]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
2013-03-12 Hui Zhu <hui@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
2fa15f23 584 set_value_optimized_out (result, value_optimized_out (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
45e6c716 1299const char *
76a01679 1300ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1301{
45e6c716
TT
1302 const char **resultp =
1303 (const char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1304
4c4b4cd2
PH
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1308
714835d5 1309 if (gsymbol->obj_section != NULL)
76a01679 1310 {
714835d5 1311 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1312
10f0c4bb
TT
1313 *resultp = obstack_copy0 (&objf->objfile_obstack,
1314 decoded, strlen (decoded));
76a01679 1315 }
4c4b4cd2 1316 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
4c4b4cd2 1320 if (*resultp == NULL)
76a01679
JB
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
5b4ee69b 1324
76a01679
JB
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
4c4b4cd2 1329 }
14f9c5c9 1330
4c4b4cd2
PH
1331 return *resultp;
1332}
76a01679 1333
2c0b251b 1334static char *
76a01679 1335ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1336{
1337 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1338}
1339
1340/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
14f9c5c9 1346
2c0b251b 1347static int
40658b94 1348match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1349{
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
73589123 1353 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1354 else
1355 {
1356 int len_name = strlen (name);
5b4ee69b 1357
4c4b4cd2
PH
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1363 }
14f9c5c9 1364}
14f9c5c9 1365\f
d2e4a39e 1366
4c4b4cd2 1367 /* Arrays */
14f9c5c9 1368
28c85d6c
JB
1369/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392void
1393ada_fixup_array_indexes_type (struct type *index_desc_type)
1394{
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
0d5cff50 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422}
1423
4c4b4cd2 1424/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1425
d2e4a39e
AS
1426static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429};
1430
1431/* Maximum number of array dimensions we are prepared to handle. */
1432
4c4b4cd2 1433#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1434
14f9c5c9 1435
4c4b4cd2
PH
1436/* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
14f9c5c9
AS
1438
1439/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1440 level of indirection, if needed. */
1441
d2e4a39e
AS
1442static struct type *
1443desc_base_type (struct type *type)
14f9c5c9
AS
1444{
1445 if (type == NULL)
1446 return NULL;
61ee279c 1447 type = ada_check_typedef (type);
720d1a40
JB
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1265e4aa
JB
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1455 else
1456 return type;
1457}
1458
4c4b4cd2
PH
1459/* True iff TYPE indicates a "thin" array pointer type. */
1460
14f9c5c9 1461static int
d2e4a39e 1462is_thin_pntr (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 return
14f9c5c9
AS
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467}
1468
4c4b4cd2
PH
1469/* The descriptor type for thin pointer type TYPE. */
1470
d2e4a39e
AS
1471static struct type *
1472thin_descriptor_type (struct type *type)
14f9c5c9 1473{
d2e4a39e 1474 struct type *base_type = desc_base_type (type);
5b4ee69b 1475
14f9c5c9
AS
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
d2e4a39e 1480 else
14f9c5c9 1481 {
d2e4a39e 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1483
14f9c5c9 1484 if (alt_type == NULL)
4c4b4cd2 1485 return base_type;
14f9c5c9 1486 else
4c4b4cd2 1487 return alt_type;
14f9c5c9
AS
1488 }
1489}
1490
4c4b4cd2
PH
1491/* A pointer to the array data for thin-pointer value VAL. */
1492
d2e4a39e
AS
1493static struct value *
1494thin_data_pntr (struct value *val)
14f9c5c9 1495{
828292f2 1496 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1498
556bdfd4
UW
1499 data_type = lookup_pointer_type (data_type);
1500
14f9c5c9 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1502 return value_cast (data_type, value_copy (val));
d2e4a39e 1503 else
42ae5230 1504 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* True iff TYPE indicates a "thick" array pointer type. */
1508
14f9c5c9 1509static int
d2e4a39e 1510is_thick_pntr (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1515}
1516
4c4b4cd2
PH
1517/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1519
d2e4a39e
AS
1520static struct type *
1521desc_bounds_type (struct type *type)
14f9c5c9 1522{
d2e4a39e 1523 struct type *r;
14f9c5c9
AS
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
4c4b4cd2 1533 return NULL;
14f9c5c9
AS
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
61ee279c 1536 return ada_check_typedef (r);
14f9c5c9
AS
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
61ee279c 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1543 }
1544 return NULL;
1545}
1546
1547/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
d2e4a39e
AS
1550static struct value *
1551desc_bounds (struct value *arr)
14f9c5c9 1552{
df407dfe 1553 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1554
d2e4a39e 1555 if (is_thin_pntr (type))
14f9c5c9 1556 {
d2e4a39e 1557 struct type *bounds_type =
4c4b4cd2 1558 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1559 LONGEST addr;
1560
4cdfadb1 1561 if (bounds_type == NULL)
323e0a4a 1562 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1563
1564 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1565 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1566 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1568 addr = value_as_long (arr);
d2e4a39e 1569 else
42ae5230 1570 addr = value_address (arr);
14f9c5c9 1571
d2e4a39e 1572 return
4c4b4cd2
PH
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1575 }
1576
1577 else if (is_thick_pntr (type))
05e522ef
JB
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
14f9c5c9
AS
1598 else
1599 return NULL;
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
14f9c5c9 1605static int
d2e4a39e 1606fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1607{
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609}
1610
1611/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1612 size of the field containing the address of the bounds data. */
1613
14f9c5c9 1614static int
d2e4a39e 1615fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618
d2e4a39e 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
61ee279c 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1623}
1624
4c4b4cd2 1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
4c4b4cd2 1629
d2e4a39e 1630static struct type *
556bdfd4 1631desc_data_target_type (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
4c4b4cd2 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1636 if (is_thin_pntr (type))
556bdfd4 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1638 else if (is_thick_pntr (type))
556bdfd4
UW
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1645 }
1646
1647 return NULL;
14f9c5c9
AS
1648}
1649
1650/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
4c4b4cd2 1652
d2e4a39e
AS
1653static struct value *
1654desc_data (struct value *arr)
14f9c5c9 1655{
df407dfe 1656 struct type *type = value_type (arr);
5b4ee69b 1657
14f9c5c9
AS
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
d2e4a39e 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1662 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
1667
1668/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1669 position of the field containing the address of the data. */
1670
14f9c5c9 1671static int
d2e4a39e 1672fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1673{
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675}
1676
1677/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1678 size of the field containing the address of the data. */
1679
14f9c5c9 1680static int
d2e4a39e 1681fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1687 else
14f9c5c9
AS
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689}
1690
4c4b4cd2 1691/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1697{
d2e4a39e 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1699 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
14f9c5c9 1706static int
d2e4a39e 1707desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1708{
d2e4a39e 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1710}
1711
1712/* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
76a01679 1716static int
d2e4a39e 1717desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
d2e4a39e
AS
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1725}
1726
1727/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
d2e4a39e
AS
1730static struct type *
