]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
struct block parameter constification in ada-lang.c
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0e9f083f 23#include <string.h>
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
a53b64ea 35#include "varobj.h"
14f9c5c9
AS
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2 45#include "completer.h"
53ce3c39 46#include <sys/stat.h>
14f9c5c9 47#include "ui-out.h"
fe898f56 48#include "block.h"
04714b91 49#include "infcall.h"
de4f826b 50#include "dictionary.h"
60250e8b 51#include "exceptions.h"
f7f9143b
JB
52#include "annotate.h"
53#include "valprint.h"
9bbc9174 54#include "source.h"
0259addd 55#include "observer.h"
2ba95b9b 56#include "vec.h"
692465f1 57#include "stack.h"
fa864999 58#include "gdb_vecs.h"
79d43c61 59#include "typeprint.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
0fcd72ba 65#include "cli/cli-utils.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 112 const struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 118 const struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 128 struct symbol *, const struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 150 const struct block *);
aeb5907d 151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
0d5cff50 224static int find_struct_field (const char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
76a01679 276
4c4b4cd2 277/* Maximum-sized dynamic type. */
14f9c5c9
AS
278static unsigned int varsize_limit;
279
4c4b4cd2
PH
280/* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282static char *ada_completer_word_break_characters =
283#ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285#else
14f9c5c9 286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 287#endif
14f9c5c9 288
4c4b4cd2 289/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 290static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 291 = "__gnat_ada_main_program_name";
14f9c5c9 292
4c4b4cd2
PH
293/* Limit on the number of warnings to raise per expression evaluation. */
294static int warning_limit = 2;
295
296/* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298static int warnings_issued = 0;
299
300static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302};
303
304static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306};
307
308/* Space for allocating results of ada_lookup_symbol_list. */
309static struct obstack symbol_list_obstack;
310
c6044dd1
JB
311/* Maintenance-related settings for this module. */
312
313static struct cmd_list_element *maint_set_ada_cmdlist;
314static struct cmd_list_element *maint_show_ada_cmdlist;
315
316/* Implement the "maintenance set ada" (prefix) command. */
317
318static void
319maint_set_ada_cmd (char *args, int from_tty)
320{
321 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
322}
323
324/* Implement the "maintenance show ada" (prefix) command. */
325
326static void
327maint_show_ada_cmd (char *args, int from_tty)
328{
329 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
330}
331
332/* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334static int ada_ignore_descriptive_types_p = 0;
335
e802dbe0
JB
336 /* Inferior-specific data. */
337
338/* Per-inferior data for this module. */
339
340struct ada_inferior_data
341{
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type;
3eecfa55
JB
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info;
e802dbe0
JB
352};
353
354/* Our key to this module's inferior data. */
355static const struct inferior_data *ada_inferior_data;
356
357/* A cleanup routine for our inferior data. */
358static void
359ada_inferior_data_cleanup (struct inferior *inf, void *arg)
360{
361 struct ada_inferior_data *data;
362
363 data = inferior_data (inf, ada_inferior_data);
364 if (data != NULL)
365 xfree (data);
366}
367
368/* Return our inferior data for the given inferior (INF).
369
370 This function always returns a valid pointer to an allocated
371 ada_inferior_data structure. If INF's inferior data has not
372 been previously set, this functions creates a new one with all
373 fields set to zero, sets INF's inferior to it, and then returns
374 a pointer to that newly allocated ada_inferior_data. */
375
376static struct ada_inferior_data *
377get_ada_inferior_data (struct inferior *inf)
378{
379 struct ada_inferior_data *data;
380
381 data = inferior_data (inf, ada_inferior_data);
382 if (data == NULL)
383 {
41bf6aca 384 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
385 set_inferior_data (inf, ada_inferior_data, data);
386 }
387
388 return data;
389}
390
391/* Perform all necessary cleanups regarding our module's inferior data
392 that is required after the inferior INF just exited. */
393
394static void
395ada_inferior_exit (struct inferior *inf)
396{
397 ada_inferior_data_cleanup (inf, NULL);
398 set_inferior_data (inf, ada_inferior_data, NULL);
399}
400
4c4b4cd2
PH
401 /* Utilities */
402
720d1a40 403/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 404 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
405
406 Normally, we really expect a typedef type to only have 1 typedef layer.
407 In other words, we really expect the target type of a typedef type to be
408 a non-typedef type. This is particularly true for Ada units, because
409 the language does not have a typedef vs not-typedef distinction.
410 In that respect, the Ada compiler has been trying to eliminate as many
411 typedef definitions in the debugging information, since they generally
412 do not bring any extra information (we still use typedef under certain
413 circumstances related mostly to the GNAT encoding).
414
415 Unfortunately, we have seen situations where the debugging information
416 generated by the compiler leads to such multiple typedef layers. For
417 instance, consider the following example with stabs:
418
419 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
420 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
421
422 This is an error in the debugging information which causes type
423 pck__float_array___XUP to be defined twice, and the second time,
424 it is defined as a typedef of a typedef.
425
426 This is on the fringe of legality as far as debugging information is
427 concerned, and certainly unexpected. But it is easy to handle these
428 situations correctly, so we can afford to be lenient in this case. */
429
430static struct type *
431ada_typedef_target_type (struct type *type)
432{
433 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
434 type = TYPE_TARGET_TYPE (type);
435 return type;
436}
437
41d27058
JB
438/* Given DECODED_NAME a string holding a symbol name in its
439 decoded form (ie using the Ada dotted notation), returns
440 its unqualified name. */
441
442static const char *
443ada_unqualified_name (const char *decoded_name)
444{
445 const char *result = strrchr (decoded_name, '.');
446
447 if (result != NULL)
448 result++; /* Skip the dot... */
449 else
450 result = decoded_name;
451
452 return result;
453}
454
455/* Return a string starting with '<', followed by STR, and '>'.
456 The result is good until the next call. */
457
458static char *
459add_angle_brackets (const char *str)
460{
461 static char *result = NULL;
462
463 xfree (result);
88c15c34 464 result = xstrprintf ("<%s>", str);
41d27058
JB
465 return result;
466}
96d887e8 467
4c4b4cd2
PH
468static char *
469ada_get_gdb_completer_word_break_characters (void)
470{
471 return ada_completer_word_break_characters;
472}
473
e79af960
JB
474/* Print an array element index using the Ada syntax. */
475
476static void
477ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 478 const struct value_print_options *options)
e79af960 479{
79a45b7d 480 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
481 fprintf_filtered (stream, " => ");
482}
483
f27cf670 484/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 485 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 486 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 487
f27cf670
AS
488void *
489grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 490{
d2e4a39e
AS
491 if (*size < min_size)
492 {
493 *size *= 2;
494 if (*size < min_size)
4c4b4cd2 495 *size = min_size;
f27cf670 496 vect = xrealloc (vect, *size * element_size);
d2e4a39e 497 }
f27cf670 498 return vect;
14f9c5c9
AS
499}
500
501/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 502 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
503
504static int
ebf56fd3 505field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
506{
507 int len = strlen (target);
5b4ee69b 508
d2e4a39e 509 return
4c4b4cd2
PH
510 (strncmp (field_name, target, len) == 0
511 && (field_name[len] == '\0'
512 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
513 && strcmp (field_name + strlen (field_name) - 6,
514 "___XVN") != 0)));
14f9c5c9
AS
515}
516
517
872c8b51
JB
518/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
519 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
520 and return its index. This function also handles fields whose name
521 have ___ suffixes because the compiler sometimes alters their name
522 by adding such a suffix to represent fields with certain constraints.
523 If the field could not be found, return a negative number if
524 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
525
526int
527ada_get_field_index (const struct type *type, const char *field_name,
528 int maybe_missing)
529{
530 int fieldno;
872c8b51
JB
531 struct type *struct_type = check_typedef ((struct type *) type);
532
533 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
534 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
535 return fieldno;
536
537 if (!maybe_missing)
323e0a4a 538 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 539 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
540
541 return -1;
542}
543
544/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
545
546int
d2e4a39e 547ada_name_prefix_len (const char *name)
14f9c5c9
AS
548{
549 if (name == NULL)
550 return 0;
d2e4a39e 551 else
14f9c5c9 552 {
d2e4a39e 553 const char *p = strstr (name, "___");
5b4ee69b 554
14f9c5c9 555 if (p == NULL)
4c4b4cd2 556 return strlen (name);
14f9c5c9 557 else
4c4b4cd2 558 return p - name;
14f9c5c9
AS
559 }
560}
561
4c4b4cd2
PH
562/* Return non-zero if SUFFIX is a suffix of STR.
563 Return zero if STR is null. */
564
14f9c5c9 565static int
d2e4a39e 566is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
567{
568 int len1, len2;
5b4ee69b 569
14f9c5c9
AS
570 if (str == NULL)
571 return 0;
572 len1 = strlen (str);
573 len2 = strlen (suffix);
4c4b4cd2 574 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
575}
576
4c4b4cd2
PH
577/* The contents of value VAL, treated as a value of type TYPE. The
578 result is an lval in memory if VAL is. */
14f9c5c9 579
d2e4a39e 580static struct value *
4c4b4cd2 581coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 582{
61ee279c 583 type = ada_check_typedef (type);
df407dfe 584 if (value_type (val) == type)
4c4b4cd2 585 return val;
d2e4a39e 586 else
14f9c5c9 587 {
4c4b4cd2
PH
588 struct value *result;
589
590 /* Make sure that the object size is not unreasonable before
591 trying to allocate some memory for it. */
714e53ab 592 check_size (type);
4c4b4cd2 593
41e8491f
JK
594 if (value_lazy (val)
595 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
596 result = allocate_value_lazy (type);
597 else
598 {
599 result = allocate_value (type);
600 memcpy (value_contents_raw (result), value_contents (val),
601 TYPE_LENGTH (type));
602 }
74bcbdf3 603 set_value_component_location (result, val);
9bbda503
AC
604 set_value_bitsize (result, value_bitsize (val));
605 set_value_bitpos (result, value_bitpos (val));
42ae5230 606 set_value_address (result, value_address (val));
eca07816 607 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
608 return result;
609 }
610}
611
fc1a4b47
AC
612static const gdb_byte *
613cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
614{
615 if (valaddr == NULL)
616 return NULL;
617 else
618 return valaddr + offset;
619}
620
621static CORE_ADDR
ebf56fd3 622cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
623{
624 if (address == 0)
625 return 0;
d2e4a39e 626 else
14f9c5c9
AS
627 return address + offset;
628}
629
4c4b4cd2
PH
630/* Issue a warning (as for the definition of warning in utils.c, but
631 with exactly one argument rather than ...), unless the limit on the
632 number of warnings has passed during the evaluation of the current
633 expression. */
a2249542 634
77109804
AC
635/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
636 provided by "complaint". */
a0b31db1 637static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 638
14f9c5c9 639static void
a2249542 640lim_warning (const char *format, ...)
14f9c5c9 641{
a2249542 642 va_list args;
a2249542 643
5b4ee69b 644 va_start (args, format);
4c4b4cd2
PH
645 warnings_issued += 1;
646 if (warnings_issued <= warning_limit)
a2249542
MK
647 vwarning (format, args);
648
649 va_end (args);
4c4b4cd2
PH
650}
651
714e53ab
PH
652/* Issue an error if the size of an object of type T is unreasonable,
653 i.e. if it would be a bad idea to allocate a value of this type in
654 GDB. */
655
656static void
657check_size (const struct type *type)
658{
659 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 660 error (_("object size is larger than varsize-limit"));
714e53ab
PH
661}
662
0963b4bd 663/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 664static LONGEST
c3e5cd34 665max_of_size (int size)
4c4b4cd2 666{
76a01679 667 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 668
76a01679 669 return top_bit | (top_bit - 1);
4c4b4cd2
PH
670}
671
0963b4bd 672/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 673static LONGEST
c3e5cd34 674min_of_size (int size)
4c4b4cd2 675{
c3e5cd34 676 return -max_of_size (size) - 1;
4c4b4cd2
PH
677}
678
0963b4bd 679/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 680static ULONGEST
c3e5cd34 681umax_of_size (int size)
4c4b4cd2 682{
76a01679 683 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 684
76a01679 685 return top_bit | (top_bit - 1);
4c4b4cd2
PH
686}
687
0963b4bd 688/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
689static LONGEST
690max_of_type (struct type *t)
4c4b4cd2 691{
c3e5cd34
PH
692 if (TYPE_UNSIGNED (t))
693 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
694 else
695 return max_of_size (TYPE_LENGTH (t));
696}
697
0963b4bd 698/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
699static LONGEST
700min_of_type (struct type *t)
701{
702 if (TYPE_UNSIGNED (t))
703 return 0;
704 else
705 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
706}
707
708/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
709LONGEST
710ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 711{
76a01679 712 switch (TYPE_CODE (type))
4c4b4cd2
PH
713 {
714 case TYPE_CODE_RANGE:
690cc4eb 715 return TYPE_HIGH_BOUND (type);
4c4b4cd2 716 case TYPE_CODE_ENUM:
14e75d8e 717 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
718 case TYPE_CODE_BOOL:
719 return 1;
720 case TYPE_CODE_CHAR:
76a01679 721 case TYPE_CODE_INT:
690cc4eb 722 return max_of_type (type);
4c4b4cd2 723 default:
43bbcdc2 724 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
725 }
726}
727
14e75d8e 728/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
729LONGEST
730ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 731{
76a01679 732 switch (TYPE_CODE (type))
4c4b4cd2
PH
733 {
734 case TYPE_CODE_RANGE:
690cc4eb 735 return TYPE_LOW_BOUND (type);
4c4b4cd2 736 case TYPE_CODE_ENUM:
14e75d8e 737 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
738 case TYPE_CODE_BOOL:
739 return 0;
740 case TYPE_CODE_CHAR:
76a01679 741 case TYPE_CODE_INT:
690cc4eb 742 return min_of_type (type);
4c4b4cd2 743 default:
43bbcdc2 744 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
745 }
746}
747
748/* The identity on non-range types. For range types, the underlying
76a01679 749 non-range scalar type. */
4c4b4cd2
PH
750
751static struct type *
18af8284 752get_base_type (struct type *type)
4c4b4cd2
PH
753{
754 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
755 {
76a01679
JB
756 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
757 return type;
4c4b4cd2
PH
758 type = TYPE_TARGET_TYPE (type);
759 }
760 return type;
14f9c5c9 761}
41246937
JB
762
763/* Return a decoded version of the given VALUE. This means returning
764 a value whose type is obtained by applying all the GNAT-specific
765 encondings, making the resulting type a static but standard description
766 of the initial type. */
767
768struct value *
769ada_get_decoded_value (struct value *value)
770{
771 struct type *type = ada_check_typedef (value_type (value));
772
773 if (ada_is_array_descriptor_type (type)
774 || (ada_is_constrained_packed_array_type (type)
775 && TYPE_CODE (type) != TYPE_CODE_PTR))
776 {
777 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
778 value = ada_coerce_to_simple_array_ptr (value);
779 else
780 value = ada_coerce_to_simple_array (value);
781 }
782 else
783 value = ada_to_fixed_value (value);
784
785 return value;
786}
787
788/* Same as ada_get_decoded_value, but with the given TYPE.
789 Because there is no associated actual value for this type,
790 the resulting type might be a best-effort approximation in
791 the case of dynamic types. */
792
793struct type *
794ada_get_decoded_type (struct type *type)
795{
796 type = to_static_fixed_type (type);
797 if (ada_is_constrained_packed_array_type (type))
798 type = ada_coerce_to_simple_array_type (type);
799 return type;
800}
801
4c4b4cd2 802\f
76a01679 803
4c4b4cd2 804 /* Language Selection */
14f9c5c9
AS
805
806/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 807 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 808
14f9c5c9 809enum language
ccefe4c4 810ada_update_initial_language (enum language lang)
14f9c5c9 811{
d2e4a39e 812 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
813 (struct objfile *) NULL) != NULL)
814 return language_ada;
14f9c5c9
AS
815
816 return lang;
817}
96d887e8
PH
818
819/* If the main procedure is written in Ada, then return its name.
820 The result is good until the next call. Return NULL if the main
821 procedure doesn't appear to be in Ada. */
822
823char *
824ada_main_name (void)
825{
826 struct minimal_symbol *msym;
f9bc20b9 827 static char *main_program_name = NULL;
6c038f32 828
96d887e8
PH
829 /* For Ada, the name of the main procedure is stored in a specific
830 string constant, generated by the binder. Look for that symbol,
831 extract its address, and then read that string. If we didn't find
832 that string, then most probably the main procedure is not written
833 in Ada. */
834 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
835
836 if (msym != NULL)
837 {
f9bc20b9
JB
838 CORE_ADDR main_program_name_addr;
839 int err_code;
840
96d887e8
PH
841 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
842 if (main_program_name_addr == 0)
323e0a4a 843 error (_("Invalid address for Ada main program name."));
96d887e8 844
f9bc20b9
JB
845 xfree (main_program_name);
846 target_read_string (main_program_name_addr, &main_program_name,
847 1024, &err_code);
848
849 if (err_code != 0)
850 return NULL;
96d887e8
PH
851 return main_program_name;
852 }
853
854 /* The main procedure doesn't seem to be in Ada. */
855 return NULL;
856}
14f9c5c9 857\f
4c4b4cd2 858 /* Symbols */
d2e4a39e 859
4c4b4cd2
PH
860/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
861 of NULLs. */
14f9c5c9 862
d2e4a39e
AS
863const struct ada_opname_map ada_opname_table[] = {
864 {"Oadd", "\"+\"", BINOP_ADD},
865 {"Osubtract", "\"-\"", BINOP_SUB},
866 {"Omultiply", "\"*\"", BINOP_MUL},
867 {"Odivide", "\"/\"", BINOP_DIV},
868 {"Omod", "\"mod\"", BINOP_MOD},
869 {"Orem", "\"rem\"", BINOP_REM},
870 {"Oexpon", "\"**\"", BINOP_EXP},
871 {"Olt", "\"<\"", BINOP_LESS},
872 {"Ole", "\"<=\"", BINOP_LEQ},
873 {"Ogt", "\">\"", BINOP_GTR},
874 {"Oge", "\">=\"", BINOP_GEQ},
875 {"Oeq", "\"=\"", BINOP_EQUAL},
876 {"One", "\"/=\"", BINOP_NOTEQUAL},
877 {"Oand", "\"and\"", BINOP_BITWISE_AND},
878 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
879 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
880 {"Oconcat", "\"&\"", BINOP_CONCAT},
881 {"Oabs", "\"abs\"", UNOP_ABS},
882 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
883 {"Oadd", "\"+\"", UNOP_PLUS},
884 {"Osubtract", "\"-\"", UNOP_NEG},
885 {NULL, NULL}
14f9c5c9
AS
886};
887
4c4b4cd2
PH
888/* The "encoded" form of DECODED, according to GNAT conventions.
889 The result is valid until the next call to ada_encode. */
890
14f9c5c9 891char *
4c4b4cd2 892ada_encode (const char *decoded)
14f9c5c9 893{
4c4b4cd2
PH
894 static char *encoding_buffer = NULL;
895 static size_t encoding_buffer_size = 0;
d2e4a39e 896 const char *p;
14f9c5c9 897 int k;
d2e4a39e 898
4c4b4cd2 899 if (decoded == NULL)
14f9c5c9
AS
900 return NULL;
901
4c4b4cd2
PH
902 GROW_VECT (encoding_buffer, encoding_buffer_size,
903 2 * strlen (decoded) + 10);
14f9c5c9
AS
904
905 k = 0;
4c4b4cd2 906 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 907 {
cdc7bb92 908 if (*p == '.')
4c4b4cd2
PH
909 {
910 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
911 k += 2;
912 }
14f9c5c9 913 else if (*p == '"')
4c4b4cd2
PH
914 {
915 const struct ada_opname_map *mapping;
916
917 for (mapping = ada_opname_table;
1265e4aa
JB
918 mapping->encoded != NULL
919 && strncmp (mapping->decoded, p,
920 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
921 ;
922 if (mapping->encoded == NULL)
323e0a4a 923 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
924 strcpy (encoding_buffer + k, mapping->encoded);
925 k += strlen (mapping->encoded);
926 break;
927 }
d2e4a39e 928 else
4c4b4cd2
PH
929 {
930 encoding_buffer[k] = *p;
931 k += 1;
932 }
14f9c5c9
AS
933 }
934
4c4b4cd2
PH
935 encoding_buffer[k] = '\0';
936 return encoding_buffer;
14f9c5c9
AS
937}
938
939/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
940 quotes, unfolded, but with the quotes stripped away. Result good
941 to next call. */
942
d2e4a39e
AS
943char *
944ada_fold_name (const char *name)
14f9c5c9 945{
d2e4a39e 946 static char *fold_buffer = NULL;
14f9c5c9
AS
947 static size_t fold_buffer_size = 0;
948
949 int len = strlen (name);
d2e4a39e 950 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
951
952 if (name[0] == '\'')
953 {
d2e4a39e
AS
954 strncpy (fold_buffer, name + 1, len - 2);
955 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
956 }
957 else
958 {
959 int i;
5b4ee69b 960
14f9c5c9 961 for (i = 0; i <= len; i += 1)
4c4b4cd2 962 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
963 }
964
965 return fold_buffer;
966}
967
529cad9c
PH
968/* Return nonzero if C is either a digit or a lowercase alphabet character. */
969
970static int
971is_lower_alphanum (const char c)
972{
973 return (isdigit (c) || (isalpha (c) && islower (c)));
974}
975
c90092fe
JB
976/* ENCODED is the linkage name of a symbol and LEN contains its length.
977 This function saves in LEN the length of that same symbol name but
978 without either of these suffixes:
29480c32
JB
979 . .{DIGIT}+
980 . ${DIGIT}+
981 . ___{DIGIT}+
982 . __{DIGIT}+.
c90092fe 983
29480c32
JB
984 These are suffixes introduced by the compiler for entities such as
985 nested subprogram for instance, in order to avoid name clashes.
986 They do not serve any purpose for the debugger. */
987
988static void
989ada_remove_trailing_digits (const char *encoded, int *len)
990{
991 if (*len > 1 && isdigit (encoded[*len - 1]))
992 {
993 int i = *len - 2;
5b4ee69b 994
29480c32
JB
995 while (i > 0 && isdigit (encoded[i]))
996 i--;
997 if (i >= 0 && encoded[i] == '.')
998 *len = i;
999 else if (i >= 0 && encoded[i] == '$')
1000 *len = i;
1001 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1002 *len = i - 2;
1003 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1004 *len = i - 1;
1005 }
1006}
1007
1008/* Remove the suffix introduced by the compiler for protected object
1009 subprograms. */
1010
1011static void
1012ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1013{
1014 /* Remove trailing N. */
1015
1016 /* Protected entry subprograms are broken into two
1017 separate subprograms: The first one is unprotected, and has
1018 a 'N' suffix; the second is the protected version, and has
0963b4bd 1019 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1020 the protection. Since the P subprograms are internally generated,
1021 we leave these names undecoded, giving the user a clue that this
1022 entity is internal. */
1023
1024 if (*len > 1
1025 && encoded[*len - 1] == 'N'
1026 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1027 *len = *len - 1;
1028}
1029
69fadcdf
JB
1030/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1031
1032static void
1033ada_remove_Xbn_suffix (const char *encoded, int *len)
1034{
1035 int i = *len - 1;
1036
1037 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1038 i--;
1039
1040 if (encoded[i] != 'X')
1041 return;
1042
1043 if (i == 0)
1044 return;
1045
1046 if (isalnum (encoded[i-1]))
1047 *len = i;
1048}
1049
29480c32
JB
1050/* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED.
14f9c5c9 1053
4c4b4cd2 1054 The resulting string is valid until the next call of ada_decode.
29480c32 1055 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1056 is returned. */
1057
1058const char *
1059ada_decode (const char *encoded)
14f9c5c9
AS
1060{
1061 int i, j;
1062 int len0;
d2e4a39e 1063 const char *p;
4c4b4cd2 1064 char *decoded;
14f9c5c9 1065 int at_start_name;
4c4b4cd2
PH
1066 static char *decoding_buffer = NULL;
1067 static size_t decoding_buffer_size = 0;
d2e4a39e 1068
29480c32
JB
1069 /* The name of the Ada main procedure starts with "_ada_".
1070 This prefix is not part of the decoded name, so skip this part
1071 if we see this prefix. */
4c4b4cd2
PH
1072 if (strncmp (encoded, "_ada_", 5) == 0)
1073 encoded += 5;
14f9c5c9 1074
29480c32
JB
1075 /* If the name starts with '_', then it is not a properly encoded
1076 name, so do not attempt to decode it. Similarly, if the name
1077 starts with '<', the name should not be decoded. */
4c4b4cd2 1078 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1079 goto Suppress;
1080
4c4b4cd2 1081 len0 = strlen (encoded);
4c4b4cd2 1082
29480c32
JB
1083 ada_remove_trailing_digits (encoded, &len0);
1084 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1085
4c4b4cd2
PH
1086 /* Remove the ___X.* suffix if present. Do not forget to verify that
1087 the suffix is located before the current "end" of ENCODED. We want
1088 to avoid re-matching parts of ENCODED that have previously been
1089 marked as discarded (by decrementing LEN0). */
1090 p = strstr (encoded, "___");
1091 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1092 {
1093 if (p[3] == 'X')
4c4b4cd2 1094 len0 = p - encoded;
14f9c5c9 1095 else
4c4b4cd2 1096 goto Suppress;
14f9c5c9 1097 }
4c4b4cd2 1098
29480c32
JB
1099 /* Remove any trailing TKB suffix. It tells us that this symbol
1100 is for the body of a task, but that information does not actually
1101 appear in the decoded name. */
1102
4c4b4cd2 1103 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1104 len0 -= 3;
76a01679 1105
a10967fa
JB
1106 /* Remove any trailing TB suffix. The TB suffix is slightly different
1107 from the TKB suffix because it is used for non-anonymous task
1108 bodies. */
1109
1110 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1111 len0 -= 2;
1112
29480c32
JB
1113 /* Remove trailing "B" suffixes. */
1114 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1115
4c4b4cd2 1116 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1117 len0 -= 1;
1118
4c4b4cd2 1119 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1120
4c4b4cd2
PH
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1122 decoded = decoding_buffer;
14f9c5c9 1123
29480c32
JB
1124 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1125
4c4b4cd2 1126 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1127 {
4c4b4cd2
PH
1128 i = len0 - 2;
1129 while ((i >= 0 && isdigit (encoded[i]))
1130 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1131 i -= 1;
1132 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1133 len0 = i - 1;
1134 else if (encoded[i] == '$')
1135 len0 = i;
d2e4a39e 1136 }
14f9c5c9 1137
29480c32
JB
1138 /* The first few characters that are not alphabetic are not part
1139 of any encoding we use, so we can copy them over verbatim. */
1140
4c4b4cd2
PH
1141 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1142 decoded[j] = encoded[i];
14f9c5c9
AS
1143
1144 at_start_name = 1;
1145 while (i < len0)
1146 {
29480c32 1147 /* Is this a symbol function? */
4c4b4cd2
PH
1148 if (at_start_name && encoded[i] == 'O')
1149 {
1150 int k;
5b4ee69b 1151
4c4b4cd2
PH
1152 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1153 {
1154 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1155 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1156 op_len - 1) == 0)
1157 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1158 {
1159 strcpy (decoded + j, ada_opname_table[k].decoded);
1160 at_start_name = 0;
1161 i += op_len;
1162 j += strlen (ada_opname_table[k].decoded);
1163 break;
1164 }
1165 }
1166 if (ada_opname_table[k].encoded != NULL)
1167 continue;
1168 }
14f9c5c9
AS
1169 at_start_name = 0;
1170
529cad9c
PH
1171 /* Replace "TK__" with "__", which will eventually be translated
1172 into "." (just below). */
1173
4c4b4cd2
PH
1174 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1175 i += 2;
529cad9c 1176
29480c32
JB
1177 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1178 be translated into "." (just below). These are internal names
1179 generated for anonymous blocks inside which our symbol is nested. */
1180
1181 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1182 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1183 && isdigit (encoded [i+4]))
1184 {
1185 int k = i + 5;
1186
1187 while (k < len0 && isdigit (encoded[k]))
1188 k++; /* Skip any extra digit. */
1189
1190 /* Double-check that the "__B_{DIGITS}+" sequence we found
1191 is indeed followed by "__". */
1192 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1193 i = k;
1194 }
1195
529cad9c
PH
1196 /* Remove _E{DIGITS}+[sb] */
1197
1198 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1199 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1200 one implements the actual entry code, and has a suffix following
1201 the convention above; the second one implements the barrier and
1202 uses the same convention as above, except that the 'E' is replaced
1203 by a 'B'.
1204
1205 Just as above, we do not decode the name of barrier functions
1206 to give the user a clue that the code he is debugging has been
1207 internally generated. */
1208
1209 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1210 && isdigit (encoded[i+2]))
1211 {
1212 int k = i + 3;
1213
1214 while (k < len0 && isdigit (encoded[k]))
1215 k++;
1216
1217 if (k < len0
1218 && (encoded[k] == 'b' || encoded[k] == 's'))
1219 {
1220 k++;
1221 /* Just as an extra precaution, make sure that if this
1222 suffix is followed by anything else, it is a '_'.
1223 Otherwise, we matched this sequence by accident. */
1224 if (k == len0
1225 || (k < len0 && encoded[k] == '_'))
1226 i = k;
1227 }
1228 }
1229
1230 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1231 the GNAT front-end in protected object subprograms. */
1232
1233 if (i < len0 + 3
1234 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1235 {
1236 /* Backtrack a bit up until we reach either the begining of
1237 the encoded name, or "__". Make sure that we only find
1238 digits or lowercase characters. */
1239 const char *ptr = encoded + i - 1;
1240
1241 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1242 ptr--;
1243 if (ptr < encoded
1244 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1245 i++;
1246 }
1247
4c4b4cd2
PH
1248 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1249 {
29480c32
JB
1250 /* This is a X[bn]* sequence not separated from the previous
1251 part of the name with a non-alpha-numeric character (in other
1252 words, immediately following an alpha-numeric character), then
1253 verify that it is placed at the end of the encoded name. If
1254 not, then the encoding is not valid and we should abort the
1255 decoding. Otherwise, just skip it, it is used in body-nested
1256 package names. */
4c4b4cd2
PH
1257 do
1258 i += 1;
1259 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1260 if (i < len0)
1261 goto Suppress;
1262 }
cdc7bb92 1263 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1264 {
29480c32 1265 /* Replace '__' by '.'. */
4c4b4cd2
PH
1266 decoded[j] = '.';
1267 at_start_name = 1;
1268 i += 2;
1269 j += 1;
1270 }
14f9c5c9 1271 else
4c4b4cd2 1272 {
29480c32
JB
1273 /* It's a character part of the decoded name, so just copy it
1274 over. */
4c4b4cd2
PH
1275 decoded[j] = encoded[i];
1276 i += 1;
1277 j += 1;
1278 }
14f9c5c9 1279 }
4c4b4cd2 1280 decoded[j] = '\000';
14f9c5c9 1281
29480c32
JB
1282 /* Decoded names should never contain any uppercase character.
1283 Double-check this, and abort the decoding if we find one. */
1284
4c4b4cd2
PH
1285 for (i = 0; decoded[i] != '\0'; i += 1)
1286 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1287 goto Suppress;
1288
4c4b4cd2
PH
1289 if (strcmp (decoded, encoded) == 0)
1290 return encoded;
1291 else
1292 return decoded;
14f9c5c9
AS
1293
1294Suppress:
4c4b4cd2
PH
1295 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1296 decoded = decoding_buffer;
1297 if (encoded[0] == '<')
1298 strcpy (decoded, encoded);
14f9c5c9 1299 else
88c15c34 1300 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1301 return decoded;
1302
1303}
1304
1305/* Table for keeping permanent unique copies of decoded names. Once
1306 allocated, names in this table are never released. While this is a
1307 storage leak, it should not be significant unless there are massive
1308 changes in the set of decoded names in successive versions of a
1309 symbol table loaded during a single session. */
1310static struct htab *decoded_names_store;
1311
1312/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1313 in the language-specific part of GSYMBOL, if it has not been
1314 previously computed. Tries to save the decoded name in the same
1315 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1316 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1317 GSYMBOL).
4c4b4cd2
PH
1318 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1319 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1320 when a decoded name is cached in it. */
4c4b4cd2 1321
45e6c716 1322const char *
f85f34ed 1323ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1324{
f85f34ed
TT
1325 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1326 const char **resultp =
1327 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1328
f85f34ed 1329 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1330 {
1331 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1332 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1333
f85f34ed 1334 gsymbol->ada_mangled = 1;
5b4ee69b 1335
f85f34ed
TT
1336 if (obstack != NULL)
1337 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1338 else
76a01679 1339 {
f85f34ed
TT
1340 /* Sometimes, we can't find a corresponding objfile, in
1341 which case, we put the result on the heap. Since we only
1342 decode when needed, we hope this usually does not cause a
1343 significant memory leak (FIXME). */
1344
76a01679
JB
1345 char **slot = (char **) htab_find_slot (decoded_names_store,
1346 decoded, INSERT);
5b4ee69b 1347
76a01679
JB
1348 if (*slot == NULL)
1349 *slot = xstrdup (decoded);
1350 *resultp = *slot;
1351 }
4c4b4cd2 1352 }
14f9c5c9 1353
4c4b4cd2
PH
1354 return *resultp;
1355}
76a01679 1356
2c0b251b 1357static char *
76a01679 1358ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1359{
1360 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1361}
1362
1363/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1364 suffixes that encode debugging information or leading _ada_ on
1365 SYM_NAME (see is_name_suffix commentary for the debugging
1366 information that is ignored). If WILD, then NAME need only match a
1367 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1368 either argument is NULL. */
14f9c5c9 1369
2c0b251b 1370static int
40658b94 1371match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1372{
1373 if (sym_name == NULL || name == NULL)
1374 return 0;
1375 else if (wild)
73589123 1376 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1377 else
1378 {
1379 int len_name = strlen (name);
5b4ee69b 1380
4c4b4cd2
PH
1381 return (strncmp (sym_name, name, len_name) == 0
1382 && is_name_suffix (sym_name + len_name))
1383 || (strncmp (sym_name, "_ada_", 5) == 0
1384 && strncmp (sym_name + 5, name, len_name) == 0
1385 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1386 }
14f9c5c9 1387}
14f9c5c9 1388\f
d2e4a39e 1389
4c4b4cd2 1390 /* Arrays */
14f9c5c9 1391
28c85d6c
JB
1392/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1393 generated by the GNAT compiler to describe the index type used
1394 for each dimension of an array, check whether it follows the latest
1395 known encoding. If not, fix it up to conform to the latest encoding.
1396 Otherwise, do nothing. This function also does nothing if
1397 INDEX_DESC_TYPE is NULL.
1398
1399 The GNAT encoding used to describle the array index type evolved a bit.
1400 Initially, the information would be provided through the name of each
1401 field of the structure type only, while the type of these fields was
1402 described as unspecified and irrelevant. The debugger was then expected
1403 to perform a global type lookup using the name of that field in order
1404 to get access to the full index type description. Because these global
1405 lookups can be very expensive, the encoding was later enhanced to make
1406 the global lookup unnecessary by defining the field type as being
1407 the full index type description.
1408
1409 The purpose of this routine is to allow us to support older versions
1410 of the compiler by detecting the use of the older encoding, and by
1411 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1412 we essentially replace each field's meaningless type by the associated
1413 index subtype). */
1414
1415void
1416ada_fixup_array_indexes_type (struct type *index_desc_type)
1417{
1418 int i;
1419
1420 if (index_desc_type == NULL)
1421 return;
1422 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1423
1424 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1425 to check one field only, no need to check them all). If not, return
1426 now.
1427
1428 If our INDEX_DESC_TYPE was generated using the older encoding,
1429 the field type should be a meaningless integer type whose name
1430 is not equal to the field name. */
1431 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1432 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1433 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1434 return;
1435
1436 /* Fixup each field of INDEX_DESC_TYPE. */
1437 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1438 {
0d5cff50 1439 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1440 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1441
1442 if (raw_type)
1443 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1444 }
1445}
1446
4c4b4cd2 1447/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1448
d2e4a39e
AS
1449static char *bound_name[] = {
1450 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1451 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1452};
1453
1454/* Maximum number of array dimensions we are prepared to handle. */
1455
4c4b4cd2 1456#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1457
14f9c5c9 1458
4c4b4cd2
PH
1459/* The desc_* routines return primitive portions of array descriptors
1460 (fat pointers). */
14f9c5c9
AS
1461
1462/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1463 level of indirection, if needed. */
1464
d2e4a39e
AS
1465static struct type *
1466desc_base_type (struct type *type)
14f9c5c9
AS
1467{
1468 if (type == NULL)
1469 return NULL;
61ee279c 1470 type = ada_check_typedef (type);
720d1a40
JB
1471 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1472 type = ada_typedef_target_type (type);
1473
1265e4aa
JB
1474 if (type != NULL
1475 && (TYPE_CODE (type) == TYPE_CODE_PTR
1476 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1477 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1478 else
1479 return type;
1480}
1481
4c4b4cd2
PH
1482/* True iff TYPE indicates a "thin" array pointer type. */
1483
14f9c5c9 1484static int
d2e4a39e 1485is_thin_pntr (struct type *type)
14f9c5c9 1486{
d2e4a39e 1487 return
14f9c5c9
AS
1488 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1489 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1490}
1491
4c4b4cd2
PH
1492/* The descriptor type for thin pointer type TYPE. */
1493
d2e4a39e
AS
1494static struct type *
1495thin_descriptor_type (struct type *type)
14f9c5c9 1496{
d2e4a39e 1497 struct type *base_type = desc_base_type (type);
5b4ee69b 1498
14f9c5c9
AS
1499 if (base_type == NULL)
1500 return NULL;
1501 if (is_suffix (ada_type_name (base_type), "___XVE"))
1502 return base_type;
d2e4a39e 1503 else
14f9c5c9 1504 {
d2e4a39e 1505 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1506
14f9c5c9 1507 if (alt_type == NULL)
4c4b4cd2 1508 return base_type;
14f9c5c9 1509 else
4c4b4cd2 1510 return alt_type;
14f9c5c9
AS
1511 }
1512}
1513
4c4b4cd2
PH
1514/* A pointer to the array data for thin-pointer value VAL. */
1515
d2e4a39e
AS
1516static struct value *
1517thin_data_pntr (struct value *val)
14f9c5c9 1518{
828292f2 1519 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1520 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1521
556bdfd4
UW
1522 data_type = lookup_pointer_type (data_type);
1523
14f9c5c9 1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1525 return value_cast (data_type, value_copy (val));
d2e4a39e 1526 else
42ae5230 1527 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1528}
1529
4c4b4cd2
PH
1530/* True iff TYPE indicates a "thick" array pointer type. */
1531
14f9c5c9 1532static int
d2e4a39e 1533is_thick_pntr (struct type *type)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1537 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1538}
1539
4c4b4cd2
PH
1540/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1541 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1542
d2e4a39e
AS
1543static struct type *
1544desc_bounds_type (struct type *type)
14f9c5c9 1545{
d2e4a39e 1546 struct type *r;
14f9c5c9
AS
1547
1548 type = desc_base_type (type);
1549
1550 if (type == NULL)
1551 return NULL;
1552 else if (is_thin_pntr (type))
1553 {
1554 type = thin_descriptor_type (type);
1555 if (type == NULL)
4c4b4cd2 1556 return NULL;
14f9c5c9
AS
1557 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1558 if (r != NULL)
61ee279c 1559 return ada_check_typedef (r);
14f9c5c9
AS
1560 }
1561 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1562 {
1563 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1564 if (r != NULL)
61ee279c 1565 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1566 }
1567 return NULL;
1568}
1569
1570/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1571 one, a pointer to its bounds data. Otherwise NULL. */
1572
d2e4a39e
AS
1573static struct value *
1574desc_bounds (struct value *arr)
14f9c5c9 1575{
df407dfe 1576 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1577
d2e4a39e 1578 if (is_thin_pntr (type))
14f9c5c9 1579 {
d2e4a39e 1580 struct type *bounds_type =
4c4b4cd2 1581 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1582 LONGEST addr;
1583
4cdfadb1 1584 if (bounds_type == NULL)
323e0a4a 1585 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1586
1587 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1588 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1589 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1590 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1591 addr = value_as_long (arr);
d2e4a39e 1592 else
42ae5230 1593 addr = value_address (arr);
14f9c5c9 1594
d2e4a39e 1595 return
4c4b4cd2
PH
1596 value_from_longest (lookup_pointer_type (bounds_type),
1597 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1598 }
1599
1600 else if (is_thick_pntr (type))
05e522ef
JB
1601 {
1602 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1603 _("Bad GNAT array descriptor"));
1604 struct type *p_bounds_type = value_type (p_bounds);
1605
1606 if (p_bounds_type
1607 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1608 {
1609 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1610
1611 if (TYPE_STUB (target_type))
1612 p_bounds = value_cast (lookup_pointer_type
1613 (ada_check_typedef (target_type)),
1614 p_bounds);
1615 }
1616 else
1617 error (_("Bad GNAT array descriptor"));
1618
1619 return p_bounds;
1620 }
14f9c5c9
AS
1621 else
1622 return NULL;
1623}
1624
4c4b4cd2
PH
1625/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the bounds data. */
1627
14f9c5c9 1628static int
d2e4a39e 1629fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1630{
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1632}
1633
1634/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1635 size of the field containing the address of the bounds data. */
1636
14f9c5c9 1637static int
d2e4a39e 1638fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1639{
1640 type = desc_base_type (type);
1641
d2e4a39e 1642 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1643 return TYPE_FIELD_BITSIZE (type, 1);
1644 else
61ee279c 1645 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1646}
1647
4c4b4cd2 1648/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1649 pointer to one, the type of its array data (a array-with-no-bounds type);
1650 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1651 data. */
4c4b4cd2 1652
d2e4a39e 1653static struct type *
556bdfd4 1654desc_data_target_type (struct type *type)
14f9c5c9
AS
1655{
1656 type = desc_base_type (type);
1657
4c4b4cd2 1658 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1659 if (is_thin_pntr (type))
556bdfd4 1660 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1661 else if (is_thick_pntr (type))
556bdfd4
UW
1662 {
1663 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1664
1665 if (data_type
1666 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1667 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1668 }
1669
1670 return NULL;
14f9c5c9
AS
1671}
1672
1673/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1674 its array data. */
4c4b4cd2 1675
d2e4a39e
AS
1676static struct value *
1677desc_data (struct value *arr)
14f9c5c9 1678{
df407dfe 1679 struct type *type = value_type (arr);
5b4ee69b 1680
14f9c5c9
AS
1681 if (is_thin_pntr (type))
1682 return thin_data_pntr (arr);
1683 else if (is_thick_pntr (type))
d2e4a39e 1684 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1685 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1686 else
1687 return NULL;
1688}
1689
1690
1691/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1692 position of the field containing the address of the data. */
1693
14f9c5c9 1694static int
d2e4a39e 1695fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1696{
1697 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1698}
1699
1700/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1701 size of the field containing the address of the data. */
1702
14f9c5c9 1703static int
d2e4a39e 1704fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1705{
1706 type = desc_base_type (type);
1707
1708 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1709 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1710 else
14f9c5c9
AS
1711 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1712}
1713
4c4b4cd2 1714/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1715 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1716 bound, if WHICH is 1. The first bound is I=1. */
1717
d2e4a39e
AS
1718static struct value *
1719desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1720{
d2e4a39e 1721 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1722 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1723}
1724
1725/* If BOUNDS is an array-bounds structure type, return the bit position
1726 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1727 bound, if WHICH is 1. The first bound is I=1. */
1728
14f9c5c9 1729static int
d2e4a39e 1730desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1731{
d2e4a39e 1732 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1733}
1734
1735/* If BOUNDS is an array-bounds structure type, return the bit field size
1736 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1737 bound, if WHICH is 1. The first bound is I=1. */
1738
76a01679 1739static int
d2e4a39e 1740desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1741{
1742 type = desc_base_type (type);
1743
d2e4a39e
AS
1744 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1745 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1746 else
1747 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1748}
1749
1750/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1751 Ith bound (numbering from 1). Otherwise, NULL. */
1752
d2e4a39e
AS
1753static struct type *
1754desc_index_type (struct type *type, int i)
14f9c5c9
AS
1755{
1756 type = desc_base_type (type);
1757
1758 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1759 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1760 else
14f9c5c9
AS
1761 return NULL;
1762}
1763
4c4b4cd2
PH
1764/* The number of index positions in the array-bounds type TYPE.
1765 Return 0 if TYPE is NULL. */
1766
14f9c5c9 1767static int
d2e4a39e 1768desc_arity (struct type *type)
14f9c5c9
AS
1769{
1770 type = desc_base_type (type);
1771
1772 if (type != NULL)
1773 return TYPE_NFIELDS (type) / 2;
1774 return 0;
1775}
1776
4c4b4cd2
PH
1777/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1778 an array descriptor type (representing an unconstrained array
1779 type). */
1780
76a01679
JB
1781static int
1782ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1783{
1784 if (type == NULL)
1785 return 0;
61ee279c 1786 type = ada_check_typedef (type);
4c4b4cd2 1787 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1788 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1789}
1790
52ce6436 1791/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1792 * to one. */
52ce6436 1793
2c0b251b 1794static int
52ce6436
PH
1795ada_is_array_type (struct type *type)
1796{
1797 while (type != NULL
1798 && (TYPE_CODE (type) == TYPE_CODE_PTR
1799 || TYPE_CODE (type) == TYPE_CODE_REF))
1800 type = TYPE_TARGET_TYPE (type);
1801 return ada_is_direct_array_type (type);
1802}
1803
4c4b4cd2 1804/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1805
14f9c5c9 1806int
4c4b4cd2 1807ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1808{
1809 if (type == NULL)
1810 return 0;
61ee279c 1811 type = ada_check_typedef (type);
14f9c5c9 1812 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1813 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1814 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1815 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1816}
1817
4c4b4cd2
PH
1818/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1819
14f9c5c9 1820int
4c4b4cd2 1821ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1822{
556bdfd4 1823 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1824
1825 if (type == NULL)
1826 return 0;
61ee279c 1827 type = ada_check_typedef (type);
556bdfd4
UW
1828 return (data_type != NULL
1829 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1830 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1831}
1832
1833/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1834 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1835 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1836 is still needed. */
1837
14f9c5c9 1838int
ebf56fd3 1839ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1840{
d2e4a39e 1841 return
14f9c5c9
AS
1842 type != NULL
1843 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1844 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1845 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1846 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1847}
1848
1849
4c4b4cd2 1850/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1851 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1852 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1853 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1854 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1855 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1856 a descriptor. */
d2e4a39e
AS
1857struct type *
1858ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1859{
ad82864c
JB
1860 if (ada_is_constrained_packed_array_type (value_type (arr)))
1861 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1862
df407dfe
AC
1863 if (!ada_is_array_descriptor_type (value_type (arr)))
1864 return value_type (arr);
d2e4a39e
AS
1865
1866 if (!bounds)
ad82864c
JB
1867 {
1868 struct type *array_type =
1869 ada_check_typedef (desc_data_target_type (value_type (arr)));
1870
1871 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1872 TYPE_FIELD_BITSIZE (array_type, 0) =
1873 decode_packed_array_bitsize (value_type (arr));
1874
1875 return array_type;
1876 }
14f9c5c9
AS
1877 else
1878 {
d2e4a39e 1879 struct type *elt_type;
14f9c5c9 1880 int arity;
d2e4a39e 1881 struct value *descriptor;
14f9c5c9 1882
df407dfe
AC
1883 elt_type = ada_array_element_type (value_type (arr), -1);
1884 arity = ada_array_arity (value_type (arr));
14f9c5c9 1885
d2e4a39e 1886 if (elt_type == NULL || arity == 0)
df407dfe 1887 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1888
1889 descriptor = desc_bounds (arr);
d2e4a39e 1890 if (value_as_long (descriptor) == 0)
4c4b4cd2 1891 return NULL;
d2e4a39e 1892 while (arity > 0)
4c4b4cd2 1893 {
e9bb382b
UW
1894 struct type *range_type = alloc_type_copy (value_type (arr));
1895 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1896 struct value *low = desc_one_bound (descriptor, arity, 0);
1897 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1898
5b4ee69b 1899 arity -= 1;
df407dfe 1900 create_range_type (range_type, value_type (low),
529cad9c
PH
1901 longest_to_int (value_as_long (low)),
1902 longest_to_int (value_as_long (high)));
4c4b4cd2 1903 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1904
1905 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1906 {
1907 /* We need to store the element packed bitsize, as well as
1908 recompute the array size, because it was previously
1909 computed based on the unpacked element size. */
1910 LONGEST lo = value_as_long (low);
1911 LONGEST hi = value_as_long (high);
1912
1913 TYPE_FIELD_BITSIZE (elt_type, 0) =
1914 decode_packed_array_bitsize (value_type (arr));
1915 /* If the array has no element, then the size is already
1916 zero, and does not need to be recomputed. */
1917 if (lo < hi)
1918 {
1919 int array_bitsize =
1920 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1921
1922 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1923 }
1924 }
4c4b4cd2 1925 }
14f9c5c9
AS
1926
1927 return lookup_pointer_type (elt_type);
1928 }
1929}
1930
1931/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1932 Otherwise, returns either a standard GDB array with bounds set
1933 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1934 GDB array. Returns NULL if ARR is a null fat pointer. */
1935
d2e4a39e
AS
1936struct value *
1937ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1938{
df407dfe 1939 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1940 {
d2e4a39e 1941 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1942
14f9c5c9 1943 if (arrType == NULL)
4c4b4cd2 1944 return NULL;
14f9c5c9
AS
1945 return value_cast (arrType, value_copy (desc_data (arr)));
1946 }
ad82864c
JB
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1949 else
1950 return arr;
1951}
1952
1953/* If ARR does not represent an array, returns ARR unchanged.
