9c5c9
AS
2407 accum = 0;
2408 while (nsrc > 0)
2409 {
2410 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2411 part of the value. */
d2e4a39e 2412 unsigned int unusedMSMask =
4c4b4cd2
PH
2413 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2414 1;
2415 /* Sign-extend bits for this byte. */
14f9c5c9 2416 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2417
d2e4a39e 2418 accum |=
4c4b4cd2 2419 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2420 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2421 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2422 {
2423 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2424 accumSize -= HOST_CHAR_BIT;
2425 accum >>= HOST_CHAR_BIT;
2426 ntarg -= 1;
2427 targ += delta;
2428 }
14f9c5c9
AS
2429 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2430 unusedLS = 0;
2431 nsrc -= 1;
2432 src += delta;
2433 }
2434 while (ntarg > 0)
2435 {
2436 accum |= sign << accumSize;
2437 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2438 accumSize -= HOST_CHAR_BIT;
2439 accum >>= HOST_CHAR_BIT;
2440 ntarg -= 1;
2441 targ += delta;
2442 }
2443
2444 return v;
2445}
d2e4a39e 2446
14f9c5c9
AS
2447/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2448 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2449 not overlap. */
14f9c5c9 2450static void
fc1a4b47 2451move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2452 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2453{
2454 unsigned int accum, mask;
2455 int accum_bits, chunk_size;
2456
2457 target += targ_offset / HOST_CHAR_BIT;
2458 targ_offset %= HOST_CHAR_BIT;
2459 source += src_offset / HOST_CHAR_BIT;
2460 src_offset %= HOST_CHAR_BIT;
50810684 2461 if (bits_big_endian_p)
14f9c5c9
AS
2462 {
2463 accum = (unsigned char) *source;
2464 source += 1;
2465 accum_bits = HOST_CHAR_BIT - src_offset;
2466
d2e4a39e 2467 while (n > 0)
4c4b4cd2
PH
2468 {
2469 int unused_right;
5b4ee69b 2470
4c4b4cd2
PH
2471 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2472 accum_bits += HOST_CHAR_BIT;
2473 source += 1;
2474 chunk_size = HOST_CHAR_BIT - targ_offset;
2475 if (chunk_size > n)
2476 chunk_size = n;
2477 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2478 mask = ((1 << chunk_size) - 1) << unused_right;
2479 *target =
2480 (*target & ~mask)
2481 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488 else
2489 {
2490 accum = (unsigned char) *source >> src_offset;
2491 source += 1;
2492 accum_bits = HOST_CHAR_BIT - src_offset;
2493
d2e4a39e 2494 while (n > 0)
4c4b4cd2
PH
2495 {
2496 accum = accum + ((unsigned char) *source << accum_bits);
2497 accum_bits += HOST_CHAR_BIT;
2498 source += 1;
2499 chunk_size = HOST_CHAR_BIT - targ_offset;
2500 if (chunk_size > n)
2501 chunk_size = n;
2502 mask = ((1 << chunk_size) - 1) << targ_offset;
2503 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2504 n -= chunk_size;
2505 accum_bits -= chunk_size;
2506 accum >>= chunk_size;
2507 target += 1;
2508 targ_offset = 0;
2509 }
14f9c5c9
AS
2510 }
2511}
2512
14f9c5c9
AS
2513/* Store the contents of FROMVAL into the location of TOVAL.
2514 Return a new value with the location of TOVAL and contents of
2515 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2516 floating-point or non-scalar types. */
14f9c5c9 2517
d2e4a39e
AS
2518static struct value *
2519ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2520{
df407dfe
AC
2521 struct type *type = value_type (toval);
2522 int bits = value_bitsize (toval);
14f9c5c9 2523
52ce6436
PH
2524 toval = ada_coerce_ref (toval);
2525 fromval = ada_coerce_ref (fromval);
2526
2527 if (ada_is_direct_array_type (value_type (toval)))
2528 toval = ada_coerce_to_simple_array (toval);
2529 if (ada_is_direct_array_type (value_type (fromval)))
2530 fromval = ada_coerce_to_simple_array (fromval);
2531
88e3b34b 2532 if (!deprecated_value_modifiable (toval))
323e0a4a 2533 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2534
d2e4a39e 2535 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2536 && bits > 0
d2e4a39e 2537 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2538 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2539 {
df407dfe
AC
2540 int len = (value_bitpos (toval)
2541 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2542 int from_size;
948f8e3d 2543 gdb_byte *buffer = alloca (len);
d2e4a39e 2544 struct value *val;
42ae5230 2545 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2546
2547 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2548 fromval = value_cast (type, fromval);
14f9c5c9 2549
52ce6436 2550 read_memory (to_addr, buffer, len);
aced2898
PH
2551 from_size = value_bitsize (fromval);
2552 if (from_size == 0)
2553 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2554 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2555 move_bits (buffer, value_bitpos (toval),
50810684 2556 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2557 else
50810684
UW
2558 move_bits (buffer, value_bitpos (toval),
2559 value_contents (fromval), 0, bits, 0);
972daa01 2560 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2561
14f9c5c9 2562 val = value_copy (toval);
0fd88904 2563 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2564 TYPE_LENGTH (type));
04624583 2565 deprecated_set_value_type (val, type);
d2e4a39e 2566
14f9c5c9
AS
2567 return val;
2568 }
2569
2570 return value_assign (toval, fromval);
2571}
2572
2573
52ce6436
PH
2574/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2575 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2576 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2577 * COMPONENT, and not the inferior's memory. The current contents
2578 * of COMPONENT are ignored. */
2579static void
2580value_assign_to_component (struct value *container, struct value *component,
2581 struct value *val)
2582{
2583 LONGEST offset_in_container =
42ae5230 2584 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2585 int bit_offset_in_container =
2586 value_bitpos (component) - value_bitpos (container);
2587 int bits;
2588
2589 val = value_cast (value_type (component), val);
2590
2591 if (value_bitsize (component) == 0)
2592 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2593 else
2594 bits = value_bitsize (component);
2595
50810684 2596 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2597 move_bits (value_contents_writeable (container) + offset_in_container,
2598 value_bitpos (container) + bit_offset_in_container,
2599 value_contents (val),
2600 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2601 bits, 1);
52ce6436
PH
2602 else
2603 move_bits (value_contents_writeable (container) + offset_in_container,
2604 value_bitpos (container) + bit_offset_in_container,
50810684 2605 value_contents (val), 0, bits, 0);
52ce6436
PH
2606}
2607
4c4b4cd2
PH
2608/* The value of the element of array ARR at the ARITY indices given in IND.
2609 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2610 thereto. */
2611
d2e4a39e
AS
2612struct value *
2613ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2614{
2615 int k;
d2e4a39e
AS
2616 struct value *elt;
2617 struct type *elt_type;
14f9c5c9
AS
2618
2619 elt = ada_coerce_to_simple_array (arr);
2620
df407dfe 2621 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2622 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2623 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2624 return value_subscript_packed (elt, arity, ind);
2625
2626 for (k = 0; k < arity; k += 1)
2627 {
2628 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
2497b498 2630 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2631 }
2632 return elt;
2633}
2634
2635/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2636 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2637 IND. Does not read the entire array into memory. */
14f9c5c9 2638
2c0b251b 2639static struct value *
d2e4a39e 2640ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2641 struct value **ind)
14f9c5c9
AS
2642{
2643 int k;
2644
2645 for (k = 0; k < arity; k += 1)
2646 {
2647 LONGEST lwb, upb;
14f9c5c9
AS
2648
2649 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2650 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2651 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2652 value_copy (arr));
14f9c5c9 2653 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2654 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2655 type = TYPE_TARGET_TYPE (type);
2656 }
2657
2658 return value_ind (arr);
2659}
2660
0b5d8877 2661/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2662 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2663 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2664 per Ada rules. */
0b5d8877 2665static struct value *
f5938064
JG
2666ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2667 int low, int high)
0b5d8877 2668{
b0dd7688 2669 struct type *type0 = ada_check_typedef (type);
6c038f32 2670 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2671 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2672 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2673 struct type *index_type =
b0dd7688 2674 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2675 low, high);
6c038f32 2676 struct type *slice_type =
b0dd7688 2677 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2678
f5938064 2679 return value_at_lazy (slice_type, base);
0b5d8877
PH
2680}
2681
2682
2683static struct value *
2684ada_value_slice (struct value *array, int low, int high)
2685{
b0dd7688 2686 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2687 struct type *index_type =
0b5d8877 2688 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2689 struct type *slice_type =
0b5d8877 2690 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2691
6c038f32 2692 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2693}
2694
14f9c5c9
AS
2695/* If type is a record type in the form of a standard GNAT array
2696 descriptor, returns the number of dimensions for type. If arr is a
2697 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2698 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2699
2700int
d2e4a39e 2701ada_array_arity (struct type *type)
14f9c5c9
AS
2702{
2703 int arity;
2704
2705 if (type == NULL)
2706 return 0;
2707
2708 type = desc_base_type (type);
2709
2710 arity = 0;
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2712 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2713 else
2714 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2715 {
4c4b4cd2 2716 arity += 1;
61ee279c 2717 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2718 }
d2e4a39e 2719
14f9c5c9
AS
2720 return arity;
2721}
2722
2723/* If TYPE is a record type in the form of a standard GNAT array
2724 descriptor or a simple array type, returns the element type for
2725 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2726 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2727
d2e4a39e
AS
2728struct type *
2729ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2730{
2731 type = desc_base_type (type);
2732
d2e4a39e 2733 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2734 {
2735 int k;
d2e4a39e 2736 struct type *p_array_type;
14f9c5c9 2737
556bdfd4 2738 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2739
2740 k = ada_array_arity (type);
2741 if (k == 0)
4c4b4cd2 2742 return NULL;
d2e4a39e 2743
4c4b4cd2 2744 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2745 if (nindices >= 0 && k > nindices)
4c4b4cd2 2746 k = nindices;
d2e4a39e 2747 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2748 {
61ee279c 2749 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2750 k -= 1;
2751 }
14f9c5c9
AS
2752 return p_array_type;
2753 }
2754 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2755 {
2756 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2757 {
2758 type = TYPE_TARGET_TYPE (type);
2759 nindices -= 1;
2760 }
14f9c5c9
AS
2761 return type;
2762 }
2763
2764 return NULL;
2765}
2766
4c4b4cd2 2767/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2768 Does not examine memory. Throws an error if N is invalid or TYPE
2769 is not an array type. NAME is the name of the Ada attribute being
2770 evaluated ('range, 'first, 'last, or 'length); it is used in building
2771 the error message. */
14f9c5c9 2772
1eea4ebd
UW
2773static struct type *
2774ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2775{
4c4b4cd2
PH
2776 struct type *result_type;
2777
14f9c5c9
AS
2778 type = desc_base_type (type);
2779
1eea4ebd
UW
2780 if (n < 0 || n > ada_array_arity (type))
2781 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2782
4c4b4cd2 2783 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2784 {
2785 int i;
2786
2787 for (i = 1; i < n; i += 1)
4c4b4cd2 2788 type = TYPE_TARGET_TYPE (type);
262452ec 2789 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2790 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2791 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2792 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2793 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2794 result_type = NULL;
14f9c5c9 2795 }
d2e4a39e 2796 else
1eea4ebd
UW
2797 {
2798 result_type = desc_index_type (desc_bounds_type (type), n);
2799 if (result_type == NULL)
2800 error (_("attempt to take bound of something that is not an array"));
2801 }
2802
2803 return result_type;
14f9c5c9
AS
2804}
2805
2806/* Given that arr is an array type, returns the lower bound of the
2807 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2808 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2809 array-descriptor type. It works for other arrays with bounds supplied
2810 by run-time quantities other than discriminants. */
14f9c5c9 2811
abb68b3e 2812static LONGEST
fb5e3d5c 2813ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2814{
8a48ac95 2815 struct type *type, *index_type_desc, *index_type;
1ce677a4 2816 int i;
262452ec
JK
2817
2818 gdb_assert (which == 0 || which == 1);
14f9c5c9 2819
ad82864c
JB
2820 if (ada_is_constrained_packed_array_type (arr_type))
2821 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2822
4c4b4cd2 2823 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2824 return (LONGEST) - which;
14f9c5c9
AS
2825
2826 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2827 type = TYPE_TARGET_TYPE (arr_type);
2828 else
2829 type = arr_type;
2830
2831 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2832 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2833 if (index_type_desc != NULL)
28c85d6c
JB
2834 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2835 NULL);
262452ec 2836 else
8a48ac95
JB
2837 {
2838 struct type *elt_type = check_typedef (type);
2839
2840 for (i = 1; i < n; i++)
2841 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2842
2843 index_type = TYPE_INDEX_TYPE (elt_type);
2844 }
262452ec 2845
43bbcdc2
PH
2846 return
2847 (LONGEST) (which == 0
2848 ? ada_discrete_type_low_bound (index_type)
2849 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2850}
2851
2852/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2853 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2854 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2855 supplied by run-time quantities other than discriminants. */
14f9c5c9 2856
1eea4ebd 2857static LONGEST
4dc81987 2858ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2859{
df407dfe 2860 struct type *arr_type = value_type (arr);
14f9c5c9 2861
ad82864c
JB
2862 if (ada_is_constrained_packed_array_type (arr_type))
2863 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2864 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2865 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2866 else
1eea4ebd 2867 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2868}
2869
2870/* Given that arr is an array value, returns the length of the
2871 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2872 supplied by run-time quantities other than discriminants.
2873 Does not work for arrays indexed by enumeration types with representation
2874 clauses at the moment. */
14f9c5c9 2875
1eea4ebd 2876static LONGEST
d2e4a39e 2877ada_array_length (struct value *arr, int n)
14f9c5c9 2878{
df407dfe 2879 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2880
ad82864c
JB
2881 if (ada_is_constrained_packed_array_type (arr_type))
2882 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2883
4c4b4cd2 2884 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2885 return (ada_array_bound_from_type (arr_type, n, 1)
2886 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2887 else
1eea4ebd
UW
2888 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2889 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2890}
2891
2892/* An empty array whose type is that of ARR_TYPE (an array type),
2893 with bounds LOW to LOW-1. */
2894
2895static struct value *
2896empty_array (struct type *arr_type, int low)
2897{
b0dd7688 2898 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2899 struct type *index_type =
b0dd7688 2900 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2901 low, low - 1);
b0dd7688 2902 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2903
0b5d8877 2904 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2905}
14f9c5c9 2906\f
d2e4a39e 2907
4c4b4cd2 2908 /* Name resolution */
14f9c5c9 2909
4c4b4cd2
PH
2910/* The "decoded" name for the user-definable Ada operator corresponding
2911 to OP. */
14f9c5c9 2912
d2e4a39e 2913static const char *
4c4b4cd2 2914ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2915{
2916 int i;
2917
4c4b4cd2 2918 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2919 {
2920 if (ada_opname_table[i].op == op)
4c4b4cd2 2921 return ada_opname_table[i].decoded;
14f9c5c9 2922 }
323e0a4a 2923 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2924}
2925
2926
4c4b4cd2
PH
2927/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2928 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2929 undefined namespace) and converts operators that are
2930 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2931 non-null, it provides a preferred result type [at the moment, only
2932 type void has any effect---causing procedures to be preferred over
2933 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2934 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2935
4c4b4cd2
PH
2936static void
2937resolve (struct expression **expp, int void_context_p)
14f9c5c9 2938{
30b15541
UW
2939 struct type *context_type = NULL;
2940 int pc = 0;
2941
2942 if (void_context_p)
2943 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2944
2945 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2946}
2947
4c4b4cd2
PH
2948/* Resolve the operator of the subexpression beginning at
2949 position *POS of *EXPP. "Resolving" consists of replacing
2950 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2951 with their resolutions, replacing built-in operators with
2952 function calls to user-defined operators, where appropriate, and,
2953 when DEPROCEDURE_P is non-zero, converting function-valued variables
2954 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2955 are as in ada_resolve, above. */
14f9c5c9 2956
d2e4a39e 2957static struct value *
4c4b4cd2 2958resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2959 struct type *context_type)
14f9c5c9
AS
2960{
2961 int pc = *pos;
2962 int i;
4c4b4cd2 2963 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2964 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2965 struct value **argvec; /* Vector of operand types (alloca'ed). */
2966 int nargs; /* Number of operands. */
52ce6436 2967 int oplen;
14f9c5c9
AS
2968
2969 argvec = NULL;
2970 nargs = 0;
2971 exp = *expp;
2972
52ce6436
PH
2973 /* Pass one: resolve operands, saving their types and updating *pos,
2974 if needed. */
14f9c5c9
AS
2975 switch (op)
2976 {
4c4b4cd2
PH
2977 case OP_FUNCALL:
2978 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2979 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2980 *pos += 7;
4c4b4cd2
PH
2981 else
2982 {
2983 *pos += 3;
2984 resolve_subexp (expp, pos, 0, NULL);
2985 }
2986 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2987 break;
2988
14f9c5c9 2989 case UNOP_ADDR:
4c4b4cd2
PH
2990 *pos += 1;
2991 resolve_subexp (expp, pos, 0, NULL);
2992 break;
2993
52ce6436
PH
2994 case UNOP_QUAL:
2995 *pos += 3;
17466c1a 2996 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2997 break;
2998
52ce6436 2999 case OP_ATR_MODULUS:
4c4b4cd2
PH
3000 case OP_ATR_SIZE:
3001 case OP_ATR_TAG:
4c4b4cd2
PH
3002 case OP_ATR_FIRST:
3003 case OP_ATR_LAST:
3004 case OP_ATR_LENGTH:
3005 case OP_ATR_POS:
3006 case OP_ATR_VAL:
4c4b4cd2
PH
3007 case OP_ATR_MIN:
3008 case OP_ATR_MAX:
52ce6436
PH
3009 case TERNOP_IN_RANGE:
3010 case BINOP_IN_BOUNDS:
3011 case UNOP_IN_RANGE:
3012 case OP_AGGREGATE:
3013 case OP_OTHERS:
3014 case OP_CHOICES:
3015 case OP_POSITIONAL:
3016 case OP_DISCRETE_RANGE:
3017 case OP_NAME:
3018 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3019 *pos += oplen;
14f9c5c9
AS
3020 break;
3021
3022 case BINOP_ASSIGN:
3023 {
4c4b4cd2
PH
3024 struct value *arg1;
3025
3026 *pos += 1;
3027 arg1 = resolve_subexp (expp, pos, 0, NULL);
3028 if (arg1 == NULL)
3029 resolve_subexp (expp, pos, 1, NULL);
3030 else
df407dfe 3031 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3032 break;
14f9c5c9
AS
3033 }
3034
4c4b4cd2 3035 case UNOP_CAST:
4c4b4cd2
PH
3036 *pos += 3;
3037 nargs = 1;
3038 break;
14f9c5c9 3039
4c4b4cd2
PH
3040 case BINOP_ADD:
3041 case BINOP_SUB:
3042 case BINOP_MUL:
3043 case BINOP_DIV:
3044 case BINOP_REM:
3045 case BINOP_MOD:
3046 case BINOP_EXP:
3047 case BINOP_CONCAT:
3048 case BINOP_LOGICAL_AND:
3049 case BINOP_LOGICAL_OR:
3050 case BINOP_BITWISE_AND:
3051 case BINOP_BITWISE_IOR:
3052 case BINOP_BITWISE_XOR:
14f9c5c9 3053
4c4b4cd2
PH
3054 case BINOP_EQUAL:
3055 case BINOP_NOTEQUAL:
3056 case BINOP_LESS:
3057 case BINOP_GTR:
3058 case BINOP_LEQ:
3059 case BINOP_GEQ:
14f9c5c9 3060
4c4b4cd2
PH
3061 case BINOP_REPEAT:
3062 case BINOP_SUBSCRIPT:
3063 case BINOP_COMMA:
40c8aaa9
JB
3064 *pos += 1;
3065 nargs = 2;
3066 break;
14f9c5c9 3067
4c4b4cd2
PH
3068 case UNOP_NEG:
3069 case UNOP_PLUS:
3070 case UNOP_LOGICAL_NOT:
3071 case UNOP_ABS:
3072 case UNOP_IND:
3073 *pos += 1;
3074 nargs = 1;
3075 break;
14f9c5c9 3076
4c4b4cd2
PH
3077 case OP_LONG:
3078 case OP_DOUBLE:
3079 case OP_VAR_VALUE:
3080 *pos += 4;
3081 break;
14f9c5c9 3082
4c4b4cd2
PH
3083 case OP_TYPE:
3084 case OP_BOOL:
3085 case OP_LAST:
4c4b4cd2
PH
3086 case OP_INTERNALVAR:
3087 *pos += 3;
3088 break;
14f9c5c9 3089
4c4b4cd2
PH
3090 case UNOP_MEMVAL:
3091 *pos += 3;
3092 nargs = 1;
3093 break;
3094
67f3407f
DJ
3095 case OP_REGISTER:
3096 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3097 break;
3098
4c4b4cd2
PH
3099 case STRUCTOP_STRUCT:
3100 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3101 nargs = 1;
3102 break;
3103
4c4b4cd2 3104 case TERNOP_SLICE:
4c4b4cd2
PH
3105 *pos += 1;
3106 nargs = 3;
3107 break;
3108
52ce6436 3109 case OP_STRING:
14f9c5c9 3110 break;
4c4b4cd2
PH
3111
3112 default:
323e0a4a 3113 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3114 }
3115
76a01679 3116 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3117 for (i = 0; i < nargs; i += 1)
3118 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3119 argvec[i] = NULL;
3120 exp = *expp;
3121
3122 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3123 switch (op)
3124 {
3125 default:
3126 break;
3127
14f9c5c9 3128 case OP_VAR_VALUE:
4c4b4cd2 3129 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3130 {
3131 struct ada_symbol_info *candidates;
3132 int n_candidates;
3133
3134 n_candidates =
3135 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3136 (exp->elts[pc + 2].symbol),
3137 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3138 &candidates);
76a01679
JB
3139
3140 if (n_candidates > 1)
3141 {
3142 /* Types tend to get re-introduced locally, so if there
3143 are any local symbols that are not types, first filter
3144 out all types. */
3145 int j;
3146 for (j = 0; j < n_candidates; j += 1)
3147 switch (SYMBOL_CLASS (candidates[j].sym))
3148 {
3149 case LOC_REGISTER:
3150 case LOC_ARG:
3151 case LOC_REF_ARG:
76a01679
JB
3152 case LOC_REGPARM_ADDR:
3153 case LOC_LOCAL:
76a01679 3154 case LOC_COMPUTED:
76a01679
JB
3155 goto FoundNonType;
3156 default:
3157 break;
3158 }
3159 FoundNonType:
3160 if (j < n_candidates)
3161 {
3162 j = 0;
3163 while (j < n_candidates)
3164 {
3165 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3166 {
3167 candidates[j] = candidates[n_candidates - 1];
3168 n_candidates -= 1;
3169 }
3170 else
3171 j += 1;
3172 }
3173 }
3174 }
3175
3176 if (n_candidates == 0)
323e0a4a 3177 error (_("No definition found for %s"),
76a01679
JB
3178 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3179 else if (n_candidates == 1)
3180 i = 0;
3181 else if (deprocedure_p
3182 && !is_nonfunction (candidates, n_candidates))
3183 {
06d5cf63
JB
3184 i = ada_resolve_function
3185 (candidates, n_candidates, NULL, 0,
3186 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3187 context_type);
76a01679 3188 if (i < 0)
323e0a4a 3189 error (_("Could not find a match for %s"),
76a01679
JB
3190 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3191 }
3192 else
3193 {
323e0a4a 3194 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3195 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3196 user_select_syms (candidates, n_candidates, 1);
3197 i = 0;
3198 }
3199
3200 exp->elts[pc + 1].block = candidates[i].block;
3201 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3202 if (innermost_block == NULL
3203 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3204 innermost_block = candidates[i].block;
3205 }
3206
3207 if (deprocedure_p
3208 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3209 == TYPE_CODE_FUNC))
3210 {
3211 replace_operator_with_call (expp, pc, 0, 0,
3212 exp->elts[pc + 2].symbol,
3213 exp->elts[pc + 1].block);
3214 exp = *expp;
3215 }
14f9c5c9
AS
3216 break;
3217
3218 case OP_FUNCALL:
3219 {
4c4b4cd2 3220 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3221 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
76a01679
JB
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 5].symbol),
3229 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
4c4b4cd2
PH
3231 if (n_candidates == 1)
3232 i = 0;
3233 else
3234 {
06d5cf63
JB
3235 i = ada_resolve_function
3236 (candidates, n_candidates,
3237 argvec, nargs,
3238 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3239 context_type);
4c4b4cd2 3240 if (i < 0)
323e0a4a 3241 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3242 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3243 }
3244
3245 exp->elts[pc + 4].block = candidates[i].block;
3246 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3247 if (innermost_block == NULL
3248 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3249 innermost_block = candidates[i].block;
3250 }
14f9c5c9
AS
3251 }
3252 break;
3253 case BINOP_ADD:
3254 case BINOP_SUB:
3255 case BINOP_MUL:
3256 case BINOP_DIV:
3257 case BINOP_REM:
3258 case BINOP_MOD:
3259 case BINOP_CONCAT:
3260 case BINOP_BITWISE_AND:
3261 case BINOP_BITWISE_IOR:
3262 case BINOP_BITWISE_XOR:
3263 case BINOP_EQUAL:
3264 case BINOP_NOTEQUAL:
3265 case BINOP_LESS:
3266 case BINOP_GTR:
3267 case BINOP_LEQ:
3268 case BINOP_GEQ:
3269 case BINOP_EXP:
3270 case UNOP_NEG:
3271 case UNOP_PLUS:
3272 case UNOP_LOGICAL_NOT:
3273 case UNOP_ABS:
3274 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3275 {
3276 struct ada_symbol_info *candidates;
3277 int n_candidates;
3278
3279 n_candidates =
3280 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3281 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3282 &candidates);
4c4b4cd2 3283 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3284 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3285 if (i < 0)
3286 break;
3287
76a01679
JB
3288 replace_operator_with_call (expp, pc, nargs, 1,
3289 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3290 exp = *expp;
3291 }
14f9c5c9 3292 break;
4c4b4cd2
PH
3293
3294 case OP_TYPE:
b3dbf008 3295 case OP_REGISTER:
4c4b4cd2 3296 return NULL;
14f9c5c9
AS
3297 }
3298
3299 *pos = pc;
3300 return evaluate_subexp_type (exp, pos);
3301}
3302
3303/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3304 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3305 a non-pointer. */
14f9c5c9 3306/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3307 liberal. */
14f9c5c9
AS
3308
3309static int
4dc81987 3310ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3311{
61ee279c
PH
3312 ftype = ada_check_typedef (ftype);
3313 atype = ada_check_typedef (atype);
14f9c5c9
AS
3314
3315 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3316 ftype = TYPE_TARGET_TYPE (ftype);
3317 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3318 atype = TYPE_TARGET_TYPE (atype);
3319
d2e4a39e 3320 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3321 {
3322 default:
5b3d5b7d 3323 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3324 case TYPE_CODE_PTR:
3325 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3326 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3327 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3328 else
1265e4aa
JB
3329 return (may_deref
3330 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3331 case TYPE_CODE_INT:
3332 case TYPE_CODE_ENUM:
3333 case TYPE_CODE_RANGE:
3334 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3335 {
3336 case TYPE_CODE_INT:
3337 case TYPE_CODE_ENUM:
3338 case TYPE_CODE_RANGE:
3339 return 1;
3340 default:
3341 return 0;
3342 }
14f9c5c9
AS
3343
3344 case TYPE_CODE_ARRAY:
d2e4a39e 3345 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3346 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3347
3348 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3349 if (ada_is_array_descriptor_type (ftype))
3350 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3351 || ada_is_array_descriptor_type (atype));
14f9c5c9 3352 else
4c4b4cd2
PH
3353 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3354 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3355
3356 case TYPE_CODE_UNION:
3357 case TYPE_CODE_FLT:
3358 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3359 }
3360}
3361
3362/* Return non-zero if the formals of FUNC "sufficiently match" the
3363 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3364 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3365 argument function. */
14f9c5c9
AS
3366
3367static int
d2e4a39e 3368ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3369{
3370 int i;
d2e4a39e 3371 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3372
1265e4aa
JB
3373 if (SYMBOL_CLASS (func) == LOC_CONST
3374 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3375 return (n_actuals == 0);
3376 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3377 return 0;
3378
3379 if (TYPE_NFIELDS (func_type) != n_actuals)
3380 return 0;
3381
3382 for (i = 0; i < n_actuals; i += 1)
3383 {
4c4b4cd2 3384 if (actuals[i] == NULL)
76a01679
JB
3385 return 0;
3386 else
3387 {
5b4ee69b
MS
3388 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3389 i));
df407dfe 3390 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3391
76a01679
JB
3392 if (!ada_type_match (ftype, atype, 1))
3393 return 0;
3394 }
14f9c5c9
AS
3395 }
3396 return 1;
3397}
3398
3399/* False iff function type FUNC_TYPE definitely does not produce a value
3400 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3401 FUNC_TYPE is not a valid function type with a non-null return type
3402 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3403
3404static int
d2e4a39e 3405return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3406{
d2e4a39e 3407 struct type *return_type;
14f9c5c9
AS
3408
3409 if (func_type == NULL)
3410 return 1;
3411
4c4b4cd2 3412 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3413 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3414 else
18af8284 3415 return_type = get_base_type (func_type);
14f9c5c9
AS
3416 if (return_type == NULL)
3417 return 1;
3418
18af8284 3419 context_type = get_base_type (context_type);
14f9c5c9
AS
3420
3421 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3422 return context_type == NULL || return_type == context_type;
3423 else if (context_type == NULL)
3424 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3425 else
3426 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3427}
3428
3429
4c4b4cd2 3430/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3431 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3432 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3433 that returns that type, then eliminate matches that don't. If
3434 CONTEXT_TYPE is void and there is at least one match that does not
3435 return void, eliminate all matches that do.
3436
14f9c5c9
AS
3437 Asks the user if there is more than one match remaining. Returns -1
3438 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3439 solely for messages. May re-arrange and modify SYMS in
3440 the process; the index returned is for the modified vector. */
14f9c5c9 3441
4c4b4cd2
PH
3442static int
3443ada_resolve_function (struct ada_symbol_info syms[],
3444 int nsyms, struct value **args, int nargs,
3445 const char *name, struct type *context_type)
14f9c5c9 3446{
30b15541 3447 int fallback;
14f9c5c9 3448 int k;
4c4b4cd2 3449 int m; /* Number of hits */
14f9c5c9 3450
d2e4a39e 3451 m = 0;
30b15541
UW
3452 /* In the first pass of the loop, we only accept functions matching
3453 context_type. If none are found, we add a second pass of the loop
3454 where every function is accepted. */
3455 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3456 {
3457 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3458 {
61ee279c 3459 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3460
3461 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3462 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3463 {
3464 syms[m] = syms[k];
3465 m += 1;
3466 }
3467 }
14f9c5c9
AS
3468 }
3469
3470 if (m == 0)
3471 return -1;
3472 else if (m > 1)
3473 {
323e0a4a 3474 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3475 user_select_syms (syms, m, 1);
14f9c5c9
AS
3476 return 0;
3477 }
3478 return 0;
3479}
3480
4c4b4cd2
PH
3481/* Returns true (non-zero) iff decoded name N0 should appear before N1
3482 in a listing of choices during disambiguation (see sort_choices, below).
3483 The idea is that overloadings of a subprogram name from the
3484 same package should sort in their source order. We settle for ordering
3485 such symbols by their trailing number (__N or $N). */
3486
14f9c5c9 3487static int
0d5cff50 3488encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3489{
3490 if (N1 == NULL)
3491 return 0;
3492 else if (N0 == NULL)
3493 return 1;
3494 else
3495 {
3496 int k0, k1;
5b4ee69b 3497
d2e4a39e 3498 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3499 ;
d2e4a39e 3500 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3501 ;
d2e4a39e 3502 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3503 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3504 {
3505 int n0, n1;
5b4ee69b 3506
4c4b4cd2
PH
3507 n0 = k0;
3508 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3509 n0 -= 1;
3510 n1 = k1;
3511 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3512 n1 -= 1;
3513 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3514 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3515 }
14f9c5c9
AS
3516 return (strcmp (N0, N1) < 0);
3517 }
3518}
d2e4a39e 3519
4c4b4cd2
PH
3520/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3521 encoded names. */
3522
d2e4a39e 3523static void
4c4b4cd2 3524sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3525{
4c4b4cd2 3526 int i;
5b4ee69b 3527
d2e4a39e 3528 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3529 {
4c4b4cd2 3530 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3531 int j;
3532
d2e4a39e 3533 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3534 {
3535 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3536 SYMBOL_LINKAGE_NAME (sym.sym)))
3537 break;
3538 syms[j + 1] = syms[j];
3539 }
d2e4a39e 3540 syms[j + 1] = sym;
14f9c5c9
AS
3541 }
3542}
3543
4c4b4cd2
PH
3544/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3545 by asking the user (if necessary), returning the number selected,
3546 and setting the first elements of SYMS items. Error if no symbols
3547 selected. */
14f9c5c9
AS
3548
3549/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3550 to be re-integrated one of these days. */
14f9c5c9
AS
3551
3552int
4c4b4cd2 3553user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3554{
3555 int i;
d2e4a39e 3556 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3557 int n_chosen;
3558 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3559 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3560
3561 if (max_results < 1)
323e0a4a 3562 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3563 if (nsyms <= 1)
3564 return nsyms;
3565
717d2f5a
JB
3566 if (select_mode == multiple_symbols_cancel)
3567 error (_("\
3568canceled because the command is ambiguous\n\
3569See set/show multiple-symbol."));
3570
3571 /* If select_mode is "all", then return all possible symbols.
3572 Only do that if more than one symbol can be selected, of course.
3573 Otherwise, display the menu as usual. */
3574 if (select_mode == multiple_symbols_all && max_results > 1)
3575 return nsyms;
3576
323e0a4a 3577 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3578 if (max_results > 1)
323e0a4a 3579 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3580
4c4b4cd2 3581 sort_choices (syms, nsyms);
14f9c5c9
AS
3582
3583 for (i = 0; i < nsyms; i += 1)
3584 {
4c4b4cd2
PH
3585 if (syms[i].sym == NULL)
3586 continue;
3587
3588 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3589 {
76a01679
JB
3590 struct symtab_and_line sal =
3591 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3592
323e0a4a
AC
3593 if (sal.symtab == NULL)
3594 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3595 i + first_choice,
3596 SYMBOL_PRINT_NAME (syms[i].sym),
3597 sal.line);
3598 else
3599 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3600 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3601 symtab_to_filename_for_display (sal.symtab),
3602 sal.line);
4c4b4cd2
PH
3603 continue;
3604 }
d2e4a39e 3605 else
4c4b4cd2
PH
3606 {
3607 int is_enumeral =
3608 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3609 && SYMBOL_TYPE (syms[i].sym) != NULL
3610 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3611 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3612
3613 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3614 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3615 i + first_choice,
3616 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3617 symtab_to_filename_for_display (symtab),
3618 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3619 else if (is_enumeral
3620 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3621 {
a3f17187 3622 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3623 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3624 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3625 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3626 SYMBOL_PRINT_NAME (syms[i].sym));
3627 }
3628 else if (symtab != NULL)
3629 printf_unfiltered (is_enumeral
323e0a4a
AC
3630 ? _("[%d] %s in %s (enumeral)\n")
3631 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3632 i + first_choice,
3633 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3634 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3635 else
3636 printf_unfiltered (is_enumeral
323e0a4a
AC
3637 ? _("[%d] %s (enumeral)\n")
3638 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3639 i + first_choice,
3640 SYMBOL_PRINT_NAME (syms[i].sym));
3641 }
14f9c5c9 3642 }
d2e4a39e 3643
14f9c5c9 3644 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3645 "overload-choice");
14f9c5c9
AS
3646
3647 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3648 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3649
3650 return n_chosen;
3651}
3652
3653/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3654 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3655 order in CHOICES[0 .. N-1], and return N.
3656
3657 The user types choices as a sequence of numbers on one line
3658 separated by blanks, encoding them as follows:
3659
4c4b4cd2 3660 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3661 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3662 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3663
4c4b4cd2 3664 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3665
3666 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3667 prompts (for use with the -f switch). */
14f9c5c9
AS
3668
3669int
d2e4a39e 3670get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3671 int is_all_choice, char *annotation_suffix)
14f9c5c9 3672{
d2e4a39e 3673 char *args;
0bcd0149 3674 char *prompt;
14f9c5c9
AS
3675 int n_chosen;
3676 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3677
14f9c5c9
AS
3678 prompt = getenv ("PS2");
3679 if (prompt == NULL)
0bcd0149 3680 prompt = "> ";
14f9c5c9 3681
0bcd0149 3682 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3683
14f9c5c9 3684 if (args == NULL)
323e0a4a 3685 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3686
3687 n_chosen = 0;
76a01679 3688
4c4b4cd2
PH
3689 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3690 order, as given in args. Choices are validated. */
14f9c5c9
AS
3691 while (1)
3692 {
d2e4a39e 3693 char *args2;
14f9c5c9
AS
3694 int choice, j;
3695
0fcd72ba 3696 args = skip_spaces (args);
14f9c5c9 3697 if (*args == '\0' && n_chosen == 0)
323e0a4a 3698 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3699 else if (*args == '\0')
4c4b4cd2 3700 break;
14f9c5c9
AS
3701
3702 choice = strtol (args, &args2, 10);
d2e4a39e 3703 if (args == args2 || choice < 0
4c4b4cd2 3704 || choice > n_choices + first_choice - 1)
323e0a4a 3705 error (_("Argument must be choice number"));
14f9c5c9
AS
3706 args = args2;
3707
d2e4a39e 3708 if (choice == 0)
323e0a4a 3709 error (_("cancelled"));
14f9c5c9
AS
3710
3711 if (choice < first_choice)
4c4b4cd2
PH
3712 {
3713 n_chosen = n_choices;
3714 for (j = 0; j < n_choices; j += 1)
3715 choices[j] = j;
3716 break;
3717 }
14f9c5c9
AS
3718 choice -= first_choice;
3719
d2e4a39e 3720 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3721 {
3722 }
14f9c5c9
AS
3723
3724 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3725 {
3726 int k;
5b4ee69b 3727
4c4b4cd2
PH
3728 for (k = n_chosen - 1; k > j; k -= 1)
3729 choices[k + 1] = choices[k];
3730 choices[j + 1] = choice;
3731 n_chosen += 1;
3732 }
14f9c5c9
AS
3733 }
3734
3735 if (n_chosen > max_results)
323e0a4a 3736 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3737
14f9c5c9
AS
3738 return n_chosen;
3739}
3740
4c4b4cd2
PH
3741/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3742 on the function identified by SYM and BLOCK, and taking NARGS
3743 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3744
3745static void
d2e4a39e 3746replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3747 int oplen, struct symbol *sym,
270140bd 3748 const struct block *block)
14f9c5c9
AS
3749{
3750 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3751 symbol, -oplen for operator being replaced). */
d2e4a39e 3752 struct expression *newexp = (struct expression *)
8c1a34e7 3753 xzalloc (sizeof (struct expression)
4c4b4cd2 3754 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3755 struct expression *exp = *expp;
14f9c5c9
AS
3756
3757 newexp->nelts = exp->nelts + 7 - oplen;
3758 newexp->language_defn = exp->language_defn;
3489610d 3759 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3760 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3761 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3762 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3763
3764 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3765 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3766
3767 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3768 newexp->elts[pc + 4].block = block;
3769 newexp->elts[pc + 5].symbol = sym;
3770
3771 *expp = newexp;
aacb1f0a 3772 xfree (exp);
d2e4a39e 3773}
14f9c5c9
AS
3774
3775/* Type-class predicates */
3776
4c4b4cd2
PH
3777/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3778 or FLOAT). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781numeric_type_p (struct type *type)
14f9c5c9
AS
3782{
3783 if (type == NULL)
3784 return 0;
d2e4a39e
AS
3785 else
3786 {
3787 switch (TYPE_CODE (type))
4c4b4cd2
PH
3788 {
3789 case TYPE_CODE_INT:
3790 case TYPE_CODE_FLT:
3791 return 1;
3792 case TYPE_CODE_RANGE:
3793 return (type == TYPE_TARGET_TYPE (type)
3794 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3795 default:
3796 return 0;
3797 }
d2e4a39e 3798 }
14f9c5c9
AS
3799}
3800
4c4b4cd2 3801/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3802
3803static int
d2e4a39e 3804integer_type_p (struct type *type)
14f9c5c9
AS
3805{
3806 if (type == NULL)
3807 return 0;
d2e4a39e
AS
3808 else
3809 {
3810 switch (TYPE_CODE (type))
4c4b4cd2
PH
3811 {
3812 case TYPE_CODE_INT:
3813 return 1;
3814 case TYPE_CODE_RANGE:
3815 return (type == TYPE_TARGET_TYPE (type)
3816 || integer_type_p (TYPE_TARGET_TYPE (type)));
3817 default:
3818 return 0;
3819 }
d2e4a39e 3820 }
14f9c5c9
AS
3821}
3822
4c4b4cd2 3823/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3824
3825static int
d2e4a39e 3826scalar_type_p (struct type *type)
14f9c5c9
AS
3827{
3828 if (type == NULL)
3829 return 0;
d2e4a39e
AS
3830 else
3831 {
3832 switch (TYPE_CODE (type))
4c4b4cd2
PH
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLT:
3838 return 1;
3839 default:
3840 return 0;
3841 }
d2e4a39e 3842 }
14f9c5c9
AS
3843}
3844
4c4b4cd2 3845/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3846
3847static int
d2e4a39e 3848discrete_type_p (struct type *type)
14f9c5c9
AS
3849{
3850 if (type == NULL)
3851 return 0;
d2e4a39e
AS
3852 else
3853 {
3854 switch (TYPE_CODE (type))
4c4b4cd2
PH
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_RANGE:
3858 case TYPE_CODE_ENUM:
872f0337 3859 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3860 return 1;
3861 default:
3862 return 0;
3863 }
d2e4a39e 3864 }
14f9c5c9
AS
3865}
3866
4c4b4cd2
PH
3867/* Returns non-zero if OP with operands in the vector ARGS could be
3868 a user-defined function. Errs on the side of pre-defined operators
3869 (i.e., result 0). */
14f9c5c9
AS
3870
3871static int
d2e4a39e 3872possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3873{
76a01679 3874 struct type *type0 =
df407dfe 3875 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3876 struct type *type1 =
df407dfe 3877 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3878
4c4b4cd2
PH
3879 if (type0 == NULL)
3880 return 0;
3881
14f9c5c9
AS
3882 switch (op)
3883 {
3884 default:
3885 return 0;
3886
3887 case BINOP_ADD:
3888 case BINOP_SUB:
3889 case BINOP_MUL:
3890 case BINOP_DIV:
d2e4a39e 3891 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3892
3893 case BINOP_REM:
3894 case BINOP_MOD:
3895 case BINOP_BITWISE_AND:
3896 case BINOP_BITWISE_IOR:
3897 case BINOP_BITWISE_XOR:
d2e4a39e 3898 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3899
3900 case BINOP_EQUAL:
3901 case BINOP_NOTEQUAL:
3902 case BINOP_LESS:
3903 case BINOP_GTR:
3904 case BINOP_LEQ:
3905 case BINOP_GEQ:
d2e4a39e 3906 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3907
3908 case BINOP_CONCAT:
ee90b9ab 3909 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3910
3911 case BINOP_EXP:
d2e4a39e 3912 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3913
3914 case UNOP_NEG:
3915 case UNOP_PLUS:
3916 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3917 case UNOP_ABS:
3918 return (!numeric_type_p (type0));
14f9c5c9
AS
3919
3920 }
3921}
3922\f
4c4b4cd2 3923 /* Renaming */
14f9c5c9 3924
aeb5907d
JB
3925/* NOTES:
3926
3927 1. In the following, we assume that a renaming type's name may
3928 have an ___XD suffix. It would be nice if this went away at some
3929 point.