1731desc_index_type (struct type *type, int i)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
14f9c5c9
AS
1738 return NULL;
1739}
1740
4c4b4cd2
PH
1741/* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
14f9c5c9 1744static int
d2e4a39e 1745desc_arity (struct type *type)
14f9c5c9
AS
1746{
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752}
1753
4c4b4cd2
PH
1754/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
76a01679
JB
1758static int
1759ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1760{
1761 if (type == NULL)
1762 return 0;
61ee279c 1763 type = ada_check_typedef (type);
4c4b4cd2 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1765 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1766}
1767
52ce6436 1768/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1769 * to one. */
52ce6436 1770
2c0b251b 1771static int
52ce6436
PH
1772ada_is_array_type (struct type *type)
1773{
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779}
1780
4c4b4cd2 1781/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1785{
1786 if (type == NULL)
1787 return 0;
61ee279c 1788 type = ada_check_typedef (type);
14f9c5c9 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1793}
1794
4c4b4cd2
PH
1795/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
14f9c5c9 1797int
4c4b4cd2 1798ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1799{
556bdfd4 1800 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1801
1802 if (type == NULL)
1803 return 0;
61ee279c 1804 type = ada_check_typedef (type);
556bdfd4
UW
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1808}
1809
1810/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1811 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1812 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1813 is still needed. */
1814
14f9c5c9 1815int
ebf56fd3 1816ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1817{
d2e4a39e 1818 return
14f9c5c9
AS
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1824}
1825
1826
4c4b4cd2 1827/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1828 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1830 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1833 a descriptor. */
d2e4a39e
AS
1834struct type *
1835ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1836{
ad82864c
JB
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1839
df407dfe
AC
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
d2e4a39e
AS
1842
1843 if (!bounds)
ad82864c
JB
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
14f9c5c9
AS
1854 else
1855 {
d2e4a39e 1856 struct type *elt_type;
14f9c5c9 1857 int arity;
d2e4a39e 1858 struct value *descriptor;
14f9c5c9 1859
df407dfe
AC
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
14f9c5c9 1862
d2e4a39e 1863 if (elt_type == NULL || arity == 0)
df407dfe 1864 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1865
1866 descriptor = desc_bounds (arr);
d2e4a39e 1867 if (value_as_long (descriptor) == 0)
4c4b4cd2 1868 return NULL;
d2e4a39e 1869 while (arity > 0)
4c4b4cd2 1870 {
e9bb382b
UW
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1875
5b4ee69b 1876 arity -= 1;
df407dfe 1877 create_range_type (range_type, value_type (low),
529cad9c
PH
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
4c4b4cd2 1880 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
4c4b4cd2 1902 }
14f9c5c9
AS
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906}
1907
1908/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
d2e4a39e
AS
1913struct value *
1914ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1915{
df407dfe 1916 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1917 {
d2e4a39e 1918 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1919
14f9c5c9 1920 if (arrType == NULL)
4c4b4cd2 1921 return NULL;
14f9c5c9
AS
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
ad82864c
JB
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1926 else
1927 return arr;
1928}
1929
1930/* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1932 be ARR itself if it already is in the proper form). */
1933
720d1a40 1934struct value *
d2e4a39e 1935ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1936{
df407dfe 1937 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1938 {
d2e4a39e 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1940
14f9c5c9 1941 if (arrVal == NULL)
323e0a4a 1942 error (_("Bounds unavailable for null array pointer."));
529cad9c 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1944 return value_ind (arrVal);
1945 }
ad82864c
JB
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
d2e4a39e 1948 else
14f9c5c9
AS
1949 return arr;
1950}
1951
1952/* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1954 packing). For other types, is the identity. */
1955
d2e4a39e
AS
1956struct type *
1957ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1958{
ad82864c
JB
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
17280b9f
UW
1961
1962 if (ada_is_array_descriptor_type (type))
556bdfd4 1963 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1964
1965 return type;
14f9c5c9
AS
1966}
1967
4c4b4cd2
PH
1968/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
ad82864c
JB
1970static int
1971ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1972{
1973 if (type == NULL)
1974 return 0;
4c4b4cd2 1975 type = desc_base_type (type);
61ee279c 1976 type = ada_check_typedef (type);
d2e4a39e 1977 return
14f9c5c9
AS
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980}
1981
ad82864c
JB
1982/* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985int
1986ada_is_constrained_packed_array_type (struct type *type)
1987{
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990}
1991
1992/* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995static int
1996ada_is_unconstrained_packed_array_type (struct type *type)
1997{
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000}
2001
2002/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005static long
2006decode_packed_array_bitsize (struct type *type)
2007{
0d5cff50
DE
2008 const char *raw_name;
2009 const char *tail;
ad82864c
JB
2010 long bits;
2011
720d1a40
JB
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
720d1a40 2026 gdb_assert (tail != NULL);
ad82864c
JB
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036}
2037
14f9c5c9
AS
2038/* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
d2e4a39e 2047static struct type *
ad82864c 2048constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2049{
d2e4a39e
AS
2050 struct type *new_elt_type;
2051 struct type *new_type;
99b1c762
JB
2052 struct type *index_type_desc;
2053 struct type *index_type;
14f9c5c9
AS
2054 LONGEST low_bound, high_bound;
2055
61ee279c 2056 type = ada_check_typedef (type);
14f9c5c9
AS
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
99b1c762
JB
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
e9bb382b 2067 new_type = alloc_type_copy (type);
ad82864c
JB
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
99b1c762 2071 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
99b1c762 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2079 else
14f9c5c9
AS
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2082 TYPE_LENGTH (new_type) =
4c4b4cd2 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2084 }
2085
876cecd0 2086 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2087 return new_type;
2088}
2089
ad82864c
JB
2090/* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2092
d2e4a39e 2093static struct type *
ad82864c 2094decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2095{
0d5cff50 2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2097 char *name;
0d5cff50 2098 const char *tail;
d2e4a39e 2099 struct type *shadow_type;
14f9c5c9 2100 long bits;
14f9c5c9 2101
727e3d2e
JB
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2110 type = desc_base_type (type);
2111
14f9c5c9
AS
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
b4ba55a1
JB
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
14f9c5c9 2118 {
323e0a4a 2119 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2120 return NULL;
2121 }
cb249c71 2122 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
0963b4bd
MS
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
d2e4a39e 2130
ad82864c
JB
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2133}
2134
ad82864c
JB
2135/* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
4c4b4cd2 2139 type length is set appropriately. */
14f9c5c9 2140
d2e4a39e 2141static struct value *
ad82864c 2142decode_constrained_packed_array (struct value *arr)
14f9c5c9 2143{
4c4b4cd2 2144 struct type *type;
14f9c5c9 2145
4c4b4cd2 2146 arr = ada_coerce_ref (arr);
284614f0
JB
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
828292f2 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2155 arr = value_ind (arr);
4c4b4cd2 2156