1954 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1955 be ARR itself if it already is in the proper form). */
1956
720d1a40 1957struct value *
d2e4a39e 1958ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1959{
df407dfe 1960 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1961 {
d2e4a39e 1962 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1963
14f9c5c9 1964 if (arrVal == NULL)
323e0a4a 1965 error (_("Bounds unavailable for null array pointer."));
529cad9c 1966 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1967 return value_ind (arrVal);
1968 }
ad82864c
JB
1969 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1970 return decode_constrained_packed_array (arr);
d2e4a39e 1971 else
14f9c5c9
AS
1972 return arr;
1973}
1974
1975/* If TYPE represents a GNAT array type, return it translated to an
1976 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1977 packing). For other types, is the identity. */
1978
d2e4a39e
AS
1979struct type *
1980ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1981{
ad82864c
JB
1982 if (ada_is_constrained_packed_array_type (type))
1983 return decode_constrained_packed_array_type (type);
17280b9f
UW
1984
1985 if (ada_is_array_descriptor_type (type))
556bdfd4 1986 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1987
1988 return type;
14f9c5c9
AS
1989}
1990
4c4b4cd2
PH
1991/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1992
ad82864c
JB
1993static int
1994ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1995{
1996 if (type == NULL)
1997 return 0;
4c4b4cd2 1998 type = desc_base_type (type);
61ee279c 1999 type = ada_check_typedef (type);
d2e4a39e 2000 return
14f9c5c9
AS
2001 ada_type_name (type) != NULL
2002 && strstr (ada_type_name (type), "___XP") != NULL;
2003}
2004
ad82864c
JB
2005/* Non-zero iff TYPE represents a standard GNAT constrained
2006 packed-array type. */
2007
2008int
2009ada_is_constrained_packed_array_type (struct type *type)
2010{
2011 return ada_is_packed_array_type (type)
2012 && !ada_is_array_descriptor_type (type);
2013}
2014
2015/* Non-zero iff TYPE represents an array descriptor for a
2016 unconstrained packed-array type. */
2017
2018static int
2019ada_is_unconstrained_packed_array_type (struct type *type)
2020{
2021 return ada_is_packed_array_type (type)
2022 && ada_is_array_descriptor_type (type);
2023}
2024
2025/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2026 return the size of its elements in bits. */
2027
2028static long
2029decode_packed_array_bitsize (struct type *type)
2030{
0d5cff50
DE
2031 const char *raw_name;
2032 const char *tail;
ad82864c
JB
2033 long bits;
2034
720d1a40
JB
2035 /* Access to arrays implemented as fat pointers are encoded as a typedef
2036 of the fat pointer type. We need the name of the fat pointer type
2037 to do the decoding, so strip the typedef layer. */
2038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2039 type = ada_typedef_target_type (type);
2040
2041 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2042 if (!raw_name)
2043 raw_name = ada_type_name (desc_base_type (type));
2044
2045 if (!raw_name)
2046 return 0;
2047
2048 tail = strstr (raw_name, "___XP");
720d1a40 2049 gdb_assert (tail != NULL);
ad82864c
JB
2050
2051 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2052 {
2053 lim_warning
2054 (_("could not understand bit size information on packed array"));
2055 return 0;
2056 }
2057
2058 return bits;
2059}
2060
14f9c5c9
AS
2061/* Given that TYPE is a standard GDB array type with all bounds filled
2062 in, and that the element size of its ultimate scalar constituents
2063 (that is, either its elements, or, if it is an array of arrays, its
2064 elements' elements, etc.) is *ELT_BITS, return an identical type,
2065 but with the bit sizes of its elements (and those of any
2066 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2067 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2068 in bits. */
2069
d2e4a39e 2070static struct type *
ad82864c 2071constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2072{
d2e4a39e
AS
2073 struct type *new_elt_type;
2074 struct type *new_type;
99b1c762
JB
2075 struct type *index_type_desc;
2076 struct type *index_type;
14f9c5c9
AS
2077 LONGEST low_bound, high_bound;
2078
61ee279c 2079 type = ada_check_typedef (type);
14f9c5c9
AS
2080 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2081 return type;
2082
99b1c762
JB
2083 index_type_desc = ada_find_parallel_type (type, "___XA");
2084 if (index_type_desc)
2085 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2086 NULL);
2087 else
2088 index_type = TYPE_INDEX_TYPE (type);
2089
e9bb382b 2090 new_type = alloc_type_copy (type);
ad82864c
JB
2091 new_elt_type =
2092 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2093 elt_bits);
99b1c762 2094 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2095 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2096 TYPE_NAME (new_type) = ada_type_name (type);
2097
99b1c762 2098 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2099 low_bound = high_bound = 0;
2100 if (high_bound < low_bound)
2101 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2102 else
14f9c5c9
AS
2103 {
2104 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2105 TYPE_LENGTH (new_type) =
4c4b4cd2 2106 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2107 }
2108
876cecd0 2109 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2110 return new_type;
2111}
2112
ad82864c
JB
2113/* The array type encoded by TYPE, where
2114 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2115
d2e4a39e 2116static struct type *
ad82864c 2117decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2118{
0d5cff50 2119 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2120 char *name;
0d5cff50 2121 const char *tail;
d2e4a39e 2122 struct type *shadow_type;
14f9c5c9 2123 long bits;
14f9c5c9 2124
727e3d2e
JB
2125 if (!raw_name)
2126 raw_name = ada_type_name (desc_base_type (type));
2127
2128 if (!raw_name)
2129 return NULL;
2130
2131 name = (char *) alloca (strlen (raw_name) + 1);
2132 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2133 type = desc_base_type (type);
2134
14f9c5c9
AS
2135 memcpy (name, raw_name, tail - raw_name);
2136 name[tail - raw_name] = '\000';
2137
b4ba55a1
JB
2138 shadow_type = ada_find_parallel_type_with_name (type, name);
2139
2140 if (shadow_type == NULL)
14f9c5c9 2141 {
323e0a4a 2142 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2143 return NULL;
2144 }
cb249c71 2145 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2146
2147 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2148 {
0963b4bd
MS
2149 lim_warning (_("could not understand bounds "
2150 "information on packed array"));
14f9c5c9
AS
2151 return NULL;
2152 }
d2e4a39e 2153
ad82864c
JB
2154 bits = decode_packed_array_bitsize (type);
2155 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2156}
2157
ad82864c
JB
2158/* Given that ARR is a struct value *indicating a GNAT constrained packed
2159 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2160 standard GDB array type except that the BITSIZEs of the array
2161 target types are set to the number of bits in each element, and the
4c4b4cd2 2162 type length is set appropriately. */
14f9c5c9 2163
d2e4a39e 2164static struct value *
ad82864c 2165decode_constrained_packed_array (struct value *arr)
14f9c5c9 2166{
4c4b4cd2 2167 struct type *type;
14f9c5c9 2168
4c4b4cd2 2169 arr = ada_coerce_ref (arr);
284614f0
JB
2170
2171 /* If our value is a pointer, then dererence it. Make sure that
2172 this operation does not cause the target type to be fixed, as
2173 this would indirectly cause this array to be decoded. The rest
2174 of the routine assumes that the array hasn't been decoded yet,
2175 so we use the basic "value_ind" routine to perform the dereferencing,
2176 as opposed to using "ada_value_ind". */
828292f2 2177 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2178 arr = value_ind (arr);
4c4b4cd2 2179
ad82864c 2180 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2181 if (type == NULL)
2182 {
323e0a4a 2183 error (_("can't unpack array"));
14f9c5c9
AS
2184 return NULL;
2185 }
61ee279c 2186
50810684 2187 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2188 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2189 {
2190 /* This is a (right-justified) modular type representing a packed
2191 array with no wrapper. In order to interpret the value through
2192 the (left-justified) packed array type we just built, we must
2193 first left-justify it. */
2194 int bit_size, bit_pos;
2195 ULONGEST mod;
2196
df407dfe 2197 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2198 bit_size = 0;
2199 while (mod > 0)
2200 {
2201 bit_size += 1;
2202 mod >>= 1;
2203 }
df407dfe 2204 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2205 arr = ada_value_primitive_packed_val (arr, NULL,
2206 bit_pos / HOST_CHAR_BIT,
2207 bit_pos % HOST_CHAR_BIT,
2208 bit_size,
2209 type);
2210 }
2211
4c4b4cd2 2212 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2213}
2214
2215
2216/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2217 given in IND. ARR must be a simple array. */
14f9c5c9 2218
d2e4a39e
AS
2219static struct value *
2220value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2221{
2222 int i;
2223 int bits, elt_off, bit_off;
2224 long elt_total_bit_offset;
d2e4a39e
AS
2225 struct type *elt_type;
2226 struct value *v;
14f9c5c9
AS
2227
2228 bits = 0;
2229 elt_total_bit_offset = 0;
df407dfe 2230 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2231 for (i = 0; i < arity; i += 1)
14f9c5c9 2232 {
d2e4a39e 2233 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2234 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2235 error
0963b4bd
MS
2236 (_("attempt to do packed indexing of "
2237 "something other than a packed array"));
14f9c5c9 2238 else
4c4b4cd2
PH
2239 {
2240 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2241 LONGEST lowerbound, upperbound;
2242 LONGEST idx;
2243
2244 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2245 {
323e0a4a 2246 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2247 lowerbound = upperbound = 0;
2248 }
2249
3cb382c9 2250 idx = pos_atr (ind[i]);
4c4b4cd2 2251 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2252 lim_warning (_("packed array index %ld out of bounds"),
2253 (long) idx);
4c4b4cd2
PH
2254 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2255 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2256 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2257 }
14f9c5c9
AS
2258 }
2259 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2260 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2261
2262 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2263 bits, elt_type);
14f9c5c9
AS
2264 return v;
2265}
2266
4c4b4cd2 2267/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2268
2269static int
d2e4a39e 2270has_negatives (struct type *type)
14f9c5c9 2271{
d2e4a39e
AS
2272 switch (TYPE_CODE (type))
2273 {
2274 default:
2275 return 0;
2276 case TYPE_CODE_INT:
2277 return !TYPE_UNSIGNED (type);
2278 case TYPE_CODE_RANGE:
2279 return TYPE_LOW_BOUND (type) < 0;
2280 }
14f9c5c9 2281}
d2e4a39e 2282
14f9c5c9
AS
2283
2284/* Create a new value of type TYPE from the contents of OBJ starting
2285 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2286 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2287 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2288 VALADDR is ignored unless OBJ is NULL, in which case,
2289 VALADDR+OFFSET must address the start of storage containing the
2290 packed value. The value returned in this case is never an lval.
2291 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2292
d2e4a39e 2293struct value *
fc1a4b47 2294ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2295 long offset, int bit_offset, int bit_size,
4c4b4cd2 2296 struct type *type)
14f9c5c9 2297{
d2e4a39e 2298 struct value *v;
4c4b4cd2
PH
2299 int src, /* Index into the source area */
2300 targ, /* Index into the target area */
2301 srcBitsLeft, /* Number of source bits left to move */
2302 nsrc, ntarg, /* Number of source and target bytes */
2303 unusedLS, /* Number of bits in next significant
2304 byte of source that are unused */
2305 accumSize; /* Number of meaningful bits in accum */
2306 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2307 unsigned char *unpacked;
4c4b4cd2 2308 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2309 unsigned char sign;
2310 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2311 /* Transmit bytes from least to most significant; delta is the direction
2312 the indices move. */
50810684 2313 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2314
61ee279c 2315 type = ada_check_typedef (type);
14f9c5c9
AS
2316
2317 if (obj == NULL)
2318 {
2319 v = allocate_value (type);
d2e4a39e 2320 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2321 }
9214ee5f 2322 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2323 {
53ba8333 2324 v = value_at (type, value_address (obj));
d2e4a39e 2325 bytes = (unsigned char *) alloca (len);
53ba8333 2326 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2327 }
d2e4a39e 2328 else
14f9c5c9
AS
2329 {
2330 v = allocate_value (type);
0fd88904 2331 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2332 }
d2e4a39e
AS
2333
2334 if (obj != NULL)
14f9c5c9 2335 {
53ba8333 2336 long new_offset = offset;
5b4ee69b 2337
74bcbdf3 2338 set_value_component_location (v, obj);
9bbda503
AC
2339 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2340 set_value_bitsize (v, bit_size);
df407dfe 2341 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2342 {
53ba8333 2343 ++new_offset;
9bbda503 2344 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2345 }
53ba8333
JB
2346 set_value_offset (v, new_offset);
2347
2348 /* Also set the parent value. This is needed when trying to
2349 assign a new value (in inferior memory). */
2350 set_value_parent (v, obj);
14f9c5c9
AS
2351 }
2352 else
9bbda503 2353 set_value_bitsize (v, bit_size);
0fd88904 2354 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2355
2356 srcBitsLeft = bit_size;
2357 nsrc = len;
2358 ntarg = TYPE_LENGTH (type);
2359 sign = 0;
2360 if (bit_size == 0)
2361 {
2362 memset (unpacked, 0, TYPE_LENGTH (type));
2363 return v;
2364 }
50810684 2365 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2366 {
d2e4a39e 2367 src = len - 1;
1265e4aa
JB
2368 if (has_negatives (type)
2369 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2370 sign = ~0;
d2e4a39e
AS
2371
2372 unusedLS =
4c4b4cd2
PH
2373 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2374 % HOST_CHAR_BIT;
14f9c5c9
AS
2375
2376 switch (TYPE_CODE (type))
4c4b4cd2
PH
2377 {
2378 case TYPE_CODE_ARRAY:
2379 case TYPE_CODE_UNION:
2380 case TYPE_CODE_STRUCT:
2381 /* Non-scalar values must be aligned at a byte boundary... */
2382 accumSize =
2383 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2384 /* ... And are placed at the beginning (most-significant) bytes
2385 of the target. */
529cad9c 2386 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2387 ntarg = targ + 1;
4c4b4cd2
PH
2388 break;
2389 default:
2390 accumSize = 0;
2391 targ = TYPE_LENGTH (type) - 1;
2392 break;
2393 }
14f9c5c9 2394 }
d2e4a39e 2395 else
14f9c5c9
AS
2396 {
2397 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2398
2399 src = targ = 0;
2400 unusedLS = bit_offset;
2401 accumSize = 0;
2402
d2e4a39e 2403 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2404 sign = ~0;
14f9c5c9 2405 }
d2e4a39e 2406
14f9c5c9
AS
2407 accum = 0;
2408 while (nsrc > 0)
2409 {
2410 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2411 part of the value. */
d2e4a39e 2412 unsigned int unusedMSMask =
4c4b4cd2
PH
2413 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2414 1;
2415 /* Sign-extend bits for this byte. */
14f9c5c9 2416 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2417
d2e4a39e 2418 accum |=
4c4b4cd2 2419 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2420 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2421 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2422 {
2423 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2424 accumSize -= HOST_CHAR_BIT;
2425 accum >>= HOST_CHAR_BIT;
2426 ntarg -= 1;
2427 targ += delta;
2428 }
14f9c5c9
AS
2429 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2430 unusedLS = 0;
2431 nsrc -= 1;
2432 src += delta;
2433 }
2434 while (ntarg > 0)
2435 {
2436 accum |= sign << accumSize;
2437 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2438 accumSize -= HOST_CHAR_BIT;
2439 accum >>= HOST_CHAR_BIT;
2440 ntarg -= 1;
2441 targ += delta;
2442 }
2443
2444 return v;
2445}
d2e4a39e 2446
14f9c5c9
AS
2447/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2448 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2449 not overlap. */
14f9c5c9 2450static void
fc1a4b47 2451move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2452 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2453{
2454 unsigned int accum, mask;
2455 int accum_bits, chunk_size;
2456
2457 target += targ_offset / HOST_CHAR_BIT;
2458 targ_offset %= HOST_CHAR_BIT;
2459 source += src_offset / HOST_CHAR_BIT;
2460 src_offset %= HOST_CHAR_BIT;
50810684 2461 if (bits_big_endian_p)
14f9c5c9
AS
2462 {
2463 accum = (unsigned char) *source;
2464 source += 1;
2465 accum_bits = HOST_CHAR_BIT - src_offset;
2466
d2e4a39e 2467 while (n > 0)
4c4b4cd2
PH
2468 {
2469 int unused_right;
5b4ee69b 2470
4c4b4cd2
PH
2471 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2472 accum_bits += HOST_CHAR_BIT;
2473 source += 1;
2474 chunk_size = HOST_CHAR_BIT - targ_offset;
2475 if (chunk_size > n)
2476 chunk_size = n;
2477 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2478 mask = ((1 << chunk_size) - 1) << unused_right;
2479 *target =
2480 (*target & ~mask)
2481 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488 else
2489 {
2490 accum = (unsigned char) *source >> src_offset;
2491 source += 1;
2492 accum_bits = HOST_CHAR_BIT - src_offset;
2493
d2e4a39e 2494 while (n > 0)
4c4b4cd2
PH
2495 {
2496 accum = accum + ((unsigned char) *source << accum_bits);
2497 accum_bits += HOST_CHAR_BIT;
2498 source += 1;
2499 chunk_size = HOST_CHAR_BIT - targ_offset;
2500 if (chunk_size > n)
2501 chunk_size = n;
2502 mask = ((1 << chunk_size) - 1) << targ_offset;
2503 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2504 n -= chunk_size;
2505 accum_bits -= chunk_size;
2506 accum >>= chunk_size;
2507 target += 1;
2508 targ_offset = 0;
2509 }
14f9c5c9
AS
2510 }
2511}
2512
14f9c5c9
AS
2513/* Store the contents of FROMVAL into the location of TOVAL.
2514 Return a new value with the location of TOVAL and contents of
2515 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2516 floating-point or non-scalar types. */
14f9c5c9 2517
d2e4a39e
AS
2518static struct value *
2519ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2520{
df407dfe
AC
2521 struct type *type = value_type (toval);
2522 int bits = value_bitsize (toval);
14f9c5c9 2523
52ce6436
PH
2524 toval = ada_coerce_ref (toval);
2525 fromval = ada_coerce_ref (fromval);
2526
2527 if (ada_is_direct_array_type (value_type (toval)))
2528 toval = ada_coerce_to_simple_array (toval);
2529 if (ada_is_direct_array_type (value_type (fromval)))
2530 fromval = ada_coerce_to_simple_array (fromval);
2531
88e3b34b 2532 if (!deprecated_value_modifiable (toval))
323e0a4a 2533 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2534
d2e4a39e 2535 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2536 && bits > 0
d2e4a39e 2537 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2538 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2539 {
df407dfe
AC
2540 int len = (value_bitpos (toval)
2541 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2542 int from_size;
948f8e3d 2543 gdb_byte *buffer = alloca (len);
d2e4a39e 2544 struct value *val;
42ae5230 2545 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2546
2547 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2548 fromval = value_cast (type, fromval);
14f9c5c9 2549
52ce6436 2550 read_memory (to_addr, buffer, len);
aced2898
PH
2551 from_size = value_bitsize (fromval);
2552 if (from_size == 0)
2553 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2554 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2555 move_bits (buffer, value_bitpos (toval),
50810684 2556 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2557 else
50810684
UW
2558 move_bits (buffer, value_bitpos (toval),
2559 value_contents (fromval), 0, bits, 0);
972daa01 2560 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2561
14f9c5c9 2562 val = value_copy (toval);
0fd88904 2563 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2564 TYPE_LENGTH (type));
04624583 2565 deprecated_set_value_type (val, type);
d2e4a39e 2566
14f9c5c9
AS
2567 return val;
2568 }
2569
2570 return value_assign (toval, fromval);
2571}
2572
2573
52ce6436
PH
2574/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2575 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2576 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2577 * COMPONENT, and not the inferior's memory. The current contents
2578 * of COMPONENT are ignored. */
2579static void
2580value_assign_to_component (struct value *container, struct value *component,
2581 struct value *val)
2582{
2583 LONGEST offset_in_container =
42ae5230 2584 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2585 int bit_offset_in_container =
2586 value_bitpos (component) - value_bitpos (container);
2587 int bits;
2588
2589 val = value_cast (value_type (component), val);
2590
2591 if (value_bitsize (component) == 0)
2592 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2593 else
2594 bits = value_bitsize (component);
2595
50810684 2596 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2597 move_bits (value_contents_writeable (container) + offset_in_container,
2598 value_bitpos (container) + bit_offset_in_container,
2599 value_contents (val),
2600 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2601 bits, 1);
52ce6436
PH
2602 else
2603 move_bits (value_contents_writeable (container) + offset_in_container,
2604 value_bitpos (container) + bit_offset_in_container,
50810684 2605 value_contents (val), 0, bits, 0);
52ce6436
PH
2606}
2607
4c4b4cd2
PH
2608/* The value of the element of array ARR at the ARITY indices given in IND.
2609 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2610 thereto. */
2611
d2e4a39e
AS
2612struct value *
2613ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2614{
2615 int k;
d2e4a39e
AS
2616 struct value *elt;
2617 struct type *elt_type;
14f9c5c9
AS
2618
2619 elt = ada_coerce_to_simple_array (arr);
2620
df407dfe 2621 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2622 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2623 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2624 return value_subscript_packed (elt, arity, ind);
2625
2626 for (k = 0; k < arity; k += 1)
2627 {
2628 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2629 error (_("too many subscripts (%d expected)"), k);
2497b498 2630 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2631 }
2632 return elt;
2633}
2634
2635/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2636 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2637 IND. Does not read the entire array into memory. */
14f9c5c9 2638
2c0b251b 2639static struct value *
d2e4a39e 2640ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2641 struct value **ind)
14f9c5c9
AS
2642{
2643 int k;
2644
2645 for (k = 0; k < arity; k += 1)
2646 {
2647 LONGEST lwb, upb;
14f9c5c9
AS
2648
2649 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2650 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2651 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2652 value_copy (arr));
14f9c5c9 2653 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2654 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2655 type = TYPE_TARGET_TYPE (type);
2656 }
2657
2658 return value_ind (arr);
2659}
2660
0b5d8877 2661/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2662 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2663 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2664 per Ada rules. */
0b5d8877 2665static struct value *
f5938064
JG
2666ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2667 int low, int high)
0b5d8877 2668{
b0dd7688 2669 struct type *type0 = ada_check_typedef (type);
6c038f32 2670 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2671 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2672 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2673 struct type *index_type =
b0dd7688 2674 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2675 low, high);
6c038f32 2676 struct type *slice_type =
b0dd7688 2677 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2678
f5938064 2679 return value_at_lazy (slice_type, base);
0b5d8877
PH
2680}
2681
2682
2683static struct value *
2684ada_value_slice (struct value *array, int low, int high)
2685{
b0dd7688 2686 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2687 struct type *index_type =
0b5d8877 2688 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2689 struct type *slice_type =
0b5d8877 2690 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2691
6c038f32 2692 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2693}
2694
14f9c5c9
AS
2695/* If type is a record type in the form of a standard GNAT array
2696 descriptor, returns the number of dimensions for type. If arr is a
2697 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2698 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2699
2700int
d2e4a39e 2701ada_array_arity (struct type *type)
14f9c5c9
AS
2702{
2703 int arity;
2704
2705 if (type == NULL)
2706 return 0;
2707
2708 type = desc_base_type (type);
2709
2710 arity = 0;
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2712 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2713 else
2714 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2715 {
4c4b4cd2 2716 arity += 1;
61ee279c 2717 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2718 }
d2e4a39e 2719
14f9c5c9
AS
2720 return arity;
2721}
2722
2723/* If TYPE is a record type in the form of a standard GNAT array
2724 descriptor or a simple array type, returns the element type for
2725 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2726 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2727
d2e4a39e
AS
2728struct type *
2729ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2730{
2731 type = desc_base_type (type);
2732
d2e4a39e 2733 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2734 {
2735 int k;
d2e4a39e 2736 struct type *p_array_type;
14f9c5c9 2737
556bdfd4 2738 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2739
2740 k = ada_array_arity (type);
2741 if (k == 0)
4c4b4cd2 2742 return NULL;
d2e4a39e 2743
4c4b4cd2 2744 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2745 if (nindices >= 0 && k > nindices)
4c4b4cd2 2746 k = nindices;
d2e4a39e 2747 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2748 {
61ee279c 2749 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2750 k -= 1;
2751 }
14f9c5c9
AS
2752 return p_array_type;
2753 }
2754 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2755 {
2756 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2757 {
2758 type = TYPE_TARGET_TYPE (type);
2759 nindices -= 1;
2760 }
14f9c5c9
AS
2761 return type;
2762 }
2763
2764 return NULL;
2765}
2766
4c4b4cd2 2767/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2768 Does not examine memory. Throws an error if N is invalid or TYPE
2769 is not an array type. NAME is the name of the Ada attribute being
2770 evaluated ('range, 'first, 'last, or 'length); it is used in building
2771 the error message. */
14f9c5c9 2772
1eea4ebd
UW
2773static struct type *
2774ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2775{
4c4b4cd2
PH
2776 struct type *result_type;
2777
14f9c5c9
AS
2778 type = desc_base_type (type);
2779
1eea4ebd
UW
2780 if (n < 0 || n > ada_array_arity (type))
2781 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2782
4c4b4cd2 2783 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2784 {
2785 int i;
2786
2787 for (i = 1; i < n; i += 1)
4c4b4cd2 2788 type = TYPE_TARGET_TYPE (type);
262452ec 2789 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2790 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2791 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2792 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2793 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2794 result_type = NULL;
14f9c5c9 2795 }
d2e4a39e 2796 else
1eea4ebd
UW
2797 {
2798 result_type = desc_index_type (desc_bounds_type (type), n);
2799 if (result_type == NULL)
2800 error (_("attempt to take bound of something that is not an array"));
2801 }
2802
2803 return result_type;
14f9c5c9
AS
2804}
2805
2806/* Given that arr is an array type, returns the lower bound of the
2807 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2808 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2809 array-descriptor type. It works for other arrays with bounds supplied
2810 by run-time quantities other than discriminants. */
14f9c5c9 2811
abb68b3e 2812static LONGEST
fb5e3d5c 2813ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2814{
8a48ac95 2815 struct type *type, *index_type_desc, *index_type;
1ce677a4 2816 int i;
262452ec
JK
2817
2818 gdb_assert (which == 0 || which == 1);
14f9c5c9 2819
ad82864c
JB
2820 if (ada_is_constrained_packed_array_type (arr_type))
2821 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2822
4c4b4cd2 2823 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2824 return (LONGEST) - which;
14f9c5c9
AS
2825
2826 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2827 type = TYPE_TARGET_TYPE (arr_type);
2828 else
2829 type = arr_type;
2830
2831 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2832 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2833 if (index_type_desc != NULL)
28c85d6c
JB
2834 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2835 NULL);
262452ec 2836 else
8a48ac95
JB
2837 {
2838 struct type *elt_type = check_typedef (type);
2839
2840 for (i = 1; i < n; i++)
2841 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2842
2843 index_type = TYPE_INDEX_TYPE (elt_type);
2844 }
262452ec 2845
43bbcdc2
PH
2846 return
2847 (LONGEST) (which == 0
2848 ? ada_discrete_type_low_bound (index_type)
2849 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2850}
2851
2852/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2853 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2854 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2855 supplied by run-time quantities other than discriminants. */
14f9c5c9 2856
1eea4ebd 2857static LONGEST
4dc81987 2858ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2859{
df407dfe 2860 struct type *arr_type = value_type (arr);
14f9c5c9 2861
ad82864c
JB
2862 if (ada_is_constrained_packed_array_type (arr_type))
2863 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2864 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2865 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2866 else
1eea4ebd 2867 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2868}
2869
2870/* Given that arr is an array value, returns the length of the
2871 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2872 supplied by run-time quantities other than discriminants.
2873 Does not work for arrays indexed by enumeration types with representation
2874 clauses at the moment. */
14f9c5c9 2875
1eea4ebd 2876static LONGEST
d2e4a39e 2877ada_array_length (struct value *arr, int n)
14f9c5c9 2878{
df407dfe 2879 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2880
ad82864c
JB
2881 if (ada_is_constrained_packed_array_type (arr_type))
2882 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2883
4c4b4cd2 2884 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2885 return (ada_array_bound_from_type (arr_type, n, 1)
2886 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2887 else
1eea4ebd
UW
2888 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2889 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2890}
2891
2892/* An empty array whose type is that of ARR_TYPE (an array type),
2893 with bounds LOW to LOW-1. */
2894
2895static struct value *
2896empty_array (struct type *arr_type, int low)
2897{
b0dd7688 2898 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2899 struct type *index_type =
b0dd7688 2900 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2901 low, low - 1);
b0dd7688 2902 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2903
0b5d8877 2904 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2905}
14f9c5c9 2906\f
d2e4a39e 2907
4c4b4cd2 2908 /* Name resolution */
14f9c5c9 2909
4c4b4cd2
PH
2910/* The "decoded" name for the user-definable Ada operator corresponding
2911 to OP. */
14f9c5c9 2912
d2e4a39e 2913static const char *
4c4b4cd2 2914ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2915{
2916 int i;
2917
4c4b4cd2 2918 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2919 {
2920 if (ada_opname_table[i].op == op)
4c4b4cd2 2921 return ada_opname_table[i].decoded;
14f9c5c9 2922 }
323e0a4a 2923 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2924}
2925
2926
4c4b4cd2
PH
2927/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2928 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2929 undefined namespace) and converts operators that are
2930 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2931 non-null, it provides a preferred result type [at the moment, only
2932 type void has any effect---causing procedures to be preferred over
2933 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2934 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2935
4c4b4cd2
PH
2936static void
2937resolve (struct expression **expp, int void_context_p)
14f9c5c9 2938{
30b15541
UW
2939 struct type *context_type = NULL;
2940 int pc = 0;
2941
2942 if (void_context_p)
2943 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2944
2945 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2946}
2947
4c4b4cd2
PH
2948/* Resolve the operator of the subexpression beginning at
2949 position *POS of *EXPP. "Resolving" consists of replacing
2950 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2951 with their resolutions, replacing built-in operators with
2952 function calls to user-defined operators, where appropriate, and,
2953 when DEPROCEDURE_P is non-zero, converting function-valued variables
2954 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2955 are as in ada_resolve, above. */
14f9c5c9 2956
d2e4a39e 2957static struct value *
4c4b4cd2 2958resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2959 struct type *context_type)
14f9c5c9
AS
2960{
2961 int pc = *pos;
2962 int i;
4c4b4cd2 2963 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2964 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2965 struct value **argvec; /* Vector of operand types (alloca'ed). */
2966 int nargs; /* Number of operands. */
52ce6436 2967 int oplen;
14f9c5c9
AS
2968
2969 argvec = NULL;
2970 nargs = 0;
2971 exp = *expp;
2972
52ce6436
PH
2973 /* Pass one: resolve operands, saving their types and updating *pos,
2974 if needed. */
14f9c5c9
AS
2975 switch (op)
2976 {
4c4b4cd2
PH
2977 case OP_FUNCALL:
2978 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2979 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2980 *pos += 7;
4c4b4cd2
PH
2981 else
2982 {
2983 *pos += 3;
2984 resolve_subexp (expp, pos, 0, NULL);
2985 }
2986 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2987 break;
2988
14f9c5c9 2989 case UNOP_ADDR:
4c4b4cd2
PH
2990 *pos += 1;
2991 resolve_subexp (expp, pos, 0, NULL);
2992 break;
2993
52ce6436
PH
2994 case UNOP_QUAL:
2995 *pos += 3;
17466c1a 2996 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2997 break;
2998
52ce6436 2999 case OP_ATR_MODULUS:
4c4b4cd2
PH
3000 case OP_ATR_SIZE:
3001 case OP_ATR_TAG:
4c4b4cd2
PH
3002 case OP_ATR_FIRST:
3003 case OP_ATR_LAST:
3004 case OP_ATR_LENGTH:
3005 case OP_ATR_POS:
3006 case OP_ATR_VAL:
4c4b4cd2
PH
3007 case OP_ATR_MIN:
3008 case OP_ATR_MAX:
52ce6436
PH
3009 case TERNOP_IN_RANGE:
3010 case BINOP_IN_BOUNDS:
3011 case UNOP_IN_RANGE:
3012 case OP_AGGREGATE:
3013 case OP_OTHERS:
3014 case OP_CHOICES:
3015 case OP_POSITIONAL:
3016 case OP_DISCRETE_RANGE:
3017 case OP_NAME:
3018 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3019 *pos += oplen;
14f9c5c9
AS
3020 break;
3021
3022 case BINOP_ASSIGN:
3023 {
4c4b4cd2
PH
3024 struct value *arg1;
3025
3026 *pos += 1;
3027 arg1 = resolve_subexp (expp, pos, 0, NULL);
3028 if (arg1 == NULL)
3029 resolve_subexp (expp, pos, 1, NULL);
3030 else
df407dfe 3031 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3032 break;
14f9c5c9
AS
3033 }
3034
4c4b4cd2 3035 case UNOP_CAST:
4c4b4cd2
PH
3036 *pos += 3;
3037 nargs = 1;
3038 break;
14f9c5c9 3039
4c4b4cd2
PH
3040 case BINOP_ADD:
3041 case BINOP_SUB:
3042 case BINOP_MUL:
3043 case BINOP_DIV:
3044 case BINOP_REM:
3045 case BINOP_MOD:
3046 case BINOP_EXP:
3047 case BINOP_CONCAT:
3048 case BINOP_LOGICAL_AND:
3049 case BINOP_LOGICAL_OR:
3050 case BINOP_BITWISE_AND:
3051 case BINOP_BITWISE_IOR:
3052 case BINOP_BITWISE_XOR:
14f9c5c9 3053
4c4b4cd2
PH
3054 case BINOP_EQUAL:
3055 case BINOP_NOTEQUAL:
3056 case BINOP_LESS:
3057 case BINOP_GTR:
3058 case BINOP_LEQ:
3059 case BINOP_GEQ:
14f9c5c9 3060
4c4b4cd2
PH
3061 case BINOP_REPEAT:
3062 case BINOP_SUBSCRIPT:
3063 case BINOP_COMMA:
40c8aaa9
JB
3064 *pos += 1;
3065 nargs = 2;
3066 break;
14f9c5c9 3067
4c4b4cd2
PH
3068 case UNOP_NEG:
3069 case UNOP_PLUS:
3070 case UNOP_LOGICAL_NOT:
3071 case UNOP_ABS:
3072 case UNOP_IND:
3073 *pos += 1;
3074 nargs = 1;
3075 break;
14f9c5c9 3076
4c4b4cd2
PH
3077 case OP_LONG:
3078 case OP_DOUBLE:
3079 case OP_VAR_VALUE:
3080 *pos += 4;
3081 break;
14f9c5c9 3082
4c4b4cd2
PH
3083 case OP_TYPE:
3084 case OP_BOOL:
3085 case OP_LAST:
4c4b4cd2
PH
3086 case OP_INTERNALVAR:
3087 *pos += 3;
3088 break;
14f9c5c9 3089
4c4b4cd2
PH
3090 case UNOP_MEMVAL:
3091 *pos += 3;
3092 nargs = 1;
3093 break;
3094
67f3407f
DJ
3095 case OP_REGISTER:
3096 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3097 break;
3098
4c4b4cd2
PH
3099 case STRUCTOP_STRUCT:
3100 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3101 nargs = 1;
3102 break;
3103
4c4b4cd2 3104 case TERNOP_SLICE:
4c4b4cd2
PH
3105 *pos += 1;
3106 nargs = 3;
3107 break;
3108
52ce6436 3109 case OP_STRING:
14f9c5c9 3110 break;
4c4b4cd2
PH
3111
3112 default:
323e0a4a 3113 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3114 }
3115
76a01679 3116 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3117 for (i = 0; i < nargs; i += 1)
3118 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3119 argvec[i] = NULL;
3120 exp = *expp;
3121
3122 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3123 switch (op)
3124 {
3125 default:
3126 break;
3127
14f9c5c9 3128 case OP_VAR_VALUE:
4c4b4cd2 3129 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3130 {
3131 struct ada_symbol_info *candidates;
3132 int n_candidates;
3133
3134 n_candidates =
3135 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3136 (exp->elts[pc + 2].symbol),
3137 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3138 &candidates);
76a01679
JB
3139
3140 if (n_candidates > 1)
3141 {
3142 /* Types tend to get re-introduced locally, so if there
3143 are any local symbols that are not types, first filter
3144 out all types. */
3145 int j;
3146 for (j = 0; j < n_candidates; j += 1)
3147 switch (SYMBOL_CLASS (candidates[j].sym))
3148 {
3149 case LOC_REGISTER:
3150 case LOC_ARG:
3151 case LOC_REF_ARG:
76a01679
JB
3152 case LOC_REGPARM_ADDR:
3153 case LOC_LOCAL:
76a01679 3154 case LOC_COMPUTED:
76a01679
JB
3155 goto FoundNonType;
3156 default:
3157 break;
3158 }
3159 FoundNonType:
3160 if (j < n_candidates)
3161 {
3162 j = 0;
3163 while (j < n_candidates)
3164 {
3165 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3166 {
3167 candidates[j] = candidates[n_candidates - 1];
3168 n_candidates -= 1;
3169 }
3170 else
3171 j += 1;
3172 }
3173 }
3174 }
3175
3176 if (n_candidates == 0)
323e0a4a 3177 error (_("No definition found for %s"),
76a01679
JB
3178 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3179 else if (n_candidates == 1)
3180 i = 0;
3181 else if (deprocedure_p
3182 && !is_nonfunction (candidates, n_candidates))
3183 {
06d5cf63
JB
3184 i = ada_resolve_function
3185 (candidates, n_candidates, NULL, 0,
3186 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3187 context_type);
76a01679 3188 if (i < 0)
323e0a4a 3189 error (_("Could not find a match for %s"),
76a01679
JB
3190 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3191 }
3192 else
3193 {
323e0a4a 3194 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3195 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3196 user_select_syms (candidates, n_candidates, 1);
3197 i = 0;
3198 }
3199
3200 exp->elts[pc + 1].block = candidates[i].block;
3201 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3202 if (innermost_block == NULL
3203 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3204 innermost_block = candidates[i].block;
3205 }
3206
3207 if (deprocedure_p
3208 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3209 == TYPE_CODE_FUNC))
3210 {
3211 replace_operator_with_call (expp, pc, 0, 0,
3212 exp->elts[pc + 2].symbol,
3213 exp->elts[pc + 1].block);
3214 exp = *expp;
3215 }
14f9c5c9
AS
3216 break;
3217
3218 case OP_FUNCALL:
3219 {
4c4b4cd2 3220 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3221 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
76a01679
JB
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 5].symbol),
3229 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3230 &candidates);
4c4b4cd2
PH
3231 if (n_candidates == 1)
3232 i = 0;
3233 else
3234 {
06d5cf63
JB
3235 i = ada_resolve_function
3236 (candidates, n_candidates,
3237 argvec, nargs,
3238 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3239 context_type);
4c4b4cd2 3240 if (i < 0)
323e0a4a 3241 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3242 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3243 }
3244
3245 exp->elts[pc + 4].block = candidates[i].block;
3246 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3247 if (innermost_block == NULL
3248 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3249 innermost_block = candidates[i].block;
3250 }
14f9c5c9
AS
3251 }
3252 break;
3253 case BINOP_ADD:
3254 case BINOP_SUB:
3255 case BINOP_MUL:
3256 case BINOP_DIV:
3257 case BINOP_REM:
3258 case BINOP_MOD:
3259 case BINOP_CONCAT:
3260 case BINOP_BITWISE_AND:
3261 case BINOP_BITWISE_IOR:
3262 case BINOP_BITWISE_XOR:
3263 case BINOP_EQUAL:
3264 case BINOP_NOTEQUAL:
3265 case BINOP_LESS:
3266 case BINOP_GTR:
3267 case BINOP_LEQ:
3268 case BINOP_GEQ:
3269 case BINOP_EXP:
3270 case UNOP_NEG:
3271 case UNOP_PLUS:
3272 case UNOP_LOGICAL_NOT:
3273 case UNOP_ABS:
3274 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3275 {
3276 struct ada_symbol_info *candidates;
3277 int n_candidates;
3278
3279 n_candidates =
3280 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3281 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3282 &candidates);
4c4b4cd2 3283 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3284 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3285 if (i < 0)
3286 break;
3287
76a01679
JB
3288 replace_operator_with_call (expp, pc, nargs, 1,
3289 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3290 exp = *expp;
3291 }
14f9c5c9 3292 break;
4c4b4cd2
PH
3293
3294 case OP_TYPE:
b3dbf008 3295 case OP_REGISTER:
4c4b4cd2 3296 return NULL;
14f9c5c9
AS
3297 }
3298
3299 *pos = pc;
3300 return evaluate_subexp_type (exp, pos);
3301}
3302
3303/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3304 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3305 a non-pointer. */
14f9c5c9 3306/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3307 liberal. */
14f9c5c9
AS
3308
3309static int
4dc81987 3310ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3311{
61ee279c
PH
3312 ftype = ada_check_typedef (ftype);
3313 atype = ada_check_typedef (atype);
14f9c5c9
AS
3314
3315 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3316 ftype = TYPE_TARGET_TYPE (ftype);
3317 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3318 atype = TYPE_TARGET_TYPE (atype);
3319
d2e4a39e 3320 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3321 {
3322 default:
5b3d5b7d 3323 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3324 case TYPE_CODE_PTR:
3325 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3326 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3327 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3328 else
1265e4aa
JB
3329 return (may_deref
3330 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3331 case TYPE_CODE_INT:
3332 case TYPE_CODE_ENUM:
3333 case TYPE_CODE_RANGE:
3334 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3335 {
3336 case TYPE_CODE_INT:
3337 case TYPE_CODE_ENUM:
3338 case TYPE_CODE_RANGE:
3339 return 1;
3340 default:
3341 return 0;
3342 }
14f9c5c9
AS
3343
3344 case TYPE_CODE_ARRAY:
d2e4a39e 3345 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3346 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3347
3348 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3349 if (ada_is_array_descriptor_type (ftype))
3350 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3351 || ada_is_array_descriptor_type (atype));
14f9c5c9 3352 else
4c4b4cd2
PH
3353 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3354 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3355
3356 case TYPE_CODE_UNION:
3357 case TYPE_CODE_FLT:
3358 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3359 }
3360}
3361
3362/* Return non-zero if the formals of FUNC "sufficiently match" the
3363 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3364 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3365 argument function. */
14f9c5c9
AS
3366
3367static int
d2e4a39e 3368ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3369{
3370 int i;
d2e4a39e 3371 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3372
1265e4aa
JB
3373 if (SYMBOL_CLASS (func) == LOC_CONST
3374 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3375 return (n_actuals == 0);
3376 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3377 return 0;
3378
3379 if (TYPE_NFIELDS (func_type) != n_actuals)
3380 return 0;
3381
3382 for (i = 0; i < n_actuals; i += 1)
3383 {
4c4b4cd2 3384 if (actuals[i] == NULL)
76a01679
JB
3385 return 0;
3386 else
3387 {
5b4ee69b
MS
3388 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3389 i));
df407dfe 3390 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3391
76a01679
JB
3392 if (!ada_type_match (ftype, atype, 1))
3393 return 0;
3394 }
14f9c5c9
AS
3395 }
3396 return 1;
3397}
3398
3399/* False iff function type FUNC_TYPE definitely does not produce a value
3400 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3401 FUNC_TYPE is not a valid function type with a non-null return type
3402 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3403
3404static int
d2e4a39e 3405return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3406{
d2e4a39e 3407 struct type *return_type;
14f9c5c9
AS
3408
3409 if (func_type == NULL)
3410 return 1;
3411
4c4b4cd2 3412 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3413 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3414 else
18af8284 3415 return_type = get_base_type (func_type);
14f9c5c9
AS
3416 if (return_type == NULL)
3417 return 1;
3418
18af8284 3419 context_type = get_base_type (context_type);
14f9c5c9
AS
3420
3421 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3422 return context_type == NULL || return_type == context_type;
3423 else if (context_type == NULL)
3424 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3425 else
3426 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3427}
3428
3429
4c4b4cd2 3430/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3431 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3432 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3433 that returns that type, then eliminate matches that don't. If
3434 CONTEXT_TYPE is void and there is at least one match that does not
3435 return void, eliminate all matches that do.
3436
14f9c5c9
AS
3437 Asks the user if there is more than one match remaining. Returns -1
3438 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3439 solely for messages. May re-arrange and modify SYMS in
3440 the process; the index returned is for the modified vector. */
14f9c5c9 3441
4c4b4cd2
PH
3442static int
3443ada_resolve_function (struct ada_symbol_info syms[],
3444 int nsyms, struct value **args, int nargs,
3445 const char *name, struct type *context_type)
14f9c5c9 3446{
30b15541 3447 int fallback;
14f9c5c9 3448 int k;
4c4b4cd2 3449 int m; /* Number of hits */
14f9c5c9 3450
d2e4a39e 3451 m = 0;
30b15541
UW
3452 /* In the first pass of the loop, we only accept functions matching
3453 context_type. If none are found, we add a second pass of the loop
3454 where every function is accepted. */
3455 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3456 {
3457 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3458 {
61ee279c 3459 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3460
3461 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3462 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3463 {
3464 syms[m] = syms[k];
3465 m += 1;
3466 }
3467 }
14f9c5c9
AS
3468 }
3469
3470 if (m == 0)
3471 return -1;
3472 else if (m > 1)
3473 {
323e0a4a 3474 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3475 user_select_syms (syms, m, 1);
14f9c5c9
AS
3476 return 0;
3477 }
3478 return 0;
3479}
3480
4c4b4cd2
PH
3481/* Returns true (non-zero) iff decoded name N0 should appear before N1
3482 in a listing of choices during disambiguation (see sort_choices, below).
3483 The idea is that overloadings of a subprogram name from the
3484 same package should sort in their source order. We settle for ordering
3485 such symbols by their trailing number (__N or $N). */
3486
14f9c5c9 3487static int
0d5cff50 3488encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3489{
3490 if (N1 == NULL)
3491 return 0;
3492 else if (N0 == NULL)
3493 return 1;
3494 else
3495 {
3496 int k0, k1;
5b4ee69b 3497
d2e4a39e 3498 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3499 ;
d2e4a39e 3500 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3501 ;
d2e4a39e 3502 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3503 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3504 {
3505 int n0, n1;
5b4ee69b 3506
4c4b4cd2
PH
3507 n0 = k0;
3508 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3509 n0 -= 1;
3510 n1 = k1;
3511 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3512 n1 -= 1;
3513 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3514 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3515 }
14f9c5c9
AS
3516 return (strcmp (N0, N1) < 0);
3517 }
3518}
d2e4a39e 3519
4c4b4cd2
PH
3520/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3521 encoded names. */
3522
d2e4a39e 3523static void
4c4b4cd2 3524sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3525{
4c4b4cd2 3526 int i;
5b4ee69b 3527
d2e4a39e 3528 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3529 {
4c4b4cd2 3530 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3531 int j;
3532
d2e4a39e 3533 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3534 {
3535 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3536 SYMBOL_LINKAGE_NAME (sym.sym)))
3537 break;
3538 syms[j + 1] = syms[j];
3539 }
d2e4a39e 3540 syms[j + 1] = sym;
14f9c5c9
AS
3541 }
3542}
3543
4c4b4cd2
PH
3544/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3545 by asking the user (if necessary), returning the number selected,
3546 and setting the first elements of SYMS items. Error if no symbols
3547 selected. */
14f9c5c9
AS
3548
3549/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3550 to be re-integrated one of these days. */
14f9c5c9
AS
3551
3552int
4c4b4cd2 3553user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3554{
3555 int i;
d2e4a39e 3556 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3557 int n_chosen;
3558 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3559 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3560
3561 if (max_results < 1)
323e0a4a 3562 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3563 if (nsyms <= 1)
3564 return nsyms;
3565
717d2f5a
JB
3566 if (select_mode == multiple_symbols_cancel)
3567 error (_("\
3568canceled because the command is ambiguous\n\
3569See set/show multiple-symbol."));
3570
3571 /* If select_mode is "all", then return all possible symbols.
3572 Only do that if more than one symbol can be selected, of course.
3573 Otherwise, display the menu as usual. */
3574 if (select_mode == multiple_symbols_all && max_results > 1)
3575 return nsyms;
3576
323e0a4a 3577 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3578 if (max_results > 1)
323e0a4a 3579 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3580
4c4b4cd2 3581 sort_choices (syms, nsyms);
14f9c5c9
AS
3582
3583 for (i = 0; i < nsyms; i += 1)
3584 {
4c4b4cd2
PH
3585 if (syms[i].sym == NULL)
3586 continue;
3587
3588 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3589 {
76a01679
JB
3590 struct symtab_and_line sal =
3591 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3592
323e0a4a
AC
3593 if (sal.symtab == NULL)
3594 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3595 i + first_choice,
3596 SYMBOL_PRINT_NAME (syms[i].sym),
3597 sal.line);
3598 else
3599 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3600 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3601 symtab_to_filename_for_display (sal.symtab),
3602 sal.line);
4c4b4cd2
PH
3603 continue;
3604 }
d2e4a39e 3605 else
4c4b4cd2
PH
3606 {
3607 int is_enumeral =
3608 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3609 && SYMBOL_TYPE (syms[i].sym) != NULL
3610 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3611 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3612
3613 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3614 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3615 i + first_choice,
3616 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3617 symtab_to_filename_for_display (symtab),
3618 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3619 else if (is_enumeral
3620 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3621 {
a3f17187 3622 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3623 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3624 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3625 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3626 SYMBOL_PRINT_NAME (syms[i].sym));
3627 }
3628 else if (symtab != NULL)
3629 printf_unfiltered (is_enumeral
323e0a4a
AC
3630 ? _("[%d] %s in %s (enumeral)\n")
3631 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3632 i + first_choice,
3633 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3634 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3635 else
3636 printf_unfiltered (is_enumeral
323e0a4a
AC
3637 ? _("[%d] %s (enumeral)\n")
3638 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3639 i + first_choice,
3640 SYMBOL_PRINT_NAME (syms[i].sym));
3641 }
14f9c5c9 3642 }
d2e4a39e 3643
14f9c5c9 3644 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3645 "overload-choice");
14f9c5c9
AS
3646
3647 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3648 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3649
3650 return n_chosen;
3651}
3652
3653/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3654 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3655 order in CHOICES[0 .. N-1], and return N.