3930 2. We handle both the (old) purely type-based representation of
3931 renamings and the (new) variable-based encoding. At some point,
3932 it is devoutly to be hoped that the former goes away
3933 (FIXME: hilfinger-2007-07-09).
3934 3. Subprogram renamings are not implemented, although the XRS
3935 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3936
3937/* If SYM encodes a renaming,
3938
3939 <renaming> renames <renamed entity>,
3940
3941 sets *LEN to the length of the renamed entity's name,
3942 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3943 the string describing the subcomponent selected from the renamed
0963b4bd 3944 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3945 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3946 are undefined). Otherwise, returns a value indicating the category
3947 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3948 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3949 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3950 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3951 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3952 may be NULL, in which case they are not assigned.
3953
3954 [Currently, however, GCC does not generate subprogram renamings.] */
3955
3956enum ada_renaming_category
3957ada_parse_renaming (struct symbol *sym,
3958 const char **renamed_entity, int *len,
3959 const char **renaming_expr)
3960{
3961 enum ada_renaming_category kind;
3962 const char *info;
3963 const char *suffix;
3964
3965 if (sym == NULL)
3966 return ADA_NOT_RENAMING;
3967 switch (SYMBOL_CLASS (sym))
14f9c5c9 3968 {
aeb5907d
JB
3969 default:
3970 return ADA_NOT_RENAMING;
3971 case LOC_TYPEDEF:
3972 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3973 renamed_entity, len, renaming_expr);
3974 case LOC_LOCAL:
3975 case LOC_STATIC:
3976 case LOC_COMPUTED:
3977 case LOC_OPTIMIZED_OUT:
3978 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3979 if (info == NULL)
3980 return ADA_NOT_RENAMING;
3981 switch (info[5])
3982 {
3983 case '_':
3984 kind = ADA_OBJECT_RENAMING;
3985 info += 6;
3986 break;
3987 case 'E':
3988 kind = ADA_EXCEPTION_RENAMING;
3989 info += 7;
3990 break;
3991 case 'P':
3992 kind = ADA_PACKAGE_RENAMING;
3993 info += 7;
3994 break;
3995 case 'S':
3996 kind = ADA_SUBPROGRAM_RENAMING;
3997 info += 7;
3998 break;
3999 default:
4000 return ADA_NOT_RENAMING;
4001 }
14f9c5c9 4002 }
4c4b4cd2 4003
aeb5907d
JB
4004 if (renamed_entity != NULL)
4005 *renamed_entity = info;
4006 suffix = strstr (info, "___XE");
4007 if (suffix == NULL || suffix == info)
4008 return ADA_NOT_RENAMING;
4009 if (len != NULL)
4010 *len = strlen (info) - strlen (suffix);
4011 suffix += 5;
4012 if (renaming_expr != NULL)
4013 *renaming_expr = suffix;
4014 return kind;
4015}
4016
4017/* Assuming TYPE encodes a renaming according to the old encoding in
4018 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4019 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4020 ADA_NOT_RENAMING otherwise. */
4021static enum ada_renaming_category
4022parse_old_style_renaming (struct type *type,
4023 const char **renamed_entity, int *len,
4024 const char **renaming_expr)
4025{
4026 enum ada_renaming_category kind;
4027 const char *name;
4028 const char *info;
4029 const char *suffix;
14f9c5c9 4030
aeb5907d
JB
4031 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4032 || TYPE_NFIELDS (type) != 1)
4033 return ADA_NOT_RENAMING;
14f9c5c9 4034
aeb5907d
JB
4035 name = type_name_no_tag (type);
4036 if (name == NULL)
4037 return ADA_NOT_RENAMING;
4038
4039 name = strstr (name, "___XR");
4040 if (name == NULL)
4041 return ADA_NOT_RENAMING;
4042 switch (name[5])
4043 {
4044 case '\0':
4045 case '_':
4046 kind = ADA_OBJECT_RENAMING;
4047 break;
4048 case 'E':
4049 kind = ADA_EXCEPTION_RENAMING;
4050 break;
4051 case 'P':
4052 kind = ADA_PACKAGE_RENAMING;
4053 break;
4054 case 'S':
4055 kind = ADA_SUBPROGRAM_RENAMING;
4056 break;
4057 default:
4058 return ADA_NOT_RENAMING;
4059 }
14f9c5c9 4060
aeb5907d
JB
4061 info = TYPE_FIELD_NAME (type, 0);
4062 if (info == NULL)
4063 return ADA_NOT_RENAMING;
4064 if (renamed_entity != NULL)
4065 *renamed_entity = info;
4066 suffix = strstr (info, "___XE");
4067 if (renaming_expr != NULL)
4068 *renaming_expr = suffix + 5;
4069 if (suffix == NULL || suffix == info)
4070 return ADA_NOT_RENAMING;
4071 if (len != NULL)
4072 *len = suffix - info;
4073 return kind;
a5ee536b
JB
4074}
4075
4076/* Compute the value of the given RENAMING_SYM, which is expected to
4077 be a symbol encoding a renaming expression. BLOCK is the block
4078 used to evaluate the renaming. */
52ce6436 4079
a5ee536b
JB
4080static struct value *
4081ada_read_renaming_var_value (struct symbol *renaming_sym,
4082 struct block *block)
4083{
bbc13ae3 4084 const char *sym_name;
a5ee536b
JB
4085 struct expression *expr;
4086 struct value *value;
4087 struct cleanup *old_chain = NULL;
4088
bbc13ae3 4089 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4090 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4091 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4092 value = evaluate_expression (expr);
4093
4094 do_cleanups (old_chain);
4095 return value;
4096}
14f9c5c9 4097\f
d2e4a39e 4098
4c4b4cd2 4099 /* Evaluation: Function Calls */
14f9c5c9 4100
4c4b4cd2 4101/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4102 lvalues, and otherwise has the side-effect of allocating memory
4103 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4104
d2e4a39e 4105static struct value *
40bc484c 4106ensure_lval (struct value *val)
14f9c5c9 4107{
40bc484c
JB
4108 if (VALUE_LVAL (val) == not_lval
4109 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4110 {
df407dfe 4111 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4112 const CORE_ADDR addr =
4113 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4114
40bc484c 4115 set_value_address (val, addr);
a84a8a0d 4116 VALUE_LVAL (val) = lval_memory;
40bc484c 4117 write_memory (addr, value_contents (val), len);
c3e5cd34 4118 }
14f9c5c9
AS
4119
4120 return val;
4121}
4122
4123/* Return the value ACTUAL, converted to be an appropriate value for a
4124 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4125 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4126 values not residing in memory, updating it as needed. */
14f9c5c9 4127
a93c0eb6 4128struct value *
40bc484c 4129ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4130{
df407dfe 4131 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4132 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4133 struct type *formal_target =
4134 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4135 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4136 struct type *actual_target =
4137 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4138 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4139
4c4b4cd2 4140 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4141 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4142 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4143 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4144 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4145 {
a84a8a0d 4146 struct value *result;
5b4ee69b 4147
14f9c5c9 4148 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4149 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4150 result = desc_data (actual);
14f9c5c9 4151 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4152 {
4153 if (VALUE_LVAL (actual) != lval_memory)
4154 {
4155 struct value *val;
5b4ee69b 4156
df407dfe 4157 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4158 val = allocate_value (actual_type);
990a07ab 4159 memcpy ((char *) value_contents_raw (val),
0fd88904 4160 (char *) value_contents (actual),
4c4b4cd2 4161 TYPE_LENGTH (actual_type));
40bc484c 4162 actual = ensure_lval (val);
4c4b4cd2 4163 }
a84a8a0d 4164 result = value_addr (actual);
4c4b4cd2 4165 }
a84a8a0d
JB
4166 else
4167 return actual;
b1af9e97 4168 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4169 }
4170 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4171 return ada_value_ind (actual);
4172
4173 return actual;
4174}
4175
438c98a1
JB
4176/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4177 type TYPE. This is usually an inefficient no-op except on some targets
4178 (such as AVR) where the representation of a pointer and an address
4179 differs. */
4180
4181static CORE_ADDR
4182value_pointer (struct value *value, struct type *type)
4183{
4184 struct gdbarch *gdbarch = get_type_arch (type);
4185 unsigned len = TYPE_LENGTH (type);
4186 gdb_byte *buf = alloca (len);
4187 CORE_ADDR addr;
4188
4189 addr = value_address (value);
4190 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4191 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4192 return addr;
4193}
4194
14f9c5c9 4195
4c4b4cd2
PH
4196/* Push a descriptor of type TYPE for array value ARR on the stack at
4197 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4198 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4199 to-descriptor type rather than a descriptor type), a struct value *
4200 representing a pointer to this descriptor. */
14f9c5c9 4201
d2e4a39e 4202static struct value *
40bc484c 4203make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4204{
d2e4a39e
AS
4205 struct type *bounds_type = desc_bounds_type (type);
4206 struct type *desc_type = desc_base_type (type);
4207 struct value *descriptor = allocate_value (desc_type);
4208 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4209 int i;
d2e4a39e 4210
0963b4bd
MS
4211 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4212 i > 0; i -= 1)
14f9c5c9 4213 {
19f220c3
JK
4214 modify_field (value_type (bounds), value_contents_writeable (bounds),
4215 ada_array_bound (arr, i, 0),
4216 desc_bound_bitpos (bounds_type, i, 0),
4217 desc_bound_bitsize (bounds_type, i, 0));
4218 modify_field (value_type (bounds), value_contents_writeable (bounds),
4219 ada_array_bound (arr, i, 1),
4220 desc_bound_bitpos (bounds_type, i, 1),
4221 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4222 }
d2e4a39e 4223
40bc484c 4224 bounds = ensure_lval (bounds);
d2e4a39e 4225
19f220c3
JK
4226 modify_field (value_type (descriptor),
4227 value_contents_writeable (descriptor),
4228 value_pointer (ensure_lval (arr),
4229 TYPE_FIELD_TYPE (desc_type, 0)),
4230 fat_pntr_data_bitpos (desc_type),
4231 fat_pntr_data_bitsize (desc_type));
4232
4233 modify_field (value_type (descriptor),
4234 value_contents_writeable (descriptor),
4235 value_pointer (bounds,
4236 TYPE_FIELD_TYPE (desc_type, 1)),
4237 fat_pntr_bounds_bitpos (desc_type),
4238 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4239
40bc484c 4240 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4241
4242 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4243 return value_addr (descriptor);
4244 else
4245 return descriptor;
4246}
14f9c5c9 4247\f
963a6417 4248/* Dummy definitions for an experimental caching module that is not
0963b4bd 4249 * used in the public sources. */
96d887e8 4250
96d887e8
PH
4251static int
4252lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4253 struct symbol **sym, struct block **block)
96d887e8
PH
4254{
4255 return 0;
4256}
4257
4258static void
4259cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4260 const struct block *block)
96d887e8
PH
4261{
4262}
4c4b4cd2
PH
4263\f
4264 /* Symbol Lookup */
4265
c0431670
JB
4266/* Return nonzero if wild matching should be used when searching for
4267 all symbols matching LOOKUP_NAME.
4268
4269 LOOKUP_NAME is expected to be a symbol name after transformation
4270 for Ada lookups (see ada_name_for_lookup). */
4271
4272static int
4273should_use_wild_match (const char *lookup_name)
4274{
4275 return (strstr (lookup_name, "__") == NULL);
4276}
4277
4c4b4cd2
PH
4278/* Return the result of a standard (literal, C-like) lookup of NAME in
4279 given DOMAIN, visible from lexical block BLOCK. */
4280
4281static struct symbol *
4282standard_lookup (const char *name, const struct block *block,
4283 domain_enum domain)
4284{
acbd605d
MGD
4285 /* Initialize it just to avoid a GCC false warning. */
4286 struct symbol *sym = NULL;
4c4b4cd2 4287
2570f2b7 4288 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4289 return sym;
2570f2b7
UW
4290 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4291 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4292 return sym;
4293}
4294
4295
4296/* Non-zero iff there is at least one non-function/non-enumeral symbol
4297 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4298 since they contend in overloading in the same way. */
4299static int
4300is_nonfunction (struct ada_symbol_info syms[], int n)
4301{
4302 int i;
4303
4304 for (i = 0; i < n; i += 1)
4305 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4306 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4307 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4308 return 1;
4309
4310 return 0;
4311}
4312
4313/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4314 struct types. Otherwise, they may not. */
14f9c5c9
AS
4315
4316static int
d2e4a39e 4317equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4318{
d2e4a39e 4319 if (type0 == type1)
14f9c5c9 4320 return 1;
d2e4a39e 4321 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4322 || TYPE_CODE (type0) != TYPE_CODE (type1))
4323 return 0;
d2e4a39e 4324 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4325 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4326 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4327 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4328 return 1;
d2e4a39e 4329
14f9c5c9
AS
4330 return 0;
4331}
4332
4333/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4334 no more defined than that of SYM1. */
14f9c5c9
AS
4335
4336static int
d2e4a39e 4337lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4338{
4339 if (sym0 == sym1)
4340 return 1;
176620f1 4341 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4342 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4343 return 0;
4344
d2e4a39e 4345 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4346 {
4347 case LOC_UNDEF:
4348 return 1;
4349 case LOC_TYPEDEF:
4350 {
4c4b4cd2
PH
4351 struct type *type0 = SYMBOL_TYPE (sym0);
4352 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4353 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4354 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4355 int len0 = strlen (name0);
5b4ee69b 4356
4c4b4cd2
PH
4357 return
4358 TYPE_CODE (type0) == TYPE_CODE (type1)
4359 && (equiv_types (type0, type1)
4360 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4361 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4362 }
4363 case LOC_CONST:
4364 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4365 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4366 default:
4367 return 0;
14f9c5c9
AS
4368 }
4369}
4370
4c4b4cd2
PH
4371/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4372 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4373
4374static void
76a01679
JB
4375add_defn_to_vec (struct obstack *obstackp,
4376 struct symbol *sym,
2570f2b7 4377 struct block *block)
14f9c5c9
AS
4378{
4379 int i;
4c4b4cd2 4380 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4381
529cad9c
PH
4382 /* Do not try to complete stub types, as the debugger is probably
4383 already scanning all symbols matching a certain name at the
4384 time when this function is called. Trying to replace the stub
4385 type by its associated full type will cause us to restart a scan
4386 which may lead to an infinite recursion. Instead, the client
4387 collecting the matching symbols will end up collecting several
4388 matches, with at least one of them complete. It can then filter
4389 out the stub ones if needed. */
4390
4c4b4cd2
PH
4391 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4392 {
4393 if (lesseq_defined_than (sym, prevDefns[i].sym))
4394 return;
4395 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4396 {
4397 prevDefns[i].sym = sym;
4398 prevDefns[i].block = block;
4c4b4cd2 4399 return;
76a01679 4400 }
4c4b4cd2
PH
4401 }
4402
4403 {
4404 struct ada_symbol_info info;
4405
4406 info.sym = sym;
4407 info.block = block;
4c4b4cd2
PH
4408 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4409 }
4410}
4411
4412/* Number of ada_symbol_info structures currently collected in
4413 current vector in *OBSTACKP. */
4414
76a01679
JB
4415static int
4416num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4417{
4418 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4419}
4420
4421/* Vector of ada_symbol_info structures currently collected in current
4422 vector in *OBSTACKP. If FINISH, close off the vector and return
4423 its final address. */
4424
76a01679 4425static struct ada_symbol_info *
4c4b4cd2
PH
4426defns_collected (struct obstack *obstackp, int finish)
4427{
4428 if (finish)
4429 return obstack_finish (obstackp);
4430 else
4431 return (struct ada_symbol_info *) obstack_base (obstackp);
4432}
4433
7c7b6655
TT
4434/* Return a bound minimal symbol matching NAME according to Ada
4435 decoding rules. Returns an invalid symbol if there is no such
4436 minimal symbol. Names prefixed with "standard__" are handled
4437 specially: "standard__" is first stripped off, and only static and
4438 global symbols are searched. */
4c4b4cd2 4439
7c7b6655 4440struct bound_minimal_symbol
96d887e8 4441ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4442{
7c7b6655 4443 struct bound_minimal_symbol result;
4c4b4cd2 4444 struct objfile *objfile;
96d887e8 4445 struct minimal_symbol *msymbol;
dc4024cd 4446 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4447
7c7b6655
TT
4448 memset (&result, 0, sizeof (result));
4449
c0431670
JB
4450 /* Special case: If the user specifies a symbol name inside package
4451 Standard, do a non-wild matching of the symbol name without
4452 the "standard__" prefix. This was primarily introduced in order
4453 to allow the user to specifically access the standard exceptions
4454 using, for instance, Standard.Constraint_Error when Constraint_Error
4455 is ambiguous (due to the user defining its own Constraint_Error
4456 entity inside its program). */
96d887e8 4457 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4458 name += sizeof ("standard__") - 1;
4c4b4cd2 4459
96d887e8
PH
4460 ALL_MSYMBOLS (objfile, msymbol)
4461 {
dc4024cd 4462 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4463 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4464 {
4465 result.minsym = msymbol;
4466 result.objfile = objfile;
4467 break;
4468 }
96d887e8 4469 }
4c4b4cd2 4470
7c7b6655 4471 return result;
96d887e8 4472}
4c4b4cd2 4473
96d887e8
PH
4474/* For all subprograms that statically enclose the subprogram of the
4475 selected frame, add symbols matching identifier NAME in DOMAIN
4476 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4477 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4478 with a wildcard prefix. */
4c4b4cd2 4479
96d887e8
PH
4480static void
4481add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4482 const char *name, domain_enum namespace,
48b78332 4483 int wild_match_p)
96d887e8 4484{
96d887e8 4485}
14f9c5c9 4486
96d887e8
PH
4487/* True if TYPE is definitely an artificial type supplied to a symbol
4488 for which no debugging information was given in the symbol file. */
14f9c5c9 4489
96d887e8
PH
4490static int
4491is_nondebugging_type (struct type *type)
4492{
0d5cff50 4493 const char *name = ada_type_name (type);
5b4ee69b 4494
96d887e8
PH
4495 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4496}
4c4b4cd2 4497
8f17729f
JB
4498/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4499 that are deemed "identical" for practical purposes.
4500
4501 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4502 types and that their number of enumerals is identical (in other
4503 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4504
4505static int
4506ada_identical_enum_types_p (struct type *type1, struct type *type2)
4507{
4508 int i;
4509
4510 /* The heuristic we use here is fairly conservative. We consider
4511 that 2 enumerate types are identical if they have the same
4512 number of enumerals and that all enumerals have the same
4513 underlying value and name. */
4514
4515 /* All enums in the type should have an identical underlying value. */
4516 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4517 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4518 return 0;
4519
4520 /* All enumerals should also have the same name (modulo any numerical
4521 suffix). */
4522 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4523 {
0d5cff50
DE
4524 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4525 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4526 int len_1 = strlen (name_1);
4527 int len_2 = strlen (name_2);
4528
4529 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4530 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4531 if (len_1 != len_2
4532 || strncmp (TYPE_FIELD_NAME (type1, i),
4533 TYPE_FIELD_NAME (type2, i),
4534 len_1) != 0)
4535 return 0;
4536 }
4537
4538 return 1;
4539}
4540
4541/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4542 that are deemed "identical" for practical purposes. Sometimes,
4543 enumerals are not strictly identical, but their types are so similar
4544 that they can be considered identical.
4545
4546 For instance, consider the following code:
4547
4548 type Color is (Black, Red, Green, Blue, White);
4549 type RGB_Color is new Color range Red .. Blue;
4550
4551 Type RGB_Color is a subrange of an implicit type which is a copy
4552 of type Color. If we call that implicit type RGB_ColorB ("B" is
4553 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4554 As a result, when an expression references any of the enumeral
4555 by name (Eg. "print green"), the expression is technically
4556 ambiguous and the user should be asked to disambiguate. But
4557 doing so would only hinder the user, since it wouldn't matter
4558 what choice he makes, the outcome would always be the same.
4559 So, for practical purposes, we consider them as the same. */
4560
4561static int
4562symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4563{
4564 int i;
4565
4566 /* Before performing a thorough comparison check of each type,
4567 we perform a series of inexpensive checks. We expect that these
4568 checks will quickly fail in the vast majority of cases, and thus
4569 help prevent the unnecessary use of a more expensive comparison.
4570 Said comparison also expects us to make some of these checks
4571 (see ada_identical_enum_types_p). */
4572
4573 /* Quick check: All symbols should have an enum type. */
4574 for (i = 0; i < nsyms; i++)
4575 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4576 return 0;
4577
4578 /* Quick check: They should all have the same value. */
4579 for (i = 1; i < nsyms; i++)
4580 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4581 return 0;
4582
4583 /* Quick check: They should all have the same number of enumerals. */
4584 for (i = 1; i < nsyms; i++)
4585 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4586 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4587 return 0;
4588
4589 /* All the sanity checks passed, so we might have a set of
4590 identical enumeration types. Perform a more complete
4591 comparison of the type of each symbol. */
4592 for (i = 1; i < nsyms; i++)
4593 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4594 SYMBOL_TYPE (syms[0].sym)))
4595 return 0;
4596
4597 return 1;
4598}
4599
96d887e8
PH
4600/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4601 duplicate other symbols in the list (The only case I know of where
4602 this happens is when object files containing stabs-in-ecoff are
4603 linked with files containing ordinary ecoff debugging symbols (or no
4604 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4605 Returns the number of items in the modified list. */
4c4b4cd2 4606
96d887e8
PH
4607static int
4608remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4609{
4610 int i, j;
4c4b4cd2 4611
8f17729f
JB
4612 /* We should never be called with less than 2 symbols, as there
4613 cannot be any extra symbol in that case. But it's easy to
4614 handle, since we have nothing to do in that case. */
4615 if (nsyms < 2)
4616 return nsyms;
4617
96d887e8
PH
4618 i = 0;
4619 while (i < nsyms)
4620 {
a35ddb44 4621 int remove_p = 0;
339c13b6
JB
4622
4623 /* If two symbols have the same name and one of them is a stub type,
4624 the get rid of the stub. */
4625
4626 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4627 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4628 {
4629 for (j = 0; j < nsyms; j++)
4630 {
4631 if (j != i
4632 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4633 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4634 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4635 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4636 remove_p = 1;
339c13b6
JB
4637 }
4638 }
4639
4640 /* Two symbols with the same name, same class and same address
4641 should be identical. */
4642
4643 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4644 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4645 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4646 {
4647 for (j = 0; j < nsyms; j += 1)
4648 {
4649 if (i != j
4650 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4651 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4652 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4653 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4654 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4655 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4656 remove_p = 1;
4c4b4cd2 4657 }
4c4b4cd2 4658 }
339c13b6 4659
a35ddb44 4660 if (remove_p)
339c13b6
JB
4661 {
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666
96d887e8 4667 i += 1;
14f9c5c9 4668 }
8f17729f
JB
4669
4670 /* If all the remaining symbols are identical enumerals, then
4671 just keep the first one and discard the rest.
4672
4673 Unlike what we did previously, we do not discard any entry
4674 unless they are ALL identical. This is because the symbol
4675 comparison is not a strict comparison, but rather a practical
4676 comparison. If all symbols are considered identical, then
4677 we can just go ahead and use the first one and discard the rest.
4678 But if we cannot reduce the list to a single element, we have
4679 to ask the user to disambiguate anyways. And if we have to
4680 present a multiple-choice menu, it's less confusing if the list
4681 isn't missing some choices that were identical and yet distinct. */
4682 if (symbols_are_identical_enums (syms, nsyms))
4683 nsyms = 1;
4684
96d887e8 4685 return nsyms;
14f9c5c9
AS
4686}
4687
96d887e8
PH
4688/* Given a type that corresponds to a renaming entity, use the type name
4689 to extract the scope (package name or function name, fully qualified,
4690 and following the GNAT encoding convention) where this renaming has been
4691 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4692
96d887e8
PH
4693static char *
4694xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4695{
96d887e8 4696 /* The renaming types adhere to the following convention:
0963b4bd 4697 <scope>__<rename>___<XR extension>.
96d887e8
PH
4698 So, to extract the scope, we search for the "___XR" extension,
4699 and then backtrack until we find the first "__". */
76a01679 4700
96d887e8
PH
4701 const char *name = type_name_no_tag (renaming_type);
4702 char *suffix = strstr (name, "___XR");
4703 char *last;
4704 int scope_len;
4705 char *scope;
14f9c5c9 4706
96d887e8
PH
4707 /* Now, backtrack a bit until we find the first "__". Start looking
4708 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4709
96d887e8
PH
4710 for (last = suffix - 3; last > name; last--)
4711 if (last[0] == '_' && last[1] == '_')
4712 break;
76a01679 4713
96d887e8 4714 /* Make a copy of scope and return it. */
14f9c5c9 4715
96d887e8
PH
4716 scope_len = last - name;
4717 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4718
96d887e8
PH
4719 strncpy (scope, name, scope_len);
4720 scope[scope_len] = '\0';
4c4b4cd2 4721
96d887e8 4722 return scope;
4c4b4cd2
PH
4723}
4724
96d887e8 4725/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4726
96d887e8
PH
4727static int
4728is_package_name (const char *name)
4c4b4cd2 4729{
96d887e8
PH
4730 /* Here, We take advantage of the fact that no symbols are generated
4731 for packages, while symbols are generated for each function.
4732 So the condition for NAME represent a package becomes equivalent
4733 to NAME not existing in our list of symbols. There is only one
4734 small complication with library-level functions (see below). */
4c4b4cd2 4735
96d887e8 4736 char *fun_name;
76a01679 4737
96d887e8
PH
4738 /* If it is a function that has not been defined at library level,
4739 then we should be able to look it up in the symbols. */
4740 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4741 return 0;
14f9c5c9 4742
96d887e8
PH
4743 /* Library-level function names start with "_ada_". See if function
4744 "_ada_" followed by NAME can be found. */
14f9c5c9 4745
96d887e8 4746 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4747 functions names cannot contain "__" in them. */
96d887e8
PH
4748 if (strstr (name, "__") != NULL)
4749 return 0;
4c4b4cd2 4750
b435e160 4751 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4752
96d887e8
PH
4753 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4754}
14f9c5c9 4755
96d887e8 4756/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4757 not visible from FUNCTION_NAME. */
14f9c5c9 4758
96d887e8 4759static int
0d5cff50 4760old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4761{
aeb5907d 4762 char *scope;
1509e573 4763 struct cleanup *old_chain;
aeb5907d
JB
4764
4765 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4766 return 0;
4767
4768 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4769 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4770
96d887e8
PH
4771 /* If the rename has been defined in a package, then it is visible. */
4772 if (is_package_name (scope))
1509e573
JB
4773 {
4774 do_cleanups (old_chain);
4775 return 0;
4776 }
14f9c5c9 4777
96d887e8
PH
4778 /* Check that the rename is in the current function scope by checking
4779 that its name starts with SCOPE. */
76a01679 4780
96d887e8
PH
4781 /* If the function name starts with "_ada_", it means that it is
4782 a library-level function. Strip this prefix before doing the
4783 comparison, as the encoding for the renaming does not contain
4784 this prefix. */
4785 if (strncmp (function_name, "_ada_", 5) == 0)
4786 function_name += 5;
f26caa11 4787
1509e573
JB
4788 {
4789 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4790
4791 do_cleanups (old_chain);
4792 return is_invisible;
4793 }
f26caa11
PH
4794}
4795
aeb5907d
JB
4796/* Remove entries from SYMS that corresponds to a renaming entity that
4797 is not visible from the function associated with CURRENT_BLOCK or
4798 that is superfluous due to the presence of more specific renaming
4799 information. Places surviving symbols in the initial entries of
4800 SYMS and returns the number of surviving symbols.
96d887e8
PH
4801
4802 Rationale:
aeb5907d
JB
4803 First, in cases where an object renaming is implemented as a
4804 reference variable, GNAT may produce both the actual reference
4805 variable and the renaming encoding. In this case, we discard the
4806 latter.
4807
4808 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4809 entity. Unfortunately, STABS currently does not support the definition
4810 of types that are local to a given lexical block, so all renamings types
4811 are emitted at library level. As a consequence, if an application
4812 contains two renaming entities using the same name, and a user tries to
4813 print the value of one of these entities, the result of the ada symbol
4814 lookup will also contain the wrong renaming type.
f26caa11 4815
96d887e8
PH
4816 This function partially covers for this limitation by attempting to
4817 remove from the SYMS list renaming symbols that should be visible
4818 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4819 method with the current information available. The implementation
4820 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4821
4822 - When the user tries to print a rename in a function while there
4823 is another rename entity defined in a package: Normally, the
4824 rename in the function has precedence over the rename in the
4825 package, so the latter should be removed from the list. This is
4826 currently not the case.
4827
4828 - This function will incorrectly remove valid renames if
4829 the CURRENT_BLOCK corresponds to a function which symbol name
4830 has been changed by an "Export" pragma. As a consequence,
4831 the user will be unable to print such rename entities. */
4c4b4cd2 4832
14f9c5c9 4833static int
aeb5907d
JB
4834remove_irrelevant_renamings (struct ada_symbol_info *syms,
4835 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4836{
4837 struct symbol *current_function;
0d5cff50 4838 const char *current_function_name;
4c4b4cd2 4839 int i;
aeb5907d
JB
4840 int is_new_style_renaming;
4841
4842 /* If there is both a renaming foo___XR... encoded as a variable and
4843 a simple variable foo in the same block, discard the latter.
0963b4bd 4844 First, zero out such symbols, then compress. */
aeb5907d
JB
4845 is_new_style_renaming = 0;
4846 for (i = 0; i < nsyms; i += 1)
4847 {
4848 struct symbol *sym = syms[i].sym;
270140bd 4849 const struct block *block = syms[i].block;
aeb5907d
JB
4850 const char *name;
4851 const char *suffix;
4852
4853 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4854 continue;
4855 name = SYMBOL_LINKAGE_NAME (sym);
4856 suffix = strstr (name, "___XR");
4857
4858 if (suffix != NULL)
4859 {
4860 int name_len = suffix - name;
4861 int j;
5b4ee69b 4862
aeb5907d
JB
4863 is_new_style_renaming = 1;
4864 for (j = 0; j < nsyms; j += 1)
4865 if (i != j && syms[j].sym != NULL
4866 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4867 name_len) == 0
4868 && block == syms[j].block)
4869 syms[j].sym = NULL;
4870 }
4871 }
4872 if (is_new_style_renaming)
4873 {
4874 int j, k;
4875
4876 for (j = k = 0; j < nsyms; j += 1)
4877 if (syms[j].sym != NULL)
4878 {
4879 syms[k] = syms[j];
4880 k += 1;
4881 }
4882 return k;
4883 }
4c4b4cd2
PH
4884
4885 /* Extract the function name associated to CURRENT_BLOCK.
4886 Abort if unable to do so. */
76a01679 4887
4c4b4cd2
PH
4888 if (current_block == NULL)
4889 return nsyms;
76a01679 4890
7f0df278 4891 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4892 if (current_function == NULL)
4893 return nsyms;
4894
4895 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4896 if (current_function_name == NULL)
4897 return nsyms;
4898
4899 /* Check each of the symbols, and remove it from the list if it is
4900 a type corresponding to a renaming that is out of the scope of
4901 the current block. */
4902
4903 i = 0;
4904 while (i < nsyms)
4905 {
aeb5907d
JB
4906 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4907 == ADA_OBJECT_RENAMING
4908 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4909 {
4910 int j;
5b4ee69b 4911
aeb5907d 4912 for (j = i + 1; j < nsyms; j += 1)
76a01679 4913 syms[j - 1] = syms[j];
4c4b4cd2
PH
4914 nsyms -= 1;
4915 }
4916 else
4917 i += 1;
4918 }
4919
4920 return nsyms;
4921}
4922
339c13b6
JB
4923/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4924 whose name and domain match NAME and DOMAIN respectively.
4925 If no match was found, then extend the search to "enclosing"
4926 routines (in other words, if we're inside a nested function,
4927 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4928 If WILD_MATCH_P is nonzero, perform the naming matching in
4929 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4930
4931 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4932
4933static void
4934ada_add_local_symbols (struct obstack *obstackp, const char *name,
4935 struct block *block, domain_enum domain,
d0a8ab18 4936 int wild_match_p)
339c13b6
JB
4937{
4938 int block_depth = 0;
4939
4940 while (block != NULL)
4941 {
4942 block_depth += 1;
d0a8ab18
JB
4943 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4944 wild_match_p);
339c13b6
JB
4945
4946 /* If we found a non-function match, assume that's the one. */
4947 if (is_nonfunction (defns_collected (obstackp, 0),
4948 num_defns_collected (obstackp)))
4949 return;
4950
4951 block = BLOCK_SUPERBLOCK (block);
4952 }
4953
4954 /* If no luck so far, try to find NAME as a local symbol in some lexically
4955 enclosing subprogram. */
4956 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4957 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4958}
4959
ccefe4c4 4960/* An object of this type is used as the user_data argument when
40658b94 4961 calling the map_matching_symbols method. */
ccefe4c4 4962
40658b94 4963struct match_data
ccefe4c4 4964{
40658b94 4965 struct objfile *objfile;
ccefe4c4 4966 struct obstack *obstackp;
40658b94
PH
4967 struct symbol *arg_sym;
4968 int found_sym;
ccefe4c4
TT
4969};
4970
40658b94
PH
4971/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4972 to a list of symbols. DATA0 is a pointer to a struct match_data *
4973 containing the obstack that collects the symbol list, the file that SYM
4974 must come from, a flag indicating whether a non-argument symbol has
4975 been found in the current block, and the last argument symbol
4976 passed in SYM within the current block (if any). When SYM is null,
4977 marking the end of a block, the argument symbol is added if no
4978 other has been found. */
ccefe4c4 4979
40658b94
PH
4980static int
4981aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4982{
40658b94
PH
4983 struct match_data *data = (struct match_data *) data0;
4984
4985 if (sym == NULL)
4986 {
4987 if (!data->found_sym && data->arg_sym != NULL)
4988 add_defn_to_vec (data->obstackp,
4989 fixup_symbol_section (data->arg_sym, data->objfile),
4990 block);
4991 data->found_sym = 0;
4992 data->arg_sym = NULL;
4993 }
4994 else
4995 {
4996 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4997 return 0;
4998 else if (SYMBOL_IS_ARGUMENT (sym))
4999 data->arg_sym = sym;
5000 else
5001 {
5002 data->found_sym = 1;
5003 add_defn_to_vec (data->obstackp,
5004 fixup_symbol_section (sym, data->objfile),
5005 block);
5006 }
5007 }
5008 return 0;
5009}
5010
db230ce3
JB
5011/* Implements compare_names, but only applying the comparision using
5012 the given CASING. */
5b4ee69b 5013
40658b94 5014static int
db230ce3
JB
5015compare_names_with_case (const char *string1, const char *string2,
5016 enum case_sensitivity casing)
40658b94
PH
5017{
5018 while (*string1 != '\0' && *string2 != '\0')
5019 {
db230ce3
JB
5020 char c1, c2;
5021
40658b94
PH
5022 if (isspace (*string1) || isspace (*string2))
5023 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5024
5025 if (casing == case_sensitive_off)
5026 {
5027 c1 = tolower (*string1);
5028 c2 = tolower (*string2);
5029 }
5030 else
5031 {
5032 c1 = *string1;
5033 c2 = *string2;
5034 }
5035 if (c1 != c2)
40658b94 5036 break;
db230ce3 5037
40658b94
PH
5038 string1 += 1;
5039 string2 += 1;
5040 }
db230ce3 5041
40658b94
PH
5042 switch (*string1)
5043 {
5044 case '(':
5045 return strcmp_iw_ordered (string1, string2);
5046 case '_':
5047 if (*string2 == '\0')
5048 {
052874e8 5049 if (is_name_suffix (string1))
40658b94
PH
5050 return 0;
5051 else
1a1d5513 5052 return 1;
40658b94 5053 }
dbb8534f 5054 /* FALLTHROUGH */
40658b94
PH
5055 default:
5056 if (*string2 == '(')
5057 return strcmp_iw_ordered (string1, string2);
5058 else
db230ce3
JB
5059 {
5060 if (casing == case_sensitive_off)
5061 return tolower (*string1) - tolower (*string2);
5062 else
5063 return *string1 - *string2;
5064 }
40658b94 5065 }
ccefe4c4
TT
5066}
5067
db230ce3
JB
5068/* Compare STRING1 to STRING2, with results as for strcmp.
5069 Compatible with strcmp_iw_ordered in that...
5070
5071 strcmp_iw_ordered (STRING1, STRING2) <= 0
5072
5073 ... implies...
5074
5075 compare_names (STRING1, STRING2) <= 0
5076
5077 (they may differ as to what symbols compare equal). */
5078
5079static int
5080compare_names (const char *string1, const char *string2)
5081{
5082 int result;
5083
5084 /* Similar to what strcmp_iw_ordered does, we need to perform
5085 a case-insensitive comparison first, and only resort to
5086 a second, case-sensitive, comparison if the first one was
5087 not sufficient to differentiate the two strings. */
5088
5089 result = compare_names_with_case (string1, string2, case_sensitive_off);
5090 if (result == 0)
5091 result = compare_names_with_case (string1, string2, case_sensitive_on);
5092
5093 return result;
5094}
5095
339c13b6
JB
5096/* Add to OBSTACKP all non-local symbols whose name and domain match
5097 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5098 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5099
5100static void
40658b94
PH
5101add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5102 domain_enum domain, int global,
5103 int is_wild_match)
339c13b6
JB
5104{
5105 struct objfile *objfile;
40658b94 5106 struct match_data data;
339c13b6 5107
6475f2fe 5108 memset (&data, 0, sizeof data);
ccefe4c4 5109 data.obstackp = obstackp;
339c13b6 5110
ccefe4c4 5111 ALL_OBJFILES (objfile)
40658b94
PH
5112 {
5113 data.objfile = objfile;
5114
5115 if (is_wild_match)
ade7ed9e 5116 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5117 aux_add_nonlocal_symbols, &data,
5118 wild_match, NULL);
5119 else
ade7ed9e 5120 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5121 aux_add_nonlocal_symbols, &data,
5122 full_match, compare_names);
5123 }
5124
5125 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5126 {
5127 ALL_OBJFILES (objfile)
5128 {
5129 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5130 strcpy (name1, "_ada_");
5131 strcpy (name1 + sizeof ("_ada_") - 1, name);
5132 data.objfile = objfile;
ade7ed9e
DE
5133 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5134 global,
0963b4bd
MS
5135 aux_add_nonlocal_symbols,
5136 &data,
40658b94
PH
5137 full_match, compare_names);
5138 }
5139 }
339c13b6
JB
5140}
5141
4eeaa230
DE
5142/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5143 non-zero, enclosing scope and in global scopes, returning the number of
5144 matches.
9f88c959 5145 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5146 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5147 any) in which they were found. This vector is transient---good only to
5148 the next call of ada_lookup_symbol_list.
5149
5150 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5151 symbol match within the nest of blocks whose innermost member is BLOCK0,
5152 is the one match returned (no other matches in that or
d9680e73 5153 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5154 surrounding BLOCK0, then these alone are returned.
5155
9f88c959 5156 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5157 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5158
4eeaa230
DE
5159static int
5160ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5161 domain_enum namespace,
5162 struct ada_symbol_info **results,
5163 int full_search)
14f9c5c9
AS
5164{
5165 struct symbol *sym;
14f9c5c9 5166 struct block *block;
4c4b4cd2 5167 const char *name;
82ccd55e 5168 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5169 int cacheIfUnique;
4c4b4cd2 5170 int ndefns;
14f9c5c9 5171
4c4b4cd2
PH
5172 obstack_free (&symbol_list_obstack, NULL);
5173 obstack_init (&symbol_list_obstack);
14f9c5c9 5174
14f9c5c9
AS
5175 cacheIfUnique = 0;
5176
5177 /* Search specified block and its superiors. */
5178
4c4b4cd2 5179 name = name0;
76a01679
JB
5180 block = (struct block *) block0; /* FIXME: No cast ought to be
5181 needed, but adding const will
5182 have a cascade effect. */
339c13b6
JB
5183
5184 /* Special case: If the user specifies a symbol name inside package
5185 Standard, do a non-wild matching of the symbol name without
5186 the "standard__" prefix. This was primarily introduced in order
5187 to allow the user to specifically access the standard exceptions
5188 using, for instance, Standard.Constraint_Error when Constraint_Error
5189 is ambiguous (due to the user defining its own Constraint_Error
5190 entity inside its program). */
4c4b4cd2
PH
5191 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5192 {
4c4b4cd2
PH
5193 block = NULL;
5194 name = name0 + sizeof ("standard__") - 1;
5195 }
5196
339c13b6 5197 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5198
4eeaa230
DE
5199 if (block != NULL)
5200 {
5201 if (full_search)
5202 {
5203 ada_add_local_symbols (&symbol_list_obstack, name, block,
5204 namespace, wild_match_p);
5205 }
5206 else
5207 {
5208 /* In the !full_search case we're are being called by
5209 ada_iterate_over_symbols, and we don't want to search
5210 superblocks. */
5211 ada_add_block_symbols (&symbol_list_obstack, block, name,
5212 namespace, NULL, wild_match_p);
5213 }
5214 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5215 goto done;
5216 }
d2e4a39e 5217
339c13b6
JB
5218 /* No non-global symbols found. Check our cache to see if we have
5219 already performed this search before. If we have, then return
5220 the same result. */
5221
14f9c5c9 5222 cacheIfUnique = 1;
2570f2b7 5223 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5224 {
5225 if (sym != NULL)
2570f2b7 5226 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5227 goto done;
5228 }
14f9c5c9 5229
339c13b6
JB
5230 /* Search symbols from all global blocks. */
5231
40658b94 5232 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5233 wild_match_p);
d2e4a39e 5234
4c4b4cd2 5235 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5236 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5237
4c4b4cd2 5238 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5239 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5240 wild_match_p);
14f9c5c9 5241
4c4b4cd2
PH
5242done:
5243 ndefns = num_defns_collected (&symbol_list_obstack);
5244 *results = defns_collected (&symbol_list_obstack, 1);
5245
5246 ndefns = remove_extra_symbols (*results, ndefns);
5247
2ad01556 5248 if (ndefns == 0 && full_search)
2570f2b7 5249 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5250
2ad01556 5251 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5252 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5253
aeb5907d 5254 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5255
14f9c5c9
AS
5256 return ndefns;
5257}
5258
4eeaa230
DE
5259/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5260 in global scopes, returning the number of matches, and setting *RESULTS
5261 to a vector of (SYM,BLOCK) tuples.