ad82864c 2157 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2158 if (type == NULL)
2159 {
323e0a4a 2160 error (_("can't unpack array"));
14f9c5c9
AS
2161 return NULL;
2162 }
61ee279c 2163
50810684 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2165 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
df407dfe 2174 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
df407dfe 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
4c4b4cd2 2189 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2190}
2191
2192
2193/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2194 given in IND. ARR must be a simple array. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2198{
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
d2e4a39e
AS
2202 struct type *elt_type;
2203 struct value *v;
14f9c5c9
AS
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
df407dfe 2207 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2208 for (i = 0; i < arity; i += 1)
14f9c5c9 2209 {
d2e4a39e 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
0963b4bd
MS
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
14f9c5c9 2215 else
4c4b4cd2
PH
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
323e0a4a 2223 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2224 lowerbound = upperbound = 0;
2225 }
2226
3cb382c9 2227 idx = pos_atr (ind[i]);
4c4b4cd2 2228 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
4c4b4cd2
PH
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2234 }
14f9c5c9
AS
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2240 bits, elt_type);
14f9c5c9
AS
2241 return v;
2242}
2243
4c4b4cd2 2244/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2245
2246static int
d2e4a39e 2247has_negatives (struct type *type)
14f9c5c9 2248{
d2e4a39e
AS
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
14f9c5c9 2258}
d2e4a39e 2259
14f9c5c9
AS
2260
2261/* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2264 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2269
d2e4a39e 2270struct value *
fc1a4b47 2271ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2272 long offset, int bit_offset, int bit_size,
4c4b4cd2 2273 struct type *type)
14f9c5c9 2274{
d2e4a39e 2275 struct value *v;
4c4b4cd2
PH
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2284 unsigned char *unpacked;
4c4b4cd2 2285 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
50810684 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2291
61ee279c 2292 type = ada_check_typedef (type);
14f9c5c9
AS
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
d2e4a39e 2297 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2298 }
9214ee5f 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2300 {
53ba8333 2301 v = value_at (type, value_address (obj));
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
53ba8333 2303 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
53ba8333 2313 long new_offset = offset;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
9bbda503
AC
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
df407dfe 2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2319 {
53ba8333 2320 ++new_offset;
9bbda503 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2322 }
53ba8333
JB
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
14f9c5c9
AS
2329 }
2330 else
9bbda503 2331 set_value_bitsize (v, bit_size);
0fd88904 2332 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
50810684 2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2344 {
d2e4a39e 2345 src = len - 1;
1265e4aa
JB
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2348 sign = ~0;
d2e4a39e
AS
2349
2350 unusedLS =
4c4b4cd2
PH
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
14f9c5c9
AS
2353
2354 switch (TYPE_CODE (type))
4c4b4cd2
PH
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
529cad9c 2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2365 ntarg = targ + 1;
4c4b4cd2
PH
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
14f9c5c9 2372 }
d2e4a39e 2373 else
14f9c5c9
AS
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
d2e4a39e 2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2382 sign = ~0;
14f9c5c9 2383 }
d2e4a39e 2384
14f9c5c9
AS
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2389 part of the value. */
d2e4a39e 2390 unsigned int unusedMSMask =
4c4b4cd2
PH
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
14f9c5c9 2394 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2395
d2e4a39e 2396 accum |=
4c4b4cd2 2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2398 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2399 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
14f9c5c9
AS
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423}
d2e4a39e 2424
14f9c5c9
AS
2425/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2427 not overlap. */
14f9c5c9 2428static void
fc1a4b47 2429move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2430 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2431{
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
50810684 2439 if (bits_big_endian_p)
14f9c5c9
AS
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
d2e4a39e 2445 while (n > 0)
4c4b4cd2
PH
2446 {
2447 int unused_right;
5b4ee69b 2448
4c4b4cd2
PH
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
14f9c5c9
AS
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
d2e4a39e 2472 while (n > 0)
4c4b4cd2
PH
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
14f9c5c9
AS
2488 }
2489}
2490
14f9c5c9
AS
2491/* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2494 floating-point or non-scalar types. */
14f9c5c9 2495
d2e4a39e
AS
2496static struct value *
2497ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2498{
df407dfe
AC
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
14f9c5c9 2501
52ce6436
PH
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
88e3b34b 2510 if (!deprecated_value_modifiable (toval))
323e0a4a 2511 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2512
d2e4a39e 2513 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2514 && bits > 0
d2e4a39e 2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2517 {
df407dfe
AC
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2520 int from_size;
d2e4a39e
AS
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
42ae5230 2523 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2526 fromval = value_cast (type, fromval);
14f9c5c9 2527
52ce6436 2528 read_memory (to_addr, buffer, len);
aced2898
PH
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2533 move_bits (buffer, value_bitpos (toval),
50810684 2534 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2535 else
50810684
UW
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
972daa01 2538 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2539
14f9c5c9 2540 val = value_copy (toval);
0fd88904 2541 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2542 TYPE_LENGTH (type));
04624583 2543 deprecated_set_value_type (val, type);
d2e4a39e 2544
14f9c5c9
AS
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549}
2550
2551
52ce6436
PH
2552/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557static void
2558value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560{
2561 LONGEST offset_in_container =
42ae5230 2562 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
50810684 2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2579 bits, 1);
52ce6436
PH
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
50810684 2583 value_contents (val), 0, bits, 0);
52ce6436
PH
2584}
2585
4c4b4cd2
PH
2586/* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2588 thereto. */
2589
d2e4a39e
AS
2590struct value *
2591ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2592{
2593 int k;
d2e4a39e
AS
2594 struct value *elt;
2595 struct type *elt_type;
14f9c5c9
AS
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
df407dfe 2599 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2607 error (_("too many subscripts (%d expected)"), k);
2497b498 2608 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2609 }
2610 return elt;
2611}
2612
2613/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2615 IND. Does not read the entire array into memory. */
14f9c5c9 2616
2c0b251b 2617static struct value *
d2e4a39e 2618ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2619 struct value **ind)
14f9c5c9
AS
2620{
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
14f9c5c9
AS
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2628 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2630 value_copy (arr));
14f9c5c9 2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637}
2638
0b5d8877 2639/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2642 per Ada rules. */
0b5d8877 2643static struct value *
f5938064
JG
2644ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
0b5d8877 2646{