3656
3657 The user types choices as a sequence of numbers on one line
3658 separated by blanks, encoding them as follows:
3659
4c4b4cd2 3660 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3661 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3662 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3663
4c4b4cd2 3664 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3665
3666 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3667 prompts (for use with the -f switch). */
14f9c5c9
AS
3668
3669int
d2e4a39e 3670get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3671 int is_all_choice, char *annotation_suffix)
14f9c5c9 3672{
d2e4a39e 3673 char *args;
0bcd0149 3674 char *prompt;
14f9c5c9
AS
3675 int n_chosen;
3676 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3677
14f9c5c9
AS
3678 prompt = getenv ("PS2");
3679 if (prompt == NULL)
0bcd0149 3680 prompt = "> ";
14f9c5c9 3681
0bcd0149 3682 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3683
14f9c5c9 3684 if (args == NULL)
323e0a4a 3685 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3686
3687 n_chosen = 0;
76a01679 3688
4c4b4cd2
PH
3689 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3690 order, as given in args. Choices are validated. */
14f9c5c9
AS
3691 while (1)
3692 {
d2e4a39e 3693 char *args2;
14f9c5c9
AS
3694 int choice, j;
3695
0fcd72ba 3696 args = skip_spaces (args);
14f9c5c9 3697 if (*args == '\0' && n_chosen == 0)
323e0a4a 3698 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3699 else if (*args == '\0')
4c4b4cd2 3700 break;
14f9c5c9
AS
3701
3702 choice = strtol (args, &args2, 10);
d2e4a39e 3703 if (args == args2 || choice < 0
4c4b4cd2 3704 || choice > n_choices + first_choice - 1)
323e0a4a 3705 error (_("Argument must be choice number"));
14f9c5c9
AS
3706 args = args2;
3707
d2e4a39e 3708 if (choice == 0)
323e0a4a 3709 error (_("cancelled"));
14f9c5c9
AS
3710
3711 if (choice < first_choice)
4c4b4cd2
PH
3712 {
3713 n_chosen = n_choices;
3714 for (j = 0; j < n_choices; j += 1)
3715 choices[j] = j;
3716 break;
3717 }
14f9c5c9
AS
3718 choice -= first_choice;
3719
d2e4a39e 3720 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3721 {
3722 }
14f9c5c9
AS
3723
3724 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3725 {
3726 int k;
5b4ee69b 3727
4c4b4cd2
PH
3728 for (k = n_chosen - 1; k > j; k -= 1)
3729 choices[k + 1] = choices[k];
3730 choices[j + 1] = choice;
3731 n_chosen += 1;
3732 }
14f9c5c9
AS
3733 }
3734
3735 if (n_chosen > max_results)
323e0a4a 3736 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3737
14f9c5c9
AS
3738 return n_chosen;
3739}
3740
4c4b4cd2
PH
3741/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3742 on the function identified by SYM and BLOCK, and taking NARGS
3743 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3744
3745static void
d2e4a39e 3746replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3747 int oplen, struct symbol *sym,
270140bd 3748 const struct block *block)
14f9c5c9
AS
3749{
3750 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3751 symbol, -oplen for operator being replaced). */
d2e4a39e 3752 struct expression *newexp = (struct expression *)
8c1a34e7 3753 xzalloc (sizeof (struct expression)
4c4b4cd2 3754 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3755 struct expression *exp = *expp;
14f9c5c9
AS
3756
3757 newexp->nelts = exp->nelts + 7 - oplen;
3758 newexp->language_defn = exp->language_defn;
3489610d 3759 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3760 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3761 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3762 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3763
3764 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3765 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3766
3767 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3768 newexp->elts[pc + 4].block = block;
3769 newexp->elts[pc + 5].symbol = sym;
3770
3771 *expp = newexp;
aacb1f0a 3772 xfree (exp);
d2e4a39e 3773}
14f9c5c9
AS
3774
3775/* Type-class predicates */
3776
4c4b4cd2
PH
3777/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3778 or FLOAT). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781numeric_type_p (struct type *type)
14f9c5c9
AS
3782{
3783 if (type == NULL)
3784 return 0;
d2e4a39e
AS
3785 else
3786 {
3787 switch (TYPE_CODE (type))
4c4b4cd2
PH
3788 {
3789 case TYPE_CODE_INT:
3790 case TYPE_CODE_FLT:
3791 return 1;
3792 case TYPE_CODE_RANGE:
3793 return (type == TYPE_TARGET_TYPE (type)
3794 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3795 default:
3796 return 0;
3797 }
d2e4a39e 3798 }
14f9c5c9
AS
3799}
3800
4c4b4cd2 3801/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3802
3803static int
d2e4a39e 3804integer_type_p (struct type *type)
14f9c5c9
AS
3805{
3806 if (type == NULL)
3807 return 0;
d2e4a39e
AS
3808 else
3809 {
3810 switch (TYPE_CODE (type))
4c4b4cd2
PH
3811 {
3812 case TYPE_CODE_INT:
3813 return 1;
3814 case TYPE_CODE_RANGE:
3815 return (type == TYPE_TARGET_TYPE (type)
3816 || integer_type_p (TYPE_TARGET_TYPE (type)));
3817 default:
3818 return 0;
3819 }
d2e4a39e 3820 }
14f9c5c9
AS
3821}
3822
4c4b4cd2 3823/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3824
3825static int
d2e4a39e 3826scalar_type_p (struct type *type)
14f9c5c9
AS
3827{
3828 if (type == NULL)
3829 return 0;
d2e4a39e
AS
3830 else
3831 {
3832 switch (TYPE_CODE (type))
4c4b4cd2
PH
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_FLT:
3838 return 1;
3839 default:
3840 return 0;
3841 }
d2e4a39e 3842 }
14f9c5c9
AS
3843}
3844
4c4b4cd2 3845/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3846
3847static int
d2e4a39e 3848discrete_type_p (struct type *type)
14f9c5c9
AS
3849{
3850 if (type == NULL)
3851 return 0;
d2e4a39e
AS
3852 else
3853 {
3854 switch (TYPE_CODE (type))
4c4b4cd2
PH
3855 {
3856 case TYPE_CODE_INT:
3857 case TYPE_CODE_RANGE:
3858 case TYPE_CODE_ENUM:
872f0337 3859 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3860 return 1;
3861 default:
3862 return 0;
3863 }
d2e4a39e 3864 }
14f9c5c9
AS
3865}
3866
4c4b4cd2
PH
3867/* Returns non-zero if OP with operands in the vector ARGS could be
3868 a user-defined function. Errs on the side of pre-defined operators
3869 (i.e., result 0). */
14f9c5c9
AS
3870
3871static int
d2e4a39e 3872possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3873{
76a01679 3874 struct type *type0 =
df407dfe 3875 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3876 struct type *type1 =
df407dfe 3877 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3878
4c4b4cd2
PH
3879 if (type0 == NULL)
3880 return 0;
3881
14f9c5c9
AS
3882 switch (op)
3883 {
3884 default:
3885 return 0;
3886
3887 case BINOP_ADD:
3888 case BINOP_SUB:
3889 case BINOP_MUL:
3890 case BINOP_DIV:
d2e4a39e 3891 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3892
3893 case BINOP_REM:
3894 case BINOP_MOD:
3895 case BINOP_BITWISE_AND:
3896 case BINOP_BITWISE_IOR:
3897 case BINOP_BITWISE_XOR:
d2e4a39e 3898 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3899
3900 case BINOP_EQUAL:
3901 case BINOP_NOTEQUAL:
3902 case BINOP_LESS:
3903 case BINOP_GTR:
3904 case BINOP_LEQ:
3905 case BINOP_GEQ:
d2e4a39e 3906 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3907
3908 case BINOP_CONCAT:
ee90b9ab 3909 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3910
3911 case BINOP_EXP:
d2e4a39e 3912 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3913
3914 case UNOP_NEG:
3915 case UNOP_PLUS:
3916 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3917 case UNOP_ABS:
3918 return (!numeric_type_p (type0));
14f9c5c9
AS
3919
3920 }
3921}
3922\f
4c4b4cd2 3923 /* Renaming */
14f9c5c9 3924
aeb5907d
JB
3925/* NOTES:
3926
3927 1. In the following, we assume that a renaming type's name may
3928 have an ___XD suffix. It would be nice if this went away at some
3929 point.
3930 2. We handle both the (old) purely type-based representation of
3931 renamings and the (new) variable-based encoding. At some point,
3932 it is devoutly to be hoped that the former goes away
3933 (FIXME: hilfinger-2007-07-09).
3934 3. Subprogram renamings are not implemented, although the XRS
3935 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3936
3937/* If SYM encodes a renaming,
3938
3939 <renaming> renames <renamed entity>,
3940
3941 sets *LEN to the length of the renamed entity's name,
3942 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3943 the string describing the subcomponent selected from the renamed
0963b4bd 3944 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3945 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3946 are undefined). Otherwise, returns a value indicating the category
3947 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3948 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3949 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3950 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3951 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3952 may be NULL, in which case they are not assigned.
3953
3954 [Currently, however, GCC does not generate subprogram renamings.] */
3955
3956enum ada_renaming_category
3957ada_parse_renaming (struct symbol *sym,
3958 const char **renamed_entity, int *len,
3959 const char **renaming_expr)
3960{
3961 enum ada_renaming_category kind;
3962 const char *info;
3963 const char *suffix;
3964
3965 if (sym == NULL)
3966 return ADA_NOT_RENAMING;
3967 switch (SYMBOL_CLASS (sym))
14f9c5c9 3968 {
aeb5907d
JB
3969 default:
3970 return ADA_NOT_RENAMING;
3971 case LOC_TYPEDEF:
3972 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3973 renamed_entity, len, renaming_expr);
3974 case LOC_LOCAL:
3975 case LOC_STATIC:
3976 case LOC_COMPUTED:
3977 case LOC_OPTIMIZED_OUT:
3978 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3979 if (info == NULL)
3980 return ADA_NOT_RENAMING;
3981 switch (info[5])
3982 {
3983 case '_':
3984 kind = ADA_OBJECT_RENAMING;
3985 info += 6;
3986 break;
3987 case 'E':
3988 kind = ADA_EXCEPTION_RENAMING;
3989 info += 7;
3990 break;
3991 case 'P':
3992 kind = ADA_PACKAGE_RENAMING;
3993 info += 7;
3994 break;
3995 case 'S':
3996 kind = ADA_SUBPROGRAM_RENAMING;
3997 info += 7;
3998 break;
3999 default:
4000 return ADA_NOT_RENAMING;
4001 }
14f9c5c9 4002 }
4c4b4cd2 4003
aeb5907d
JB
4004 if (renamed_entity != NULL)
4005 *renamed_entity = info;
4006 suffix = strstr (info, "___XE");
4007 if (suffix == NULL || suffix == info)
4008 return ADA_NOT_RENAMING;
4009 if (len != NULL)
4010 *len = strlen (info) - strlen (suffix);
4011 suffix += 5;
4012 if (renaming_expr != NULL)
4013 *renaming_expr = suffix;
4014 return kind;
4015}
4016
4017/* Assuming TYPE encodes a renaming according to the old encoding in
4018 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4019 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4020 ADA_NOT_RENAMING otherwise. */
4021static enum ada_renaming_category
4022parse_old_style_renaming (struct type *type,
4023 const char **renamed_entity, int *len,
4024 const char **renaming_expr)
4025{
4026 enum ada_renaming_category kind;
4027 const char *name;
4028 const char *info;
4029 const char *suffix;
14f9c5c9 4030
aeb5907d
JB
4031 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4032 || TYPE_NFIELDS (type) != 1)
4033 return ADA_NOT_RENAMING;
14f9c5c9 4034
aeb5907d
JB
4035 name = type_name_no_tag (type);
4036 if (name == NULL)
4037 return ADA_NOT_RENAMING;
4038
4039 name = strstr (name, "___XR");
4040 if (name == NULL)
4041 return ADA_NOT_RENAMING;
4042 switch (name[5])
4043 {
4044 case '\0':
4045 case '_':
4046 kind = ADA_OBJECT_RENAMING;
4047 break;
4048 case 'E':
4049 kind = ADA_EXCEPTION_RENAMING;
4050 break;
4051 case 'P':
4052 kind = ADA_PACKAGE_RENAMING;
4053 break;
4054 case 'S':
4055 kind = ADA_SUBPROGRAM_RENAMING;
4056 break;
4057 default:
4058 return ADA_NOT_RENAMING;
4059 }
14f9c5c9 4060
aeb5907d
JB
4061 info = TYPE_FIELD_NAME (type, 0);
4062 if (info == NULL)
4063 return ADA_NOT_RENAMING;
4064 if (renamed_entity != NULL)
4065 *renamed_entity = info;
4066 suffix = strstr (info, "___XE");
4067 if (renaming_expr != NULL)
4068 *renaming_expr = suffix + 5;
4069 if (suffix == NULL || suffix == info)
4070 return ADA_NOT_RENAMING;
4071 if (len != NULL)
4072 *len = suffix - info;
4073 return kind;
a5ee536b
JB
4074}
4075
4076/* Compute the value of the given RENAMING_SYM, which is expected to
4077 be a symbol encoding a renaming expression. BLOCK is the block
4078 used to evaluate the renaming. */
52ce6436 4079
a5ee536b
JB
4080static struct value *
4081ada_read_renaming_var_value (struct symbol *renaming_sym,
4082 struct block *block)
4083{
bbc13ae3 4084 const char *sym_name;
a5ee536b
JB
4085 struct expression *expr;
4086 struct value *value;
4087 struct cleanup *old_chain = NULL;
4088
bbc13ae3 4089 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4090 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4091 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4092 value = evaluate_expression (expr);
4093
4094 do_cleanups (old_chain);
4095 return value;
4096}
14f9c5c9 4097\f
d2e4a39e 4098
4c4b4cd2 4099 /* Evaluation: Function Calls */
14f9c5c9 4100
4c4b4cd2 4101/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4102 lvalues, and otherwise has the side-effect of allocating memory
4103 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4104
d2e4a39e 4105static struct value *
40bc484c 4106ensure_lval (struct value *val)
14f9c5c9 4107{
40bc484c
JB
4108 if (VALUE_LVAL (val) == not_lval
4109 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4110 {
df407dfe 4111 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4112 const CORE_ADDR addr =
4113 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4114
40bc484c 4115 set_value_address (val, addr);
a84a8a0d 4116 VALUE_LVAL (val) = lval_memory;
40bc484c 4117 write_memory (addr, value_contents (val), len);
c3e5cd34 4118 }
14f9c5c9
AS
4119
4120 return val;
4121}
4122
4123/* Return the value ACTUAL, converted to be an appropriate value for a
4124 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4125 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4126 values not residing in memory, updating it as needed. */
14f9c5c9 4127
a93c0eb6 4128struct value *
40bc484c 4129ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4130{
df407dfe 4131 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4132 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4133 struct type *formal_target =
4134 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4135 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4136 struct type *actual_target =
4137 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4138 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4139
4c4b4cd2 4140 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4141 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4142 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4143 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4144 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4145 {
a84a8a0d 4146 struct value *result;
5b4ee69b 4147
14f9c5c9 4148 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4149 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4150 result = desc_data (actual);
14f9c5c9 4151 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4152 {
4153 if (VALUE_LVAL (actual) != lval_memory)
4154 {
4155 struct value *val;
5b4ee69b 4156
df407dfe 4157 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4158 val = allocate_value (actual_type);
990a07ab 4159 memcpy ((char *) value_contents_raw (val),
0fd88904 4160 (char *) value_contents (actual),
4c4b4cd2 4161 TYPE_LENGTH (actual_type));
40bc484c 4162 actual = ensure_lval (val);
4c4b4cd2 4163 }
a84a8a0d 4164 result = value_addr (actual);
4c4b4cd2 4165 }
a84a8a0d
JB
4166 else
4167 return actual;
b1af9e97 4168 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4169 }
4170 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4171 return ada_value_ind (actual);
4172
4173 return actual;
4174}
4175
438c98a1
JB
4176/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4177 type TYPE. This is usually an inefficient no-op except on some targets
4178 (such as AVR) where the representation of a pointer and an address
4179 differs. */
4180
4181static CORE_ADDR
4182value_pointer (struct value *value, struct type *type)
4183{
4184 struct gdbarch *gdbarch = get_type_arch (type);
4185 unsigned len = TYPE_LENGTH (type);
4186 gdb_byte *buf = alloca (len);
4187 CORE_ADDR addr;
4188
4189 addr = value_address (value);
4190 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4191 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4192 return addr;
4193}
4194
14f9c5c9 4195
4c4b4cd2
PH
4196/* Push a descriptor of type TYPE for array value ARR on the stack at
4197 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4198 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4199 to-descriptor type rather than a descriptor type), a struct value *
4200 representing a pointer to this descriptor. */
14f9c5c9 4201
d2e4a39e 4202static struct value *
40bc484c 4203make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4204{
d2e4a39e
AS
4205 struct type *bounds_type = desc_bounds_type (type);
4206 struct type *desc_type = desc_base_type (type);
4207 struct value *descriptor = allocate_value (desc_type);
4208 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4209 int i;
d2e4a39e 4210
0963b4bd
MS
4211 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4212 i > 0; i -= 1)
14f9c5c9 4213 {
19f220c3
JK
4214 modify_field (value_type (bounds), value_contents_writeable (bounds),
4215 ada_array_bound (arr, i, 0),
4216 desc_bound_bitpos (bounds_type, i, 0),
4217 desc_bound_bitsize (bounds_type, i, 0));
4218 modify_field (value_type (bounds), value_contents_writeable (bounds),
4219 ada_array_bound (arr, i, 1),
4220 desc_bound_bitpos (bounds_type, i, 1),
4221 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4222 }
d2e4a39e 4223
40bc484c 4224 bounds = ensure_lval (bounds);
d2e4a39e 4225
19f220c3
JK
4226 modify_field (value_type (descriptor),
4227 value_contents_writeable (descriptor),
4228 value_pointer (ensure_lval (arr),
4229 TYPE_FIELD_TYPE (desc_type, 0)),
4230 fat_pntr_data_bitpos (desc_type),
4231 fat_pntr_data_bitsize (desc_type));
4232
4233 modify_field (value_type (descriptor),
4234 value_contents_writeable (descriptor),
4235 value_pointer (bounds,
4236 TYPE_FIELD_TYPE (desc_type, 1)),
4237 fat_pntr_bounds_bitpos (desc_type),
4238 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4239
40bc484c 4240 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4241
4242 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4243 return value_addr (descriptor);
4244 else
4245 return descriptor;
4246}
14f9c5c9 4247\f
963a6417 4248/* Dummy definitions for an experimental caching module that is not
0963b4bd 4249 * used in the public sources. */
96d887e8 4250
96d887e8
PH
4251static int
4252lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4253 struct symbol **sym, const struct block **block)
96d887e8
PH
4254{
4255 return 0;
4256}
4257
4258static void
4259cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4260 const struct block *block)
96d887e8
PH
4261{
4262}
4c4b4cd2
PH
4263\f
4264 /* Symbol Lookup */
4265
c0431670
JB
4266/* Return nonzero if wild matching should be used when searching for
4267 all symbols matching LOOKUP_NAME.
4268
4269 LOOKUP_NAME is expected to be a symbol name after transformation
4270 for Ada lookups (see ada_name_for_lookup). */
4271
4272static int
4273should_use_wild_match (const char *lookup_name)
4274{
4275 return (strstr (lookup_name, "__") == NULL);
4276}
4277
4c4b4cd2
PH
4278/* Return the result of a standard (literal, C-like) lookup of NAME in
4279 given DOMAIN, visible from lexical block BLOCK. */
4280
4281static struct symbol *
4282standard_lookup (const char *name, const struct block *block,
4283 domain_enum domain)
4284{
acbd605d
MGD
4285 /* Initialize it just to avoid a GCC false warning. */
4286 struct symbol *sym = NULL;
4c4b4cd2 4287
2570f2b7 4288 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4289 return sym;
2570f2b7
UW
4290 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4291 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4292 return sym;
4293}
4294
4295
4296/* Non-zero iff there is at least one non-function/non-enumeral symbol
4297 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4298 since they contend in overloading in the same way. */
4299static int
4300is_nonfunction (struct ada_symbol_info syms[], int n)
4301{
4302 int i;
4303
4304 for (i = 0; i < n; i += 1)
4305 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4306 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4307 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4308 return 1;
4309
4310 return 0;
4311}
4312
4313/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4314 struct types. Otherwise, they may not. */
14f9c5c9
AS
4315
4316static int
d2e4a39e 4317equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4318{
d2e4a39e 4319 if (type0 == type1)
14f9c5c9 4320 return 1;
d2e4a39e 4321 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4322 || TYPE_CODE (type0) != TYPE_CODE (type1))
4323 return 0;
d2e4a39e 4324 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4325 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4326 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4327 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4328 return 1;
d2e4a39e 4329
14f9c5c9
AS
4330 return 0;
4331}
4332
4333/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4334 no more defined than that of SYM1. */
14f9c5c9
AS
4335
4336static int
d2e4a39e 4337lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4338{
4339 if (sym0 == sym1)
4340 return 1;
176620f1 4341 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4342 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4343 return 0;
4344
d2e4a39e 4345 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4346 {
4347 case LOC_UNDEF:
4348 return 1;
4349 case LOC_TYPEDEF:
4350 {
4c4b4cd2
PH
4351 struct type *type0 = SYMBOL_TYPE (sym0);
4352 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4353 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4354 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4355 int len0 = strlen (name0);
5b4ee69b 4356
4c4b4cd2
PH
4357 return
4358 TYPE_CODE (type0) == TYPE_CODE (type1)
4359 && (equiv_types (type0, type1)
4360 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4361 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4362 }
4363 case LOC_CONST:
4364 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4365 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4366 default:
4367 return 0;
14f9c5c9
AS
4368 }
4369}
4370
4c4b4cd2
PH
4371/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4372 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4373
4374static void
76a01679
JB
4375add_defn_to_vec (struct obstack *obstackp,
4376 struct symbol *sym,
f0c5f9b2 4377 const struct block *block)
14f9c5c9
AS
4378{
4379 int i;
4c4b4cd2 4380 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4381
529cad9c
PH
4382 /* Do not try to complete stub types, as the debugger is probably
4383 already scanning all symbols matching a certain name at the
4384 time when this function is called. Trying to replace the stub
4385 type by its associated full type will cause us to restart a scan
4386 which may lead to an infinite recursion. Instead, the client
4387 collecting the matching symbols will end up collecting several
4388 matches, with at least one of them complete. It can then filter
4389 out the stub ones if needed. */
4390
4c4b4cd2
PH
4391 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4392 {
4393 if (lesseq_defined_than (sym, prevDefns[i].sym))
4394 return;
4395 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4396 {
4397 prevDefns[i].sym = sym;
4398 prevDefns[i].block = block;
4c4b4cd2 4399 return;
76a01679 4400 }
4c4b4cd2
PH
4401 }
4402
4403 {
4404 struct ada_symbol_info info;
4405
4406 info.sym = sym;
4407 info.block = block;
4c4b4cd2
PH
4408 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4409 }
4410}
4411
4412/* Number of ada_symbol_info structures currently collected in
4413 current vector in *OBSTACKP. */
4414
76a01679
JB
4415static int
4416num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4417{
4418 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4419}
4420
4421/* Vector of ada_symbol_info structures currently collected in current
4422 vector in *OBSTACKP. If FINISH, close off the vector and return
4423 its final address. */
4424
76a01679 4425static struct ada_symbol_info *
4c4b4cd2
PH
4426defns_collected (struct obstack *obstackp, int finish)
4427{
4428 if (finish)
4429 return obstack_finish (obstackp);
4430 else
4431 return (struct ada_symbol_info *) obstack_base (obstackp);
4432}
4433
7c7b6655
TT
4434/* Return a bound minimal symbol matching NAME according to Ada
4435 decoding rules. Returns an invalid symbol if there is no such
4436 minimal symbol. Names prefixed with "standard__" are handled
4437 specially: "standard__" is first stripped off, and only static and
4438 global symbols are searched. */
4c4b4cd2 4439
7c7b6655 4440struct bound_minimal_symbol
96d887e8 4441ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4442{
7c7b6655 4443 struct bound_minimal_symbol result;
4c4b4cd2 4444 struct objfile *objfile;
96d887e8 4445 struct minimal_symbol *msymbol;
dc4024cd 4446 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4447
7c7b6655
TT
4448 memset (&result, 0, sizeof (result));
4449
c0431670
JB
4450 /* Special case: If the user specifies a symbol name inside package
4451 Standard, do a non-wild matching of the symbol name without
4452 the "standard__" prefix. This was primarily introduced in order
4453 to allow the user to specifically access the standard exceptions
4454 using, for instance, Standard.Constraint_Error when Constraint_Error
4455 is ambiguous (due to the user defining its own Constraint_Error
4456 entity inside its program). */
96d887e8 4457 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4458 name += sizeof ("standard__") - 1;
4c4b4cd2 4459
96d887e8
PH
4460 ALL_MSYMBOLS (objfile, msymbol)
4461 {
dc4024cd 4462 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4463 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4464 {
4465 result.minsym = msymbol;
4466 result.objfile = objfile;
4467 break;
4468 }
96d887e8 4469 }
4c4b4cd2 4470
7c7b6655 4471 return result;
96d887e8 4472}
4c4b4cd2 4473
96d887e8
PH
4474/* For all subprograms that statically enclose the subprogram of the
4475 selected frame, add symbols matching identifier NAME in DOMAIN
4476 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4477 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4478 with a wildcard prefix. */
4c4b4cd2 4479
96d887e8
PH
4480static void
4481add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4482 const char *name, domain_enum namespace,
48b78332 4483 int wild_match_p)
96d887e8 4484{
96d887e8 4485}
14f9c5c9 4486
96d887e8
PH
4487/* True if TYPE is definitely an artificial type supplied to a symbol
4488 for which no debugging information was given in the symbol file. */
14f9c5c9 4489
96d887e8
PH
4490static int
4491is_nondebugging_type (struct type *type)
4492{
0d5cff50 4493 const char *name = ada_type_name (type);
5b4ee69b 4494
96d887e8
PH
4495 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4496}
4c4b4cd2 4497
8f17729f
JB
4498/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4499 that are deemed "identical" for practical purposes.
4500
4501 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4502 types and that their number of enumerals is identical (in other
4503 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4504
4505static int
4506ada_identical_enum_types_p (struct type *type1, struct type *type2)
4507{
4508 int i;
4509
4510 /* The heuristic we use here is fairly conservative. We consider
4511 that 2 enumerate types are identical if they have the same
4512 number of enumerals and that all enumerals have the same
4513 underlying value and name. */
4514
4515 /* All enums in the type should have an identical underlying value. */
4516 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4517 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4518 return 0;
4519
4520 /* All enumerals should also have the same name (modulo any numerical
4521 suffix). */
4522 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4523 {
0d5cff50
DE
4524 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4525 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4526 int len_1 = strlen (name_1);
4527 int len_2 = strlen (name_2);
4528
4529 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4530 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4531 if (len_1 != len_2
4532 || strncmp (TYPE_FIELD_NAME (type1, i),
4533 TYPE_FIELD_NAME (type2, i),
4534 len_1) != 0)
4535 return 0;
4536 }
4537
4538 return 1;
4539}
4540
4541/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4542 that are deemed "identical" for practical purposes. Sometimes,
4543 enumerals are not strictly identical, but their types are so similar
4544 that they can be considered identical.
4545
4546 For instance, consider the following code:
4547
4548 type Color is (Black, Red, Green, Blue, White);
4549 type RGB_Color is new Color range Red .. Blue;
4550
4551 Type RGB_Color is a subrange of an implicit type which is a copy
4552 of type Color. If we call that implicit type RGB_ColorB ("B" is
4553 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4554 As a result, when an expression references any of the enumeral
4555 by name (Eg. "print green"), the expression is technically
4556 ambiguous and the user should be asked to disambiguate. But
4557 doing so would only hinder the user, since it wouldn't matter
4558 what choice he makes, the outcome would always be the same.
4559 So, for practical purposes, we consider them as the same. */
4560
4561static int
4562symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4563{
4564 int i;
4565
4566 /* Before performing a thorough comparison check of each type,
4567 we perform a series of inexpensive checks. We expect that these
4568 checks will quickly fail in the vast majority of cases, and thus
4569 help prevent the unnecessary use of a more expensive comparison.
4570 Said comparison also expects us to make some of these checks
4571 (see ada_identical_enum_types_p). */
4572
4573 /* Quick check: All symbols should have an enum type. */
4574 for (i = 0; i < nsyms; i++)
4575 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4576 return 0;
4577
4578 /* Quick check: They should all have the same value. */
4579 for (i = 1; i < nsyms; i++)
4580 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4581 return 0;
4582
4583 /* Quick check: They should all have the same number of enumerals. */
4584 for (i = 1; i < nsyms; i++)
4585 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4586 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4587 return 0;
4588
4589 /* All the sanity checks passed, so we might have a set of
4590 identical enumeration types. Perform a more complete
4591 comparison of the type of each symbol. */
4592 for (i = 1; i < nsyms; i++)
4593 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4594 SYMBOL_TYPE (syms[0].sym)))
4595 return 0;
4596
4597 return 1;
4598}
4599
96d887e8
PH
4600/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4601 duplicate other symbols in the list (The only case I know of where
4602 this happens is when object files containing stabs-in-ecoff are
4603 linked with files containing ordinary ecoff debugging symbols (or no
4604 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4605 Returns the number of items in the modified list. */
4c4b4cd2 4606
96d887e8
PH
4607static int
4608remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4609{
4610 int i, j;
4c4b4cd2 4611
8f17729f
JB
4612 /* We should never be called with less than 2 symbols, as there
4613 cannot be any extra symbol in that case. But it's easy to
4614 handle, since we have nothing to do in that case. */
4615 if (nsyms < 2)
4616 return nsyms;
4617
96d887e8
PH
4618 i = 0;
4619 while (i < nsyms)
4620 {
a35ddb44 4621 int remove_p = 0;
339c13b6
JB
4622
4623 /* If two symbols have the same name and one of them is a stub type,
4624 the get rid of the stub. */
4625
4626 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4627 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4628 {
4629 for (j = 0; j < nsyms; j++)
4630 {
4631 if (j != i
4632 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4633 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4634 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4635 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4636 remove_p = 1;
339c13b6
JB
4637 }
4638 }
4639
4640 /* Two symbols with the same name, same class and same address
4641 should be identical. */
4642
4643 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4644 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4645 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4646 {
4647 for (j = 0; j < nsyms; j += 1)
4648 {
4649 if (i != j
4650 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4651 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4652 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4653 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4654 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4655 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4656 remove_p = 1;
4c4b4cd2 4657 }
4c4b4cd2 4658 }
339c13b6 4659
a35ddb44 4660 if (remove_p)
339c13b6
JB
4661 {
4662 for (j = i + 1; j < nsyms; j += 1)
4663 syms[j - 1] = syms[j];
4664 nsyms -= 1;
4665 }
4666
96d887e8 4667 i += 1;
14f9c5c9 4668 }
8f17729f
JB
4669
4670 /* If all the remaining symbols are identical enumerals, then
4671 just keep the first one and discard the rest.
4672
4673 Unlike what we did previously, we do not discard any entry
4674 unless they are ALL identical. This is because the symbol
4675 comparison is not a strict comparison, but rather a practical
4676 comparison. If all symbols are considered identical, then
4677 we can just go ahead and use the first one and discard the rest.
4678 But if we cannot reduce the list to a single element, we have
4679 to ask the user to disambiguate anyways. And if we have to
4680 present a multiple-choice menu, it's less confusing if the list
4681 isn't missing some choices that were identical and yet distinct. */
4682 if (symbols_are_identical_enums (syms, nsyms))
4683 nsyms = 1;
4684
96d887e8 4685 return nsyms;
14f9c5c9
AS
4686}
4687
96d887e8
PH
4688/* Given a type that corresponds to a renaming entity, use the type name
4689 to extract the scope (package name or function name, fully qualified,
4690 and following the GNAT encoding convention) where this renaming has been
4691 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4692
96d887e8
PH
4693static char *
4694xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4695{
96d887e8 4696 /* The renaming types adhere to the following convention:
0963b4bd 4697 <scope>__<rename>___<XR extension>.
96d887e8
PH
4698 So, to extract the scope, we search for the "___XR" extension,
4699 and then backtrack until we find the first "__". */
76a01679 4700
96d887e8
PH
4701 const char *name = type_name_no_tag (renaming_type);
4702 char *suffix = strstr (name, "___XR");
4703 char *last;
4704 int scope_len;
4705 char *scope;
14f9c5c9 4706
96d887e8
PH
4707 /* Now, backtrack a bit until we find the first "__". Start looking
4708 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4709
96d887e8
PH
4710 for (last = suffix - 3; last > name; last--)
4711 if (last[0] == '_' && last[1] == '_')
4712 break;
76a01679 4713
96d887e8 4714 /* Make a copy of scope and return it. */
14f9c5c9 4715
96d887e8
PH
4716 scope_len = last - name;
4717 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4718
96d887e8
PH
4719 strncpy (scope, name, scope_len);
4720 scope[scope_len] = '\0';
4c4b4cd2 4721
96d887e8 4722 return scope;
4c4b4cd2
PH
4723}
4724
96d887e8 4725/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4726
96d887e8
PH
4727static int
4728is_package_name (const char *name)
4c4b4cd2 4729{
96d887e8
PH
4730 /* Here, We take advantage of the fact that no symbols are generated
4731 for packages, while symbols are generated for each function.
4732 So the condition for NAME represent a package becomes equivalent
4733 to NAME not existing in our list of symbols. There is only one
4734 small complication with library-level functions (see below). */
4c4b4cd2 4735
96d887e8 4736 char *fun_name;
76a01679 4737
96d887e8
PH
4738 /* If it is a function that has not been defined at library level,
4739 then we should be able to look it up in the symbols. */
4740 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4741 return 0;
14f9c5c9 4742
96d887e8
PH
4743 /* Library-level function names start with "_ada_". See if function
4744 "_ada_" followed by NAME can be found. */
14f9c5c9 4745
96d887e8 4746 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4747 functions names cannot contain "__" in them. */
96d887e8
PH
4748 if (strstr (name, "__") != NULL)
4749 return 0;
4c4b4cd2 4750
b435e160 4751 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4752
96d887e8
PH
4753 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4754}
14f9c5c9 4755
96d887e8 4756/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4757 not visible from FUNCTION_NAME. */
14f9c5c9 4758
96d887e8 4759static int
0d5cff50 4760old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4761{
aeb5907d 4762 char *scope;
1509e573 4763 struct cleanup *old_chain;
aeb5907d
JB
4764
4765 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4766 return 0;
4767
4768 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4769 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4770
96d887e8
PH
4771 /* If the rename has been defined in a package, then it is visible. */
4772 if (is_package_name (scope))
1509e573
JB
4773 {
4774 do_cleanups (old_chain);
4775 return 0;
4776 }
14f9c5c9 4777
96d887e8
PH
4778 /* Check that the rename is in the current function scope by checking
4779 that its name starts with SCOPE. */
76a01679 4780
96d887e8
PH
4781 /* If the function name starts with "_ada_", it means that it is
4782 a library-level function. Strip this prefix before doing the
4783 comparison, as the encoding for the renaming does not contain
4784 this prefix. */
4785 if (strncmp (function_name, "_ada_", 5) == 0)
4786 function_name += 5;
f26caa11 4787
1509e573
JB
4788 {
4789 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4790
4791 do_cleanups (old_chain);
4792 return is_invisible;
4793 }
f26caa11
PH
4794}
4795
aeb5907d
JB
4796/* Remove entries from SYMS that corresponds to a renaming entity that
4797 is not visible from the function associated with CURRENT_BLOCK or
4798 that is superfluous due to the presence of more specific renaming
4799 information. Places surviving symbols in the initial entries of
4800 SYMS and returns the number of surviving symbols.
96d887e8
PH
4801
4802 Rationale:
aeb5907d
JB
4803 First, in cases where an object renaming is implemented as a
4804 reference variable, GNAT may produce both the actual reference
4805 variable and the renaming encoding. In this case, we discard the
4806 latter.
4807
4808 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4809 entity. Unfortunately, STABS currently does not support the definition
4810 of types that are local to a given lexical block, so all renamings types
4811 are emitted at library level. As a consequence, if an application
4812 contains two renaming entities using the same name, and a user tries to
4813 print the value of one of these entities, the result of the ada symbol
4814 lookup will also contain the wrong renaming type.
f26caa11 4815
96d887e8
PH
4816 This function partially covers for this limitation by attempting to
4817 remove from the SYMS list renaming symbols that should be visible
4818 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4819 method with the current information available. The implementation
4820 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4821
4822 - When the user tries to print a rename in a function while there
4823 is another rename entity defined in a package: Normally, the
4824 rename in the function has precedence over the rename in the
4825 package, so the latter should be removed from the list. This is
4826 currently not the case.
4827
4828 - This function will incorrectly remove valid renames if
4829 the CURRENT_BLOCK corresponds to a function which symbol name
4830 has been changed by an "Export" pragma. As a consequence,
4831 the user will be unable to print such rename entities. */
4c4b4cd2 4832
14f9c5c9 4833static int
aeb5907d
JB
4834remove_irrelevant_renamings (struct ada_symbol_info *syms,
4835 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4836{
4837 struct symbol *current_function;
0d5cff50 4838 const char *current_function_name;
4c4b4cd2 4839 int i;
aeb5907d
JB
4840 int is_new_style_renaming;
4841
4842 /* If there is both a renaming foo___XR... encoded as a variable and
4843 a simple variable foo in the same block, discard the latter.
0963b4bd 4844 First, zero out such symbols, then compress. */
aeb5907d
JB
4845 is_new_style_renaming = 0;
4846 for (i = 0; i < nsyms; i += 1)
4847 {
4848 struct symbol *sym = syms[i].sym;
270140bd 4849 const struct block *block = syms[i].block;
aeb5907d
JB
4850 const char *name;
4851 const char *suffix;
4852
4853 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4854 continue;
4855 name = SYMBOL_LINKAGE_NAME (sym);
4856 suffix = strstr (name, "___XR");
4857
4858 if (suffix != NULL)
4859 {
4860 int name_len = suffix - name;
4861 int j;
5b4ee69b 4862
aeb5907d
JB
4863 is_new_style_renaming = 1;
4864 for (j = 0; j < nsyms; j += 1)
4865 if (i != j && syms[j].sym != NULL
4866 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4867 name_len) == 0
4868 && block == syms[j].block)
4869 syms[j].sym = NULL;
4870 }
4871 }
4872 if (is_new_style_renaming)
4873 {
4874 int j, k;
4875
4876 for (j = k = 0; j < nsyms; j += 1)
4877 if (syms[j].sym != NULL)
4878 {
4879 syms[k] = syms[j];
4880 k += 1;
4881 }
4882 return k;
4883 }
4c4b4cd2
PH
4884
4885 /* Extract the function name associated to CURRENT_BLOCK.
4886 Abort if unable to do so. */
76a01679 4887
4c4b4cd2
PH
4888 if (current_block == NULL)
4889 return nsyms;
76a01679 4890
7f0df278 4891 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4892 if (current_function == NULL)
4893 return nsyms;
4894
4895 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4896 if (current_function_name == NULL)
4897 return nsyms;
4898
4899 /* Check each of the symbols, and remove it from the list if it is
4900 a type corresponding to a renaming that is out of the scope of
4901 the current block. */
4902
4903 i = 0;
4904 while (i < nsyms)
4905 {
aeb5907d
JB
4906 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4907 == ADA_OBJECT_RENAMING
4908 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4909 {
4910 int j;
5b4ee69b 4911
aeb5907d 4912 for (j = i + 1; j < nsyms; j += 1)
76a01679 4913 syms[j - 1] = syms[j];
4c4b4cd2
PH
4914 nsyms -= 1;
4915 }
4916 else
4917 i += 1;
4918 }
4919
4920 return nsyms;
4921}
4922
339c13b6
JB
4923/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4924 whose name and domain match NAME and DOMAIN respectively.
4925 If no match was found, then extend the search to "enclosing"
4926 routines (in other words, if we're inside a nested function,
4927 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4928 If WILD_MATCH_P is nonzero, perform the naming matching in
4929 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4930
4931 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4932
4933static void
4934ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 4935 const struct block *block, domain_enum domain,
d0a8ab18 4936 int wild_match_p)
339c13b6
JB
4937{
4938 int block_depth = 0;
4939
4940 while (block != NULL)
4941 {
4942 block_depth += 1;
d0a8ab18
JB
4943 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4944 wild_match_p);
339c13b6
JB
4945
4946 /* If we found a non-function match, assume that's the one. */
4947 if (is_nonfunction (defns_collected (obstackp, 0),
4948 num_defns_collected (obstackp)))
4949 return;
4950
4951 block = BLOCK_SUPERBLOCK (block);
4952 }
4953
4954 /* If no luck so far, try to find NAME as a local symbol in some lexically
4955 enclosing subprogram. */
4956 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4957 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4958}
4959
ccefe4c4 4960/* An object of this type is used as the user_data argument when
40658b94 4961 calling the map_matching_symbols method. */
ccefe4c4 4962
40658b94 4963struct match_data
ccefe4c4 4964{
40658b94 4965 struct objfile *objfile;
ccefe4c4 4966 struct obstack *obstackp;
40658b94
PH
4967 struct symbol *arg_sym;
4968 int found_sym;
ccefe4c4
TT
4969};
4970
40658b94
PH
4971/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4972 to a list of symbols. DATA0 is a pointer to a struct match_data *
4973 containing the obstack that collects the symbol list, the file that SYM
4974 must come from, a flag indicating whether a non-argument symbol has
4975 been found in the current block, and the last argument symbol
4976 passed in SYM within the current block (if any). When SYM is null,
4977 marking the end of a block, the argument symbol is added if no
4978 other has been found. */
ccefe4c4 4979
40658b94
PH
4980static int
4981aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4982{
40658b94
PH
4983 struct match_data *data = (struct match_data *) data0;
4984
4985 if (sym == NULL)
4986 {
4987 if (!data->found_sym && data->arg_sym != NULL)
4988 add_defn_to_vec (data->obstackp,
4989 fixup_symbol_section (data->arg_sym, data->objfile),
4990 block);
4991 data->found_sym = 0;
4992 data->arg_sym = NULL;
4993 }
4994 else
4995 {
4996 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4997 return 0;
4998 else if (SYMBOL_IS_ARGUMENT (sym))
4999 data->arg_sym = sym;
5000 else
5001 {
5002 data->found_sym = 1;
5003 add_defn_to_vec (data->obstackp,
5004 fixup_symbol_section (sym, data->objfile),
5005 block);
5006 }
5007 }
5008 return 0;
5009}
5010
db230ce3
JB
5011/* Implements compare_names, but only applying the comparision using
5012 the given CASING. */
5b4ee69b 5013
40658b94 5014static int
db230ce3
JB
5015compare_names_with_case (const char *string1, const char *string2,
5016 enum case_sensitivity casing)
40658b94
PH
5017{
5018 while (*string1 != '\0' && *string2 != '\0')
5019 {
db230ce3
JB
5020 char c1, c2;
5021
40658b94
PH
5022 if (isspace (*string1) || isspace (*string2))
5023 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5024
5025 if (casing == case_sensitive_off)
5026 {
5027 c1 = tolower (*string1);
5028 c2 = tolower (*string2);
5029 }
5030 else
5031 {
5032 c1 = *string1;
5033 c2 = *string2;
5034 }
5035 if (c1 != c2)
40658b94 5036 break;
db230ce3 5037
40658b94
PH
5038 string1 += 1;
5039 string2 += 1;
5040 }
db230ce3 5041
40658b94
PH
5042 switch (*string1)
5043 {
5044 case '(':
5045 return strcmp_iw_ordered (string1, string2);
5046 case '_':
5047 if (*string2 == '\0')
5048 {
052874e8 5049 if (is_name_suffix (string1))
40658b94
PH
5050 return 0;
5051 else
1a1d5513 5052 return 1;
40658b94 5053 }
dbb8534f 5054 /* FALLTHROUGH */
40658b94
PH
5055 default:
5056 if (*string2 == '(')
5057 return strcmp_iw_ordered (string1, string2);
5058 else
db230ce3
JB
5059 {
5060 if (casing == case_sensitive_off)
5061 return tolower (*string1) - tolower (*string2);
5062 else
5063 return *string1 - *string2;
5064 }
40658b94 5065 }
ccefe4c4
TT
5066}
5067
db230ce3
JB
5068/* Compare STRING1 to STRING2, with results as for strcmp.
5069 Compatible with strcmp_iw_ordered in that...
5070
5071 strcmp_iw_ordered (STRING1, STRING2) <= 0
5072
5073 ... implies...
5074
5075 compare_names (STRING1, STRING2) <= 0
5076
5077 (they may differ as to what symbols compare equal). */
5078
5079static int
5080compare_names (const char *string1, const char *string2)
5081{
5082 int result;
5083
5084 /* Similar to what strcmp_iw_ordered does, we need to perform
5085 a case-insensitive comparison first, and only resort to
5086 a second, case-sensitive, comparison if the first one was
5087 not sufficient to differentiate the two strings. */
5088
5089 result = compare_names_with_case (string1, string2, case_sensitive_off);
5090 if (result == 0)
5091 result = compare_names_with_case (string1, string2, case_sensitive_on);
5092
5093 return result;
5094}
5095
339c13b6
JB
5096/* Add to OBSTACKP all non-local symbols whose name and domain match
5097 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5098 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5099
5100static void
40658b94
PH
5101add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5102 domain_enum domain, int global,
5103 int is_wild_match)
339c13b6
JB
5104{
5105 struct objfile *objfile;
40658b94 5106 struct match_data data;
339c13b6 5107
6475f2fe 5108 memset (&data, 0, sizeof data);
ccefe4c4 5109 data.obstackp = obstackp;
339c13b6 5110
ccefe4c4 5111 ALL_OBJFILES (objfile)
40658b94
PH
5112 {
5113 data.objfile = objfile;
5114
5115 if (is_wild_match)
ade7ed9e 5116 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5117 aux_add_nonlocal_symbols, &data,
5118 wild_match, NULL);
5119 else
ade7ed9e 5120 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5121 aux_add_nonlocal_symbols, &data,
5122 full_match, compare_names);
5123 }
5124
5125 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5126 {
5127 ALL_OBJFILES (objfile)
5128 {
5129 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5130 strcpy (name1, "_ada_");
5131 strcpy (name1 + sizeof ("_ada_") - 1, name);
5132 data.objfile = objfile;
ade7ed9e
DE
5133 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5134 global,
0963b4bd
MS
5135 aux_add_nonlocal_symbols,
5136 &data,
40658b94
PH
5137 full_match, compare_names);
5138 }
5139 }
339c13b6
JB
5140}
5141
4eeaa230
DE
5142/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5143 non-zero, enclosing scope and in global scopes, returning the number of
5144 matches.
9f88c959 5145 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5146 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5147 any) in which they were found. This vector is transient---good only to
5148 the next call of ada_lookup_symbol_list.
5149
5150 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5151 symbol match within the nest of blocks whose innermost member is BLOCK0,
5152 is the one match returned (no other matches in that or
d9680e73 5153 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5154 surrounding BLOCK0, then these alone are returned.
5155
9f88c959 5156 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5157 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5158
4eeaa230
DE
5159static int
5160ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5161 domain_enum namespace,
5162 struct ada_symbol_info **results,
5163 int full_search)
14f9c5c9
AS
5164{
5165 struct symbol *sym;
f0c5f9b2 5166 const struct block *block;
4c4b4cd2 5167 const char *name;
82ccd55e 5168 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5169 int cacheIfUnique;
4c4b4cd2 5170 int ndefns;
14f9c5c9 5171
4c4b4cd2
PH
5172 obstack_free (&symbol_list_obstack, NULL);
5173 obstack_init (&symbol_list_obstack);
14f9c5c9 5174
14f9c5c9
AS
5175 cacheIfUnique = 0;
5176
5177 /* Search specified block and its superiors. */
5178
4c4b4cd2 5179 name = name0;
f0c5f9b2 5180 block = block0;
339c13b6
JB
5181
5182 /* Special case: If the user specifies a symbol name inside package
5183 Standard, do a non-wild matching of the symbol name without
5184 the "standard__" prefix. This was primarily introduced in order
5185 to allow the user to specifically access the standard exceptions
5186 using, for instance, Standard.Constraint_Error when Constraint_Error
5187 is ambiguous (due to the user defining its own Constraint_Error
5188 entity inside its program). */
4c4b4cd2
PH
5189 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5190 {
4c4b4cd2
PH
5191 block = NULL;
5192 name = name0 + sizeof ("standard__") - 1;
5193 }
5194
339c13b6 5195 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5196
4eeaa230
DE
5197 if (block != NULL)
5198 {
5199 if (full_search)
5200 {
5201 ada_add_local_symbols (&symbol_list_obstack, name, block,
5202 namespace, wild_match_p);
5203 }
5204 else
5205 {
5206 /* In the !full_search case we're are being called by
5207 ada_iterate_over_symbols, and we don't want to search
5208 superblocks. */
5209 ada_add_block_symbols (&symbol_list_obstack, block, name,
5210 namespace, NULL, wild_match_p);
5211 }
5212 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5213 goto done;
5214 }
d2e4a39e 5215
339c13b6
JB
5216 /* No non-global symbols found. Check our cache to see if we have
5217 already performed this search before. If we have, then return
5218 the same result. */
5219
14f9c5c9 5220 cacheIfUnique = 1;
2570f2b7 5221 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5222 {
5223 if (sym != NULL)
2570f2b7 5224 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5225 goto done;
5226 }
14f9c5c9 5227
339c13b6
JB
5228 /* Search symbols from all global blocks. */
5229
40658b94 5230 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5231 wild_match_p);
d2e4a39e 5232
4c4b4cd2 5233 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5234 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5235
4c4b4cd2 5236 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5237 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5238 wild_match_p);
14f9c5c9 5239
4c4b4cd2
PH
5240done:
5241 ndefns = num_defns_collected (&symbol_list_obstack);
5242 *results = defns_collected (&symbol_list_obstack, 1);
5243
5244 ndefns = remove_extra_symbols (*results, ndefns);
5245
2ad01556 5246 if (ndefns == 0 && full_search)
2570f2b7 5247 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5248
2ad01556 5249 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5250 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5251
aeb5907d 5252 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5253
14f9c5c9
AS
5254 return ndefns;
5255}
5256
4eeaa230
DE
5257/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5258 in global scopes, returning the number of matches, and setting *RESULTS
5259 to a vector of (SYM,BLOCK) tuples.
5260 See ada_lookup_symbol_list_worker for further details. */
5261
5262int
5263ada_lookup_symbol_list (const char *name0, const struct block *block0,
5264 domain_enum domain, struct ada_symbol_info **results)
5265{
5266 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5267}
5268
5269/* Implementation of the la_iterate_over_symbols method. */
5270
5271static void
5272ada_iterate_over_symbols (const struct block *block,
5273 const char *name, domain_enum domain,
5274 symbol_found_callback_ftype *callback,
5275 void *data)
5276{
5277 int ndefs, i;
5278 struct ada_symbol_info *results;
5279
5280 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5281 for (i = 0; i < ndefs; ++i)
5282 {
5283 if (! (*callback) (results[i].sym, data))
5284 break;
5285 }
5286}
5287
f8eba3c6
TT
5288/* If NAME is the name of an entity, return a string that should
5289 be used to look that entity up in Ada units. This string should
5290 be deallocated after use using xfree.