5262 See ada_lookup_symbol_list_worker for further details. */
5263
5264int
5265ada_lookup_symbol_list (const char *name0, const struct block *block0,
5266 domain_enum domain, struct ada_symbol_info **results)
5267{
5268 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5269}
5270
5271/* Implementation of the la_iterate_over_symbols method. */
5272
5273static void
5274ada_iterate_over_symbols (const struct block *block,
5275 const char *name, domain_enum domain,
5276 symbol_found_callback_ftype *callback,
5277 void *data)
5278{
5279 int ndefs, i;
5280 struct ada_symbol_info *results;
5281
5282 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5283 for (i = 0; i < ndefs; ++i)
5284 {
5285 if (! (*callback) (results[i].sym, data))
5286 break;
5287 }
5288}
5289
f8eba3c6
TT
5290/* If NAME is the name of an entity, return a string that should
5291 be used to look that entity up in Ada units. This string should
5292 be deallocated after use using xfree.
5293
5294 NAME can have any form that the "break" or "print" commands might
5295 recognize. In other words, it does not have to be the "natural"
5296 name, or the "encoded" name. */
5297
5298char *
5299ada_name_for_lookup (const char *name)
5300{
5301 char *canon;
5302 int nlen = strlen (name);
5303
5304 if (name[0] == '<' && name[nlen - 1] == '>')
5305 {
5306 canon = xmalloc (nlen - 1);
5307 memcpy (canon, name + 1, nlen - 2);
5308 canon[nlen - 2] = '\0';
5309 }
5310 else
5311 canon = xstrdup (ada_encode (ada_fold_name (name)));
5312 return canon;
5313}
5314
4e5c77fe
JB
5315/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5316 to 1, but choosing the first symbol found if there are multiple
5317 choices.
5318
5e2336be
JB
5319 The result is stored in *INFO, which must be non-NULL.
5320 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5321
5322void
5323ada_lookup_encoded_symbol (const char *name, const struct block *block,
5324 domain_enum namespace,
5e2336be 5325 struct ada_symbol_info *info)
14f9c5c9 5326{
4c4b4cd2 5327 struct ada_symbol_info *candidates;
14f9c5c9
AS
5328 int n_candidates;
5329
5e2336be
JB
5330 gdb_assert (info != NULL);
5331 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5332
4eeaa230 5333 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5334 if (n_candidates == 0)
4e5c77fe 5335 return;
4c4b4cd2 5336
5e2336be
JB
5337 *info = candidates[0];
5338 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5339}
aeb5907d
JB
5340
5341/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5342 scope and in global scopes, or NULL if none. NAME is folded and
5343 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5344 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5345 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5346
aeb5907d
JB
5347struct symbol *
5348ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5349 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5350{
5e2336be 5351 struct ada_symbol_info info;
4e5c77fe 5352
aeb5907d
JB
5353 if (is_a_field_of_this != NULL)
5354 *is_a_field_of_this = 0;
5355
4e5c77fe 5356 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5357 block0, namespace, &info);
5358 return info.sym;
4c4b4cd2 5359}
14f9c5c9 5360
4c4b4cd2
PH
5361static struct symbol *
5362ada_lookup_symbol_nonlocal (const char *name,
76a01679 5363 const struct block *block,
21b556f4 5364 const domain_enum domain)
4c4b4cd2 5365{
94af9270 5366 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5367}
5368
5369
4c4b4cd2
PH
5370/* True iff STR is a possible encoded suffix of a normal Ada name
5371 that is to be ignored for matching purposes. Suffixes of parallel
5372 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5373 are given by any of the regular expressions:
4c4b4cd2 5374
babe1480
JB
5375 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5376 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5377 TKB [subprogram suffix for task bodies]
babe1480 5378 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5379 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5380
5381 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5382 match is performed. This sequence is used to differentiate homonyms,
5383 is an optional part of a valid name suffix. */
4c4b4cd2 5384
14f9c5c9 5385static int
d2e4a39e 5386is_name_suffix (const char *str)
14f9c5c9
AS
5387{
5388 int k;
4c4b4cd2
PH
5389 const char *matching;
5390 const int len = strlen (str);
5391
babe1480
JB
5392 /* Skip optional leading __[0-9]+. */
5393
4c4b4cd2
PH
5394 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5395 {
babe1480
JB
5396 str += 3;
5397 while (isdigit (str[0]))
5398 str += 1;
4c4b4cd2 5399 }
babe1480
JB
5400
5401 /* [.$][0-9]+ */
4c4b4cd2 5402
babe1480 5403 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5404 {
babe1480 5405 matching = str + 1;
4c4b4cd2
PH
5406 while (isdigit (matching[0]))
5407 matching += 1;
5408 if (matching[0] == '\0')
5409 return 1;
5410 }
5411
5412 /* ___[0-9]+ */
babe1480 5413
4c4b4cd2
PH
5414 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5415 {
5416 matching = str + 3;
5417 while (isdigit (matching[0]))
5418 matching += 1;
5419 if (matching[0] == '\0')
5420 return 1;
5421 }
5422
9ac7f98e
JB
5423 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5424
5425 if (strcmp (str, "TKB") == 0)
5426 return 1;
5427
529cad9c
PH
5428#if 0
5429 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5430 with a N at the end. Unfortunately, the compiler uses the same
5431 convention for other internal types it creates. So treating
529cad9c 5432 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5433 some regressions. For instance, consider the case of an enumerated
5434 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5435 name ends with N.
5436 Having a single character like this as a suffix carrying some
0963b4bd 5437 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5438 to be something like "_N" instead. In the meantime, do not do
5439 the following check. */
5440 /* Protected Object Subprograms */
5441 if (len == 1 && str [0] == 'N')
5442 return 1;
5443#endif
5444
5445 /* _E[0-9]+[bs]$ */
5446 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5447 {
5448 matching = str + 3;
5449 while (isdigit (matching[0]))
5450 matching += 1;
5451 if ((matching[0] == 'b' || matching[0] == 's')
5452 && matching [1] == '\0')
5453 return 1;
5454 }
5455
4c4b4cd2
PH
5456 /* ??? We should not modify STR directly, as we are doing below. This
5457 is fine in this case, but may become problematic later if we find
5458 that this alternative did not work, and want to try matching
5459 another one from the begining of STR. Since we modified it, we
5460 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5461 if (str[0] == 'X')
5462 {
5463 str += 1;
d2e4a39e 5464 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5465 {
5466 if (str[0] != 'n' && str[0] != 'b')
5467 return 0;
5468 str += 1;
5469 }
14f9c5c9 5470 }
babe1480 5471
14f9c5c9
AS
5472 if (str[0] == '\000')
5473 return 1;
babe1480 5474
d2e4a39e 5475 if (str[0] == '_')
14f9c5c9
AS
5476 {
5477 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5478 return 0;
d2e4a39e 5479 if (str[2] == '_')
4c4b4cd2 5480 {
61ee279c
PH
5481 if (strcmp (str + 3, "JM") == 0)
5482 return 1;
5483 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5484 the LJM suffix in favor of the JM one. But we will
5485 still accept LJM as a valid suffix for a reasonable
5486 amount of time, just to allow ourselves to debug programs
5487 compiled using an older version of GNAT. */
4c4b4cd2
PH
5488 if (strcmp (str + 3, "LJM") == 0)
5489 return 1;
5490 if (str[3] != 'X')
5491 return 0;
1265e4aa
JB
5492 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5493 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5494 return 1;
5495 if (str[4] == 'R' && str[5] != 'T')
5496 return 1;
5497 return 0;
5498 }
5499 if (!isdigit (str[2]))
5500 return 0;
5501 for (k = 3; str[k] != '\0'; k += 1)
5502 if (!isdigit (str[k]) && str[k] != '_')
5503 return 0;
14f9c5c9
AS
5504 return 1;
5505 }
4c4b4cd2 5506 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5507 {
4c4b4cd2
PH
5508 for (k = 2; str[k] != '\0'; k += 1)
5509 if (!isdigit (str[k]) && str[k] != '_')
5510 return 0;
14f9c5c9
AS
5511 return 1;
5512 }
5513 return 0;
5514}
d2e4a39e 5515
aeb5907d
JB
5516/* Return non-zero if the string starting at NAME and ending before
5517 NAME_END contains no capital letters. */
529cad9c
PH
5518
5519static int
5520is_valid_name_for_wild_match (const char *name0)
5521{
5522 const char *decoded_name = ada_decode (name0);
5523 int i;
5524
5823c3ef
JB
5525 /* If the decoded name starts with an angle bracket, it means that
5526 NAME0 does not follow the GNAT encoding format. It should then
5527 not be allowed as a possible wild match. */
5528 if (decoded_name[0] == '<')
5529 return 0;
5530
529cad9c
PH
5531 for (i=0; decoded_name[i] != '\0'; i++)
5532 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5533 return 0;
5534
5535 return 1;
5536}
5537
73589123
PH
5538/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5539 that could start a simple name. Assumes that *NAMEP points into
5540 the string beginning at NAME0. */
4c4b4cd2 5541
14f9c5c9 5542static int
73589123 5543advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5544{
73589123 5545 const char *name = *namep;
5b4ee69b 5546
5823c3ef 5547 while (1)
14f9c5c9 5548 {
aa27d0b3 5549 int t0, t1;
73589123
PH
5550
5551 t0 = *name;
5552 if (t0 == '_')
5553 {
5554 t1 = name[1];
5555 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5556 {
5557 name += 1;
5558 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5559 break;
5560 else
5561 name += 1;
5562 }
aa27d0b3
JB
5563 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5564 || name[2] == target0))
73589123
PH
5565 {
5566 name += 2;
5567 break;
5568 }
5569 else
5570 return 0;
5571 }
5572 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5573 name += 1;
5574 else
5823c3ef 5575 return 0;
73589123
PH
5576 }
5577
5578 *namep = name;
5579 return 1;
5580}
5581
5582/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5583 informational suffixes of NAME (i.e., for which is_name_suffix is
5584 true). Assumes that PATN is a lower-cased Ada simple name. */
5585
5586static int
5587wild_match (const char *name, const char *patn)
5588{
22e048c9 5589 const char *p;
73589123
PH
5590 const char *name0 = name;
5591
5592 while (1)
5593 {
5594 const char *match = name;
5595
5596 if (*name == *patn)
5597 {
5598 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5599 if (*p != *name)
5600 break;
5601 if (*p == '\0' && is_name_suffix (name))
5602 return match != name0 && !is_valid_name_for_wild_match (name0);
5603
5604 if (name[-1] == '_')
5605 name -= 1;
5606 }
5607 if (!advance_wild_match (&name, name0, *patn))
5608 return 1;
96d887e8 5609 }
96d887e8
PH
5610}
5611
40658b94
PH
5612/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5613 informational suffix. */
5614
c4d840bd
PH
5615static int
5616full_match (const char *sym_name, const char *search_name)
5617{
40658b94 5618 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5619}
5620
5621
96d887e8
PH
5622/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5623 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5624 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5625 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5626
5627static void
5628ada_add_block_symbols (struct obstack *obstackp,
76a01679 5629 struct block *block, const char *name,
96d887e8 5630 domain_enum domain, struct objfile *objfile,
2570f2b7 5631 int wild)
96d887e8 5632{
8157b174 5633 struct block_iterator iter;
96d887e8
PH
5634 int name_len = strlen (name);
5635 /* A matching argument symbol, if any. */
5636 struct symbol *arg_sym;
5637 /* Set true when we find a matching non-argument symbol. */
5638 int found_sym;
5639 struct symbol *sym;
5640
5641 arg_sym = NULL;
5642 found_sym = 0;
5643 if (wild)
5644 {
8157b174
TT
5645 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5646 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5647 {
5eeb2539
AR
5648 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5649 SYMBOL_DOMAIN (sym), domain)
73589123 5650 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5651 {
2a2d4dc3
AS
5652 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5653 continue;
5654 else if (SYMBOL_IS_ARGUMENT (sym))
5655 arg_sym = sym;
5656 else
5657 {
76a01679
JB
5658 found_sym = 1;
5659 add_defn_to_vec (obstackp,
5660 fixup_symbol_section (sym, objfile),
2570f2b7 5661 block);
76a01679
JB
5662 }
5663 }
5664 }
96d887e8
PH
5665 }
5666 else
5667 {
8157b174
TT
5668 for (sym = block_iter_match_first (block, name, full_match, &iter);
5669 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5670 {
5eeb2539
AR
5671 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5672 SYMBOL_DOMAIN (sym), domain))
76a01679 5673 {
c4d840bd
PH
5674 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5675 {
5676 if (SYMBOL_IS_ARGUMENT (sym))
5677 arg_sym = sym;
5678 else
2a2d4dc3 5679 {
c4d840bd
PH
5680 found_sym = 1;
5681 add_defn_to_vec (obstackp,
5682 fixup_symbol_section (sym, objfile),
5683 block);
2a2d4dc3 5684 }
c4d840bd 5685 }
76a01679
JB
5686 }
5687 }
96d887e8
PH
5688 }
5689
5690 if (!found_sym && arg_sym != NULL)
5691 {
76a01679
JB
5692 add_defn_to_vec (obstackp,
5693 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5694 block);
96d887e8
PH
5695 }
5696
5697 if (!wild)
5698 {
5699 arg_sym = NULL;
5700 found_sym = 0;
5701
5702 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5703 {
5eeb2539
AR
5704 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5705 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5706 {
5707 int cmp;
5708
5709 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5710 if (cmp == 0)
5711 {
5712 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5713 if (cmp == 0)
5714 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5715 name_len);
5716 }
5717
5718 if (cmp == 0
5719 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5720 {
2a2d4dc3
AS
5721 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5722 {
5723 if (SYMBOL_IS_ARGUMENT (sym))
5724 arg_sym = sym;
5725 else
5726 {
5727 found_sym = 1;
5728 add_defn_to_vec (obstackp,
5729 fixup_symbol_section (sym, objfile),
5730 block);
5731 }
5732 }
76a01679
JB
5733 }
5734 }
76a01679 5735 }
96d887e8
PH
5736
5737 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5738 They aren't parameters, right? */
5739 if (!found_sym && arg_sym != NULL)
5740 {
5741 add_defn_to_vec (obstackp,
76a01679 5742 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5743 block);
96d887e8
PH
5744 }
5745 }
5746}
5747\f
41d27058
JB
5748
5749 /* Symbol Completion */
5750
5751/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5752 name in a form that's appropriate for the completion. The result
5753 does not need to be deallocated, but is only good until the next call.
5754
5755 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5756 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5757 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5758 in its encoded form. */
5759
5760static const char *
5761symbol_completion_match (const char *sym_name,
5762 const char *text, int text_len,
6ea35997 5763 int wild_match_p, int encoded_p)
41d27058 5764{
41d27058
JB
5765 const int verbatim_match = (text[0] == '<');
5766 int match = 0;
5767
5768 if (verbatim_match)
5769 {
5770 /* Strip the leading angle bracket. */
5771 text = text + 1;
5772 text_len--;
5773 }
5774
5775 /* First, test against the fully qualified name of the symbol. */
5776
5777 if (strncmp (sym_name, text, text_len) == 0)
5778 match = 1;
5779
6ea35997 5780 if (match && !encoded_p)
41d27058
JB
5781 {
5782 /* One needed check before declaring a positive match is to verify
5783 that iff we are doing a verbatim match, the decoded version
5784 of the symbol name starts with '<'. Otherwise, this symbol name
5785 is not a suitable completion. */
5786 const char *sym_name_copy = sym_name;
5787 int has_angle_bracket;
5788
5789 sym_name = ada_decode (sym_name);
5790 has_angle_bracket = (sym_name[0] == '<');
5791 match = (has_angle_bracket == verbatim_match);
5792 sym_name = sym_name_copy;
5793 }
5794
5795 if (match && !verbatim_match)
5796 {
5797 /* When doing non-verbatim match, another check that needs to
5798 be done is to verify that the potentially matching symbol name
5799 does not include capital letters, because the ada-mode would
5800 not be able to understand these symbol names without the
5801 angle bracket notation. */
5802 const char *tmp;
5803
5804 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5805 if (*tmp != '\0')
5806 match = 0;
5807 }
5808
5809 /* Second: Try wild matching... */
5810
e701b3c0 5811 if (!match && wild_match_p)
41d27058
JB
5812 {
5813 /* Since we are doing wild matching, this means that TEXT
5814 may represent an unqualified symbol name. We therefore must
5815 also compare TEXT against the unqualified name of the symbol. */
5816 sym_name = ada_unqualified_name (ada_decode (sym_name));
5817
5818 if (strncmp (sym_name, text, text_len) == 0)
5819 match = 1;
5820 }
5821
5822 /* Finally: If we found a mach, prepare the result to return. */
5823
5824 if (!match)
5825 return NULL;
5826
5827 if (verbatim_match)
5828 sym_name = add_angle_brackets (sym_name);
5829
6ea35997 5830 if (!encoded_p)
41d27058
JB
5831 sym_name = ada_decode (sym_name);
5832
5833 return sym_name;
5834}
5835
5836/* A companion function to ada_make_symbol_completion_list().
5837 Check if SYM_NAME represents a symbol which name would be suitable
5838 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5839 it is appended at the end of the given string vector SV.
5840
5841 ORIG_TEXT is the string original string from the user command
5842 that needs to be completed. WORD is the entire command on which
5843 completion should be performed. These two parameters are used to
5844 determine which part of the symbol name should be added to the
5845 completion vector.
c0af1706 5846 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5847 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5848 encoded formed (in which case the completion should also be
5849 encoded). */
5850
5851static void
d6565258 5852symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5853 const char *sym_name,
5854 const char *text, int text_len,
5855 const char *orig_text, const char *word,
cb8e9b97 5856 int wild_match_p, int encoded_p)
41d27058
JB
5857{
5858 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5859 wild_match_p, encoded_p);
41d27058
JB
5860 char *completion;
5861
5862 if (match == NULL)
5863 return;
5864
5865 /* We found a match, so add the appropriate completion to the given
5866 string vector. */
5867
5868 if (word == orig_text)
5869 {
5870 completion = xmalloc (strlen (match) + 5);
5871 strcpy (completion, match);
5872 }
5873 else if (word > orig_text)
5874 {
5875 /* Return some portion of sym_name. */
5876 completion = xmalloc (strlen (match) + 5);
5877 strcpy (completion, match + (word - orig_text));
5878 }
5879 else
5880 {
5881 /* Return some of ORIG_TEXT plus sym_name. */
5882 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5883 strncpy (completion, word, orig_text - word);
5884 completion[orig_text - word] = '\0';
5885 strcat (completion, match);
5886 }
5887
d6565258 5888 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5889}
5890
ccefe4c4 5891/* An object of this type is passed as the user_data argument to the
bb4142cf 5892 expand_symtabs_matching method. */
ccefe4c4
TT
5893struct add_partial_datum
5894{
5895 VEC(char_ptr) **completions;
6f937416 5896 const char *text;
ccefe4c4 5897 int text_len;
6f937416
PA
5898 const char *text0;
5899 const char *word;
ccefe4c4
TT
5900 int wild_match;
5901 int encoded;
5902};
5903
bb4142cf
DE
5904/* A callback for expand_symtabs_matching. */
5905
7b08b9eb 5906static int
bb4142cf 5907ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
5908{
5909 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5910
5911 return symbol_completion_match (name, data->text, data->text_len,
5912 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5913}
5914
49c4e619
TT
5915/* Return a list of possible symbol names completing TEXT0. WORD is
5916 the entire command on which completion is made. */
41d27058 5917
49c4e619 5918static VEC (char_ptr) *
6f937416
PA
5919ada_make_symbol_completion_list (const char *text0, const char *word,
5920 enum type_code code)
41d27058
JB
5921{
5922 char *text;
5923 int text_len;
b1ed564a
JB
5924 int wild_match_p;
5925 int encoded_p;
2ba95b9b 5926 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5927 struct symbol *sym;
5928 struct symtab *s;
41d27058
JB
5929 struct minimal_symbol *msymbol;
5930 struct objfile *objfile;
5931 struct block *b, *surrounding_static_block = 0;
5932 int i;
8157b174 5933 struct block_iterator iter;
b8fea896 5934 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 5935
2f68a895
TT
5936 gdb_assert (code == TYPE_CODE_UNDEF);
5937
41d27058
JB
5938 if (text0[0] == '<')
5939 {
5940 text = xstrdup (text0);
5941 make_cleanup (xfree, text);
5942 text_len = strlen (text);
b1ed564a
JB
5943 wild_match_p = 0;
5944 encoded_p = 1;
41d27058
JB
5945 }
5946 else
5947 {
5948 text = xstrdup (ada_encode (text0));
5949 make_cleanup (xfree, text);
5950 text_len = strlen (text);
5951 for (i = 0; i < text_len; i++)
5952 text[i] = tolower (text[i]);
5953
b1ed564a 5954 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5955 /* If the name contains a ".", then the user is entering a fully
5956 qualified entity name, and the match must not be done in wild
5957 mode. Similarly, if the user wants to complete what looks like
5958 an encoded name, the match must not be done in wild mode. */
b1ed564a 5959 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5960 }
5961
5962 /* First, look at the partial symtab symbols. */
41d27058 5963 {
ccefe4c4
TT
5964 struct add_partial_datum data;
5965
5966 data.completions = &completions;
5967 data.text = text;
5968 data.text_len = text_len;
5969 data.text0 = text0;
5970 data.word = word;
b1ed564a
JB
5971 data.wild_match = wild_match_p;
5972 data.encoded = encoded_p;
bb4142cf
DE
5973 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
5974 &data);
41d27058
JB
5975 }
5976
5977 /* At this point scan through the misc symbol vectors and add each
5978 symbol you find to the list. Eventually we want to ignore
5979 anything that isn't a text symbol (everything else will be
5980 handled by the psymtab code above). */
5981
5982 ALL_MSYMBOLS (objfile, msymbol)
5983 {
5984 QUIT;
d6565258 5985 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5986 text, text_len, text0, word, wild_match_p,
5987 encoded_p);
41d27058
JB
5988 }
5989
5990 /* Search upwards from currently selected frame (so that we can
5991 complete on local vars. */
5992
5993 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5994 {
5995 if (!BLOCK_SUPERBLOCK (b))
5996 surrounding_static_block = b; /* For elmin of dups */
5997
5998 ALL_BLOCK_SYMBOLS (b, iter, sym)
5999 {
d6565258 6000 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6001 text, text_len, text0, word,
b1ed564a 6002 wild_match_p, encoded_p);
41d27058
JB
6003 }
6004 }
6005
6006 /* Go through the symtabs and check the externs and statics for
6007 symbols which match. */
6008
6009 ALL_SYMTABS (objfile, s)
6010 {
6011 QUIT;
6012 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6013 ALL_BLOCK_SYMBOLS (b, iter, sym)
6014 {
d6565258 6015 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6016 text, text_len, text0, word,
b1ed564a 6017 wild_match_p, encoded_p);
41d27058
JB
6018 }
6019 }
6020
6021 ALL_SYMTABS (objfile, s)
6022 {
6023 QUIT;
6024 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6025 /* Don't do this block twice. */
6026 if (b == surrounding_static_block)
6027 continue;
6028 ALL_BLOCK_SYMBOLS (b, iter, sym)
6029 {
d6565258 6030 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6031 text, text_len, text0, word,
b1ed564a 6032 wild_match_p, encoded_p);
41d27058
JB
6033 }
6034 }
6035
b8fea896 6036 do_cleanups (old_chain);
49c4e619 6037 return completions;
41d27058
JB
6038}
6039
963a6417 6040 /* Field Access */
96d887e8 6041
73fb9985
JB
6042/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6043 for tagged types. */
6044
6045static int
6046ada_is_dispatch_table_ptr_type (struct type *type)
6047{
0d5cff50 6048 const char *name;
73fb9985
JB
6049
6050 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6051 return 0;
6052
6053 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6054 if (name == NULL)
6055 return 0;
6056
6057 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6058}
6059
ac4a2da4
JG
6060/* Return non-zero if TYPE is an interface tag. */
6061
6062static int
6063ada_is_interface_tag (struct type *type)
6064{
6065 const char *name = TYPE_NAME (type);
6066
6067 if (name == NULL)
6068 return 0;
6069
6070 return (strcmp (name, "ada__tags__interface_tag") == 0);
6071}
6072
963a6417
PH
6073/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6074 to be invisible to users. */
96d887e8 6075
963a6417
PH
6076int
6077ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6078{
963a6417
PH
6079 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6080 return 1;
ffde82bf 6081
73fb9985
JB
6082 /* Check the name of that field. */
6083 {
6084 const char *name = TYPE_FIELD_NAME (type, field_num);
6085
6086 /* Anonymous field names should not be printed.
6087 brobecker/2007-02-20: I don't think this can actually happen
6088 but we don't want to print the value of annonymous fields anyway. */
6089 if (name == NULL)
6090 return 1;
6091
ffde82bf
JB
6092 /* Normally, fields whose name start with an underscore ("_")
6093 are fields that have been internally generated by the compiler,
6094 and thus should not be printed. The "_parent" field is special,
6095 however: This is a field internally generated by the compiler
6096 for tagged types, and it contains the components inherited from
6097 the parent type. This field should not be printed as is, but
6098 should not be ignored either. */
73fb9985
JB
6099 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6100 return 1;
6101 }
6102
ac4a2da4
JG
6103 /* If this is the dispatch table of a tagged type or an interface tag,
6104 then ignore. */
73fb9985 6105 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6106 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6107 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6108 return 1;
6109
6110 /* Not a special field, so it should not be ignored. */
6111 return 0;
963a6417 6112}
96d887e8 6113
963a6417 6114/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6115 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6116
963a6417
PH
6117int
6118ada_is_tagged_type (struct type *type, int refok)
6119{
6120 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6121}
96d887e8 6122
963a6417 6123/* True iff TYPE represents the type of X'Tag */
96d887e8 6124
963a6417
PH
6125int
6126ada_is_tag_type (struct type *type)
6127{
6128 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6129 return 0;
6130 else
96d887e8 6131 {
963a6417 6132 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6133
963a6417
PH
6134 return (name != NULL
6135 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6136 }
96d887e8
PH
6137}
6138
963a6417 6139/* The type of the tag on VAL. */
76a01679 6140
963a6417
PH
6141struct type *
6142ada_tag_type (struct value *val)
96d887e8 6143{
df407dfe 6144 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6145}
96d887e8 6146
b50d69b5
JG
6147/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6148 retired at Ada 05). */
6149
6150static int
6151is_ada95_tag (struct value *tag)
6152{
6153 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6154}
6155
963a6417 6156/* The value of the tag on VAL. */
96d887e8 6157
963a6417
PH
6158struct value *
6159ada_value_tag (struct value *val)
6160{
03ee6b2e 6161 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6162}
6163
963a6417
PH
6164/* The value of the tag on the object of type TYPE whose contents are
6165 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6166 ADDRESS. */
96d887e8 6167
963a6417 6168static struct value *
10a2c479 6169value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6170 const gdb_byte *valaddr,
963a6417 6171 CORE_ADDR address)
96d887e8 6172{
b5385fc0 6173 int tag_byte_offset;
963a6417 6174 struct type *tag_type;
5b4ee69b 6175
963a6417 6176 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6177 NULL, NULL, NULL))
96d887e8 6178 {
fc1a4b47 6179 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6180 ? NULL
6181 : valaddr + tag_byte_offset);
963a6417 6182 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6183
963a6417 6184 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6185 }
963a6417
PH
6186 return NULL;
6187}
96d887e8 6188
963a6417
PH
6189static struct type *
6190type_from_tag (struct value *tag)
6191{
6192 const char *type_name = ada_tag_name (tag);
5b4ee69b 6193
963a6417
PH
6194 if (type_name != NULL)
6195 return ada_find_any_type (ada_encode (type_name));
6196 return NULL;
6197}
96d887e8 6198
b50d69b5
JG
6199/* Given a value OBJ of a tagged type, return a value of this
6200 type at the base address of the object. The base address, as
6201 defined in Ada.Tags, it is the address of the primary tag of
6202 the object, and therefore where the field values of its full
6203 view can be fetched. */
6204
6205struct value *
6206ada_tag_value_at_base_address (struct value *obj)
6207{
6208 volatile struct gdb_exception e;
6209 struct value *val;
6210 LONGEST offset_to_top = 0;
6211 struct type *ptr_type, *obj_type;
6212 struct value *tag;
6213 CORE_ADDR base_address;
6214
6215 obj_type = value_type (obj);
6216
6217 /* It is the responsability of the caller to deref pointers. */
6218
6219 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6220 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6221 return obj;
6222
6223 tag = ada_value_tag (obj);
6224 if (!tag)
6225 return obj;
6226
6227 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6228
6229 if (is_ada95_tag (tag))
6230 return obj;
6231
6232 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6233 ptr_type = lookup_pointer_type (ptr_type);
6234 val = value_cast (ptr_type, tag);
6235 if (!val)
6236 return obj;
6237
6238 /* It is perfectly possible that an exception be raised while
6239 trying to determine the base address, just like for the tag;
6240 see ada_tag_name for more details. We do not print the error
6241 message for the same reason. */
6242
6243 TRY_CATCH (e, RETURN_MASK_ERROR)
6244 {
6245 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6246 }
6247
6248 if (e.reason < 0)
6249 return obj;
6250
6251 /* If offset is null, nothing to do. */
6252
6253 if (offset_to_top == 0)
6254 return obj;
6255
6256 /* -1 is a special case in Ada.Tags; however, what should be done
6257 is not quite clear from the documentation. So do nothing for
6258 now. */
6259
6260 if (offset_to_top == -1)
6261 return obj;
6262
6263 base_address = value_address (obj) - offset_to_top;
6264 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6265
6266 /* Make sure that we have a proper tag at the new address.
6267 Otherwise, offset_to_top is bogus (which can happen when
6268 the object is not initialized yet). */
6269
6270 if (!tag)
6271 return obj;
6272
6273 obj_type = type_from_tag (tag);
6274
6275 if (!obj_type)
6276 return obj;
6277
6278 return value_from_contents_and_address (obj_type, NULL, base_address);
6279}
6280
1b611343
JB
6281/* Return the "ada__tags__type_specific_data" type. */
6282
6283static struct type *
6284ada_get_tsd_type (struct inferior *inf)
963a6417 6285{
1b611343 6286 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6287
1b611343
JB
6288 if (data->tsd_type == 0)
6289 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6290 return data->tsd_type;
6291}
529cad9c 6292
1b611343
JB
6293/* Return the TSD (type-specific data) associated to the given TAG.
6294 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6295
1b611343 6296 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6297
1b611343
JB
6298static struct value *
6299ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6300{
4c4b4cd2 6301 struct value *val;
1b611343 6302 struct type *type;
5b4ee69b 6303
1b611343
JB
6304 /* First option: The TSD is simply stored as a field of our TAG.
6305 Only older versions of GNAT would use this format, but we have
6306 to test it first, because there are no visible markers for
6307 the current approach except the absence of that field. */
529cad9c 6308
1b611343
JB
6309 val = ada_value_struct_elt (tag, "tsd", 1);
6310 if (val)
6311 return val;
e802dbe0 6312
1b611343
JB
6313 /* Try the second representation for the dispatch table (in which
6314 there is no explicit 'tsd' field in the referent of the tag pointer,
6315 and instead the tsd pointer is stored just before the dispatch
6316 table. */
e802dbe0 6317
1b611343
JB
6318 type = ada_get_tsd_type (current_inferior());
6319 if (type == NULL)
6320 return NULL;
6321 type = lookup_pointer_type (lookup_pointer_type (type));
6322 val = value_cast (type, tag);
6323 if (val == NULL)
6324 return NULL;
6325 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6326}
6327
1b611343
JB
6328/* Given the TSD of a tag (type-specific data), return a string
6329 containing the name of the associated type.
6330
6331 The returned value is good until the next call. May return NULL
6332 if we are unable to determine the tag name. */
6333
6334static char *
6335ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6336{
529cad9c
PH
6337 static char name[1024];
6338 char *p;
1b611343 6339 struct value *val;
529cad9c 6340
1b611343 6341 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6342 if (val == NULL)
1b611343 6343 return NULL;
4c4b4cd2
PH
6344 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6345 for (p = name; *p != '\0'; p += 1)
6346 if (isalpha (*p))
6347 *p = tolower (*p);
1b611343 6348 return name;
4c4b4cd2
PH
6349}
6350
6351/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6352 a C string.
6353
6354 Return NULL if the TAG is not an Ada tag, or if we were unable to
6355 determine the name of that tag. The result is good until the next
6356 call. */
4c4b4cd2
PH
6357
6358const char *
6359ada_tag_name (struct value *tag)
6360{
1b611343
JB
6361 volatile struct gdb_exception e;
6362 char *name = NULL;
5b4ee69b 6363
df407dfe 6364 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6365 return NULL;
1b611343
JB
6366
6367 /* It is perfectly possible that an exception be raised while trying
6368 to determine the TAG's name, even under normal circumstances:
6369 The associated variable may be uninitialized or corrupted, for
6370 instance. We do not let any exception propagate past this point.
6371 instead we return NULL.
6372
6373 We also do not print the error message either (which often is very
6374 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6375 the caller print a more meaningful message if necessary. */
6376 TRY_CATCH (e, RETURN_MASK_ERROR)
6377 {
6378 struct value *tsd = ada_get_tsd_from_tag (tag);
6379
6380 if (tsd != NULL)
6381 name = ada_tag_name_from_tsd (tsd);
6382 }
6383
6384 return name;
4c4b4cd2
PH
6385}
6386
6387/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6388
d2e4a39e 6389struct type *
ebf56fd3 6390ada_parent_type (struct type *type)
14f9c5c9
AS
6391{
6392 int i;
6393
61ee279c 6394 type = ada_check_typedef (type);
14f9c5c9
AS
6395
6396 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6397 return NULL;
6398
6399 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6400 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6401 {
6402 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6403
6404 /* If the _parent field is a pointer, then dereference it. */
6405 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6406 parent_type = TYPE_TARGET_TYPE (parent_type);
6407 /* If there is a parallel XVS type, get the actual base type. */
6408 parent_type = ada_get_base_type (parent_type);
6409
6410 return ada_check_typedef (parent_type);
6411 }
14f9c5c9
AS
6412
6413 return NULL;
6414}
6415
4c4b4cd2
PH
6416/* True iff field number FIELD_NUM of structure type TYPE contains the
6417 parent-type (inherited) fields of a derived type. Assumes TYPE is
6418 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6419
6420int
ebf56fd3 6421ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6422{
61ee279c 6423 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6424
4c4b4cd2
PH
6425 return (name != NULL
6426 && (strncmp (name, "PARENT", 6) == 0
6427 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6428}
6429
4c4b4cd2 6430/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6431 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6432 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6433 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6434 structures. */
14f9c5c9
AS
6435
6436int
ebf56fd3 6437ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6438{
d2e4a39e 6439 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6440
d2e4a39e 6441 return (name != NULL
4c4b4cd2
PH
6442 && (strncmp (name, "PARENT", 6) == 0
6443 || strcmp (name, "REP") == 0
6444 || strncmp (name, "_parent", 7) == 0
6445 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6446}
6447
4c4b4cd2
PH
6448/* True iff field number FIELD_NUM of structure or union type TYPE
6449 is a variant wrapper. Assumes TYPE is a structure type with at least
6450 FIELD_NUM+1 fields. */
14f9c5c9
AS
6451
6452int
ebf56fd3 6453ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6454{
d2e4a39e 6455 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6456
14f9c5c9 6457 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6458 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6459 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6460 == TYPE_CODE_UNION)));
14f9c5c9
AS
6461}
6462
6463/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6464 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6465 returns the type of the controlling discriminant for the variant.
6466 May return NULL if the type could not be found. */
14f9c5c9 6467
d2e4a39e 6468struct type *
ebf56fd3 6469ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6470{
d2e4a39e 6471 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6472
7c964f07 6473 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6474}
6475
4c4b4cd2 6476/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6477 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6478 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6479
6480int
ebf56fd3 6481ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6482{
d2e4a39e 6483 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6484
14f9c5c9
AS
6485 return (name != NULL && name[0] == 'O');
6486}
6487
6488/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6489 returns the name of the discriminant controlling the variant.
6490 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6491
d2e4a39e 6492char *
ebf56fd3 6493ada_variant_discrim_name (struct type *type0)
14f9c5c9 6494{
d2e4a39e 6495 static char *result = NULL;
14f9c5c9 6496 static size_t result_len = 0;
d2e4a39e
AS
6497 struct type *type;
6498 const char *name;
6499 const char *discrim_end;
6500 const char *discrim_start;
14f9c5c9
AS
6501
6502 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6503 type = TYPE_TARGET_TYPE (type0);
6504 else
6505 type = type0;
6506
6507 name = ada_type_name (type);
6508
6509 if (name == NULL || name[0] == '\000')
6510 return "";
6511
6512 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6513 discrim_end -= 1)
6514 {
4c4b4cd2
PH
6515 if (strncmp (discrim_end, "___XVN", 6) == 0)
6516 break;
14f9c5c9
AS
6517 }
6518 if (discrim_end == name)
6519 return "";
6520
d2e4a39e 6521 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6522 discrim_start -= 1)
6523 {
d2e4a39e 6524 if (discrim_start == name + 1)
4c4b4cd2 6525 return "";
76a01679 6526 if ((discrim_start > name + 3
4c4b4cd2
PH
6527 && strncmp (discrim_start - 3, "___", 3) == 0)
6528 || discrim_start[-1] == '.')
6529 break;
14f9c5c9
AS
6530 }
6531
6532 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6533 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6534 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6535 return result;
6536}
6537
4c4b4cd2
PH
6538/* Scan STR for a subtype-encoded number, beginning at position K.
6539 Put the position of the character just past the number scanned in
6540 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6541 Return 1 if there was a valid number at the given position, and 0
6542 otherwise. A "subtype-encoded" number consists of the absolute value
6543 in decimal, followed by the letter 'm' to indicate a negative number.
6544 Assumes 0m does not occur. */
14f9c5c9
AS
6545
6546int
d2e4a39e 6547ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6548{
6549 ULONGEST RU;
6550
d2e4a39e 6551 if (!isdigit (str[k]))
14f9c5c9
AS
6552 return 0;
6553
4c4b4cd2 6554 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6555 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6556 LONGEST. */
14f9c5c9
AS
6557 RU = 0;
6558 while (isdigit (str[k]))
6559 {
d2e4a39e 6560 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6561 k += 1;
6562 }
6563
d2e4a39e 6564 if (str[k] == 'm')
14f9c5c9
AS
6565 {
6566 if (R != NULL)
4c4b4cd2 6567 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6568 k += 1;
6569 }
6570 else if (R != NULL)
6571 *R = (LONGEST) RU;
6572
4c4b4cd2 6573 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6574 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6575 number representable as a LONGEST (although either would probably work
6576 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6577 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6578
6579 if (new_k != NULL)
6580 *new_k = k;
6581 return 1;
6582}
6583
4c4b4cd2
PH
6584/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6585 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6586 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6587
d2e4a39e 6588int
ebf56fd3 6589ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6590{
d2e4a39e 6591 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6592 int p;
6593
6594 p = 0;
6595 while (1)
6596 {
d2e4a39e 6597 switch (name[p])
4c4b4cd2
PH
6598 {
6599 case '\0':
6600 return 0;
6601 case 'S':
6602 {
6603 LONGEST W;
5b4ee69b 6604
4c4b4cd2
PH
6605 if (!ada_scan_number (name, p + 1, &W, &p))
6606 return 0;
6607 if (val == W)
6608 return 1;
6609 break;
6610 }
6611 case 'R':
6612 {
6613 LONGEST L, U;
5b4ee69b 6614
4c4b4cd2
PH
6615 if (!ada_scan_number (name, p + 1, &L, &p)
6616 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6617 return 0;
6618 if (val >= L && val <= U)
6619 return 1;
6620 break;
6621 }
6622 case 'O':
6623 return 1;
6624 default:
6625 return 0;
6626 }
6627 }
6628}
6629
0963b4bd 6630/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6631
6632/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6633 ARG_TYPE, extract and return the value of one of its (non-static)
6634 fields. FIELDNO says which field. Differs from value_primitive_field
6635 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6636
4c4b4cd2 6637static struct value *
d2e4a39e 6638ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6639 struct type *arg_type)
14f9c5c9 6640{
14f9c5c9
AS
6641 struct type *type;
6642
61ee279c 6643 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6644 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6645
4c4b4cd2 6646 /* Handle packed fields. */
14f9c5c9
AS
6647
6648 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6649 {
6650 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6651 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6652
0fd88904 6653 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6654 offset + bit_pos / 8,
6655 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6656 }
6657 else
6658 return value_primitive_field (arg1, offset, fieldno, arg_type);
6659}
6660
52ce6436
PH
6661/* Find field with name NAME in object of type TYPE. If found,
6662 set the following for each argument that is non-null:
6663 - *FIELD_TYPE_P to the field's type;
6664 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6665 an object of that type;
6666 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6667 - *BIT_SIZE_P to its size in bits if the field is packed, and
6668 0 otherwise;
6669 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6670 fields up to but not including the desired field, or by the total
6671 number of fields if not found. A NULL value of NAME never
6672 matches; the function just counts visible fields in this case.