b0dd7688 2647 struct type *type0 = ada_check_typedef (type);
6c038f32 2648 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2651 struct type *index_type =
b0dd7688 2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2653 low, high);
6c038f32 2654 struct type *slice_type =
b0dd7688 2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2656
f5938064 2657 return value_at_lazy (slice_type, base);
0b5d8877
PH
2658}
2659
2660
2661static struct value *
2662ada_value_slice (struct value *array, int low, int high)
2663{
b0dd7688 2664 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2665 struct type *index_type =
0b5d8877 2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2667 struct type *slice_type =
0b5d8877 2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2669
6c038f32 2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2671}
2672
14f9c5c9
AS
2673/* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2676 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2677
2678int
d2e4a39e 2679ada_array_arity (struct type *type)
14f9c5c9
AS
2680{
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
d2e4a39e 2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2690 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2693 {
4c4b4cd2 2694 arity += 1;
61ee279c 2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2696 }
d2e4a39e 2697
14f9c5c9
AS
2698 return arity;
2699}
2700
2701/* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2704 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2705
d2e4a39e
AS
2706struct type *
2707ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2708{
2709 type = desc_base_type (type);
2710
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2712 {
2713 int k;
d2e4a39e 2714 struct type *p_array_type;
14f9c5c9 2715
556bdfd4 2716 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
4c4b4cd2 2720 return NULL;
d2e4a39e 2721
4c4b4cd2 2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2723 if (nindices >= 0 && k > nindices)
4c4b4cd2 2724 k = nindices;
d2e4a39e 2725 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2726 {
61ee279c 2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2728 k -= 1;
2729 }
14f9c5c9
AS
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
14f9c5c9
AS
2739 return type;
2740 }
2741
2742 return NULL;
2743}
2744
4c4b4cd2 2745/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
14f9c5c9 2750
1eea4ebd
UW
2751static struct type *
2752ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2753{
4c4b4cd2
PH
2754 struct type *result_type;
2755
14f9c5c9
AS
2756 type = desc_base_type (type);
2757
1eea4ebd
UW
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2760
4c4b4cd2 2761 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
4c4b4cd2 2766 type = TYPE_TARGET_TYPE (type);
262452ec 2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2770 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
14f9c5c9 2773 }
d2e4a39e 2774 else
1eea4ebd
UW
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
14f9c5c9
AS
2782}
2783
2784/* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
14f9c5c9 2789
abb68b3e 2790static LONGEST
1eea4ebd 2791ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2792{
1ce677a4 2793 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2794 int i;
262452ec
JK
2795
2796 gdb_assert (which == 0 || which == 1);
14f9c5c9 2797
ad82864c
JB
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2800
4c4b4cd2 2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2802 return (LONGEST) - which;
14f9c5c9
AS
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
1ce677a4
UW
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
14f9c5c9 2813 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2814 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2815 if (index_type_desc != NULL)
28c85d6c
JB
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
262452ec 2818 else
1ce677a4 2819 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2820
43bbcdc2
PH
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2825}
2826
2827/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2830 supplied by run-time quantities other than discriminants. */
14f9c5c9 2831
1eea4ebd 2832static LONGEST
4dc81987 2833ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2834{
df407dfe 2835 struct type *arr_type = value_type (arr);
14f9c5c9 2836
ad82864c
JB
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2839 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2840 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2841 else
1eea4ebd 2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2843}
2844
2845/* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
14f9c5c9 2850
1eea4ebd 2851static LONGEST
d2e4a39e 2852ada_array_length (struct value *arr, int n)
14f9c5c9 2853{
df407dfe 2854 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2855
ad82864c
JB
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2858
4c4b4cd2 2859 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2862 else
1eea4ebd
UW
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2865}
2866
2867/* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870static struct value *
2871empty_array (struct type *arr_type, int low)
2872{
b0dd7688 2873 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2874 struct type *index_type =
b0dd7688 2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2876 low, low - 1);
b0dd7688 2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2878
0b5d8877 2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2880}
14f9c5c9 2881\f
d2e4a39e 2882
4c4b4cd2 2883 /* Name resolution */
14f9c5c9 2884
4c4b4cd2
PH
2885/* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
14f9c5c9 2887
d2e4a39e 2888static const char *
4c4b4cd2 2889ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2890{
2891 int i;
2892
4c4b4cd2 2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2894 {
2895 if (ada_opname_table[i].op == op)
4c4b4cd2 2896 return ada_opname_table[i].decoded;
14f9c5c9 2897 }
323e0a4a 2898 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2899}
2900
2901
4c4b4cd2
PH
2902/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2909 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2910
4c4b4cd2
PH
2911static void
2912resolve (struct expression **expp, int void_context_p)
14f9c5c9 2913{
30b15541
UW
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2921}
2922
4c4b4cd2
PH
2923/* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
14f9c5c9 2931
d2e4a39e 2932static struct value *
4c4b4cd2 2933resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2934 struct type *context_type)
14f9c5c9
AS
2935{
2936 int pc = *pos;
2937 int i;
4c4b4cd2 2938 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
52ce6436 2942 int oplen;
14f9c5c9
AS
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
52ce6436
PH
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
14f9c5c9
AS
2950 switch (op)
2951 {
4c4b4cd2
PH
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
4c4b4cd2
PH
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2962 break;
2963
14f9c5c9 2964 case UNOP_ADDR:
4c4b4cd2
PH
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
52ce6436
PH
2969 case UNOP_QUAL:
2970 *pos += 3;
17466c1a 2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2972 break;
2973
52ce6436 2974 case OP_ATR_MODULUS:
4c4b4cd2
PH
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
4c4b4cd2
PH
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
4c4b4cd2
PH
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
52ce6436
PH
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
14f9c5c9
AS
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
4c4b4cd2
PH
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
df407dfe 3006 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3007 break;
14f9c5c9
AS
3008 }
3009
4c4b4cd2 3010 case UNOP_CAST:
4c4b4cd2
PH
3011 *pos += 3;
3012 nargs = 1;
3013 break;
14f9c5c9 3014
4c4b4cd2
PH
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
14f9c5c9 3028
4c4b4cd2
PH
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
14f9c5c9 3035
4c4b4cd2
PH
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
40c8aaa9
JB
3039 *pos += 1;
3040 nargs = 2;
3041 break;
14f9c5c9 3042
4c4b4cd2
PH
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
14f9c5c9 3051
4c4b4cd2
PH
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
14f9c5c9 3057
4c4b4cd2
PH
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
4c4b4cd2
PH
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
14f9c5c9 3064
4c4b4cd2
PH
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
67f3407f
DJ
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
4c4b4cd2
PH
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
4c4b4cd2 3079 case TERNOP_SLICE:
4c4b4cd2
PH
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
52ce6436 3084 case OP_STRING:
14f9c5c9 3085 break;