5291
5292 NAME can have any form that the "break" or "print" commands might
5293 recognize. In other words, it does not have to be the "natural"
5294 name, or the "encoded" name. */
5295
5296char *
5297ada_name_for_lookup (const char *name)
5298{
5299 char *canon;
5300 int nlen = strlen (name);
5301
5302 if (name[0] == '<' && name[nlen - 1] == '>')
5303 {
5304 canon = xmalloc (nlen - 1);
5305 memcpy (canon, name + 1, nlen - 2);
5306 canon[nlen - 2] = '\0';
5307 }
5308 else
5309 canon = xstrdup (ada_encode (ada_fold_name (name)));
5310 return canon;
5311}
5312
4e5c77fe
JB
5313/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5314 to 1, but choosing the first symbol found if there are multiple
5315 choices.
5316
5e2336be
JB
5317 The result is stored in *INFO, which must be non-NULL.
5318 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5319
5320void
5321ada_lookup_encoded_symbol (const char *name, const struct block *block,
5322 domain_enum namespace,
5e2336be 5323 struct ada_symbol_info *info)
14f9c5c9 5324{
4c4b4cd2 5325 struct ada_symbol_info *candidates;
14f9c5c9
AS
5326 int n_candidates;
5327
5e2336be
JB
5328 gdb_assert (info != NULL);
5329 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5330
4eeaa230 5331 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5332 if (n_candidates == 0)
4e5c77fe 5333 return;
4c4b4cd2 5334
5e2336be
JB
5335 *info = candidates[0];
5336 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5337}
aeb5907d
JB
5338
5339/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5340 scope and in global scopes, or NULL if none. NAME is folded and
5341 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5342 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5343 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5344
aeb5907d
JB
5345struct symbol *
5346ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5347 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5348{
5e2336be 5349 struct ada_symbol_info info;
4e5c77fe 5350
aeb5907d
JB
5351 if (is_a_field_of_this != NULL)
5352 *is_a_field_of_this = 0;
5353
4e5c77fe 5354 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5355 block0, namespace, &info);
5356 return info.sym;
4c4b4cd2 5357}
14f9c5c9 5358
4c4b4cd2
PH
5359static struct symbol *
5360ada_lookup_symbol_nonlocal (const char *name,
76a01679 5361 const struct block *block,
21b556f4 5362 const domain_enum domain)
4c4b4cd2 5363{
94af9270 5364 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5365}
5366
5367
4c4b4cd2
PH
5368/* True iff STR is a possible encoded suffix of a normal Ada name
5369 that is to be ignored for matching purposes. Suffixes of parallel
5370 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5371 are given by any of the regular expressions:
4c4b4cd2 5372
babe1480
JB
5373 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5374 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5375 TKB [subprogram suffix for task bodies]
babe1480 5376 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5377 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5378
5379 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5380 match is performed. This sequence is used to differentiate homonyms,
5381 is an optional part of a valid name suffix. */
4c4b4cd2 5382
14f9c5c9 5383static int
d2e4a39e 5384is_name_suffix (const char *str)
14f9c5c9
AS
5385{
5386 int k;
4c4b4cd2
PH
5387 const char *matching;
5388 const int len = strlen (str);
5389
babe1480
JB
5390 /* Skip optional leading __[0-9]+. */
5391
4c4b4cd2
PH
5392 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5393 {
babe1480
JB
5394 str += 3;
5395 while (isdigit (str[0]))
5396 str += 1;
4c4b4cd2 5397 }
babe1480
JB
5398
5399 /* [.$][0-9]+ */
4c4b4cd2 5400
babe1480 5401 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5402 {
babe1480 5403 matching = str + 1;
4c4b4cd2
PH
5404 while (isdigit (matching[0]))
5405 matching += 1;
5406 if (matching[0] == '\0')
5407 return 1;
5408 }
5409
5410 /* ___[0-9]+ */
babe1480 5411
4c4b4cd2
PH
5412 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5413 {
5414 matching = str + 3;
5415 while (isdigit (matching[0]))
5416 matching += 1;
5417 if (matching[0] == '\0')
5418 return 1;
5419 }
5420
9ac7f98e
JB
5421 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5422
5423 if (strcmp (str, "TKB") == 0)
5424 return 1;
5425
529cad9c
PH
5426#if 0
5427 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5428 with a N at the end. Unfortunately, the compiler uses the same
5429 convention for other internal types it creates. So treating
529cad9c 5430 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5431 some regressions. For instance, consider the case of an enumerated
5432 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5433 name ends with N.
5434 Having a single character like this as a suffix carrying some
0963b4bd 5435 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5436 to be something like "_N" instead. In the meantime, do not do
5437 the following check. */
5438 /* Protected Object Subprograms */
5439 if (len == 1 && str [0] == 'N')
5440 return 1;
5441#endif
5442
5443 /* _E[0-9]+[bs]$ */
5444 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5445 {
5446 matching = str + 3;
5447 while (isdigit (matching[0]))
5448 matching += 1;
5449 if ((matching[0] == 'b' || matching[0] == 's')
5450 && matching [1] == '\0')
5451 return 1;
5452 }
5453
4c4b4cd2
PH
5454 /* ??? We should not modify STR directly, as we are doing below. This
5455 is fine in this case, but may become problematic later if we find
5456 that this alternative did not work, and want to try matching
5457 another one from the begining of STR. Since we modified it, we
5458 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5459 if (str[0] == 'X')
5460 {
5461 str += 1;
d2e4a39e 5462 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5463 {
5464 if (str[0] != 'n' && str[0] != 'b')
5465 return 0;
5466 str += 1;
5467 }
14f9c5c9 5468 }
babe1480 5469
14f9c5c9
AS
5470 if (str[0] == '\000')
5471 return 1;
babe1480 5472
d2e4a39e 5473 if (str[0] == '_')
14f9c5c9
AS
5474 {
5475 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5476 return 0;
d2e4a39e 5477 if (str[2] == '_')
4c4b4cd2 5478 {
61ee279c
PH
5479 if (strcmp (str + 3, "JM") == 0)
5480 return 1;
5481 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5482 the LJM suffix in favor of the JM one. But we will
5483 still accept LJM as a valid suffix for a reasonable
5484 amount of time, just to allow ourselves to debug programs
5485 compiled using an older version of GNAT. */
4c4b4cd2
PH
5486 if (strcmp (str + 3, "LJM") == 0)
5487 return 1;
5488 if (str[3] != 'X')
5489 return 0;
1265e4aa
JB
5490 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5491 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5492 return 1;
5493 if (str[4] == 'R' && str[5] != 'T')
5494 return 1;
5495 return 0;
5496 }
5497 if (!isdigit (str[2]))
5498 return 0;
5499 for (k = 3; str[k] != '\0'; k += 1)
5500 if (!isdigit (str[k]) && str[k] != '_')
5501 return 0;
14f9c5c9
AS
5502 return 1;
5503 }
4c4b4cd2 5504 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5505 {
4c4b4cd2
PH
5506 for (k = 2; str[k] != '\0'; k += 1)
5507 if (!isdigit (str[k]) && str[k] != '_')
5508 return 0;
14f9c5c9
AS
5509 return 1;
5510 }
5511 return 0;
5512}
d2e4a39e 5513
aeb5907d
JB
5514/* Return non-zero if the string starting at NAME and ending before
5515 NAME_END contains no capital letters. */
529cad9c
PH
5516
5517static int
5518is_valid_name_for_wild_match (const char *name0)
5519{
5520 const char *decoded_name = ada_decode (name0);
5521 int i;
5522
5823c3ef
JB
5523 /* If the decoded name starts with an angle bracket, it means that
5524 NAME0 does not follow the GNAT encoding format. It should then
5525 not be allowed as a possible wild match. */
5526 if (decoded_name[0] == '<')
5527 return 0;
5528
529cad9c
PH
5529 for (i=0; decoded_name[i] != '\0'; i++)
5530 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5531 return 0;
5532
5533 return 1;
5534}
5535
73589123
PH
5536/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5537 that could start a simple name. Assumes that *NAMEP points into
5538 the string beginning at NAME0. */
4c4b4cd2 5539
14f9c5c9 5540static int
73589123 5541advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5542{
73589123 5543 const char *name = *namep;
5b4ee69b 5544
5823c3ef 5545 while (1)
14f9c5c9 5546 {
aa27d0b3 5547 int t0, t1;
73589123
PH
5548
5549 t0 = *name;
5550 if (t0 == '_')
5551 {
5552 t1 = name[1];
5553 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5554 {
5555 name += 1;
5556 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5557 break;
5558 else
5559 name += 1;
5560 }
aa27d0b3
JB
5561 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5562 || name[2] == target0))
73589123
PH
5563 {
5564 name += 2;
5565 break;
5566 }
5567 else
5568 return 0;
5569 }
5570 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5571 name += 1;
5572 else
5823c3ef 5573 return 0;
73589123
PH
5574 }
5575
5576 *namep = name;
5577 return 1;
5578}
5579
5580/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5581 informational suffixes of NAME (i.e., for which is_name_suffix is
5582 true). Assumes that PATN is a lower-cased Ada simple name. */
5583
5584static int
5585wild_match (const char *name, const char *patn)
5586{
22e048c9 5587 const char *p;
73589123
PH
5588 const char *name0 = name;
5589
5590 while (1)
5591 {
5592 const char *match = name;
5593
5594 if (*name == *patn)
5595 {
5596 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5597 if (*p != *name)
5598 break;
5599 if (*p == '\0' && is_name_suffix (name))
5600 return match != name0 && !is_valid_name_for_wild_match (name0);
5601
5602 if (name[-1] == '_')
5603 name -= 1;
5604 }
5605 if (!advance_wild_match (&name, name0, *patn))
5606 return 1;
96d887e8 5607 }
96d887e8
PH
5608}
5609
40658b94
PH
5610/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5611 informational suffix. */
5612
c4d840bd
PH
5613static int
5614full_match (const char *sym_name, const char *search_name)
5615{
40658b94 5616 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5617}
5618
5619
96d887e8
PH
5620/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5621 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5622 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5623 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5624
5625static void
5626ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5627 const struct block *block, const char *name,
96d887e8 5628 domain_enum domain, struct objfile *objfile,
2570f2b7 5629 int wild)
96d887e8 5630{
8157b174 5631 struct block_iterator iter;
96d887e8
PH
5632 int name_len = strlen (name);
5633 /* A matching argument symbol, if any. */
5634 struct symbol *arg_sym;
5635 /* Set true when we find a matching non-argument symbol. */
5636 int found_sym;
5637 struct symbol *sym;
5638
5639 arg_sym = NULL;
5640 found_sym = 0;
5641 if (wild)
5642 {
8157b174
TT
5643 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5644 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5645 {
5eeb2539
AR
5646 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5647 SYMBOL_DOMAIN (sym), domain)
73589123 5648 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5649 {
2a2d4dc3
AS
5650 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5651 continue;
5652 else if (SYMBOL_IS_ARGUMENT (sym))
5653 arg_sym = sym;
5654 else
5655 {
76a01679
JB
5656 found_sym = 1;
5657 add_defn_to_vec (obstackp,
5658 fixup_symbol_section (sym, objfile),
2570f2b7 5659 block);
76a01679
JB
5660 }
5661 }
5662 }
96d887e8
PH
5663 }
5664 else
5665 {
8157b174
TT
5666 for (sym = block_iter_match_first (block, name, full_match, &iter);
5667 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5668 {
5eeb2539
AR
5669 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5670 SYMBOL_DOMAIN (sym), domain))
76a01679 5671 {
c4d840bd
PH
5672 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5673 {
5674 if (SYMBOL_IS_ARGUMENT (sym))
5675 arg_sym = sym;
5676 else
2a2d4dc3 5677 {
c4d840bd
PH
5678 found_sym = 1;
5679 add_defn_to_vec (obstackp,
5680 fixup_symbol_section (sym, objfile),
5681 block);
2a2d4dc3 5682 }
c4d840bd 5683 }
76a01679
JB
5684 }
5685 }
96d887e8
PH
5686 }
5687
5688 if (!found_sym && arg_sym != NULL)
5689 {
76a01679
JB
5690 add_defn_to_vec (obstackp,
5691 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5692 block);
96d887e8
PH
5693 }
5694
5695 if (!wild)
5696 {
5697 arg_sym = NULL;
5698 found_sym = 0;
5699
5700 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5701 {
5eeb2539
AR
5702 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5703 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5704 {
5705 int cmp;
5706
5707 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5708 if (cmp == 0)
5709 {
5710 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5711 if (cmp == 0)
5712 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5713 name_len);
5714 }
5715
5716 if (cmp == 0
5717 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5718 {
2a2d4dc3
AS
5719 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5720 {
5721 if (SYMBOL_IS_ARGUMENT (sym))
5722 arg_sym = sym;
5723 else
5724 {
5725 found_sym = 1;
5726 add_defn_to_vec (obstackp,
5727 fixup_symbol_section (sym, objfile),
5728 block);
5729 }
5730 }
76a01679
JB
5731 }
5732 }
76a01679 5733 }
96d887e8
PH
5734
5735 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5736 They aren't parameters, right? */
5737 if (!found_sym && arg_sym != NULL)
5738 {
5739 add_defn_to_vec (obstackp,
76a01679 5740 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5741 block);
96d887e8
PH
5742 }
5743 }
5744}
5745\f
41d27058
JB
5746
5747 /* Symbol Completion */
5748
5749/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5750 name in a form that's appropriate for the completion. The result
5751 does not need to be deallocated, but is only good until the next call.
5752
5753 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5754 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5755 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5756 in its encoded form. */
5757
5758static const char *
5759symbol_completion_match (const char *sym_name,
5760 const char *text, int text_len,
6ea35997 5761 int wild_match_p, int encoded_p)
41d27058 5762{
41d27058
JB
5763 const int verbatim_match = (text[0] == '<');
5764 int match = 0;
5765
5766 if (verbatim_match)
5767 {
5768 /* Strip the leading angle bracket. */
5769 text = text + 1;
5770 text_len--;
5771 }
5772
5773 /* First, test against the fully qualified name of the symbol. */
5774
5775 if (strncmp (sym_name, text, text_len) == 0)
5776 match = 1;
5777
6ea35997 5778 if (match && !encoded_p)
41d27058
JB
5779 {
5780 /* One needed check before declaring a positive match is to verify
5781 that iff we are doing a verbatim match, the decoded version
5782 of the symbol name starts with '<'. Otherwise, this symbol name
5783 is not a suitable completion. */
5784 const char *sym_name_copy = sym_name;
5785 int has_angle_bracket;
5786
5787 sym_name = ada_decode (sym_name);
5788 has_angle_bracket = (sym_name[0] == '<');
5789 match = (has_angle_bracket == verbatim_match);
5790 sym_name = sym_name_copy;
5791 }
5792
5793 if (match && !verbatim_match)
5794 {
5795 /* When doing non-verbatim match, another check that needs to
5796 be done is to verify that the potentially matching symbol name
5797 does not include capital letters, because the ada-mode would
5798 not be able to understand these symbol names without the
5799 angle bracket notation. */
5800 const char *tmp;
5801
5802 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5803 if (*tmp != '\0')
5804 match = 0;
5805 }
5806
5807 /* Second: Try wild matching... */
5808
e701b3c0 5809 if (!match && wild_match_p)
41d27058
JB
5810 {
5811 /* Since we are doing wild matching, this means that TEXT
5812 may represent an unqualified symbol name. We therefore must
5813 also compare TEXT against the unqualified name of the symbol. */
5814 sym_name = ada_unqualified_name (ada_decode (sym_name));
5815
5816 if (strncmp (sym_name, text, text_len) == 0)
5817 match = 1;
5818 }
5819
5820 /* Finally: If we found a mach, prepare the result to return. */
5821
5822 if (!match)
5823 return NULL;
5824
5825 if (verbatim_match)
5826 sym_name = add_angle_brackets (sym_name);
5827
6ea35997 5828 if (!encoded_p)
41d27058
JB
5829 sym_name = ada_decode (sym_name);
5830
5831 return sym_name;
5832}
5833
5834/* A companion function to ada_make_symbol_completion_list().
5835 Check if SYM_NAME represents a symbol which name would be suitable
5836 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5837 it is appended at the end of the given string vector SV.
5838
5839 ORIG_TEXT is the string original string from the user command
5840 that needs to be completed. WORD is the entire command on which
5841 completion should be performed. These two parameters are used to
5842 determine which part of the symbol name should be added to the
5843 completion vector.
c0af1706 5844 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5845 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5846 encoded formed (in which case the completion should also be
5847 encoded). */
5848
5849static void
d6565258 5850symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5851 const char *sym_name,
5852 const char *text, int text_len,
5853 const char *orig_text, const char *word,
cb8e9b97 5854 int wild_match_p, int encoded_p)
41d27058
JB
5855{
5856 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5857 wild_match_p, encoded_p);
41d27058
JB
5858 char *completion;
5859
5860 if (match == NULL)
5861 return;
5862
5863 /* We found a match, so add the appropriate completion to the given
5864 string vector. */
5865
5866 if (word == orig_text)
5867 {
5868 completion = xmalloc (strlen (match) + 5);
5869 strcpy (completion, match);
5870 }
5871 else if (word > orig_text)
5872 {
5873 /* Return some portion of sym_name. */
5874 completion = xmalloc (strlen (match) + 5);
5875 strcpy (completion, match + (word - orig_text));
5876 }
5877 else
5878 {
5879 /* Return some of ORIG_TEXT plus sym_name. */
5880 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5881 strncpy (completion, word, orig_text - word);
5882 completion[orig_text - word] = '\0';
5883 strcat (completion, match);
5884 }
5885
d6565258 5886 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5887}
5888
ccefe4c4 5889/* An object of this type is passed as the user_data argument to the
bb4142cf 5890 expand_symtabs_matching method. */
ccefe4c4
TT
5891struct add_partial_datum
5892{
5893 VEC(char_ptr) **completions;
6f937416 5894 const char *text;
ccefe4c4 5895 int text_len;
6f937416
PA
5896 const char *text0;
5897 const char *word;
ccefe4c4
TT
5898 int wild_match;
5899 int encoded;
5900};
5901
bb4142cf
DE
5902/* A callback for expand_symtabs_matching. */
5903
7b08b9eb 5904static int
bb4142cf 5905ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
5906{
5907 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5908
5909 return symbol_completion_match (name, data->text, data->text_len,
5910 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5911}
5912
49c4e619
TT
5913/* Return a list of possible symbol names completing TEXT0. WORD is
5914 the entire command on which completion is made. */
41d27058 5915
49c4e619 5916static VEC (char_ptr) *
6f937416
PA
5917ada_make_symbol_completion_list (const char *text0, const char *word,
5918 enum type_code code)
41d27058
JB
5919{
5920 char *text;
5921 int text_len;
b1ed564a
JB
5922 int wild_match_p;
5923 int encoded_p;
2ba95b9b 5924 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5925 struct symbol *sym;
5926 struct symtab *s;
41d27058
JB
5927 struct minimal_symbol *msymbol;
5928 struct objfile *objfile;
5929 struct block *b, *surrounding_static_block = 0;
5930 int i;
8157b174 5931 struct block_iterator iter;
b8fea896 5932 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 5933
2f68a895
TT
5934 gdb_assert (code == TYPE_CODE_UNDEF);
5935
41d27058
JB
5936 if (text0[0] == '<')
5937 {
5938 text = xstrdup (text0);
5939 make_cleanup (xfree, text);
5940 text_len = strlen (text);
b1ed564a
JB
5941 wild_match_p = 0;
5942 encoded_p = 1;
41d27058
JB
5943 }
5944 else
5945 {
5946 text = xstrdup (ada_encode (text0));
5947 make_cleanup (xfree, text);
5948 text_len = strlen (text);
5949 for (i = 0; i < text_len; i++)
5950 text[i] = tolower (text[i]);
5951
b1ed564a 5952 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5953 /* If the name contains a ".", then the user is entering a fully
5954 qualified entity name, and the match must not be done in wild
5955 mode. Similarly, if the user wants to complete what looks like
5956 an encoded name, the match must not be done in wild mode. */
b1ed564a 5957 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5958 }
5959
5960 /* First, look at the partial symtab symbols. */
41d27058 5961 {
ccefe4c4
TT
5962 struct add_partial_datum data;
5963
5964 data.completions = &completions;
5965 data.text = text;
5966 data.text_len = text_len;
5967 data.text0 = text0;
5968 data.word = word;
b1ed564a
JB
5969 data.wild_match = wild_match_p;
5970 data.encoded = encoded_p;
bb4142cf
DE
5971 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
5972 &data);
41d27058
JB
5973 }
5974
5975 /* At this point scan through the misc symbol vectors and add each
5976 symbol you find to the list. Eventually we want to ignore
5977 anything that isn't a text symbol (everything else will be
5978 handled by the psymtab code above). */
5979
5980 ALL_MSYMBOLS (objfile, msymbol)
5981 {
5982 QUIT;
d6565258 5983 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5984 text, text_len, text0, word, wild_match_p,
5985 encoded_p);
41d27058
JB
5986 }
5987
5988 /* Search upwards from currently selected frame (so that we can
5989 complete on local vars. */
5990
5991 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5992 {
5993 if (!BLOCK_SUPERBLOCK (b))
5994 surrounding_static_block = b; /* For elmin of dups */
5995
5996 ALL_BLOCK_SYMBOLS (b, iter, sym)
5997 {
d6565258 5998 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5999 text, text_len, text0, word,
b1ed564a 6000 wild_match_p, encoded_p);
41d27058
JB
6001 }
6002 }
6003
6004 /* Go through the symtabs and check the externs and statics for
6005 symbols which match. */
6006
6007 ALL_SYMTABS (objfile, s)
6008 {
6009 QUIT;
6010 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6011 ALL_BLOCK_SYMBOLS (b, iter, sym)
6012 {
d6565258 6013 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6014 text, text_len, text0, word,
b1ed564a 6015 wild_match_p, encoded_p);
41d27058
JB
6016 }
6017 }
6018
6019 ALL_SYMTABS (objfile, s)
6020 {
6021 QUIT;
6022 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6023 /* Don't do this block twice. */
6024 if (b == surrounding_static_block)
6025 continue;
6026 ALL_BLOCK_SYMBOLS (b, iter, sym)
6027 {
d6565258 6028 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6029 text, text_len, text0, word,
b1ed564a 6030 wild_match_p, encoded_p);
41d27058
JB
6031 }
6032 }
6033
b8fea896 6034 do_cleanups (old_chain);
49c4e619 6035 return completions;
41d27058
JB
6036}
6037
963a6417 6038 /* Field Access */
96d887e8 6039
73fb9985
JB
6040/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6041 for tagged types. */
6042
6043static int
6044ada_is_dispatch_table_ptr_type (struct type *type)
6045{
0d5cff50 6046 const char *name;
73fb9985
JB
6047
6048 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6049 return 0;
6050
6051 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6052 if (name == NULL)
6053 return 0;
6054
6055 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6056}
6057
ac4a2da4
JG
6058/* Return non-zero if TYPE is an interface tag. */
6059
6060static int
6061ada_is_interface_tag (struct type *type)
6062{
6063 const char *name = TYPE_NAME (type);
6064
6065 if (name == NULL)
6066 return 0;
6067
6068 return (strcmp (name, "ada__tags__interface_tag") == 0);
6069}
6070
963a6417
PH
6071/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6072 to be invisible to users. */
96d887e8 6073
963a6417
PH
6074int
6075ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6076{
963a6417
PH
6077 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6078 return 1;
ffde82bf 6079
73fb9985
JB
6080 /* Check the name of that field. */
6081 {
6082 const char *name = TYPE_FIELD_NAME (type, field_num);
6083
6084 /* Anonymous field names should not be printed.
6085 brobecker/2007-02-20: I don't think this can actually happen
6086 but we don't want to print the value of annonymous fields anyway. */
6087 if (name == NULL)
6088 return 1;
6089
ffde82bf
JB
6090 /* Normally, fields whose name start with an underscore ("_")
6091 are fields that have been internally generated by the compiler,
6092 and thus should not be printed. The "_parent" field is special,
6093 however: This is a field internally generated by the compiler
6094 for tagged types, and it contains the components inherited from
6095 the parent type. This field should not be printed as is, but
6096 should not be ignored either. */
73fb9985
JB
6097 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6098 return 1;
6099 }
6100
ac4a2da4
JG
6101 /* If this is the dispatch table of a tagged type or an interface tag,
6102 then ignore. */
73fb9985 6103 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6104 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6105 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6106 return 1;
6107
6108 /* Not a special field, so it should not be ignored. */
6109 return 0;
963a6417 6110}
96d887e8 6111
963a6417 6112/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6113 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6114
963a6417
PH
6115int
6116ada_is_tagged_type (struct type *type, int refok)
6117{
6118 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6119}
96d887e8 6120
963a6417 6121/* True iff TYPE represents the type of X'Tag */
96d887e8 6122
963a6417
PH
6123int
6124ada_is_tag_type (struct type *type)
6125{
6126 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6127 return 0;
6128 else
96d887e8 6129 {
963a6417 6130 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6131
963a6417
PH
6132 return (name != NULL
6133 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6134 }
96d887e8
PH
6135}
6136
963a6417 6137/* The type of the tag on VAL. */
76a01679 6138
963a6417
PH
6139struct type *
6140ada_tag_type (struct value *val)
96d887e8 6141{
df407dfe 6142 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6143}
96d887e8 6144
b50d69b5
JG
6145/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6146 retired at Ada 05). */
6147
6148static int
6149is_ada95_tag (struct value *tag)
6150{
6151 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6152}
6153
963a6417 6154/* The value of the tag on VAL. */
96d887e8 6155
963a6417
PH
6156struct value *
6157ada_value_tag (struct value *val)
6158{
03ee6b2e 6159 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6160}
6161
963a6417
PH
6162/* The value of the tag on the object of type TYPE whose contents are
6163 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6164 ADDRESS. */
96d887e8 6165
963a6417 6166static struct value *
10a2c479 6167value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6168 const gdb_byte *valaddr,
963a6417 6169 CORE_ADDR address)
96d887e8 6170{
b5385fc0 6171 int tag_byte_offset;
963a6417 6172 struct type *tag_type;
5b4ee69b 6173
963a6417 6174 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6175 NULL, NULL, NULL))
96d887e8 6176 {
fc1a4b47 6177 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6178 ? NULL
6179 : valaddr + tag_byte_offset);
963a6417 6180 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6181
963a6417 6182 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6183 }
963a6417
PH
6184 return NULL;
6185}
96d887e8 6186
963a6417
PH
6187static struct type *
6188type_from_tag (struct value *tag)
6189{
6190 const char *type_name = ada_tag_name (tag);
5b4ee69b 6191
963a6417
PH
6192 if (type_name != NULL)
6193 return ada_find_any_type (ada_encode (type_name));
6194 return NULL;
6195}
96d887e8 6196
b50d69b5
JG
6197/* Given a value OBJ of a tagged type, return a value of this
6198 type at the base address of the object. The base address, as
6199 defined in Ada.Tags, it is the address of the primary tag of
6200 the object, and therefore where the field values of its full
6201 view can be fetched. */
6202
6203struct value *
6204ada_tag_value_at_base_address (struct value *obj)
6205{
6206 volatile struct gdb_exception e;
6207 struct value *val;
6208 LONGEST offset_to_top = 0;
6209 struct type *ptr_type, *obj_type;
6210 struct value *tag;
6211 CORE_ADDR base_address;
6212
6213 obj_type = value_type (obj);
6214
6215 /* It is the responsability of the caller to deref pointers. */
6216
6217 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6218 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6219 return obj;
6220
6221 tag = ada_value_tag (obj);
6222 if (!tag)
6223 return obj;
6224
6225 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6226
6227 if (is_ada95_tag (tag))
6228 return obj;
6229
6230 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6231 ptr_type = lookup_pointer_type (ptr_type);
6232 val = value_cast (ptr_type, tag);
6233 if (!val)
6234 return obj;
6235
6236 /* It is perfectly possible that an exception be raised while
6237 trying to determine the base address, just like for the tag;
6238 see ada_tag_name for more details. We do not print the error
6239 message for the same reason. */
6240
6241 TRY_CATCH (e, RETURN_MASK_ERROR)
6242 {
6243 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6244 }
6245
6246 if (e.reason < 0)
6247 return obj;
6248
6249 /* If offset is null, nothing to do. */
6250
6251 if (offset_to_top == 0)
6252 return obj;
6253
6254 /* -1 is a special case in Ada.Tags; however, what should be done
6255 is not quite clear from the documentation. So do nothing for
6256 now. */
6257
6258 if (offset_to_top == -1)
6259 return obj;
6260
6261 base_address = value_address (obj) - offset_to_top;
6262 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6263
6264 /* Make sure that we have a proper tag at the new address.
6265 Otherwise, offset_to_top is bogus (which can happen when
6266 the object is not initialized yet). */
6267
6268 if (!tag)
6269 return obj;
6270
6271 obj_type = type_from_tag (tag);
6272
6273 if (!obj_type)
6274 return obj;
6275
6276 return value_from_contents_and_address (obj_type, NULL, base_address);
6277}
6278
1b611343
JB
6279/* Return the "ada__tags__type_specific_data" type. */
6280
6281static struct type *
6282ada_get_tsd_type (struct inferior *inf)
963a6417 6283{
1b611343 6284 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6285
1b611343
JB
6286 if (data->tsd_type == 0)
6287 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6288 return data->tsd_type;
6289}
529cad9c 6290
1b611343
JB
6291/* Return the TSD (type-specific data) associated to the given TAG.
6292 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6293
1b611343 6294 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6295
1b611343
JB
6296static struct value *
6297ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6298{
4c4b4cd2 6299 struct value *val;
1b611343 6300 struct type *type;
5b4ee69b 6301
1b611343
JB
6302 /* First option: The TSD is simply stored as a field of our TAG.
6303 Only older versions of GNAT would use this format, but we have
6304 to test it first, because there are no visible markers for
6305 the current approach except the absence of that field. */
529cad9c 6306
1b611343
JB
6307 val = ada_value_struct_elt (tag, "tsd", 1);
6308 if (val)
6309 return val;
e802dbe0 6310
1b611343
JB
6311 /* Try the second representation for the dispatch table (in which
6312 there is no explicit 'tsd' field in the referent of the tag pointer,
6313 and instead the tsd pointer is stored just before the dispatch
6314 table. */
e802dbe0 6315
1b611343
JB
6316 type = ada_get_tsd_type (current_inferior());
6317 if (type == NULL)
6318 return NULL;
6319 type = lookup_pointer_type (lookup_pointer_type (type));
6320 val = value_cast (type, tag);
6321 if (val == NULL)
6322 return NULL;
6323 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6324}
6325
1b611343
JB
6326/* Given the TSD of a tag (type-specific data), return a string
6327 containing the name of the associated type.
6328
6329 The returned value is good until the next call. May return NULL
6330 if we are unable to determine the tag name. */
6331
6332static char *
6333ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6334{
529cad9c
PH
6335 static char name[1024];
6336 char *p;
1b611343 6337 struct value *val;
529cad9c 6338
1b611343 6339 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6340 if (val == NULL)
1b611343 6341 return NULL;
4c4b4cd2
PH
6342 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6343 for (p = name; *p != '\0'; p += 1)
6344 if (isalpha (*p))
6345 *p = tolower (*p);
1b611343 6346 return name;
4c4b4cd2
PH
6347}
6348
6349/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6350 a C string.
6351
6352 Return NULL if the TAG is not an Ada tag, or if we were unable to
6353 determine the name of that tag. The result is good until the next
6354 call. */
4c4b4cd2
PH
6355
6356const char *
6357ada_tag_name (struct value *tag)
6358{
1b611343
JB
6359 volatile struct gdb_exception e;
6360 char *name = NULL;
5b4ee69b 6361
df407dfe 6362 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6363 return NULL;
1b611343
JB
6364
6365 /* It is perfectly possible that an exception be raised while trying
6366 to determine the TAG's name, even under normal circumstances:
6367 The associated variable may be uninitialized or corrupted, for
6368 instance. We do not let any exception propagate past this point.
6369 instead we return NULL.
6370
6371 We also do not print the error message either (which often is very
6372 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6373 the caller print a more meaningful message if necessary. */
6374 TRY_CATCH (e, RETURN_MASK_ERROR)
6375 {
6376 struct value *tsd = ada_get_tsd_from_tag (tag);
6377
6378 if (tsd != NULL)
6379 name = ada_tag_name_from_tsd (tsd);
6380 }
6381
6382 return name;
4c4b4cd2
PH
6383}
6384
6385/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6386
d2e4a39e 6387struct type *
ebf56fd3 6388ada_parent_type (struct type *type)
14f9c5c9
AS
6389{
6390 int i;
6391
61ee279c 6392 type = ada_check_typedef (type);
14f9c5c9
AS
6393
6394 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6395 return NULL;
6396
6397 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6398 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6399 {
6400 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6401
6402 /* If the _parent field is a pointer, then dereference it. */
6403 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6404 parent_type = TYPE_TARGET_TYPE (parent_type);
6405 /* If there is a parallel XVS type, get the actual base type. */
6406 parent_type = ada_get_base_type (parent_type);
6407
6408 return ada_check_typedef (parent_type);
6409 }
14f9c5c9
AS
6410
6411 return NULL;
6412}
6413
4c4b4cd2
PH
6414/* True iff field number FIELD_NUM of structure type TYPE contains the
6415 parent-type (inherited) fields of a derived type. Assumes TYPE is
6416 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6417
6418int
ebf56fd3 6419ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6420{
61ee279c 6421 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6422
4c4b4cd2
PH
6423 return (name != NULL
6424 && (strncmp (name, "PARENT", 6) == 0
6425 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6426}
6427
4c4b4cd2 6428/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6429 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6430 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6431 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6432 structures. */
14f9c5c9
AS
6433
6434int
ebf56fd3 6435ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6436{
d2e4a39e 6437 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6438
d2e4a39e 6439 return (name != NULL
4c4b4cd2
PH
6440 && (strncmp (name, "PARENT", 6) == 0
6441 || strcmp (name, "REP") == 0
6442 || strncmp (name, "_parent", 7) == 0
6443 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6444}
6445
4c4b4cd2
PH
6446/* True iff field number FIELD_NUM of structure or union type TYPE
6447 is a variant wrapper. Assumes TYPE is a structure type with at least
6448 FIELD_NUM+1 fields. */
14f9c5c9
AS
6449
6450int
ebf56fd3 6451ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6452{
d2e4a39e 6453 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6454
14f9c5c9 6455 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6456 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6457 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6458 == TYPE_CODE_UNION)));
14f9c5c9
AS
6459}
6460
6461/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6462 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6463 returns the type of the controlling discriminant for the variant.
6464 May return NULL if the type could not be found. */
14f9c5c9 6465
d2e4a39e 6466struct type *
ebf56fd3 6467ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6468{
d2e4a39e 6469 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6470
7c964f07 6471 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6472}
6473
4c4b4cd2 6474/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6475 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6476 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6477
6478int
ebf56fd3 6479ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6480{
d2e4a39e 6481 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6482
14f9c5c9
AS
6483 return (name != NULL && name[0] == 'O');
6484}
6485
6486/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6487 returns the name of the discriminant controlling the variant.
6488 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6489
d2e4a39e 6490char *
ebf56fd3 6491ada_variant_discrim_name (struct type *type0)
14f9c5c9 6492{
d2e4a39e 6493 static char *result = NULL;
14f9c5c9 6494 static size_t result_len = 0;
d2e4a39e
AS
6495 struct type *type;
6496 const char *name;
6497 const char *discrim_end;
6498 const char *discrim_start;
14f9c5c9
AS
6499
6500 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6501 type = TYPE_TARGET_TYPE (type0);
6502 else
6503 type = type0;
6504
6505 name = ada_type_name (type);
6506
6507 if (name == NULL || name[0] == '\000')
6508 return "";
6509
6510 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6511 discrim_end -= 1)
6512 {
4c4b4cd2
PH
6513 if (strncmp (discrim_end, "___XVN", 6) == 0)
6514 break;
14f9c5c9
AS
6515 }
6516 if (discrim_end == name)
6517 return "";
6518
d2e4a39e 6519 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6520 discrim_start -= 1)
6521 {
d2e4a39e 6522 if (discrim_start == name + 1)
4c4b4cd2 6523 return "";
76a01679 6524 if ((discrim_start > name + 3
4c4b4cd2
PH
6525 && strncmp (discrim_start - 3, "___", 3) == 0)
6526 || discrim_start[-1] == '.')
6527 break;
14f9c5c9
AS
6528 }
6529
6530 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6531 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6532 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6533 return result;
6534}
6535
4c4b4cd2
PH
6536/* Scan STR for a subtype-encoded number, beginning at position K.
6537 Put the position of the character just past the number scanned in
6538 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6539 Return 1 if there was a valid number at the given position, and 0
6540 otherwise. A "subtype-encoded" number consists of the absolute value
6541 in decimal, followed by the letter 'm' to indicate a negative number.
6542 Assumes 0m does not occur. */
14f9c5c9
AS
6543
6544int
d2e4a39e 6545ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6546{
6547 ULONGEST RU;
6548
d2e4a39e 6549 if (!isdigit (str[k]))
14f9c5c9
AS
6550 return 0;
6551
4c4b4cd2 6552 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6553 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6554 LONGEST. */
14f9c5c9
AS
6555 RU = 0;
6556 while (isdigit (str[k]))
6557 {
d2e4a39e 6558 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6559 k += 1;
6560 }
6561
d2e4a39e 6562 if (str[k] == 'm')
14f9c5c9
AS
6563 {
6564 if (R != NULL)
4c4b4cd2 6565 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6566 k += 1;
6567 }
6568 else if (R != NULL)
6569 *R = (LONGEST) RU;
6570
4c4b4cd2 6571 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6572 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6573 number representable as a LONGEST (although either would probably work
6574 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6575 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6576
6577 if (new_k != NULL)
6578 *new_k = k;
6579 return 1;
6580}
6581
4c4b4cd2
PH
6582/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6583 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6584 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6585
d2e4a39e 6586int
ebf56fd3 6587ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6588{
d2e4a39e 6589 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6590 int p;
6591
6592 p = 0;
6593 while (1)
6594 {
d2e4a39e 6595 switch (name[p])
4c4b4cd2
PH
6596 {
6597 case '\0':
6598 return 0;
6599 case 'S':
6600 {
6601 LONGEST W;
5b4ee69b 6602
4c4b4cd2
PH
6603 if (!ada_scan_number (name, p + 1, &W, &p))
6604 return 0;
6605 if (val == W)
6606 return 1;
6607 break;
6608 }
6609 case 'R':
6610 {
6611 LONGEST L, U;
5b4ee69b 6612
4c4b4cd2
PH
6613 if (!ada_scan_number (name, p + 1, &L, &p)
6614 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6615 return 0;
6616 if (val >= L && val <= U)
6617 return 1;
6618 break;
6619 }
6620 case 'O':
6621 return 1;
6622 default:
6623 return 0;
6624 }
6625 }
6626}
6627
0963b4bd 6628/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6629
6630/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6631 ARG_TYPE, extract and return the value of one of its (non-static)
6632 fields. FIELDNO says which field. Differs from value_primitive_field
6633 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6634
4c4b4cd2 6635static struct value *
d2e4a39e 6636ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6637 struct type *arg_type)
14f9c5c9 6638{
14f9c5c9
AS
6639 struct type *type;
6640
61ee279c 6641 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6642 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6643
4c4b4cd2 6644 /* Handle packed fields. */
14f9c5c9
AS
6645
6646 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6647 {
6648 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6649 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6650
0fd88904 6651 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6652 offset + bit_pos / 8,
6653 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6654 }
6655 else
6656 return value_primitive_field (arg1, offset, fieldno, arg_type);
6657}
6658
52ce6436
PH
6659/* Find field with name NAME in object of type TYPE. If found,
6660 set the following for each argument that is non-null:
6661 - *FIELD_TYPE_P to the field's type;
6662 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6663 an object of that type;
6664 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6665 - *BIT_SIZE_P to its size in bits if the field is packed, and
6666 0 otherwise;
6667 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6668 fields up to but not including the desired field, or by the total
6669 number of fields if not found. A NULL value of NAME never
6670 matches; the function just counts visible fields in this case.
6671
0963b4bd 6672 Returns 1 if found, 0 otherwise. */
52ce6436 6673
4c4b4cd2 6674static int
0d5cff50 6675find_struct_field (const char *name, struct type *type, int offset,
76a01679 6676 struct type **field_type_p,
52ce6436
PH
6677 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6678 int *index_p)
4c4b4cd2
PH
6679{
6680 int i;
6681
61ee279c 6682 type = ada_check_typedef (type);
76a01679 6683
52ce6436
PH
6684 if (field_type_p != NULL)
6685 *field_type_p = NULL;
6686 if (byte_offset_p != NULL)
d5d6fca5 6687 *byte_offset_p = 0;
52ce6436
PH
6688 if (bit_offset_p != NULL)
6689 *bit_offset_p = 0;
6690 if (bit_size_p != NULL)
6691 *bit_size_p = 0;
6692
6693 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6694 {
6695 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6696 int fld_offset = offset + bit_pos / 8;
0d5cff50 6697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6698
4c4b4cd2
PH
6699 if (t_field_name == NULL)
6700 continue;
6701
52ce6436 6702 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6703 {
6704 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6705
52ce6436
PH
6706 if (field_type_p != NULL)
6707 *field_type_p = TYPE_FIELD_TYPE (type, i);
6708 if (byte_offset_p != NULL)
6709 *byte_offset_p = fld_offset;
6710 if (bit_offset_p != NULL)
6711 *bit_offset_p = bit_pos % 8;
6712 if (bit_size_p != NULL)
6713 *bit_size_p = bit_size;
76a01679
JB
6714 return 1;
6715 }
4c4b4cd2
PH
6716 else if (ada_is_wrapper_field (type, i))
6717 {
52ce6436
PH
6718 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6719 field_type_p, byte_offset_p, bit_offset_p,
6720 bit_size_p, index_p))
76a01679
JB
6721 return 1;
6722 }
4c4b4cd2
PH
6723 else if (ada_is_variant_part (type, i))
6724 {
52ce6436
PH
6725 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6726 fixed type?? */
4c4b4cd2 6727 int j;
52ce6436
PH
6728 struct type *field_type
6729 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6730
52ce6436 6731 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6732 {
76a01679
JB
6733 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6734 fld_offset
6735 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6736 field_type_p, byte_offset_p,
52ce6436 6737 bit_offset_p, bit_size_p, index_p))
76a01679 6738 return 1;
4c4b4cd2
PH
6739 }
6740 }
52ce6436
PH
6741 else if (index_p != NULL)
6742 *index_p += 1;
4c4b4cd2
PH
6743 }
6744 return 0;
6745}
6746
0963b4bd 6747/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6748
52ce6436
PH
6749static int
6750num_visible_fields (struct type *type)
6751{
6752 int n;
5b4ee69b 6753
52ce6436
PH
6754 n = 0;
6755 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6756 return n;
6757}
14f9c5c9 6758
4c4b4cd2 6759/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6760 and search in it assuming it has (class) type TYPE.
6761 If found, return value, else return NULL.
6762
4c4b4cd2 6763 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6764
4c4b4cd2 6765static struct value *
d2e4a39e 6766ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6767 struct type *type)
14f9c5c9
AS
6768{
6769 int i;
14f9c5c9 6770
5b4ee69b 6771 type = ada_check_typedef (type);
52ce6436 6772 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6773 {
0d5cff50 6774 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6775
6776 if (t_field_name == NULL)
4c4b4cd2 6777 continue;
14f9c5c9
AS
6778
6779 else if (field_name_match (t_field_name, name))
4c4b4cd2 6780 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6781
6782 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6783 {
0963b4bd 6784 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6785 ada_search_struct_field (name, arg,
6786 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6787 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6788
4c4b4cd2
PH
6789 if (v != NULL)
6790 return v;
6791 }
14f9c5c9
AS
6792
6793 else if (ada_is_variant_part (type, i))
4c4b4cd2 6794 {
0963b4bd 6795 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6796 int j;
5b4ee69b
MS
6797 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6798 i));
4c4b4cd2
PH
6799 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6800
52ce6436 6801 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6802 {
0963b4bd
MS
6803 struct value *v = ada_search_struct_field /* Force line
6804 break. */
06d5cf63
JB
6805 (name, arg,
6806 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6807 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6808
4c4b4cd2
PH
6809 if (v != NULL)
6810 return v;
6811 }
6812 }
14f9c5c9
AS
6813 }
6814 return NULL;
6815}
d2e4a39e 6816
52ce6436
PH
6817static struct value *ada_index_struct_field_1 (int *, struct value *,
6818 int, struct type *);
6819
6820
6821/* Return field #INDEX in ARG, where the index is that returned by
6822 * find_struct_field through its INDEX_P argument. Adjust the address
6823 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6824 * If found, return value, else return NULL. */
52ce6436
PH
6825
6826static struct value *
6827ada_index_struct_field (int index, struct value *arg, int offset,
6828 struct type *type)
6829{
6830 return ada_index_struct_field_1 (&index, arg, offset, type);
6831}
6832
6833
6834/* Auxiliary function for ada_index_struct_field. Like
6835 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6836 * *INDEX_P. */
52ce6436
PH
6837
6838static struct value *
6839ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6840 struct type *type)
6841{
6842 int i;
6843 type = ada_check_typedef (type);
6844
6845 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6846 {
6847 if (TYPE_FIELD_NAME (type, i) == NULL)
6848 continue;
6849 else if (ada_is_wrapper_field (type, i))
6850 {
0963b4bd 6851 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6852 ada_index_struct_field_1 (index_p, arg,
6853 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6854 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6855
52ce6436
PH
6856 if (v != NULL)
6857 return v;
6858 }
6859
6860 else if (ada_is_variant_part (type, i))
6861 {
6862 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6863 find_struct_field. */
52ce6436
PH
6864 error (_("Cannot assign this kind of variant record"));
6865 }
6866 else if (*index_p == 0)
6867 return ada_value_primitive_field (arg, offset, i, type);
6868 else
6869 *index_p -= 1;
6870 }
6871 return NULL;
6872}
6873
4c4b4cd2
PH
6874/* Given ARG, a value of type (pointer or reference to a)*
6875 structure/union, extract the component named NAME from the ultimate
6876 target structure/union and return it as a value with its
f5938064 6877 appropriate type.
14f9c5c9 6878
4c4b4cd2
PH
6879 The routine searches for NAME among all members of the structure itself
6880 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6881 (e.g., '_parent').
6882
03ee6b2e
PH
6883 If NO_ERR, then simply return NULL in case of error, rather than
6884 calling error. */
14f9c5c9 6885
d2e4a39e 6886struct value *
03ee6b2e 6887ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6888{
4c4b4cd2 6889 struct type *t, *t1;
d2e4a39e 6890 struct value *v;
14f9c5c9 6891
4c4b4cd2 6892 v = NULL;
df407dfe 6893 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6894 if (TYPE_CODE (t) == TYPE_CODE_REF)
6895 {
6896 t1 = TYPE_TARGET_TYPE (t);
6897 if (t1 == NULL)
03ee6b2e 6898 goto BadValue;
61ee279c 6899 t1 = ada_check_typedef (t1);
4c4b4cd2 6900 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6901 {
994b9211 6902 arg = coerce_ref (arg);
76a01679
JB
6903 t = t1;
6904 }
4c4b4cd2 6905 }
14f9c5c9 6906
4c4b4cd2
PH
6907 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6908 {
6909 t1 = TYPE_TARGET_TYPE (t);
6910 if (t1 == NULL)
03ee6b2e 6911 goto BadValue;
61ee279c 6912 t1 = ada_check_typedef (t1);
4c4b4cd2 6913 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6914 {
6915 arg = value_ind (arg);
6916 t = t1;
6917 }
4c4b4cd2 6918 else
76a01679 6919 break;
4c4b4cd2 6920 }
14f9c5c9 6921
4c4b4cd2 6922 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6923 goto BadValue;
14f9c5c9 6924
4c4b4cd2
PH
6925 if (t1 == t)
6926 v = ada_search_struct_field (name, arg, 0, t);
6927 else
6928 {
6929 int bit_offset, bit_size, byte_offset;
6930 struct type *field_type;
6931 CORE_ADDR address;
6932
76a01679 6933 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6934 address = value_address (ada_value_ind (arg));
4c4b4cd2 6935 else
b50d69b5 6936 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6937
1ed6ede0 6938 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6939 if (find_struct_field (name, t1, 0,
6940 &field_type, &byte_offset, &bit_offset,
52ce6436 6941 &bit_size, NULL))
76a01679
JB
6942 {
6943 if (bit_size != 0)
6944 {
714e53ab
PH
6945 if (TYPE_CODE (t) == TYPE_CODE_REF)
6946 arg = ada_coerce_ref (arg);
6947 else
6948 arg = ada_value_ind (arg);
76a01679
JB
6949 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6950 bit_offset, bit_size,
6951 field_type);
6952 }
6953 else
f5938064 6954 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6955 }
6956 }
6957
03ee6b2e
PH
6958 if (v != NULL || no_err)
6959 return v;
6960 else
323e0a4a 6961 error (_("There is no member named %s."), name);
14f9c5c9 6962
03ee6b2e
PH
6963 BadValue:
6964 if (no_err)
6965 return NULL;
6966 else
0963b4bd
MS
6967 error (_("Attempt to extract a component of "
6968 "a value that is not a record."));
14f9c5c9
AS
6969}
6970
6971/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6972 If DISPP is non-null, add its byte displacement from the beginning of a
6973 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6974 work for packed fields).
6975
6976 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6977 followed by "___".
14f9c5c9 6978
0963b4bd 6979 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6980 be a (pointer or reference)+ to a struct or union, and the
6981 ultimate target type will be searched.