6673
0963b4bd 6674 Returns 1 if found, 0 otherwise. */
52ce6436 6675
4c4b4cd2 6676static int
0d5cff50 6677find_struct_field (const char *name, struct type *type, int offset,
76a01679 6678 struct type **field_type_p,
52ce6436
PH
6679 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6680 int *index_p)
4c4b4cd2
PH
6681{
6682 int i;
6683
61ee279c 6684 type = ada_check_typedef (type);
76a01679 6685
52ce6436
PH
6686 if (field_type_p != NULL)
6687 *field_type_p = NULL;
6688 if (byte_offset_p != NULL)
d5d6fca5 6689 *byte_offset_p = 0;
52ce6436
PH
6690 if (bit_offset_p != NULL)
6691 *bit_offset_p = 0;
6692 if (bit_size_p != NULL)
6693 *bit_size_p = 0;
6694
6695 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6696 {
6697 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6698 int fld_offset = offset + bit_pos / 8;
0d5cff50 6699 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6700
4c4b4cd2
PH
6701 if (t_field_name == NULL)
6702 continue;
6703
52ce6436 6704 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6705 {
6706 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6707
52ce6436
PH
6708 if (field_type_p != NULL)
6709 *field_type_p = TYPE_FIELD_TYPE (type, i);
6710 if (byte_offset_p != NULL)
6711 *byte_offset_p = fld_offset;
6712 if (bit_offset_p != NULL)
6713 *bit_offset_p = bit_pos % 8;
6714 if (bit_size_p != NULL)
6715 *bit_size_p = bit_size;
76a01679
JB
6716 return 1;
6717 }
4c4b4cd2
PH
6718 else if (ada_is_wrapper_field (type, i))
6719 {
52ce6436
PH
6720 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6721 field_type_p, byte_offset_p, bit_offset_p,
6722 bit_size_p, index_p))
76a01679
JB
6723 return 1;
6724 }
4c4b4cd2
PH
6725 else if (ada_is_variant_part (type, i))
6726 {
52ce6436
PH
6727 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6728 fixed type?? */
4c4b4cd2 6729 int j;
52ce6436
PH
6730 struct type *field_type
6731 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6732
52ce6436 6733 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6734 {
76a01679
JB
6735 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6736 fld_offset
6737 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6738 field_type_p, byte_offset_p,
52ce6436 6739 bit_offset_p, bit_size_p, index_p))
76a01679 6740 return 1;
4c4b4cd2
PH
6741 }
6742 }
52ce6436
PH
6743 else if (index_p != NULL)
6744 *index_p += 1;
4c4b4cd2
PH
6745 }
6746 return 0;
6747}
6748
0963b4bd 6749/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6750
52ce6436
PH
6751static int
6752num_visible_fields (struct type *type)
6753{
6754 int n;
5b4ee69b 6755
52ce6436
PH
6756 n = 0;
6757 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6758 return n;
6759}
14f9c5c9 6760
4c4b4cd2 6761/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6762 and search in it assuming it has (class) type TYPE.
6763 If found, return value, else return NULL.
6764
4c4b4cd2 6765 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6766
4c4b4cd2 6767static struct value *
d2e4a39e 6768ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6769 struct type *type)
14f9c5c9
AS
6770{
6771 int i;
14f9c5c9 6772
5b4ee69b 6773 type = ada_check_typedef (type);
52ce6436 6774 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6775 {
0d5cff50 6776 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6777
6778 if (t_field_name == NULL)
4c4b4cd2 6779 continue;
14f9c5c9
AS
6780
6781 else if (field_name_match (t_field_name, name))
4c4b4cd2 6782 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6783
6784 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6785 {
0963b4bd 6786 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6787 ada_search_struct_field (name, arg,
6788 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6789 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6790
4c4b4cd2
PH
6791 if (v != NULL)
6792 return v;
6793 }
14f9c5c9
AS
6794
6795 else if (ada_is_variant_part (type, i))
4c4b4cd2 6796 {
0963b4bd 6797 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6798 int j;
5b4ee69b
MS
6799 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6800 i));
4c4b4cd2
PH
6801 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6802
52ce6436 6803 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6804 {
0963b4bd
MS
6805 struct value *v = ada_search_struct_field /* Force line
6806 break. */
06d5cf63
JB
6807 (name, arg,
6808 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6809 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6810
4c4b4cd2
PH
6811 if (v != NULL)
6812 return v;
6813 }
6814 }
14f9c5c9
AS
6815 }
6816 return NULL;
6817}
d2e4a39e 6818
52ce6436
PH
6819static struct value *ada_index_struct_field_1 (int *, struct value *,
6820 int, struct type *);
6821
6822
6823/* Return field #INDEX in ARG, where the index is that returned by
6824 * find_struct_field through its INDEX_P argument. Adjust the address
6825 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6826 * If found, return value, else return NULL. */
52ce6436
PH
6827
6828static struct value *
6829ada_index_struct_field (int index, struct value *arg, int offset,
6830 struct type *type)
6831{
6832 return ada_index_struct_field_1 (&index, arg, offset, type);
6833}
6834
6835
6836/* Auxiliary function for ada_index_struct_field. Like
6837 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6838 * *INDEX_P. */
52ce6436
PH
6839
6840static struct value *
6841ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6842 struct type *type)
6843{
6844 int i;
6845 type = ada_check_typedef (type);
6846
6847 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6848 {
6849 if (TYPE_FIELD_NAME (type, i) == NULL)
6850 continue;
6851 else if (ada_is_wrapper_field (type, i))
6852 {
0963b4bd 6853 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6854 ada_index_struct_field_1 (index_p, arg,
6855 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6856 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6857
52ce6436
PH
6858 if (v != NULL)
6859 return v;
6860 }
6861
6862 else if (ada_is_variant_part (type, i))
6863 {
6864 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6865 find_struct_field. */
52ce6436
PH
6866 error (_("Cannot assign this kind of variant record"));
6867 }
6868 else if (*index_p == 0)
6869 return ada_value_primitive_field (arg, offset, i, type);
6870 else
6871 *index_p -= 1;
6872 }
6873 return NULL;
6874}
6875
4c4b4cd2
PH
6876/* Given ARG, a value of type (pointer or reference to a)*
6877 structure/union, extract the component named NAME from the ultimate
6878 target structure/union and return it as a value with its
f5938064 6879 appropriate type.
14f9c5c9 6880
4c4b4cd2
PH
6881 The routine searches for NAME among all members of the structure itself
6882 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6883 (e.g., '_parent').
6884
03ee6b2e
PH
6885 If NO_ERR, then simply return NULL in case of error, rather than
6886 calling error. */
14f9c5c9 6887
d2e4a39e 6888struct value *
03ee6b2e 6889ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6890{
4c4b4cd2 6891 struct type *t, *t1;
d2e4a39e 6892 struct value *v;
14f9c5c9 6893
4c4b4cd2 6894 v = NULL;
df407dfe 6895 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6896 if (TYPE_CODE (t) == TYPE_CODE_REF)
6897 {
6898 t1 = TYPE_TARGET_TYPE (t);
6899 if (t1 == NULL)
03ee6b2e 6900 goto BadValue;
61ee279c 6901 t1 = ada_check_typedef (t1);
4c4b4cd2 6902 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6903 {
994b9211 6904 arg = coerce_ref (arg);
76a01679
JB
6905 t = t1;
6906 }
4c4b4cd2 6907 }
14f9c5c9 6908
4c4b4cd2
PH
6909 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6910 {
6911 t1 = TYPE_TARGET_TYPE (t);
6912 if (t1 == NULL)
03ee6b2e 6913 goto BadValue;
61ee279c 6914 t1 = ada_check_typedef (t1);
4c4b4cd2 6915 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6916 {
6917 arg = value_ind (arg);
6918 t = t1;
6919 }
4c4b4cd2 6920 else
76a01679 6921 break;
4c4b4cd2 6922 }
14f9c5c9 6923
4c4b4cd2 6924 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6925 goto BadValue;
14f9c5c9 6926
4c4b4cd2
PH
6927 if (t1 == t)
6928 v = ada_search_struct_field (name, arg, 0, t);
6929 else
6930 {
6931 int bit_offset, bit_size, byte_offset;
6932 struct type *field_type;
6933 CORE_ADDR address;
6934
76a01679 6935 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6936 address = value_address (ada_value_ind (arg));
4c4b4cd2 6937 else
b50d69b5 6938 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6939
1ed6ede0 6940 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6941 if (find_struct_field (name, t1, 0,
6942 &field_type, &byte_offset, &bit_offset,
52ce6436 6943 &bit_size, NULL))
76a01679
JB
6944 {
6945 if (bit_size != 0)
6946 {
714e53ab
PH
6947 if (TYPE_CODE (t) == TYPE_CODE_REF)
6948 arg = ada_coerce_ref (arg);
6949 else
6950 arg = ada_value_ind (arg);
76a01679
JB
6951 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6952 bit_offset, bit_size,
6953 field_type);
6954 }
6955 else
f5938064 6956 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6957 }
6958 }
6959
03ee6b2e
PH
6960 if (v != NULL || no_err)
6961 return v;
6962 else
323e0a4a 6963 error (_("There is no member named %s."), name);
14f9c5c9 6964
03ee6b2e
PH
6965 BadValue:
6966 if (no_err)
6967 return NULL;
6968 else
0963b4bd
MS
6969 error (_("Attempt to extract a component of "
6970 "a value that is not a record."));
14f9c5c9
AS
6971}
6972
6973/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6974 If DISPP is non-null, add its byte displacement from the beginning of a
6975 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6976 work for packed fields).
6977
6978 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6979 followed by "___".
14f9c5c9 6980
0963b4bd 6981 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6982 be a (pointer or reference)+ to a struct or union, and the
6983 ultimate target type will be searched.
14f9c5c9
AS
6984
6985 Looks recursively into variant clauses and parent types.
6986
4c4b4cd2
PH
6987 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6988 TYPE is not a type of the right kind. */
14f9c5c9 6989
4c4b4cd2 6990static struct type *
76a01679
JB
6991ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6992 int noerr, int *dispp)
14f9c5c9
AS
6993{
6994 int i;
6995
6996 if (name == NULL)
6997 goto BadName;
6998
76a01679 6999 if (refok && type != NULL)
4c4b4cd2
PH
7000 while (1)
7001 {
61ee279c 7002 type = ada_check_typedef (type);
76a01679
JB
7003 if (TYPE_CODE (type) != TYPE_CODE_PTR
7004 && TYPE_CODE (type) != TYPE_CODE_REF)
7005 break;
7006 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7007 }
14f9c5c9 7008
76a01679 7009 if (type == NULL
1265e4aa
JB
7010 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7011 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7012 {
4c4b4cd2 7013 if (noerr)
76a01679 7014 return NULL;
4c4b4cd2 7015 else
76a01679
JB
7016 {
7017 target_terminal_ours ();
7018 gdb_flush (gdb_stdout);
323e0a4a
AC
7019 if (type == NULL)
7020 error (_("Type (null) is not a structure or union type"));
7021 else
7022 {
7023 /* XXX: type_sprint */
7024 fprintf_unfiltered (gdb_stderr, _("Type "));
7025 type_print (type, "", gdb_stderr, -1);
7026 error (_(" is not a structure or union type"));
7027 }
76a01679 7028 }
14f9c5c9
AS
7029 }
7030
7031 type = to_static_fixed_type (type);
7032
7033 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7034 {
0d5cff50 7035 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7036 struct type *t;
7037 int disp;
d2e4a39e 7038
14f9c5c9 7039 if (t_field_name == NULL)
4c4b4cd2 7040 continue;
14f9c5c9
AS
7041
7042 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7043 {
7044 if (dispp != NULL)
7045 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7046 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7047 }
14f9c5c9
AS
7048
7049 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7050 {
7051 disp = 0;
7052 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7053 0, 1, &disp);
7054 if (t != NULL)
7055 {
7056 if (dispp != NULL)
7057 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7058 return t;
7059 }
7060 }
14f9c5c9
AS
7061
7062 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7063 {
7064 int j;
5b4ee69b
MS
7065 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7066 i));
4c4b4cd2
PH
7067
7068 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7069 {
b1f33ddd
JB
7070 /* FIXME pnh 2008/01/26: We check for a field that is
7071 NOT wrapped in a struct, since the compiler sometimes
7072 generates these for unchecked variant types. Revisit
0963b4bd 7073 if the compiler changes this practice. */
0d5cff50 7074 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7075 disp = 0;
b1f33ddd
JB
7076 if (v_field_name != NULL
7077 && field_name_match (v_field_name, name))
7078 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7079 else
0963b4bd
MS
7080 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7081 j),
b1f33ddd
JB
7082 name, 0, 1, &disp);
7083
4c4b4cd2
PH
7084 if (t != NULL)
7085 {
7086 if (dispp != NULL)
7087 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7088 return t;
7089 }
7090 }
7091 }
14f9c5c9
AS
7092
7093 }
7094
7095BadName:
d2e4a39e 7096 if (!noerr)
14f9c5c9
AS
7097 {
7098 target_terminal_ours ();
7099 gdb_flush (gdb_stdout);
323e0a4a
AC
7100 if (name == NULL)
7101 {
7102 /* XXX: type_sprint */
7103 fprintf_unfiltered (gdb_stderr, _("Type "));
7104 type_print (type, "", gdb_stderr, -1);
7105 error (_(" has no component named <null>"));
7106 }
7107 else
7108 {
7109 /* XXX: type_sprint */
7110 fprintf_unfiltered (gdb_stderr, _("Type "));
7111 type_print (type, "", gdb_stderr, -1);
7112 error (_(" has no component named %s"), name);
7113 }
14f9c5c9
AS
7114 }
7115
7116 return NULL;
7117}
7118
b1f33ddd
JB
7119/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7120 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7121 represents an unchecked union (that is, the variant part of a
0963b4bd 7122 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7123
7124static int
7125is_unchecked_variant (struct type *var_type, struct type *outer_type)
7126{
7127 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7128
b1f33ddd
JB
7129 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7130 == NULL);
7131}
7132
7133
14f9c5c9
AS
7134/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7135 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7136 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7137 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7138
d2e4a39e 7139int
ebf56fd3 7140ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7141 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7142{
7143 int others_clause;
7144 int i;
d2e4a39e 7145 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7146 struct value *outer;
7147 struct value *discrim;
14f9c5c9
AS
7148 LONGEST discrim_val;
7149
0c281816
JB
7150 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7151 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7152 if (discrim == NULL)
14f9c5c9 7153 return -1;
0c281816 7154 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7155
7156 others_clause = -1;
7157 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7158 {
7159 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7160 others_clause = i;
14f9c5c9 7161 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7162 return i;
14f9c5c9
AS
7163 }
7164
7165 return others_clause;
7166}
d2e4a39e 7167\f
14f9c5c9
AS
7168
7169
4c4b4cd2 7170 /* Dynamic-Sized Records */
14f9c5c9
AS
7171
7172/* Strategy: The type ostensibly attached to a value with dynamic size
7173 (i.e., a size that is not statically recorded in the debugging
7174 data) does not accurately reflect the size or layout of the value.
7175 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7176 conventional types that are constructed on the fly. */
14f9c5c9
AS
7177
7178/* There is a subtle and tricky problem here. In general, we cannot
7179 determine the size of dynamic records without its data. However,
7180 the 'struct value' data structure, which GDB uses to represent
7181 quantities in the inferior process (the target), requires the size
7182 of the type at the time of its allocation in order to reserve space
7183 for GDB's internal copy of the data. That's why the
7184 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7185 rather than struct value*s.
14f9c5c9
AS
7186
7187 However, GDB's internal history variables ($1, $2, etc.) are
7188 struct value*s containing internal copies of the data that are not, in
7189 general, the same as the data at their corresponding addresses in
7190 the target. Fortunately, the types we give to these values are all
7191 conventional, fixed-size types (as per the strategy described
7192 above), so that we don't usually have to perform the
7193 'to_fixed_xxx_type' conversions to look at their values.
7194 Unfortunately, there is one exception: if one of the internal
7195 history variables is an array whose elements are unconstrained
7196 records, then we will need to create distinct fixed types for each
7197 element selected. */
7198
7199/* The upshot of all of this is that many routines take a (type, host
7200 address, target address) triple as arguments to represent a value.
7201 The host address, if non-null, is supposed to contain an internal
7202 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7203 target at the target address. */
14f9c5c9
AS
7204
7205/* Assuming that VAL0 represents a pointer value, the result of
7206 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7207 dynamic-sized types. */
14f9c5c9 7208
d2e4a39e
AS
7209struct value *
7210ada_value_ind (struct value *val0)
14f9c5c9 7211{
c48db5ca 7212 struct value *val = value_ind (val0);
5b4ee69b 7213
b50d69b5
JG
7214 if (ada_is_tagged_type (value_type (val), 0))
7215 val = ada_tag_value_at_base_address (val);
7216
4c4b4cd2 7217 return ada_to_fixed_value (val);
14f9c5c9
AS
7218}
7219
7220/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7221 qualifiers on VAL0. */
7222
d2e4a39e
AS
7223static struct value *
7224ada_coerce_ref (struct value *val0)
7225{
df407dfe 7226 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7227 {
7228 struct value *val = val0;
5b4ee69b 7229
994b9211 7230 val = coerce_ref (val);
b50d69b5
JG
7231
7232 if (ada_is_tagged_type (value_type (val), 0))
7233 val = ada_tag_value_at_base_address (val);
7234
4c4b4cd2 7235 return ada_to_fixed_value (val);
d2e4a39e
AS
7236 }
7237 else
14f9c5c9
AS
7238 return val0;
7239}
7240
7241/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7242 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7243
7244static unsigned int
ebf56fd3 7245align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7246{
7247 return (off + alignment - 1) & ~(alignment - 1);
7248}
7249
4c4b4cd2 7250/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7251
7252static unsigned int
ebf56fd3 7253field_alignment (struct type *type, int f)
14f9c5c9 7254{
d2e4a39e 7255 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7256 int len;
14f9c5c9
AS
7257 int align_offset;
7258
64a1bf19
JB
7259 /* The field name should never be null, unless the debugging information
7260 is somehow malformed. In this case, we assume the field does not
7261 require any alignment. */
7262 if (name == NULL)
7263 return 1;
7264
7265 len = strlen (name);
7266
4c4b4cd2
PH
7267 if (!isdigit (name[len - 1]))
7268 return 1;
14f9c5c9 7269
d2e4a39e 7270 if (isdigit (name[len - 2]))
14f9c5c9
AS
7271 align_offset = len - 2;
7272 else
7273 align_offset = len - 1;
7274
4c4b4cd2 7275 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7276 return TARGET_CHAR_BIT;
7277
4c4b4cd2
PH
7278 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7279}
7280
852dff6c 7281/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7282
852dff6c
JB
7283static struct symbol *
7284ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7285{
7286 struct symbol *sym;
7287
7288 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7289 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7290 return sym;
7291
7292 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7293 return sym;
14f9c5c9
AS
7294}
7295
dddfab26
UW
7296/* Find a type named NAME. Ignores ambiguity. This routine will look
7297 solely for types defined by debug info, it will not search the GDB
7298 primitive types. */
4c4b4cd2 7299
852dff6c 7300static struct type *
ebf56fd3 7301ada_find_any_type (const char *name)
14f9c5c9 7302{
852dff6c 7303 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7304
14f9c5c9 7305 if (sym != NULL)
dddfab26 7306 return SYMBOL_TYPE (sym);
14f9c5c9 7307
dddfab26 7308 return NULL;
14f9c5c9
AS
7309}
7310
739593e0
JB
7311/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7312 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7313 symbol, in which case it is returned. Otherwise, this looks for
7314 symbols whose name is that of NAME_SYM suffixed with "___XR".
7315 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7316
7317struct symbol *
270140bd 7318ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7319{
739593e0 7320 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7321 struct symbol *sym;
7322
739593e0
JB
7323 if (strstr (name, "___XR") != NULL)
7324 return name_sym;
7325
aeb5907d
JB
7326 sym = find_old_style_renaming_symbol (name, block);
7327
7328 if (sym != NULL)
7329 return sym;
7330
0963b4bd 7331 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7332 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7333 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7334 return sym;
7335 else
7336 return NULL;
7337}
7338
7339static struct symbol *
270140bd 7340find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7341{
7f0df278 7342 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7343 char *rename;
7344
7345 if (function_sym != NULL)
7346 {
7347 /* If the symbol is defined inside a function, NAME is not fully
7348 qualified. This means we need to prepend the function name
7349 as well as adding the ``___XR'' suffix to build the name of
7350 the associated renaming symbol. */
0d5cff50 7351 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7352 /* Function names sometimes contain suffixes used
7353 for instance to qualify nested subprograms. When building
7354 the XR type name, we need to make sure that this suffix is
7355 not included. So do not include any suffix in the function
7356 name length below. */
69fadcdf 7357 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7358 const int rename_len = function_name_len + 2 /* "__" */
7359 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7360
529cad9c 7361 /* Strip the suffix if necessary. */
69fadcdf
JB
7362 ada_remove_trailing_digits (function_name, &function_name_len);
7363 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7364 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7365
4c4b4cd2
PH
7366 /* Library-level functions are a special case, as GNAT adds
7367 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7368 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7369 have this prefix, so we need to skip this prefix if present. */
7370 if (function_name_len > 5 /* "_ada_" */
7371 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7372 {
7373 function_name += 5;
7374 function_name_len -= 5;
7375 }
4c4b4cd2
PH
7376
7377 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7378 strncpy (rename, function_name, function_name_len);
7379 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7380 "__%s___XR", name);
4c4b4cd2
PH
7381 }
7382 else
7383 {
7384 const int rename_len = strlen (name) + 6;
5b4ee69b 7385
4c4b4cd2 7386 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7387 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7388 }
7389
852dff6c 7390 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7391}
7392
14f9c5c9 7393/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7394 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7395 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7396 otherwise return 0. */
7397
14f9c5c9 7398int
d2e4a39e 7399ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7400{
7401 if (type1 == NULL)
7402 return 1;
7403 else if (type0 == NULL)
7404 return 0;
7405 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7406 return 1;
7407 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7408 return 0;
4c4b4cd2
PH
7409 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7410 return 1;
ad82864c 7411 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7412 return 1;
4c4b4cd2
PH
7413 else if (ada_is_array_descriptor_type (type0)
7414 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7415 return 1;
aeb5907d
JB
7416 else
7417 {
7418 const char *type0_name = type_name_no_tag (type0);
7419 const char *type1_name = type_name_no_tag (type1);
7420
7421 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7422 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7423 return 1;
7424 }
14f9c5c9
AS
7425 return 0;
7426}
7427
7428/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7429 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7430
0d5cff50 7431const char *
d2e4a39e 7432ada_type_name (struct type *type)
14f9c5c9 7433{
d2e4a39e 7434 if (type == NULL)
14f9c5c9
AS
7435 return NULL;
7436 else if (TYPE_NAME (type) != NULL)
7437 return TYPE_NAME (type);
7438 else
7439 return TYPE_TAG_NAME (type);
7440}
7441
b4ba55a1
JB
7442/* Search the list of "descriptive" types associated to TYPE for a type
7443 whose name is NAME. */
7444
7445static struct type *
7446find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7447{
7448 struct type *result;
7449
c6044dd1
JB
7450 if (ada_ignore_descriptive_types_p)
7451 return NULL;
7452
b4ba55a1
JB
7453 /* If there no descriptive-type info, then there is no parallel type
7454 to be found. */
7455 if (!HAVE_GNAT_AUX_INFO (type))
7456 return NULL;
7457
7458 result = TYPE_DESCRIPTIVE_TYPE (type);
7459 while (result != NULL)
7460 {
0d5cff50 7461 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7462
7463 if (result_name == NULL)
7464 {
7465 warning (_("unexpected null name on descriptive type"));
7466 return NULL;
7467 }
7468
7469 /* If the names match, stop. */
7470 if (strcmp (result_name, name) == 0)
7471 break;
7472
7473 /* Otherwise, look at the next item on the list, if any. */
7474 if (HAVE_GNAT_AUX_INFO (result))
7475 result = TYPE_DESCRIPTIVE_TYPE (result);
7476 else
7477 result = NULL;
7478 }
7479
7480 /* If we didn't find a match, see whether this is a packed array. With
7481 older compilers, the descriptive type information is either absent or
7482 irrelevant when it comes to packed arrays so the above lookup fails.
7483 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7484 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7485 return ada_find_any_type (name);
7486
7487 return result;
7488}
7489
7490/* Find a parallel type to TYPE with the specified NAME, using the
7491 descriptive type taken from the debugging information, if available,
7492 and otherwise using the (slower) name-based method. */
7493
7494static struct type *
7495ada_find_parallel_type_with_name (struct type *type, const char *name)
7496{
7497 struct type *result = NULL;
7498
7499 if (HAVE_GNAT_AUX_INFO (type))
7500 result = find_parallel_type_by_descriptive_type (type, name);
7501 else
7502 result = ada_find_any_type (name);
7503
7504 return result;
7505}
7506
7507/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7508 SUFFIX to the name of TYPE. */
14f9c5c9 7509
d2e4a39e 7510struct type *
ebf56fd3 7511ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7512{
0d5cff50
DE
7513 char *name;
7514 const char *typename = ada_type_name (type);
14f9c5c9 7515 int len;
d2e4a39e 7516
14f9c5c9
AS
7517 if (typename == NULL)
7518 return NULL;
7519
7520 len = strlen (typename);
7521
b4ba55a1 7522 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7523
7524 strcpy (name, typename);
7525 strcpy (name + len, suffix);
7526
b4ba55a1 7527 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7528}
7529
14f9c5c9 7530/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7531 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7532
d2e4a39e
AS
7533static struct type *
7534dynamic_template_type (struct type *type)
14f9c5c9 7535{
61ee279c 7536 type = ada_check_typedef (type);
14f9c5c9
AS
7537
7538 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7539 || ada_type_name (type) == NULL)
14f9c5c9 7540 return NULL;
d2e4a39e 7541 else
14f9c5c9
AS
7542 {
7543 int len = strlen (ada_type_name (type));
5b4ee69b 7544
4c4b4cd2
PH
7545 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7546 return type;
14f9c5c9 7547 else
4c4b4cd2 7548 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7549 }
7550}
7551
7552/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7553 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7554
d2e4a39e
AS
7555static int
7556is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7557{
7558 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7559
d2e4a39e 7560 return name != NULL
14f9c5c9
AS
7561 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7562 && strstr (name, "___XVL") != NULL;
7563}
7564
4c4b4cd2
PH
7565/* The index of the variant field of TYPE, or -1 if TYPE does not
7566 represent a variant record type. */
14f9c5c9 7567
d2e4a39e 7568static int
4c4b4cd2 7569variant_field_index (struct type *type)
14f9c5c9
AS
7570{
7571 int f;
7572
4c4b4cd2
PH
7573 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7574 return -1;
7575
7576 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7577 {
7578 if (ada_is_variant_part (type, f))
7579 return f;
7580 }
7581 return -1;
14f9c5c9
AS
7582}
7583
4c4b4cd2
PH
7584/* A record type with no fields. */
7585
d2e4a39e 7586static struct type *
e9bb382b 7587empty_record (struct type *template)
14f9c5c9 7588{
e9bb382b 7589 struct type *type = alloc_type_copy (template);
5b4ee69b 7590
14f9c5c9
AS
7591 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7592 TYPE_NFIELDS (type) = 0;
7593 TYPE_FIELDS (type) = NULL;
b1f33ddd 7594 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7595 TYPE_NAME (type) = "<empty>";
7596 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7597 TYPE_LENGTH (type) = 0;
7598 return type;
7599}
7600
7601/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7602 the value of type TYPE at VALADDR or ADDRESS (see comments at
7603 the beginning of this section) VAL according to GNAT conventions.
7604 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7605 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7606 an outer-level type (i.e., as opposed to a branch of a variant.) A
7607 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7608 of the variant.
14f9c5c9 7609
4c4b4cd2
PH
7610 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7611 length are not statically known are discarded. As a consequence,
7612 VALADDR, ADDRESS and DVAL0 are ignored.
7613
7614 NOTE: Limitations: For now, we assume that dynamic fields and
7615 variants occupy whole numbers of bytes. However, they need not be
7616 byte-aligned. */
7617
7618struct type *
10a2c479 7619ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7620 const gdb_byte *valaddr,
4c4b4cd2
PH
7621 CORE_ADDR address, struct value *dval0,
7622 int keep_dynamic_fields)
14f9c5c9 7623{
d2e4a39e
AS
7624 struct value *mark = value_mark ();
7625 struct value *dval;
7626 struct type *rtype;
14f9c5c9 7627 int nfields, bit_len;
4c4b4cd2 7628 int variant_field;
14f9c5c9 7629 long off;
d94e4f4f 7630 int fld_bit_len;
14f9c5c9
AS
7631 int f;
7632
4c4b4cd2
PH
7633 /* Compute the number of fields in this record type that are going
7634 to be processed: unless keep_dynamic_fields, this includes only
7635 fields whose position and length are static will be processed. */
7636 if (keep_dynamic_fields)
7637 nfields = TYPE_NFIELDS (type);
7638 else
7639 {
7640 nfields = 0;
76a01679 7641 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7642 && !ada_is_variant_part (type, nfields)
7643 && !is_dynamic_field (type, nfields))
7644 nfields++;
7645 }
7646
e9bb382b 7647 rtype = alloc_type_copy (type);
14f9c5c9
AS
7648 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7649 INIT_CPLUS_SPECIFIC (rtype);
7650 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7651 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7652 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7653 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7654 TYPE_NAME (rtype) = ada_type_name (type);
7655 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7656 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7657
d2e4a39e
AS
7658 off = 0;
7659 bit_len = 0;
4c4b4cd2
PH
7660 variant_field = -1;
7661
14f9c5c9
AS
7662 for (f = 0; f < nfields; f += 1)
7663 {
6c038f32
PH
7664 off = align_value (off, field_alignment (type, f))
7665 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7666 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7667 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7668
d2e4a39e 7669 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7670 {
7671 variant_field = f;
d94e4f4f 7672 fld_bit_len = 0;
4c4b4cd2 7673 }
14f9c5c9 7674 else if (is_dynamic_field (type, f))
4c4b4cd2 7675 {
284614f0
JB
7676 const gdb_byte *field_valaddr = valaddr;
7677 CORE_ADDR field_address = address;
7678 struct type *field_type =
7679 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7680
4c4b4cd2 7681 if (dval0 == NULL)
b5304971
JG
7682 {
7683 /* rtype's length is computed based on the run-time
7684 value of discriminants. If the discriminants are not
7685 initialized, the type size may be completely bogus and
0963b4bd 7686 GDB may fail to allocate a value for it. So check the
b5304971
JG
7687 size first before creating the value. */
7688 check_size (rtype);
7689 dval = value_from_contents_and_address (rtype, valaddr, address);
7690 }
4c4b4cd2
PH
7691 else
7692 dval = dval0;
7693
284614f0
JB
7694 /* If the type referenced by this field is an aligner type, we need
7695 to unwrap that aligner type, because its size might not be set.
7696 Keeping the aligner type would cause us to compute the wrong
7697 size for this field, impacting the offset of the all the fields
7698 that follow this one. */
7699 if (ada_is_aligner_type (field_type))
7700 {
7701 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7702
7703 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7704 field_address = cond_offset_target (field_address, field_offset);
7705 field_type = ada_aligned_type (field_type);
7706 }
7707
7708 field_valaddr = cond_offset_host (field_valaddr,
7709 off / TARGET_CHAR_BIT);
7710 field_address = cond_offset_target (field_address,
7711 off / TARGET_CHAR_BIT);
7712
7713 /* Get the fixed type of the field. Note that, in this case,
7714 we do not want to get the real type out of the tag: if
7715 the current field is the parent part of a tagged record,
7716 we will get the tag of the object. Clearly wrong: the real
7717 type of the parent is not the real type of the child. We
7718 would end up in an infinite loop. */
7719 field_type = ada_get_base_type (field_type);
7720 field_type = ada_to_fixed_type (field_type, field_valaddr,
7721 field_address, dval, 0);
27f2a97b
JB
7722 /* If the field size is already larger than the maximum
7723 object size, then the record itself will necessarily
7724 be larger than the maximum object size. We need to make
7725 this check now, because the size might be so ridiculously
7726 large (due to an uninitialized variable in the inferior)
7727 that it would cause an overflow when adding it to the
7728 record size. */
7729 check_size (field_type);
284614f0
JB
7730
7731 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7732 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7733 /* The multiplication can potentially overflow. But because
7734 the field length has been size-checked just above, and
7735 assuming that the maximum size is a reasonable value,
7736 an overflow should not happen in practice. So rather than
7737 adding overflow recovery code to this already complex code,
7738 we just assume that it's not going to happen. */
d94e4f4f 7739 fld_bit_len =
4c4b4cd2
PH
7740 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7741 }
14f9c5c9 7742 else
4c4b4cd2 7743 {
5ded5331
JB
7744 /* Note: If this field's type is a typedef, it is important
7745 to preserve the typedef layer.
7746
7747 Otherwise, we might be transforming a typedef to a fat
7748 pointer (encoding a pointer to an unconstrained array),
7749 into a basic fat pointer (encoding an unconstrained
7750 array). As both types are implemented using the same
7751 structure, the typedef is the only clue which allows us
7752 to distinguish between the two options. Stripping it
7753 would prevent us from printing this field appropriately. */
7754 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7755 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7756 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7757 fld_bit_len =
4c4b4cd2
PH
7758 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7759 else
5ded5331
JB
7760 {
7761 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7762
7763 /* We need to be careful of typedefs when computing
7764 the length of our field. If this is a typedef,
7765 get the length of the target type, not the length
7766 of the typedef. */
7767 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7768 field_type = ada_typedef_target_type (field_type);
7769
7770 fld_bit_len =
7771 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7772 }
4c4b4cd2 7773 }
14f9c5c9 7774 if (off + fld_bit_len > bit_len)
4c4b4cd2 7775 bit_len = off + fld_bit_len;
d94e4f4f 7776 off += fld_bit_len;
4c4b4cd2
PH
7777 TYPE_LENGTH (rtype) =
7778 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7779 }
4c4b4cd2
PH
7780
7781 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7782 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7783 the record. This can happen in the presence of representation
7784 clauses. */
7785 if (variant_field >= 0)
7786 {
7787 struct type *branch_type;
7788
7789 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7790
7791 if (dval0 == NULL)
7792 dval = value_from_contents_and_address (rtype, valaddr, address);
7793 else
7794 dval = dval0;
7795
7796 branch_type =
7797 to_fixed_variant_branch_type
7798 (TYPE_FIELD_TYPE (type, variant_field),
7799 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7800 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7801 if (branch_type == NULL)
7802 {
7803 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7804 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7805 TYPE_NFIELDS (rtype) -= 1;
7806 }
7807 else
7808 {
7809 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7810 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7811 fld_bit_len =
7812 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7813 TARGET_CHAR_BIT;
7814 if (off + fld_bit_len > bit_len)
7815 bit_len = off + fld_bit_len;
7816 TYPE_LENGTH (rtype) =
7817 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7818 }
7819 }
7820
714e53ab
PH
7821 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7822 should contain the alignment of that record, which should be a strictly
7823 positive value. If null or negative, then something is wrong, most
7824 probably in the debug info. In that case, we don't round up the size
0963b4bd 7825 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7826 the current RTYPE length might be good enough for our purposes. */
7827 if (TYPE_LENGTH (type) <= 0)
7828 {
323e0a4a
AC
7829 if (TYPE_NAME (rtype))
7830 warning (_("Invalid type size for `%s' detected: %d."),
7831 TYPE_NAME (rtype), TYPE_LENGTH (type));
7832 else
7833 warning (_("Invalid type size for <unnamed> detected: %d."),
7834 TYPE_LENGTH (type));
714e53ab
PH
7835 }
7836 else
7837 {
7838 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7839 TYPE_LENGTH (type));
7840 }
14f9c5c9
AS
7841
7842 value_free_to_mark (mark);
d2e4a39e 7843 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7844 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7845 return rtype;
7846}
7847
4c4b4cd2
PH
7848/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7849 of 1. */
14f9c5c9 7850
d2e4a39e 7851static struct type *
fc1a4b47 7852template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7853 CORE_ADDR address, struct value *dval0)
7854{
7855 return ada_template_to_fixed_record_type_1 (type, valaddr,
7856 address, dval0, 1);
7857}
7858
7859/* An ordinary record type in which ___XVL-convention fields and
7860 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7861 static approximations, containing all possible fields. Uses
7862 no runtime values. Useless for use in values, but that's OK,
7863 since the results are used only for type determinations. Works on both
7864 structs and unions. Representation note: to save space, we memorize
7865 the result of this function in the TYPE_TARGET_TYPE of the
7866 template type. */
7867
7868static struct type *
7869template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7870{
7871 struct type *type;
7872 int nfields;
7873 int f;
7874
4c4b4cd2
PH
7875 if (TYPE_TARGET_TYPE (type0) != NULL)
7876 return TYPE_TARGET_TYPE (type0);
7877
7878 nfields = TYPE_NFIELDS (type0);
7879 type = type0;
14f9c5c9
AS
7880
7881 for (f = 0; f < nfields; f += 1)
7882 {
61ee279c 7883 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7884 struct type *new_type;
14f9c5c9 7885
4c4b4cd2
PH
7886 if (is_dynamic_field (type0, f))
7887 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7888 else
f192137b 7889 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7890 if (type == type0 && new_type != field_type)
7891 {
e9bb382b 7892 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7893 TYPE_CODE (type) = TYPE_CODE (type0);
7894 INIT_CPLUS_SPECIFIC (type);
7895 TYPE_NFIELDS (type) = nfields;
7896 TYPE_FIELDS (type) = (struct field *)
7897 TYPE_ALLOC (type, nfields * sizeof (struct field));
7898 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7899 sizeof (struct field) * nfields);
7900 TYPE_NAME (type) = ada_type_name (type0);
7901 TYPE_TAG_NAME (type) = NULL;
876cecd0 7902 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7903 TYPE_LENGTH (type) = 0;
7904 }
7905 TYPE_FIELD_TYPE (type, f) = new_type;
7906 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7907 }
14f9c5c9
AS
7908 return type;
7909}
7910
4c4b4cd2 7911/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7912 whose address in memory is ADDRESS, returns a revision of TYPE,
7913 which should be a non-dynamic-sized record, in which the variant
7914 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7915 for discriminant values in DVAL0, which can be NULL if the record
7916 contains the necessary discriminant values. */
7917
d2e4a39e 7918static struct type *
fc1a4b47 7919to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7920 CORE_ADDR address, struct value *dval0)
14f9c5c9 7921{
d2e4a39e 7922 struct value *mark = value_mark ();
4c4b4cd2 7923 struct value *dval;
d2e4a39e 7924 struct type *rtype;
14f9c5c9
AS
7925 struct type *branch_type;
7926 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7927 int variant_field = variant_field_index (type);
14f9c5c9 7928
4c4b4cd2 7929 if (variant_field == -1)
14f9c5c9
AS
7930 return type;
7931
4c4b4cd2
PH
7932 if (dval0 == NULL)
7933 dval = value_from_contents_and_address (type, valaddr, address);
7934 else
7935 dval = dval0;
7936
e9bb382b 7937 rtype = alloc_type_copy (type);
14f9c5c9 7938 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7939 INIT_CPLUS_SPECIFIC (rtype);
7940 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7941 TYPE_FIELDS (rtype) =
7942 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7943 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7944 sizeof (struct field) * nfields);
14f9c5c9
AS
7945 TYPE_NAME (rtype) = ada_type_name (type);
7946 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7947 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7948 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7949
4c4b4cd2
PH
7950 branch_type = to_fixed_variant_branch_type
7951 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7952 cond_offset_host (valaddr,
4c4b4cd2
PH
7953 TYPE_FIELD_BITPOS (type, variant_field)
7954 / TARGET_CHAR_BIT),
d2e4a39e 7955 cond_offset_target (address,
4c4b4cd2
PH
7956 TYPE_FIELD_BITPOS (type, variant_field)
7957 / TARGET_CHAR_BIT), dval);
d2e4a39e 7958 if (branch_type == NULL)
14f9c5c9 7959 {
4c4b4cd2 7960 int f;
5b4ee69b 7961
4c4b4cd2
PH
7962 for (f = variant_field + 1; f < nfields; f += 1)
7963 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7964 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7965 }
7966 else
7967 {
4c4b4cd2
PH
7968 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7969 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7970 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7971 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7972 }
4c4b4cd2 7973 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7974
4c4b4cd2 7975 value_free_to_mark (mark);
14f9c5c9
AS
7976 return rtype;
7977}
7978
7979/* An ordinary record type (with fixed-length fields) that describes
7980 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7981 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7982 should be in DVAL, a record value; it may be NULL if the object
7983 at ADDR itself contains any necessary discriminant values.
7984 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7985 values from the record are needed. Except in the case that DVAL,
7986 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7987 unchecked) is replaced by a particular branch of the variant.