4c4b4cd2
PH
3086
3087 default:
323e0a4a 3088 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3089 }
3090
76a01679 3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
14f9c5c9 3103 case OP_VAR_VALUE:
4c4b4cd2 3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3113 &candidates);
76a01679
JB
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
76a01679
JB
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
76a01679 3129 case LOC_COMPUTED:
76a01679
JB
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
323e0a4a 3152 error (_("No definition found for %s"),
76a01679
JB
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
06d5cf63
JB
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
76a01679 3163 if (i < 0)
323e0a4a 3164 error (_("Could not find a match for %s"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
323e0a4a 3169 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
14f9c5c9
AS
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
4c4b4cd2 3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
76a01679
JB
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3205 &candidates);
4c4b4cd2
PH
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
06d5cf63
JB
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
4c4b4cd2 3215 if (i < 0)
323e0a4a 3216 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3224 innermost_block = candidates[i].block;
3225 }
14f9c5c9
AS
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3257 &candidates);
4c4b4cd2 3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3259 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3260 if (i < 0)
3261 break;
3262
76a01679
JB
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3265 exp = *expp;
3266 }
14f9c5c9 3267 break;
4c4b4cd2
PH
3268
3269 case OP_TYPE:
b3dbf008 3270 case OP_REGISTER:
4c4b4cd2 3271 return NULL;
14f9c5c9
AS
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276}
3277
3278/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3280 a non-pointer. */
14f9c5c9 3281/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3282 liberal. */
14f9c5c9
AS
3283
3284static int
4dc81987 3285ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3286{
61ee279c
PH
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
14f9c5c9
AS
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
d2e4a39e 3295 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3296 {
3297 default:
5b3d5b7d 3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3303 else
1265e4aa
JB
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
14f9c5c9
AS
3318
3319 case TYPE_CODE_ARRAY:
d2e4a39e 3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3321 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3322
3323 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
14f9c5c9 3327 else
4c4b4cd2
PH
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335}
3336
3337/* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3340 argument function. */
14f9c5c9
AS
3341
3342static int
d2e4a39e 3343ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3344{
3345 int i;
d2e4a39e 3346 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3347
1265e4aa
JB
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
4c4b4cd2 3359 if (actuals[i] == NULL)
76a01679
JB
3360 return 0;
3361 else
3362 {
5b4ee69b
MS
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
df407dfe 3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3366
76a01679
JB
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
14f9c5c9
AS
3370 }
3371 return 1;
3372}
3373
3374/* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379static int
d2e4a39e 3380return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3381{
d2e4a39e 3382 struct type *return_type;
14f9c5c9
AS
3383
3384 if (func_type == NULL)
3385 return 1;
3386
4c4b4cd2 3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3389 else
18af8284 3390 return_type = get_base_type (func_type);
14f9c5c9
AS
3391 if (return_type == NULL)
3392 return 1;
3393
18af8284 3394 context_type = get_base_type (context_type);
14f9c5c9
AS
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402}
3403
3404
4c4b4cd2 3405/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3406 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
14f9c5c9
AS
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
14f9c5c9 3416
4c4b4cd2
PH
3417static int
3418ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
14f9c5c9 3421{
30b15541 3422 int fallback;
14f9c5c9 3423 int k;
4c4b4cd2 3424 int m; /* Number of hits */
14f9c5c9 3425
d2e4a39e 3426 m = 0;
30b15541
UW
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3431 {
3432 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3433 {
61ee279c 3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3437 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
323e0a4a 3449 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3450 user_select_syms (syms, m, 1);
14f9c5c9
AS
3451 return 0;
3452 }
3453 return 0;
3454}
3455
4c4b4cd2
PH
3456/* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
14f9c5c9 3462static int
0d5cff50 3463encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3464{
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
5b4ee69b 3472
d2e4a39e 3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3474 ;
d2e4a39e 3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
5b4ee69b 3481
4c4b4cd2
PH
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
14f9c5c9
AS
3491 return (strcmp (N0, N1) < 0);
3492 }
3493}
d2e4a39e 3494
4c4b4cd2
PH
3495/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
d2e4a39e 3498static void
4c4b4cd2 3499sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3500{
4c4b4cd2 3501 int i;
5b4ee69b 3502
d2e4a39e 3503 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3504 {
4c4b4cd2 3505 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3506 int j;
3507
d2e4a39e 3508 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
d2e4a39e 3515 syms[j + 1] = sym;
14f9c5c9
AS
3516 }
3517}
3518
4c4b4cd2
PH
3519/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
14f9c5c9
AS
3523
3524/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3525 to be re-integrated one of these days. */
14f9c5c9
AS
3526
3527int
4c4b4cd2 3528user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3529{
3530 int i;
d2e4a39e 3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3534 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3535
3536 if (max_results < 1)
323e0a4a 3537 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3538 if (nsyms <= 1)
3539 return nsyms;
3540
717d2f5a
JB
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543canceled because the command is ambiguous\n\
3544See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
323e0a4a 3552 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3553 if (max_results > 1)
323e0a4a 3554 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3555
4c4b4cd2 3556 sort_choices (syms, nsyms);
14f9c5c9
AS
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
4c4b4cd2
PH
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
76a01679
JB
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3567
323e0a4a
AC
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3576 symtab_to_filename_for_display (sal.symtab),
3577 sal.line);
4c4b4cd2
PH
3578 continue;
3579 }
d2e4a39e 3580 else
4c4b4cd2
PH
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3592 symtab_to_filename_for_display (symtab),
3593 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3594 else if (is_enumeral
3595 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3596 {
a3f17187 3597 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3598 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3599 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3600 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3601 SYMBOL_PRINT_NAME (syms[i].sym));
3602 }
3603 else if (symtab != NULL)
3604 printf_unfiltered (is_enumeral
323e0a4a
AC
3605 ? _("[%d] %s in %s (enumeral)\n")
3606 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3607 i + first_choice,
3608 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3609 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3610 else
3611 printf_unfiltered (is_enumeral
323e0a4a
AC
3612 ? _("[%d] %s (enumeral)\n")
3613 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3614 i + first_choice,
3615 SYMBOL_PRINT_NAME (syms[i].sym));
3616 }
14f9c5c9 3617 }
d2e4a39e 3618
14f9c5c9 3619 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3620 "overload-choice");
14f9c5c9
AS
3621
3622 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3623 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3624
3625 return n_chosen;
3626}
3627
3628/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3629 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3630 order in CHOICES[0 .. N-1], and return N.