14f9c5c9
AS
6982
6983 Looks recursively into variant clauses and parent types.
6984
4c4b4cd2
PH
6985 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6986 TYPE is not a type of the right kind. */
14f9c5c9 6987
4c4b4cd2 6988static struct type *
76a01679
JB
6989ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6990 int noerr, int *dispp)
14f9c5c9
AS
6991{
6992 int i;
6993
6994 if (name == NULL)
6995 goto BadName;
6996
76a01679 6997 if (refok && type != NULL)
4c4b4cd2
PH
6998 while (1)
6999 {
61ee279c 7000 type = ada_check_typedef (type);
76a01679
JB
7001 if (TYPE_CODE (type) != TYPE_CODE_PTR
7002 && TYPE_CODE (type) != TYPE_CODE_REF)
7003 break;
7004 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7005 }
14f9c5c9 7006
76a01679 7007 if (type == NULL
1265e4aa
JB
7008 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7009 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7010 {
4c4b4cd2 7011 if (noerr)
76a01679 7012 return NULL;
4c4b4cd2 7013 else
76a01679
JB
7014 {
7015 target_terminal_ours ();
7016 gdb_flush (gdb_stdout);
323e0a4a
AC
7017 if (type == NULL)
7018 error (_("Type (null) is not a structure or union type"));
7019 else
7020 {
7021 /* XXX: type_sprint */
7022 fprintf_unfiltered (gdb_stderr, _("Type "));
7023 type_print (type, "", gdb_stderr, -1);
7024 error (_(" is not a structure or union type"));
7025 }
76a01679 7026 }
14f9c5c9
AS
7027 }
7028
7029 type = to_static_fixed_type (type);
7030
7031 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7032 {
0d5cff50 7033 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7034 struct type *t;
7035 int disp;
d2e4a39e 7036
14f9c5c9 7037 if (t_field_name == NULL)
4c4b4cd2 7038 continue;
14f9c5c9
AS
7039
7040 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7041 {
7042 if (dispp != NULL)
7043 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7044 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7045 }
14f9c5c9
AS
7046
7047 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7048 {
7049 disp = 0;
7050 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7051 0, 1, &disp);
7052 if (t != NULL)
7053 {
7054 if (dispp != NULL)
7055 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7056 return t;
7057 }
7058 }
14f9c5c9
AS
7059
7060 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7061 {
7062 int j;
5b4ee69b
MS
7063 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7064 i));
4c4b4cd2
PH
7065
7066 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7067 {
b1f33ddd
JB
7068 /* FIXME pnh 2008/01/26: We check for a field that is
7069 NOT wrapped in a struct, since the compiler sometimes
7070 generates these for unchecked variant types. Revisit
0963b4bd 7071 if the compiler changes this practice. */
0d5cff50 7072 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7073 disp = 0;
b1f33ddd
JB
7074 if (v_field_name != NULL
7075 && field_name_match (v_field_name, name))
7076 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7077 else
0963b4bd
MS
7078 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7079 j),
b1f33ddd
JB
7080 name, 0, 1, &disp);
7081
4c4b4cd2
PH
7082 if (t != NULL)
7083 {
7084 if (dispp != NULL)
7085 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7086 return t;
7087 }
7088 }
7089 }
14f9c5c9
AS
7090
7091 }
7092
7093BadName:
d2e4a39e 7094 if (!noerr)
14f9c5c9
AS
7095 {
7096 target_terminal_ours ();
7097 gdb_flush (gdb_stdout);
323e0a4a
AC
7098 if (name == NULL)
7099 {
7100 /* XXX: type_sprint */
7101 fprintf_unfiltered (gdb_stderr, _("Type "));
7102 type_print (type, "", gdb_stderr, -1);
7103 error (_(" has no component named <null>"));
7104 }
7105 else
7106 {
7107 /* XXX: type_sprint */
7108 fprintf_unfiltered (gdb_stderr, _("Type "));
7109 type_print (type, "", gdb_stderr, -1);
7110 error (_(" has no component named %s"), name);
7111 }
14f9c5c9
AS
7112 }
7113
7114 return NULL;
7115}
7116
b1f33ddd
JB
7117/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7118 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7119 represents an unchecked union (that is, the variant part of a
0963b4bd 7120 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7121
7122static int
7123is_unchecked_variant (struct type *var_type, struct type *outer_type)
7124{
7125 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7126
b1f33ddd
JB
7127 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7128 == NULL);
7129}
7130
7131
14f9c5c9
AS
7132/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7133 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7134 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7135 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7136
d2e4a39e 7137int
ebf56fd3 7138ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7139 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7140{
7141 int others_clause;
7142 int i;
d2e4a39e 7143 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7144 struct value *outer;
7145 struct value *discrim;
14f9c5c9
AS
7146 LONGEST discrim_val;
7147
0c281816
JB
7148 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7149 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7150 if (discrim == NULL)
14f9c5c9 7151 return -1;
0c281816 7152 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7153
7154 others_clause = -1;
7155 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7156 {
7157 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7158 others_clause = i;
14f9c5c9 7159 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7160 return i;
14f9c5c9
AS
7161 }
7162
7163 return others_clause;
7164}
d2e4a39e 7165\f
14f9c5c9
AS
7166
7167
4c4b4cd2 7168 /* Dynamic-Sized Records */
14f9c5c9
AS
7169
7170/* Strategy: The type ostensibly attached to a value with dynamic size
7171 (i.e., a size that is not statically recorded in the debugging
7172 data) does not accurately reflect the size or layout of the value.
7173 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7174 conventional types that are constructed on the fly. */
14f9c5c9
AS
7175
7176/* There is a subtle and tricky problem here. In general, we cannot
7177 determine the size of dynamic records without its data. However,
7178 the 'struct value' data structure, which GDB uses to represent
7179 quantities in the inferior process (the target), requires the size
7180 of the type at the time of its allocation in order to reserve space
7181 for GDB's internal copy of the data. That's why the
7182 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7183 rather than struct value*s.
14f9c5c9
AS
7184
7185 However, GDB's internal history variables ($1, $2, etc.) are
7186 struct value*s containing internal copies of the data that are not, in
7187 general, the same as the data at their corresponding addresses in
7188 the target. Fortunately, the types we give to these values are all
7189 conventional, fixed-size types (as per the strategy described
7190 above), so that we don't usually have to perform the
7191 'to_fixed_xxx_type' conversions to look at their values.
7192 Unfortunately, there is one exception: if one of the internal
7193 history variables is an array whose elements are unconstrained
7194 records, then we will need to create distinct fixed types for each
7195 element selected. */
7196
7197/* The upshot of all of this is that many routines take a (type, host
7198 address, target address) triple as arguments to represent a value.
7199 The host address, if non-null, is supposed to contain an internal
7200 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7201 target at the target address. */
14f9c5c9
AS
7202
7203/* Assuming that VAL0 represents a pointer value, the result of
7204 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7205 dynamic-sized types. */
14f9c5c9 7206
d2e4a39e
AS
7207struct value *
7208ada_value_ind (struct value *val0)
14f9c5c9 7209{
c48db5ca 7210 struct value *val = value_ind (val0);
5b4ee69b 7211
b50d69b5
JG
7212 if (ada_is_tagged_type (value_type (val), 0))
7213 val = ada_tag_value_at_base_address (val);
7214
4c4b4cd2 7215 return ada_to_fixed_value (val);
14f9c5c9
AS
7216}
7217
7218/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7219 qualifiers on VAL0. */
7220
d2e4a39e
AS
7221static struct value *
7222ada_coerce_ref (struct value *val0)
7223{
df407dfe 7224 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7225 {
7226 struct value *val = val0;
5b4ee69b 7227
994b9211 7228 val = coerce_ref (val);
b50d69b5
JG
7229
7230 if (ada_is_tagged_type (value_type (val), 0))
7231 val = ada_tag_value_at_base_address (val);
7232
4c4b4cd2 7233 return ada_to_fixed_value (val);
d2e4a39e
AS
7234 }
7235 else
14f9c5c9
AS
7236 return val0;
7237}
7238
7239/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7240 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7241
7242static unsigned int
ebf56fd3 7243align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7244{
7245 return (off + alignment - 1) & ~(alignment - 1);
7246}
7247
4c4b4cd2 7248/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7249
7250static unsigned int
ebf56fd3 7251field_alignment (struct type *type, int f)
14f9c5c9 7252{
d2e4a39e 7253 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7254 int len;
14f9c5c9
AS
7255 int align_offset;
7256
64a1bf19
JB
7257 /* The field name should never be null, unless the debugging information
7258 is somehow malformed. In this case, we assume the field does not
7259 require any alignment. */
7260 if (name == NULL)
7261 return 1;
7262
7263 len = strlen (name);
7264
4c4b4cd2
PH
7265 if (!isdigit (name[len - 1]))
7266 return 1;
14f9c5c9 7267
d2e4a39e 7268 if (isdigit (name[len - 2]))
14f9c5c9
AS
7269 align_offset = len - 2;
7270 else
7271 align_offset = len - 1;
7272
4c4b4cd2 7273 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7274 return TARGET_CHAR_BIT;
7275
4c4b4cd2
PH
7276 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7277}
7278
852dff6c 7279/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7280
852dff6c
JB
7281static struct symbol *
7282ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7283{
7284 struct symbol *sym;
7285
7286 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7287 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7288 return sym;
7289
7290 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7291 return sym;
14f9c5c9
AS
7292}
7293
dddfab26
UW
7294/* Find a type named NAME. Ignores ambiguity. This routine will look
7295 solely for types defined by debug info, it will not search the GDB
7296 primitive types. */
4c4b4cd2 7297
852dff6c 7298static struct type *
ebf56fd3 7299ada_find_any_type (const char *name)
14f9c5c9 7300{
852dff6c 7301 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7302
14f9c5c9 7303 if (sym != NULL)
dddfab26 7304 return SYMBOL_TYPE (sym);
14f9c5c9 7305
dddfab26 7306 return NULL;
14f9c5c9
AS
7307}
7308
739593e0
JB
7309/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7310 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7311 symbol, in which case it is returned. Otherwise, this looks for
7312 symbols whose name is that of NAME_SYM suffixed with "___XR".
7313 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7314
7315struct symbol *
270140bd 7316ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7317{
739593e0 7318 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7319 struct symbol *sym;
7320
739593e0
JB
7321 if (strstr (name, "___XR") != NULL)
7322 return name_sym;
7323
aeb5907d
JB
7324 sym = find_old_style_renaming_symbol (name, block);
7325
7326 if (sym != NULL)
7327 return sym;
7328
0963b4bd 7329 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7330 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7331 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7332 return sym;
7333 else
7334 return NULL;
7335}
7336
7337static struct symbol *
270140bd 7338find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7339{
7f0df278 7340 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7341 char *rename;
7342
7343 if (function_sym != NULL)
7344 {
7345 /* If the symbol is defined inside a function, NAME is not fully
7346 qualified. This means we need to prepend the function name
7347 as well as adding the ``___XR'' suffix to build the name of
7348 the associated renaming symbol. */
0d5cff50 7349 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7350 /* Function names sometimes contain suffixes used
7351 for instance to qualify nested subprograms. When building
7352 the XR type name, we need to make sure that this suffix is
7353 not included. So do not include any suffix in the function
7354 name length below. */
69fadcdf 7355 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7356 const int rename_len = function_name_len + 2 /* "__" */
7357 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7358
529cad9c 7359 /* Strip the suffix if necessary. */
69fadcdf
JB
7360 ada_remove_trailing_digits (function_name, &function_name_len);
7361 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7362 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7363
4c4b4cd2
PH
7364 /* Library-level functions are a special case, as GNAT adds
7365 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7366 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7367 have this prefix, so we need to skip this prefix if present. */
7368 if (function_name_len > 5 /* "_ada_" */
7369 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7370 {
7371 function_name += 5;
7372 function_name_len -= 5;
7373 }
4c4b4cd2
PH
7374
7375 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7376 strncpy (rename, function_name, function_name_len);
7377 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7378 "__%s___XR", name);
4c4b4cd2
PH
7379 }
7380 else
7381 {
7382 const int rename_len = strlen (name) + 6;
5b4ee69b 7383
4c4b4cd2 7384 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7385 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7386 }
7387
852dff6c 7388 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7389}
7390
14f9c5c9 7391/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7392 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7393 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7394 otherwise return 0. */
7395
14f9c5c9 7396int
d2e4a39e 7397ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7398{
7399 if (type1 == NULL)
7400 return 1;
7401 else if (type0 == NULL)
7402 return 0;
7403 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7404 return 1;
7405 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7406 return 0;
4c4b4cd2
PH
7407 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7408 return 1;
ad82864c 7409 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7410 return 1;
4c4b4cd2
PH
7411 else if (ada_is_array_descriptor_type (type0)
7412 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7413 return 1;
aeb5907d
JB
7414 else
7415 {
7416 const char *type0_name = type_name_no_tag (type0);
7417 const char *type1_name = type_name_no_tag (type1);
7418
7419 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7420 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7421 return 1;
7422 }
14f9c5c9
AS
7423 return 0;
7424}
7425
7426/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7427 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7428
0d5cff50 7429const char *
d2e4a39e 7430ada_type_name (struct type *type)
14f9c5c9 7431{
d2e4a39e 7432 if (type == NULL)
14f9c5c9
AS
7433 return NULL;
7434 else if (TYPE_NAME (type) != NULL)
7435 return TYPE_NAME (type);
7436 else
7437 return TYPE_TAG_NAME (type);
7438}
7439
b4ba55a1
JB
7440/* Search the list of "descriptive" types associated to TYPE for a type
7441 whose name is NAME. */
7442
7443static struct type *
7444find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7445{
7446 struct type *result;
7447
c6044dd1
JB
7448 if (ada_ignore_descriptive_types_p)
7449 return NULL;
7450
b4ba55a1
JB
7451 /* If there no descriptive-type info, then there is no parallel type
7452 to be found. */
7453 if (!HAVE_GNAT_AUX_INFO (type))
7454 return NULL;
7455
7456 result = TYPE_DESCRIPTIVE_TYPE (type);
7457 while (result != NULL)
7458 {
0d5cff50 7459 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7460
7461 if (result_name == NULL)
7462 {
7463 warning (_("unexpected null name on descriptive type"));
7464 return NULL;
7465 }
7466
7467 /* If the names match, stop. */
7468 if (strcmp (result_name, name) == 0)
7469 break;
7470
7471 /* Otherwise, look at the next item on the list, if any. */
7472 if (HAVE_GNAT_AUX_INFO (result))
7473 result = TYPE_DESCRIPTIVE_TYPE (result);
7474 else
7475 result = NULL;
7476 }
7477
7478 /* If we didn't find a match, see whether this is a packed array. With
7479 older compilers, the descriptive type information is either absent or
7480 irrelevant when it comes to packed arrays so the above lookup fails.
7481 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7482 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7483 return ada_find_any_type (name);
7484
7485 return result;
7486}
7487
7488/* Find a parallel type to TYPE with the specified NAME, using the
7489 descriptive type taken from the debugging information, if available,
7490 and otherwise using the (slower) name-based method. */
7491
7492static struct type *
7493ada_find_parallel_type_with_name (struct type *type, const char *name)
7494{
7495 struct type *result = NULL;
7496
7497 if (HAVE_GNAT_AUX_INFO (type))
7498 result = find_parallel_type_by_descriptive_type (type, name);
7499 else
7500 result = ada_find_any_type (name);
7501
7502 return result;
7503}
7504
7505/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7506 SUFFIX to the name of TYPE. */
14f9c5c9 7507
d2e4a39e 7508struct type *
ebf56fd3 7509ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7510{
0d5cff50
DE
7511 char *name;
7512 const char *typename = ada_type_name (type);
14f9c5c9 7513 int len;
d2e4a39e 7514
14f9c5c9
AS
7515 if (typename == NULL)
7516 return NULL;
7517
7518 len = strlen (typename);
7519
b4ba55a1 7520 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7521
7522 strcpy (name, typename);
7523 strcpy (name + len, suffix);
7524
b4ba55a1 7525 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7526}
7527
14f9c5c9 7528/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7529 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7530
d2e4a39e
AS
7531static struct type *
7532dynamic_template_type (struct type *type)
14f9c5c9 7533{
61ee279c 7534 type = ada_check_typedef (type);
14f9c5c9
AS
7535
7536 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7537 || ada_type_name (type) == NULL)
14f9c5c9 7538 return NULL;
d2e4a39e 7539 else
14f9c5c9
AS
7540 {
7541 int len = strlen (ada_type_name (type));
5b4ee69b 7542
4c4b4cd2
PH
7543 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7544 return type;
14f9c5c9 7545 else
4c4b4cd2 7546 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7547 }
7548}
7549
7550/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7551 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7552
d2e4a39e
AS
7553static int
7554is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7555{
7556 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7557
d2e4a39e 7558 return name != NULL
14f9c5c9
AS
7559 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7560 && strstr (name, "___XVL") != NULL;
7561}
7562
4c4b4cd2
PH
7563/* The index of the variant field of TYPE, or -1 if TYPE does not
7564 represent a variant record type. */
14f9c5c9 7565
d2e4a39e 7566static int
4c4b4cd2 7567variant_field_index (struct type *type)
14f9c5c9
AS
7568{
7569 int f;
7570
4c4b4cd2
PH
7571 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7572 return -1;
7573
7574 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7575 {
7576 if (ada_is_variant_part (type, f))
7577 return f;
7578 }
7579 return -1;
14f9c5c9
AS
7580}
7581
4c4b4cd2
PH
7582/* A record type with no fields. */
7583
d2e4a39e 7584static struct type *
e9bb382b 7585empty_record (struct type *template)
14f9c5c9 7586{
e9bb382b 7587 struct type *type = alloc_type_copy (template);
5b4ee69b 7588
14f9c5c9
AS
7589 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7590 TYPE_NFIELDS (type) = 0;
7591 TYPE_FIELDS (type) = NULL;
b1f33ddd 7592 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7593 TYPE_NAME (type) = "<empty>";
7594 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7595 TYPE_LENGTH (type) = 0;
7596 return type;
7597}
7598
7599/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7600 the value of type TYPE at VALADDR or ADDRESS (see comments at
7601 the beginning of this section) VAL according to GNAT conventions.
7602 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7603 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7604 an outer-level type (i.e., as opposed to a branch of a variant.) A
7605 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7606 of the variant.
14f9c5c9 7607
4c4b4cd2
PH
7608 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7609 length are not statically known are discarded. As a consequence,
7610 VALADDR, ADDRESS and DVAL0 are ignored.
7611
7612 NOTE: Limitations: For now, we assume that dynamic fields and
7613 variants occupy whole numbers of bytes. However, they need not be
7614 byte-aligned. */
7615
7616struct type *
10a2c479 7617ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7618 const gdb_byte *valaddr,
4c4b4cd2
PH
7619 CORE_ADDR address, struct value *dval0,
7620 int keep_dynamic_fields)
14f9c5c9 7621{
d2e4a39e
AS
7622 struct value *mark = value_mark ();
7623 struct value *dval;
7624 struct type *rtype;
14f9c5c9 7625 int nfields, bit_len;
4c4b4cd2 7626 int variant_field;
14f9c5c9 7627 long off;
d94e4f4f 7628 int fld_bit_len;
14f9c5c9
AS
7629 int f;
7630
4c4b4cd2
PH
7631 /* Compute the number of fields in this record type that are going
7632 to be processed: unless keep_dynamic_fields, this includes only
7633 fields whose position and length are static will be processed. */
7634 if (keep_dynamic_fields)
7635 nfields = TYPE_NFIELDS (type);
7636 else
7637 {
7638 nfields = 0;
76a01679 7639 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7640 && !ada_is_variant_part (type, nfields)
7641 && !is_dynamic_field (type, nfields))
7642 nfields++;
7643 }
7644
e9bb382b 7645 rtype = alloc_type_copy (type);
14f9c5c9
AS
7646 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7647 INIT_CPLUS_SPECIFIC (rtype);
7648 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7649 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7650 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7651 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7652 TYPE_NAME (rtype) = ada_type_name (type);
7653 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7654 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7655
d2e4a39e
AS
7656 off = 0;
7657 bit_len = 0;
4c4b4cd2
PH
7658 variant_field = -1;
7659
14f9c5c9
AS
7660 for (f = 0; f < nfields; f += 1)
7661 {
6c038f32
PH
7662 off = align_value (off, field_alignment (type, f))
7663 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7664 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7665 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7666
d2e4a39e 7667 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7668 {
7669 variant_field = f;
d94e4f4f 7670 fld_bit_len = 0;
4c4b4cd2 7671 }
14f9c5c9 7672 else if (is_dynamic_field (type, f))
4c4b4cd2 7673 {
284614f0
JB
7674 const gdb_byte *field_valaddr = valaddr;
7675 CORE_ADDR field_address = address;
7676 struct type *field_type =
7677 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7678
4c4b4cd2 7679 if (dval0 == NULL)
b5304971
JG
7680 {
7681 /* rtype's length is computed based on the run-time
7682 value of discriminants. If the discriminants are not
7683 initialized, the type size may be completely bogus and
0963b4bd 7684 GDB may fail to allocate a value for it. So check the
b5304971
JG
7685 size first before creating the value. */
7686 check_size (rtype);
7687 dval = value_from_contents_and_address (rtype, valaddr, address);
7688 }
4c4b4cd2
PH
7689 else
7690 dval = dval0;
7691
284614f0
JB
7692 /* If the type referenced by this field is an aligner type, we need
7693 to unwrap that aligner type, because its size might not be set.
7694 Keeping the aligner type would cause us to compute the wrong
7695 size for this field, impacting the offset of the all the fields
7696 that follow this one. */
7697 if (ada_is_aligner_type (field_type))
7698 {
7699 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7700
7701 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7702 field_address = cond_offset_target (field_address, field_offset);
7703 field_type = ada_aligned_type (field_type);
7704 }
7705
7706 field_valaddr = cond_offset_host (field_valaddr,
7707 off / TARGET_CHAR_BIT);
7708 field_address = cond_offset_target (field_address,
7709 off / TARGET_CHAR_BIT);
7710
7711 /* Get the fixed type of the field. Note that, in this case,
7712 we do not want to get the real type out of the tag: if
7713 the current field is the parent part of a tagged record,
7714 we will get the tag of the object. Clearly wrong: the real
7715 type of the parent is not the real type of the child. We
7716 would end up in an infinite loop. */
7717 field_type = ada_get_base_type (field_type);
7718 field_type = ada_to_fixed_type (field_type, field_valaddr,
7719 field_address, dval, 0);
27f2a97b
JB
7720 /* If the field size is already larger than the maximum
7721 object size, then the record itself will necessarily
7722 be larger than the maximum object size. We need to make
7723 this check now, because the size might be so ridiculously
7724 large (due to an uninitialized variable in the inferior)
7725 that it would cause an overflow when adding it to the
7726 record size. */
7727 check_size (field_type);
284614f0
JB
7728
7729 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7730 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7731 /* The multiplication can potentially overflow. But because
7732 the field length has been size-checked just above, and
7733 assuming that the maximum size is a reasonable value,
7734 an overflow should not happen in practice. So rather than
7735 adding overflow recovery code to this already complex code,
7736 we just assume that it's not going to happen. */
d94e4f4f 7737 fld_bit_len =
4c4b4cd2
PH
7738 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7739 }
14f9c5c9 7740 else
4c4b4cd2 7741 {
5ded5331
JB
7742 /* Note: If this field's type is a typedef, it is important
7743 to preserve the typedef layer.
7744
7745 Otherwise, we might be transforming a typedef to a fat
7746 pointer (encoding a pointer to an unconstrained array),
7747 into a basic fat pointer (encoding an unconstrained
7748 array). As both types are implemented using the same
7749 structure, the typedef is the only clue which allows us
7750 to distinguish between the two options. Stripping it
7751 would prevent us from printing this field appropriately. */
7752 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7753 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7754 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7755 fld_bit_len =
4c4b4cd2
PH
7756 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7757 else
5ded5331
JB
7758 {
7759 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7760
7761 /* We need to be careful of typedefs when computing
7762 the length of our field. If this is a typedef,
7763 get the length of the target type, not the length
7764 of the typedef. */
7765 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7766 field_type = ada_typedef_target_type (field_type);
7767
7768 fld_bit_len =
7769 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7770 }
4c4b4cd2 7771 }
14f9c5c9 7772 if (off + fld_bit_len > bit_len)
4c4b4cd2 7773 bit_len = off + fld_bit_len;
d94e4f4f 7774 off += fld_bit_len;
4c4b4cd2
PH
7775 TYPE_LENGTH (rtype) =
7776 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7777 }
4c4b4cd2
PH
7778
7779 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7780 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7781 the record. This can happen in the presence of representation
7782 clauses. */
7783 if (variant_field >= 0)
7784 {
7785 struct type *branch_type;
7786
7787 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7788
7789 if (dval0 == NULL)
7790 dval = value_from_contents_and_address (rtype, valaddr, address);
7791 else
7792 dval = dval0;
7793
7794 branch_type =
7795 to_fixed_variant_branch_type
7796 (TYPE_FIELD_TYPE (type, variant_field),
7797 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7798 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7799 if (branch_type == NULL)
7800 {
7801 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7802 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7803 TYPE_NFIELDS (rtype) -= 1;
7804 }
7805 else
7806 {
7807 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7808 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7809 fld_bit_len =
7810 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7811 TARGET_CHAR_BIT;
7812 if (off + fld_bit_len > bit_len)
7813 bit_len = off + fld_bit_len;
7814 TYPE_LENGTH (rtype) =
7815 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7816 }
7817 }
7818
714e53ab
PH
7819 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7820 should contain the alignment of that record, which should be a strictly
7821 positive value. If null or negative, then something is wrong, most
7822 probably in the debug info. In that case, we don't round up the size
0963b4bd 7823 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7824 the current RTYPE length might be good enough for our purposes. */
7825 if (TYPE_LENGTH (type) <= 0)
7826 {
323e0a4a
AC
7827 if (TYPE_NAME (rtype))
7828 warning (_("Invalid type size for `%s' detected: %d."),
7829 TYPE_NAME (rtype), TYPE_LENGTH (type));
7830 else
7831 warning (_("Invalid type size for <unnamed> detected: %d."),
7832 TYPE_LENGTH (type));
714e53ab
PH
7833 }
7834 else
7835 {
7836 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7837 TYPE_LENGTH (type));
7838 }
14f9c5c9
AS
7839
7840 value_free_to_mark (mark);
d2e4a39e 7841 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7842 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7843 return rtype;
7844}
7845
4c4b4cd2
PH
7846/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7847 of 1. */
14f9c5c9 7848
d2e4a39e 7849static struct type *
fc1a4b47 7850template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7851 CORE_ADDR address, struct value *dval0)
7852{
7853 return ada_template_to_fixed_record_type_1 (type, valaddr,
7854 address, dval0, 1);
7855}
7856
7857/* An ordinary record type in which ___XVL-convention fields and
7858 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7859 static approximations, containing all possible fields. Uses
7860 no runtime values. Useless for use in values, but that's OK,
7861 since the results are used only for type determinations. Works on both
7862 structs and unions. Representation note: to save space, we memorize
7863 the result of this function in the TYPE_TARGET_TYPE of the
7864 template type. */
7865
7866static struct type *
7867template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7868{
7869 struct type *type;
7870 int nfields;
7871 int f;
7872
4c4b4cd2
PH
7873 if (TYPE_TARGET_TYPE (type0) != NULL)
7874 return TYPE_TARGET_TYPE (type0);
7875
7876 nfields = TYPE_NFIELDS (type0);
7877 type = type0;
14f9c5c9
AS
7878
7879 for (f = 0; f < nfields; f += 1)
7880 {
61ee279c 7881 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7882 struct type *new_type;
14f9c5c9 7883
4c4b4cd2
PH
7884 if (is_dynamic_field (type0, f))
7885 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7886 else
f192137b 7887 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7888 if (type == type0 && new_type != field_type)
7889 {
e9bb382b 7890 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7891 TYPE_CODE (type) = TYPE_CODE (type0);
7892 INIT_CPLUS_SPECIFIC (type);
7893 TYPE_NFIELDS (type) = nfields;
7894 TYPE_FIELDS (type) = (struct field *)
7895 TYPE_ALLOC (type, nfields * sizeof (struct field));
7896 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7897 sizeof (struct field) * nfields);
7898 TYPE_NAME (type) = ada_type_name (type0);
7899 TYPE_TAG_NAME (type) = NULL;
876cecd0 7900 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7901 TYPE_LENGTH (type) = 0;
7902 }
7903 TYPE_FIELD_TYPE (type, f) = new_type;
7904 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7905 }
14f9c5c9
AS
7906 return type;
7907}
7908
4c4b4cd2 7909/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7910 whose address in memory is ADDRESS, returns a revision of TYPE,
7911 which should be a non-dynamic-sized record, in which the variant
7912 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7913 for discriminant values in DVAL0, which can be NULL if the record
7914 contains the necessary discriminant values. */
7915
d2e4a39e 7916static struct type *
fc1a4b47 7917to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7918 CORE_ADDR address, struct value *dval0)
14f9c5c9 7919{
d2e4a39e 7920 struct value *mark = value_mark ();
4c4b4cd2 7921 struct value *dval;
d2e4a39e 7922 struct type *rtype;
14f9c5c9
AS
7923 struct type *branch_type;
7924 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7925 int variant_field = variant_field_index (type);
14f9c5c9 7926
4c4b4cd2 7927 if (variant_field == -1)
14f9c5c9
AS
7928 return type;
7929
4c4b4cd2
PH
7930 if (dval0 == NULL)
7931 dval = value_from_contents_and_address (type, valaddr, address);
7932 else
7933 dval = dval0;
7934
e9bb382b 7935 rtype = alloc_type_copy (type);
14f9c5c9 7936 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7937 INIT_CPLUS_SPECIFIC (rtype);
7938 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7939 TYPE_FIELDS (rtype) =
7940 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7941 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7942 sizeof (struct field) * nfields);
14f9c5c9
AS
7943 TYPE_NAME (rtype) = ada_type_name (type);
7944 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7945 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7946 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7947
4c4b4cd2
PH
7948 branch_type = to_fixed_variant_branch_type
7949 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7950 cond_offset_host (valaddr,
4c4b4cd2
PH
7951 TYPE_FIELD_BITPOS (type, variant_field)
7952 / TARGET_CHAR_BIT),
d2e4a39e 7953 cond_offset_target (address,
4c4b4cd2
PH
7954 TYPE_FIELD_BITPOS (type, variant_field)
7955 / TARGET_CHAR_BIT), dval);
d2e4a39e 7956 if (branch_type == NULL)
14f9c5c9 7957 {
4c4b4cd2 7958 int f;
5b4ee69b 7959
4c4b4cd2
PH
7960 for (f = variant_field + 1; f < nfields; f += 1)
7961 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7962 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7963 }
7964 else
7965 {
4c4b4cd2
PH
7966 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7967 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7968 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7969 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7970 }
4c4b4cd2 7971 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7972
4c4b4cd2 7973 value_free_to_mark (mark);
14f9c5c9
AS
7974 return rtype;
7975}
7976
7977/* An ordinary record type (with fixed-length fields) that describes
7978 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7979 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7980 should be in DVAL, a record value; it may be NULL if the object
7981 at ADDR itself contains any necessary discriminant values.
7982 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7983 values from the record are needed. Except in the case that DVAL,
7984 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7985 unchecked) is replaced by a particular branch of the variant.
7986
7987 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7988 is questionable and may be removed. It can arise during the
7989 processing of an unconstrained-array-of-record type where all the
7990 variant branches have exactly the same size. This is because in
7991 such cases, the compiler does not bother to use the XVS convention
7992 when encoding the record. I am currently dubious of this
7993 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7994
d2e4a39e 7995static struct type *
fc1a4b47 7996to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7997 CORE_ADDR address, struct value *dval)
14f9c5c9 7998{
d2e4a39e 7999 struct type *templ_type;
14f9c5c9 8000
876cecd0 8001 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8002 return type0;
8003
d2e4a39e 8004 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8005
8006 if (templ_type != NULL)
8007 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8008 else if (variant_field_index (type0) >= 0)
8009 {
8010 if (dval == NULL && valaddr == NULL && address == 0)
8011 return type0;
8012 return to_record_with_fixed_variant_part (type0, valaddr, address,
8013 dval);
8014 }
14f9c5c9
AS
8015 else
8016 {
876cecd0 8017 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8018 return type0;
8019 }
8020
8021}
8022
8023/* An ordinary record type (with fixed-length fields) that describes
8024 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8025 union type. Any necessary discriminants' values should be in DVAL,
8026 a record value. That is, this routine selects the appropriate
8027 branch of the union at ADDR according to the discriminant value
b1f33ddd 8028 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8029 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8030
d2e4a39e 8031static struct type *
fc1a4b47 8032to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8033 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8034{
8035 int which;
d2e4a39e
AS
8036 struct type *templ_type;
8037 struct type *var_type;
14f9c5c9
AS
8038
8039 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8040 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8041 else
14f9c5c9
AS
8042 var_type = var_type0;
8043
8044 templ_type = ada_find_parallel_type (var_type, "___XVU");
8045
8046 if (templ_type != NULL)
8047 var_type = templ_type;
8048
b1f33ddd
JB
8049 if (is_unchecked_variant (var_type, value_type (dval)))
8050 return var_type0;
d2e4a39e
AS
8051 which =
8052 ada_which_variant_applies (var_type,
0fd88904 8053 value_type (dval), value_contents (dval));
14f9c5c9
AS
8054
8055 if (which < 0)
e9bb382b 8056 return empty_record (var_type);
14f9c5c9 8057 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8058 return to_fixed_record_type
d2e4a39e
AS
8059 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8060 valaddr, address, dval);
4c4b4cd2 8061 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8062 return
8063 to_fixed_record_type
8064 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8065 else
8066 return TYPE_FIELD_TYPE (var_type, which);
8067}
8068
8069/* Assuming that TYPE0 is an array type describing the type of a value
8070 at ADDR, and that DVAL describes a record containing any
8071 discriminants used in TYPE0, returns a type for the value that
8072 contains no dynamic components (that is, no components whose sizes
8073 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8074 true, gives an error message if the resulting type's size is over
4c4b4cd2 8075 varsize_limit. */
14f9c5c9 8076
d2e4a39e
AS
8077static struct type *
8078to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8079 int ignore_too_big)
14f9c5c9 8080{
d2e4a39e
AS
8081 struct type *index_type_desc;
8082 struct type *result;
ad82864c 8083 int constrained_packed_array_p;
14f9c5c9 8084
b0dd7688 8085 type0 = ada_check_typedef (type0);
284614f0 8086 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8087 return type0;
14f9c5c9 8088
ad82864c
JB
8089 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8090 if (constrained_packed_array_p)
8091 type0 = decode_constrained_packed_array_type (type0);
284614f0 8092
14f9c5c9 8093 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8094 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8095 if (index_type_desc == NULL)
8096 {
61ee279c 8097 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8098
14f9c5c9 8099 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8100 depend on the contents of the array in properly constructed
8101 debugging data. */
529cad9c
PH
8102 /* Create a fixed version of the array element type.
8103 We're not providing the address of an element here,
e1d5a0d2 8104 and thus the actual object value cannot be inspected to do
529cad9c
PH
8105 the conversion. This should not be a problem, since arrays of
8106 unconstrained objects are not allowed. In particular, all
8107 the elements of an array of a tagged type should all be of
8108 the same type specified in the debugging info. No need to
8109 consult the object tag. */
1ed6ede0 8110 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8111
284614f0
JB
8112 /* Make sure we always create a new array type when dealing with
8113 packed array types, since we're going to fix-up the array
8114 type length and element bitsize a little further down. */
ad82864c 8115 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8116 result = type0;
14f9c5c9 8117 else
e9bb382b 8118 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8119 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8120 }
8121 else
8122 {
8123 int i;
8124 struct type *elt_type0;
8125
8126 elt_type0 = type0;
8127 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8128 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8129
8130 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8131 depend on the contents of the array in properly constructed
8132 debugging data. */
529cad9c
PH
8133 /* Create a fixed version of the array element type.
8134 We're not providing the address of an element here,
e1d5a0d2 8135 and thus the actual object value cannot be inspected to do
529cad9c
PH
8136 the conversion. This should not be a problem, since arrays of
8137 unconstrained objects are not allowed. In particular, all
8138 the elements of an array of a tagged type should all be of
8139 the same type specified in the debugging info. No need to
8140 consult the object tag. */
1ed6ede0
JB
8141 result =
8142 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8143
8144 elt_type0 = type0;
14f9c5c9 8145 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8146 {
8147 struct type *range_type =
28c85d6c 8148 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8149
e9bb382b 8150 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8151 result, range_type);
1ce677a4 8152 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8153 }
d2e4a39e 8154 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8155 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8156 }
8157
2e6fda7d
JB
8158 /* We want to preserve the type name. This can be useful when
8159 trying to get the type name of a value that has already been
8160 printed (for instance, if the user did "print VAR; whatis $". */
8161 TYPE_NAME (result) = TYPE_NAME (type0);
8162
ad82864c 8163 if (constrained_packed_array_p)
284614f0
JB
8164 {
8165 /* So far, the resulting type has been created as if the original
8166 type was a regular (non-packed) array type. As a result, the
8167 bitsize of the array elements needs to be set again, and the array
8168 length needs to be recomputed based on that bitsize. */
8169 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8170 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8171
8172 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8173 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8174 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8175 TYPE_LENGTH (result)++;
8176 }
8177
876cecd0 8178 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8179 return result;
d2e4a39e 8180}
14f9c5c9
AS
8181
8182
8183/* A standard type (containing no dynamically sized components)
8184 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8185 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8186 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8187 ADDRESS or in VALADDR contains these discriminants.
8188
1ed6ede0
JB
8189 If CHECK_TAG is not null, in the case of tagged types, this function
8190 attempts to locate the object's tag and use it to compute the actual
8191 type. However, when ADDRESS is null, we cannot use it to determine the
8192 location of the tag, and therefore compute the tagged type's actual type.
8193 So we return the tagged type without consulting the tag. */
529cad9c 8194
f192137b
JB
8195static struct type *
8196ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8197 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8198{
61ee279c 8199 type = ada_check_typedef (type);
d2e4a39e
AS
8200 switch (TYPE_CODE (type))
8201 {
8202 default:
14f9c5c9 8203 return type;
d2e4a39e 8204 case TYPE_CODE_STRUCT:
4c4b4cd2 8205 {
76a01679 8206 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8207 struct type *fixed_record_type =
8208 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8209
529cad9c
PH
8210 /* If STATIC_TYPE is a tagged type and we know the object's address,
8211 then we can determine its tag, and compute the object's actual
0963b4bd 8212 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8213 type (the parent part of the record may have dynamic fields
8214 and the way the location of _tag is expressed may depend on
8215 them). */
529cad9c 8216
1ed6ede0 8217 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8218 {
b50d69b5
JG
8219 struct value *tag =
8220 value_tag_from_contents_and_address
8221 (fixed_record_type,
8222 valaddr,
8223 address);
8224 struct type *real_type = type_from_tag (tag);
8225 struct value *obj =
8226 value_from_contents_and_address (fixed_record_type,
8227 valaddr,
8228 address);
76a01679 8229 if (real_type != NULL)
b50d69b5
JG
8230 return to_fixed_record_type
8231 (real_type, NULL,
8232 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8233 }
4af88198
JB
8234
8235 /* Check to see if there is a parallel ___XVZ variable.
8236 If there is, then it provides the actual size of our type. */
8237 else if (ada_type_name (fixed_record_type) != NULL)
8238 {
0d5cff50 8239 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8240 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8241 int xvz_found = 0;
8242 LONGEST size;
8243
88c15c34 8244 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8245 size = get_int_var_value (xvz_name, &xvz_found);
8246 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8247 {
8248 fixed_record_type = copy_type (fixed_record_type);
8249 TYPE_LENGTH (fixed_record_type) = size;
8250
8251 /* The FIXED_RECORD_TYPE may have be a stub. We have
8252 observed this when the debugging info is STABS, and
8253 apparently it is something that is hard to fix.
8254
8255 In practice, we don't need the actual type definition
8256 at all, because the presence of the XVZ variable allows us
8257 to assume that there must be a XVS type as well, which we
8258 should be able to use later, when we need the actual type
8259 definition.
8260
8261 In the meantime, pretend that the "fixed" type we are
8262 returning is NOT a stub, because this can cause trouble
8263 when using this type to create new types targeting it.
8264 Indeed, the associated creation routines often check
8265 whether the target type is a stub and will try to replace
0963b4bd 8266 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8267 might cause the new type to have the wrong size too.
8268 Consider the case of an array, for instance, where the size
8269 of the array is computed from the number of elements in
8270 our array multiplied by the size of its element. */
8271 TYPE_STUB (fixed_record_type) = 0;
8272 }
8273 }
1ed6ede0 8274 return fixed_record_type;
4c4b4cd2 8275 }
d2e4a39e 8276 case TYPE_CODE_ARRAY:
4c4b4cd2 8277 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8278 case TYPE_CODE_UNION:
8279 if (dval == NULL)
4c4b4cd2 8280 return type;
d2e4a39e 8281 else
4c4b4cd2 8282 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8283 }
14f9c5c9
AS
8284}
8285
f192137b
JB
8286/* The same as ada_to_fixed_type_1, except that it preserves the type
8287 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8288
8289 The typedef layer needs be preserved in order to differentiate between
8290 arrays and array pointers when both types are implemented using the same
8291 fat pointer. In the array pointer case, the pointer is encoded as
8292 a typedef of the pointer type. For instance, considering:
8293
8294 type String_Access is access String;
8295 S1 : String_Access := null;
8296
8297 To the debugger, S1 is defined as a typedef of type String. But
8298 to the user, it is a pointer. So if the user tries to print S1,
8299 we should not dereference the array, but print the array address
8300 instead.
8301
8302 If we didn't preserve the typedef layer, we would lose the fact that
8303 the type is to be presented as a pointer (needs de-reference before
8304 being printed). And we would also use the source-level type name. */
f192137b
JB
8305
8306struct type *
8307ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8308 CORE_ADDR address, struct value *dval, int check_tag)
8309
8310{
8311 struct type *fixed_type =
8312 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8313
96dbd2c1
JB
8314 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8315 then preserve the typedef layer.
8316
8317 Implementation note: We can only check the main-type portion of
8318 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8319 from TYPE now returns a type that has the same instance flags
8320 as TYPE. For instance, if TYPE is a "typedef const", and its
8321 target type is a "struct", then the typedef elimination will return
8322 a "const" version of the target type. See check_typedef for more
8323 details about how the typedef layer elimination is done.
8324
8325 brobecker/2010-11-19: It seems to me that the only case where it is
8326 useful to preserve the typedef layer is when dealing with fat pointers.
8327 Perhaps, we could add a check for that and preserve the typedef layer
8328 only in that situation. But this seems unecessary so far, probably
8329 because we call check_typedef/ada_check_typedef pretty much everywhere.
8330 */
f192137b 8331 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8332 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8333 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8334 return type;
8335
8336 return fixed_type;
8337}
8338
14f9c5c9 8339/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8340 TYPE0, but based on no runtime data. */
14f9c5c9 8341
d2e4a39e
AS
8342static struct type *
8343to_static_fixed_type (struct type *type0)
14f9c5c9 8344{
d2e4a39e 8345 struct type *type;
14f9c5c9
AS
8346
8347 if (type0 == NULL)
8348 return NULL;
8349
876cecd0 8350 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8351 return type0;
8352
61ee279c 8353 type0 = ada_check_typedef (type0);
d2e4a39e 8354
14f9c5c9
AS
8355 switch (TYPE_CODE (type0))
8356 {
8357 default:
8358 return type0;
8359 case TYPE_CODE_STRUCT:
8360 type = dynamic_template_type (type0);
d2e4a39e 8361 if (type != NULL)
4c4b4cd2
PH
8362 return template_to_static_fixed_type (type);
8363 else
8364 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8365 case TYPE_CODE_UNION:
8366 type = ada_find_parallel_type (type0, "___XVU");
8367 if (type != NULL)
4c4b4cd2
PH
8368 return template_to_static_fixed_type (type);
8369 else
8370 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8371 }
8372}
8373
4c4b4cd2
PH
8374/* A static approximation of TYPE with all type wrappers removed. */
8375
d2e4a39e
AS
8376static struct type *
8377static_unwrap_type (struct type *type)
14f9c5c9
AS
8378{
8379 if (ada_is_aligner_type (type))
8380 {
61ee279c 8381 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8382 if (ada_type_name (type1) == NULL)
4c4b4cd2 8383 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8384
8385 return static_unwrap_type (type1);
8386 }
d2e4a39e 8387 else
14f9c5c9 8388 {
d2e4a39e 8389 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8390
d2e4a39e 8391 if (raw_real_type == type)
4c4b4cd2 8392 return type;
14f9c5c9 8393 else
4c4b4cd2 8394 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8395 }
8396}
8397
8398/* In some cases, incomplete and private types require
4c4b4cd2 8399 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8400 type Foo;
8401 type FooP is access Foo;
8402 V: FooP;
8403 type Foo is array ...;
4c4b4cd2 8404 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8405 cross-references to such types, we instead substitute for FooP a
8406 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8407 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8408
8409/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8410 exists, otherwise TYPE. */
8411
d2e4a39e 8412struct type *
61ee279c 8413ada_check_typedef (struct type *type)
14f9c5c9 8414{
727e3d2e
JB
8415 if (type == NULL)
8416 return NULL;
8417
720d1a40
JB
8418 /* If our type is a typedef type of a fat pointer, then we're done.
8419 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8420 what allows us to distinguish between fat pointers that represent
8421 array types, and fat pointers that represent array access types
8422 (in both cases, the compiler implements them as fat pointers). */
8423 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8424 && is_thick_pntr (ada_typedef_target_type (type)))
8425 return type;
8426
14f9c5c9
AS
8427 CHECK_TYPEDEF (type);
8428 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8429 || !TYPE_STUB (type)
14f9c5c9
AS
8430 || TYPE_TAG_NAME (type) == NULL)
8431 return type;
d2e4a39e 8432 else
14f9c5c9 8433 {
0d5cff50 8434 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8435 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8436
05e522ef
JB
8437 if (type1 == NULL)
8438 return type;
8439
8440 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8441 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8442 types, only for the typedef-to-array types). If that's the case,
8443 strip the typedef layer. */
8444 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8445 type1 = ada_check_typedef (type1);
8446
8447 return type1;
14f9c5c9
AS
8448 }
8449}
8450
8451/* A value representing the data at VALADDR/ADDRESS as described by
8452 type TYPE0, but with a standard (static-sized) type that correctly
8453 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8454 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8455 creation of struct values]. */
14f9c5c9 8456
4c4b4cd2
PH
8457static struct value *
8458ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8459 struct value *val0)
14f9c5c9 8460{
1ed6ede0 8461 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8462
14f9c5c9
AS
8463 if (type == type0 && val0 != NULL)
8464 return val0;
d2e4a39e 8465 else
4c4b4cd2
PH
8466 return value_from_contents_and_address (type, 0, address);
8467}
8468
8469/* A value representing VAL, but with a standard (static-sized) type
8470 that correctly describes it. Does not necessarily create a new
8471 value. */
8472
0c3acc09 8473struct value *
4c4b4cd2
PH
8474ada_to_fixed_value (struct value *val)
8475{
c48db5ca
JB
8476 val = unwrap_value (val);
8477 val = ada_to_fixed_value_create (value_type (val),
8478 value_address (val),
8479 val);
8480 return val;
14f9c5c9 8481}
d2e4a39e 8482\f
14f9c5c9 8483
14f9c5c9
AS
8484/* Attributes */
8485
4c4b4cd2
PH
8486/* Table mapping attribute numbers to names.
8487 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8488
d2e4a39e 8489static const char *attribute_names[] = {
14f9c5c9
AS
8490 "<?>",
8491
d2e4a39e 8492 "first",
14f9c5c9
AS
8493 "last",
8494 "length",
8495 "image",
14f9c5c9
AS
8496 "max",
8497 "min",
4c4b4cd2
PH
8498 "modulus",
8499 "pos",
8500 "size",
8501 "tag",
14f9c5c9 8502 "val",
14f9c5c9
AS
8503 0
8504};
8505
d2e4a39e 8506const char *
4c4b4cd2 8507ada_attribute_name (enum exp_opcode n)
14f9c5c9 8508{
4c4b4cd2
PH
8509 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8510 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8511 else
8512 return attribute_names[0];
8513}
8514
4c4b4cd2 8515/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8516
4c4b4cd2
PH
8517static LONGEST
8518pos_atr (struct value *arg)
14f9c5c9 8519{
24209737
PH
8520 struct value *val = coerce_ref (arg);
8521 struct type *type = value_type (val);
14f9c5c9 8522
d2e4a39e 8523 if (!discrete_type_p (type))
323e0a4a 8524 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8525
8526 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8527 {
8528 int i;
24209737 8529 LONGEST v = value_as_long (val);
14f9c5c9 8530
d2e4a39e 8531 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8532 {
14e75d8e 8533 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8534 return i;
8535 }
323e0a4a 8536 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8537 }
8538 else
24209737 8539 return value_as_long (val);
4c4b4cd2
PH
8540}
8541
8542static struct value *
3cb382c9 8543value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8544{
3cb382c9 8545 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8546}
8547
4c4b4cd2 8548/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8549
d2e4a39e
AS
8550static struct value *
8551value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8552{
d2e4a39e 8553 if (!discrete_type_p (type))
323e0a4a 8554 error (_("'VAL only defined on discrete types"));
df407dfe 8555 if (!integer_type_p (value_type (arg)))
323e0a4a 8556 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8557
8558 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8559 {
8560 long pos = value_as_long (arg);
5b4ee69b 8561
14f9c5c9 8562 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8563 error (_("argument to 'VAL out of range"));
14e75d8e 8564 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8565 }
8566 else
8567 return value_from_longest (type, value_as_long (arg));
8568}
14f9c5c9 8569\f
d2e4a39e 8570
4c4b4cd2 8571 /* Evaluation */
14f9c5c9 8572
4c4b4cd2
PH
8573/* True if TYPE appears to be an Ada character type.