7988
7989 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7990 is questionable and may be removed. It can arise during the
7991 processing of an unconstrained-array-of-record type where all the
7992 variant branches have exactly the same size. This is because in
7993 such cases, the compiler does not bother to use the XVS convention
7994 when encoding the record. I am currently dubious of this
7995 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7996
d2e4a39e 7997static struct type *
fc1a4b47 7998to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7999 CORE_ADDR address, struct value *dval)
14f9c5c9 8000{
d2e4a39e 8001 struct type *templ_type;
14f9c5c9 8002
876cecd0 8003 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8004 return type0;
8005
d2e4a39e 8006 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8007
8008 if (templ_type != NULL)
8009 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8010 else if (variant_field_index (type0) >= 0)
8011 {
8012 if (dval == NULL && valaddr == NULL && address == 0)
8013 return type0;
8014 return to_record_with_fixed_variant_part (type0, valaddr, address,
8015 dval);
8016 }
14f9c5c9
AS
8017 else
8018 {
876cecd0 8019 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8020 return type0;
8021 }
8022
8023}
8024
8025/* An ordinary record type (with fixed-length fields) that describes
8026 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8027 union type. Any necessary discriminants' values should be in DVAL,
8028 a record value. That is, this routine selects the appropriate
8029 branch of the union at ADDR according to the discriminant value
b1f33ddd 8030 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8031 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8032
d2e4a39e 8033static struct type *
fc1a4b47 8034to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8035 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8036{
8037 int which;
d2e4a39e
AS
8038 struct type *templ_type;
8039 struct type *var_type;
14f9c5c9
AS
8040
8041 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8042 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8043 else
14f9c5c9
AS
8044 var_type = var_type0;
8045
8046 templ_type = ada_find_parallel_type (var_type, "___XVU");
8047
8048 if (templ_type != NULL)
8049 var_type = templ_type;
8050
b1f33ddd
JB
8051 if (is_unchecked_variant (var_type, value_type (dval)))
8052 return var_type0;
d2e4a39e
AS
8053 which =
8054 ada_which_variant_applies (var_type,
0fd88904 8055 value_type (dval), value_contents (dval));
14f9c5c9
AS
8056
8057 if (which < 0)
e9bb382b 8058 return empty_record (var_type);
14f9c5c9 8059 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8060 return to_fixed_record_type
d2e4a39e
AS
8061 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8062 valaddr, address, dval);
4c4b4cd2 8063 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8064 return
8065 to_fixed_record_type
8066 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8067 else
8068 return TYPE_FIELD_TYPE (var_type, which);
8069}
8070
8071/* Assuming that TYPE0 is an array type describing the type of a value
8072 at ADDR, and that DVAL describes a record containing any
8073 discriminants used in TYPE0, returns a type for the value that
8074 contains no dynamic components (that is, no components whose sizes
8075 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8076 true, gives an error message if the resulting type's size is over
4c4b4cd2 8077 varsize_limit. */
14f9c5c9 8078
d2e4a39e
AS
8079static struct type *
8080to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8081 int ignore_too_big)
14f9c5c9 8082{
d2e4a39e
AS
8083 struct type *index_type_desc;
8084 struct type *result;
ad82864c 8085 int constrained_packed_array_p;
14f9c5c9 8086
b0dd7688 8087 type0 = ada_check_typedef (type0);
284614f0 8088 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8089 return type0;
14f9c5c9 8090
ad82864c
JB
8091 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8092 if (constrained_packed_array_p)
8093 type0 = decode_constrained_packed_array_type (type0);
284614f0 8094
14f9c5c9 8095 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8096 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8097 if (index_type_desc == NULL)
8098 {
61ee279c 8099 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8100
14f9c5c9 8101 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8102 depend on the contents of the array in properly constructed
8103 debugging data. */
529cad9c
PH
8104 /* Create a fixed version of the array element type.
8105 We're not providing the address of an element here,
e1d5a0d2 8106 and thus the actual object value cannot be inspected to do
529cad9c
PH
8107 the conversion. This should not be a problem, since arrays of
8108 unconstrained objects are not allowed. In particular, all
8109 the elements of an array of a tagged type should all be of
8110 the same type specified in the debugging info. No need to
8111 consult the object tag. */
1ed6ede0 8112 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8113
284614f0
JB
8114 /* Make sure we always create a new array type when dealing with
8115 packed array types, since we're going to fix-up the array
8116 type length and element bitsize a little further down. */
ad82864c 8117 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8118 result = type0;
14f9c5c9 8119 else
e9bb382b 8120 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8121 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8122 }
8123 else
8124 {
8125 int i;
8126 struct type *elt_type0;
8127
8128 elt_type0 = type0;
8129 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8130 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8131
8132 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8133 depend on the contents of the array in properly constructed
8134 debugging data. */
529cad9c
PH
8135 /* Create a fixed version of the array element type.
8136 We're not providing the address of an element here,
e1d5a0d2 8137 and thus the actual object value cannot be inspected to do
529cad9c
PH
8138 the conversion. This should not be a problem, since arrays of
8139 unconstrained objects are not allowed. In particular, all
8140 the elements of an array of a tagged type should all be of
8141 the same type specified in the debugging info. No need to
8142 consult the object tag. */
1ed6ede0
JB
8143 result =
8144 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8145
8146 elt_type0 = type0;
14f9c5c9 8147 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8148 {
8149 struct type *range_type =
28c85d6c 8150 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8151
e9bb382b 8152 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8153 result, range_type);
1ce677a4 8154 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8155 }
d2e4a39e 8156 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8157 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8158 }
8159
2e6fda7d
JB
8160 /* We want to preserve the type name. This can be useful when
8161 trying to get the type name of a value that has already been
8162 printed (for instance, if the user did "print VAR; whatis $". */
8163 TYPE_NAME (result) = TYPE_NAME (type0);
8164
ad82864c 8165 if (constrained_packed_array_p)
284614f0
JB
8166 {
8167 /* So far, the resulting type has been created as if the original
8168 type was a regular (non-packed) array type. As a result, the
8169 bitsize of the array elements needs to be set again, and the array
8170 length needs to be recomputed based on that bitsize. */
8171 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8172 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8173
8174 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8175 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8176 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8177 TYPE_LENGTH (result)++;
8178 }
8179
876cecd0 8180 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8181 return result;
d2e4a39e 8182}
14f9c5c9
AS
8183
8184
8185/* A standard type (containing no dynamically sized components)
8186 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8187 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8188 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8189 ADDRESS or in VALADDR contains these discriminants.
8190
1ed6ede0
JB
8191 If CHECK_TAG is not null, in the case of tagged types, this function
8192 attempts to locate the object's tag and use it to compute the actual
8193 type. However, when ADDRESS is null, we cannot use it to determine the
8194 location of the tag, and therefore compute the tagged type's actual type.
8195 So we return the tagged type without consulting the tag. */
529cad9c 8196
f192137b
JB
8197static struct type *
8198ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8199 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8200{
61ee279c 8201 type = ada_check_typedef (type);
d2e4a39e
AS
8202 switch (TYPE_CODE (type))
8203 {
8204 default:
14f9c5c9 8205 return type;
d2e4a39e 8206 case TYPE_CODE_STRUCT:
4c4b4cd2 8207 {
76a01679 8208 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8209 struct type *fixed_record_type =
8210 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8211
529cad9c
PH
8212 /* If STATIC_TYPE is a tagged type and we know the object's address,
8213 then we can determine its tag, and compute the object's actual
0963b4bd 8214 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8215 type (the parent part of the record may have dynamic fields
8216 and the way the location of _tag is expressed may depend on
8217 them). */
529cad9c 8218
1ed6ede0 8219 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8220 {
b50d69b5
JG
8221 struct value *tag =
8222 value_tag_from_contents_and_address
8223 (fixed_record_type,
8224 valaddr,
8225 address);
8226 struct type *real_type = type_from_tag (tag);
8227 struct value *obj =
8228 value_from_contents_and_address (fixed_record_type,
8229 valaddr,
8230 address);
76a01679 8231 if (real_type != NULL)
b50d69b5
JG
8232 return to_fixed_record_type
8233 (real_type, NULL,
8234 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8235 }
4af88198
JB
8236
8237 /* Check to see if there is a parallel ___XVZ variable.
8238 If there is, then it provides the actual size of our type. */
8239 else if (ada_type_name (fixed_record_type) != NULL)
8240 {
0d5cff50 8241 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8242 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8243 int xvz_found = 0;
8244 LONGEST size;
8245
88c15c34 8246 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8247 size = get_int_var_value (xvz_name, &xvz_found);
8248 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8249 {
8250 fixed_record_type = copy_type (fixed_record_type);
8251 TYPE_LENGTH (fixed_record_type) = size;
8252
8253 /* The FIXED_RECORD_TYPE may have be a stub. We have
8254 observed this when the debugging info is STABS, and
8255 apparently it is something that is hard to fix.
8256
8257 In practice, we don't need the actual type definition
8258 at all, because the presence of the XVZ variable allows us
8259 to assume that there must be a XVS type as well, which we
8260 should be able to use later, when we need the actual type
8261 definition.
8262
8263 In the meantime, pretend that the "fixed" type we are
8264 returning is NOT a stub, because this can cause trouble
8265 when using this type to create new types targeting it.
8266 Indeed, the associated creation routines often check
8267 whether the target type is a stub and will try to replace
0963b4bd 8268 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8269 might cause the new type to have the wrong size too.
8270 Consider the case of an array, for instance, where the size
8271 of the array is computed from the number of elements in
8272 our array multiplied by the size of its element. */
8273 TYPE_STUB (fixed_record_type) = 0;
8274 }
8275 }
1ed6ede0 8276 return fixed_record_type;
4c4b4cd2 8277 }
d2e4a39e 8278 case TYPE_CODE_ARRAY:
4c4b4cd2 8279 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8280 case TYPE_CODE_UNION:
8281 if (dval == NULL)
4c4b4cd2 8282 return type;
d2e4a39e 8283 else
4c4b4cd2 8284 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8285 }
14f9c5c9
AS
8286}
8287
f192137b
JB
8288/* The same as ada_to_fixed_type_1, except that it preserves the type
8289 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8290
8291 The typedef layer needs be preserved in order to differentiate between
8292 arrays and array pointers when both types are implemented using the same
8293 fat pointer. In the array pointer case, the pointer is encoded as
8294 a typedef of the pointer type. For instance, considering:
8295
8296 type String_Access is access String;
8297 S1 : String_Access := null;
8298
8299 To the debugger, S1 is defined as a typedef of type String. But
8300 to the user, it is a pointer. So if the user tries to print S1,
8301 we should not dereference the array, but print the array address
8302 instead.
8303
8304 If we didn't preserve the typedef layer, we would lose the fact that
8305 the type is to be presented as a pointer (needs de-reference before
8306 being printed). And we would also use the source-level type name. */
f192137b
JB
8307
8308struct type *
8309ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8310 CORE_ADDR address, struct value *dval, int check_tag)
8311
8312{
8313 struct type *fixed_type =
8314 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8315
96dbd2c1
JB
8316 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8317 then preserve the typedef layer.
8318
8319 Implementation note: We can only check the main-type portion of
8320 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8321 from TYPE now returns a type that has the same instance flags
8322 as TYPE. For instance, if TYPE is a "typedef const", and its
8323 target type is a "struct", then the typedef elimination will return
8324 a "const" version of the target type. See check_typedef for more
8325 details about how the typedef layer elimination is done.
8326
8327 brobecker/2010-11-19: It seems to me that the only case where it is
8328 useful to preserve the typedef layer is when dealing with fat pointers.
8329 Perhaps, we could add a check for that and preserve the typedef layer
8330 only in that situation. But this seems unecessary so far, probably
8331 because we call check_typedef/ada_check_typedef pretty much everywhere.
8332 */
f192137b 8333 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8334 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8335 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8336 return type;
8337
8338 return fixed_type;
8339}
8340
14f9c5c9 8341/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8342 TYPE0, but based on no runtime data. */
14f9c5c9 8343
d2e4a39e
AS
8344static struct type *
8345to_static_fixed_type (struct type *type0)
14f9c5c9 8346{
d2e4a39e 8347 struct type *type;
14f9c5c9
AS
8348
8349 if (type0 == NULL)
8350 return NULL;
8351
876cecd0 8352 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8353 return type0;
8354
61ee279c 8355 type0 = ada_check_typedef (type0);
d2e4a39e 8356
14f9c5c9
AS
8357 switch (TYPE_CODE (type0))
8358 {
8359 default:
8360 return type0;
8361 case TYPE_CODE_STRUCT:
8362 type = dynamic_template_type (type0);
d2e4a39e 8363 if (type != NULL)
4c4b4cd2
PH
8364 return template_to_static_fixed_type (type);
8365 else
8366 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8367 case TYPE_CODE_UNION:
8368 type = ada_find_parallel_type (type0, "___XVU");
8369 if (type != NULL)
4c4b4cd2
PH
8370 return template_to_static_fixed_type (type);
8371 else
8372 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8373 }
8374}
8375
4c4b4cd2
PH
8376/* A static approximation of TYPE with all type wrappers removed. */
8377
d2e4a39e
AS
8378static struct type *
8379static_unwrap_type (struct type *type)
14f9c5c9
AS
8380{
8381 if (ada_is_aligner_type (type))
8382 {
61ee279c 8383 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8384 if (ada_type_name (type1) == NULL)
4c4b4cd2 8385 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8386
8387 return static_unwrap_type (type1);
8388 }
d2e4a39e 8389 else
14f9c5c9 8390 {
d2e4a39e 8391 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8392
d2e4a39e 8393 if (raw_real_type == type)
4c4b4cd2 8394 return type;
14f9c5c9 8395 else
4c4b4cd2 8396 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8397 }
8398}
8399
8400/* In some cases, incomplete and private types require
4c4b4cd2 8401 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8402 type Foo;
8403 type FooP is access Foo;
8404 V: FooP;
8405 type Foo is array ...;
4c4b4cd2 8406 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8407 cross-references to such types, we instead substitute for FooP a
8408 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8409 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8410
8411/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8412 exists, otherwise TYPE. */
8413
d2e4a39e 8414struct type *
61ee279c 8415ada_check_typedef (struct type *type)
14f9c5c9 8416{
727e3d2e
JB
8417 if (type == NULL)
8418 return NULL;
8419
720d1a40
JB
8420 /* If our type is a typedef type of a fat pointer, then we're done.
8421 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8422 what allows us to distinguish between fat pointers that represent
8423 array types, and fat pointers that represent array access types
8424 (in both cases, the compiler implements them as fat pointers). */
8425 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8426 && is_thick_pntr (ada_typedef_target_type (type)))
8427 return type;
8428
14f9c5c9
AS
8429 CHECK_TYPEDEF (type);
8430 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8431 || !TYPE_STUB (type)
14f9c5c9
AS
8432 || TYPE_TAG_NAME (type) == NULL)
8433 return type;
d2e4a39e 8434 else
14f9c5c9 8435 {
0d5cff50 8436 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8437 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8438
05e522ef
JB
8439 if (type1 == NULL)
8440 return type;
8441
8442 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8443 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8444 types, only for the typedef-to-array types). If that's the case,
8445 strip the typedef layer. */
8446 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8447 type1 = ada_check_typedef (type1);
8448
8449 return type1;
14f9c5c9
AS
8450 }
8451}
8452
8453/* A value representing the data at VALADDR/ADDRESS as described by
8454 type TYPE0, but with a standard (static-sized) type that correctly
8455 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8456 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8457 creation of struct values]. */
14f9c5c9 8458
4c4b4cd2
PH
8459static struct value *
8460ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8461 struct value *val0)
14f9c5c9 8462{
1ed6ede0 8463 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8464
14f9c5c9
AS
8465 if (type == type0 && val0 != NULL)
8466 return val0;
d2e4a39e 8467 else
4c4b4cd2
PH
8468 return value_from_contents_and_address (type, 0, address);
8469}
8470
8471/* A value representing VAL, but with a standard (static-sized) type
8472 that correctly describes it. Does not necessarily create a new
8473 value. */
8474
0c3acc09 8475struct value *
4c4b4cd2
PH
8476ada_to_fixed_value (struct value *val)
8477{
c48db5ca
JB
8478 val = unwrap_value (val);
8479 val = ada_to_fixed_value_create (value_type (val),
8480 value_address (val),
8481 val);
8482 return val;
14f9c5c9 8483}
d2e4a39e 8484\f
14f9c5c9 8485
14f9c5c9
AS
8486/* Attributes */
8487
4c4b4cd2
PH
8488/* Table mapping attribute numbers to names.
8489 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8490
d2e4a39e 8491static const char *attribute_names[] = {
14f9c5c9
AS
8492 "<?>",
8493
d2e4a39e 8494 "first",
14f9c5c9
AS
8495 "last",
8496 "length",
8497 "image",
14f9c5c9
AS
8498 "max",
8499 "min",
4c4b4cd2
PH
8500 "modulus",
8501 "pos",
8502 "size",
8503 "tag",
14f9c5c9 8504 "val",
14f9c5c9
AS
8505 0
8506};
8507
d2e4a39e 8508const char *
4c4b4cd2 8509ada_attribute_name (enum exp_opcode n)
14f9c5c9 8510{
4c4b4cd2
PH
8511 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8512 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8513 else
8514 return attribute_names[0];
8515}
8516
4c4b4cd2 8517/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8518
4c4b4cd2
PH
8519static LONGEST
8520pos_atr (struct value *arg)
14f9c5c9 8521{
24209737
PH
8522 struct value *val = coerce_ref (arg);
8523 struct type *type = value_type (val);
14f9c5c9 8524
d2e4a39e 8525 if (!discrete_type_p (type))
323e0a4a 8526 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8527
8528 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8529 {
8530 int i;
24209737 8531 LONGEST v = value_as_long (val);
14f9c5c9 8532
d2e4a39e 8533 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8534 {
14e75d8e 8535 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8536 return i;
8537 }
323e0a4a 8538 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8539 }
8540 else
24209737 8541 return value_as_long (val);
4c4b4cd2
PH
8542}
8543
8544static struct value *
3cb382c9 8545value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8546{
3cb382c9 8547 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8548}
8549
4c4b4cd2 8550/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8551
d2e4a39e
AS
8552static struct value *
8553value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8554{
d2e4a39e 8555 if (!discrete_type_p (type))
323e0a4a 8556 error (_("'VAL only defined on discrete types"));
df407dfe 8557 if (!integer_type_p (value_type (arg)))
323e0a4a 8558 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8559
8560 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8561 {
8562 long pos = value_as_long (arg);
5b4ee69b 8563
14f9c5c9 8564 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8565 error (_("argument to 'VAL out of range"));
14e75d8e 8566 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8567 }
8568 else
8569 return value_from_longest (type, value_as_long (arg));
8570}
14f9c5c9 8571\f
d2e4a39e 8572
4c4b4cd2 8573 /* Evaluation */
14f9c5c9 8574
4c4b4cd2
PH
8575/* True if TYPE appears to be an Ada character type.
8576 [At the moment, this is true only for Character and Wide_Character;
8577 It is a heuristic test that could stand improvement]. */
14f9c5c9 8578
d2e4a39e
AS
8579int
8580ada_is_character_type (struct type *type)
14f9c5c9 8581{
7b9f71f2
JB
8582 const char *name;
8583
8584 /* If the type code says it's a character, then assume it really is,
8585 and don't check any further. */
8586 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8587 return 1;
8588
8589 /* Otherwise, assume it's a character type iff it is a discrete type
8590 with a known character type name. */
8591 name = ada_type_name (type);
8592 return (name != NULL
8593 && (TYPE_CODE (type) == TYPE_CODE_INT
8594 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8595 && (strcmp (name, "character") == 0
8596 || strcmp (name, "wide_character") == 0
5a517ebd 8597 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8598 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8599}
8600
4c4b4cd2 8601/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8602
8603int
ebf56fd3 8604ada_is_string_type (struct type *type)
14f9c5c9 8605{
61ee279c 8606 type = ada_check_typedef (type);
d2e4a39e 8607 if (type != NULL
14f9c5c9 8608 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8609 && (ada_is_simple_array_type (type)
8610 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8611 && ada_array_arity (type) == 1)
8612 {
8613 struct type *elttype = ada_array_element_type (type, 1);
8614
8615 return ada_is_character_type (elttype);
8616 }
d2e4a39e 8617 else
14f9c5c9
AS
8618 return 0;
8619}
8620
5bf03f13
JB
8621/* The compiler sometimes provides a parallel XVS type for a given
8622 PAD type. Normally, it is safe to follow the PAD type directly,
8623 but older versions of the compiler have a bug that causes the offset
8624 of its "F" field to be wrong. Following that field in that case
8625 would lead to incorrect results, but this can be worked around
8626 by ignoring the PAD type and using the associated XVS type instead.
8627
8628 Set to True if the debugger should trust the contents of PAD types.
8629 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8630static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8631
8632/* True if TYPE is a struct type introduced by the compiler to force the
8633 alignment of a value. Such types have a single field with a
4c4b4cd2 8634 distinctive name. */
14f9c5c9
AS
8635
8636int
ebf56fd3 8637ada_is_aligner_type (struct type *type)
14f9c5c9 8638{
61ee279c 8639 type = ada_check_typedef (type);
714e53ab 8640
5bf03f13 8641 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8642 return 0;
8643
14f9c5c9 8644 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8645 && TYPE_NFIELDS (type) == 1
8646 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8647}
8648
8649/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8650 the parallel type. */
14f9c5c9 8651
d2e4a39e
AS
8652struct type *
8653ada_get_base_type (struct type *raw_type)
14f9c5c9 8654{
d2e4a39e
AS
8655 struct type *real_type_namer;
8656 struct type *raw_real_type;
14f9c5c9
AS
8657
8658 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8659 return raw_type;
8660
284614f0
JB
8661 if (ada_is_aligner_type (raw_type))
8662 /* The encoding specifies that we should always use the aligner type.
8663 So, even if this aligner type has an associated XVS type, we should
8664 simply ignore it.
8665
8666 According to the compiler gurus, an XVS type parallel to an aligner
8667 type may exist because of a stabs limitation. In stabs, aligner
8668 types are empty because the field has a variable-sized type, and
8669 thus cannot actually be used as an aligner type. As a result,
8670 we need the associated parallel XVS type to decode the type.
8671 Since the policy in the compiler is to not change the internal
8672 representation based on the debugging info format, we sometimes
8673 end up having a redundant XVS type parallel to the aligner type. */
8674 return raw_type;
8675
14f9c5c9 8676 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8677 if (real_type_namer == NULL
14f9c5c9
AS
8678 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8679 || TYPE_NFIELDS (real_type_namer) != 1)
8680 return raw_type;
8681
f80d3ff2
JB
8682 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8683 {
8684 /* This is an older encoding form where the base type needs to be
8685 looked up by name. We prefer the newer enconding because it is
8686 more efficient. */
8687 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8688 if (raw_real_type == NULL)
8689 return raw_type;
8690 else
8691 return raw_real_type;
8692 }
8693
8694 /* The field in our XVS type is a reference to the base type. */
8695 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8696}
14f9c5c9 8697
4c4b4cd2 8698/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8699
d2e4a39e
AS
8700struct type *
8701ada_aligned_type (struct type *type)
14f9c5c9
AS
8702{
8703 if (ada_is_aligner_type (type))
8704 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8705 else
8706 return ada_get_base_type (type);
8707}
8708
8709
8710/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8711 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8712
fc1a4b47
AC
8713const gdb_byte *
8714ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8715{
d2e4a39e 8716 if (ada_is_aligner_type (type))
14f9c5c9 8717 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8718 valaddr +
8719 TYPE_FIELD_BITPOS (type,
8720 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8721 else
8722 return valaddr;
8723}
8724
4c4b4cd2
PH
8725
8726
14f9c5c9 8727/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8728 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8729const char *
8730ada_enum_name (const char *name)
14f9c5c9 8731{
4c4b4cd2
PH
8732 static char *result;
8733 static size_t result_len = 0;
d2e4a39e 8734 char *tmp;
14f9c5c9 8735
4c4b4cd2
PH
8736 /* First, unqualify the enumeration name:
8737 1. Search for the last '.' character. If we find one, then skip
177b42fe 8738 all the preceding characters, the unqualified name starts
76a01679 8739 right after that dot.
4c4b4cd2 8740 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8741 translates dots into "__". Search forward for double underscores,
8742 but stop searching when we hit an overloading suffix, which is
8743 of the form "__" followed by digits. */
4c4b4cd2 8744
c3e5cd34
PH
8745 tmp = strrchr (name, '.');
8746 if (tmp != NULL)
4c4b4cd2
PH
8747 name = tmp + 1;
8748 else
14f9c5c9 8749 {
4c4b4cd2
PH
8750 while ((tmp = strstr (name, "__")) != NULL)
8751 {
8752 if (isdigit (tmp[2]))
8753 break;
8754 else
8755 name = tmp + 2;
8756 }
14f9c5c9
AS
8757 }
8758
8759 if (name[0] == 'Q')
8760 {
14f9c5c9 8761 int v;
5b4ee69b 8762
14f9c5c9 8763 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8764 {
8765 if (sscanf (name + 2, "%x", &v) != 1)
8766 return name;
8767 }
14f9c5c9 8768 else
4c4b4cd2 8769 return name;
14f9c5c9 8770
4c4b4cd2 8771 GROW_VECT (result, result_len, 16);
14f9c5c9 8772 if (isascii (v) && isprint (v))
88c15c34 8773 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8774 else if (name[1] == 'U')
88c15c34 8775 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8776 else
88c15c34 8777 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8778
8779 return result;
8780 }
d2e4a39e 8781 else
4c4b4cd2 8782 {
c3e5cd34
PH
8783 tmp = strstr (name, "__");
8784 if (tmp == NULL)
8785 tmp = strstr (name, "$");
8786 if (tmp != NULL)
4c4b4cd2
PH
8787 {
8788 GROW_VECT (result, result_len, tmp - name + 1);
8789 strncpy (result, name, tmp - name);
8790 result[tmp - name] = '\0';
8791 return result;
8792 }
8793
8794 return name;
8795 }
14f9c5c9
AS
8796}
8797
14f9c5c9
AS
8798/* Evaluate the subexpression of EXP starting at *POS as for
8799 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8800 expression. */
14f9c5c9 8801
d2e4a39e
AS
8802static struct value *
8803evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8804{
4b27a620 8805 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8806}
8807
8808/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8809 value it wraps. */
14f9c5c9 8810
d2e4a39e
AS
8811static struct value *
8812unwrap_value (struct value *val)
14f9c5c9 8813{
df407dfe 8814 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8815
14f9c5c9
AS
8816 if (ada_is_aligner_type (type))
8817 {
de4d072f 8818 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8819 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8820
14f9c5c9 8821 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8822 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8823
8824 return unwrap_value (v);
8825 }
d2e4a39e 8826 else
14f9c5c9 8827 {
d2e4a39e 8828 struct type *raw_real_type =
61ee279c 8829 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8830
5bf03f13
JB
8831 /* If there is no parallel XVS or XVE type, then the value is
8832 already unwrapped. Return it without further modification. */
8833 if ((type == raw_real_type)
8834 && ada_find_parallel_type (type, "___XVE") == NULL)
8835 return val;
14f9c5c9 8836
d2e4a39e 8837 return
4c4b4cd2
PH
8838 coerce_unspec_val_to_type
8839 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8840 value_address (val),
1ed6ede0 8841 NULL, 1));
14f9c5c9
AS
8842 }
8843}
d2e4a39e
AS
8844
8845static struct value *
8846cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8847{
8848 LONGEST val;
8849
df407dfe 8850 if (type == value_type (arg))
14f9c5c9 8851 return arg;
df407dfe 8852 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8853 val = ada_float_to_fixed (type,
df407dfe 8854 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8855 value_as_long (arg)));
d2e4a39e 8856 else
14f9c5c9 8857 {
a53b7a21 8858 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8859
14f9c5c9
AS
8860 val = ada_float_to_fixed (type, argd);
8861 }
8862
8863 return value_from_longest (type, val);
8864}
8865
d2e4a39e 8866static struct value *
a53b7a21 8867cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8868{
df407dfe 8869 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8870 value_as_long (arg));
5b4ee69b 8871
a53b7a21 8872 return value_from_double (type, val);
14f9c5c9
AS
8873}
8874
d99dcf51
JB
8875/* Given two array types T1 and T2, return nonzero iff both arrays
8876 contain the same number of elements. */
8877
8878static int
8879ada_same_array_size_p (struct type *t1, struct type *t2)
8880{
8881 LONGEST lo1, hi1, lo2, hi2;
8882
8883 /* Get the array bounds in order to verify that the size of
8884 the two arrays match. */
8885 if (!get_array_bounds (t1, &lo1, &hi1)
8886 || !get_array_bounds (t2, &lo2, &hi2))
8887 error (_("unable to determine array bounds"));
8888
8889 /* To make things easier for size comparison, normalize a bit
8890 the case of empty arrays by making sure that the difference
8891 between upper bound and lower bound is always -1. */
8892 if (lo1 > hi1)
8893 hi1 = lo1 - 1;
8894 if (lo2 > hi2)
8895 hi2 = lo2 - 1;
8896
8897 return (hi1 - lo1 == hi2 - lo2);
8898}
8899
8900/* Assuming that VAL is an array of integrals, and TYPE represents
8901 an array with the same number of elements, but with wider integral
8902 elements, return an array "casted" to TYPE. In practice, this
8903 means that the returned array is built by casting each element
8904 of the original array into TYPE's (wider) element type. */
8905
8906static struct value *
8907ada_promote_array_of_integrals (struct type *type, struct value *val)
8908{
8909 struct type *elt_type = TYPE_TARGET_TYPE (type);
8910 LONGEST lo, hi;
8911 struct value *res;
8912 LONGEST i;
8913
8914 /* Verify that both val and type are arrays of scalars, and
8915 that the size of val's elements is smaller than the size
8916 of type's element. */
8917 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8918 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8919 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8920 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8921 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8922 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8923
8924 if (!get_array_bounds (type, &lo, &hi))
8925 error (_("unable to determine array bounds"));
8926
8927 res = allocate_value (type);
8928
8929 /* Promote each array element. */
8930 for (i = 0; i < hi - lo + 1; i++)
8931 {
8932 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8933
8934 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8935 value_contents_all (elt), TYPE_LENGTH (elt_type));
8936 }
8937
8938 return res;
8939}
8940
4c4b4cd2
PH
8941/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8942 return the converted value. */
8943
d2e4a39e
AS
8944static struct value *
8945coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8946{
df407dfe 8947 struct type *type2 = value_type (val);
5b4ee69b 8948
14f9c5c9
AS
8949 if (type == type2)
8950 return val;
8951
61ee279c
PH
8952 type2 = ada_check_typedef (type2);
8953 type = ada_check_typedef (type);
14f9c5c9 8954
d2e4a39e
AS
8955 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8956 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8957 {
8958 val = ada_value_ind (val);
df407dfe 8959 type2 = value_type (val);
14f9c5c9
AS
8960 }
8961
d2e4a39e 8962 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8963 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8964 {
d99dcf51
JB
8965 if (!ada_same_array_size_p (type, type2))
8966 error (_("cannot assign arrays of different length"));
8967
8968 if (is_integral_type (TYPE_TARGET_TYPE (type))
8969 && is_integral_type (TYPE_TARGET_TYPE (type2))
8970 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8971 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8972 {
8973 /* Allow implicit promotion of the array elements to
8974 a wider type. */
8975 return ada_promote_array_of_integrals (type, val);
8976 }
8977
8978 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8979 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8980 error (_("Incompatible types in assignment"));
04624583 8981 deprecated_set_value_type (val, type);
14f9c5c9 8982 }
d2e4a39e 8983 return val;
14f9c5c9
AS
8984}
8985
4c4b4cd2
PH
8986static struct value *
8987ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8988{
8989 struct value *val;
8990 struct type *type1, *type2;
8991 LONGEST v, v1, v2;
8992
994b9211
AC
8993 arg1 = coerce_ref (arg1);
8994 arg2 = coerce_ref (arg2);
18af8284
JB
8995 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8996 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8997
76a01679
JB
8998 if (TYPE_CODE (type1) != TYPE_CODE_INT
8999 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9000 return value_binop (arg1, arg2, op);
9001
76a01679 9002 switch (op)
4c4b4cd2
PH
9003 {
9004 case BINOP_MOD:
9005 case BINOP_DIV:
9006 case BINOP_REM:
9007 break;
9008 default:
9009 return value_binop (arg1, arg2, op);
9010 }
9011
9012 v2 = value_as_long (arg2);
9013 if (v2 == 0)
323e0a4a 9014 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9015
9016 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9017 return value_binop (arg1, arg2, op);
9018
9019 v1 = value_as_long (arg1);
9020 switch (op)
9021 {
9022 case BINOP_DIV:
9023 v = v1 / v2;
76a01679
JB
9024 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9025 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9026 break;
9027 case BINOP_REM:
9028 v = v1 % v2;
76a01679
JB
9029 if (v * v1 < 0)
9030 v -= v2;
4c4b4cd2
PH
9031 break;
9032 default:
9033 /* Should not reach this point. */
9034 v = 0;
9035 }
9036
9037 val = allocate_value (type1);
990a07ab 9038 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9039 TYPE_LENGTH (value_type (val)),
9040 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9041 return val;
9042}
9043
9044static int
9045ada_value_equal (struct value *arg1, struct value *arg2)
9046{
df407dfe
AC
9047 if (ada_is_direct_array_type (value_type (arg1))
9048 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9049 {
f58b38bf
JB
9050 /* Automatically dereference any array reference before
9051 we attempt to perform the comparison. */
9052 arg1 = ada_coerce_ref (arg1);
9053 arg2 = ada_coerce_ref (arg2);
9054
4c4b4cd2
PH
9055 arg1 = ada_coerce_to_simple_array (arg1);
9056 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9057 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9058 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9059 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9060 /* FIXME: The following works only for types whose
76a01679
JB
9061 representations use all bits (no padding or undefined bits)
9062 and do not have user-defined equality. */
9063 return
df407dfe 9064 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9065 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9066 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9067 }
9068 return value_equal (arg1, arg2);
9069}
9070
52ce6436
PH
9071/* Total number of component associations in the aggregate starting at
9072 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9073 OP_AGGREGATE. */
52ce6436
PH
9074
9075static int
9076num_component_specs (struct expression *exp, int pc)
9077{
9078 int n, m, i;
5b4ee69b 9079
52ce6436
PH
9080 m = exp->elts[pc + 1].longconst;
9081 pc += 3;
9082 n = 0;
9083 for (i = 0; i < m; i += 1)
9084 {
9085 switch (exp->elts[pc].opcode)
9086 {
9087 default:
9088 n += 1;
9089 break;
9090 case OP_CHOICES:
9091 n += exp->elts[pc + 1].longconst;
9092 break;
9093 }
9094 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9095 }
9096 return n;
9097}
9098
9099/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9100 component of LHS (a simple array or a record), updating *POS past
9101 the expression, assuming that LHS is contained in CONTAINER. Does
9102 not modify the inferior's memory, nor does it modify LHS (unless
9103 LHS == CONTAINER). */
9104
9105static void
9106assign_component (struct value *container, struct value *lhs, LONGEST index,
9107 struct expression *exp, int *pos)
9108{
9109 struct value *mark = value_mark ();
9110 struct value *elt;
5b4ee69b 9111
52ce6436
PH
9112 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9113 {
22601c15
UW
9114 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9115 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9116
52ce6436
PH
9117 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9118 }
9119 else
9120 {
9121 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9122 elt = ada_to_fixed_value (elt);
52ce6436
PH
9123 }
9124
9125 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9126 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9127 else
9128 value_assign_to_component (container, elt,
9129 ada_evaluate_subexp (NULL, exp, pos,
9130 EVAL_NORMAL));
9131
9132 value_free_to_mark (mark);
9133}
9134
9135/* Assuming that LHS represents an lvalue having a record or array
9136 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9137 of that aggregate's value to LHS, advancing *POS past the
9138 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9139 lvalue containing LHS (possibly LHS itself). Does not modify
9140 the inferior's memory, nor does it modify the contents of
0963b4bd 9141 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9142
9143static struct value *
9144assign_aggregate (struct value *container,
9145 struct value *lhs, struct expression *exp,
9146 int *pos, enum noside noside)
9147{
9148 struct type *lhs_type;
9149 int n = exp->elts[*pos+1].longconst;
9150 LONGEST low_index, high_index;
9151 int num_specs;
9152 LONGEST *indices;
9153 int max_indices, num_indices;
52ce6436 9154 int i;
52ce6436
PH
9155
9156 *pos += 3;
9157 if (noside != EVAL_NORMAL)
9158 {
52ce6436
PH
9159 for (i = 0; i < n; i += 1)
9160 ada_evaluate_subexp (NULL, exp, pos, noside);
9161 return container;
9162 }
9163
9164 container = ada_coerce_ref (container);
9165 if (ada_is_direct_array_type (value_type (container)))
9166 container = ada_coerce_to_simple_array (container);
9167 lhs = ada_coerce_ref (lhs);
9168 if (!deprecated_value_modifiable (lhs))
9169 error (_("Left operand of assignment is not a modifiable lvalue."));
9170
9171 lhs_type = value_type (lhs);
9172 if (ada_is_direct_array_type (lhs_type))
9173 {
9174 lhs = ada_coerce_to_simple_array (lhs);
9175 lhs_type = value_type (lhs);
9176 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9177 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9178 }
9179 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9180 {
9181 low_index = 0;
9182 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9183 }
9184 else
9185 error (_("Left-hand side must be array or record."));
9186
9187 num_specs = num_component_specs (exp, *pos - 3);
9188 max_indices = 4 * num_specs + 4;
9189 indices = alloca (max_indices * sizeof (indices[0]));
9190 indices[0] = indices[1] = low_index - 1;
9191 indices[2] = indices[3] = high_index + 1;
9192 num_indices = 4;
9193
9194 for (i = 0; i < n; i += 1)
9195 {
9196 switch (exp->elts[*pos].opcode)
9197 {
1fbf5ada
JB
9198 case OP_CHOICES:
9199 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9200 &num_indices, max_indices,
9201 low_index, high_index);
9202 break;
9203 case OP_POSITIONAL:
9204 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9205 &num_indices, max_indices,
9206 low_index, high_index);
1fbf5ada
JB
9207 break;
9208 case OP_OTHERS:
9209 if (i != n-1)
9210 error (_("Misplaced 'others' clause"));
9211 aggregate_assign_others (container, lhs, exp, pos, indices,
9212 num_indices, low_index, high_index);
9213 break;
9214 default:
9215 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9216 }
9217 }
9218
9219 return container;
9220}
9221
9222/* Assign into the component of LHS indexed by the OP_POSITIONAL
9223 construct at *POS, updating *POS past the construct, given that
9224 the positions are relative to lower bound LOW, where HIGH is the
9225 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9226 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9227 assign_aggregate. */
52ce6436
PH
9228static void
9229aggregate_assign_positional (struct value *container,
9230 struct value *lhs, struct expression *exp,
9231 int *pos, LONGEST *indices, int *num_indices,
9232 int max_indices, LONGEST low, LONGEST high)
9233{
9234 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9235
9236 if (ind - 1 == high)
e1d5a0d2 9237 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9238 if (ind <= high)
9239 {
9240 add_component_interval (ind, ind, indices, num_indices, max_indices);
9241 *pos += 3;
9242 assign_component (container, lhs, ind, exp, pos);
9243 }
9244 else
9245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9246}
9247
9248/* Assign into the components of LHS indexed by the OP_CHOICES
9249 construct at *POS, updating *POS past the construct, given that
9250 the allowable indices are LOW..HIGH. Record the indices assigned
9251 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9252 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9253static void
9254aggregate_assign_from_choices (struct value *container,
9255 struct value *lhs, struct expression *exp,
9256 int *pos, LONGEST *indices, int *num_indices,
9257 int max_indices, LONGEST low, LONGEST high)
9258{
9259 int j;
9260 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9261 int choice_pos, expr_pc;
9262 int is_array = ada_is_direct_array_type (value_type (lhs));
9263
9264 choice_pos = *pos += 3;
9265
9266 for (j = 0; j < n_choices; j += 1)
9267 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9268 expr_pc = *pos;
9269 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9270
9271 for (j = 0; j < n_choices; j += 1)
9272 {
9273 LONGEST lower, upper;
9274 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9275
52ce6436
PH
9276 if (op == OP_DISCRETE_RANGE)
9277 {
9278 choice_pos += 1;
9279 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9280 EVAL_NORMAL));
9281 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9282 EVAL_NORMAL));
9283 }
9284 else if (is_array)
9285 {
9286 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9287 EVAL_NORMAL));
9288 upper = lower;
9289 }
9290 else
9291 {
9292 int ind;
0d5cff50 9293 const char *name;
5b4ee69b 9294
52ce6436
PH
9295 switch (op)
9296 {
9297 case OP_NAME:
9298 name = &exp->elts[choice_pos + 2].string;
9299 break;
9300 case OP_VAR_VALUE:
9301 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9302 break;
9303 default:
9304 error (_("Invalid record component association."));
9305 }
9306 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9307 ind = 0;
9308 if (! find_struct_field (name, value_type (lhs), 0,
9309 NULL, NULL, NULL, NULL, &ind))
9310 error (_("Unknown component name: %s."), name);
9311 lower = upper = ind;
9312 }
9313
9314 if (lower <= upper && (lower < low || upper > high))
9315 error (_("Index in component association out of bounds."));
9316
9317 add_component_interval (lower, upper, indices, num_indices,
9318 max_indices);
9319 while (lower <= upper)
9320 {
9321 int pos1;
5b4ee69b 9322
52ce6436
PH
9323 pos1 = expr_pc;
9324 assign_component (container, lhs, lower, exp, &pos1);
9325 lower += 1;
9326 }
9327 }
9328}
9329
9330/* Assign the value of the expression in the OP_OTHERS construct in
9331 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9332 have not been previously assigned. The index intervals already assigned
9333 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9334 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9335static void
9336aggregate_assign_others (struct value *container,
9337 struct value *lhs, struct expression *exp,
9338 int *pos, LONGEST *indices, int num_indices,
9339 LONGEST low, LONGEST high)
9340{
9341 int i;
5ce64950 9342 int expr_pc = *pos + 1;
52ce6436
PH
9343
9344 for (i = 0; i < num_indices - 2; i += 2)
9345 {
9346 LONGEST ind;
5b4ee69b 9347
52ce6436
PH
9348 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9349 {
5ce64950 9350 int localpos;
5b4ee69b 9351
5ce64950
MS
9352 localpos = expr_pc;
9353 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9354 }
9355 }
9356 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9357}
9358
9359/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9360 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9361 modifying *SIZE as needed. It is an error if *SIZE exceeds
9362 MAX_SIZE. The resulting intervals do not overlap. */
9363static void
9364add_component_interval (LONGEST low, LONGEST high,
9365 LONGEST* indices, int *size, int max_size)
9366{
9367 int i, j;
5b4ee69b 9368
52ce6436
PH
9369 for (i = 0; i < *size; i += 2) {
9370 if (high >= indices[i] && low <= indices[i + 1])
9371 {
9372 int kh;
5b4ee69b 9373
52ce6436
PH
9374 for (kh = i + 2; kh < *size; kh += 2)
9375 if (high < indices[kh])
9376 break;
9377 if (low < indices[i])
9378 indices[i] = low;
9379 indices[i + 1] = indices[kh - 1];
9380 if (high > indices[i + 1])
9381 indices[i + 1] = high;
9382 memcpy (indices + i + 2, indices + kh, *size - kh);
9383 *size -= kh - i - 2;
9384 return;
9385 }
9386 else if (high < indices[i])
9387 break;
9388 }
9389
9390 if (*size == max_size)
9391 error (_("Internal error: miscounted aggregate components."));
9392 *size += 2;
9393 for (j = *size-1; j >= i+2; j -= 1)
9394 indices[j] = indices[j - 2];
9395 indices[i] = low;
9396 indices[i + 1] = high;
9397}
9398
6e48bd2c
JB
9399/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9400 is different. */
9401
9402static struct value *
9403ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9404{
9405 if (type == ada_check_typedef (value_type (arg2)))
9406 return arg2;
9407
9408 if (ada_is_fixed_point_type (type))
9409 return (cast_to_fixed (type, arg2));
9410
9411 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9412 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9413
9414 return value_cast (type, arg2);
9415}
9416
284614f0
JB
9417/* Evaluating Ada expressions, and printing their result.