3631
3632 The user types choices as a sequence of numbers on one line
3633 separated by blanks, encoding them as follows:
3634
4c4b4cd2 3635 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3636 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3637 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3638
4c4b4cd2 3639 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3640
3641 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3642 prompts (for use with the -f switch). */
14f9c5c9
AS
3643
3644int
d2e4a39e 3645get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3646 int is_all_choice, char *annotation_suffix)
14f9c5c9 3647{
d2e4a39e 3648 char *args;
0bcd0149 3649 char *prompt;
14f9c5c9
AS
3650 int n_chosen;
3651 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3652
14f9c5c9
AS
3653 prompt = getenv ("PS2");
3654 if (prompt == NULL)
0bcd0149 3655 prompt = "> ";
14f9c5c9 3656
0bcd0149 3657 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3658
14f9c5c9 3659 if (args == NULL)
323e0a4a 3660 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3661
3662 n_chosen = 0;
76a01679 3663
4c4b4cd2
PH
3664 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3665 order, as given in args. Choices are validated. */
14f9c5c9
AS
3666 while (1)
3667 {
d2e4a39e 3668 char *args2;
14f9c5c9
AS
3669 int choice, j;
3670
0fcd72ba 3671 args = skip_spaces (args);
14f9c5c9 3672 if (*args == '\0' && n_chosen == 0)
323e0a4a 3673 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3674 else if (*args == '\0')
4c4b4cd2 3675 break;
14f9c5c9
AS
3676
3677 choice = strtol (args, &args2, 10);
d2e4a39e 3678 if (args == args2 || choice < 0
4c4b4cd2 3679 || choice > n_choices + first_choice - 1)
323e0a4a 3680 error (_("Argument must be choice number"));
14f9c5c9
AS
3681 args = args2;
3682
d2e4a39e 3683 if (choice == 0)
323e0a4a 3684 error (_("cancelled"));
14f9c5c9
AS
3685
3686 if (choice < first_choice)
4c4b4cd2
PH
3687 {
3688 n_chosen = n_choices;
3689 for (j = 0; j < n_choices; j += 1)
3690 choices[j] = j;
3691 break;
3692 }
14f9c5c9
AS
3693 choice -= first_choice;
3694
d2e4a39e 3695 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3696 {
3697 }
14f9c5c9
AS
3698
3699 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3700 {
3701 int k;
5b4ee69b 3702
4c4b4cd2
PH
3703 for (k = n_chosen - 1; k > j; k -= 1)
3704 choices[k + 1] = choices[k];
3705 choices[j + 1] = choice;
3706 n_chosen += 1;
3707 }
14f9c5c9
AS
3708 }
3709
3710 if (n_chosen > max_results)
323e0a4a 3711 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3712
14f9c5c9
AS
3713 return n_chosen;
3714}
3715
4c4b4cd2
PH
3716/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3717 on the function identified by SYM and BLOCK, and taking NARGS
3718 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3719
3720static void
d2e4a39e 3721replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3722 int oplen, struct symbol *sym,
270140bd 3723 const struct block *block)
14f9c5c9
AS
3724{
3725 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3726 symbol, -oplen for operator being replaced). */
d2e4a39e 3727 struct expression *newexp = (struct expression *)
8c1a34e7 3728 xzalloc (sizeof (struct expression)
4c4b4cd2 3729 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3730 struct expression *exp = *expp;
14f9c5c9
AS
3731
3732 newexp->nelts = exp->nelts + 7 - oplen;
3733 newexp->language_defn = exp->language_defn;
3489610d 3734 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3735 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3736 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3737 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3738
3739 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3740 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3741
3742 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3743 newexp->elts[pc + 4].block = block;
3744 newexp->elts[pc + 5].symbol = sym;
3745
3746 *expp = newexp;
aacb1f0a 3747 xfree (exp);
d2e4a39e 3748}
14f9c5c9
AS
3749
3750/* Type-class predicates */
3751
4c4b4cd2
PH
3752/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3753 or FLOAT). */
14f9c5c9
AS
3754
3755static int
d2e4a39e 3756numeric_type_p (struct type *type)
14f9c5c9
AS
3757{
3758 if (type == NULL)
3759 return 0;
d2e4a39e
AS
3760 else
3761 {
3762 switch (TYPE_CODE (type))
4c4b4cd2
PH
3763 {
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 case TYPE_CODE_RANGE:
3768 return (type == TYPE_TARGET_TYPE (type)
3769 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3770 default:
3771 return 0;
3772 }
d2e4a39e 3773 }
14f9c5c9
AS
3774}
3775
4c4b4cd2 3776/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3777
3778static int
d2e4a39e 3779integer_type_p (struct type *type)
14f9c5c9
AS
3780{
3781 if (type == NULL)
3782 return 0;
d2e4a39e
AS
3783 else
3784 {
3785 switch (TYPE_CODE (type))
4c4b4cd2
PH
3786 {
3787 case TYPE_CODE_INT:
3788 return 1;
3789 case TYPE_CODE_RANGE:
3790 return (type == TYPE_TARGET_TYPE (type)
3791 || integer_type_p (TYPE_TARGET_TYPE (type)));
3792 default:
3793 return 0;
3794 }
d2e4a39e 3795 }
14f9c5c9
AS
3796}
3797
4c4b4cd2 3798/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3799
3800static int
d2e4a39e 3801scalar_type_p (struct type *type)
14f9c5c9
AS
3802{
3803 if (type == NULL)
3804 return 0;
d2e4a39e
AS
3805 else
3806 {
3807 switch (TYPE_CODE (type))
4c4b4cd2
PH
3808 {
3809 case TYPE_CODE_INT:
3810 case TYPE_CODE_RANGE:
3811 case TYPE_CODE_ENUM:
3812 case TYPE_CODE_FLT:
3813 return 1;
3814 default:
3815 return 0;
3816 }
d2e4a39e 3817 }
14f9c5c9
AS
3818}
3819
4c4b4cd2 3820/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3821
3822static int
d2e4a39e 3823discrete_type_p (struct type *type)
14f9c5c9
AS
3824{
3825 if (type == NULL)
3826 return 0;
d2e4a39e
AS
3827 else
3828 {
3829 switch (TYPE_CODE (type))
4c4b4cd2
PH
3830 {
3831 case TYPE_CODE_INT:
3832 case TYPE_CODE_RANGE:
3833 case TYPE_CODE_ENUM:
872f0337 3834 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3835 return 1;
3836 default:
3837 return 0;
3838 }
d2e4a39e 3839 }
14f9c5c9
AS
3840}
3841
4c4b4cd2
PH
3842/* Returns non-zero if OP with operands in the vector ARGS could be
3843 a user-defined function. Errs on the side of pre-defined operators
3844 (i.e., result 0). */
14f9c5c9
AS
3845
3846static int
d2e4a39e 3847possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3848{
76a01679 3849 struct type *type0 =
df407dfe 3850 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3851 struct type *type1 =
df407dfe 3852 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3853
4c4b4cd2
PH
3854 if (type0 == NULL)
3855 return 0;
3856
14f9c5c9
AS
3857 switch (op)
3858 {
3859 default:
3860 return 0;
3861
3862 case BINOP_ADD:
3863 case BINOP_SUB:
3864 case BINOP_MUL:
3865 case BINOP_DIV:
d2e4a39e 3866 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3867
3868 case BINOP_REM:
3869 case BINOP_MOD:
3870 case BINOP_BITWISE_AND:
3871 case BINOP_BITWISE_IOR:
3872 case BINOP_BITWISE_XOR:
d2e4a39e 3873 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3874
3875 case BINOP_EQUAL:
3876 case BINOP_NOTEQUAL:
3877 case BINOP_LESS:
3878 case BINOP_GTR:
3879 case BINOP_LEQ:
3880 case BINOP_GEQ:
d2e4a39e 3881 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3882
3883 case BINOP_CONCAT:
ee90b9ab 3884 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3885
3886 case BINOP_EXP:
d2e4a39e 3887 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3888
3889 case UNOP_NEG:
3890 case UNOP_PLUS:
3891 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3892 case UNOP_ABS:
3893 return (!numeric_type_p (type0));
14f9c5c9
AS
3894
3895 }
3896}
3897\f
4c4b4cd2 3898 /* Renaming */
14f9c5c9 3899
aeb5907d
JB
3900/* NOTES:
3901
3902 1. In the following, we assume that a renaming type's name may
3903 have an ___XD suffix. It would be nice if this went away at some
3904 point.