8574 [At the moment, this is true only for Character and Wide_Character;
8575 It is a heuristic test that could stand improvement]. */
14f9c5c9 8576
d2e4a39e
AS
8577int
8578ada_is_character_type (struct type *type)
14f9c5c9 8579{
7b9f71f2
JB
8580 const char *name;
8581
8582 /* If the type code says it's a character, then assume it really is,
8583 and don't check any further. */
8584 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8585 return 1;
8586
8587 /* Otherwise, assume it's a character type iff it is a discrete type
8588 with a known character type name. */
8589 name = ada_type_name (type);
8590 return (name != NULL
8591 && (TYPE_CODE (type) == TYPE_CODE_INT
8592 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8593 && (strcmp (name, "character") == 0
8594 || strcmp (name, "wide_character") == 0
5a517ebd 8595 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8596 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8597}
8598
4c4b4cd2 8599/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8600
8601int
ebf56fd3 8602ada_is_string_type (struct type *type)
14f9c5c9 8603{
61ee279c 8604 type = ada_check_typedef (type);
d2e4a39e 8605 if (type != NULL
14f9c5c9 8606 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8607 && (ada_is_simple_array_type (type)
8608 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8609 && ada_array_arity (type) == 1)
8610 {
8611 struct type *elttype = ada_array_element_type (type, 1);
8612
8613 return ada_is_character_type (elttype);
8614 }
d2e4a39e 8615 else
14f9c5c9
AS
8616 return 0;
8617}
8618
5bf03f13
JB
8619/* The compiler sometimes provides a parallel XVS type for a given
8620 PAD type. Normally, it is safe to follow the PAD type directly,
8621 but older versions of the compiler have a bug that causes the offset
8622 of its "F" field to be wrong. Following that field in that case
8623 would lead to incorrect results, but this can be worked around
8624 by ignoring the PAD type and using the associated XVS type instead.
8625
8626 Set to True if the debugger should trust the contents of PAD types.
8627 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8628static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8629
8630/* True if TYPE is a struct type introduced by the compiler to force the
8631 alignment of a value. Such types have a single field with a
4c4b4cd2 8632 distinctive name. */
14f9c5c9
AS
8633
8634int
ebf56fd3 8635ada_is_aligner_type (struct type *type)
14f9c5c9 8636{
61ee279c 8637 type = ada_check_typedef (type);
714e53ab 8638
5bf03f13 8639 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8640 return 0;
8641
14f9c5c9 8642 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8643 && TYPE_NFIELDS (type) == 1
8644 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8645}
8646
8647/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8648 the parallel type. */
14f9c5c9 8649
d2e4a39e
AS
8650struct type *
8651ada_get_base_type (struct type *raw_type)
14f9c5c9 8652{
d2e4a39e
AS
8653 struct type *real_type_namer;
8654 struct type *raw_real_type;
14f9c5c9
AS
8655
8656 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8657 return raw_type;
8658
284614f0
JB
8659 if (ada_is_aligner_type (raw_type))
8660 /* The encoding specifies that we should always use the aligner type.
8661 So, even if this aligner type has an associated XVS type, we should
8662 simply ignore it.
8663
8664 According to the compiler gurus, an XVS type parallel to an aligner
8665 type may exist because of a stabs limitation. In stabs, aligner
8666 types are empty because the field has a variable-sized type, and
8667 thus cannot actually be used as an aligner type. As a result,
8668 we need the associated parallel XVS type to decode the type.
8669 Since the policy in the compiler is to not change the internal
8670 representation based on the debugging info format, we sometimes
8671 end up having a redundant XVS type parallel to the aligner type. */
8672 return raw_type;
8673
14f9c5c9 8674 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8675 if (real_type_namer == NULL
14f9c5c9
AS
8676 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8677 || TYPE_NFIELDS (real_type_namer) != 1)
8678 return raw_type;
8679
f80d3ff2
JB
8680 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8681 {
8682 /* This is an older encoding form where the base type needs to be
8683 looked up by name. We prefer the newer enconding because it is
8684 more efficient. */
8685 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8686 if (raw_real_type == NULL)
8687 return raw_type;
8688 else
8689 return raw_real_type;
8690 }
8691
8692 /* The field in our XVS type is a reference to the base type. */
8693 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8694}
14f9c5c9 8695
4c4b4cd2 8696/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8697
d2e4a39e
AS
8698struct type *
8699ada_aligned_type (struct type *type)
14f9c5c9
AS
8700{
8701 if (ada_is_aligner_type (type))
8702 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8703 else
8704 return ada_get_base_type (type);
8705}
8706
8707
8708/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8709 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8710
fc1a4b47
AC
8711const gdb_byte *
8712ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8713{
d2e4a39e 8714 if (ada_is_aligner_type (type))
14f9c5c9 8715 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8716 valaddr +
8717 TYPE_FIELD_BITPOS (type,
8718 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8719 else
8720 return valaddr;
8721}
8722
4c4b4cd2
PH
8723
8724
14f9c5c9 8725/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8726 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8727const char *
8728ada_enum_name (const char *name)
14f9c5c9 8729{
4c4b4cd2
PH
8730 static char *result;
8731 static size_t result_len = 0;
d2e4a39e 8732 char *tmp;
14f9c5c9 8733
4c4b4cd2
PH
8734 /* First, unqualify the enumeration name:
8735 1. Search for the last '.' character. If we find one, then skip
177b42fe 8736 all the preceding characters, the unqualified name starts
76a01679 8737 right after that dot.
4c4b4cd2 8738 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8739 translates dots into "__". Search forward for double underscores,
8740 but stop searching when we hit an overloading suffix, which is
8741 of the form "__" followed by digits. */
4c4b4cd2 8742
c3e5cd34
PH
8743 tmp = strrchr (name, '.');
8744 if (tmp != NULL)
4c4b4cd2
PH
8745 name = tmp + 1;
8746 else
14f9c5c9 8747 {
4c4b4cd2
PH
8748 while ((tmp = strstr (name, "__")) != NULL)
8749 {
8750 if (isdigit (tmp[2]))
8751 break;
8752 else
8753 name = tmp + 2;
8754 }
14f9c5c9
AS
8755 }
8756
8757 if (name[0] == 'Q')
8758 {
14f9c5c9 8759 int v;
5b4ee69b 8760
14f9c5c9 8761 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8762 {
8763 if (sscanf (name + 2, "%x", &v) != 1)
8764 return name;
8765 }
14f9c5c9 8766 else
4c4b4cd2 8767 return name;
14f9c5c9 8768
4c4b4cd2 8769 GROW_VECT (result, result_len, 16);
14f9c5c9 8770 if (isascii (v) && isprint (v))
88c15c34 8771 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8772 else if (name[1] == 'U')
88c15c34 8773 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8774 else
88c15c34 8775 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8776
8777 return result;
8778 }
d2e4a39e 8779 else
4c4b4cd2 8780 {
c3e5cd34
PH
8781 tmp = strstr (name, "__");
8782 if (tmp == NULL)
8783 tmp = strstr (name, "$");
8784 if (tmp != NULL)
4c4b4cd2
PH
8785 {
8786 GROW_VECT (result, result_len, tmp - name + 1);
8787 strncpy (result, name, tmp - name);
8788 result[tmp - name] = '\0';
8789 return result;
8790 }
8791
8792 return name;
8793 }
14f9c5c9
AS
8794}
8795
14f9c5c9
AS
8796/* Evaluate the subexpression of EXP starting at *POS as for
8797 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8798 expression. */
14f9c5c9 8799
d2e4a39e
AS
8800static struct value *
8801evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8802{
4b27a620 8803 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8804}
8805
8806/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8807 value it wraps. */
14f9c5c9 8808
d2e4a39e
AS
8809static struct value *
8810unwrap_value (struct value *val)
14f9c5c9 8811{
df407dfe 8812 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8813
14f9c5c9
AS
8814 if (ada_is_aligner_type (type))
8815 {
de4d072f 8816 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8817 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8818
14f9c5c9 8819 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8820 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8821
8822 return unwrap_value (v);
8823 }
d2e4a39e 8824 else
14f9c5c9 8825 {
d2e4a39e 8826 struct type *raw_real_type =
61ee279c 8827 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8828
5bf03f13
JB
8829 /* If there is no parallel XVS or XVE type, then the value is
8830 already unwrapped. Return it without further modification. */
8831 if ((type == raw_real_type)
8832 && ada_find_parallel_type (type, "___XVE") == NULL)
8833 return val;
14f9c5c9 8834
d2e4a39e 8835 return
4c4b4cd2
PH
8836 coerce_unspec_val_to_type
8837 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8838 value_address (val),
1ed6ede0 8839 NULL, 1));
14f9c5c9
AS
8840 }
8841}
d2e4a39e
AS
8842
8843static struct value *
8844cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8845{
8846 LONGEST val;
8847
df407dfe 8848 if (type == value_type (arg))
14f9c5c9 8849 return arg;
df407dfe 8850 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8851 val = ada_float_to_fixed (type,
df407dfe 8852 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8853 value_as_long (arg)));
d2e4a39e 8854 else
14f9c5c9 8855 {
a53b7a21 8856 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8857
14f9c5c9
AS
8858 val = ada_float_to_fixed (type, argd);
8859 }
8860
8861 return value_from_longest (type, val);
8862}
8863
d2e4a39e 8864static struct value *
a53b7a21 8865cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8866{
df407dfe 8867 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8868 value_as_long (arg));
5b4ee69b 8869
a53b7a21 8870 return value_from_double (type, val);
14f9c5c9
AS
8871}
8872
d99dcf51
JB
8873/* Given two array types T1 and T2, return nonzero iff both arrays
8874 contain the same number of elements. */
8875
8876static int
8877ada_same_array_size_p (struct type *t1, struct type *t2)
8878{
8879 LONGEST lo1, hi1, lo2, hi2;
8880
8881 /* Get the array bounds in order to verify that the size of
8882 the two arrays match. */
8883 if (!get_array_bounds (t1, &lo1, &hi1)
8884 || !get_array_bounds (t2, &lo2, &hi2))
8885 error (_("unable to determine array bounds"));
8886
8887 /* To make things easier for size comparison, normalize a bit
8888 the case of empty arrays by making sure that the difference
8889 between upper bound and lower bound is always -1. */
8890 if (lo1 > hi1)
8891 hi1 = lo1 - 1;
8892 if (lo2 > hi2)
8893 hi2 = lo2 - 1;
8894
8895 return (hi1 - lo1 == hi2 - lo2);
8896}
8897
8898/* Assuming that VAL is an array of integrals, and TYPE represents
8899 an array with the same number of elements, but with wider integral
8900 elements, return an array "casted" to TYPE. In practice, this
8901 means that the returned array is built by casting each element
8902 of the original array into TYPE's (wider) element type. */
8903
8904static struct value *
8905ada_promote_array_of_integrals (struct type *type, struct value *val)
8906{
8907 struct type *elt_type = TYPE_TARGET_TYPE (type);
8908 LONGEST lo, hi;
8909 struct value *res;
8910 LONGEST i;
8911
8912 /* Verify that both val and type are arrays of scalars, and
8913 that the size of val's elements is smaller than the size
8914 of type's element. */
8915 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8916 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8917 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8918 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8919 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8920 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8921
8922 if (!get_array_bounds (type, &lo, &hi))
8923 error (_("unable to determine array bounds"));
8924
8925 res = allocate_value (type);
8926
8927 /* Promote each array element. */
8928 for (i = 0; i < hi - lo + 1; i++)
8929 {
8930 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8931
8932 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8933 value_contents_all (elt), TYPE_LENGTH (elt_type));
8934 }
8935
8936 return res;
8937}
8938
4c4b4cd2
PH
8939/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8940 return the converted value. */
8941
d2e4a39e
AS
8942static struct value *
8943coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8944{
df407dfe 8945 struct type *type2 = value_type (val);
5b4ee69b 8946
14f9c5c9
AS
8947 if (type == type2)
8948 return val;
8949
61ee279c
PH
8950 type2 = ada_check_typedef (type2);
8951 type = ada_check_typedef (type);
14f9c5c9 8952
d2e4a39e
AS
8953 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8954 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8955 {
8956 val = ada_value_ind (val);
df407dfe 8957 type2 = value_type (val);
14f9c5c9
AS
8958 }
8959
d2e4a39e 8960 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8961 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8962 {
d99dcf51
JB
8963 if (!ada_same_array_size_p (type, type2))
8964 error (_("cannot assign arrays of different length"));
8965
8966 if (is_integral_type (TYPE_TARGET_TYPE (type))
8967 && is_integral_type (TYPE_TARGET_TYPE (type2))
8968 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8969 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8970 {
8971 /* Allow implicit promotion of the array elements to
8972 a wider type. */
8973 return ada_promote_array_of_integrals (type, val);
8974 }
8975
8976 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8977 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8978 error (_("Incompatible types in assignment"));
04624583 8979 deprecated_set_value_type (val, type);
14f9c5c9 8980 }
d2e4a39e 8981 return val;
14f9c5c9
AS
8982}
8983
4c4b4cd2
PH
8984static struct value *
8985ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8986{
8987 struct value *val;
8988 struct type *type1, *type2;
8989 LONGEST v, v1, v2;
8990
994b9211
AC
8991 arg1 = coerce_ref (arg1);
8992 arg2 = coerce_ref (arg2);
18af8284
JB
8993 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8994 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8995
76a01679
JB
8996 if (TYPE_CODE (type1) != TYPE_CODE_INT
8997 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8998 return value_binop (arg1, arg2, op);
8999
76a01679 9000 switch (op)
4c4b4cd2
PH
9001 {
9002 case BINOP_MOD:
9003 case BINOP_DIV:
9004 case BINOP_REM:
9005 break;
9006 default:
9007 return value_binop (arg1, arg2, op);
9008 }
9009
9010 v2 = value_as_long (arg2);
9011 if (v2 == 0)
323e0a4a 9012 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9013
9014 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9015 return value_binop (arg1, arg2, op);
9016
9017 v1 = value_as_long (arg1);
9018 switch (op)
9019 {
9020 case BINOP_DIV:
9021 v = v1 / v2;
76a01679
JB
9022 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9023 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9024 break;
9025 case BINOP_REM:
9026 v = v1 % v2;
76a01679
JB
9027 if (v * v1 < 0)
9028 v -= v2;
4c4b4cd2
PH
9029 break;
9030 default:
9031 /* Should not reach this point. */
9032 v = 0;
9033 }
9034
9035 val = allocate_value (type1);
990a07ab 9036 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9037 TYPE_LENGTH (value_type (val)),
9038 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9039 return val;
9040}
9041
9042static int
9043ada_value_equal (struct value *arg1, struct value *arg2)
9044{
df407dfe
AC
9045 if (ada_is_direct_array_type (value_type (arg1))
9046 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9047 {
f58b38bf
JB
9048 /* Automatically dereference any array reference before
9049 we attempt to perform the comparison. */
9050 arg1 = ada_coerce_ref (arg1);
9051 arg2 = ada_coerce_ref (arg2);
9052
4c4b4cd2
PH
9053 arg1 = ada_coerce_to_simple_array (arg1);
9054 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9055 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9056 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9057 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9058 /* FIXME: The following works only for types whose
76a01679
JB
9059 representations use all bits (no padding or undefined bits)
9060 and do not have user-defined equality. */
9061 return
df407dfe 9062 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9063 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9064 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9065 }
9066 return value_equal (arg1, arg2);
9067}
9068
52ce6436
PH
9069/* Total number of component associations in the aggregate starting at
9070 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9071 OP_AGGREGATE. */
52ce6436
PH
9072
9073static int
9074num_component_specs (struct expression *exp, int pc)
9075{
9076 int n, m, i;
5b4ee69b 9077
52ce6436
PH
9078 m = exp->elts[pc + 1].longconst;
9079 pc += 3;
9080 n = 0;
9081 for (i = 0; i < m; i += 1)
9082 {
9083 switch (exp->elts[pc].opcode)
9084 {
9085 default:
9086 n += 1;
9087 break;
9088 case OP_CHOICES:
9089 n += exp->elts[pc + 1].longconst;
9090 break;
9091 }
9092 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9093 }
9094 return n;
9095}
9096
9097/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9098 component of LHS (a simple array or a record), updating *POS past
9099 the expression, assuming that LHS is contained in CONTAINER. Does
9100 not modify the inferior's memory, nor does it modify LHS (unless
9101 LHS == CONTAINER). */
9102
9103static void
9104assign_component (struct value *container, struct value *lhs, LONGEST index,
9105 struct expression *exp, int *pos)
9106{
9107 struct value *mark = value_mark ();
9108 struct value *elt;
5b4ee69b 9109
52ce6436
PH
9110 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9111 {
22601c15
UW
9112 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9113 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9114
52ce6436
PH
9115 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9116 }
9117 else
9118 {
9119 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9120 elt = ada_to_fixed_value (elt);
52ce6436
PH
9121 }
9122
9123 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9124 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9125 else
9126 value_assign_to_component (container, elt,
9127 ada_evaluate_subexp (NULL, exp, pos,
9128 EVAL_NORMAL));
9129
9130 value_free_to_mark (mark);
9131}
9132
9133/* Assuming that LHS represents an lvalue having a record or array
9134 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9135 of that aggregate's value to LHS, advancing *POS past the
9136 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9137 lvalue containing LHS (possibly LHS itself). Does not modify
9138 the inferior's memory, nor does it modify the contents of
0963b4bd 9139 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9140
9141static struct value *
9142assign_aggregate (struct value *container,
9143 struct value *lhs, struct expression *exp,
9144 int *pos, enum noside noside)
9145{
9146 struct type *lhs_type;
9147 int n = exp->elts[*pos+1].longconst;
9148 LONGEST low_index, high_index;
9149 int num_specs;
9150 LONGEST *indices;
9151 int max_indices, num_indices;
52ce6436 9152 int i;
52ce6436
PH
9153
9154 *pos += 3;
9155 if (noside != EVAL_NORMAL)
9156 {
52ce6436
PH
9157 for (i = 0; i < n; i += 1)
9158 ada_evaluate_subexp (NULL, exp, pos, noside);
9159 return container;
9160 }
9161
9162 container = ada_coerce_ref (container);
9163 if (ada_is_direct_array_type (value_type (container)))
9164 container = ada_coerce_to_simple_array (container);
9165 lhs = ada_coerce_ref (lhs);
9166 if (!deprecated_value_modifiable (lhs))
9167 error (_("Left operand of assignment is not a modifiable lvalue."));
9168
9169 lhs_type = value_type (lhs);
9170 if (ada_is_direct_array_type (lhs_type))
9171 {
9172 lhs = ada_coerce_to_simple_array (lhs);
9173 lhs_type = value_type (lhs);
9174 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9175 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9176 }
9177 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9178 {
9179 low_index = 0;
9180 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9181 }
9182 else
9183 error (_("Left-hand side must be array or record."));
9184
9185 num_specs = num_component_specs (exp, *pos - 3);
9186 max_indices = 4 * num_specs + 4;
9187 indices = alloca (max_indices * sizeof (indices[0]));
9188 indices[0] = indices[1] = low_index - 1;
9189 indices[2] = indices[3] = high_index + 1;
9190 num_indices = 4;
9191
9192 for (i = 0; i < n; i += 1)
9193 {
9194 switch (exp->elts[*pos].opcode)
9195 {
1fbf5ada
JB
9196 case OP_CHOICES:
9197 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9198 &num_indices, max_indices,
9199 low_index, high_index);
9200 break;
9201 case OP_POSITIONAL:
9202 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9203 &num_indices, max_indices,
9204 low_index, high_index);
1fbf5ada
JB
9205 break;
9206 case OP_OTHERS:
9207 if (i != n-1)
9208 error (_("Misplaced 'others' clause"));
9209 aggregate_assign_others (container, lhs, exp, pos, indices,
9210 num_indices, low_index, high_index);
9211 break;
9212 default:
9213 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9214 }
9215 }
9216
9217 return container;
9218}
9219
9220/* Assign into the component of LHS indexed by the OP_POSITIONAL
9221 construct at *POS, updating *POS past the construct, given that
9222 the positions are relative to lower bound LOW, where HIGH is the
9223 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9224 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9225 assign_aggregate. */
52ce6436
PH
9226static void
9227aggregate_assign_positional (struct value *container,
9228 struct value *lhs, struct expression *exp,
9229 int *pos, LONGEST *indices, int *num_indices,
9230 int max_indices, LONGEST low, LONGEST high)
9231{
9232 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9233
9234 if (ind - 1 == high)
e1d5a0d2 9235 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9236 if (ind <= high)
9237 {
9238 add_component_interval (ind, ind, indices, num_indices, max_indices);
9239 *pos += 3;
9240 assign_component (container, lhs, ind, exp, pos);
9241 }
9242 else
9243 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9244}
9245
9246/* Assign into the components of LHS indexed by the OP_CHOICES
9247 construct at *POS, updating *POS past the construct, given that
9248 the allowable indices are LOW..HIGH. Record the indices assigned
9249 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9250 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9251static void
9252aggregate_assign_from_choices (struct value *container,
9253 struct value *lhs, struct expression *exp,
9254 int *pos, LONGEST *indices, int *num_indices,
9255 int max_indices, LONGEST low, LONGEST high)
9256{
9257 int j;
9258 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9259 int choice_pos, expr_pc;
9260 int is_array = ada_is_direct_array_type (value_type (lhs));
9261
9262 choice_pos = *pos += 3;
9263
9264 for (j = 0; j < n_choices; j += 1)
9265 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9266 expr_pc = *pos;
9267 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9268
9269 for (j = 0; j < n_choices; j += 1)
9270 {
9271 LONGEST lower, upper;
9272 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9273
52ce6436
PH
9274 if (op == OP_DISCRETE_RANGE)
9275 {
9276 choice_pos += 1;
9277 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9278 EVAL_NORMAL));
9279 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9280 EVAL_NORMAL));
9281 }
9282 else if (is_array)
9283 {
9284 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9285 EVAL_NORMAL));
9286 upper = lower;
9287 }
9288 else
9289 {
9290 int ind;
0d5cff50 9291 const char *name;
5b4ee69b 9292
52ce6436
PH
9293 switch (op)
9294 {
9295 case OP_NAME:
9296 name = &exp->elts[choice_pos + 2].string;
9297 break;
9298 case OP_VAR_VALUE:
9299 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9300 break;
9301 default:
9302 error (_("Invalid record component association."));
9303 }
9304 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9305 ind = 0;
9306 if (! find_struct_field (name, value_type (lhs), 0,
9307 NULL, NULL, NULL, NULL, &ind))
9308 error (_("Unknown component name: %s."), name);
9309 lower = upper = ind;
9310 }
9311
9312 if (lower <= upper && (lower < low || upper > high))
9313 error (_("Index in component association out of bounds."));
9314
9315 add_component_interval (lower, upper, indices, num_indices,
9316 max_indices);
9317 while (lower <= upper)
9318 {
9319 int pos1;
5b4ee69b 9320
52ce6436
PH
9321 pos1 = expr_pc;
9322 assign_component (container, lhs, lower, exp, &pos1);
9323 lower += 1;
9324 }
9325 }
9326}
9327
9328/* Assign the value of the expression in the OP_OTHERS construct in
9329 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9330 have not been previously assigned. The index intervals already assigned
9331 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9332 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9333static void
9334aggregate_assign_others (struct value *container,
9335 struct value *lhs, struct expression *exp,
9336 int *pos, LONGEST *indices, int num_indices,
9337 LONGEST low, LONGEST high)
9338{
9339 int i;
5ce64950 9340 int expr_pc = *pos + 1;
52ce6436
PH
9341
9342 for (i = 0; i < num_indices - 2; i += 2)
9343 {
9344 LONGEST ind;
5b4ee69b 9345
52ce6436
PH
9346 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9347 {
5ce64950 9348 int localpos;
5b4ee69b 9349
5ce64950
MS
9350 localpos = expr_pc;
9351 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9352 }
9353 }
9354 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9355}
9356
9357/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9358 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9359 modifying *SIZE as needed. It is an error if *SIZE exceeds
9360 MAX_SIZE. The resulting intervals do not overlap. */
9361static void
9362add_component_interval (LONGEST low, LONGEST high,
9363 LONGEST* indices, int *size, int max_size)
9364{
9365 int i, j;
5b4ee69b 9366
52ce6436
PH
9367 for (i = 0; i < *size; i += 2) {
9368 if (high >= indices[i] && low <= indices[i + 1])
9369 {
9370 int kh;
5b4ee69b 9371
52ce6436
PH
9372 for (kh = i + 2; kh < *size; kh += 2)
9373 if (high < indices[kh])
9374 break;
9375 if (low < indices[i])
9376 indices[i] = low;
9377 indices[i + 1] = indices[kh - 1];
9378 if (high > indices[i + 1])
9379 indices[i + 1] = high;
9380 memcpy (indices + i + 2, indices + kh, *size - kh);
9381 *size -= kh - i - 2;
9382 return;
9383 }
9384 else if (high < indices[i])
9385 break;
9386 }
9387
9388 if (*size == max_size)
9389 error (_("Internal error: miscounted aggregate components."));
9390 *size += 2;
9391 for (j = *size-1; j >= i+2; j -= 1)
9392 indices[j] = indices[j - 2];
9393 indices[i] = low;
9394 indices[i + 1] = high;
9395}
9396
6e48bd2c
JB
9397/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9398 is different. */
9399
9400static struct value *
9401ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9402{
9403 if (type == ada_check_typedef (value_type (arg2)))
9404 return arg2;
9405
9406 if (ada_is_fixed_point_type (type))
9407 return (cast_to_fixed (type, arg2));
9408
9409 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9410 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9411
9412 return value_cast (type, arg2);
9413}
9414
284614f0
JB
9415/* Evaluating Ada expressions, and printing their result.
9416 ------------------------------------------------------
9417
21649b50
JB
9418 1. Introduction:
9419 ----------------
9420
284614f0
JB
9421 We usually evaluate an Ada expression in order to print its value.
9422 We also evaluate an expression in order to print its type, which
9423 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9424 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9425 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9426 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9427 similar.
9428
9429 Evaluating expressions is a little more complicated for Ada entities
9430 than it is for entities in languages such as C. The main reason for
9431 this is that Ada provides types whose definition might be dynamic.
9432 One example of such types is variant records. Or another example
9433 would be an array whose bounds can only be known at run time.
9434
9435 The following description is a general guide as to what should be
9436 done (and what should NOT be done) in order to evaluate an expression
9437 involving such types, and when. This does not cover how the semantic
9438 information is encoded by GNAT as this is covered separatly. For the
9439 document used as the reference for the GNAT encoding, see exp_dbug.ads
9440 in the GNAT sources.
9441
9442 Ideally, we should embed each part of this description next to its
9443 associated code. Unfortunately, the amount of code is so vast right
9444 now that it's hard to see whether the code handling a particular
9445 situation might be duplicated or not. One day, when the code is
9446 cleaned up, this guide might become redundant with the comments
9447 inserted in the code, and we might want to remove it.
9448
21649b50
JB
9449 2. ``Fixing'' an Entity, the Simple Case:
9450 -----------------------------------------
9451
284614f0
JB
9452 When evaluating Ada expressions, the tricky issue is that they may
9453 reference entities whose type contents and size are not statically
9454 known. Consider for instance a variant record:
9455
9456 type Rec (Empty : Boolean := True) is record
9457 case Empty is
9458 when True => null;
9459 when False => Value : Integer;
9460 end case;
9461 end record;
9462 Yes : Rec := (Empty => False, Value => 1);
9463 No : Rec := (empty => True);
9464
9465 The size and contents of that record depends on the value of the
9466 descriminant (Rec.Empty). At this point, neither the debugging
9467 information nor the associated type structure in GDB are able to
9468 express such dynamic types. So what the debugger does is to create
9469 "fixed" versions of the type that applies to the specific object.
9470 We also informally refer to this opperation as "fixing" an object,
9471 which means creating its associated fixed type.
9472
9473 Example: when printing the value of variable "Yes" above, its fixed
9474 type would look like this:
9475
9476 type Rec is record
9477 Empty : Boolean;
9478 Value : Integer;
9479 end record;
9480
9481 On the other hand, if we printed the value of "No", its fixed type
9482 would become:
9483
9484 type Rec is record
9485 Empty : Boolean;
9486 end record;
9487
9488 Things become a little more complicated when trying to fix an entity
9489 with a dynamic type that directly contains another dynamic type,
9490 such as an array of variant records, for instance. There are
9491 two possible cases: Arrays, and records.
9492
21649b50
JB
9493 3. ``Fixing'' Arrays:
9494 ---------------------
9495
9496 The type structure in GDB describes an array in terms of its bounds,
9497 and the type of its elements. By design, all elements in the array
9498 have the same type and we cannot represent an array of variant elements
9499 using the current type structure in GDB. When fixing an array,
9500 we cannot fix the array element, as we would potentially need one
9501 fixed type per element of the array. As a result, the best we can do
9502 when fixing an array is to produce an array whose bounds and size
9503 are correct (allowing us to read it from memory), but without having
9504 touched its element type. Fixing each element will be done later,
9505 when (if) necessary.
9506
9507 Arrays are a little simpler to handle than records, because the same
9508 amount of memory is allocated for each element of the array, even if
1b536f04 9509 the amount of space actually used by each element differs from element
21649b50 9510 to element. Consider for instance the following array of type Rec:
284614f0
JB
9511
9512 type Rec_Array is array (1 .. 2) of Rec;
9513
1b536f04
JB
9514 The actual amount of memory occupied by each element might be different
9515 from element to element, depending on the value of their discriminant.
21649b50 9516 But the amount of space reserved for each element in the array remains
1b536f04 9517 fixed regardless. So we simply need to compute that size using
21649b50
JB
9518 the debugging information available, from which we can then determine
9519 the array size (we multiply the number of elements of the array by
9520 the size of each element).
9521
9522 The simplest case is when we have an array of a constrained element
9523 type. For instance, consider the following type declarations:
9524
9525 type Bounded_String (Max_Size : Integer) is
9526 Length : Integer;
9527 Buffer : String (1 .. Max_Size);
9528 end record;
9529 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9530
9531 In this case, the compiler describes the array as an array of
9532 variable-size elements (identified by its XVS suffix) for which
9533 the size can be read in the parallel XVZ variable.
9534
9535 In the case of an array of an unconstrained element type, the compiler
9536 wraps the array element inside a private PAD type. This type should not
9537 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9538 that we also use the adjective "aligner" in our code to designate
9539 these wrapper types.
9540
1b536f04 9541 In some cases, the size allocated for each element is statically
21649b50
JB
9542 known. In that case, the PAD type already has the correct size,
9543 and the array element should remain unfixed.
9544
9545 But there are cases when this size is not statically known.
9546 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9547
9548 type Dynamic is array (1 .. Five) of Integer;
9549 type Wrapper (Has_Length : Boolean := False) is record
9550 Data : Dynamic;
9551 case Has_Length is
9552 when True => Length : Integer;
9553 when False => null;
9554 end case;
9555 end record;
9556 type Wrapper_Array is array (1 .. 2) of Wrapper;
9557
9558 Hello : Wrapper_Array := (others => (Has_Length => True,
9559 Data => (others => 17),
9560 Length => 1));
9561
9562
9563 The debugging info would describe variable Hello as being an
9564 array of a PAD type. The size of that PAD type is not statically
9565 known, but can be determined using a parallel XVZ variable.
9566 In that case, a copy of the PAD type with the correct size should
9567 be used for the fixed array.
9568
21649b50
JB
9569 3. ``Fixing'' record type objects:
9570 ----------------------------------
9571
9572 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9573 record types. In this case, in order to compute the associated
9574 fixed type, we need to determine the size and offset of each of
9575 its components. This, in turn, requires us to compute the fixed
9576 type of each of these components.
9577
9578 Consider for instance the example:
9579
9580 type Bounded_String (Max_Size : Natural) is record
9581 Str : String (1 .. Max_Size);
9582 Length : Natural;
9583 end record;
9584 My_String : Bounded_String (Max_Size => 10);
9585
9586 In that case, the position of field "Length" depends on the size
9587 of field Str, which itself depends on the value of the Max_Size
21649b50 9588 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9589 we need to fix the type of field Str. Therefore, fixing a variant
9590 record requires us to fix each of its components.
9591
9592 However, if a component does not have a dynamic size, the component
9593 should not be fixed. In particular, fields that use a PAD type
9594 should not fixed. Here is an example where this might happen
9595 (assuming type Rec above):
9596
9597 type Container (Big : Boolean) is record
9598 First : Rec;
9599 After : Integer;
9600 case Big is
9601 when True => Another : Integer;
9602 when False => null;
9603 end case;
9604 end record;
9605 My_Container : Container := (Big => False,
9606 First => (Empty => True),
9607 After => 42);
9608
9609 In that example, the compiler creates a PAD type for component First,
9610 whose size is constant, and then positions the component After just
9611 right after it. The offset of component After is therefore constant
9612 in this case.
9613
9614 The debugger computes the position of each field based on an algorithm
9615 that uses, among other things, the actual position and size of the field
21649b50
JB
9616 preceding it. Let's now imagine that the user is trying to print
9617 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9618 end up computing the offset of field After based on the size of the
9619 fixed version of field First. And since in our example First has
9620 only one actual field, the size of the fixed type is actually smaller
9621 than the amount of space allocated to that field, and thus we would
9622 compute the wrong offset of field After.
9623
21649b50
JB
9624 To make things more complicated, we need to watch out for dynamic
9625 components of variant records (identified by the ___XVL suffix in
9626 the component name). Even if the target type is a PAD type, the size
9627 of that type might not be statically known. So the PAD type needs
9628 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9629 we might end up with the wrong size for our component. This can be
9630 observed with the following type declarations:
284614f0
JB
9631
9632 type Octal is new Integer range 0 .. 7;
9633 type Octal_Array is array (Positive range <>) of Octal;
9634 pragma Pack (Octal_Array);
9635
9636 type Octal_Buffer (Size : Positive) is record
9637 Buffer : Octal_Array (1 .. Size);
9638 Length : Integer;
9639 end record;
9640
9641 In that case, Buffer is a PAD type whose size is unset and needs
9642 to be computed by fixing the unwrapped type.
9643
21649b50
JB
9644 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9645 ----------------------------------------------------------
9646
9647 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9648 thus far, be actually fixed?
9649
9650 The answer is: Only when referencing that element. For instance
9651 when selecting one component of a record, this specific component
9652 should be fixed at that point in time. Or when printing the value
9653 of a record, each component should be fixed before its value gets
9654 printed. Similarly for arrays, the element of the array should be
9655 fixed when printing each element of the array, or when extracting
9656 one element out of that array. On the other hand, fixing should
9657 not be performed on the elements when taking a slice of an array!
9658
9659 Note that one of the side-effects of miscomputing the offset and
9660 size of each field is that we end up also miscomputing the size
9661 of the containing type. This can have adverse results when computing
9662 the value of an entity. GDB fetches the value of an entity based
9663 on the size of its type, and thus a wrong size causes GDB to fetch
9664 the wrong amount of memory. In the case where the computed size is
9665 too small, GDB fetches too little data to print the value of our
9666 entiry. Results in this case as unpredicatble, as we usually read
9667 past the buffer containing the data =:-o. */
9668
9669/* Implement the evaluate_exp routine in the exp_descriptor structure
9670 for the Ada language. */
9671
52ce6436 9672static struct value *
ebf56fd3 9673ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9674 int *pos, enum noside noside)
14f9c5c9
AS
9675{
9676 enum exp_opcode op;
b5385fc0 9677 int tem;
14f9c5c9
AS
9678 int pc;
9679 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9680 struct type *type;
52ce6436 9681 int nargs, oplen;
d2e4a39e 9682 struct value **argvec;
14f9c5c9 9683
d2e4a39e
AS
9684 pc = *pos;
9685 *pos += 1;
14f9c5c9
AS
9686 op = exp->elts[pc].opcode;
9687
d2e4a39e 9688 switch (op)
14f9c5c9
AS
9689 {
9690 default:
9691 *pos -= 1;
6e48bd2c 9692 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9693
9694 if (noside == EVAL_NORMAL)
9695 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9696
9697 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9698 then we need to perform the conversion manually, because
9699 evaluate_subexp_standard doesn't do it. This conversion is
9700 necessary in Ada because the different kinds of float/fixed
9701 types in Ada have different representations.
9702
9703 Similarly, we need to perform the conversion from OP_LONG
9704 ourselves. */
9705 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9706 arg1 = ada_value_cast (expect_type, arg1, noside);
9707
9708 return arg1;
4c4b4cd2
PH
9709
9710 case OP_STRING:
9711 {
76a01679 9712 struct value *result;
5b4ee69b 9713
76a01679
JB
9714 *pos -= 1;
9715 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9716 /* The result type will have code OP_STRING, bashed there from
9717 OP_ARRAY. Bash it back. */
df407dfe
AC
9718 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9719 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9720 return result;
4c4b4cd2 9721 }
14f9c5c9
AS
9722
9723 case UNOP_CAST:
9724 (*pos) += 2;
9725 type = exp->elts[pc + 1].type;
9726 arg1 = evaluate_subexp (type, exp, pos, noside);
9727 if (noside == EVAL_SKIP)
4c4b4cd2 9728 goto nosideret;
6e48bd2c 9729 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9730 return arg1;
9731
4c4b4cd2
PH
9732 case UNOP_QUAL:
9733 (*pos) += 2;
9734 type = exp->elts[pc + 1].type;
9735 return ada_evaluate_subexp (type, exp, pos, noside);
9736
14f9c5c9
AS
9737 case BINOP_ASSIGN:
9738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9739 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9740 {
9741 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9742 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9743 return arg1;
9744 return ada_value_assign (arg1, arg1);
9745 }
003f3813
JB
9746 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9747 except if the lhs of our assignment is a convenience variable.
9748 In the case of assigning to a convenience variable, the lhs
9749 should be exactly the result of the evaluation of the rhs. */
9750 type = value_type (arg1);
9751 if (VALUE_LVAL (arg1) == lval_internalvar)
9752 type = NULL;
9753 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9754 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9755 return arg1;
df407dfe
AC
9756 if (ada_is_fixed_point_type (value_type (arg1)))
9757 arg2 = cast_to_fixed (value_type (arg1), arg2);
9758 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9759 error
323e0a4a 9760 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9761 else
df407dfe 9762 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9763 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9764
9765 case BINOP_ADD:
9766 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9767 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9768 if (noside == EVAL_SKIP)
4c4b4cd2 9769 goto nosideret;
2ac8a782
JB
9770 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9771 return (value_from_longest
9772 (value_type (arg1),
9773 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9774 if ((ada_is_fixed_point_type (value_type (arg1))
9775 || ada_is_fixed_point_type (value_type (arg2)))
9776 && value_type (arg1) != value_type (arg2))
323e0a4a 9777 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9778 /* Do the addition, and cast the result to the type of the first
9779 argument. We cannot cast the result to a reference type, so if
9780 ARG1 is a reference type, find its underlying type. */
9781 type = value_type (arg1);
9782 while (TYPE_CODE (type) == TYPE_CODE_REF)
9783 type = TYPE_TARGET_TYPE (type);
f44316fa 9784 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9785 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9786
9787 case BINOP_SUB:
9788 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9789 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9790 if (noside == EVAL_SKIP)
4c4b4cd2 9791 goto nosideret;
2ac8a782
JB
9792 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9793 return (value_from_longest
9794 (value_type (arg1),
9795 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9796 if ((ada_is_fixed_point_type (value_type (arg1))
9797 || ada_is_fixed_point_type (value_type (arg2)))
9798 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9799 error (_("Operands of fixed-point subtraction "
9800 "must have the same type"));
b7789565
JB
9801 /* Do the substraction, and cast the result to the type of the first
9802 argument. We cannot cast the result to a reference type, so if
9803 ARG1 is a reference type, find its underlying type. */
9804 type = value_type (arg1);
9805 while (TYPE_CODE (type) == TYPE_CODE_REF)
9806 type = TYPE_TARGET_TYPE (type);
f44316fa 9807 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9808 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9809
9810 case BINOP_MUL:
9811 case BINOP_DIV:
e1578042
JB
9812 case BINOP_REM:
9813 case BINOP_MOD:
14f9c5c9
AS
9814 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9815 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9816 if (noside == EVAL_SKIP)
4c4b4cd2 9817 goto nosideret;
e1578042 9818 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9819 {
9820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9821 return value_zero (value_type (arg1), not_lval);
9822 }
14f9c5c9 9823 else
4c4b4cd2 9824 {
a53b7a21 9825 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9826 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9827 arg1 = cast_from_fixed (type, arg1);
df407dfe 9828 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9829 arg2 = cast_from_fixed (type, arg2);
f44316fa 9830 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9831 return ada_value_binop (arg1, arg2, op);
9832 }
9833
4c4b4cd2
PH
9834 case BINOP_EQUAL:
9835 case BINOP_NOTEQUAL:
14f9c5c9 9836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9837 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9838 if (noside == EVAL_SKIP)
76a01679 9839 goto nosideret;
4c4b4cd2 9840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9841 tem = 0;
4c4b4cd2 9842 else
f44316fa
UW
9843 {
9844 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9845 tem = ada_value_equal (arg1, arg2);
9846 }
4c4b4cd2 9847 if (op == BINOP_NOTEQUAL)
76a01679 9848 tem = !tem;
fbb06eb1
UW
9849 type = language_bool_type (exp->language_defn, exp->gdbarch);
9850 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9851
9852 case UNOP_NEG:
9853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9854 if (noside == EVAL_SKIP)
9855 goto nosideret;
df407dfe
AC
9856 else if (ada_is_fixed_point_type (value_type (arg1)))
9857 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9858 else
f44316fa
UW
9859 {
9860 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9861 return value_neg (arg1);
9862 }
4c4b4cd2 9863
2330c6c6
JB
9864 case BINOP_LOGICAL_AND:
9865 case BINOP_LOGICAL_OR:
9866 case UNOP_LOGICAL_NOT:
000d5124
JB
9867 {
9868 struct value *val;
9869
9870 *pos -= 1;
9871 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9872 type = language_bool_type (exp->language_defn, exp->gdbarch);
9873 return value_cast (type, val);
000d5124 9874 }
2330c6c6
JB
9875
9876 case BINOP_BITWISE_AND:
9877 case BINOP_BITWISE_IOR:
9878 case BINOP_BITWISE_XOR:
000d5124
JB
9879 {
9880 struct value *val;
9881
9882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9883 *pos = pc;
9884 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9885
9886 return value_cast (value_type (arg1), val);
9887 }
2330c6c6 9888
14f9c5c9
AS
9889 case OP_VAR_VALUE:
9890 *pos -= 1;
6799def4 9891
14f9c5c9 9892 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9893 {
9894 *pos += 4;
9895 goto nosideret;
9896 }
9897 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9898 /* Only encountered when an unresolved symbol occurs in a
9899 context other than a function call, in which case, it is
52ce6436 9900 invalid. */
323e0a4a 9901 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9902 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9904 {
0c1f74cf 9905 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9906 /* Check to see if this is a tagged type. We also need to handle
9907 the case where the type is a reference to a tagged type, but
9908 we have to be careful to exclude pointers to tagged types.
9909 The latter should be shown as usual (as a pointer), whereas
9910 a reference should mostly be transparent to the user. */
9911 if (ada_is_tagged_type (type, 0)
9912 || (TYPE_CODE(type) == TYPE_CODE_REF
9913 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9914 {
9915 /* Tagged types are a little special in the fact that the real
9916 type is dynamic and can only be determined by inspecting the
9917 object's tag. This means that we need to get the object's
9918 value first (EVAL_NORMAL) and then extract the actual object
9919 type from its tag.
9920
9921 Note that we cannot skip the final step where we extract
9922 the object type from its tag, because the EVAL_NORMAL phase
9923 results in dynamic components being resolved into fixed ones.
9924 This can cause problems when trying to print the type
9925 description of tagged types whose parent has a dynamic size:
9926 We use the type name of the "_parent" component in order
9927 to print the name of the ancestor type in the type description.
9928 If that component had a dynamic size, the resolution into
9929 a fixed type would result in the loss of that type name,
9930 thus preventing us from printing the name of the ancestor
9931 type in the type description. */
9932 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9933
9934 if (TYPE_CODE (type) != TYPE_CODE_REF)
9935 {
9936 struct type *actual_type;
9937
9938 actual_type = type_from_tag (ada_value_tag (arg1));
9939 if (actual_type == NULL)
9940 /* If, for some reason, we were unable to determine
9941 the actual type from the tag, then use the static
9942 approximation that we just computed as a fallback.