9418 ------------------------------------------------------
9419
21649b50
JB
9420 1. Introduction:
9421 ----------------
9422
284614f0
JB
9423 We usually evaluate an Ada expression in order to print its value.
9424 We also evaluate an expression in order to print its type, which
9425 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9426 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9427 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9428 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9429 similar.
9430
9431 Evaluating expressions is a little more complicated for Ada entities
9432 than it is for entities in languages such as C. The main reason for
9433 this is that Ada provides types whose definition might be dynamic.
9434 One example of such types is variant records. Or another example
9435 would be an array whose bounds can only be known at run time.
9436
9437 The following description is a general guide as to what should be
9438 done (and what should NOT be done) in order to evaluate an expression
9439 involving such types, and when. This does not cover how the semantic
9440 information is encoded by GNAT as this is covered separatly. For the
9441 document used as the reference for the GNAT encoding, see exp_dbug.ads
9442 in the GNAT sources.
9443
9444 Ideally, we should embed each part of this description next to its
9445 associated code. Unfortunately, the amount of code is so vast right
9446 now that it's hard to see whether the code handling a particular
9447 situation might be duplicated or not. One day, when the code is
9448 cleaned up, this guide might become redundant with the comments
9449 inserted in the code, and we might want to remove it.
9450
21649b50
JB
9451 2. ``Fixing'' an Entity, the Simple Case:
9452 -----------------------------------------
9453
284614f0
JB
9454 When evaluating Ada expressions, the tricky issue is that they may
9455 reference entities whose type contents and size are not statically
9456 known. Consider for instance a variant record:
9457
9458 type Rec (Empty : Boolean := True) is record
9459 case Empty is
9460 when True => null;
9461 when False => Value : Integer;
9462 end case;
9463 end record;
9464 Yes : Rec := (Empty => False, Value => 1);
9465 No : Rec := (empty => True);
9466
9467 The size and contents of that record depends on the value of the
9468 descriminant (Rec.Empty). At this point, neither the debugging
9469 information nor the associated type structure in GDB are able to
9470 express such dynamic types. So what the debugger does is to create
9471 "fixed" versions of the type that applies to the specific object.
9472 We also informally refer to this opperation as "fixing" an object,
9473 which means creating its associated fixed type.
9474
9475 Example: when printing the value of variable "Yes" above, its fixed
9476 type would look like this:
9477
9478 type Rec is record
9479 Empty : Boolean;
9480 Value : Integer;
9481 end record;
9482
9483 On the other hand, if we printed the value of "No", its fixed type
9484 would become:
9485
9486 type Rec is record
9487 Empty : Boolean;
9488 end record;
9489
9490 Things become a little more complicated when trying to fix an entity
9491 with a dynamic type that directly contains another dynamic type,
9492 such as an array of variant records, for instance. There are
9493 two possible cases: Arrays, and records.
9494
21649b50
JB
9495 3. ``Fixing'' Arrays:
9496 ---------------------
9497
9498 The type structure in GDB describes an array in terms of its bounds,
9499 and the type of its elements. By design, all elements in the array
9500 have the same type and we cannot represent an array of variant elements
9501 using the current type structure in GDB. When fixing an array,
9502 we cannot fix the array element, as we would potentially need one
9503 fixed type per element of the array. As a result, the best we can do
9504 when fixing an array is to produce an array whose bounds and size
9505 are correct (allowing us to read it from memory), but without having
9506 touched its element type. Fixing each element will be done later,
9507 when (if) necessary.
9508
9509 Arrays are a little simpler to handle than records, because the same
9510 amount of memory is allocated for each element of the array, even if
1b536f04 9511 the amount of space actually used by each element differs from element
21649b50 9512 to element. Consider for instance the following array of type Rec:
284614f0
JB
9513
9514 type Rec_Array is array (1 .. 2) of Rec;
9515
1b536f04
JB
9516 The actual amount of memory occupied by each element might be different
9517 from element to element, depending on the value of their discriminant.
21649b50 9518 But the amount of space reserved for each element in the array remains
1b536f04 9519 fixed regardless. So we simply need to compute that size using
21649b50
JB
9520 the debugging information available, from which we can then determine
9521 the array size (we multiply the number of elements of the array by
9522 the size of each element).
9523
9524 The simplest case is when we have an array of a constrained element
9525 type. For instance, consider the following type declarations:
9526
9527 type Bounded_String (Max_Size : Integer) is
9528 Length : Integer;
9529 Buffer : String (1 .. Max_Size);
9530 end record;
9531 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9532
9533 In this case, the compiler describes the array as an array of
9534 variable-size elements (identified by its XVS suffix) for which
9535 the size can be read in the parallel XVZ variable.
9536
9537 In the case of an array of an unconstrained element type, the compiler
9538 wraps the array element inside a private PAD type. This type should not
9539 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9540 that we also use the adjective "aligner" in our code to designate
9541 these wrapper types.
9542
1b536f04 9543 In some cases, the size allocated for each element is statically
21649b50
JB
9544 known. In that case, the PAD type already has the correct size,
9545 and the array element should remain unfixed.
9546
9547 But there are cases when this size is not statically known.
9548 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9549
9550 type Dynamic is array (1 .. Five) of Integer;
9551 type Wrapper (Has_Length : Boolean := False) is record
9552 Data : Dynamic;
9553 case Has_Length is
9554 when True => Length : Integer;
9555 when False => null;
9556 end case;
9557 end record;
9558 type Wrapper_Array is array (1 .. 2) of Wrapper;
9559
9560 Hello : Wrapper_Array := (others => (Has_Length => True,
9561 Data => (others => 17),
9562 Length => 1));
9563
9564
9565 The debugging info would describe variable Hello as being an
9566 array of a PAD type. The size of that PAD type is not statically
9567 known, but can be determined using a parallel XVZ variable.
9568 In that case, a copy of the PAD type with the correct size should
9569 be used for the fixed array.
9570
21649b50
JB
9571 3. ``Fixing'' record type objects:
9572 ----------------------------------
9573
9574 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9575 record types. In this case, in order to compute the associated
9576 fixed type, we need to determine the size and offset of each of
9577 its components. This, in turn, requires us to compute the fixed
9578 type of each of these components.
9579
9580 Consider for instance the example:
9581
9582 type Bounded_String (Max_Size : Natural) is record
9583 Str : String (1 .. Max_Size);
9584 Length : Natural;
9585 end record;
9586 My_String : Bounded_String (Max_Size => 10);
9587
9588 In that case, the position of field "Length" depends on the size
9589 of field Str, which itself depends on the value of the Max_Size
21649b50 9590 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9591 we need to fix the type of field Str. Therefore, fixing a variant
9592 record requires us to fix each of its components.
9593
9594 However, if a component does not have a dynamic size, the component
9595 should not be fixed. In particular, fields that use a PAD type
9596 should not fixed. Here is an example where this might happen
9597 (assuming type Rec above):
9598
9599 type Container (Big : Boolean) is record
9600 First : Rec;
9601 After : Integer;
9602 case Big is
9603 when True => Another : Integer;
9604 when False => null;
9605 end case;
9606 end record;
9607 My_Container : Container := (Big => False,
9608 First => (Empty => True),
9609 After => 42);
9610
9611 In that example, the compiler creates a PAD type for component First,
9612 whose size is constant, and then positions the component After just
9613 right after it. The offset of component After is therefore constant
9614 in this case.
9615
9616 The debugger computes the position of each field based on an algorithm
9617 that uses, among other things, the actual position and size of the field
21649b50
JB
9618 preceding it. Let's now imagine that the user is trying to print
9619 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9620 end up computing the offset of field After based on the size of the
9621 fixed version of field First. And since in our example First has
9622 only one actual field, the size of the fixed type is actually smaller
9623 than the amount of space allocated to that field, and thus we would
9624 compute the wrong offset of field After.
9625
21649b50
JB
9626 To make things more complicated, we need to watch out for dynamic
9627 components of variant records (identified by the ___XVL suffix in
9628 the component name). Even if the target type is a PAD type, the size
9629 of that type might not be statically known. So the PAD type needs
9630 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9631 we might end up with the wrong size for our component. This can be
9632 observed with the following type declarations:
284614f0
JB
9633
9634 type Octal is new Integer range 0 .. 7;
9635 type Octal_Array is array (Positive range <>) of Octal;
9636 pragma Pack (Octal_Array);
9637
9638 type Octal_Buffer (Size : Positive) is record
9639 Buffer : Octal_Array (1 .. Size);
9640 Length : Integer;
9641 end record;
9642
9643 In that case, Buffer is a PAD type whose size is unset and needs
9644 to be computed by fixing the unwrapped type.
9645
21649b50
JB
9646 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9647 ----------------------------------------------------------
9648
9649 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9650 thus far, be actually fixed?
9651
9652 The answer is: Only when referencing that element. For instance
9653 when selecting one component of a record, this specific component
9654 should be fixed at that point in time. Or when printing the value
9655 of a record, each component should be fixed before its value gets
9656 printed. Similarly for arrays, the element of the array should be
9657 fixed when printing each element of the array, or when extracting
9658 one element out of that array. On the other hand, fixing should
9659 not be performed on the elements when taking a slice of an array!
9660
9661 Note that one of the side-effects of miscomputing the offset and
9662 size of each field is that we end up also miscomputing the size
9663 of the containing type. This can have adverse results when computing
9664 the value of an entity. GDB fetches the value of an entity based
9665 on the size of its type, and thus a wrong size causes GDB to fetch
9666 the wrong amount of memory. In the case where the computed size is
9667 too small, GDB fetches too little data to print the value of our
9668 entiry. Results in this case as unpredicatble, as we usually read
9669 past the buffer containing the data =:-o. */
9670
9671/* Implement the evaluate_exp routine in the exp_descriptor structure
9672 for the Ada language. */
9673
52ce6436 9674static struct value *
ebf56fd3 9675ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9676 int *pos, enum noside noside)
14f9c5c9
AS
9677{
9678 enum exp_opcode op;
b5385fc0 9679 int tem;
14f9c5c9
AS
9680 int pc;
9681 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9682 struct type *type;
52ce6436 9683 int nargs, oplen;
d2e4a39e 9684 struct value **argvec;
14f9c5c9 9685
d2e4a39e
AS
9686 pc = *pos;
9687 *pos += 1;
14f9c5c9
AS
9688 op = exp->elts[pc].opcode;
9689
d2e4a39e 9690 switch (op)
14f9c5c9
AS
9691 {
9692 default:
9693 *pos -= 1;
6e48bd2c 9694 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9695
9696 if (noside == EVAL_NORMAL)
9697 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9698
9699 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9700 then we need to perform the conversion manually, because
9701 evaluate_subexp_standard doesn't do it. This conversion is
9702 necessary in Ada because the different kinds of float/fixed
9703 types in Ada have different representations.
9704
9705 Similarly, we need to perform the conversion from OP_LONG
9706 ourselves. */
9707 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9708 arg1 = ada_value_cast (expect_type, arg1, noside);
9709
9710 return arg1;
4c4b4cd2
PH
9711
9712 case OP_STRING:
9713 {
76a01679 9714 struct value *result;
5b4ee69b 9715
76a01679
JB
9716 *pos -= 1;
9717 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9718 /* The result type will have code OP_STRING, bashed there from
9719 OP_ARRAY. Bash it back. */
df407dfe
AC
9720 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9721 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9722 return result;
4c4b4cd2 9723 }
14f9c5c9
AS
9724
9725 case UNOP_CAST:
9726 (*pos) += 2;
9727 type = exp->elts[pc + 1].type;
9728 arg1 = evaluate_subexp (type, exp, pos, noside);
9729 if (noside == EVAL_SKIP)
4c4b4cd2 9730 goto nosideret;
6e48bd2c 9731 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9732 return arg1;
9733
4c4b4cd2
PH
9734 case UNOP_QUAL:
9735 (*pos) += 2;
9736 type = exp->elts[pc + 1].type;
9737 return ada_evaluate_subexp (type, exp, pos, noside);
9738
14f9c5c9
AS
9739 case BINOP_ASSIGN:
9740 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9741 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9742 {
9743 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9744 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9745 return arg1;
9746 return ada_value_assign (arg1, arg1);
9747 }
003f3813
JB
9748 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9749 except if the lhs of our assignment is a convenience variable.
9750 In the case of assigning to a convenience variable, the lhs
9751 should be exactly the result of the evaluation of the rhs. */
9752 type = value_type (arg1);
9753 if (VALUE_LVAL (arg1) == lval_internalvar)
9754 type = NULL;
9755 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9756 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9757 return arg1;
df407dfe
AC
9758 if (ada_is_fixed_point_type (value_type (arg1)))
9759 arg2 = cast_to_fixed (value_type (arg1), arg2);
9760 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9761 error
323e0a4a 9762 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9763 else
df407dfe 9764 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9765 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9766
9767 case BINOP_ADD:
9768 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9769 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9770 if (noside == EVAL_SKIP)
4c4b4cd2 9771 goto nosideret;
2ac8a782
JB
9772 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9773 return (value_from_longest
9774 (value_type (arg1),
9775 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9776 if ((ada_is_fixed_point_type (value_type (arg1))
9777 || ada_is_fixed_point_type (value_type (arg2)))
9778 && value_type (arg1) != value_type (arg2))
323e0a4a 9779 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9780 /* Do the addition, and cast the result to the type of the first
9781 argument. We cannot cast the result to a reference type, so if
9782 ARG1 is a reference type, find its underlying type. */
9783 type = value_type (arg1);
9784 while (TYPE_CODE (type) == TYPE_CODE_REF)
9785 type = TYPE_TARGET_TYPE (type);
f44316fa 9786 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9787 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9788
9789 case BINOP_SUB:
9790 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9791 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9792 if (noside == EVAL_SKIP)
4c4b4cd2 9793 goto nosideret;
2ac8a782
JB
9794 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9795 return (value_from_longest
9796 (value_type (arg1),
9797 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9798 if ((ada_is_fixed_point_type (value_type (arg1))
9799 || ada_is_fixed_point_type (value_type (arg2)))
9800 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9801 error (_("Operands of fixed-point subtraction "
9802 "must have the same type"));
b7789565
JB
9803 /* Do the substraction, and cast the result to the type of the first
9804 argument. We cannot cast the result to a reference type, so if
9805 ARG1 is a reference type, find its underlying type. */
9806 type = value_type (arg1);
9807 while (TYPE_CODE (type) == TYPE_CODE_REF)
9808 type = TYPE_TARGET_TYPE (type);
f44316fa 9809 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9810 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9811
9812 case BINOP_MUL:
9813 case BINOP_DIV:
e1578042
JB
9814 case BINOP_REM:
9815 case BINOP_MOD:
14f9c5c9
AS
9816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9817 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9818 if (noside == EVAL_SKIP)
4c4b4cd2 9819 goto nosideret;
e1578042 9820 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9821 {
9822 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9823 return value_zero (value_type (arg1), not_lval);
9824 }
14f9c5c9 9825 else
4c4b4cd2 9826 {
a53b7a21 9827 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9828 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9829 arg1 = cast_from_fixed (type, arg1);
df407dfe 9830 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9831 arg2 = cast_from_fixed (type, arg2);
f44316fa 9832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9833 return ada_value_binop (arg1, arg2, op);
9834 }
9835
4c4b4cd2
PH
9836 case BINOP_EQUAL:
9837 case BINOP_NOTEQUAL:
14f9c5c9 9838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9839 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9840 if (noside == EVAL_SKIP)
76a01679 9841 goto nosideret;
4c4b4cd2 9842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9843 tem = 0;
4c4b4cd2 9844 else
f44316fa
UW
9845 {
9846 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9847 tem = ada_value_equal (arg1, arg2);
9848 }
4c4b4cd2 9849 if (op == BINOP_NOTEQUAL)
76a01679 9850 tem = !tem;
fbb06eb1
UW
9851 type = language_bool_type (exp->language_defn, exp->gdbarch);
9852 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9853
9854 case UNOP_NEG:
9855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9856 if (noside == EVAL_SKIP)
9857 goto nosideret;
df407dfe
AC
9858 else if (ada_is_fixed_point_type (value_type (arg1)))
9859 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9860 else
f44316fa
UW
9861 {
9862 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9863 return value_neg (arg1);
9864 }
4c4b4cd2 9865
2330c6c6
JB
9866 case BINOP_LOGICAL_AND:
9867 case BINOP_LOGICAL_OR:
9868 case UNOP_LOGICAL_NOT:
000d5124
JB
9869 {
9870 struct value *val;
9871
9872 *pos -= 1;
9873 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9874 type = language_bool_type (exp->language_defn, exp->gdbarch);
9875 return value_cast (type, val);
000d5124 9876 }
2330c6c6
JB
9877
9878 case BINOP_BITWISE_AND:
9879 case BINOP_BITWISE_IOR:
9880 case BINOP_BITWISE_XOR:
000d5124
JB
9881 {
9882 struct value *val;
9883
9884 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9885 *pos = pc;
9886 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9887
9888 return value_cast (value_type (arg1), val);
9889 }
2330c6c6 9890
14f9c5c9
AS
9891 case OP_VAR_VALUE:
9892 *pos -= 1;
6799def4 9893
14f9c5c9 9894 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9895 {
9896 *pos += 4;
9897 goto nosideret;
9898 }
9899 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9900 /* Only encountered when an unresolved symbol occurs in a
9901 context other than a function call, in which case, it is
52ce6436 9902 invalid. */
323e0a4a 9903 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9904 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9906 {
0c1f74cf 9907 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9908 /* Check to see if this is a tagged type. We also need to handle
9909 the case where the type is a reference to a tagged type, but
9910 we have to be careful to exclude pointers to tagged types.
9911 The latter should be shown as usual (as a pointer), whereas
9912 a reference should mostly be transparent to the user. */
9913 if (ada_is_tagged_type (type, 0)
9914 || (TYPE_CODE(type) == TYPE_CODE_REF
9915 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9916 {
9917 /* Tagged types are a little special in the fact that the real
9918 type is dynamic and can only be determined by inspecting the
9919 object's tag. This means that we need to get the object's
9920 value first (EVAL_NORMAL) and then extract the actual object
9921 type from its tag.
9922
9923 Note that we cannot skip the final step where we extract
9924 the object type from its tag, because the EVAL_NORMAL phase
9925 results in dynamic components being resolved into fixed ones.
9926 This can cause problems when trying to print the type
9927 description of tagged types whose parent has a dynamic size:
9928 We use the type name of the "_parent" component in order
9929 to print the name of the ancestor type in the type description.
9930 If that component had a dynamic size, the resolution into
9931 a fixed type would result in the loss of that type name,
9932 thus preventing us from printing the name of the ancestor
9933 type in the type description. */
9934 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9935
9936 if (TYPE_CODE (type) != TYPE_CODE_REF)
9937 {
9938 struct type *actual_type;
9939
9940 actual_type = type_from_tag (ada_value_tag (arg1));
9941 if (actual_type == NULL)
9942 /* If, for some reason, we were unable to determine
9943 the actual type from the tag, then use the static
9944 approximation that we just computed as a fallback.
9945 This can happen if the debugging information is
9946 incomplete, for instance. */
9947 actual_type = type;
9948 return value_zero (actual_type, not_lval);
9949 }
9950 else
9951 {
9952 /* In the case of a ref, ada_coerce_ref takes care
9953 of determining the actual type. But the evaluation
9954 should return a ref as it should be valid to ask
9955 for its address; so rebuild a ref after coerce. */
9956 arg1 = ada_coerce_ref (arg1);
9957 return value_ref (arg1);
9958 }
0c1f74cf
JB
9959 }
9960
4c4b4cd2
PH
9961 *pos += 4;
9962 return value_zero
9963 (to_static_fixed_type
9964 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9965 not_lval);
9966 }
d2e4a39e 9967 else
4c4b4cd2 9968 {
284614f0 9969 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9970 return ada_to_fixed_value (arg1);
9971 }
9972
9973 case OP_FUNCALL:
9974 (*pos) += 2;
9975
9976 /* Allocate arg vector, including space for the function to be
9977 called in argvec[0] and a terminating NULL. */
9978 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9979 argvec =
9980 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9981
9982 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9983 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9984 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9985 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9986 else
9987 {
9988 for (tem = 0; tem <= nargs; tem += 1)
9989 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9990 argvec[tem] = 0;
9991
9992 if (noside == EVAL_SKIP)
9993 goto nosideret;
9994 }
9995
ad82864c
JB
9996 if (ada_is_constrained_packed_array_type
9997 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9998 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9999 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10000 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10001 /* This is a packed array that has already been fixed, and
10002 therefore already coerced to a simple array. Nothing further
10003 to do. */
10004 ;
df407dfe
AC
10005 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10006 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10007 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10008 argvec[0] = value_addr (argvec[0]);
10009
df407dfe 10010 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10011
10012 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10013 them. So, if this is an array typedef (encoding use for array
10014 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10016 type = ada_typedef_target_type (type);
10017
4c4b4cd2
PH
10018 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10019 {
61ee279c 10020 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10021 {
10022 case TYPE_CODE_FUNC:
61ee279c 10023 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10024 break;
10025 case TYPE_CODE_ARRAY:
10026 break;
10027 case TYPE_CODE_STRUCT:
10028 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10029 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10030 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10031 break;
10032 default:
323e0a4a 10033 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10034 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10035 break;
10036 }
10037 }
10038
10039 switch (TYPE_CODE (type))
10040 {
10041 case TYPE_CODE_FUNC:
10042 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10043 {
10044 struct type *rtype = TYPE_TARGET_TYPE (type);
10045
10046 if (TYPE_GNU_IFUNC (type))
10047 return allocate_value (TYPE_TARGET_TYPE (rtype));
10048 return allocate_value (rtype);
10049 }
4c4b4cd2 10050 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10051 case TYPE_CODE_INTERNAL_FUNCTION:
10052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10053 /* We don't know anything about what the internal
10054 function might return, but we have to return
10055 something. */
10056 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10057 not_lval);
10058 else
10059 return call_internal_function (exp->gdbarch, exp->language_defn,
10060 argvec[0], nargs, argvec + 1);
10061
4c4b4cd2
PH
10062 case TYPE_CODE_STRUCT:
10063 {
10064 int arity;
10065
4c4b4cd2
PH
10066 arity = ada_array_arity (type);
10067 type = ada_array_element_type (type, nargs);
10068 if (type == NULL)
323e0a4a 10069 error (_("cannot subscript or call a record"));
4c4b4cd2 10070 if (arity != nargs)
323e0a4a 10071 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10073 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10074 return
10075 unwrap_value (ada_value_subscript
10076 (argvec[0], nargs, argvec + 1));
10077 }
10078 case TYPE_CODE_ARRAY:
10079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10080 {
10081 type = ada_array_element_type (type, nargs);
10082 if (type == NULL)
323e0a4a 10083 error (_("element type of array unknown"));
4c4b4cd2 10084 else
0a07e705 10085 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10086 }
10087 return
10088 unwrap_value (ada_value_subscript
10089 (ada_coerce_to_simple_array (argvec[0]),
10090 nargs, argvec + 1));
10091 case TYPE_CODE_PTR: /* Pointer to array */
10092 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10093 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10094 {
10095 type = ada_array_element_type (type, nargs);
10096 if (type == NULL)
323e0a4a 10097 error (_("element type of array unknown"));
4c4b4cd2 10098 else
0a07e705 10099 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10100 }
10101 return
10102 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10103 nargs, argvec + 1));
10104
10105 default:
e1d5a0d2
PH
10106 error (_("Attempt to index or call something other than an "
10107 "array or function"));
4c4b4cd2
PH
10108 }
10109
10110 case TERNOP_SLICE:
10111 {
10112 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10113 struct value *low_bound_val =
10114 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10115 struct value *high_bound_val =
10116 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10117 LONGEST low_bound;
10118 LONGEST high_bound;
5b4ee69b 10119
994b9211
AC
10120 low_bound_val = coerce_ref (low_bound_val);
10121 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10122 low_bound = pos_atr (low_bound_val);
10123 high_bound = pos_atr (high_bound_val);
963a6417 10124
4c4b4cd2
PH
10125 if (noside == EVAL_SKIP)
10126 goto nosideret;
10127
4c4b4cd2
PH
10128 /* If this is a reference to an aligner type, then remove all
10129 the aligners. */
df407dfe
AC
10130 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10131 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10132 TYPE_TARGET_TYPE (value_type (array)) =
10133 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10134
ad82864c 10135 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10136 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10137
10138 /* If this is a reference to an array or an array lvalue,
10139 convert to a pointer. */
df407dfe
AC
10140 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10141 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10142 && VALUE_LVAL (array) == lval_memory))
10143 array = value_addr (array);
10144
1265e4aa 10145 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10146 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10147 (value_type (array))))
0b5d8877 10148 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10149
10150 array = ada_coerce_to_simple_array_ptr (array);
10151
714e53ab
PH
10152 /* If we have more than one level of pointer indirection,
10153 dereference the value until we get only one level. */
df407dfe
AC
10154 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10155 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10156 == TYPE_CODE_PTR))
10157 array = value_ind (array);
10158
10159 /* Make sure we really do have an array type before going further,
10160 to avoid a SEGV when trying to get the index type or the target
10161 type later down the road if the debug info generated by
10162 the compiler is incorrect or incomplete. */
df407dfe 10163 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10164 error (_("cannot take slice of non-array"));
714e53ab 10165
828292f2
JB
10166 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10167 == TYPE_CODE_PTR)
4c4b4cd2 10168 {
828292f2
JB
10169 struct type *type0 = ada_check_typedef (value_type (array));
10170
0b5d8877 10171 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10172 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10173 else
10174 {
10175 struct type *arr_type0 =
828292f2 10176 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10177
f5938064
JG
10178 return ada_value_slice_from_ptr (array, arr_type0,
10179 longest_to_int (low_bound),
10180 longest_to_int (high_bound));
4c4b4cd2
PH
10181 }
10182 }
10183 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10184 return array;
10185 else if (high_bound < low_bound)
df407dfe 10186 return empty_array (value_type (array), low_bound);
4c4b4cd2 10187 else
529cad9c
PH
10188 return ada_value_slice (array, longest_to_int (low_bound),
10189 longest_to_int (high_bound));
4c4b4cd2 10190 }
14f9c5c9 10191
4c4b4cd2
PH
10192 case UNOP_IN_RANGE:
10193 (*pos) += 2;
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10195 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10196
14f9c5c9 10197 if (noside == EVAL_SKIP)
4c4b4cd2 10198 goto nosideret;
14f9c5c9 10199
4c4b4cd2
PH
10200 switch (TYPE_CODE (type))
10201 {
10202 default:
e1d5a0d2
PH
10203 lim_warning (_("Membership test incompletely implemented; "
10204 "always returns true"));
fbb06eb1
UW
10205 type = language_bool_type (exp->language_defn, exp->gdbarch);
10206 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10207
10208 case TYPE_CODE_RANGE:
030b4912
UW
10209 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10210 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10211 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10212 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10213 type = language_bool_type (exp->language_defn, exp->gdbarch);
10214 return
10215 value_from_longest (type,
4c4b4cd2
PH
10216 (value_less (arg1, arg3)
10217 || value_equal (arg1, arg3))
10218 && (value_less (arg2, arg1)
10219 || value_equal (arg2, arg1)));
10220 }
10221
10222 case BINOP_IN_BOUNDS:
14f9c5c9 10223 (*pos) += 2;
4c4b4cd2
PH
10224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10225 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10226
4c4b4cd2
PH
10227 if (noside == EVAL_SKIP)
10228 goto nosideret;
14f9c5c9 10229
4c4b4cd2 10230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10231 {
10232 type = language_bool_type (exp->language_defn, exp->gdbarch);
10233 return value_zero (type, not_lval);
10234 }
14f9c5c9 10235
4c4b4cd2 10236 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10237
1eea4ebd
UW
10238 type = ada_index_type (value_type (arg2), tem, "range");
10239 if (!type)
10240 type = value_type (arg1);
14f9c5c9 10241
1eea4ebd
UW
10242 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10243 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10244
f44316fa
UW
10245 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10246 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10247 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10248 return
fbb06eb1 10249 value_from_longest (type,
4c4b4cd2
PH
10250 (value_less (arg1, arg3)
10251 || value_equal (arg1, arg3))
10252 && (value_less (arg2, arg1)
10253 || value_equal (arg2, arg1)));
10254
10255 case TERNOP_IN_RANGE:
10256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10257 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10258 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10259
10260 if (noside == EVAL_SKIP)
10261 goto nosideret;
10262
f44316fa
UW
10263 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10264 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10265 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10266 return
fbb06eb1 10267 value_from_longest (type,
4c4b4cd2
PH
10268 (value_less (arg1, arg3)
10269 || value_equal (arg1, arg3))
10270 && (value_less (arg2, arg1)
10271 || value_equal (arg2, arg1)));
10272
10273 case OP_ATR_FIRST:
10274 case OP_ATR_LAST:
10275 case OP_ATR_LENGTH:
10276 {
76a01679 10277 struct type *type_arg;
5b4ee69b 10278
76a01679
JB
10279 if (exp->elts[*pos].opcode == OP_TYPE)
10280 {
10281 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10282 arg1 = NULL;
5bc23cb3 10283 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10284 }
10285 else
10286 {
10287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10288 type_arg = NULL;
10289 }
10290
10291 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10292 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10293 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10294 *pos += 4;
10295
10296 if (noside == EVAL_SKIP)
10297 goto nosideret;
10298
10299 if (type_arg == NULL)
10300 {
10301 arg1 = ada_coerce_ref (arg1);
10302
ad82864c 10303 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10304 arg1 = ada_coerce_to_simple_array (arg1);
10305
1eea4ebd
UW
10306 type = ada_index_type (value_type (arg1), tem,
10307 ada_attribute_name (op));
10308 if (type == NULL)
10309 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10310
10311 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10312 return allocate_value (type);
76a01679
JB
10313
10314 switch (op)
10315 {
10316 default: /* Should never happen. */
323e0a4a 10317 error (_("unexpected attribute encountered"));
76a01679 10318 case OP_ATR_FIRST:
1eea4ebd
UW
10319 return value_from_longest
10320 (type, ada_array_bound (arg1, tem, 0));
76a01679 10321 case OP_ATR_LAST:
1eea4ebd
UW
10322 return value_from_longest
10323 (type, ada_array_bound (arg1, tem, 1));
76a01679 10324 case OP_ATR_LENGTH:
1eea4ebd
UW
10325 return value_from_longest
10326 (type, ada_array_length (arg1, tem));
76a01679
JB
10327 }
10328 }
10329 else if (discrete_type_p (type_arg))
10330 {
10331 struct type *range_type;
0d5cff50 10332 const char *name = ada_type_name (type_arg);
5b4ee69b 10333
76a01679
JB
10334 range_type = NULL;
10335 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10336 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10337 if (range_type == NULL)
10338 range_type = type_arg;
10339 switch (op)
10340 {
10341 default:
323e0a4a 10342 error (_("unexpected attribute encountered"));
76a01679 10343 case OP_ATR_FIRST:
690cc4eb 10344 return value_from_longest
43bbcdc2 10345 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10346 case OP_ATR_LAST:
690cc4eb 10347 return value_from_longest
43bbcdc2 10348 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10349 case OP_ATR_LENGTH:
323e0a4a 10350 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10351 }
10352 }
10353 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10354 error (_("unimplemented type attribute"));
76a01679
JB
10355 else
10356 {
10357 LONGEST low, high;
10358
ad82864c
JB
10359 if (ada_is_constrained_packed_array_type (type_arg))
10360 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10361
1eea4ebd 10362 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10363 if (type == NULL)
1eea4ebd
UW
10364 type = builtin_type (exp->gdbarch)->builtin_int;
10365
76a01679
JB
10366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return allocate_value (type);
10368
10369 switch (op)
10370 {
10371 default:
323e0a4a 10372 error (_("unexpected attribute encountered"));
76a01679 10373 case OP_ATR_FIRST:
1eea4ebd 10374 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10375 return value_from_longest (type, low);
10376 case OP_ATR_LAST:
1eea4ebd 10377 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10378 return value_from_longest (type, high);
10379 case OP_ATR_LENGTH:
1eea4ebd
UW
10380 low = ada_array_bound_from_type (type_arg, tem, 0);
10381 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10382 return value_from_longest (type, high - low + 1);
10383 }
10384 }
14f9c5c9
AS
10385 }
10386
4c4b4cd2
PH
10387 case OP_ATR_TAG:
10388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10389 if (noside == EVAL_SKIP)
76a01679 10390 goto nosideret;
4c4b4cd2
PH
10391
10392 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10393 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10394
10395 return ada_value_tag (arg1);
10396
10397 case OP_ATR_MIN:
10398 case OP_ATR_MAX:
10399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10401 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
76a01679 10403 goto nosideret;
d2e4a39e 10404 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10405 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10406 else
f44316fa
UW
10407 {
10408 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10409 return value_binop (arg1, arg2,
10410 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10411 }
14f9c5c9 10412
4c4b4cd2
PH
10413 case OP_ATR_MODULUS:
10414 {
31dedfee 10415 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10416
5b4ee69b 10417 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10418 if (noside == EVAL_SKIP)
10419 goto nosideret;
4c4b4cd2 10420
76a01679 10421 if (!ada_is_modular_type (type_arg))
323e0a4a 10422 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10423
76a01679
JB
10424 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10425 ada_modulus (type_arg));
4c4b4cd2
PH
10426 }
10427
10428
10429 case OP_ATR_POS:
10430 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10432 if (noside == EVAL_SKIP)
76a01679 10433 goto nosideret;
3cb382c9
UW
10434 type = builtin_type (exp->gdbarch)->builtin_int;
10435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10436 return value_zero (type, not_lval);
14f9c5c9 10437 else
3cb382c9 10438 return value_pos_atr (type, arg1);
14f9c5c9 10439
4c4b4cd2
PH
10440 case OP_ATR_SIZE:
10441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10442 type = value_type (arg1);
10443
10444 /* If the argument is a reference, then dereference its type, since
10445 the user is really asking for the size of the actual object,
10446 not the size of the pointer. */
10447 if (TYPE_CODE (type) == TYPE_CODE_REF)
10448 type = TYPE_TARGET_TYPE (type);
10449
4c4b4cd2 10450 if (noside == EVAL_SKIP)
76a01679 10451 goto nosideret;
4c4b4cd2 10452 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10453 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10454 else
22601c15 10455 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10456 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10457
10458 case OP_ATR_VAL:
10459 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10461 type = exp->elts[pc + 2].type;
14f9c5c9 10462 if (noside == EVAL_SKIP)
76a01679 10463 goto nosideret;
4c4b4cd2 10464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10465 return value_zero (type, not_lval);
4c4b4cd2 10466 else
76a01679 10467 return value_val_atr (type, arg1);
4c4b4cd2
PH
10468
10469 case BINOP_EXP:
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 if (noside == EVAL_SKIP)
10473 goto nosideret;
10474 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10475 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10476 else
f44316fa
UW
10477 {
10478 /* For integer exponentiation operations,
10479 only promote the first argument. */
10480 if (is_integral_type (value_type (arg2)))
10481 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10482 else
10483 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10484
10485 return value_binop (arg1, arg2, op);
10486 }
4c4b4cd2
PH
10487
10488 case UNOP_PLUS:
10489 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 else
10493 return arg1;
10494
10495 case UNOP_ABS:
10496 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10497 if (noside == EVAL_SKIP)
10498 goto nosideret;
f44316fa 10499 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10500 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10501 return value_neg (arg1);
14f9c5c9 10502 else
4c4b4cd2 10503 return arg1;
14f9c5c9
AS
10504
10505 case UNOP_IND:
6b0d7253 10506 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10507 if (noside == EVAL_SKIP)
4c4b4cd2 10508 goto nosideret;
df407dfe 10509 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10510 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10511 {
10512 if (ada_is_array_descriptor_type (type))
10513 /* GDB allows dereferencing GNAT array descriptors. */
10514 {
10515 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10516
4c4b4cd2 10517 if (arrType == NULL)
323e0a4a 10518 error (_("Attempt to dereference null array pointer."));
00a4c844 10519 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10520 }
10521 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10522 || TYPE_CODE (type) == TYPE_CODE_REF
10523 /* In C you can dereference an array to get the 1st elt. */
10524 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10525 {
10526 type = to_static_fixed_type
10527 (ada_aligned_type
10528 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10529 check_size (type);
10530 return value_zero (type, lval_memory);
10531 }
4c4b4cd2 10532 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10533 {
10534 /* GDB allows dereferencing an int. */
10535 if (expect_type == NULL)
10536 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10537 lval_memory);
10538 else
10539 {
10540 expect_type =
10541 to_static_fixed_type (ada_aligned_type (expect_type));
10542 return value_zero (expect_type, lval_memory);
10543 }
10544 }
4c4b4cd2 10545 else
323e0a4a 10546 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10547 }
0963b4bd 10548 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10549 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10550
96967637
JB
10551 if (TYPE_CODE (type) == TYPE_CODE_INT)
10552 /* GDB allows dereferencing an int. If we were given
10553 the expect_type, then use that as the target type.
10554 Otherwise, assume that the target type is an int. */
10555 {
10556 if (expect_type != NULL)
10557 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10558 arg1));
10559 else
10560 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10561 (CORE_ADDR) value_as_address (arg1));
10562 }
6b0d7253 10563
4c4b4cd2
PH
10564 if (ada_is_array_descriptor_type (type))
10565 /* GDB allows dereferencing GNAT array descriptors. */
10566 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10567 else
4c4b4cd2 10568 return ada_value_ind (arg1);
14f9c5c9
AS
10569
10570 case STRUCTOP_STRUCT:
10571 tem = longest_to_int (exp->elts[pc + 1].longconst);
10572 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10574 if (noside == EVAL_SKIP)
4c4b4cd2 10575 goto nosideret;
14f9c5c9 10576 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10577 {
df407dfe 10578 struct type *type1 = value_type (arg1);
5b4ee69b 10579
76a01679
JB
10580 if (ada_is_tagged_type (type1, 1))
10581 {
10582 type = ada_lookup_struct_elt_type (type1,
10583 &exp->elts[pc + 2].string,
10584 1, 1, NULL);
10585 if (type == NULL)
10586 /* In this case, we assume that the field COULD exist
10587 in some extension of the type. Return an object of
10588 "type" void, which will match any formal
0963b4bd 10589 (see ada_type_match). */
30b15541
UW
10590 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10591 lval_memory);
76a01679
JB
10592 }
10593 else
10594 type =
10595 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10596 0, NULL);
10597
10598 return value_zero (ada_aligned_type (type), lval_memory);
10599 }
14f9c5c9 10600 else
284614f0
JB
10601 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10602 arg1 = unwrap_value (arg1);
10603 return ada_to_fixed_value (arg1);
10604
14f9c5c9 10605 case OP_TYPE:
4c4b4cd2
PH
10606 /* The value is not supposed to be used. This is here to make it
10607 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10608 (*pos) += 2;
10609 if (noside == EVAL_SKIP)
4c4b4cd2 10610 goto nosideret;
14f9c5c9 10611 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10612 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10613 else
323e0a4a 10614 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10615
10616 case OP_AGGREGATE:
10617 case OP_CHOICES:
10618 case OP_OTHERS:
10619 case OP_DISCRETE_RANGE:
10620 case OP_POSITIONAL:
10621 case OP_NAME:
10622 if (noside == EVAL_NORMAL)
10623 switch (op)
10624 {
10625 case OP_NAME:
10626 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10627 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10628 case OP_AGGREGATE:
10629 error (_("Aggregates only allowed on the right of an assignment"));
10630 default:
0963b4bd
MS
10631 internal_error (__FILE__, __LINE__,
10632 _("aggregate apparently mangled"));
52ce6436
PH
10633 }
10634
10635 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10636 *pos += oplen - 1;
10637 for (tem = 0; tem < nargs; tem += 1)
10638 ada_evaluate_subexp (NULL, exp, pos, noside);
10639 goto nosideret;
14f9c5c9
AS
10640 }
10641
10642nosideret:
22601c15 10643 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10644}
14f9c5c9 10645\f
d2e4a39e 10646
4c4b4cd2 10647 /* Fixed point */
14f9c5c9
AS
10648
10649/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10650 type name that encodes the 'small and 'delta information.