3905 2. We handle both the (old) purely type-based representation of
3906 renamings and the (new) variable-based encoding. At some point,
3907 it is devoutly to be hoped that the former goes away
3908 (FIXME: hilfinger-2007-07-09).
3909 3. Subprogram renamings are not implemented, although the XRS
3910 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3911
3912/* If SYM encodes a renaming,
3913
3914 <renaming> renames <renamed entity>,
3915
3916 sets *LEN to the length of the renamed entity's name,
3917 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3918 the string describing the subcomponent selected from the renamed
0963b4bd 3919 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3920 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3921 are undefined). Otherwise, returns a value indicating the category
3922 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3923 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3924 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3925 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3926 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3927 may be NULL, in which case they are not assigned.
3928
3929 [Currently, however, GCC does not generate subprogram renamings.] */
3930
3931enum ada_renaming_category
3932ada_parse_renaming (struct symbol *sym,
3933 const char **renamed_entity, int *len,
3934 const char **renaming_expr)
3935{
3936 enum ada_renaming_category kind;
3937 const char *info;
3938 const char *suffix;
3939
3940 if (sym == NULL)
3941 return ADA_NOT_RENAMING;
3942 switch (SYMBOL_CLASS (sym))
14f9c5c9 3943 {
aeb5907d
JB
3944 default:
3945 return ADA_NOT_RENAMING;
3946 case LOC_TYPEDEF:
3947 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3948 renamed_entity, len, renaming_expr);
3949 case LOC_LOCAL:
3950 case LOC_STATIC:
3951 case LOC_COMPUTED:
3952 case LOC_OPTIMIZED_OUT:
3953 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3954 if (info == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (info[5])
3957 {
3958 case '_':
3959 kind = ADA_OBJECT_RENAMING;
3960 info += 6;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 info += 7;
3965 break;
3966 case 'P':
3967 kind = ADA_PACKAGE_RENAMING;
3968 info += 7;
3969 break;
3970 case 'S':
3971 kind = ADA_SUBPROGRAM_RENAMING;
3972 info += 7;
3973 break;
3974 default:
3975 return ADA_NOT_RENAMING;
3976 }
14f9c5c9 3977 }
4c4b4cd2 3978
aeb5907d
JB
3979 if (renamed_entity != NULL)
3980 *renamed_entity = info;
3981 suffix = strstr (info, "___XE");
3982 if (suffix == NULL || suffix == info)
3983 return ADA_NOT_RENAMING;
3984 if (len != NULL)
3985 *len = strlen (info) - strlen (suffix);
3986 suffix += 5;
3987 if (renaming_expr != NULL)
3988 *renaming_expr = suffix;
3989 return kind;
3990}
3991
3992/* Assuming TYPE encodes a renaming according to the old encoding in
3993 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3994 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3995 ADA_NOT_RENAMING otherwise. */
3996static enum ada_renaming_category
3997parse_old_style_renaming (struct type *type,
3998 const char **renamed_entity, int *len,
3999 const char **renaming_expr)
4000{
4001 enum ada_renaming_category kind;
4002 const char *name;
4003 const char *info;
4004 const char *suffix;
14f9c5c9 4005
aeb5907d
JB
4006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4007 || TYPE_NFIELDS (type) != 1)
4008 return ADA_NOT_RENAMING;
14f9c5c9 4009
aeb5907d
JB
4010 name = type_name_no_tag (type);
4011 if (name == NULL)
4012 return ADA_NOT_RENAMING;
4013
4014 name = strstr (name, "___XR");
4015 if (name == NULL)
4016 return ADA_NOT_RENAMING;
4017 switch (name[5])
4018 {
4019 case '\0':
4020 case '_':
4021 kind = ADA_OBJECT_RENAMING;
4022 break;
4023 case 'E':
4024 kind = ADA_EXCEPTION_RENAMING;
4025 break;
4026 case 'P':
4027 kind = ADA_PACKAGE_RENAMING;
4028 break;
4029 case 'S':
4030 kind = ADA_SUBPROGRAM_RENAMING;
4031 break;
4032 default:
4033 return ADA_NOT_RENAMING;
4034 }
14f9c5c9 4035
aeb5907d
JB
4036 info = TYPE_FIELD_NAME (type, 0);
4037 if (info == NULL)
4038 return ADA_NOT_RENAMING;
4039 if (renamed_entity != NULL)
4040 *renamed_entity = info;
4041 suffix = strstr (info, "___XE");
4042 if (renaming_expr != NULL)
4043 *renaming_expr = suffix + 5;
4044 if (suffix == NULL || suffix == info)
4045 return ADA_NOT_RENAMING;
4046 if (len != NULL)
4047 *len = suffix - info;
4048 return kind;
a5ee536b
JB
4049}
4050
4051/* Compute the value of the given RENAMING_SYM, which is expected to
4052 be a symbol encoding a renaming expression. BLOCK is the block
4053 used to evaluate the renaming. */
52ce6436 4054
a5ee536b
JB
4055static struct value *
4056ada_read_renaming_var_value (struct symbol *renaming_sym,
4057 struct block *block)
4058{
4059 char *sym_name;
4060 struct expression *expr;
4061 struct value *value;
4062 struct cleanup *old_chain = NULL;
4063
4064 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4065 old_chain = make_cleanup (xfree, sym_name);
1bb9788d 4066 expr = parse_exp_1 (&sym_name, 0, block, 0);
a5ee536b
JB
4067 make_cleanup (free_current_contents, &expr);
4068 value = evaluate_expression (expr);
4069
4070 do_cleanups (old_chain);
4071 return value;
4072}
14f9c5c9 4073\f
d2e4a39e 4074
4c4b4cd2 4075 /* Evaluation: Function Calls */
14f9c5c9 4076
4c4b4cd2 4077/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4078 lvalues, and otherwise has the side-effect of allocating memory
4079 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4080
d2e4a39e 4081static struct value *
40bc484c 4082ensure_lval (struct value *val)
14f9c5c9 4083{
40bc484c
JB
4084 if (VALUE_LVAL (val) == not_lval
4085 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4086 {
df407dfe 4087 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4088 const CORE_ADDR addr =
4089 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4090
40bc484c 4091 set_value_address (val, addr);
a84a8a0d 4092 VALUE_LVAL (val) = lval_memory;
40bc484c 4093 write_memory (addr, value_contents (val), len);
c3e5cd34 4094 }
14f9c5c9
AS
4095
4096 return val;
4097}
4098
4099/* Return the value ACTUAL, converted to be an appropriate value for a
4100 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4101 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4102 values not residing in memory, updating it as needed. */
14f9c5c9 4103
a93c0eb6 4104struct value *
40bc484c 4105ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4106{
df407dfe 4107 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4108 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4109 struct type *formal_target =
4110 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4111 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4112 struct type *actual_target =
4113 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4114 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4115