9943 This can happen if the debugging information is
9944 incomplete, for instance. */
9945 actual_type = type;
9946 return value_zero (actual_type, not_lval);
9947 }
9948 else
9949 {
9950 /* In the case of a ref, ada_coerce_ref takes care
9951 of determining the actual type. But the evaluation
9952 should return a ref as it should be valid to ask
9953 for its address; so rebuild a ref after coerce. */
9954 arg1 = ada_coerce_ref (arg1);
9955 return value_ref (arg1);
9956 }
0c1f74cf
JB
9957 }
9958
4c4b4cd2
PH
9959 *pos += 4;
9960 return value_zero
9961 (to_static_fixed_type
9962 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9963 not_lval);
9964 }
d2e4a39e 9965 else
4c4b4cd2 9966 {
284614f0 9967 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9968 return ada_to_fixed_value (arg1);
9969 }
9970
9971 case OP_FUNCALL:
9972 (*pos) += 2;
9973
9974 /* Allocate arg vector, including space for the function to be
9975 called in argvec[0] and a terminating NULL. */
9976 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9977 argvec =
9978 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9979
9980 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9981 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9982 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9983 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9984 else
9985 {
9986 for (tem = 0; tem <= nargs; tem += 1)
9987 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9988 argvec[tem] = 0;
9989
9990 if (noside == EVAL_SKIP)
9991 goto nosideret;
9992 }
9993
ad82864c
JB
9994 if (ada_is_constrained_packed_array_type
9995 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9996 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9997 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9998 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9999 /* This is a packed array that has already been fixed, and
10000 therefore already coerced to a simple array. Nothing further
10001 to do. */
10002 ;
df407dfe
AC
10003 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10004 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10005 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10006 argvec[0] = value_addr (argvec[0]);
10007
df407dfe 10008 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10009
10010 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10011 them. So, if this is an array typedef (encoding use for array
10012 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10013 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10014 type = ada_typedef_target_type (type);
10015
4c4b4cd2
PH
10016 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10017 {
61ee279c 10018 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10019 {
10020 case TYPE_CODE_FUNC:
61ee279c 10021 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10022 break;
10023 case TYPE_CODE_ARRAY:
10024 break;
10025 case TYPE_CODE_STRUCT:
10026 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10027 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10028 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10029 break;
10030 default:
323e0a4a 10031 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10032 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10033 break;
10034 }
10035 }
10036
10037 switch (TYPE_CODE (type))
10038 {
10039 case TYPE_CODE_FUNC:
10040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10041 {
10042 struct type *rtype = TYPE_TARGET_TYPE (type);
10043
10044 if (TYPE_GNU_IFUNC (type))
10045 return allocate_value (TYPE_TARGET_TYPE (rtype));
10046 return allocate_value (rtype);
10047 }
4c4b4cd2 10048 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10049 case TYPE_CODE_INTERNAL_FUNCTION:
10050 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10051 /* We don't know anything about what the internal
10052 function might return, but we have to return
10053 something. */
10054 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10055 not_lval);
10056 else
10057 return call_internal_function (exp->gdbarch, exp->language_defn,
10058 argvec[0], nargs, argvec + 1);
10059
4c4b4cd2
PH
10060 case TYPE_CODE_STRUCT:
10061 {
10062 int arity;
10063
4c4b4cd2
PH
10064 arity = ada_array_arity (type);
10065 type = ada_array_element_type (type, nargs);
10066 if (type == NULL)
323e0a4a 10067 error (_("cannot subscript or call a record"));
4c4b4cd2 10068 if (arity != nargs)
323e0a4a 10069 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10070 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10071 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10072 return
10073 unwrap_value (ada_value_subscript
10074 (argvec[0], nargs, argvec + 1));
10075 }
10076 case TYPE_CODE_ARRAY:
10077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10078 {
10079 type = ada_array_element_type (type, nargs);
10080 if (type == NULL)
323e0a4a 10081 error (_("element type of array unknown"));
4c4b4cd2 10082 else
0a07e705 10083 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10084 }
10085 return
10086 unwrap_value (ada_value_subscript
10087 (ada_coerce_to_simple_array (argvec[0]),
10088 nargs, argvec + 1));
10089 case TYPE_CODE_PTR: /* Pointer to array */
10090 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10091 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10092 {
10093 type = ada_array_element_type (type, nargs);
10094 if (type == NULL)
323e0a4a 10095 error (_("element type of array unknown"));
4c4b4cd2 10096 else
0a07e705 10097 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10098 }
10099 return
10100 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10101 nargs, argvec + 1));
10102
10103 default:
e1d5a0d2
PH
10104 error (_("Attempt to index or call something other than an "
10105 "array or function"));
4c4b4cd2
PH
10106 }
10107
10108 case TERNOP_SLICE:
10109 {
10110 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10111 struct value *low_bound_val =
10112 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10113 struct value *high_bound_val =
10114 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10115 LONGEST low_bound;
10116 LONGEST high_bound;
5b4ee69b 10117
994b9211
AC
10118 low_bound_val = coerce_ref (low_bound_val);
10119 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10120 low_bound = pos_atr (low_bound_val);
10121 high_bound = pos_atr (high_bound_val);
963a6417 10122
4c4b4cd2
PH
10123 if (noside == EVAL_SKIP)
10124 goto nosideret;
10125
4c4b4cd2
PH
10126 /* If this is a reference to an aligner type, then remove all
10127 the aligners. */
df407dfe
AC
10128 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10129 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10130 TYPE_TARGET_TYPE (value_type (array)) =
10131 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10132
ad82864c 10133 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10134 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10135
10136 /* If this is a reference to an array or an array lvalue,
10137 convert to a pointer. */
df407dfe
AC
10138 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10139 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10140 && VALUE_LVAL (array) == lval_memory))
10141 array = value_addr (array);
10142
1265e4aa 10143 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10144 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10145 (value_type (array))))
0b5d8877 10146 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10147
10148 array = ada_coerce_to_simple_array_ptr (array);
10149
714e53ab
PH
10150 /* If we have more than one level of pointer indirection,
10151 dereference the value until we get only one level. */
df407dfe
AC
10152 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10153 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10154 == TYPE_CODE_PTR))
10155 array = value_ind (array);
10156
10157 /* Make sure we really do have an array type before going further,
10158 to avoid a SEGV when trying to get the index type or the target
10159 type later down the road if the debug info generated by
10160 the compiler is incorrect or incomplete. */
df407dfe 10161 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10162 error (_("cannot take slice of non-array"));
714e53ab 10163
828292f2
JB
10164 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10165 == TYPE_CODE_PTR)
4c4b4cd2 10166 {
828292f2
JB
10167 struct type *type0 = ada_check_typedef (value_type (array));
10168
0b5d8877 10169 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10170 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10171 else
10172 {
10173 struct type *arr_type0 =
828292f2 10174 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10175
f5938064
JG
10176 return ada_value_slice_from_ptr (array, arr_type0,
10177 longest_to_int (low_bound),
10178 longest_to_int (high_bound));
4c4b4cd2
PH
10179 }
10180 }
10181 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10182 return array;
10183 else if (high_bound < low_bound)
df407dfe 10184 return empty_array (value_type (array), low_bound);
4c4b4cd2 10185 else
529cad9c
PH
10186 return ada_value_slice (array, longest_to_int (low_bound),
10187 longest_to_int (high_bound));
4c4b4cd2 10188 }
14f9c5c9 10189
4c4b4cd2
PH
10190 case UNOP_IN_RANGE:
10191 (*pos) += 2;
10192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10193 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10194
14f9c5c9 10195 if (noside == EVAL_SKIP)
4c4b4cd2 10196 goto nosideret;
14f9c5c9 10197
4c4b4cd2
PH
10198 switch (TYPE_CODE (type))
10199 {
10200 default:
e1d5a0d2
PH
10201 lim_warning (_("Membership test incompletely implemented; "
10202 "always returns true"));
fbb06eb1
UW
10203 type = language_bool_type (exp->language_defn, exp->gdbarch);
10204 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10205
10206 case TYPE_CODE_RANGE:
030b4912
UW
10207 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10208 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10211 type = language_bool_type (exp->language_defn, exp->gdbarch);
10212 return
10213 value_from_longest (type,
4c4b4cd2
PH
10214 (value_less (arg1, arg3)
10215 || value_equal (arg1, arg3))
10216 && (value_less (arg2, arg1)
10217 || value_equal (arg2, arg1)));
10218 }
10219
10220 case BINOP_IN_BOUNDS:
14f9c5c9 10221 (*pos) += 2;
4c4b4cd2
PH
10222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10223 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10224
4c4b4cd2
PH
10225 if (noside == EVAL_SKIP)
10226 goto nosideret;
14f9c5c9 10227
4c4b4cd2 10228 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10229 {
10230 type = language_bool_type (exp->language_defn, exp->gdbarch);
10231 return value_zero (type, not_lval);
10232 }
14f9c5c9 10233
4c4b4cd2 10234 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10235
1eea4ebd
UW
10236 type = ada_index_type (value_type (arg2), tem, "range");
10237 if (!type)
10238 type = value_type (arg1);
14f9c5c9 10239
1eea4ebd
UW
10240 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10241 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10242
f44316fa
UW
10243 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10244 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10245 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10246 return
fbb06eb1 10247 value_from_longest (type,
4c4b4cd2
PH
10248 (value_less (arg1, arg3)
10249 || value_equal (arg1, arg3))
10250 && (value_less (arg2, arg1)
10251 || value_equal (arg2, arg1)));
10252
10253 case TERNOP_IN_RANGE:
10254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10255 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10256 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10257
10258 if (noside == EVAL_SKIP)
10259 goto nosideret;
10260
f44316fa
UW
10261 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10262 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10263 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10264 return
fbb06eb1 10265 value_from_longest (type,
4c4b4cd2
PH
10266 (value_less (arg1, arg3)
10267 || value_equal (arg1, arg3))
10268 && (value_less (arg2, arg1)
10269 || value_equal (arg2, arg1)));
10270
10271 case OP_ATR_FIRST:
10272 case OP_ATR_LAST:
10273 case OP_ATR_LENGTH:
10274 {
76a01679 10275 struct type *type_arg;
5b4ee69b 10276
76a01679
JB
10277 if (exp->elts[*pos].opcode == OP_TYPE)
10278 {
10279 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10280 arg1 = NULL;
5bc23cb3 10281 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10282 }
10283 else
10284 {
10285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10286 type_arg = NULL;
10287 }
10288
10289 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10290 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10291 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10292 *pos += 4;
10293
10294 if (noside == EVAL_SKIP)
10295 goto nosideret;
10296
10297 if (type_arg == NULL)
10298 {
10299 arg1 = ada_coerce_ref (arg1);
10300
ad82864c 10301 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10302 arg1 = ada_coerce_to_simple_array (arg1);
10303
1eea4ebd
UW
10304 type = ada_index_type (value_type (arg1), tem,
10305 ada_attribute_name (op));
10306 if (type == NULL)
10307 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10308
10309 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10310 return allocate_value (type);
76a01679
JB
10311
10312 switch (op)
10313 {
10314 default: /* Should never happen. */
323e0a4a 10315 error (_("unexpected attribute encountered"));
76a01679 10316 case OP_ATR_FIRST:
1eea4ebd
UW
10317 return value_from_longest
10318 (type, ada_array_bound (arg1, tem, 0));
76a01679 10319 case OP_ATR_LAST:
1eea4ebd
UW
10320 return value_from_longest
10321 (type, ada_array_bound (arg1, tem, 1));
76a01679 10322 case OP_ATR_LENGTH:
1eea4ebd
UW
10323 return value_from_longest
10324 (type, ada_array_length (arg1, tem));
76a01679
JB
10325 }
10326 }
10327 else if (discrete_type_p (type_arg))
10328 {
10329 struct type *range_type;
0d5cff50 10330 const char *name = ada_type_name (type_arg);
5b4ee69b 10331
76a01679
JB
10332 range_type = NULL;
10333 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10334 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10335 if (range_type == NULL)
10336 range_type = type_arg;
10337 switch (op)
10338 {
10339 default:
323e0a4a 10340 error (_("unexpected attribute encountered"));
76a01679 10341 case OP_ATR_FIRST:
690cc4eb 10342 return value_from_longest
43bbcdc2 10343 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10344 case OP_ATR_LAST:
690cc4eb 10345 return value_from_longest
43bbcdc2 10346 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10347 case OP_ATR_LENGTH:
323e0a4a 10348 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10349 }
10350 }
10351 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10352 error (_("unimplemented type attribute"));
76a01679
JB
10353 else
10354 {
10355 LONGEST low, high;
10356
ad82864c
JB
10357 if (ada_is_constrained_packed_array_type (type_arg))
10358 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10359
1eea4ebd 10360 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10361 if (type == NULL)
1eea4ebd
UW
10362 type = builtin_type (exp->gdbarch)->builtin_int;
10363
76a01679
JB
10364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10365 return allocate_value (type);
10366
10367 switch (op)
10368 {
10369 default:
323e0a4a 10370 error (_("unexpected attribute encountered"));
76a01679 10371 case OP_ATR_FIRST:
1eea4ebd 10372 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10373 return value_from_longest (type, low);
10374 case OP_ATR_LAST:
1eea4ebd 10375 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10376 return value_from_longest (type, high);
10377 case OP_ATR_LENGTH:
1eea4ebd
UW
10378 low = ada_array_bound_from_type (type_arg, tem, 0);
10379 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10380 return value_from_longest (type, high - low + 1);
10381 }
10382 }
14f9c5c9
AS
10383 }
10384
4c4b4cd2
PH
10385 case OP_ATR_TAG:
10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10387 if (noside == EVAL_SKIP)
76a01679 10388 goto nosideret;
4c4b4cd2
PH
10389
10390 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10391 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10392
10393 return ada_value_tag (arg1);
10394
10395 case OP_ATR_MIN:
10396 case OP_ATR_MAX:
10397 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10399 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10400 if (noside == EVAL_SKIP)
76a01679 10401 goto nosideret;
d2e4a39e 10402 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10403 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10404 else
f44316fa
UW
10405 {
10406 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10407 return value_binop (arg1, arg2,
10408 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10409 }
14f9c5c9 10410
4c4b4cd2
PH
10411 case OP_ATR_MODULUS:
10412 {
31dedfee 10413 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10414
5b4ee69b 10415 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10416 if (noside == EVAL_SKIP)
10417 goto nosideret;
4c4b4cd2 10418
76a01679 10419 if (!ada_is_modular_type (type_arg))
323e0a4a 10420 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10421
76a01679
JB
10422 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10423 ada_modulus (type_arg));
4c4b4cd2
PH
10424 }
10425
10426
10427 case OP_ATR_POS:
10428 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10430 if (noside == EVAL_SKIP)
76a01679 10431 goto nosideret;
3cb382c9
UW
10432 type = builtin_type (exp->gdbarch)->builtin_int;
10433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10434 return value_zero (type, not_lval);
14f9c5c9 10435 else
3cb382c9 10436 return value_pos_atr (type, arg1);
14f9c5c9 10437
4c4b4cd2
PH
10438 case OP_ATR_SIZE:
10439 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10440 type = value_type (arg1);
10441
10442 /* If the argument is a reference, then dereference its type, since
10443 the user is really asking for the size of the actual object,
10444 not the size of the pointer. */
10445 if (TYPE_CODE (type) == TYPE_CODE_REF)
10446 type = TYPE_TARGET_TYPE (type);
10447
4c4b4cd2 10448 if (noside == EVAL_SKIP)
76a01679 10449 goto nosideret;
4c4b4cd2 10450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10451 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10452 else
22601c15 10453 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10454 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10455
10456 case OP_ATR_VAL:
10457 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10458 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10459 type = exp->elts[pc + 2].type;
14f9c5c9 10460 if (noside == EVAL_SKIP)
76a01679 10461 goto nosideret;
4c4b4cd2 10462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10463 return value_zero (type, not_lval);
4c4b4cd2 10464 else
76a01679 10465 return value_val_atr (type, arg1);
4c4b4cd2
PH
10466
10467 case BINOP_EXP:
10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10473 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10474 else
f44316fa
UW
10475 {
10476 /* For integer exponentiation operations,
10477 only promote the first argument. */
10478 if (is_integral_type (value_type (arg2)))
10479 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10480 else
10481 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10482
10483 return value_binop (arg1, arg2, op);
10484 }
4c4b4cd2
PH
10485
10486 case UNOP_PLUS:
10487 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10488 if (noside == EVAL_SKIP)
10489 goto nosideret;
10490 else
10491 return arg1;
10492
10493 case UNOP_ABS:
10494 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
f44316fa 10497 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10498 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10499 return value_neg (arg1);
14f9c5c9 10500 else
4c4b4cd2 10501 return arg1;
14f9c5c9
AS
10502
10503 case UNOP_IND:
6b0d7253 10504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10505 if (noside == EVAL_SKIP)
4c4b4cd2 10506 goto nosideret;
df407dfe 10507 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10508 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10509 {
10510 if (ada_is_array_descriptor_type (type))
10511 /* GDB allows dereferencing GNAT array descriptors. */
10512 {
10513 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10514
4c4b4cd2 10515 if (arrType == NULL)
323e0a4a 10516 error (_("Attempt to dereference null array pointer."));
00a4c844 10517 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10518 }
10519 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10520 || TYPE_CODE (type) == TYPE_CODE_REF
10521 /* In C you can dereference an array to get the 1st elt. */
10522 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10523 {
10524 type = to_static_fixed_type
10525 (ada_aligned_type
10526 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10527 check_size (type);
10528 return value_zero (type, lval_memory);
10529 }
4c4b4cd2 10530 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10531 {
10532 /* GDB allows dereferencing an int. */
10533 if (expect_type == NULL)
10534 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10535 lval_memory);
10536 else
10537 {
10538 expect_type =
10539 to_static_fixed_type (ada_aligned_type (expect_type));
10540 return value_zero (expect_type, lval_memory);
10541 }
10542 }
4c4b4cd2 10543 else
323e0a4a 10544 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10545 }
0963b4bd 10546 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10547 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10548
96967637
JB
10549 if (TYPE_CODE (type) == TYPE_CODE_INT)
10550 /* GDB allows dereferencing an int. If we were given
10551 the expect_type, then use that as the target type.
10552 Otherwise, assume that the target type is an int. */
10553 {
10554 if (expect_type != NULL)
10555 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10556 arg1));
10557 else
10558 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10559 (CORE_ADDR) value_as_address (arg1));
10560 }
6b0d7253 10561
4c4b4cd2
PH
10562 if (ada_is_array_descriptor_type (type))
10563 /* GDB allows dereferencing GNAT array descriptors. */
10564 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10565 else
4c4b4cd2 10566 return ada_value_ind (arg1);
14f9c5c9
AS
10567
10568 case STRUCTOP_STRUCT:
10569 tem = longest_to_int (exp->elts[pc + 1].longconst);
10570 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10572 if (noside == EVAL_SKIP)
4c4b4cd2 10573 goto nosideret;
14f9c5c9 10574 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10575 {
df407dfe 10576 struct type *type1 = value_type (arg1);
5b4ee69b 10577
76a01679
JB
10578 if (ada_is_tagged_type (type1, 1))
10579 {
10580 type = ada_lookup_struct_elt_type (type1,
10581 &exp->elts[pc + 2].string,
10582 1, 1, NULL);
10583 if (type == NULL)
10584 /* In this case, we assume that the field COULD exist
10585 in some extension of the type. Return an object of
10586 "type" void, which will match any formal
0963b4bd 10587 (see ada_type_match). */
30b15541
UW
10588 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10589 lval_memory);
76a01679
JB
10590 }
10591 else
10592 type =
10593 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10594 0, NULL);
10595
10596 return value_zero (ada_aligned_type (type), lval_memory);
10597 }
14f9c5c9 10598 else
284614f0
JB
10599 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10600 arg1 = unwrap_value (arg1);
10601 return ada_to_fixed_value (arg1);
10602
14f9c5c9 10603 case OP_TYPE:
4c4b4cd2
PH
10604 /* The value is not supposed to be used. This is here to make it
10605 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10606 (*pos) += 2;
10607 if (noside == EVAL_SKIP)
4c4b4cd2 10608 goto nosideret;
14f9c5c9 10609 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10610 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10611 else
323e0a4a 10612 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10613
10614 case OP_AGGREGATE:
10615 case OP_CHOICES:
10616 case OP_OTHERS:
10617 case OP_DISCRETE_RANGE:
10618 case OP_POSITIONAL:
10619 case OP_NAME:
10620 if (noside == EVAL_NORMAL)
10621 switch (op)
10622 {
10623 case OP_NAME:
10624 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10625 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10626 case OP_AGGREGATE:
10627 error (_("Aggregates only allowed on the right of an assignment"));
10628 default:
0963b4bd
MS
10629 internal_error (__FILE__, __LINE__,
10630 _("aggregate apparently mangled"));
52ce6436
PH
10631 }
10632
10633 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10634 *pos += oplen - 1;
10635 for (tem = 0; tem < nargs; tem += 1)
10636 ada_evaluate_subexp (NULL, exp, pos, noside);
10637 goto nosideret;
14f9c5c9
AS
10638 }
10639
10640nosideret:
22601c15 10641 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10642}
14f9c5c9 10643\f
d2e4a39e 10644
4c4b4cd2 10645 /* Fixed point */
14f9c5c9
AS
10646
10647/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10648 type name that encodes the 'small and 'delta information.
4c4b4cd2 10649 Otherwise, return NULL. */
14f9c5c9 10650
d2e4a39e 10651static const char *
ebf56fd3 10652fixed_type_info (struct type *type)
14f9c5c9 10653{
d2e4a39e 10654 const char *name = ada_type_name (type);
14f9c5c9
AS
10655 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10656
d2e4a39e
AS
10657 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10658 {
14f9c5c9 10659 const char *tail = strstr (name, "___XF_");
5b4ee69b 10660
14f9c5c9 10661 if (tail == NULL)
4c4b4cd2 10662 return NULL;
d2e4a39e 10663 else
4c4b4cd2 10664 return tail + 5;
14f9c5c9
AS
10665 }
10666 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10667 return fixed_type_info (TYPE_TARGET_TYPE (type));
10668 else
10669 return NULL;
10670}
10671
4c4b4cd2 10672/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10673
10674int
ebf56fd3 10675ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10676{
10677 return fixed_type_info (type) != NULL;
10678}
10679
4c4b4cd2
PH
10680/* Return non-zero iff TYPE represents a System.Address type. */
10681
10682int
10683ada_is_system_address_type (struct type *type)
10684{
10685 return (TYPE_NAME (type)
10686 && strcmp (TYPE_NAME (type), "system__address") == 0);
10687}
10688
14f9c5c9
AS
10689/* Assuming that TYPE is the representation of an Ada fixed-point
10690 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10691 delta cannot be determined. */
14f9c5c9
AS
10692
10693DOUBLEST
ebf56fd3 10694ada_delta (struct type *type)
14f9c5c9
AS
10695{
10696 const char *encoding = fixed_type_info (type);
facc390f 10697 DOUBLEST num, den;
14f9c5c9 10698
facc390f
JB
10699 /* Strictly speaking, num and den are encoded as integer. However,
10700 they may not fit into a long, and they will have to be converted
10701 to DOUBLEST anyway. So scan them as DOUBLEST. */
10702 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10703 &num, &den) < 2)
14f9c5c9 10704 return -1.0;
d2e4a39e 10705 else
facc390f 10706 return num / den;
14f9c5c9
AS
10707}
10708
10709/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10710 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10711
10712static DOUBLEST
ebf56fd3 10713scaling_factor (struct type *type)
14f9c5c9
AS
10714{
10715 const char *encoding = fixed_type_info (type);
facc390f 10716 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10717 int n;
d2e4a39e 10718
facc390f
JB
10719 /* Strictly speaking, num's and den's are encoded as integer. However,
10720 they may not fit into a long, and they will have to be converted
10721 to DOUBLEST anyway. So scan them as DOUBLEST. */
10722 n = sscanf (encoding,
10723 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10724 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10725 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10726
10727 if (n < 2)
10728 return 1.0;
10729 else if (n == 4)
facc390f 10730 return num1 / den1;
d2e4a39e 10731 else
facc390f 10732 return num0 / den0;
14f9c5c9
AS
10733}
10734
10735
10736/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10737 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10738
10739DOUBLEST
ebf56fd3 10740ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10741{
d2e4a39e 10742 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10743}
10744
4c4b4cd2
PH
10745/* The representation of a fixed-point value of type TYPE
10746 corresponding to the value X. */
14f9c5c9
AS
10747
10748LONGEST
ebf56fd3 10749ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10750{
10751 return (LONGEST) (x / scaling_factor (type) + 0.5);
10752}
10753
14f9c5c9 10754\f
d2e4a39e 10755
4c4b4cd2 10756 /* Range types */
14f9c5c9
AS
10757
10758/* Scan STR beginning at position K for a discriminant name, and
10759 return the value of that discriminant field of DVAL in *PX. If
10760 PNEW_K is not null, put the position of the character beyond the
10761 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10762 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10763
10764static int
07d8f827 10765scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10766 int *pnew_k)
14f9c5c9
AS
10767{
10768 static char *bound_buffer = NULL;
10769 static size_t bound_buffer_len = 0;
10770 char *bound;
10771 char *pend;
d2e4a39e 10772 struct value *bound_val;
14f9c5c9
AS
10773
10774 if (dval == NULL || str == NULL || str[k] == '\0')
10775 return 0;
10776
d2e4a39e 10777 pend = strstr (str + k, "__");
14f9c5c9
AS
10778 if (pend == NULL)
10779 {
d2e4a39e 10780 bound = str + k;
14f9c5c9
AS
10781 k += strlen (bound);
10782 }
d2e4a39e 10783 else
14f9c5c9 10784 {
d2e4a39e 10785 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10786 bound = bound_buffer;
d2e4a39e
AS
10787 strncpy (bound_buffer, str + k, pend - (str + k));
10788 bound[pend - (str + k)] = '\0';
10789 k = pend - str;
14f9c5c9 10790 }
d2e4a39e 10791
df407dfe 10792 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10793 if (bound_val == NULL)
10794 return 0;
10795
10796 *px = value_as_long (bound_val);
10797 if (pnew_k != NULL)
10798 *pnew_k = k;
10799 return 1;
10800}
10801
10802/* Value of variable named NAME in the current environment. If
10803 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10804 otherwise causes an error with message ERR_MSG. */
10805
d2e4a39e
AS
10806static struct value *
10807get_var_value (char *name, char *err_msg)
14f9c5c9 10808{
4c4b4cd2 10809 struct ada_symbol_info *syms;
14f9c5c9
AS
10810 int nsyms;
10811
4c4b4cd2 10812 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10813 &syms);
14f9c5c9
AS
10814
10815 if (nsyms != 1)
10816 {
10817 if (err_msg == NULL)
4c4b4cd2 10818 return 0;
14f9c5c9 10819 else
8a3fe4f8 10820 error (("%s"), err_msg);
14f9c5c9
AS
10821 }
10822
4c4b4cd2 10823 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10824}
d2e4a39e 10825
14f9c5c9 10826/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10827 no such variable found, returns 0, and sets *FLAG to 0. If
10828 successful, sets *FLAG to 1. */
10829
14f9c5c9 10830LONGEST
4c4b4cd2 10831get_int_var_value (char *name, int *flag)
14f9c5c9 10832{
4c4b4cd2 10833 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10834
14f9c5c9
AS
10835 if (var_val == 0)
10836 {
10837 if (flag != NULL)
4c4b4cd2 10838 *flag = 0;
14f9c5c9
AS
10839 return 0;
10840 }
10841 else
10842 {
10843 if (flag != NULL)
4c4b4cd2 10844 *flag = 1;
14f9c5c9
AS
10845 return value_as_long (var_val);
10846 }
10847}
d2e4a39e 10848
14f9c5c9
AS
10849
10850/* Return a range type whose base type is that of the range type named
10851 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10852 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10853 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10854 corresponding range type from debug information; fall back to using it
10855 if symbol lookup fails. If a new type must be created, allocate it
10856 like ORIG_TYPE was. The bounds information, in general, is encoded
10857 in NAME, the base type given in the named range type. */
14f9c5c9 10858
d2e4a39e 10859static struct type *
28c85d6c 10860to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10861{
0d5cff50 10862 const char *name;
14f9c5c9 10863 struct type *base_type;
d2e4a39e 10864 char *subtype_info;
14f9c5c9 10865
28c85d6c
JB
10866 gdb_assert (raw_type != NULL);
10867 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10868
1ce677a4 10869 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10870 base_type = TYPE_TARGET_TYPE (raw_type);
10871 else
10872 base_type = raw_type;
10873
28c85d6c 10874 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10875 subtype_info = strstr (name, "___XD");
10876 if (subtype_info == NULL)
690cc4eb 10877 {
43bbcdc2
PH
10878 LONGEST L = ada_discrete_type_low_bound (raw_type);
10879 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10880
690cc4eb
PH
10881 if (L < INT_MIN || U > INT_MAX)
10882 return raw_type;
10883 else
28c85d6c 10884 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10885 ada_discrete_type_low_bound (raw_type),
10886 ada_discrete_type_high_bound (raw_type));
690cc4eb 10887 }
14f9c5c9
AS
10888 else
10889 {
10890 static char *name_buf = NULL;
10891 static size_t name_len = 0;
10892 int prefix_len = subtype_info - name;
10893 LONGEST L, U;
10894 struct type *type;
10895 char *bounds_str;
10896 int n;
10897
10898 GROW_VECT (name_buf, name_len, prefix_len + 5);
10899 strncpy (name_buf, name, prefix_len);
10900 name_buf[prefix_len] = '\0';
10901
10902 subtype_info += 5;
10903 bounds_str = strchr (subtype_info, '_');
10904 n = 1;
10905
d2e4a39e 10906 if (*subtype_info == 'L')
4c4b4cd2
PH
10907 {
10908 if (!ada_scan_number (bounds_str, n, &L, &n)
10909 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10910 return raw_type;
10911 if (bounds_str[n] == '_')
10912 n += 2;
0963b4bd 10913 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10914 n += 1;
10915 subtype_info += 1;
10916 }
d2e4a39e 10917 else
4c4b4cd2
PH
10918 {
10919 int ok;
5b4ee69b 10920
4c4b4cd2
PH
10921 strcpy (name_buf + prefix_len, "___L");
10922 L = get_int_var_value (name_buf, &ok);
10923 if (!ok)
10924 {
323e0a4a 10925 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10926 L = 1;
10927 }
10928 }
14f9c5c9 10929
d2e4a39e 10930 if (*subtype_info == 'U')
4c4b4cd2
PH
10931 {
10932 if (!ada_scan_number (bounds_str, n, &U, &n)
10933 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10934 return raw_type;
10935 }
d2e4a39e 10936 else
4c4b4cd2
PH
10937 {
10938 int ok;
5b4ee69b 10939
4c4b4cd2
PH
10940 strcpy (name_buf + prefix_len, "___U");
10941 U = get_int_var_value (name_buf, &ok);
10942 if (!ok)
10943 {
323e0a4a 10944 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10945 U = L;
10946 }
10947 }
14f9c5c9 10948
28c85d6c 10949 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10950 TYPE_NAME (type) = name;
14f9c5c9
AS
10951 return type;
10952 }
10953}
10954
4c4b4cd2
PH
10955/* True iff NAME is the name of a range type. */
10956
14f9c5c9 10957int
d2e4a39e 10958ada_is_range_type_name (const char *name)
14f9c5c9
AS
10959{
10960 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10961}
14f9c5c9 10962\f
d2e4a39e 10963
4c4b4cd2
PH
10964 /* Modular types */
10965
10966/* True iff TYPE is an Ada modular type. */
14f9c5c9 10967
14f9c5c9 10968int
d2e4a39e 10969ada_is_modular_type (struct type *type)
14f9c5c9 10970{
18af8284 10971 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10972
10973 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10974 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10975 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10976}
10977
4c4b4cd2
PH
10978/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10979
61ee279c 10980ULONGEST
0056e4d5 10981ada_modulus (struct type *type)
14f9c5c9 10982{
43bbcdc2 10983 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10984}
d2e4a39e 10985\f
f7f9143b
JB
10986
10987/* Ada exception catchpoint support:
10988 ---------------------------------
10989
10990 We support 3 kinds of exception catchpoints:
10991 . catchpoints on Ada exceptions
10992 . catchpoints on unhandled Ada exceptions
10993 . catchpoints on failed assertions
10994
10995 Exceptions raised during failed assertions, or unhandled exceptions
10996 could perfectly be caught with the general catchpoint on Ada exceptions.
10997 However, we can easily differentiate these two special cases, and having
10998 the option to distinguish these two cases from the rest can be useful
10999 to zero-in on certain situations.
11000
11001 Exception catchpoints are a specialized form of breakpoint,
11002 since they rely on inserting breakpoints inside known routines
11003 of the GNAT runtime. The implementation therefore uses a standard
11004 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11005 of breakpoint_ops.
11006
0259addd
JB
11007 Support in the runtime for exception catchpoints have been changed
11008 a few times already, and these changes affect the implementation
11009 of these catchpoints. In order to be able to support several
11010 variants of the runtime, we use a sniffer that will determine
28010a5d 11011 the runtime variant used by the program being debugged. */
f7f9143b 11012
3d0b0fa3
JB
11013/* Ada's standard exceptions. */
11014
11015static char *standard_exc[] = {
11016 "constraint_error",
11017 "program_error",
11018 "storage_error",
11019 "tasking_error"
11020};
11021
0259addd
JB
11022typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11023
11024/* A structure that describes how to support exception catchpoints
11025 for a given executable. */
11026
11027struct exception_support_info
11028{
11029 /* The name of the symbol to break on in order to insert
11030 a catchpoint on exceptions. */
11031 const char *catch_exception_sym;
11032
11033 /* The name of the symbol to break on in order to insert
11034 a catchpoint on unhandled exceptions. */
11035 const char *catch_exception_unhandled_sym;
11036
11037 /* The name of the symbol to break on in order to insert
11038 a catchpoint on failed assertions. */
11039 const char *catch_assert_sym;
11040
11041 /* Assuming that the inferior just triggered an unhandled exception
11042 catchpoint, this function is responsible for returning the address
11043 in inferior memory where the name of that exception is stored.
11044 Return zero if the address could not be computed. */
11045 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11046};
11047
11048static CORE_ADDR ada_unhandled_exception_name_addr (void);
11049static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11050
11051/* The following exception support info structure describes how to
11052 implement exception catchpoints with the latest version of the
11053 Ada runtime (as of 2007-03-06). */
11054
11055static const struct exception_support_info default_exception_support_info =
11056{
11057 "__gnat_debug_raise_exception", /* catch_exception_sym */
11058 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11059 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11060 ada_unhandled_exception_name_addr
11061};
11062
11063/* The following exception support info structure describes how to
11064 implement exception catchpoints with a slightly older version
11065 of the Ada runtime. */
11066
11067static const struct exception_support_info exception_support_info_fallback =
11068{
11069 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11070 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11071 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11072 ada_unhandled_exception_name_addr_from_raise
11073};
11074
f17011e0
JB
11075/* Return nonzero if we can detect the exception support routines
11076 described in EINFO.
11077
11078 This function errors out if an abnormal situation is detected
11079 (for instance, if we find the exception support routines, but
11080 that support is found to be incomplete). */
11081
11082static int
11083ada_has_this_exception_support (const struct exception_support_info *einfo)
11084{
11085 struct symbol *sym;
11086
11087 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11088 that should be compiled with debugging information. As a result, we
11089 expect to find that symbol in the symtabs. */
11090
11091 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11092 if (sym == NULL)
a6af7abe
JB
11093 {
11094 /* Perhaps we did not find our symbol because the Ada runtime was
11095 compiled without debugging info, or simply stripped of it.
11096 It happens on some GNU/Linux distributions for instance, where
11097 users have to install a separate debug package in order to get
11098 the runtime's debugging info. In that situation, let the user
11099 know why we cannot insert an Ada exception catchpoint.
11100
11101 Note: Just for the purpose of inserting our Ada exception
11102 catchpoint, we could rely purely on the associated minimal symbol.
11103 But we would be operating in degraded mode anyway, since we are
11104 still lacking the debugging info needed later on to extract
11105 the name of the exception being raised (this name is printed in
11106 the catchpoint message, and is also used when trying to catch
11107 a specific exception). We do not handle this case for now. */
1c8e84b0
JB
11108 struct minimal_symbol *msym
11109 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11110
11111 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
a6af7abe
JB
11112 error (_("Your Ada runtime appears to be missing some debugging "
11113 "information.\nCannot insert Ada exception catchpoint "
11114 "in this configuration."));
11115
11116 return 0;
11117 }
f17011e0
JB
11118
11119 /* Make sure that the symbol we found corresponds to a function. */
11120
11121 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11122 error (_("Symbol \"%s\" is not a function (class = %d)"),
11123 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11124
11125 return 1;
11126}
11127
0259addd
JB
11128/* Inspect the Ada runtime and determine which exception info structure
11129 should be used to provide support for exception catchpoints.
11130
3eecfa55
JB
11131 This function will always set the per-inferior exception_info,
11132 or raise an error. */
0259addd
JB
11133
11134static void
11135ada_exception_support_info_sniffer (void)
11136{
3eecfa55 11137 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11138
11139 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11140 if (data->exception_info != NULL)
0259addd
JB
11141 return;
11142
11143 /* Check the latest (default) exception support info. */
f17011e0 11144 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11145 {
3eecfa55 11146 data->exception_info = &default_exception_support_info;
0259addd
JB
11147 return;
11148 }
11149
11150 /* Try our fallback exception suport info. */
f17011e0 11151 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11152 {
3eecfa55 11153 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11154 return;
11155 }
11156
11157 /* Sometimes, it is normal for us to not be able to find the routine
11158 we are looking for. This happens when the program is linked with
11159 the shared version of the GNAT runtime, and the program has not been
11160 started yet. Inform the user of these two possible causes if
11161 applicable. */
11162
ccefe4c4 11163 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11164 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11165
11166 /* If the symbol does not exist, then check that the program is
11167 already started, to make sure that shared libraries have been
11168 loaded. If it is not started, this may mean that the symbol is
11169 in a shared library. */
11170
11171 if (ptid_get_pid (inferior_ptid) == 0)
11172 error (_("Unable to insert catchpoint. Try to start the program first."));
11173
11174 /* At this point, we know that we are debugging an Ada program and
11175 that the inferior has been started, but we still are not able to
0963b4bd 11176 find the run-time symbols. That can mean that we are in
0259addd
JB
11177 configurable run time mode, or that a-except as been optimized
11178 out by the linker... In any case, at this point it is not worth
11179 supporting this feature. */
11180
7dda8cff 11181 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11182}
11183
f7f9143b
JB
11184/* True iff FRAME is very likely to be that of a function that is
11185 part of the runtime system. This is all very heuristic, but is
11186 intended to be used as advice as to what frames are uninteresting
11187 to most users. */
11188
11189static int
11190is_known_support_routine (struct frame_info *frame)
11191{
4ed6b5be 11192 struct symtab_and_line sal;
55b87a52 11193 char *func_name;
692465f1 11194 enum language func_lang;
f7f9143b 11195 int i;
f35a17b5 11196 const char *fullname;
f7f9143b 11197
4ed6b5be
JB
11198 /* If this code does not have any debugging information (no symtab),
11199 This cannot be any user code. */
f7f9143b 11200
4ed6b5be 11201 find_frame_sal (frame, &sal);
f7f9143b
JB
11202 if (sal.symtab == NULL)
11203 return 1;
11204
4ed6b5be
JB
11205 /* If there is a symtab, but the associated source file cannot be
11206 located, then assume this is not user code: Selecting a frame
11207 for which we cannot display the code would not be very helpful
11208 for the user. This should also take care of case such as VxWorks
11209 where the kernel has some debugging info provided for a few units. */
f7f9143b 11210
f35a17b5
JK
11211 fullname = symtab_to_fullname (sal.symtab);
11212 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11213 return 1;
11214
4ed6b5be
JB
11215 /* Check the unit filename againt the Ada runtime file naming.
11216 We also check the name of the objfile against the name of some
11217 known system libraries that sometimes come with debugging info
11218 too. */
11219
f7f9143b
JB
11220 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11221 {
11222 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11223 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11224 return 1;
4ed6b5be 11225 if (sal.symtab->objfile != NULL
4262abfb 11226 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11227 return 1;
f7f9143b
JB
11228 }
11229
4ed6b5be 11230 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11231
e9e07ba6 11232 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11233 if (func_name == NULL)
11234 return 1;
11235
11236 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11237 {
11238 re_comp (known_auxiliary_function_name_patterns[i]);
11239 if (re_exec (func_name))
55b87a52
KS
11240 {
11241 xfree (func_name);
11242 return 1;
11243 }
f7f9143b
JB
11244 }
11245
55b87a52 11246 xfree (func_name);
f7f9143b
JB
11247 return 0;
11248}
11249
11250/* Find the first frame that contains debugging information and that is not
11251 part of the Ada run-time, starting from FI and moving upward. */
11252
0ef643c8 11253void
f7f9143b
JB
11254ada_find_printable_frame (struct frame_info *fi)
11255{
11256 for (; fi != NULL; fi = get_prev_frame (fi))
11257 {
11258 if (!is_known_support_routine (fi))
11259 {
11260 select_frame (fi);
11261 break;
11262 }
11263 }
11264
11265}
11266
11267/* Assuming that the inferior just triggered an unhandled exception
11268 catchpoint, return the address in inferior memory where the name
11269 of the exception is stored.
11270
11271 Return zero if the address could not be computed. */
11272
11273static CORE_ADDR
11274ada_unhandled_exception_name_addr (void)
0259addd
JB
11275{
11276 return parse_and_eval_address ("e.full_name");
11277}
11278
11279/* Same as ada_unhandled_exception_name_addr, except that this function
11280 should be used when the inferior uses an older version of the runtime,
11281 where the exception name needs to be extracted from a specific frame
11282 several frames up in the callstack. */
11283
11284static CORE_ADDR
11285ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11286{
11287 int frame_level;
11288 struct frame_info *fi;
3eecfa55 11289 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11290 struct cleanup *old_chain;
f7f9143b
JB
11291
11292 /* To determine the name of this exception, we need to select
11293 the frame corresponding to RAISE_SYM_NAME. This frame is
11294 at least 3 levels up, so we simply skip the first 3 frames
11295 without checking the name of their associated function. */
11296 fi = get_current_frame ();
11297 for (frame_level = 0; frame_level < 3; frame_level += 1)
11298 if (fi != NULL)
11299 fi = get_prev_frame (fi);
11300
55b87a52 11301 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11302 while (fi != NULL)
11303 {
55b87a52 11304 char *func_name;
692465f1
JB
11305 enum language func_lang;
11306
e9e07ba6 11307 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11308 if (func_name != NULL)
11309 {
11310 make_cleanup (xfree, func_name);
11311
11312 if (strcmp (func_name,
11313 data->exception_info->catch_exception_sym) == 0)
11314 break; /* We found the frame we were looking for... */
11315 fi = get_prev_frame (fi);
11316 }
f7f9143b 11317 }
55b87a52 11318 do_cleanups (old_chain);
f7f9143b
JB
11319
11320 if (fi == NULL)
11321 return 0;
11322
11323 select_frame (fi);
11324 return parse_and_eval_address ("id.full_name");
11325}
11326
11327/* Assuming the inferior just triggered an Ada exception catchpoint
11328 (of any type), return the address in inferior memory where the name
11329 of the exception is stored, if applicable.
11330
11331 Return zero if the address could not be computed, or if not relevant. */
11332
11333static CORE_ADDR
761269c8 11334ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11335 struct breakpoint *b)
11336{
3eecfa55
JB
11337 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11338
f7f9143b
JB
11339 switch (ex)
11340 {
761269c8 11341 case ada_catch_exception:
f7f9143b
JB
11342 return (parse_and_eval_address ("e.full_name"));
11343 break;
11344
761269c8 11345 case ada_catch_exception_unhandled:
3eecfa55 11346 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11347 break;
11348
761269c8 11349 case ada_catch_assert:
f7f9143b
JB
11350 return 0; /* Exception name is not relevant in this case. */
11351 break;
11352
11353 default:
11354 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11355 break;
11356 }
11357
11358 return 0; /* Should never be reached. */
11359}
11360
11361/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11362 any error that ada_exception_name_addr_1 might cause to be thrown.
11363 When an error is intercepted, a warning with the error message is printed,
11364 and zero is returned. */
11365
11366static CORE_ADDR
761269c8 11367ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11368 struct breakpoint *b)
11369{
bfd189b1 11370 volatile struct gdb_exception e;
f7f9143b
JB
11371 CORE_ADDR result = 0;
11372
11373 TRY_CATCH (e, RETURN_MASK_ERROR)
11374 {
11375 result = ada_exception_name_addr_1 (ex, b);
11376 }
11377
11378 if (e.reason < 0)
11379 {
11380 warning (_("failed to get exception name: %s"), e.message);
11381 return 0;
11382 }
11383
11384 return result;
11385}
11386
28010a5d
PA
11387static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11388
11389/* Ada catchpoints.
11390
11391 In the case of catchpoints on Ada exceptions, the catchpoint will
11392 stop the target on every exception the program throws. When a user
11393 specifies the name of a specific exception, we translate this
11394 request into a condition expression (in text form), and then parse
11395 it into an expression stored in each of the catchpoint's locations.
11396 We then use this condition to check whether the exception that was
11397 raised is the one the user is interested in. If not, then the
11398 target is resumed again. We store the name of the requested
11399 exception, in order to be able to re-set the condition expression
11400 when symbols change. */
11401
11402/* An instance of this type is used to represent an Ada catchpoint
11403 breakpoint location. It includes a "struct bp_location" as a kind
11404 of base class; users downcast to "struct bp_location *" when
11405 needed. */
11406
11407struct ada_catchpoint_location
11408{
11409 /* The base class. */
11410 struct bp_location base;
11411
11412 /* The condition that checks whether the exception that was raised
11413 is the specific exception the user specified on catchpoint
11414 creation. */
11415 struct expression *excep_cond_expr;
11416};
11417
11418/* Implement the DTOR method in the bp_location_ops structure for all
11419 Ada exception catchpoint kinds. */
11420
11421static void
11422ada_catchpoint_location_dtor (struct bp_location *bl)
11423{
11424 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11425
11426 xfree (al->excep_cond_expr);
11427}
11428
11429/* The vtable to be used in Ada catchpoint locations. */
11430
11431static const struct bp_location_ops ada_catchpoint_location_ops =
11432{
11433 ada_catchpoint_location_dtor
11434};
11435
11436/* An instance of this type is used to represent an Ada catchpoint.
11437 It includes a "struct breakpoint" as a kind of base class; users
11438 downcast to "struct breakpoint *" when needed. */
11439
11440struct ada_catchpoint
11441{
11442 /* The base class. */
11443 struct breakpoint base;
11444
11445 /* The name of the specific exception the user specified. */
11446 char *excep_string;
11447};
11448
11449/* Parse the exception condition string in the context of each of the
11450 catchpoint's locations, and store them for later evaluation. */
11451
11452static void
11453create_excep_cond_exprs (struct ada_catchpoint *c)
11454{
11455 struct cleanup *old_chain;
11456 struct bp_location *bl;
11457 char *cond_string;
11458
11459 /* Nothing to do if there's no specific exception to catch. */
11460 if (c->excep_string == NULL)
11461 return;
11462
11463 /* Same if there are no locations... */
11464 if (c->base.loc == NULL)
11465 return;
11466
11467 /* Compute the condition expression in text form, from the specific
11468 expection we want to catch. */
11469 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11470 old_chain = make_cleanup (xfree, cond_string);
11471
11472 /* Iterate over all the catchpoint's locations, and parse an
11473 expression for each. */
11474 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11475 {
11476 struct ada_catchpoint_location *ada_loc
11477 = (struct ada_catchpoint_location *) bl;
11478 struct expression *exp = NULL;
11479
11480 if (!bl->shlib_disabled)
11481 {
11482 volatile struct gdb_exception e;
bbc13ae3 11483 const char *s;
28010a5d
PA
11484
11485 s = cond_string;
11486 TRY_CATCH (e, RETURN_MASK_ERROR)
11487 {
1bb9788d
TT
11488 exp = parse_exp_1 (&s, bl->address,
11489 block_for_pc (bl->address), 0);
28010a5d
PA
11490 }
11491 if (e.reason < 0)
849f2b52
JB
11492 {
11493 warning (_("failed to reevaluate internal exception condition "
11494 "for catchpoint %d: %s"),
11495 c->base.number, e.message);
11496 /* There is a bug in GCC on sparc-solaris when building with
11497 optimization which causes EXP to change unexpectedly
11498 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11499 The problem should be fixed starting with GCC 4.9.
11500 In the meantime, work around it by forcing EXP back
11501 to NULL. */
11502 exp = NULL;
11503 }
28010a5d
PA
11504 }
11505
11506 ada_loc->excep_cond_expr = exp;
11507 }
11508
11509 do_cleanups (old_chain);
11510}
11511
11512/* Implement the DTOR method in the breakpoint_ops structure for all
11513 exception catchpoint kinds. */
11514
11515static void
761269c8 11516dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11517{
11518 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11519
11520 xfree (c->excep_string);
348d480f 11521
2060206e 11522 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11523}
11524
11525/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11526 structure for all exception catchpoint kinds. */
11527
11528static struct bp_location *
761269c8 11529allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11530 struct breakpoint *self)
11531{
11532 struct ada_catchpoint_location *loc;
11533
11534 loc = XNEW (struct ada_catchpoint_location);
11535 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11536 loc->excep_cond_expr = NULL;
11537 return &loc->base;
11538}
11539
11540/* Implement the RE_SET method in the breakpoint_ops structure for all
11541 exception catchpoint kinds. */
11542
11543static void
761269c8 11544re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11545{
11546 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11547
11548 /* Call the base class's method. This updates the catchpoint's
11549 locations. */
2060206e 11550 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11551
11552 /* Reparse the exception conditional expressions. One for each
11553 location. */
11554 create_excep_cond_exprs (c);
11555}
11556
11557/* Returns true if we should stop for this breakpoint hit. If the
11558 user specified a specific exception, we only want to cause a stop
11559 if the program thrown that exception. */
11560
11561static int
11562should_stop_exception (const struct bp_location *bl)
11563{
11564 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11565 const struct ada_catchpoint_location *ada_loc
11566 = (const struct ada_catchpoint_location *) bl;
11567 volatile struct gdb_exception ex;
11568 int stop;
11569
11570 /* With no specific exception, should always stop. */
11571 if (c->excep_string == NULL)
11572 return 1;
11573
11574 if (ada_loc->excep_cond_expr == NULL)
11575 {
11576 /* We will have a NULL expression if back when we were creating
11577 the expressions, this location's had failed to parse. */
11578 return 1;
11579 }
11580
11581 stop = 1;
11582 TRY_CATCH (ex, RETURN_MASK_ALL)
11583 {
11584 struct value *mark;
11585
11586 mark = value_mark ();
11587 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11588 value_free_to_mark (mark);
11589 }
11590 if (ex.reason < 0)
11591 exception_fprintf (gdb_stderr, ex,
11592 _("Error in testing exception condition:\n"));
11593 return stop;
11594}
11595
11596/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11597 for all exception catchpoint kinds. */
11598
11599static void
761269c8 11600check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11601{
11602 bs->stop = should_stop_exception (bs->bp_location_at);
11603}
11604
f7f9143b
JB
11605/* Implement the PRINT_IT method in the breakpoint_ops structure
11606 for all exception catchpoint kinds. */
11607
11608static enum print_stop_action
761269c8 11609print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11610{
79a45e25 11611 struct ui_out *uiout = current_uiout;
348d480f
PA
11612 struct breakpoint *b = bs->breakpoint_at;
11613
956a9fb9 11614 annotate_catchpoint (b->number);
f7f9143b 11615
956a9fb9 11616 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11617 {
956a9fb9
JB
11618 ui_out_field_string (uiout, "reason",
11619 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11620 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11621 }
11622
00eb2c4a
JB
11623 ui_out_text (uiout,
11624 b->disposition == disp_del ? "\nTemporary catchpoint "
11625 : "\nCatchpoint ");
956a9fb9
JB
11626 ui_out_field_int (uiout, "bkptno", b->number);
11627 ui_out_text (uiout, ", ");
f7f9143b 11628
f7f9143b
JB
11629 switch (ex)
11630 {
761269c8
JB
11631 case ada_catch_exception:
11632 case ada_catch_exception_unhandled:
956a9fb9
JB
11633 {
11634 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11635 char exception_name[256];
11636
11637 if (addr != 0)
11638 {
c714b426
PA
11639 read_memory (addr, (gdb_byte *) exception_name,
11640 sizeof (exception_name) - 1);
956a9fb9
JB
11641 exception_name [sizeof (exception_name) - 1] = '\0';
11642 }
11643 else
11644 {
11645 /* For some reason, we were unable to read the exception
11646 name. This could happen if the Runtime was compiled
11647 without debugging info, for instance. In that case,
11648 just replace the exception name by the generic string
11649 "exception" - it will read as "an exception" in the
11650 notification we are about to print. */
967cff16 11651 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11652 }
11653 /* In the case of unhandled exception breakpoints, we print
11654 the exception name as "unhandled EXCEPTION_NAME", to make
11655 it clearer to the user which kind of catchpoint just got
11656 hit. We used ui_out_text to make sure that this extra
11657 info does not pollute the exception name in the MI case. */
761269c8 11658 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11659 ui_out_text (uiout, "unhandled ");
11660 ui_out_field_string (uiout, "exception-name", exception_name);
11661 }
11662 break;
761269c8 11663 case ada_catch_assert:
956a9fb9
JB
11664 /* In this case, the name of the exception is not really
11665 important. Just print "failed assertion" to make it clearer
11666 that his program just hit an assertion-failure catchpoint.