4c4b4cd2 10651 Otherwise, return NULL. */
14f9c5c9 10652
d2e4a39e 10653static const char *
ebf56fd3 10654fixed_type_info (struct type *type)
14f9c5c9 10655{
d2e4a39e 10656 const char *name = ada_type_name (type);
14f9c5c9
AS
10657 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10658
d2e4a39e
AS
10659 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10660 {
14f9c5c9 10661 const char *tail = strstr (name, "___XF_");
5b4ee69b 10662
14f9c5c9 10663 if (tail == NULL)
4c4b4cd2 10664 return NULL;
d2e4a39e 10665 else
4c4b4cd2 10666 return tail + 5;
14f9c5c9
AS
10667 }
10668 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10669 return fixed_type_info (TYPE_TARGET_TYPE (type));
10670 else
10671 return NULL;
10672}
10673
4c4b4cd2 10674/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10675
10676int
ebf56fd3 10677ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10678{
10679 return fixed_type_info (type) != NULL;
10680}
10681
4c4b4cd2
PH
10682/* Return non-zero iff TYPE represents a System.Address type. */
10683
10684int
10685ada_is_system_address_type (struct type *type)
10686{
10687 return (TYPE_NAME (type)
10688 && strcmp (TYPE_NAME (type), "system__address") == 0);
10689}
10690
14f9c5c9
AS
10691/* Assuming that TYPE is the representation of an Ada fixed-point
10692 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10693 delta cannot be determined. */
14f9c5c9
AS
10694
10695DOUBLEST
ebf56fd3 10696ada_delta (struct type *type)
14f9c5c9
AS
10697{
10698 const char *encoding = fixed_type_info (type);
facc390f 10699 DOUBLEST num, den;
14f9c5c9 10700
facc390f
JB
10701 /* Strictly speaking, num and den are encoded as integer. However,
10702 they may not fit into a long, and they will have to be converted
10703 to DOUBLEST anyway. So scan them as DOUBLEST. */
10704 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10705 &num, &den) < 2)
14f9c5c9 10706 return -1.0;
d2e4a39e 10707 else
facc390f 10708 return num / den;
14f9c5c9
AS
10709}
10710
10711/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10712 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10713
10714static DOUBLEST
ebf56fd3 10715scaling_factor (struct type *type)
14f9c5c9
AS
10716{
10717 const char *encoding = fixed_type_info (type);
facc390f 10718 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10719 int n;
d2e4a39e 10720
facc390f
JB
10721 /* Strictly speaking, num's and den's are encoded as integer. However,
10722 they may not fit into a long, and they will have to be converted
10723 to DOUBLEST anyway. So scan them as DOUBLEST. */
10724 n = sscanf (encoding,
10725 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10726 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10727 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10728
10729 if (n < 2)
10730 return 1.0;
10731 else if (n == 4)
facc390f 10732 return num1 / den1;
d2e4a39e 10733 else
facc390f 10734 return num0 / den0;
14f9c5c9
AS
10735}
10736
10737
10738/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10739 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10740
10741DOUBLEST
ebf56fd3 10742ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10743{
d2e4a39e 10744 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10745}
10746
4c4b4cd2
PH
10747/* The representation of a fixed-point value of type TYPE
10748 corresponding to the value X. */
14f9c5c9
AS
10749
10750LONGEST
ebf56fd3 10751ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10752{
10753 return (LONGEST) (x / scaling_factor (type) + 0.5);
10754}
10755
14f9c5c9 10756\f
d2e4a39e 10757
4c4b4cd2 10758 /* Range types */
14f9c5c9
AS
10759
10760/* Scan STR beginning at position K for a discriminant name, and
10761 return the value of that discriminant field of DVAL in *PX. If
10762 PNEW_K is not null, put the position of the character beyond the
10763 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10764 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10765
10766static int
07d8f827 10767scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10768 int *pnew_k)
14f9c5c9
AS
10769{
10770 static char *bound_buffer = NULL;
10771 static size_t bound_buffer_len = 0;
10772 char *bound;
10773 char *pend;
d2e4a39e 10774 struct value *bound_val;
14f9c5c9
AS
10775
10776 if (dval == NULL || str == NULL || str[k] == '\0')
10777 return 0;
10778
d2e4a39e 10779 pend = strstr (str + k, "__");
14f9c5c9
AS
10780 if (pend == NULL)
10781 {
d2e4a39e 10782 bound = str + k;
14f9c5c9
AS
10783 k += strlen (bound);
10784 }
d2e4a39e 10785 else
14f9c5c9 10786 {
d2e4a39e 10787 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10788 bound = bound_buffer;
d2e4a39e
AS
10789 strncpy (bound_buffer, str + k, pend - (str + k));
10790 bound[pend - (str + k)] = '\0';
10791 k = pend - str;
14f9c5c9 10792 }
d2e4a39e 10793
df407dfe 10794 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10795 if (bound_val == NULL)
10796 return 0;
10797
10798 *px = value_as_long (bound_val);
10799 if (pnew_k != NULL)
10800 *pnew_k = k;
10801 return 1;
10802}
10803
10804/* Value of variable named NAME in the current environment. If
10805 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10806 otherwise causes an error with message ERR_MSG. */
10807
d2e4a39e
AS
10808static struct value *
10809get_var_value (char *name, char *err_msg)
14f9c5c9 10810{
4c4b4cd2 10811 struct ada_symbol_info *syms;
14f9c5c9
AS
10812 int nsyms;
10813
4c4b4cd2 10814 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10815 &syms);
14f9c5c9
AS
10816
10817 if (nsyms != 1)
10818 {
10819 if (err_msg == NULL)
4c4b4cd2 10820 return 0;
14f9c5c9 10821 else
8a3fe4f8 10822 error (("%s"), err_msg);
14f9c5c9
AS
10823 }
10824
4c4b4cd2 10825 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10826}
d2e4a39e 10827
14f9c5c9 10828/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10829 no such variable found, returns 0, and sets *FLAG to 0. If
10830 successful, sets *FLAG to 1. */
10831
14f9c5c9 10832LONGEST
4c4b4cd2 10833get_int_var_value (char *name, int *flag)
14f9c5c9 10834{
4c4b4cd2 10835 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10836
14f9c5c9
AS
10837 if (var_val == 0)
10838 {
10839 if (flag != NULL)
4c4b4cd2 10840 *flag = 0;
14f9c5c9
AS
10841 return 0;
10842 }
10843 else
10844 {
10845 if (flag != NULL)
4c4b4cd2 10846 *flag = 1;
14f9c5c9
AS
10847 return value_as_long (var_val);
10848 }
10849}
d2e4a39e 10850
14f9c5c9
AS
10851
10852/* Return a range type whose base type is that of the range type named
10853 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10854 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10855 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10856 corresponding range type from debug information; fall back to using it
10857 if symbol lookup fails. If a new type must be created, allocate it
10858 like ORIG_TYPE was. The bounds information, in general, is encoded
10859 in NAME, the base type given in the named range type. */
14f9c5c9 10860
d2e4a39e 10861static struct type *
28c85d6c 10862to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10863{
0d5cff50 10864 const char *name;
14f9c5c9 10865 struct type *base_type;
d2e4a39e 10866 char *subtype_info;
14f9c5c9 10867
28c85d6c
JB
10868 gdb_assert (raw_type != NULL);
10869 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10870
1ce677a4 10871 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10872 base_type = TYPE_TARGET_TYPE (raw_type);
10873 else
10874 base_type = raw_type;
10875
28c85d6c 10876 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10877 subtype_info = strstr (name, "___XD");
10878 if (subtype_info == NULL)
690cc4eb 10879 {
43bbcdc2
PH
10880 LONGEST L = ada_discrete_type_low_bound (raw_type);
10881 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10882
690cc4eb
PH
10883 if (L < INT_MIN || U > INT_MAX)
10884 return raw_type;
10885 else
28c85d6c 10886 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10887 ada_discrete_type_low_bound (raw_type),
10888 ada_discrete_type_high_bound (raw_type));
690cc4eb 10889 }
14f9c5c9
AS
10890 else
10891 {
10892 static char *name_buf = NULL;
10893 static size_t name_len = 0;
10894 int prefix_len = subtype_info - name;
10895 LONGEST L, U;
10896 struct type *type;
10897 char *bounds_str;
10898 int n;
10899
10900 GROW_VECT (name_buf, name_len, prefix_len + 5);
10901 strncpy (name_buf, name, prefix_len);
10902 name_buf[prefix_len] = '\0';
10903
10904 subtype_info += 5;
10905 bounds_str = strchr (subtype_info, '_');
10906 n = 1;
10907
d2e4a39e 10908 if (*subtype_info == 'L')
4c4b4cd2
PH
10909 {
10910 if (!ada_scan_number (bounds_str, n, &L, &n)
10911 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10912 return raw_type;
10913 if (bounds_str[n] == '_')
10914 n += 2;
0963b4bd 10915 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10916 n += 1;
10917 subtype_info += 1;
10918 }
d2e4a39e 10919 else
4c4b4cd2
PH
10920 {
10921 int ok;
5b4ee69b 10922
4c4b4cd2
PH
10923 strcpy (name_buf + prefix_len, "___L");
10924 L = get_int_var_value (name_buf, &ok);
10925 if (!ok)
10926 {
323e0a4a 10927 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10928 L = 1;
10929 }
10930 }
14f9c5c9 10931
d2e4a39e 10932 if (*subtype_info == 'U')
4c4b4cd2
PH
10933 {
10934 if (!ada_scan_number (bounds_str, n, &U, &n)
10935 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10936 return raw_type;
10937 }
d2e4a39e 10938 else
4c4b4cd2
PH
10939 {
10940 int ok;
5b4ee69b 10941
4c4b4cd2
PH
10942 strcpy (name_buf + prefix_len, "___U");
10943 U = get_int_var_value (name_buf, &ok);
10944 if (!ok)
10945 {
323e0a4a 10946 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10947 U = L;
10948 }
10949 }
14f9c5c9 10950
28c85d6c 10951 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10952 TYPE_NAME (type) = name;
14f9c5c9
AS
10953 return type;
10954 }
10955}
10956
4c4b4cd2
PH
10957/* True iff NAME is the name of a range type. */
10958
14f9c5c9 10959int
d2e4a39e 10960ada_is_range_type_name (const char *name)
14f9c5c9
AS
10961{
10962 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10963}
14f9c5c9 10964\f
d2e4a39e 10965
4c4b4cd2
PH
10966 /* Modular types */
10967
10968/* True iff TYPE is an Ada modular type. */
14f9c5c9 10969
14f9c5c9 10970int
d2e4a39e 10971ada_is_modular_type (struct type *type)
14f9c5c9 10972{
18af8284 10973 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10974
10975 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10976 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10977 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10978}
10979
4c4b4cd2
PH
10980/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10981
61ee279c 10982ULONGEST
0056e4d5 10983ada_modulus (struct type *type)
14f9c5c9 10984{
43bbcdc2 10985 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10986}
d2e4a39e 10987\f
f7f9143b
JB
10988
10989/* Ada exception catchpoint support:
10990 ---------------------------------
10991
10992 We support 3 kinds of exception catchpoints:
10993 . catchpoints on Ada exceptions
10994 . catchpoints on unhandled Ada exceptions
10995 . catchpoints on failed assertions
10996
10997 Exceptions raised during failed assertions, or unhandled exceptions
10998 could perfectly be caught with the general catchpoint on Ada exceptions.
10999 However, we can easily differentiate these two special cases, and having
11000 the option to distinguish these two cases from the rest can be useful
11001 to zero-in on certain situations.
11002
11003 Exception catchpoints are a specialized form of breakpoint,
11004 since they rely on inserting breakpoints inside known routines
11005 of the GNAT runtime. The implementation therefore uses a standard
11006 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11007 of breakpoint_ops.
11008
0259addd
JB
11009 Support in the runtime for exception catchpoints have been changed
11010 a few times already, and these changes affect the implementation
11011 of these catchpoints. In order to be able to support several
11012 variants of the runtime, we use a sniffer that will determine
28010a5d 11013 the runtime variant used by the program being debugged. */
f7f9143b 11014
3d0b0fa3
JB
11015/* Ada's standard exceptions. */
11016
11017static char *standard_exc[] = {
11018 "constraint_error",
11019 "program_error",
11020 "storage_error",
11021 "tasking_error"
11022};
11023
0259addd
JB
11024typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11025
11026/* A structure that describes how to support exception catchpoints
11027 for a given executable. */
11028
11029struct exception_support_info
11030{
11031 /* The name of the symbol to break on in order to insert
11032 a catchpoint on exceptions. */
11033 const char *catch_exception_sym;
11034
11035 /* The name of the symbol to break on in order to insert
11036 a catchpoint on unhandled exceptions. */
11037 const char *catch_exception_unhandled_sym;
11038
11039 /* The name of the symbol to break on in order to insert
11040 a catchpoint on failed assertions. */
11041 const char *catch_assert_sym;
11042
11043 /* Assuming that the inferior just triggered an unhandled exception
11044 catchpoint, this function is responsible for returning the address
11045 in inferior memory where the name of that exception is stored.
11046 Return zero if the address could not be computed. */
11047 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11048};
11049
11050static CORE_ADDR ada_unhandled_exception_name_addr (void);
11051static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11052
11053/* The following exception support info structure describes how to
11054 implement exception catchpoints with the latest version of the
11055 Ada runtime (as of 2007-03-06). */
11056
11057static const struct exception_support_info default_exception_support_info =
11058{
11059 "__gnat_debug_raise_exception", /* catch_exception_sym */
11060 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11061 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11062 ada_unhandled_exception_name_addr
11063};
11064
11065/* The following exception support info structure describes how to
11066 implement exception catchpoints with a slightly older version
11067 of the Ada runtime. */
11068
11069static const struct exception_support_info exception_support_info_fallback =
11070{
11071 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11072 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11073 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11074 ada_unhandled_exception_name_addr_from_raise
11075};
11076
f17011e0
JB
11077/* Return nonzero if we can detect the exception support routines
11078 described in EINFO.
11079
11080 This function errors out if an abnormal situation is detected
11081 (for instance, if we find the exception support routines, but
11082 that support is found to be incomplete). */
11083
11084static int
11085ada_has_this_exception_support (const struct exception_support_info *einfo)
11086{
11087 struct symbol *sym;
11088
11089 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11090 that should be compiled with debugging information. As a result, we
11091 expect to find that symbol in the symtabs. */
11092
11093 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11094 if (sym == NULL)
a6af7abe
JB
11095 {
11096 /* Perhaps we did not find our symbol because the Ada runtime was
11097 compiled without debugging info, or simply stripped of it.
11098 It happens on some GNU/Linux distributions for instance, where
11099 users have to install a separate debug package in order to get
11100 the runtime's debugging info. In that situation, let the user
11101 know why we cannot insert an Ada exception catchpoint.
11102
11103 Note: Just for the purpose of inserting our Ada exception
11104 catchpoint, we could rely purely on the associated minimal symbol.
11105 But we would be operating in degraded mode anyway, since we are
11106 still lacking the debugging info needed later on to extract
11107 the name of the exception being raised (this name is printed in
11108 the catchpoint message, and is also used when trying to catch
11109 a specific exception). We do not handle this case for now. */
1c8e84b0
JB
11110 struct minimal_symbol *msym
11111 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11112
11113 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
a6af7abe
JB
11114 error (_("Your Ada runtime appears to be missing some debugging "
11115 "information.\nCannot insert Ada exception catchpoint "
11116 "in this configuration."));
11117
11118 return 0;
11119 }
f17011e0
JB
11120
11121 /* Make sure that the symbol we found corresponds to a function. */
11122
11123 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11124 error (_("Symbol \"%s\" is not a function (class = %d)"),
11125 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11126
11127 return 1;
11128}
11129
0259addd
JB
11130/* Inspect the Ada runtime and determine which exception info structure
11131 should be used to provide support for exception catchpoints.
11132
3eecfa55
JB
11133 This function will always set the per-inferior exception_info,
11134 or raise an error. */
0259addd
JB
11135
11136static void
11137ada_exception_support_info_sniffer (void)
11138{
3eecfa55 11139 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11140
11141 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11142 if (data->exception_info != NULL)
0259addd
JB
11143 return;
11144
11145 /* Check the latest (default) exception support info. */
f17011e0 11146 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11147 {
3eecfa55 11148 data->exception_info = &default_exception_support_info;
0259addd
JB
11149 return;
11150 }
11151
11152 /* Try our fallback exception suport info. */
f17011e0 11153 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11154 {
3eecfa55 11155 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11156 return;
11157 }
11158
11159 /* Sometimes, it is normal for us to not be able to find the routine
11160 we are looking for. This happens when the program is linked with
11161 the shared version of the GNAT runtime, and the program has not been
11162 started yet. Inform the user of these two possible causes if
11163 applicable. */
11164
ccefe4c4 11165 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11166 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11167
11168 /* If the symbol does not exist, then check that the program is
11169 already started, to make sure that shared libraries have been
11170 loaded. If it is not started, this may mean that the symbol is
11171 in a shared library. */
11172
11173 if (ptid_get_pid (inferior_ptid) == 0)
11174 error (_("Unable to insert catchpoint. Try to start the program first."));
11175
11176 /* At this point, we know that we are debugging an Ada program and
11177 that the inferior has been started, but we still are not able to
0963b4bd 11178 find the run-time symbols. That can mean that we are in
0259addd
JB
11179 configurable run time mode, or that a-except as been optimized
11180 out by the linker... In any case, at this point it is not worth
11181 supporting this feature. */
11182
7dda8cff 11183 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11184}
11185
f7f9143b
JB
11186/* True iff FRAME is very likely to be that of a function that is
11187 part of the runtime system. This is all very heuristic, but is
11188 intended to be used as advice as to what frames are uninteresting
11189 to most users. */
11190
11191static int
11192is_known_support_routine (struct frame_info *frame)
11193{
4ed6b5be 11194 struct symtab_and_line sal;
55b87a52 11195 char *func_name;
692465f1 11196 enum language func_lang;
f7f9143b 11197 int i;
f35a17b5 11198 const char *fullname;
f7f9143b 11199
4ed6b5be
JB
11200 /* If this code does not have any debugging information (no symtab),
11201 This cannot be any user code. */
f7f9143b 11202
4ed6b5be 11203 find_frame_sal (frame, &sal);
f7f9143b
JB
11204 if (sal.symtab == NULL)
11205 return 1;
11206
4ed6b5be
JB
11207 /* If there is a symtab, but the associated source file cannot be
11208 located, then assume this is not user code: Selecting a frame
11209 for which we cannot display the code would not be very helpful
11210 for the user. This should also take care of case such as VxWorks
11211 where the kernel has some debugging info provided for a few units. */
f7f9143b 11212
f35a17b5
JK
11213 fullname = symtab_to_fullname (sal.symtab);
11214 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11215 return 1;
11216
4ed6b5be
JB
11217 /* Check the unit filename againt the Ada runtime file naming.
11218 We also check the name of the objfile against the name of some
11219 known system libraries that sometimes come with debugging info
11220 too. */
11221
f7f9143b
JB
11222 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11223 {
11224 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11225 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11226 return 1;
4ed6b5be 11227 if (sal.symtab->objfile != NULL
4262abfb 11228 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11229 return 1;
f7f9143b
JB
11230 }
11231
4ed6b5be 11232 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11233
e9e07ba6 11234 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11235 if (func_name == NULL)
11236 return 1;
11237
11238 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11239 {
11240 re_comp (known_auxiliary_function_name_patterns[i]);
11241 if (re_exec (func_name))
55b87a52
KS
11242 {
11243 xfree (func_name);
11244 return 1;
11245 }
f7f9143b
JB
11246 }
11247
55b87a52 11248 xfree (func_name);
f7f9143b
JB
11249 return 0;
11250}
11251
11252/* Find the first frame that contains debugging information and that is not
11253 part of the Ada run-time, starting from FI and moving upward. */
11254
0ef643c8 11255void
f7f9143b
JB
11256ada_find_printable_frame (struct frame_info *fi)
11257{
11258 for (; fi != NULL; fi = get_prev_frame (fi))
11259 {
11260 if (!is_known_support_routine (fi))
11261 {
11262 select_frame (fi);
11263 break;
11264 }
11265 }
11266
11267}
11268
11269/* Assuming that the inferior just triggered an unhandled exception
11270 catchpoint, return the address in inferior memory where the name
11271 of the exception is stored.
11272
11273 Return zero if the address could not be computed. */
11274
11275static CORE_ADDR
11276ada_unhandled_exception_name_addr (void)
0259addd
JB
11277{
11278 return parse_and_eval_address ("e.full_name");
11279}
11280
11281/* Same as ada_unhandled_exception_name_addr, except that this function
11282 should be used when the inferior uses an older version of the runtime,
11283 where the exception name needs to be extracted from a specific frame
11284 several frames up in the callstack. */
11285
11286static CORE_ADDR
11287ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11288{
11289 int frame_level;
11290 struct frame_info *fi;
3eecfa55 11291 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11292 struct cleanup *old_chain;
f7f9143b
JB
11293
11294 /* To determine the name of this exception, we need to select
11295 the frame corresponding to RAISE_SYM_NAME. This frame is
11296 at least 3 levels up, so we simply skip the first 3 frames
11297 without checking the name of their associated function. */
11298 fi = get_current_frame ();
11299 for (frame_level = 0; frame_level < 3; frame_level += 1)
11300 if (fi != NULL)
11301 fi = get_prev_frame (fi);
11302
55b87a52 11303 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11304 while (fi != NULL)
11305 {
55b87a52 11306 char *func_name;
692465f1
JB
11307 enum language func_lang;
11308
e9e07ba6 11309 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11310 if (func_name != NULL)
11311 {
11312 make_cleanup (xfree, func_name);
11313
11314 if (strcmp (func_name,
11315 data->exception_info->catch_exception_sym) == 0)
11316 break; /* We found the frame we were looking for... */
11317 fi = get_prev_frame (fi);
11318 }
f7f9143b 11319 }
55b87a52 11320 do_cleanups (old_chain);
f7f9143b
JB
11321
11322 if (fi == NULL)
11323 return 0;
11324
11325 select_frame (fi);
11326 return parse_and_eval_address ("id.full_name");
11327}
11328
11329/* Assuming the inferior just triggered an Ada exception catchpoint
11330 (of any type), return the address in inferior memory where the name
11331 of the exception is stored, if applicable.
11332
11333 Return zero if the address could not be computed, or if not relevant. */
11334
11335static CORE_ADDR
761269c8 11336ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11337 struct breakpoint *b)
11338{
3eecfa55
JB
11339 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11340
f7f9143b
JB
11341 switch (ex)
11342 {
761269c8 11343 case ada_catch_exception:
f7f9143b
JB
11344 return (parse_and_eval_address ("e.full_name"));
11345 break;
11346
761269c8 11347 case ada_catch_exception_unhandled:
3eecfa55 11348 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11349 break;
11350
761269c8 11351 case ada_catch_assert:
f7f9143b
JB
11352 return 0; /* Exception name is not relevant in this case. */
11353 break;
11354
11355 default:
11356 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11357 break;
11358 }
11359
11360 return 0; /* Should never be reached. */
11361}
11362
11363/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11364 any error that ada_exception_name_addr_1 might cause to be thrown.
11365 When an error is intercepted, a warning with the error message is printed,
11366 and zero is returned. */
11367
11368static CORE_ADDR
761269c8 11369ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11370 struct breakpoint *b)
11371{
bfd189b1 11372 volatile struct gdb_exception e;
f7f9143b
JB
11373 CORE_ADDR result = 0;
11374
11375 TRY_CATCH (e, RETURN_MASK_ERROR)
11376 {
11377 result = ada_exception_name_addr_1 (ex, b);
11378 }
11379
11380 if (e.reason < 0)
11381 {
11382 warning (_("failed to get exception name: %s"), e.message);
11383 return 0;
11384 }
11385
11386 return result;
11387}
11388
28010a5d
PA
11389static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11390
11391/* Ada catchpoints.
11392
11393 In the case of catchpoints on Ada exceptions, the catchpoint will
11394 stop the target on every exception the program throws. When a user
11395 specifies the name of a specific exception, we translate this
11396 request into a condition expression (in text form), and then parse
11397 it into an expression stored in each of the catchpoint's locations.
11398 We then use this condition to check whether the exception that was
11399 raised is the one the user is interested in. If not, then the
11400 target is resumed again. We store the name of the requested
11401 exception, in order to be able to re-set the condition expression
11402 when symbols change. */
11403
11404/* An instance of this type is used to represent an Ada catchpoint
11405 breakpoint location. It includes a "struct bp_location" as a kind
11406 of base class; users downcast to "struct bp_location *" when
11407 needed. */
11408
11409struct ada_catchpoint_location
11410{
11411 /* The base class. */
11412 struct bp_location base;
11413
11414 /* The condition that checks whether the exception that was raised
11415 is the specific exception the user specified on catchpoint
11416 creation. */
11417 struct expression *excep_cond_expr;
11418};
11419
11420/* Implement the DTOR method in the bp_location_ops structure for all
11421 Ada exception catchpoint kinds. */
11422
11423static void
11424ada_catchpoint_location_dtor (struct bp_location *bl)
11425{
11426 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11427
11428 xfree (al->excep_cond_expr);
11429}
11430
11431/* The vtable to be used in Ada catchpoint locations. */
11432
11433static const struct bp_location_ops ada_catchpoint_location_ops =
11434{
11435 ada_catchpoint_location_dtor
11436};
11437
11438/* An instance of this type is used to represent an Ada catchpoint.
11439 It includes a "struct breakpoint" as a kind of base class; users
11440 downcast to "struct breakpoint *" when needed. */
11441
11442struct ada_catchpoint
11443{
11444 /* The base class. */
11445 struct breakpoint base;
11446
11447 /* The name of the specific exception the user specified. */
11448 char *excep_string;
11449};
11450
11451/* Parse the exception condition string in the context of each of the
11452 catchpoint's locations, and store them for later evaluation. */
11453
11454static void
11455create_excep_cond_exprs (struct ada_catchpoint *c)
11456{
11457 struct cleanup *old_chain;
11458 struct bp_location *bl;
11459 char *cond_string;
11460
11461 /* Nothing to do if there's no specific exception to catch. */
11462 if (c->excep_string == NULL)
11463 return;
11464
11465 /* Same if there are no locations... */
11466 if (c->base.loc == NULL)
11467 return;
11468
11469 /* Compute the condition expression in text form, from the specific
11470 expection we want to catch. */
11471 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11472 old_chain = make_cleanup (xfree, cond_string);
11473
11474 /* Iterate over all the catchpoint's locations, and parse an
11475 expression for each. */
11476 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11477 {
11478 struct ada_catchpoint_location *ada_loc
11479 = (struct ada_catchpoint_location *) bl;
11480 struct expression *exp = NULL;
11481
11482 if (!bl->shlib_disabled)
11483 {
11484 volatile struct gdb_exception e;
bbc13ae3 11485 const char *s;
28010a5d
PA
11486
11487 s = cond_string;
11488 TRY_CATCH (e, RETURN_MASK_ERROR)
11489 {
1bb9788d
TT
11490 exp = parse_exp_1 (&s, bl->address,
11491 block_for_pc (bl->address), 0);
28010a5d
PA
11492 }
11493 if (e.reason < 0)
849f2b52
JB
11494 {
11495 warning (_("failed to reevaluate internal exception condition "
11496 "for catchpoint %d: %s"),
11497 c->base.number, e.message);
11498 /* There is a bug in GCC on sparc-solaris when building with
11499 optimization which causes EXP to change unexpectedly
11500 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11501 The problem should be fixed starting with GCC 4.9.
11502 In the meantime, work around it by forcing EXP back
11503 to NULL. */
11504 exp = NULL;
11505 }
28010a5d
PA
11506 }
11507
11508 ada_loc->excep_cond_expr = exp;
11509 }
11510
11511 do_cleanups (old_chain);
11512}
11513
11514/* Implement the DTOR method in the breakpoint_ops structure for all
11515 exception catchpoint kinds. */
11516
11517static void
761269c8 11518dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11519{
11520 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11521
11522 xfree (c->excep_string);
348d480f 11523
2060206e 11524 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11525}
11526
11527/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11528 structure for all exception catchpoint kinds. */
11529
11530static struct bp_location *
761269c8 11531allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11532 struct breakpoint *self)
11533{
11534 struct ada_catchpoint_location *loc;
11535
11536 loc = XNEW (struct ada_catchpoint_location);
11537 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11538 loc->excep_cond_expr = NULL;
11539 return &loc->base;
11540}
11541
11542/* Implement the RE_SET method in the breakpoint_ops structure for all
11543 exception catchpoint kinds. */
11544
11545static void
761269c8 11546re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11547{
11548 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11549
11550 /* Call the base class's method. This updates the catchpoint's
11551 locations. */
2060206e 11552 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11553
11554 /* Reparse the exception conditional expressions. One for each
11555 location. */
11556 create_excep_cond_exprs (c);
11557}
11558
11559/* Returns true if we should stop for this breakpoint hit. If the
11560 user specified a specific exception, we only want to cause a stop
11561 if the program thrown that exception. */
11562
11563static int
11564should_stop_exception (const struct bp_location *bl)
11565{
11566 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11567 const struct ada_catchpoint_location *ada_loc
11568 = (const struct ada_catchpoint_location *) bl;
11569 volatile struct gdb_exception ex;
11570 int stop;
11571
11572 /* With no specific exception, should always stop. */
11573 if (c->excep_string == NULL)
11574 return 1;
11575
11576 if (ada_loc->excep_cond_expr == NULL)
11577 {
11578 /* We will have a NULL expression if back when we were creating
11579 the expressions, this location's had failed to parse. */
11580 return 1;
11581 }
11582
11583 stop = 1;
11584 TRY_CATCH (ex, RETURN_MASK_ALL)
11585 {
11586 struct value *mark;
11587
11588 mark = value_mark ();
11589 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11590 value_free_to_mark (mark);
11591 }
11592 if (ex.reason < 0)
11593 exception_fprintf (gdb_stderr, ex,
11594 _("Error in testing exception condition:\n"));
11595 return stop;
11596}
11597
11598/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11599 for all exception catchpoint kinds. */
11600
11601static void
761269c8 11602check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11603{
11604 bs->stop = should_stop_exception (bs->bp_location_at);
11605}
11606
f7f9143b
JB
11607/* Implement the PRINT_IT method in the breakpoint_ops structure
11608 for all exception catchpoint kinds. */
11609
11610static enum print_stop_action
761269c8 11611print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11612{
79a45e25 11613 struct ui_out *uiout = current_uiout;
348d480f
PA
11614 struct breakpoint *b = bs->breakpoint_at;
11615
956a9fb9 11616 annotate_catchpoint (b->number);
f7f9143b 11617
956a9fb9 11618 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11619 {
956a9fb9
JB
11620 ui_out_field_string (uiout, "reason",
11621 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11622 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11623 }
11624
00eb2c4a
JB
11625 ui_out_text (uiout,
11626 b->disposition == disp_del ? "\nTemporary catchpoint "
11627 : "\nCatchpoint ");
956a9fb9
JB
11628 ui_out_field_int (uiout, "bkptno", b->number);
11629 ui_out_text (uiout, ", ");
f7f9143b 11630
f7f9143b
JB
11631 switch (ex)
11632 {
761269c8
JB
11633 case ada_catch_exception:
11634 case ada_catch_exception_unhandled:
956a9fb9
JB
11635 {
11636 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11637 char exception_name[256];
11638
11639 if (addr != 0)
11640 {
c714b426
PA
11641 read_memory (addr, (gdb_byte *) exception_name,
11642 sizeof (exception_name) - 1);
956a9fb9
JB
11643 exception_name [sizeof (exception_name) - 1] = '\0';
11644 }
11645 else
11646 {
11647 /* For some reason, we were unable to read the exception
11648 name. This could happen if the Runtime was compiled
11649 without debugging info, for instance. In that case,
11650 just replace the exception name by the generic string
11651 "exception" - it will read as "an exception" in the
11652 notification we are about to print. */
967cff16 11653 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11654 }
11655 /* In the case of unhandled exception breakpoints, we print
11656 the exception name as "unhandled EXCEPTION_NAME", to make
11657 it clearer to the user which kind of catchpoint just got
11658 hit. We used ui_out_text to make sure that this extra
11659 info does not pollute the exception name in the MI case. */
761269c8 11660 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11661 ui_out_text (uiout, "unhandled ");
11662 ui_out_field_string (uiout, "exception-name", exception_name);
11663 }
11664 break;
761269c8 11665 case ada_catch_assert:
956a9fb9
JB
11666 /* In this case, the name of the exception is not really
11667 important. Just print "failed assertion" to make it clearer
11668 that his program just hit an assertion-failure catchpoint.
11669 We used ui_out_text because this info does not belong in
11670 the MI output. */
11671 ui_out_text (uiout, "failed assertion");
11672 break;
f7f9143b 11673 }
956a9fb9
JB
11674 ui_out_text (uiout, " at ");
11675 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11676
11677 return PRINT_SRC_AND_LOC;
11678}
11679
11680/* Implement the PRINT_ONE method in the breakpoint_ops structure
11681 for all exception catchpoint kinds. */
11682
11683static void
761269c8 11684print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11685 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11686{
79a45e25 11687 struct ui_out *uiout = current_uiout;
28010a5d 11688 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11689 struct value_print_options opts;
11690
11691 get_user_print_options (&opts);
11692 if (opts.addressprint)
f7f9143b
JB
11693 {
11694 annotate_field (4);
5af949e3 11695 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11696 }
11697
11698 annotate_field (5);
a6d9a66e 11699 *last_loc = b->loc;
f7f9143b
JB
11700 switch (ex)
11701 {
761269c8 11702 case ada_catch_exception:
28010a5d 11703 if (c->excep_string != NULL)
f7f9143b 11704 {
28010a5d
PA
11705 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11706
f7f9143b
JB
11707 ui_out_field_string (uiout, "what", msg);
11708 xfree (msg);
11709 }
11710 else
11711 ui_out_field_string (uiout, "what", "all Ada exceptions");
11712
11713 break;
11714
761269c8 11715 case ada_catch_exception_unhandled:
f7f9143b
JB
11716 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11717 break;
11718
761269c8 11719 case ada_catch_assert:
f7f9143b
JB
11720 ui_out_field_string (uiout, "what", "failed Ada assertions");
11721 break;
11722
11723 default:
11724 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11725 break;
11726 }
11727}
11728
11729/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11730 for all exception catchpoint kinds. */
11731
11732static void
761269c8 11733print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11734 struct breakpoint *b)
11735{
28010a5d 11736 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11737 struct ui_out *uiout = current_uiout;
28010a5d 11738
00eb2c4a
JB
11739 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11740 : _("Catchpoint "));
11741 ui_out_field_int (uiout, "bkptno", b->number);
11742 ui_out_text (uiout, ": ");
11743
f7f9143b
JB
11744 switch (ex)
11745 {
761269c8 11746 case ada_catch_exception:
28010a5d 11747 if (c->excep_string != NULL)
00eb2c4a
JB
11748 {
11749 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11750 struct cleanup *old_chain = make_cleanup (xfree, info);
11751
11752 ui_out_text (uiout, info);
11753 do_cleanups (old_chain);
11754 }
f7f9143b 11755 else
00eb2c4a 11756 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11757 break;
11758
761269c8 11759 case ada_catch_exception_unhandled:
00eb2c4a 11760 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11761 break;
11762
761269c8 11763 case ada_catch_assert:
00eb2c4a 11764 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11765 break;
11766
11767 default:
11768 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11769 break;
11770 }
11771}
11772
6149aea9
PA
11773/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11774 for all exception catchpoint kinds. */
11775
11776static void
761269c8 11777print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
11778 struct breakpoint *b, struct ui_file *fp)
11779{
28010a5d
PA
11780 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11781
6149aea9
PA
11782 switch (ex)
11783 {
761269c8 11784 case ada_catch_exception:
6149aea9 11785 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11786 if (c->excep_string != NULL)
11787 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11788 break;
11789
761269c8 11790 case ada_catch_exception_unhandled:
78076abc 11791 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11792 break;
11793
761269c8 11794 case ada_catch_assert:
6149aea9
PA
11795 fprintf_filtered (fp, "catch assert");
11796 break;
11797
11798 default:
11799 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11800 }
d9b3f62e 11801 print_recreate_thread (b, fp);
6149aea9
PA
11802}
11803
f7f9143b
JB
11804/* Virtual table for "catch exception" breakpoints. */
11805
28010a5d
PA
11806static void
11807dtor_catch_exception (struct breakpoint *b)
11808{
761269c8 11809 dtor_exception (ada_catch_exception, b);
28010a5d
PA
11810}
11811
11812static struct bp_location *
11813allocate_location_catch_exception (struct breakpoint *self)
11814{
761269c8 11815 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
11816}
11817
11818static void
11819re_set_catch_exception (struct breakpoint *b)
11820{
761269c8 11821 re_set_exception (ada_catch_exception, b);
28010a5d
PA
11822}
11823
11824static void
11825check_status_catch_exception (bpstat bs)
11826{
761269c8 11827 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
11828}
11829
f7f9143b 11830static enum print_stop_action
348d480f 11831print_it_catch_exception (bpstat bs)
f7f9143b 11832{
761269c8 11833 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
11834}
11835
11836static void
a6d9a66e 11837print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11838{
761269c8 11839 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
11840}
11841
11842static void
11843print_mention_catch_exception (struct breakpoint *b)
11844{
761269c8 11845 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
11846}
11847
6149aea9
PA
11848static void
11849print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11850{
761269c8 11851 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
11852}
11853
2060206e 11854static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11855
11856/* Virtual table for "catch exception unhandled" breakpoints. */
11857
28010a5d
PA
11858static void
11859dtor_catch_exception_unhandled (struct breakpoint *b)
11860{
761269c8 11861 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11862}
11863
11864static struct bp_location *
11865allocate_location_catch_exception_unhandled (struct breakpoint *self)
11866{
761269c8 11867 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
11868}
11869
11870static void
11871re_set_catch_exception_unhandled (struct breakpoint *b)
11872{
761269c8 11873 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11874}
11875
11876static void
11877check_status_catch_exception_unhandled (bpstat bs)
11878{
761269c8 11879 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
11880}
11881
f7f9143b 11882static enum print_stop_action
348d480f 11883print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11884{
761269c8 11885 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
11886}
11887
11888static void
a6d9a66e
UW
11889print_one_catch_exception_unhandled (struct breakpoint *b,
11890 struct bp_location **last_loc)
f7f9143b 11891{
761269c8 11892 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11893}
11894
11895static void
11896print_mention_catch_exception_unhandled (struct breakpoint *b)
11897{
761269c8 11898 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
11899}
11900
6149aea9
PA
11901static void
11902print_recreate_catch_exception_unhandled (struct breakpoint *b,
11903 struct ui_file *fp)
11904{
761269c8 11905 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
11906}
11907
2060206e 11908static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11909
11910/* Virtual table for "catch assert" breakpoints. */
11911
28010a5d
PA
11912static void
11913dtor_catch_assert (struct breakpoint *b)
11914{
761269c8 11915 dtor_exception (ada_catch_assert, b);
28010a5d
PA
11916}
11917
11918static struct bp_location *
11919allocate_location_catch_assert (struct breakpoint *self)
11920{
761269c8 11921 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
11922}
11923
11924static void
11925re_set_catch_assert (struct breakpoint *b)
11926{
761269c8 11927 re_set_exception (ada_catch_assert, b);
28010a5d
PA
11928}
11929
11930static void
11931check_status_catch_assert (bpstat bs)
11932{
761269c8 11933 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
11934}
11935
f7f9143b 11936static enum print_stop_action
348d480f 11937print_it_catch_assert (bpstat bs)
f7f9143b 11938{
761269c8 11939 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
11940}
11941
11942static void
a6d9a66e 11943print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11944{
761269c8 11945 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
11946}
11947
11948static void
11949print_mention_catch_assert (struct breakpoint *b)
11950{
761269c8 11951 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
11952}
11953
6149aea9
PA
11954static void
11955print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11956{
761269c8 11957 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
11958}
11959
2060206e 11960static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11961
f7f9143b
JB
11962/* Return a newly allocated copy of the first space-separated token
11963 in ARGSP, and then adjust ARGSP to point immediately after that
11964 token.
11965
11966 Return NULL if ARGPS does not contain any more tokens. */
11967
11968static char *
11969ada_get_next_arg (char **argsp)
11970{
11971 char *args = *argsp;
11972 char *end;
11973 char *result;
11974
0fcd72ba 11975 args = skip_spaces (args);
f7f9143b
JB
11976 if (args[0] == '\0')
11977 return NULL; /* No more arguments. */
11978
11979 /* Find the end of the current argument. */
11980
0fcd72ba 11981 end = skip_to_space (args);
f7f9143b
JB
11982
11983 /* Adjust ARGSP to point to the start of the next argument. */
11984
11985 *argsp = end;
11986
11987 /* Make a copy of the current argument and return it. */
11988
11989 result = xmalloc (end - args + 1);
11990 strncpy (result, args, end - args);
11991 result[end - args] = '\0';
11992
11993 return result;
11994}
11995
11996/* Split the arguments specified in a "catch exception" command.
11997 Set EX to the appropriate catchpoint type.
28010a5d 11998 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11999 specified by the user.
12000 If a condition is found at the end of the arguments, the condition
12001 expression is stored in COND_STRING (memory must be deallocated
12002 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12003
12004static void
12005catch_ada_exception_command_split (char *args,
761269c8 12006 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12007 char **excep_string,
12008 char **cond_string)
f7f9143b
JB
12009{
12010 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12011 char *exception_name;
5845583d 12012 char *cond = NULL;
f7f9143b
JB
12013
12014 exception_name = ada_get_next_arg (&args);
5845583d
JB
12015 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12016 {
12017 /* This is not an exception name; this is the start of a condition
12018 expression for a catchpoint on all exceptions. So, "un-get"
12019 this token, and set exception_name to NULL. */
12020 xfree (exception_name);
12021 exception_name = NULL;
12022 args -= 2;
12023 }
f7f9143b
JB
12024 make_cleanup (xfree, exception_name);
12025
5845583d 12026 /* Check to see if we have a condition. */
f7f9143b 12027
0fcd72ba 12028 args = skip_spaces (args);
5845583d
JB
12029 if (strncmp (args, "if", 2) == 0
12030 && (isspace (args[2]) || args[2] == '\0'))
12031 {
12032 args += 2;
12033 args = skip_spaces (args);
12034
12035 if (args[0] == '\0')
12036 error (_("Condition missing after `if' keyword"));
12037 cond = xstrdup (args);
12038 make_cleanup (xfree, cond);
12039
12040 args += strlen (args);
12041 }
12042
12043 /* Check that we do not have any more arguments. Anything else
12044 is unexpected. */
f7f9143b
JB
12045
12046 if (args[0] != '\0')
12047 error (_("Junk at end of expression"));
12048
12049 discard_cleanups (old_chain);
12050
12051 if (exception_name == NULL)
12052 {
12053 /* Catch all exceptions. */
761269c8 12054 *ex = ada_catch_exception;
28010a5d 12055 *excep_string = NULL;
f7f9143b
JB
12056 }
12057 else if (strcmp (exception_name, "unhandled") == 0)
12058 {
12059 /* Catch unhandled exceptions. */
761269c8 12060 *ex = ada_catch_exception_unhandled;
28010a5d 12061 *excep_string = NULL;
f7f9143b
JB
12062 }
12063 else
12064 {
12065 /* Catch a specific exception. */
761269c8 12066 *ex = ada_catch_exception;
28010a5d 12067 *excep_string = exception_name;
f7f9143b 12068 }
5845583d 12069 *cond_string = cond;
f7f9143b
JB
12070}
12071
12072/* Return the name of the symbol on which we should break in order to
12073 implement a catchpoint of the EX kind. */
12074
12075static const char *
761269c8 12076ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12077{
3eecfa55
JB
12078 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12079
12080 gdb_assert (data->exception_info != NULL);
0259addd 12081
f7f9143b
JB
12082 switch (ex)
12083 {
761269c8 12084 case ada_catch_exception:
3eecfa55 12085 return (data->exception_info->catch_exception_sym);
f7f9143b 12086 break;
761269c8 12087 case ada_catch_exception_unhandled:
3eecfa55 12088 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12089 break;
761269c8 12090 case ada_catch_assert:
3eecfa55 12091 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12092 break;
12093 default:
12094 internal_error (__FILE__, __LINE__,
12095 _("unexpected catchpoint kind (%d)"), ex);
12096 }
12097}
12098
12099/* Return the breakpoint ops "virtual table" used for catchpoints
12100 of the EX kind. */
12101
c0a91b2b 12102static const struct breakpoint_ops *
761269c8 12103ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12104{
12105 switch (ex)
12106 {
761269c8 12107 case ada_catch_exception:
f7f9143b
JB
12108 return (&catch_exception_breakpoint_ops);
12109 break;
761269c8 12110 case ada_catch_exception_unhandled:
f7f9143b
JB
12111 return (&catch_exception_unhandled_breakpoint_ops);
12112 break;
761269c8 12113 case ada_catch_assert:
f7f9143b
JB
12114 return (&catch_assert_breakpoint_ops);
12115 break;
12116 default:
12117 internal_error (__FILE__, __LINE__,
12118 _("unexpected catchpoint kind (%d)"), ex);
12119 }
12120}
12121
12122/* Return the condition that will be used to match the current exception
12123 being raised with the exception that the user wants to catch. This
12124 assumes that this condition is used when the inferior just triggered
12125 an exception catchpoint.
12126
12127 The string returned is a newly allocated string that needs to be
12128 deallocated later. */
12129
12130static char *
28010a5d 12131ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12132{
3d0b0fa3
JB
12133 int i;
12134
0963b4bd 12135 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12136 runtime units that have been compiled without debugging info; if
28010a5d 12137 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12138 exception (e.g. "constraint_error") then, during the evaluation
12139 of the condition expression, the symbol lookup on this name would
0963b4bd 12140 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12141 may then be set only on user-defined exceptions which have the
12142 same not-fully-qualified name (e.g. my_package.constraint_error).
12143
12144 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12145 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12146 exception constraint_error" is rewritten into "catch exception
12147 standard.constraint_error".
12148
12149 If an exception named contraint_error is defined in another package of
12150 the inferior program, then the only way to specify this exception as a
12151 breakpoint condition is to use its fully-qualified named:
12152 e.g. my_package.constraint_error. */
12153
12154 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12155 {
28010a5d 12156 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12157 {
12158 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12159 excep_string);
3d0b0fa3
JB
12160 }
12161 }
28010a5d 12162 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12163}
12164
12165/* Return the symtab_and_line that should be used to insert an exception
12166 catchpoint of the TYPE kind.
12167
28010a5d
PA
12168 EXCEP_STRING should contain the name of a specific exception that
12169 the catchpoint should catch, or NULL otherwise.
f7f9143b 12170
28010a5d
PA
12171 ADDR_STRING returns the name of the function where the real
12172 breakpoint that implements the catchpoints is set, depending on the
12173 type of catchpoint we need to create. */
f7f9143b
JB
12174
12175static struct symtab_and_line
761269c8 12176ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12177 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12178{
12179 const char *sym_name;
12180 struct symbol *sym;
f7f9143b 12181
0259addd
JB
12182 /* First, find out which exception support info to use. */
12183 ada_exception_support_info_sniffer ();
12184
12185 /* Then lookup the function on which we will break in order to catch
f7f9143b 12186 the Ada exceptions requested by the user. */
f7f9143b
JB
12187 sym_name = ada_exception_sym_name (ex);
12188 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12189
f17011e0
JB
12190 /* We can assume that SYM is not NULL at this stage. If the symbol
12191 did not exist, ada_exception_support_info_sniffer would have
12192 raised an exception.
f7f9143b 12193
f17011e0
JB
12194 Also, ada_exception_support_info_sniffer should have already
12195 verified that SYM is a function symbol. */
12196 gdb_assert (sym != NULL);
12197 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12198
12199 /* Set ADDR_STRING. */
f7f9143b
JB
12200 *addr_string = xstrdup (sym_name);
12201
f7f9143b 12202 /* Set OPS. */
4b9eee8c 12203 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12204
f17011e0 12205 return find_function_start_sal (sym, 1);
f7f9143b
JB
12206}
12207
b4a5b78b 12208/* Create an Ada exception catchpoint.
f7f9143b 12209
b4a5b78b 12210 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12211
2df4d1d5
JB
12212 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12213 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12214 of the exception to which this catchpoint applies. When not NULL,
12215 the string must be allocated on the heap, and its deallocation
12216 is no longer the responsibility of the caller.
12217
12218 COND_STRING, if not NULL, is the catchpoint condition. This string
12219 must be allocated on the heap, and its deallocation is no longer
12220 the responsibility of the caller.
f7f9143b 12221
b4a5b78b
JB
12222 TEMPFLAG, if nonzero, means that the underlying breakpoint
12223 should be temporary.
28010a5d 12224
b4a5b78b 12225 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12226
349774ef 12227void
28010a5d 12228create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12229 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12230 char *excep_string,
5845583d 12231 char *cond_string,
28010a5d 12232 int tempflag,
349774ef 12233 int disabled,
28010a5d
PA
12234 int from_tty)
12235{
12236 struct ada_catchpoint *c;
b4a5b78b
JB
12237 char *addr_string = NULL;
12238 const struct breakpoint_ops *ops = NULL;
12239 struct symtab_and_line sal
12240 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12241
12242 c = XNEW (struct ada_catchpoint);
12243 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12244 ops, tempflag, disabled, from_tty);
28010a5d
PA
12245 c->excep_string = excep_string;
12246 create_excep_cond_exprs (c);
5845583d
JB
12247 if (cond_string != NULL)
12248 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12249 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12250}
12251
9ac4176b
PA
12252/* Implement the "catch exception" command. */
12253
12254static void
12255catch_ada_exception_command (char *arg, int from_tty,
12256 struct cmd_list_element *command)
12257{
12258 struct gdbarch *gdbarch = get_current_arch ();
12259 int tempflag;
761269c8 12260 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12261 char *excep_string = NULL;
5845583d 12262 char *cond_string = NULL;
9ac4176b
PA
12263
12264 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12265
12266 if (!arg)
12267 arg = "";
b4a5b78b
JB
12268 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12269 &cond_string);
12270 create_ada_exception_catchpoint (gdbarch, ex_kind,
12271 excep_string, cond_string,
349774ef
JB
12272 tempflag, 1 /* enabled */,
12273 from_tty);
9ac4176b
PA
12274}
12275
b4a5b78b 12276/* Split the arguments specified in a "catch assert" command.
5845583d 12277
b4a5b78b
JB
12278 ARGS contains the command's arguments (or the empty string if
12279 no arguments were passed).
5845583d
JB
12280
12281 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12282 (the memory needs to be deallocated after use). */
5845583d 12283
b4a5b78b
JB
12284static void
12285catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12286{
5845583d 12287 args = skip_spaces (args);
f7f9143b 12288
5845583d
JB
12289 /* Check whether a condition was provided. */
12290 if (strncmp (args, "if", 2) == 0
12291 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12292 {
5845583d 12293 args += 2;
0fcd72ba 12294 args = skip_spaces (args);
5845583d
JB
12295 if (args[0] == '\0')
12296 error (_("condition missing after `if' keyword"));
12297 *cond_string = xstrdup (args);
f7f9143b
JB
12298 }
12299
5845583d
JB
12300 /* Otherwise, there should be no other argument at the end of
12301 the command. */
12302 else if (args[0] != '\0')
12303 error (_("Junk at end of arguments."));
f7f9143b
JB
12304}
12305
9ac4176b
PA
12306/* Implement the "catch assert" command. */
12307
12308static void
12309catch_assert_command (char *arg, int from_tty,
12310 struct cmd_list_element *command)
12311{
12312 struct gdbarch *gdbarch = get_current_arch ();
12313 int tempflag;
5845583d 12314 char *cond_string = NULL;
9ac4176b
PA
12315
12316 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12317
12318 if (!arg)
12319 arg = "";
b4a5b78b 12320 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12321 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12322 NULL, cond_string,
349774ef
JB
12323 tempflag, 1 /* enabled */,
12324 from_tty);
9ac4176b 12325}
778865d3
JB
12326
12327/* Return non-zero if the symbol SYM is an Ada exception object. */
12328
12329static int
12330ada_is_exception_sym (struct symbol *sym)
12331{
12332 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12333
12334 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12335 && SYMBOL_CLASS (sym) != LOC_BLOCK
12336 && SYMBOL_CLASS (sym) != LOC_CONST
12337 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12338 && type_name != NULL && strcmp (type_name, "exception") == 0);
12339}
12340
12341/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12342 Ada exception object. This matches all exceptions except the ones
12343 defined by the Ada language. */
12344
12345static int
12346ada_is_non_standard_exception_sym (struct symbol *sym)
12347{
12348 int i;
12349
12350 if (!ada_is_exception_sym (sym))
12351 return 0;
12352
12353 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12354 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12355 return 0; /* A standard exception. */
12356
12357 /* Numeric_Error is also a standard exception, so exclude it.
12358 See the STANDARD_EXC description for more details as to why
12359 this exception is not listed in that array. */
12360 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12361 return 0;
12362
12363 return 1;
12364}
12365
12366/* A helper function for qsort, comparing two struct ada_exc_info
12367 objects.
12368
12369 The comparison is determined first by exception name, and then
12370 by exception address. */
12371
12372static int
12373compare_ada_exception_info (const void *a, const void *b)
12374{
12375 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12376 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12377 int result;
12378
12379 result = strcmp (exc_a->name, exc_b->name);
12380 if (result != 0)
12381 return result;
12382
12383 if (exc_a->addr < exc_b->addr)
12384 return -1;
12385 if (exc_a->addr > exc_b->addr)
12386 return 1;
12387
12388 return 0;
12389}
12390
12391/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12392 routine, but keeping the first SKIP elements untouched.
12393
12394 All duplicates are also removed. */
12395
12396static void
12397sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12398 int skip)
12399{
12400 struct ada_exc_info *to_sort
12401 = VEC_address (ada_exc_info, *exceptions) + skip;
12402 int to_sort_len
12403 = VEC_length (ada_exc_info, *exceptions) - skip;
12404 int i, j;
12405
12406 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12407 compare_ada_exception_info);
12408
12409 for (i = 1, j = 1; i < to_sort_len; i++)
12410 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12411 to_sort[j++] = to_sort[i];
12412 to_sort_len = j;
12413 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12414}
12415
12416/* A function intended as the "name_matcher" callback in the struct
12417 quick_symbol_functions' expand_symtabs_matching method.
12418
12419 SEARCH_NAME is the symbol's search name.
12420
12421 If USER_DATA is not NULL, it is a pointer to a regext_t object
12422 used to match the symbol (by natural name). Otherwise, when USER_DATA
12423 is null, no filtering is performed, and all symbols are a positive
12424 match. */
12425
12426static int
12427ada_exc_search_name_matches (const char *search_name, void *user_data)
12428{
12429 regex_t *preg = user_data;
12430
12431 if (preg == NULL)
12432 return 1;
12433
12434 /* In Ada, the symbol "search name" is a linkage name, whereas
12435 the regular expression used to do the matching refers to
12436 the natural name. So match against the decoded name. */
12437 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12438}
12439
12440/* Add all exceptions defined by the Ada standard whose name match
12441 a regular expression.
12442
12443 If PREG is not NULL, then this regexp_t object is used to
12444 perform the symbol name matching. Otherwise, no name-based
12445 filtering is performed.
12446
12447 EXCEPTIONS is a vector of exceptions to which matching exceptions
12448 gets pushed. */
12449
12450static void
12451ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12452{
12453 int i;
12454
12455 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12456 {
12457 if (preg == NULL
12458 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12459 {
12460 struct bound_minimal_symbol msymbol
12461 = ada_lookup_simple_minsym (standard_exc[i]);
12462
12463 if (msymbol.minsym != NULL)
12464 {
12465 struct ada_exc_info info
12466 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12467
12468 VEC_safe_push (ada_exc_info, *exceptions, &info);
12469 }
12470 }
12471 }
12472}
12473
12474/* Add all Ada exceptions defined locally and accessible from the given
12475 FRAME.
12476
12477 If PREG is not NULL, then this regexp_t object is used to
12478 perform the symbol name matching. Otherwise, no name-based
12479 filtering is performed.
12480
12481 EXCEPTIONS is a vector of exceptions to which matching exceptions
12482 gets pushed. */
12483
12484static void
12485ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12486 VEC(ada_exc_info) **exceptions)
12487{
12488 struct block *block = get_frame_block (frame, 0);
12489
12490 while (block != 0)
12491 {
12492 struct block_iterator iter;
12493 struct symbol *sym;
12494
12495 ALL_BLOCK_SYMBOLS (block, iter, sym)
12496 {
12497 switch (SYMBOL_CLASS (sym))
12498 {
12499 case LOC_TYPEDEF:
12500 case LOC_BLOCK:
12501 case LOC_CONST:
12502 break;
12503 default:
12504 if (ada_is_exception_sym (sym))
12505 {
12506 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12507 SYMBOL_VALUE_ADDRESS (sym)};
12508
12509 VEC_safe_push (ada_exc_info, *exceptions, &info);
12510 }
12511 }
12512 }
12513 if (BLOCK_FUNCTION (block) != NULL)
12514 break;
12515 block = BLOCK_SUPERBLOCK (block);
12516 }
12517}
12518
12519/* Add all exceptions defined globally whose name name match
12520 a regular expression, excluding standard exceptions.
12521
12522 The reason we exclude standard exceptions is that they need
12523 to be handled separately: Standard exceptions are defined inside
12524 a runtime unit which is normally not compiled with debugging info,
12525 and thus usually do not show up in our symbol search. However,
12526 if the unit was in fact built with debugging info, we need to
12527 exclude them because they would duplicate the entry we found
12528 during the special loop that specifically searches for those
12529 standard exceptions.
12530
12531 If PREG is not NULL, then this regexp_t object is used to
12532 perform the symbol name matching. Otherwise, no name-based
12533 filtering is performed.
12534
12535 EXCEPTIONS is a vector of exceptions to which matching exceptions
12536 gets pushed. */
12537
12538static void
12539ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12540{
12541 struct objfile *objfile;
12542 struct symtab *s;
12543
bb4142cf
DE
12544 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12545 VARIABLES_DOMAIN, preg);
778865d3
JB
12546
12547 ALL_PRIMARY_SYMTABS (objfile, s)
12548 {
12549 struct blockvector *bv = BLOCKVECTOR (s);
12550 int i;
12551
12552 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12553 {
12554 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12555 struct block_iterator iter;
12556 struct symbol *sym;
12557
12558 ALL_BLOCK_SYMBOLS (b, iter, sym)
12559 if (ada_is_non_standard_exception_sym (sym)
12560 && (preg == NULL
12561 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12562 0, NULL, 0) == 0))
12563 {
12564 struct ada_exc_info info
12565 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12566
12567 VEC_safe_push (ada_exc_info, *exceptions, &info);
12568 }
12569 }
12570 }
12571}
12572
12573/* Implements ada_exceptions_list with the regular expression passed
12574 as a regex_t, rather than a string.
12575
12576 If not NULL, PREG is used to filter out exceptions whose names
12577 do not match. Otherwise, all exceptions are listed. */
12578
12579static VEC(ada_exc_info) *
12580ada_exceptions_list_1 (regex_t *preg)
12581{
12582 VEC(ada_exc_info) *result = NULL;
12583 struct cleanup *old_chain
12584 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12585 int prev_len;
12586
12587 /* First, list the known standard exceptions. These exceptions
12588 need to be handled separately, as they are usually defined in
12589 runtime units that have been compiled without debugging info. */
12590
12591 ada_add_standard_exceptions (preg, &result);
12592
12593 /* Next, find all exceptions whose scope is local and accessible
12594 from the currently selected frame. */
12595
12596 if (has_stack_frames ())
12597 {
12598 prev_len = VEC_length (ada_exc_info, result);
12599 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12600 &result);
12601 if (VEC_length (ada_exc_info, result) > prev_len)
12602 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12603 }
12604
12605 /* Add all exceptions whose scope is global. */
12606
12607 prev_len = VEC_length (ada_exc_info, result);
12608 ada_add_global_exceptions (preg, &result);
12609 if (VEC_length (ada_exc_info, result) > prev_len)
12610 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12611
12612 discard_cleanups (old_chain);
12613 return result;
12614}
12615
12616/* Return a vector of ada_exc_info.
12617
12618 If REGEXP is NULL, all exceptions are included in the result.
12619 Otherwise, it should contain a valid regular expression,
12620 and only the exceptions whose names match that regular expression
12621 are included in the result.
12622
12623 The exceptions are sorted in the following order:
12624 - Standard exceptions (defined by the Ada language), in
12625 alphabetical order;
12626 - Exceptions only visible from the current frame, in
12627 alphabetical order;
12628 - Exceptions whose scope is global, in alphabetical order. */
12629
12630VEC(ada_exc_info) *
12631ada_exceptions_list (const char *regexp)
12632{
12633 VEC(ada_exc_info) *result = NULL;
12634 struct cleanup *old_chain = NULL;
12635 regex_t reg;
12636
12637 if (regexp != NULL)
12638 old_chain = compile_rx_or_error (&reg, regexp,
12639 _("invalid regular expression"));
12640
12641 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12642
12643 if (old_chain != NULL)
12644 do_cleanups (old_chain);
12645 return result;
12646}
12647
12648/* Implement the "info exceptions" command. */
12649
12650static void
12651info_exceptions_command (char *regexp, int from_tty)
12652{
12653 VEC(ada_exc_info) *exceptions;
12654 struct cleanup *cleanup;
12655 struct gdbarch *gdbarch = get_current_arch ();
12656 int ix;
12657 struct ada_exc_info *info;
12658
12659 exceptions = ada_exceptions_list (regexp);
12660 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12661
12662 if (regexp != NULL)
12663 printf_filtered
12664 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12665 else
12666 printf_filtered (_("All defined Ada exceptions:\n"));
12667
12668 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12669 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12670
12671 do_cleanups (cleanup);
12672}
12673
4c4b4cd2
PH
12674 /* Operators */
12675/* Information about operators given special treatment in functions
12676 below. */
12677/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12678
12679#define ADA_OPERATORS \
12680 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12681 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12682 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12683 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12684 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12685 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12686 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12687 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12688 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12689 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12690 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12691 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12692 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12693 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12694 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12695 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12696 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12697 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12698 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12699
12700static void
554794dc
SDJ
12701ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12702 int *argsp)
4c4b4cd2
PH
12703{
12704 switch (exp->elts[pc - 1].opcode)
12705 {
76a01679 12706 default:
4c4b4cd2
PH
12707 operator_length_standard (exp, pc, oplenp, argsp);
12708 break;
12709
12710#define OP_DEFN(op, len, args, binop) \
12711 case op: *oplenp = len; *argsp = args; break;
12712 ADA_OPERATORS;
12713#undef OP_DEFN
52ce6436
PH
12714
12715 case OP_AGGREGATE:
12716 *oplenp = 3;
12717 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12718 break;
12719
12720 case OP_CHOICES:
12721 *oplenp = 3;
12722 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12723 break;
4c4b4cd2
PH
12724 }
12725}
12726
c0201579
JK
12727/* Implementation of the exp_descriptor method operator_check. */
12728
12729static int
12730ada_operator_check (struct expression *exp, int pos,
12731 int (*objfile_func) (struct objfile *objfile, void *data),
12732 void *data)
12733{
12734 const union exp_element *const elts = exp->elts;
12735 struct type *type = NULL;
12736
12737 switch (elts[pos].opcode)
12738 {
12739 case UNOP_IN_RANGE:
12740 case UNOP_QUAL:
12741 type = elts[pos + 1].type;
12742 break;
12743
12744 default:
12745 return operator_check_standard (exp, pos, objfile_func, data);
12746 }
12747
12748 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12749
12750 if (type && TYPE_OBJFILE (type)
12751 && (*objfile_func) (TYPE_OBJFILE (type), data))
12752 return 1;
12753
12754 return 0;
12755}
12756
4c4b4cd2
PH
12757static char *
12758ada_op_name (enum exp_opcode opcode)
12759{
12760 switch (opcode)
12761 {
76a01679 12762 default:
4c4b4cd2 12763 return op_name_standard (opcode);
52ce6436 12764
4c4b4cd2
PH
12765#define OP_DEFN(op, len, args, binop) case op: return #op;
12766 ADA_OPERATORS;
12767#undef OP_DEFN
52ce6436
PH
12768
12769 case OP_AGGREGATE:
12770 return "OP_AGGREGATE";
12771 case OP_CHOICES:
12772 return "OP_CHOICES";
12773 case OP_NAME:
12774 return "OP_NAME";
4c4b4cd2
PH
12775 }
12776}
12777
12778/* As for operator_length, but assumes PC is pointing at the first
12779 element of the operator, and gives meaningful results only for the
52ce6436 12780 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12781
12782static void
76a01679
JB
12783ada_forward_operator_length (struct expression *exp, int pc,
12784 int *oplenp, int *argsp)
4c4b4cd2 12785{
76a01679 12786 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12787 {
12788 default:
12789 *oplenp = *argsp = 0;
12790 break;
52ce6436 12791
4c4b4cd2
PH
12792#define OP_DEFN(op, len, args, binop) \
12793 case op: *oplenp = len; *argsp = args; break;
12794 ADA_OPERATORS;
12795#undef OP_DEFN
52ce6436
PH
12796
12797 case OP_AGGREGATE:
12798 *oplenp = 3;
12799 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12800 break;
12801
12802 case OP_CHOICES:
12803 *oplenp = 3;
12804 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12805 break;
12806
12807 case OP_STRING:
12808 case OP_NAME:
12809 {
12810 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12811
52ce6436
PH
12812 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12813 *argsp = 0;
12814 break;
12815 }
4c4b4cd2
PH
12816 }
12817}
12818
12819static int
12820ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12821{
12822 enum exp_opcode op = exp->elts[elt].opcode;
12823 int oplen, nargs;
12824 int pc = elt;
12825 int i;
76a01679 12826
4c4b4cd2
PH
12827 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12828
76a01679 12829 switch (op)
4c4b4cd2 12830 {
76a01679 12831 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12832 case OP_ATR_FIRST:
12833 case OP_ATR_LAST:
12834 case OP_ATR_LENGTH:
12835 case OP_ATR_IMAGE:
12836 case OP_ATR_MAX:
12837 case OP_ATR_MIN:
12838 case OP_ATR_MODULUS:
12839 case OP_ATR_POS:
12840 case OP_ATR_SIZE:
12841 case OP_ATR_TAG:
12842 case OP_ATR_VAL:
12843 break;
12844
12845 case UNOP_IN_RANGE:
12846 case UNOP_QUAL:
323e0a4a
AC
12847 /* XXX: gdb_sprint_host_address, type_sprint */
12848 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12849 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12850 fprintf_filtered (stream, " (");
12851 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12852 fprintf_filtered (stream, ")");
12853 break;
12854 case BINOP_IN_BOUNDS:
52ce6436
PH
12855 fprintf_filtered (stream, " (%d)",
12856 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12857 break;
12858 case TERNOP_IN_RANGE:
12859 break;
12860
52ce6436
PH
12861 case OP_AGGREGATE:
12862 case OP_OTHERS:
12863 case OP_DISCRETE_RANGE:
12864 case OP_POSITIONAL:
12865 case OP_CHOICES:
12866 break;
12867
12868 case OP_NAME:
12869 case OP_STRING:
12870 {
12871 char *name = &exp->elts[elt + 2].string;
12872 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12873
52ce6436
PH
12874 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12875 break;
12876 }
12877
4c4b4cd2
PH
12878 default:
12879 return dump_subexp_body_standard (exp, stream, elt);
12880 }
12881
12882 elt += oplen;
12883 for (i = 0; i < nargs; i += 1)
12884 elt = dump_subexp (exp, stream, elt);
12885
12886 return elt;
12887}
12888
12889/* The Ada extension of print_subexp (q.v.). */
12890
76a01679
JB
12891static void
12892ada_print_subexp (struct expression *exp, int *pos,
12893 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12894{
52ce6436 12895 int oplen, nargs, i;
4c4b4cd2
PH
12896 int pc = *pos;
12897 enum exp_opcode op = exp->elts[pc].opcode;
12898
12899 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12900
52ce6436 12901 *pos += oplen;
4c4b4cd2
PH
12902 switch (op)
12903 {
12904 default:
52ce6436 12905 *pos -= oplen;
4c4b4cd2
PH
12906 print_subexp_standard (exp, pos, stream, prec);
12907 return;
12908
12909 case OP_VAR_VALUE:
4c4b4cd2
PH
12910 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12911 return;
12912
12913 case BINOP_IN_BOUNDS:
323e0a4a 12914 /* XXX: sprint_subexp */
4c4b4cd2 12915 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12916 fputs_filtered (" in ", stream);
4c4b4cd2 12917 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12918 fputs_filtered ("'range", stream);
4c4b4cd2 12919 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12920 fprintf_filtered (stream, "(%ld)",
12921 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12922 return;
12923
12924 case TERNOP_IN_RANGE:
4c4b4cd2 12925 if (prec >= PREC_EQUAL)
76a01679 12926 fputs_filtered ("(", stream);
323e0a4a 12927 /* XXX: sprint_subexp */
4c4b4cd2 12928 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12929 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12930 print_subexp (exp, pos, stream, PREC_EQUAL);
12931 fputs_filtered (" .. ", stream);
12932 print_subexp (exp, pos, stream, PREC_EQUAL);
12933 if (prec >= PREC_EQUAL)
76a01679
JB
12934 fputs_filtered (")", stream);
12935 return;
4c4b4cd2
PH
12936
12937 case OP_ATR_FIRST:
12938 case OP_ATR_LAST:
12939 case OP_ATR_LENGTH:
12940 case OP_ATR_IMAGE:
12941 case OP_ATR_MAX:
12942 case OP_ATR_MIN:
12943 case OP_ATR_MODULUS:
12944 case OP_ATR_POS:
12945 case OP_ATR_SIZE:
12946 case OP_ATR_TAG:
12947 case OP_ATR_VAL:
4c4b4cd2 12948 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12949 {
12950 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12951 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12952 &type_print_raw_options);
76a01679
JB
12953 *pos += 3;
12954 }
4c4b4cd2 12955 else
76a01679 12956 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12957 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12958 if (nargs > 1)
76a01679
JB
12959 {
12960 int tem;
5b4ee69b 12961
76a01679
JB
12962 for (tem = 1; tem < nargs; tem += 1)
12963 {
12964 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12965 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12966 }
12967 fputs_filtered (")", stream);
12968 }
4c4b4cd2 12969 return;
14f9c5c9 12970
4c4b4cd2 12971 case UNOP_QUAL:
4c4b4cd2
PH
12972 type_print (exp->elts[pc + 1].type, "", stream, 0);
12973 fputs_filtered ("'(", stream);
12974 print_subexp (exp, pos, stream, PREC_PREFIX);
12975 fputs_filtered (")", stream);
12976 return;
14f9c5c9 12977
4c4b4cd2 12978 case UNOP_IN_RANGE:
323e0a4a 12979 /* XXX: sprint_subexp */
4c4b4cd2 12980 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12981 fputs_filtered (" in ", stream);
79d43c61
TT
12982 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12983 &type_print_raw_options);
4c4b4cd2 12984 return;
52ce6436
PH
12985
12986 case OP_DISCRETE_RANGE:
12987 print_subexp (exp, pos, stream, PREC_SUFFIX);
12988 fputs_filtered ("..", stream);
12989 print_subexp (exp, pos, stream, PREC_SUFFIX);
12990 return;
12991
12992 case OP_OTHERS:
12993 fputs_filtered ("others => ", stream);
12994 print_subexp (exp, pos, stream, PREC_SUFFIX);
12995 return;
12996
12997 case OP_CHOICES:
12998 for (i = 0; i < nargs-1; i += 1)
12999 {
13000 if (i > 0)
13001 fputs_filtered ("|", stream);
13002 print_subexp (exp, pos, stream, PREC_SUFFIX);
13003 }
13004 fputs_filtered (" => ", stream);
13005 print_subexp (exp, pos, stream, PREC_SUFFIX);
13006 return;
13007
13008 case OP_POSITIONAL:
13009 print_subexp (exp, pos, stream, PREC_SUFFIX);
13010 return;
13011
13012 case OP_AGGREGATE:
13013 fputs_filtered ("(", stream);
13014 for (i = 0; i < nargs; i += 1)
13015 {
13016 if (i > 0)
13017 fputs_filtered (", ", stream);
13018 print_subexp (exp, pos, stream, PREC_SUFFIX);
13019 }
13020 fputs_filtered (")", stream);
13021 return;
4c4b4cd2
PH
13022 }
13023}
14f9c5c9
AS
13024
13025/* Table mapping opcodes into strings for printing operators
13026 and precedences of the operators. */
13027
d2e4a39e
AS
13028static const struct op_print ada_op_print_tab[] = {
13029 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13030 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13031 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13032 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13033 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13034 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13035 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13036 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13037 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13038 {">=", BINOP_GEQ, PREC_ORDER, 0},
13039 {">", BINOP_GTR, PREC_ORDER, 0},
13040 {"<", BINOP_LESS, PREC_ORDER, 0},
13041 {">>", BINOP_RSH, PREC_SHIFT, 0},
13042 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13043 {"+", BINOP_ADD, PREC_ADD, 0},
13044 {"-", BINOP_SUB, PREC_ADD, 0},
13045 {"&", BINOP_CONCAT, PREC_ADD, 0},
13046 {"*", BINOP_MUL, PREC_MUL, 0},
13047 {"/", BINOP_DIV, PREC_MUL, 0},
13048 {"rem", BINOP_REM, PREC_MUL, 0},
13049 {"mod", BINOP_MOD, PREC_MUL, 0},
13050 {"**", BINOP_EXP, PREC_REPEAT, 0},
13051 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13052 {"-", UNOP_NEG, PREC_PREFIX, 0},
13053 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13054 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13055 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13056 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13057 {".all", UNOP_IND, PREC_SUFFIX, 1},
13058 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13059 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13060 {NULL, 0, 0, 0}
14f9c5c9
AS
13061};
13062\f
72d5681a
PH
13063enum ada_primitive_types {
13064 ada_primitive_type_int,
13065 ada_primitive_type_long,
13066 ada_primitive_type_short,
13067 ada_primitive_type_char,
13068 ada_primitive_type_float,
13069 ada_primitive_type_double,
13070 ada_primitive_type_void,
13071 ada_primitive_type_long_long,
13072 ada_primitive_type_long_double,
13073 ada_primitive_type_natural,
13074 ada_primitive_type_positive,
13075 ada_primitive_type_system_address,
13076 nr_ada_primitive_types
13077};
6c038f32
PH
13078
13079static void
d4a9a881 13080ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13081 struct language_arch_info *lai)
13082{
d4a9a881 13083 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13084
72d5681a 13085 lai->primitive_type_vector
d4a9a881 13086 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13087 struct type *);
e9bb382b
UW
13088
13089 lai->primitive_type_vector [ada_primitive_type_int]
13090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13091 0, "integer");
13092 lai->primitive_type_vector [ada_primitive_type_long]
13093 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13094 0, "long_integer");
13095 lai->primitive_type_vector [ada_primitive_type_short]
13096 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13097 0, "short_integer");
13098 lai->string_char_type
13099 = lai->primitive_type_vector [ada_primitive_type_char]
13100 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13101 lai->primitive_type_vector [ada_primitive_type_float]
13102 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13103 "float", NULL);
13104 lai->primitive_type_vector [ada_primitive_type_double]
13105 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13106 "long_float", NULL);
13107 lai->primitive_type_vector [ada_primitive_type_long_long]
13108 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13109 0, "long_long_integer");
13110 lai->primitive_type_vector [ada_primitive_type_long_double]
13111 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13112 "long_long_float", NULL);
13113 lai->primitive_type_vector [ada_primitive_type_natural]
13114 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13115 0, "natural");
13116 lai->primitive_type_vector [ada_primitive_type_positive]
13117 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13118 0, "positive");
13119 lai->primitive_type_vector [ada_primitive_type_void]
13120 = builtin->builtin_void;
13121
13122 lai->primitive_type_vector [ada_primitive_type_system_address]
13123 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13124 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13125 = "system__address";
fbb06eb1 13126
47e729a8 13127 lai->bool_type_symbol = NULL;
fbb06eb1 13128 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13129}
6c038f32
PH
13130\f
13131 /* Language vector */
13132
13133/* Not really used, but needed in the ada_language_defn. */
13134
13135static void
6c7a06a3 13136emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13137{
6c7a06a3 13138 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13139}
13140
13141static int
13142parse (void)
13143{
13144 warnings_issued = 0;
13145 return ada_parse ();
13146}
13147
13148static const struct exp_descriptor ada_exp_descriptor = {
13149 ada_print_subexp,
13150 ada_operator_length,
c0201579 13151 ada_operator_check,
6c038f32
PH
13152 ada_op_name,
13153 ada_dump_subexp_body,
13154 ada_evaluate_subexp
13155};
13156
1a119f36 13157/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13158 for Ada. */
13159
1a119f36
JB
13160static symbol_name_cmp_ftype
13161ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13162{
13163 if (should_use_wild_match (lookup_name))
13164 return wild_match;
13165 else
13166 return compare_names;
13167}
13168
a5ee536b
JB
13169/* Implement the "la_read_var_value" language_defn method for Ada. */
13170
13171static struct value *
13172ada_read_var_value (struct symbol *var, struct frame_info *frame)
13173{
13174 struct block *frame_block = NULL;
13175 struct symbol *renaming_sym = NULL;
13176
13177 /* The only case where default_read_var_value is not sufficient
13178 is when VAR is a renaming... */
13179 if (frame)
13180 frame_block = get_frame_block (frame, NULL);
13181 if (frame_block)
13182 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13183 if (renaming_sym != NULL)
13184 return ada_read_renaming_var_value (renaming_sym, frame_block);
13185
13186 /* This is a typical case where we expect the default_read_var_value
13187 function to work. */
13188 return default_read_var_value (var, frame);
13189}
13190
6c038f32
PH
13191const struct language_defn ada_language_defn = {
13192 "ada", /* Language name */
6abde28f 13193 "Ada",
6c038f32 13194 language_ada,
6c038f32 13195 range_check_off,
6c038f32
PH
13196 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13197 that's not quite what this means. */
6c038f32 13198 array_row_major,
9a044a89 13199 macro_expansion_no,
6c038f32
PH
13200 &ada_exp_descriptor,
13201 parse,
13202 ada_error,
13203 resolve,
13204 ada_printchar, /* Print a character constant */
13205 ada_printstr, /* Function to print string constant */
13206 emit_char, /* Function to print single char (not used) */
6c038f32 13207 ada_print_type, /* Print a type using appropriate syntax */
be942545 13208 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13209 ada_val_print, /* Print a value using appropriate syntax */
13210 ada_value_print, /* Print a top-level value */
a5ee536b 13211 ada_read_var_value, /* la_read_var_value */
6c038f32 13212 NULL, /* Language specific skip_trampoline */
2b2d9e11 13213 NULL, /* name_of_this */
6c038f32
PH
13214 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13215 basic_lookup_transparent_type, /* lookup_transparent_type */
13216 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13217 NULL, /* Language specific
13218 class_name_from_physname */
6c038f32
PH
13219 ada_op_print_tab, /* expression operators for printing */
13220 0, /* c-style arrays */
13221 1, /* String lower bound */
6c038f32 13222 ada_get_gdb_completer_word_break_characters,
41d27058 13223 ada_make_symbol_completion_list,
72d5681a 13224 ada_language_arch_info,
e79af960 13225 ada_print_array_index,
41f1b697 13226 default_pass_by_reference,
ae6a3a4c 13227 c_get_string,
1a119f36 13228 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13229 ada_iterate_over_symbols,
a53b64ea 13230 &ada_varobj_ops,
6c038f32
PH
13231 LANG_MAGIC
13232};
13233
2c0b251b
PA
13234/* Provide a prototype to silence -Wmissing-prototypes. */
13235extern initialize_file_ftype _initialize_ada_language;
13236
5bf03f13
JB
13237/* Command-list for the "set/show ada" prefix command. */
13238static struct cmd_list_element *set_ada_list;
13239static struct cmd_list_element *show_ada_list;
13240
13241/* Implement the "set ada" prefix command. */
13242
13243static void
13244set_ada_command (char *arg, int from_tty)
13245{
13246 printf_unfiltered (_(\
13247"\"set ada\" must be followed by the name of a setting.\n"));
13248 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13249}
13250
13251/* Implement the "show ada" prefix command. */
13252
13253static void
13254show_ada_command (char *args, int from_tty)
13255{
13256 cmd_show_list (show_ada_list, from_tty, "");
13257}
13258
2060206e
PA
13259static void
13260initialize_ada_catchpoint_ops (void)
13261{
13262 struct breakpoint_ops *ops;
13263
13264 initialize_breakpoint_ops ();
13265
13266 ops = &catch_exception_breakpoint_ops;
13267 *ops = bkpt_breakpoint_ops;
13268 ops->dtor = dtor_catch_exception;
13269 ops->allocate_location = allocate_location_catch_exception;
13270 ops->re_set = re_set_catch_exception;
13271 ops->check_status = check_status_catch_exception;
13272 ops->print_it = print_it_catch_exception;
13273 ops->print_one = print_one_catch_exception;
13274 ops->print_mention = print_mention_catch_exception;
13275 ops->print_recreate = print_recreate_catch_exception;
13276
13277 ops = &catch_exception_unhandled_breakpoint_ops;
13278 *ops = bkpt_breakpoint_ops;
13279 ops->dtor = dtor_catch_exception_unhandled;
13280 ops->allocate_location = allocate_location_catch_exception_unhandled;
13281 ops->re_set = re_set_catch_exception_unhandled;
13282 ops->check_status = check_status_catch_exception_unhandled;
13283 ops->print_it = print_it_catch_exception_unhandled;
13284 ops->print_one = print_one_catch_exception_unhandled;
13285 ops->print_mention = print_mention_catch_exception_unhandled;
13286 ops->print_recreate = print_recreate_catch_exception_unhandled;
13287
13288 ops = &catch_assert_breakpoint_ops;
13289 *ops = bkpt_breakpoint_ops;
13290 ops->dtor = dtor_catch_assert;
13291 ops->allocate_location = allocate_location_catch_assert;
13292 ops->re_set = re_set_catch_assert;
13293 ops->check_status = check_status_catch_assert;
13294 ops->print_it = print_it_catch_assert;
13295 ops->print_one = print_one_catch_assert;
13296 ops->print_mention = print_mention_catch_assert;
13297 ops->print_recreate = print_recreate_catch_assert;
13298}
13299
d2e4a39e 13300void
6c038f32 13301_initialize_ada_language (void)
14f9c5c9 13302{
6c038f32
PH
13303 add_language (&ada_language_defn);
13304
2060206e
PA
13305 initialize_ada_catchpoint_ops ();
13306
5bf03f13
JB
13307 add_prefix_cmd ("ada", no_class, set_ada_command,
13308 _("Prefix command for changing Ada-specfic settings"),
13309 &set_ada_list, "set ada ", 0, &setlist);
13310
13311 add_prefix_cmd ("ada", no_class, show_ada_command,
13312 _("Generic command for showing Ada-specific settings."),
13313 &show_ada_list, "show ada ", 0, &showlist);
13314
13315 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13316 &trust_pad_over_xvs, _("\
13317Enable or disable an optimization trusting PAD types over XVS types"), _("\
13318Show whether an optimization trusting PAD types over XVS types is activated"),
13319 _("\
13320This is related to the encoding used by the GNAT compiler. The debugger\n\
13321should normally trust the contents of PAD types, but certain older versions\n\
13322of GNAT have a bug that sometimes causes the information in the PAD type\n\
13323to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13324work around this bug. It is always safe to turn this option \"off\", but\n\
13325this incurs a slight performance penalty, so it is recommended to NOT change\n\
13326this option to \"off\" unless necessary."),
13327 NULL, NULL, &set_ada_list, &show_ada_list);
13328
9ac4176b
PA
13329 add_catch_command ("exception", _("\
13330Catch Ada exceptions, when raised.\n\
13331With an argument, catch only exceptions with the given name."),
13332 catch_ada_exception_command,
13333 NULL,
13334 CATCH_PERMANENT,
13335 CATCH_TEMPORARY);
13336 add_catch_command ("assert", _("\
13337Catch failed Ada assertions, when raised.\n\
13338With an argument, catch only exceptions with the given name."),
13339 catch_assert_command,
13340 NULL,
13341 CATCH_PERMANENT,
13342 CATCH_TEMPORARY);
13343
6c038f32 13344 varsize_limit = 65536;
6c038f32 13345
778865d3
JB
13346 add_info ("exceptions", info_exceptions_command,
13347 _("\
13348List all Ada exception names.\n\
13349If a regular expression is passed as an argument, only those matching\n\
13350the regular expression are listed."));
13351
c6044dd1
JB
13352 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13353 _("Set Ada maintenance-related variables."),
13354 &maint_set_ada_cmdlist, "maintenance set ada ",
13355 0/*allow-unknown*/, &maintenance_set_cmdlist);
13356
13357 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13358 _("Show Ada maintenance-related variables"),
13359 &maint_show_ada_cmdlist, "maintenance show ada ",
13360 0/*allow-unknown*/, &maintenance_show_cmdlist);
13361
13362 add_setshow_boolean_cmd
13363 ("ignore-descriptive-types", class_maintenance,
13364 &ada_ignore_descriptive_types_p,
13365 _("Set whether descriptive types generated by GNAT should be ignored."),
13366 _("Show whether descriptive types generated by GNAT should be ignored."),
13367 _("\
13368When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13369DWARF attribute."),
13370 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13371
6c038f32
PH
13372 obstack_init (&symbol_list_obstack);
13373
13374 decoded_names_store = htab_create_alloc
13375 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13376 NULL, xcalloc, xfree);
6b69afc4 13377
e802dbe0
JB
13378 /* Setup per-inferior data. */
13379 observer_attach_inferior_exit (ada_inferior_exit);
13380 ada_inferior_data
8e260fc0 13381 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 13382}