11667 We used ui_out_text because this info does not belong in
11668 the MI output. */
11669 ui_out_text (uiout, "failed assertion");
11670 break;
f7f9143b 11671 }
956a9fb9
JB
11672 ui_out_text (uiout, " at ");
11673 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11674
11675 return PRINT_SRC_AND_LOC;
11676}
11677
11678/* Implement the PRINT_ONE method in the breakpoint_ops structure
11679 for all exception catchpoint kinds. */
11680
11681static void
761269c8 11682print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11683 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11684{
79a45e25 11685 struct ui_out *uiout = current_uiout;
28010a5d 11686 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11687 struct value_print_options opts;
11688
11689 get_user_print_options (&opts);
11690 if (opts.addressprint)
f7f9143b
JB
11691 {
11692 annotate_field (4);
5af949e3 11693 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11694 }
11695
11696 annotate_field (5);
a6d9a66e 11697 *last_loc = b->loc;
f7f9143b
JB
11698 switch (ex)
11699 {
761269c8 11700 case ada_catch_exception:
28010a5d 11701 if (c->excep_string != NULL)
f7f9143b 11702 {
28010a5d
PA
11703 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11704
f7f9143b
JB
11705 ui_out_field_string (uiout, "what", msg);
11706 xfree (msg);
11707 }
11708 else
11709 ui_out_field_string (uiout, "what", "all Ada exceptions");
11710
11711 break;
11712
761269c8 11713 case ada_catch_exception_unhandled:
f7f9143b
JB
11714 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11715 break;
11716
761269c8 11717 case ada_catch_assert:
f7f9143b
JB
11718 ui_out_field_string (uiout, "what", "failed Ada assertions");
11719 break;
11720
11721 default:
11722 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11723 break;
11724 }
11725}
11726
11727/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11728 for all exception catchpoint kinds. */
11729
11730static void
761269c8 11731print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11732 struct breakpoint *b)
11733{
28010a5d 11734 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11735 struct ui_out *uiout = current_uiout;
28010a5d 11736
00eb2c4a
JB
11737 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11738 : _("Catchpoint "));
11739 ui_out_field_int (uiout, "bkptno", b->number);
11740 ui_out_text (uiout, ": ");
11741
f7f9143b
JB
11742 switch (ex)
11743 {
761269c8 11744 case ada_catch_exception:
28010a5d 11745 if (c->excep_string != NULL)
00eb2c4a
JB
11746 {
11747 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11748 struct cleanup *old_chain = make_cleanup (xfree, info);
11749
11750 ui_out_text (uiout, info);
11751 do_cleanups (old_chain);
11752 }
f7f9143b 11753 else
00eb2c4a 11754 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11755 break;
11756
761269c8 11757 case ada_catch_exception_unhandled:
00eb2c4a 11758 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11759 break;
11760
761269c8 11761 case ada_catch_assert:
00eb2c4a 11762 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11763 break;
11764
11765 default:
11766 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11767 break;
11768 }
11769}
11770
6149aea9
PA
11771/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11772 for all exception catchpoint kinds. */
11773
11774static void
761269c8 11775print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
11776 struct breakpoint *b, struct ui_file *fp)
11777{
28010a5d
PA
11778 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11779
6149aea9
PA
11780 switch (ex)
11781 {
761269c8 11782 case ada_catch_exception:
6149aea9 11783 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11784 if (c->excep_string != NULL)
11785 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11786 break;
11787
761269c8 11788 case ada_catch_exception_unhandled:
78076abc 11789 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11790 break;
11791
761269c8 11792 case ada_catch_assert:
6149aea9
PA
11793 fprintf_filtered (fp, "catch assert");
11794 break;
11795
11796 default:
11797 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11798 }
d9b3f62e 11799 print_recreate_thread (b, fp);
6149aea9
PA
11800}
11801
f7f9143b
JB
11802/* Virtual table for "catch exception" breakpoints. */
11803
28010a5d
PA
11804static void
11805dtor_catch_exception (struct breakpoint *b)
11806{
761269c8 11807 dtor_exception (ada_catch_exception, b);
28010a5d
PA
11808}
11809
11810static struct bp_location *
11811allocate_location_catch_exception (struct breakpoint *self)
11812{
761269c8 11813 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
11814}
11815
11816static void
11817re_set_catch_exception (struct breakpoint *b)
11818{
761269c8 11819 re_set_exception (ada_catch_exception, b);
28010a5d
PA
11820}
11821
11822static void
11823check_status_catch_exception (bpstat bs)
11824{
761269c8 11825 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
11826}
11827
f7f9143b 11828static enum print_stop_action
348d480f 11829print_it_catch_exception (bpstat bs)
f7f9143b 11830{
761269c8 11831 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
11832}
11833
11834static void
a6d9a66e 11835print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11836{
761269c8 11837 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
11838}
11839
11840static void
11841print_mention_catch_exception (struct breakpoint *b)
11842{
761269c8 11843 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
11844}
11845
6149aea9
PA
11846static void
11847print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11848{
761269c8 11849 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
11850}
11851
2060206e 11852static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11853
11854/* Virtual table for "catch exception unhandled" breakpoints. */
11855
28010a5d
PA
11856static void
11857dtor_catch_exception_unhandled (struct breakpoint *b)
11858{
761269c8 11859 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11860}
11861
11862static struct bp_location *
11863allocate_location_catch_exception_unhandled (struct breakpoint *self)
11864{
761269c8 11865 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
11866}
11867
11868static void
11869re_set_catch_exception_unhandled (struct breakpoint *b)
11870{
761269c8 11871 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
11872}
11873
11874static void
11875check_status_catch_exception_unhandled (bpstat bs)
11876{
761269c8 11877 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
11878}
11879
f7f9143b 11880static enum print_stop_action
348d480f 11881print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11882{
761269c8 11883 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
11884}
11885
11886static void
a6d9a66e
UW
11887print_one_catch_exception_unhandled (struct breakpoint *b,
11888 struct bp_location **last_loc)
f7f9143b 11889{
761269c8 11890 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11891}
11892
11893static void
11894print_mention_catch_exception_unhandled (struct breakpoint *b)
11895{
761269c8 11896 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
11897}
11898
6149aea9
PA
11899static void
11900print_recreate_catch_exception_unhandled (struct breakpoint *b,
11901 struct ui_file *fp)
11902{
761269c8 11903 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
11904}
11905
2060206e 11906static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11907
11908/* Virtual table for "catch assert" breakpoints. */
11909
28010a5d
PA
11910static void
11911dtor_catch_assert (struct breakpoint *b)
11912{
761269c8 11913 dtor_exception (ada_catch_assert, b);
28010a5d
PA
11914}
11915
11916static struct bp_location *
11917allocate_location_catch_assert (struct breakpoint *self)
11918{
761269c8 11919 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
11920}
11921
11922static void
11923re_set_catch_assert (struct breakpoint *b)
11924{
761269c8 11925 re_set_exception (ada_catch_assert, b);
28010a5d
PA
11926}
11927
11928static void
11929check_status_catch_assert (bpstat bs)
11930{
761269c8 11931 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
11932}
11933
f7f9143b 11934static enum print_stop_action
348d480f 11935print_it_catch_assert (bpstat bs)
f7f9143b 11936{
761269c8 11937 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
11938}
11939
11940static void
a6d9a66e 11941print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11942{
761269c8 11943 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
11944}
11945
11946static void
11947print_mention_catch_assert (struct breakpoint *b)
11948{
761269c8 11949 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
11950}
11951
6149aea9
PA
11952static void
11953print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11954{
761269c8 11955 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
11956}
11957
2060206e 11958static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11959
f7f9143b
JB
11960/* Return a newly allocated copy of the first space-separated token
11961 in ARGSP, and then adjust ARGSP to point immediately after that
11962 token.
11963
11964 Return NULL if ARGPS does not contain any more tokens. */
11965
11966static char *
11967ada_get_next_arg (char **argsp)
11968{
11969 char *args = *argsp;
11970 char *end;
11971 char *result;
11972
0fcd72ba 11973 args = skip_spaces (args);
f7f9143b
JB
11974 if (args[0] == '\0')
11975 return NULL; /* No more arguments. */
11976
11977 /* Find the end of the current argument. */
11978
0fcd72ba 11979 end = skip_to_space (args);
f7f9143b
JB
11980
11981 /* Adjust ARGSP to point to the start of the next argument. */
11982
11983 *argsp = end;
11984
11985 /* Make a copy of the current argument and return it. */
11986
11987 result = xmalloc (end - args + 1);
11988 strncpy (result, args, end - args);
11989 result[end - args] = '\0';
11990
11991 return result;
11992}
11993
11994/* Split the arguments specified in a "catch exception" command.
11995 Set EX to the appropriate catchpoint type.
28010a5d 11996 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11997 specified by the user.
11998 If a condition is found at the end of the arguments, the condition
11999 expression is stored in COND_STRING (memory must be deallocated
12000 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12001
12002static void
12003catch_ada_exception_command_split (char *args,
761269c8 12004 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12005 char **excep_string,
12006 char **cond_string)
f7f9143b
JB
12007{
12008 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12009 char *exception_name;
5845583d 12010 char *cond = NULL;
f7f9143b
JB
12011
12012 exception_name = ada_get_next_arg (&args);
5845583d
JB
12013 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12014 {
12015 /* This is not an exception name; this is the start of a condition
12016 expression for a catchpoint on all exceptions. So, "un-get"
12017 this token, and set exception_name to NULL. */
12018 xfree (exception_name);
12019 exception_name = NULL;
12020 args -= 2;
12021 }
f7f9143b
JB
12022 make_cleanup (xfree, exception_name);
12023
5845583d 12024 /* Check to see if we have a condition. */
f7f9143b 12025
0fcd72ba 12026 args = skip_spaces (args);
5845583d
JB
12027 if (strncmp (args, "if", 2) == 0
12028 && (isspace (args[2]) || args[2] == '\0'))
12029 {
12030 args += 2;
12031 args = skip_spaces (args);
12032
12033 if (args[0] == '\0')
12034 error (_("Condition missing after `if' keyword"));
12035 cond = xstrdup (args);
12036 make_cleanup (xfree, cond);
12037
12038 args += strlen (args);
12039 }
12040
12041 /* Check that we do not have any more arguments. Anything else
12042 is unexpected. */
f7f9143b
JB
12043
12044 if (args[0] != '\0')
12045 error (_("Junk at end of expression"));
12046
12047 discard_cleanups (old_chain);
12048
12049 if (exception_name == NULL)
12050 {
12051 /* Catch all exceptions. */
761269c8 12052 *ex = ada_catch_exception;
28010a5d 12053 *excep_string = NULL;
f7f9143b
JB
12054 }
12055 else if (strcmp (exception_name, "unhandled") == 0)
12056 {
12057 /* Catch unhandled exceptions. */
761269c8 12058 *ex = ada_catch_exception_unhandled;
28010a5d 12059 *excep_string = NULL;
f7f9143b
JB
12060 }
12061 else
12062 {
12063 /* Catch a specific exception. */
761269c8 12064 *ex = ada_catch_exception;
28010a5d 12065 *excep_string = exception_name;
f7f9143b 12066 }
5845583d 12067 *cond_string = cond;
f7f9143b
JB
12068}
12069
12070/* Return the name of the symbol on which we should break in order to
12071 implement a catchpoint of the EX kind. */
12072
12073static const char *
761269c8 12074ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12075{
3eecfa55
JB
12076 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12077
12078 gdb_assert (data->exception_info != NULL);
0259addd 12079
f7f9143b
JB
12080 switch (ex)
12081 {
761269c8 12082 case ada_catch_exception:
3eecfa55 12083 return (data->exception_info->catch_exception_sym);
f7f9143b 12084 break;
761269c8 12085 case ada_catch_exception_unhandled:
3eecfa55 12086 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12087 break;
761269c8 12088 case ada_catch_assert:
3eecfa55 12089 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12090 break;
12091 default:
12092 internal_error (__FILE__, __LINE__,
12093 _("unexpected catchpoint kind (%d)"), ex);
12094 }
12095}
12096
12097/* Return the breakpoint ops "virtual table" used for catchpoints
12098 of the EX kind. */
12099
c0a91b2b 12100static const struct breakpoint_ops *
761269c8 12101ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12102{
12103 switch (ex)
12104 {
761269c8 12105 case ada_catch_exception:
f7f9143b
JB
12106 return (&catch_exception_breakpoint_ops);
12107 break;
761269c8 12108 case ada_catch_exception_unhandled:
f7f9143b
JB
12109 return (&catch_exception_unhandled_breakpoint_ops);
12110 break;
761269c8 12111 case ada_catch_assert:
f7f9143b
JB
12112 return (&catch_assert_breakpoint_ops);
12113 break;
12114 default:
12115 internal_error (__FILE__, __LINE__,
12116 _("unexpected catchpoint kind (%d)"), ex);
12117 }
12118}
12119
12120/* Return the condition that will be used to match the current exception
12121 being raised with the exception that the user wants to catch. This
12122 assumes that this condition is used when the inferior just triggered
12123 an exception catchpoint.
12124
12125 The string returned is a newly allocated string that needs to be
12126 deallocated later. */
12127
12128static char *
28010a5d 12129ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12130{
3d0b0fa3
JB
12131 int i;
12132
0963b4bd 12133 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12134 runtime units that have been compiled without debugging info; if
28010a5d 12135 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12136 exception (e.g. "constraint_error") then, during the evaluation
12137 of the condition expression, the symbol lookup on this name would
0963b4bd 12138 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12139 may then be set only on user-defined exceptions which have the
12140 same not-fully-qualified name (e.g. my_package.constraint_error).
12141
12142 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12143 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12144 exception constraint_error" is rewritten into "catch exception
12145 standard.constraint_error".
12146
12147 If an exception named contraint_error is defined in another package of
12148 the inferior program, then the only way to specify this exception as a
12149 breakpoint condition is to use its fully-qualified named:
12150 e.g. my_package.constraint_error. */
12151
12152 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12153 {
28010a5d 12154 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12155 {
12156 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12157 excep_string);
3d0b0fa3
JB
12158 }
12159 }
28010a5d 12160 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12161}
12162
12163/* Return the symtab_and_line that should be used to insert an exception
12164 catchpoint of the TYPE kind.
12165
28010a5d
PA
12166 EXCEP_STRING should contain the name of a specific exception that
12167 the catchpoint should catch, or NULL otherwise.
f7f9143b 12168
28010a5d
PA
12169 ADDR_STRING returns the name of the function where the real
12170 breakpoint that implements the catchpoints is set, depending on the
12171 type of catchpoint we need to create. */
f7f9143b
JB
12172
12173static struct symtab_and_line
761269c8 12174ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12175 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12176{
12177 const char *sym_name;
12178 struct symbol *sym;
f7f9143b 12179
0259addd
JB
12180 /* First, find out which exception support info to use. */
12181 ada_exception_support_info_sniffer ();
12182
12183 /* Then lookup the function on which we will break in order to catch
f7f9143b 12184 the Ada exceptions requested by the user. */
f7f9143b
JB
12185 sym_name = ada_exception_sym_name (ex);
12186 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12187
f17011e0
JB
12188 /* We can assume that SYM is not NULL at this stage. If the symbol
12189 did not exist, ada_exception_support_info_sniffer would have
12190 raised an exception.
f7f9143b 12191
f17011e0
JB
12192 Also, ada_exception_support_info_sniffer should have already
12193 verified that SYM is a function symbol. */
12194 gdb_assert (sym != NULL);
12195 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12196
12197 /* Set ADDR_STRING. */
f7f9143b
JB
12198 *addr_string = xstrdup (sym_name);
12199
f7f9143b 12200 /* Set OPS. */
4b9eee8c 12201 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12202
f17011e0 12203 return find_function_start_sal (sym, 1);
f7f9143b
JB
12204}
12205
b4a5b78b 12206/* Create an Ada exception catchpoint.
f7f9143b 12207
b4a5b78b 12208 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12209
2df4d1d5
JB
12210 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12211 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12212 of the exception to which this catchpoint applies. When not NULL,
12213 the string must be allocated on the heap, and its deallocation
12214 is no longer the responsibility of the caller.
12215
12216 COND_STRING, if not NULL, is the catchpoint condition. This string
12217 must be allocated on the heap, and its deallocation is no longer
12218 the responsibility of the caller.
f7f9143b 12219
b4a5b78b
JB
12220 TEMPFLAG, if nonzero, means that the underlying breakpoint
12221 should be temporary.
28010a5d 12222
b4a5b78b 12223 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12224
349774ef 12225void
28010a5d 12226create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12227 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12228 char *excep_string,
5845583d 12229 char *cond_string,
28010a5d 12230 int tempflag,
349774ef 12231 int disabled,
28010a5d
PA
12232 int from_tty)
12233{
12234 struct ada_catchpoint *c;
b4a5b78b
JB
12235 char *addr_string = NULL;
12236 const struct breakpoint_ops *ops = NULL;
12237 struct symtab_and_line sal
12238 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12239
12240 c = XNEW (struct ada_catchpoint);
12241 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12242 ops, tempflag, disabled, from_tty);
28010a5d
PA
12243 c->excep_string = excep_string;
12244 create_excep_cond_exprs (c);
5845583d
JB
12245 if (cond_string != NULL)
12246 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12247 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12248}
12249
9ac4176b
PA
12250/* Implement the "catch exception" command. */
12251
12252static void
12253catch_ada_exception_command (char *arg, int from_tty,
12254 struct cmd_list_element *command)
12255{
12256 struct gdbarch *gdbarch = get_current_arch ();
12257 int tempflag;
761269c8 12258 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12259 char *excep_string = NULL;
5845583d 12260 char *cond_string = NULL;
9ac4176b
PA
12261
12262 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12263
12264 if (!arg)
12265 arg = "";
b4a5b78b
JB
12266 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12267 &cond_string);
12268 create_ada_exception_catchpoint (gdbarch, ex_kind,
12269 excep_string, cond_string,
349774ef
JB
12270 tempflag, 1 /* enabled */,
12271 from_tty);
9ac4176b
PA
12272}
12273
b4a5b78b 12274/* Split the arguments specified in a "catch assert" command.
5845583d 12275
b4a5b78b
JB
12276 ARGS contains the command's arguments (or the empty string if
12277 no arguments were passed).
5845583d
JB
12278
12279 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12280 (the memory needs to be deallocated after use). */
5845583d 12281
b4a5b78b
JB
12282static void
12283catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12284{
5845583d 12285 args = skip_spaces (args);
f7f9143b 12286
5845583d
JB
12287 /* Check whether a condition was provided. */
12288 if (strncmp (args, "if", 2) == 0
12289 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12290 {
5845583d 12291 args += 2;
0fcd72ba 12292 args = skip_spaces (args);
5845583d
JB
12293 if (args[0] == '\0')
12294 error (_("condition missing after `if' keyword"));
12295 *cond_string = xstrdup (args);
f7f9143b
JB
12296 }
12297
5845583d
JB
12298 /* Otherwise, there should be no other argument at the end of
12299 the command. */
12300 else if (args[0] != '\0')
12301 error (_("Junk at end of arguments."));
f7f9143b
JB
12302}
12303
9ac4176b
PA
12304/* Implement the "catch assert" command. */
12305
12306static void
12307catch_assert_command (char *arg, int from_tty,
12308 struct cmd_list_element *command)
12309{
12310 struct gdbarch *gdbarch = get_current_arch ();
12311 int tempflag;
5845583d 12312 char *cond_string = NULL;
9ac4176b
PA
12313
12314 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12315
12316 if (!arg)
12317 arg = "";
b4a5b78b 12318 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12319 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12320 NULL, cond_string,
349774ef
JB
12321 tempflag, 1 /* enabled */,
12322 from_tty);
9ac4176b 12323}
778865d3
JB
12324
12325/* Return non-zero if the symbol SYM is an Ada exception object. */
12326
12327static int
12328ada_is_exception_sym (struct symbol *sym)
12329{
12330 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12331
12332 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12333 && SYMBOL_CLASS (sym) != LOC_BLOCK
12334 && SYMBOL_CLASS (sym) != LOC_CONST
12335 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12336 && type_name != NULL && strcmp (type_name, "exception") == 0);
12337}
12338
12339/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12340 Ada exception object. This matches all exceptions except the ones
12341 defined by the Ada language. */
12342
12343static int
12344ada_is_non_standard_exception_sym (struct symbol *sym)
12345{
12346 int i;
12347
12348 if (!ada_is_exception_sym (sym))
12349 return 0;
12350
12351 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12352 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12353 return 0; /* A standard exception. */
12354
12355 /* Numeric_Error is also a standard exception, so exclude it.
12356 See the STANDARD_EXC description for more details as to why
12357 this exception is not listed in that array. */
12358 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12359 return 0;
12360
12361 return 1;
12362}
12363
12364/* A helper function for qsort, comparing two struct ada_exc_info
12365 objects.
12366
12367 The comparison is determined first by exception name, and then
12368 by exception address. */
12369
12370static int
12371compare_ada_exception_info (const void *a, const void *b)
12372{
12373 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12374 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12375 int result;
12376
12377 result = strcmp (exc_a->name, exc_b->name);
12378 if (result != 0)
12379 return result;
12380
12381 if (exc_a->addr < exc_b->addr)
12382 return -1;
12383 if (exc_a->addr > exc_b->addr)
12384 return 1;
12385
12386 return 0;
12387}
12388
12389/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12390 routine, but keeping the first SKIP elements untouched.
12391
12392 All duplicates are also removed. */
12393
12394static void
12395sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12396 int skip)
12397{
12398 struct ada_exc_info *to_sort
12399 = VEC_address (ada_exc_info, *exceptions) + skip;
12400 int to_sort_len
12401 = VEC_length (ada_exc_info, *exceptions) - skip;
12402 int i, j;
12403
12404 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12405 compare_ada_exception_info);
12406
12407 for (i = 1, j = 1; i < to_sort_len; i++)
12408 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12409 to_sort[j++] = to_sort[i];
12410 to_sort_len = j;
12411 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12412}
12413
12414/* A function intended as the "name_matcher" callback in the struct
12415 quick_symbol_functions' expand_symtabs_matching method.
12416
12417 SEARCH_NAME is the symbol's search name.
12418
12419 If USER_DATA is not NULL, it is a pointer to a regext_t object
12420 used to match the symbol (by natural name). Otherwise, when USER_DATA
12421 is null, no filtering is performed, and all symbols are a positive
12422 match. */
12423
12424static int
12425ada_exc_search_name_matches (const char *search_name, void *user_data)
12426{
12427 regex_t *preg = user_data;
12428
12429 if (preg == NULL)
12430 return 1;
12431
12432 /* In Ada, the symbol "search name" is a linkage name, whereas
12433 the regular expression used to do the matching refers to
12434 the natural name. So match against the decoded name. */
12435 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12436}
12437
12438/* Add all exceptions defined by the Ada standard whose name match
12439 a regular expression.
12440
12441 If PREG is not NULL, then this regexp_t object is used to
12442 perform the symbol name matching. Otherwise, no name-based
12443 filtering is performed.
12444
12445 EXCEPTIONS is a vector of exceptions to which matching exceptions
12446 gets pushed. */
12447
12448static void
12449ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12450{
12451 int i;
12452
12453 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12454 {
12455 if (preg == NULL
12456 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12457 {
12458 struct bound_minimal_symbol msymbol
12459 = ada_lookup_simple_minsym (standard_exc[i]);
12460
12461 if (msymbol.minsym != NULL)
12462 {
12463 struct ada_exc_info info
12464 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12465
12466 VEC_safe_push (ada_exc_info, *exceptions, &info);
12467 }
12468 }
12469 }
12470}
12471
12472/* Add all Ada exceptions defined locally and accessible from the given
12473 FRAME.
12474
12475 If PREG is not NULL, then this regexp_t object is used to
12476 perform the symbol name matching. Otherwise, no name-based
12477 filtering is performed.
12478
12479 EXCEPTIONS is a vector of exceptions to which matching exceptions
12480 gets pushed. */
12481
12482static void
12483ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12484 VEC(ada_exc_info) **exceptions)
12485{
12486 struct block *block = get_frame_block (frame, 0);
12487
12488 while (block != 0)
12489 {
12490 struct block_iterator iter;
12491 struct symbol *sym;
12492
12493 ALL_BLOCK_SYMBOLS (block, iter, sym)
12494 {
12495 switch (SYMBOL_CLASS (sym))
12496 {
12497 case LOC_TYPEDEF:
12498 case LOC_BLOCK:
12499 case LOC_CONST:
12500 break;
12501 default:
12502 if (ada_is_exception_sym (sym))
12503 {
12504 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12505 SYMBOL_VALUE_ADDRESS (sym)};
12506
12507 VEC_safe_push (ada_exc_info, *exceptions, &info);
12508 }
12509 }
12510 }
12511 if (BLOCK_FUNCTION (block) != NULL)
12512 break;
12513 block = BLOCK_SUPERBLOCK (block);
12514 }
12515}
12516
12517/* Add all exceptions defined globally whose name name match
12518 a regular expression, excluding standard exceptions.
12519
12520 The reason we exclude standard exceptions is that they need
12521 to be handled separately: Standard exceptions are defined inside
12522 a runtime unit which is normally not compiled with debugging info,
12523 and thus usually do not show up in our symbol search. However,
12524 if the unit was in fact built with debugging info, we need to
12525 exclude them because they would duplicate the entry we found
12526 during the special loop that specifically searches for those
12527 standard exceptions.
12528
12529 If PREG is not NULL, then this regexp_t object is used to
12530 perform the symbol name matching. Otherwise, no name-based
12531 filtering is performed.
12532
12533 EXCEPTIONS is a vector of exceptions to which matching exceptions
12534 gets pushed. */
12535
12536static void
12537ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12538{
12539 struct objfile *objfile;
12540 struct symtab *s;
12541
bb4142cf
DE
12542 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12543 VARIABLES_DOMAIN, preg);
778865d3
JB
12544
12545 ALL_PRIMARY_SYMTABS (objfile, s)
12546 {
12547 struct blockvector *bv = BLOCKVECTOR (s);
12548 int i;
12549
12550 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12551 {
12552 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12553 struct block_iterator iter;
12554 struct symbol *sym;
12555
12556 ALL_BLOCK_SYMBOLS (b, iter, sym)
12557 if (ada_is_non_standard_exception_sym (sym)
12558 && (preg == NULL
12559 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12560 0, NULL, 0) == 0))
12561 {
12562 struct ada_exc_info info
12563 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12564
12565 VEC_safe_push (ada_exc_info, *exceptions, &info);
12566 }
12567 }
12568 }
12569}
12570
12571/* Implements ada_exceptions_list with the regular expression passed
12572 as a regex_t, rather than a string.
12573
12574 If not NULL, PREG is used to filter out exceptions whose names
12575 do not match. Otherwise, all exceptions are listed. */
12576
12577static VEC(ada_exc_info) *
12578ada_exceptions_list_1 (regex_t *preg)
12579{
12580 VEC(ada_exc_info) *result = NULL;
12581 struct cleanup *old_chain
12582 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12583 int prev_len;
12584
12585 /* First, list the known standard exceptions. These exceptions
12586 need to be handled separately, as they are usually defined in
12587 runtime units that have been compiled without debugging info. */
12588
12589 ada_add_standard_exceptions (preg, &result);
12590
12591 /* Next, find all exceptions whose scope is local and accessible
12592 from the currently selected frame. */
12593
12594 if (has_stack_frames ())
12595 {
12596 prev_len = VEC_length (ada_exc_info, result);
12597 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12598 &result);
12599 if (VEC_length (ada_exc_info, result) > prev_len)
12600 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12601 }
12602
12603 /* Add all exceptions whose scope is global. */
12604
12605 prev_len = VEC_length (ada_exc_info, result);
12606 ada_add_global_exceptions (preg, &result);
12607 if (VEC_length (ada_exc_info, result) > prev_len)
12608 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12609
12610 discard_cleanups (old_chain);
12611 return result;
12612}
12613
12614/* Return a vector of ada_exc_info.
12615
12616 If REGEXP is NULL, all exceptions are included in the result.
12617 Otherwise, it should contain a valid regular expression,
12618 and only the exceptions whose names match that regular expression
12619 are included in the result.
12620
12621 The exceptions are sorted in the following order:
12622 - Standard exceptions (defined by the Ada language), in
12623 alphabetical order;
12624 - Exceptions only visible from the current frame, in
12625 alphabetical order;
12626 - Exceptions whose scope is global, in alphabetical order. */
12627
12628VEC(ada_exc_info) *
12629ada_exceptions_list (const char *regexp)
12630{
12631 VEC(ada_exc_info) *result = NULL;
12632 struct cleanup *old_chain = NULL;
12633 regex_t reg;
12634
12635 if (regexp != NULL)
12636 old_chain = compile_rx_or_error (&reg, regexp,
12637 _("invalid regular expression"));
12638
12639 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12640
12641 if (old_chain != NULL)
12642 do_cleanups (old_chain);
12643 return result;
12644}
12645
12646/* Implement the "info exceptions" command. */
12647
12648static void
12649info_exceptions_command (char *regexp, int from_tty)
12650{
12651 VEC(ada_exc_info) *exceptions;
12652 struct cleanup *cleanup;
12653 struct gdbarch *gdbarch = get_current_arch ();
12654 int ix;
12655 struct ada_exc_info *info;
12656
12657 exceptions = ada_exceptions_list (regexp);
12658 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12659
12660 if (regexp != NULL)
12661 printf_filtered
12662 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12663 else
12664 printf_filtered (_("All defined Ada exceptions:\n"));
12665
12666 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12667 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12668
12669 do_cleanups (cleanup);
12670}
12671
4c4b4cd2
PH
12672 /* Operators */
12673/* Information about operators given special treatment in functions
12674 below. */
12675/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12676
12677#define ADA_OPERATORS \
12678 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12679 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12680 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12681 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12682 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12683 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12684 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12685 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12686 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12687 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12688 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12689 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12690 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12691 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12692 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12693 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12694 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12695 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12696 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12697
12698static void
554794dc
SDJ
12699ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12700 int *argsp)
4c4b4cd2
PH
12701{
12702 switch (exp->elts[pc - 1].opcode)
12703 {
76a01679 12704 default:
4c4b4cd2
PH
12705 operator_length_standard (exp, pc, oplenp, argsp);
12706 break;
12707
12708#define OP_DEFN(op, len, args, binop) \
12709 case op: *oplenp = len; *argsp = args; break;
12710 ADA_OPERATORS;
12711#undef OP_DEFN
52ce6436
PH
12712
12713 case OP_AGGREGATE:
12714 *oplenp = 3;
12715 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12716 break;
12717
12718 case OP_CHOICES:
12719 *oplenp = 3;
12720 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12721 break;
4c4b4cd2
PH
12722 }
12723}
12724
c0201579
JK
12725/* Implementation of the exp_descriptor method operator_check. */
12726
12727static int
12728ada_operator_check (struct expression *exp, int pos,
12729 int (*objfile_func) (struct objfile *objfile, void *data),
12730 void *data)
12731{
12732 const union exp_element *const elts = exp->elts;
12733 struct type *type = NULL;
12734
12735 switch (elts[pos].opcode)
12736 {
12737 case UNOP_IN_RANGE:
12738 case UNOP_QUAL:
12739 type = elts[pos + 1].type;
12740 break;
12741
12742 default:
12743 return operator_check_standard (exp, pos, objfile_func, data);
12744 }
12745
12746 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12747
12748 if (type && TYPE_OBJFILE (type)
12749 && (*objfile_func) (TYPE_OBJFILE (type), data))
12750 return 1;
12751
12752 return 0;
12753}
12754
4c4b4cd2
PH
12755static char *
12756ada_op_name (enum exp_opcode opcode)
12757{
12758 switch (opcode)
12759 {
76a01679 12760 default:
4c4b4cd2 12761 return op_name_standard (opcode);
52ce6436 12762
4c4b4cd2
PH
12763#define OP_DEFN(op, len, args, binop) case op: return #op;
12764 ADA_OPERATORS;
12765#undef OP_DEFN
52ce6436
PH
12766
12767 case OP_AGGREGATE:
12768 return "OP_AGGREGATE";
12769 case OP_CHOICES:
12770 return "OP_CHOICES";
12771 case OP_NAME:
12772 return "OP_NAME";
4c4b4cd2
PH
12773 }
12774}
12775
12776/* As for operator_length, but assumes PC is pointing at the first
12777 element of the operator, and gives meaningful results only for the
52ce6436 12778 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12779
12780static void
76a01679
JB
12781ada_forward_operator_length (struct expression *exp, int pc,
12782 int *oplenp, int *argsp)
4c4b4cd2 12783{
76a01679 12784 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12785 {
12786 default:
12787 *oplenp = *argsp = 0;
12788 break;
52ce6436 12789
4c4b4cd2
PH
12790#define OP_DEFN(op, len, args, binop) \
12791 case op: *oplenp = len; *argsp = args; break;
12792 ADA_OPERATORS;
12793#undef OP_DEFN
52ce6436
PH
12794
12795 case OP_AGGREGATE:
12796 *oplenp = 3;
12797 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12798 break;
12799
12800 case OP_CHOICES:
12801 *oplenp = 3;
12802 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12803 break;
12804
12805 case OP_STRING:
12806 case OP_NAME:
12807 {
12808 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12809
52ce6436
PH
12810 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12811 *argsp = 0;
12812 break;
12813 }
4c4b4cd2
PH
12814 }
12815}
12816
12817static int
12818ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12819{
12820 enum exp_opcode op = exp->elts[elt].opcode;
12821 int oplen, nargs;
12822 int pc = elt;
12823 int i;
76a01679 12824
4c4b4cd2
PH
12825 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12826
76a01679 12827 switch (op)
4c4b4cd2 12828 {
76a01679 12829 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12830 case OP_ATR_FIRST:
12831 case OP_ATR_LAST:
12832 case OP_ATR_LENGTH:
12833 case OP_ATR_IMAGE:
12834 case OP_ATR_MAX:
12835 case OP_ATR_MIN:
12836 case OP_ATR_MODULUS:
12837 case OP_ATR_POS:
12838 case OP_ATR_SIZE:
12839 case OP_ATR_TAG:
12840 case OP_ATR_VAL:
12841 break;
12842
12843 case UNOP_IN_RANGE:
12844 case UNOP_QUAL:
323e0a4a
AC
12845 /* XXX: gdb_sprint_host_address, type_sprint */
12846 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12847 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12848 fprintf_filtered (stream, " (");
12849 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12850 fprintf_filtered (stream, ")");
12851 break;
12852 case BINOP_IN_BOUNDS:
52ce6436
PH
12853 fprintf_filtered (stream, " (%d)",
12854 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12855 break;
12856 case TERNOP_IN_RANGE:
12857 break;
12858
52ce6436
PH
12859 case OP_AGGREGATE:
12860 case OP_OTHERS:
12861 case OP_DISCRETE_RANGE:
12862 case OP_POSITIONAL:
12863 case OP_CHOICES:
12864 break;
12865
12866 case OP_NAME:
12867 case OP_STRING:
12868 {
12869 char *name = &exp->elts[elt + 2].string;
12870 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12871
52ce6436
PH
12872 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12873 break;
12874 }
12875
4c4b4cd2
PH
12876 default:
12877 return dump_subexp_body_standard (exp, stream, elt);
12878 }
12879
12880 elt += oplen;
12881 for (i = 0; i < nargs; i += 1)
12882 elt = dump_subexp (exp, stream, elt);
12883
12884 return elt;
12885}
12886
12887/* The Ada extension of print_subexp (q.v.). */
12888
76a01679
JB
12889static void
12890ada_print_subexp (struct expression *exp, int *pos,
12891 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12892{
52ce6436 12893 int oplen, nargs, i;
4c4b4cd2
PH
12894 int pc = *pos;
12895 enum exp_opcode op = exp->elts[pc].opcode;
12896
12897 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12898
52ce6436 12899 *pos += oplen;
4c4b4cd2
PH
12900 switch (op)
12901 {
12902 default:
52ce6436 12903 *pos -= oplen;
4c4b4cd2
PH
12904 print_subexp_standard (exp, pos, stream, prec);
12905 return;
12906
12907 case OP_VAR_VALUE:
4c4b4cd2
PH
12908 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12909 return;
12910
12911 case BINOP_IN_BOUNDS:
323e0a4a 12912 /* XXX: sprint_subexp */
4c4b4cd2 12913 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12914 fputs_filtered (" in ", stream);
4c4b4cd2 12915 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12916 fputs_filtered ("'range", stream);
4c4b4cd2 12917 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12918 fprintf_filtered (stream, "(%ld)",
12919 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12920 return;
12921
12922 case TERNOP_IN_RANGE:
4c4b4cd2 12923 if (prec >= PREC_EQUAL)
76a01679 12924 fputs_filtered ("(", stream);
323e0a4a 12925 /* XXX: sprint_subexp */
4c4b4cd2 12926 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12927 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12928 print_subexp (exp, pos, stream, PREC_EQUAL);
12929 fputs_filtered (" .. ", stream);
12930 print_subexp (exp, pos, stream, PREC_EQUAL);
12931 if (prec >= PREC_EQUAL)
76a01679
JB
12932 fputs_filtered (")", stream);
12933 return;
4c4b4cd2
PH
12934
12935 case OP_ATR_FIRST:
12936 case OP_ATR_LAST:
12937 case OP_ATR_LENGTH:
12938 case OP_ATR_IMAGE:
12939 case OP_ATR_MAX:
12940 case OP_ATR_MIN:
12941 case OP_ATR_MODULUS:
12942 case OP_ATR_POS:
12943 case OP_ATR_SIZE:
12944 case OP_ATR_TAG:
12945 case OP_ATR_VAL:
4c4b4cd2 12946 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12947 {
12948 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12949 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12950 &type_print_raw_options);
76a01679
JB
12951 *pos += 3;
12952 }
4c4b4cd2 12953 else
76a01679 12954 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12955 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12956 if (nargs > 1)
76a01679
JB
12957 {
12958 int tem;
5b4ee69b 12959
76a01679
JB
12960 for (tem = 1; tem < nargs; tem += 1)
12961 {
12962 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12963 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12964 }
12965 fputs_filtered (")", stream);
12966 }
4c4b4cd2 12967 return;
14f9c5c9 12968
4c4b4cd2 12969 case UNOP_QUAL:
4c4b4cd2
PH
12970 type_print (exp->elts[pc + 1].type, "", stream, 0);
12971 fputs_filtered ("'(", stream);
12972 print_subexp (exp, pos, stream, PREC_PREFIX);
12973 fputs_filtered (")", stream);
12974 return;
14f9c5c9 12975
4c4b4cd2 12976 case UNOP_IN_RANGE:
323e0a4a 12977 /* XXX: sprint_subexp */
4c4b4cd2 12978 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12979 fputs_filtered (" in ", stream);
79d43c61
TT
12980 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12981 &type_print_raw_options);
4c4b4cd2 12982 return;
52ce6436
PH
12983
12984 case OP_DISCRETE_RANGE:
12985 print_subexp (exp, pos, stream, PREC_SUFFIX);
12986 fputs_filtered ("..", stream);
12987 print_subexp (exp, pos, stream, PREC_SUFFIX);
12988 return;
12989
12990 case OP_OTHERS:
12991 fputs_filtered ("others => ", stream);
12992 print_subexp (exp, pos, stream, PREC_SUFFIX);
12993 return;
12994
12995 case OP_CHOICES:
12996 for (i = 0; i < nargs-1; i += 1)
12997 {
12998 if (i > 0)
12999 fputs_filtered ("|", stream);
13000 print_subexp (exp, pos, stream, PREC_SUFFIX);
13001 }
13002 fputs_filtered (" => ", stream);
13003 print_subexp (exp, pos, stream, PREC_SUFFIX);
13004 return;
13005
13006 case OP_POSITIONAL:
13007 print_subexp (exp, pos, stream, PREC_SUFFIX);
13008 return;
13009
13010 case OP_AGGREGATE:
13011 fputs_filtered ("(", stream);
13012 for (i = 0; i < nargs; i += 1)
13013 {
13014 if (i > 0)
13015 fputs_filtered (", ", stream);
13016 print_subexp (exp, pos, stream, PREC_SUFFIX);
13017 }
13018 fputs_filtered (")", stream);
13019 return;
4c4b4cd2
PH
13020 }
13021}
14f9c5c9
AS
13022
13023/* Table mapping opcodes into strings for printing operators
13024 and precedences of the operators. */
13025
d2e4a39e
AS
13026static const struct op_print ada_op_print_tab[] = {
13027 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13028 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13029 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13030 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13031 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13032 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13033 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13034 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13035 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13036 {">=", BINOP_GEQ, PREC_ORDER, 0},
13037 {">", BINOP_GTR, PREC_ORDER, 0},
13038 {"<", BINOP_LESS, PREC_ORDER, 0},
13039 {">>", BINOP_RSH, PREC_SHIFT, 0},
13040 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13041 {"+", BINOP_ADD, PREC_ADD, 0},
13042 {"-", BINOP_SUB, PREC_ADD, 0},
13043 {"&", BINOP_CONCAT, PREC_ADD, 0},
13044 {"*", BINOP_MUL, PREC_MUL, 0},
13045 {"/", BINOP_DIV, PREC_MUL, 0},
13046 {"rem", BINOP_REM, PREC_MUL, 0},
13047 {"mod", BINOP_MOD, PREC_MUL, 0},
13048 {"**", BINOP_EXP, PREC_REPEAT, 0},
13049 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13050 {"-", UNOP_NEG, PREC_PREFIX, 0},
13051 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13052 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13053 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13054 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13055 {".all", UNOP_IND, PREC_SUFFIX, 1},
13056 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13057 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13058 {NULL, 0, 0, 0}
14f9c5c9
AS
13059};
13060\f
72d5681a
PH
13061enum ada_primitive_types {
13062 ada_primitive_type_int,
13063 ada_primitive_type_long,
13064 ada_primitive_type_short,
13065 ada_primitive_type_char,
13066 ada_primitive_type_float,
13067 ada_primitive_type_double,
13068 ada_primitive_type_void,
13069 ada_primitive_type_long_long,
13070 ada_primitive_type_long_double,
13071 ada_primitive_type_natural,
13072 ada_primitive_type_positive,
13073 ada_primitive_type_system_address,
13074 nr_ada_primitive_types
13075};
6c038f32
PH
13076
13077static void
d4a9a881 13078ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13079 struct language_arch_info *lai)
13080{
d4a9a881 13081 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13082
72d5681a 13083 lai->primitive_type_vector
d4a9a881 13084 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13085 struct type *);
e9bb382b
UW
13086
13087 lai->primitive_type_vector [ada_primitive_type_int]
13088 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13089 0, "integer");
13090 lai->primitive_type_vector [ada_primitive_type_long]
13091 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13092 0, "long_integer");
13093 lai->primitive_type_vector [ada_primitive_type_short]
13094 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13095 0, "short_integer");
13096 lai->string_char_type
13097 = lai->primitive_type_vector [ada_primitive_type_char]
13098 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13099 lai->primitive_type_vector [ada_primitive_type_float]
13100 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13101 "float", NULL);
13102 lai->primitive_type_vector [ada_primitive_type_double]
13103 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13104 "long_float", NULL);
13105 lai->primitive_type_vector [ada_primitive_type_long_long]
13106 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13107 0, "long_long_integer");
13108 lai->primitive_type_vector [ada_primitive_type_long_double]
13109 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13110 "long_long_float", NULL);
13111 lai->primitive_type_vector [ada_primitive_type_natural]
13112 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13113 0, "natural");
13114 lai->primitive_type_vector [ada_primitive_type_positive]
13115 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13116 0, "positive");
13117 lai->primitive_type_vector [ada_primitive_type_void]
13118 = builtin->builtin_void;
13119
13120 lai->primitive_type_vector [ada_primitive_type_system_address]
13121 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13122 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13123 = "system__address";
fbb06eb1 13124
47e729a8 13125 lai->bool_type_symbol = NULL;
fbb06eb1 13126 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13127}
6c038f32
PH
13128\f
13129 /* Language vector */
13130
13131/* Not really used, but needed in the ada_language_defn. */
13132
13133static void
6c7a06a3 13134emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13135{
6c7a06a3 13136 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13137}
13138
13139static int
13140parse (void)
13141{
13142 warnings_issued = 0;
13143 return ada_parse ();
13144}
13145
13146static const struct exp_descriptor ada_exp_descriptor = {
13147 ada_print_subexp,
13148 ada_operator_length,
c0201579 13149 ada_operator_check,
6c038f32
PH
13150 ada_op_name,
13151 ada_dump_subexp_body,
13152 ada_evaluate_subexp
13153};
13154
1a119f36 13155/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13156 for Ada. */
13157
1a119f36
JB
13158static symbol_name_cmp_ftype
13159ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13160{
13161 if (should_use_wild_match (lookup_name))
13162 return wild_match;
13163 else
13164 return compare_names;
13165}
13166
a5ee536b
JB
13167/* Implement the "la_read_var_value" language_defn method for Ada. */
13168
13169static struct value *
13170ada_read_var_value (struct symbol *var, struct frame_info *frame)
13171{
13172 struct block *frame_block = NULL;
13173 struct symbol *renaming_sym = NULL;
13174
13175 /* The only case where default_read_var_value is not sufficient
13176 is when VAR is a renaming... */
13177 if (frame)
13178 frame_block = get_frame_block (frame, NULL);
13179 if (frame_block)
13180 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13181 if (renaming_sym != NULL)
13182 return ada_read_renaming_var_value (renaming_sym, frame_block);
13183
13184 /* This is a typical case where we expect the default_read_var_value
13185 function to work. */
13186 return default_read_var_value (var, frame);
13187}
13188
6c038f32
PH
13189const struct language_defn ada_language_defn = {
13190 "ada", /* Language name */
6abde28f 13191 "Ada",
6c038f32 13192 language_ada,
6c038f32 13193 range_check_off,
6c038f32
PH
13194 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13195 that's not quite what this means. */
6c038f32 13196 array_row_major,
9a044a89 13197 macro_expansion_no,
6c038f32
PH
13198 &ada_exp_descriptor,
13199 parse,
13200 ada_error,
13201 resolve,
13202 ada_printchar, /* Print a character constant */
13203 ada_printstr, /* Function to print string constant */
13204 emit_char, /* Function to print single char (not used) */
6c038f32 13205 ada_print_type, /* Print a type using appropriate syntax */
be942545 13206 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13207 ada_val_print, /* Print a value using appropriate syntax */
13208 ada_value_print, /* Print a top-level value */
a5ee536b 13209 ada_read_var_value, /* la_read_var_value */
6c038f32 13210 NULL, /* Language specific skip_trampoline */
2b2d9e11 13211 NULL, /* name_of_this */
6c038f32
PH
13212 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13213 basic_lookup_transparent_type, /* lookup_transparent_type */
13214 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13215 NULL, /* Language specific
13216 class_name_from_physname */
6c038f32
PH
13217 ada_op_print_tab, /* expression operators for printing */
13218 0, /* c-style arrays */
13219 1, /* String lower bound */
6c038f32 13220 ada_get_gdb_completer_word_break_characters,
41d27058 13221 ada_make_symbol_completion_list,
72d5681a 13222 ada_language_arch_info,
e79af960 13223 ada_print_array_index,
41f1b697 13224 default_pass_by_reference,
ae6a3a4c 13225 c_get_string,
1a119f36 13226 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13227 ada_iterate_over_symbols,
a53b64ea 13228 &ada_varobj_ops,
6c038f32
PH
13229 LANG_MAGIC
13230};
13231
2c0b251b
PA
13232/* Provide a prototype to silence -Wmissing-prototypes. */
13233extern initialize_file_ftype _initialize_ada_language;
13234
5bf03f13
JB
13235/* Command-list for the "set/show ada" prefix command. */
13236static struct cmd_list_element *set_ada_list;
13237static struct cmd_list_element *show_ada_list;
13238
13239/* Implement the "set ada" prefix command. */
13240
13241static void
13242set_ada_command (char *arg, int from_tty)
13243{
13244 printf_unfiltered (_(\
13245"\"set ada\" must be followed by the name of a setting.\n"));
13246 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13247}
13248
13249/* Implement the "show ada" prefix command. */
13250
13251static void
13252show_ada_command (char *args, int from_tty)
13253{
13254 cmd_show_list (show_ada_list, from_tty, "");
13255}
13256
2060206e
PA
13257static void
13258initialize_ada_catchpoint_ops (void)
13259{
13260 struct breakpoint_ops *ops;
13261
13262 initialize_breakpoint_ops ();
13263
13264 ops = &catch_exception_breakpoint_ops;
13265 *ops = bkpt_breakpoint_ops;
13266 ops->dtor = dtor_catch_exception;
13267 ops->allocate_location = allocate_location_catch_exception;
13268 ops->re_set = re_set_catch_exception;
13269 ops->check_status = check_status_catch_exception;
13270 ops->print_it = print_it_catch_exception;
13271 ops->print_one = print_one_catch_exception;
13272 ops->print_mention = print_mention_catch_exception;
13273 ops->print_recreate = print_recreate_catch_exception;
13274
13275 ops = &catch_exception_unhandled_breakpoint_ops;
13276 *ops = bkpt_breakpoint_ops;
13277 ops->dtor = dtor_catch_exception_unhandled;
13278 ops->allocate_location = allocate_location_catch_exception_unhandled;
13279 ops->re_set = re_set_catch_exception_unhandled;
13280 ops->check_status = check_status_catch_exception_unhandled;
13281 ops->print_it = print_it_catch_exception_unhandled;
13282 ops->print_one = print_one_catch_exception_unhandled;
13283 ops->print_mention = print_mention_catch_exception_unhandled;
13284 ops->print_recreate = print_recreate_catch_exception_unhandled;
13285
13286 ops = &catch_assert_breakpoint_ops;
13287 *ops = bkpt_breakpoint_ops;
13288 ops->dtor = dtor_catch_assert;
13289 ops->allocate_location = allocate_location_catch_assert;
13290 ops->re_set = re_set_catch_assert;
13291 ops->check_status = check_status_catch_assert;
13292 ops->print_it = print_it_catch_assert;
13293 ops->print_one = print_one_catch_assert;
13294 ops->print_mention = print_mention_catch_assert;
13295 ops->print_recreate = print_recreate_catch_assert;
13296}
13297
d2e4a39e 13298void
6c038f32 13299_initialize_ada_language (void)
14f9c5c9 13300{
6c038f32
PH
13301 add_language (&ada_language_defn);
13302
2060206e
PA
13303 initialize_ada_catchpoint_ops ();
13304
5bf03f13
JB
13305 add_prefix_cmd ("ada", no_class, set_ada_command,
13306 _("Prefix command for changing Ada-specfic settings"),
13307 &set_ada_list, "set ada ", 0, &setlist);
13308
13309 add_prefix_cmd ("ada", no_class, show_ada_command,
13310 _("Generic command for showing Ada-specific settings."),
13311 &show_ada_list, "show ada ", 0, &showlist);
13312
13313 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13314 &trust_pad_over_xvs, _("\
13315Enable or disable an optimization trusting PAD types over XVS types"), _("\
13316Show whether an optimization trusting PAD types over XVS types is activated"),
13317 _("\
13318This is related to the encoding used by the GNAT compiler. The debugger\n\
13319should normally trust the contents of PAD types, but certain older versions\n\
13320of GNAT have a bug that sometimes causes the information in the PAD type\n\
13321to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13322work around this bug. It is always safe to turn this option \"off\", but\n\
13323this incurs a slight performance penalty, so it is recommended to NOT change\n\
13324this option to \"off\" unless necessary."),
13325 NULL, NULL, &set_ada_list, &show_ada_list);
13326
9ac4176b
PA
13327 add_catch_command ("exception", _("\
13328Catch Ada exceptions, when raised.\n\
13329With an argument, catch only exceptions with the given name."),
13330 catch_ada_exception_command,
13331 NULL,
13332 CATCH_PERMANENT,
13333 CATCH_TEMPORARY);
13334 add_catch_command ("assert", _("\
13335Catch failed Ada assertions, when raised.\n\
13336With an argument, catch only exceptions with the given name."),
13337 catch_assert_command,
13338 NULL,
13339 CATCH_PERMANENT,
13340 CATCH_TEMPORARY);
13341
6c038f32 13342 varsize_limit = 65536;
6c038f32 13343
778865d3
JB
13344 add_info ("exceptions", info_exceptions_command,
13345 _("\
13346List all Ada exception names.\n\
13347If a regular expression is passed as an argument, only those matching\n\
13348the regular expression are listed."));
13349
c6044dd1
JB
13350 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13351 _("Set Ada maintenance-related variables."),
13352 &maint_set_ada_cmdlist, "maintenance set ada ",
13353 0/*allow-unknown*/, &maintenance_set_cmdlist);
13354
13355 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13356 _("Show Ada maintenance-related variables"),
13357 &maint_show_ada_cmdlist, "maintenance show ada ",
13358 0/*allow-unknown*/, &maintenance_show_cmdlist);
13359
13360 add_setshow_boolean_cmd
13361 ("ignore-descriptive-types", class_maintenance,
13362 &ada_ignore_descriptive_types_p,
13363 _("Set whether descriptive types generated by GNAT should be ignored."),
13364 _("Show whether descriptive types generated by GNAT should be ignored."),
13365 _("\
13366When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13367DWARF attribute."),
13368 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13369
6c038f32
PH
13370 obstack_init (&symbol_list_obstack);
13371
13372 decoded_names_store = htab_create_alloc
13373 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13374 NULL, xcalloc, xfree);
6b69afc4 13375
e802dbe0
JB
13376 /* Setup per-inferior data. */
13377 observer_attach_inferior_exit (ada_inferior_exit);
13378 ada_inferior_data
8e260fc0 13379 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 13380}