4c4b4cd2 4116 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4117 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4118 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4119 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4120 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4121 {
a84a8a0d 4122 struct value *result;
5b4ee69b 4123
14f9c5c9 4124 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4125 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4126 result = desc_data (actual);
14f9c5c9 4127 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4128 {
4129 if (VALUE_LVAL (actual) != lval_memory)
4130 {
4131 struct value *val;
5b4ee69b 4132
df407dfe 4133 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4134 val = allocate_value (actual_type);
990a07ab 4135 memcpy ((char *) value_contents_raw (val),
0fd88904 4136 (char *) value_contents (actual),
4c4b4cd2 4137 TYPE_LENGTH (actual_type));
40bc484c 4138 actual = ensure_lval (val);
4c4b4cd2 4139 }
a84a8a0d 4140 result = value_addr (actual);
4c4b4cd2 4141 }
a84a8a0d
JB
4142 else
4143 return actual;
b1af9e97 4144 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4145 }
4146 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4147 return ada_value_ind (actual);
4148
4149 return actual;
4150}
4151
438c98a1
JB
4152/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4153 type TYPE. This is usually an inefficient no-op except on some targets
4154 (such as AVR) where the representation of a pointer and an address
4155 differs. */
4156
4157static CORE_ADDR
4158value_pointer (struct value *value, struct type *type)
4159{
4160 struct gdbarch *gdbarch = get_type_arch (type);
4161 unsigned len = TYPE_LENGTH (type);
4162 gdb_byte *buf = alloca (len);
4163 CORE_ADDR addr;
4164
4165 addr = value_address (value);
4166 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4167 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4168 return addr;
4169}
4170
14f9c5c9 4171
4c4b4cd2
PH
4172/* Push a descriptor of type TYPE for array value ARR on the stack at
4173 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4174 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4175 to-descriptor type rather than a descriptor type), a struct value *
4176 representing a pointer to this descriptor. */
14f9c5c9 4177
d2e4a39e 4178static struct value *
40bc484c 4179make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4180{
d2e4a39e
AS
4181 struct type *bounds_type = desc_bounds_type (type);
4182 struct type *desc_type = desc_base_type (type);
4183 struct value *descriptor = allocate_value (desc_type);
4184 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4185 int i;
d2e4a39e 4186
0963b4bd
MS
4187 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4188 i > 0; i -= 1)
14f9c5c9 4189 {
19f220c3
JK
4190 modify_field (value_type (bounds), value_contents_writeable (bounds),
4191 ada_array_bound (arr, i, 0),
4192 desc_bound_bitpos (bounds_type, i, 0),
4193 desc_bound_bitsize (bounds_type, i, 0));
4194 modify_field (value_type (bounds), value_contents_writeable (bounds),
4195 ada_array_bound (arr, i, 1),
4196 desc_bound_bitpos (bounds_type, i, 1),
4197 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4198 }
d2e4a39e 4199
40bc484c 4200 bounds = ensure_lval (bounds);
d2e4a39e 4201
19f220c3
JK
4202 modify_field (value_type (descriptor),
4203 value_contents_writeable (descriptor),
4204 value_pointer (ensure_lval (arr),
4205 TYPE_FIELD_TYPE (desc_type, 0)),
4206 fat_pntr_data_bitpos (desc_type),
4207 fat_pntr_data_bitsize (desc_type));
4208
4209 modify_field (value_type (descriptor),
4210 value_contents_writeable (descriptor),
4211 value_pointer (bounds,
4212 TYPE_FIELD_TYPE (desc_type, 1)),
4213 fat_pntr_bounds_bitpos (desc_type),
4214 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4215
40bc484c 4216 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4217
4218 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4219 return value_addr (descriptor);
4220 else
4221 return descriptor;
4222}
14f9c5c9 4223\f
963a6417 4224/* Dummy definitions for an experimental caching module that is not
0963b4bd 4225 * used in the public sources. */
96d887e8 4226
96d887e8
PH
4227static int
4228lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4229 struct symbol **sym, struct block **block)
96d887e8
PH
4230{
4231 return 0;
4232}
4233
4234static void
4235cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4236 const struct block *block)
96d887e8
PH
4237{
4238}
4c4b4cd2
PH
4239\f
4240 /* Symbol Lookup */
4241
c0431670
JB
4242/* Return nonzero if wild matching should be used when searching for
4243 all symbols matching LOOKUP_NAME.
4244
4245 LOOKUP_NAME is expected to be a symbol name after transformation
4246 for Ada lookups (see ada_name_for_lookup). */
4247
4248static int
4249should_use_wild_match (const char *lookup_name)
4250{
4251 return (strstr (lookup_name, "__") == NULL);
4252}
4253
4c4b4cd2
PH
4254/* Return the result of a standard (literal, C-like) lookup of NAME in
4255 given DOMAIN, visible from lexical block BLOCK. */
4256
4257static struct symbol *
4258standard_lookup (const char *name, const struct block *block,
4259 domain_enum domain)
4260{
acbd605d
MGD
4261 /* Initialize it just to avoid a GCC false warning. */
4262 struct symbol *sym = NULL;
4c4b4cd2 4263
2570f2b7 4264 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4265 return sym;
2570f2b7
UW
4266 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4267 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4268 return sym;
4269}
4270
4271
4272/* Non-zero iff there is at least one non-function/non-enumeral symbol
4273 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4274 since they contend in overloading in the same way. */
4275static int
4276is_nonfunction (struct ada_symbol_info syms[], int n)
4277{
4278 int i;
4279
4280 for (i = 0; i < n; i += 1)
4281 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4282 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4283 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4284 return 1;
4285
4286 return 0;
4287}
4288
4289/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4290 struct types. Otherwise, they may not. */
14f9c5c9
AS
4291
4292static int
d2e4a39e 4293equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4294{
d2e4a39e 4295 if (type0 == type1)
14f9c5c9 4296 return 1;
d2e4a39e 4297 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4298 || TYPE_CODE (type0) != TYPE_CODE (type1))
4299 return 0;
d2e4a39e 4300 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4301 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4302 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4303 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4304 return 1;
d2e4a39e 4305
14f9c5c9
AS
4306 return 0;
4307}
4308
4309/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4310 no more defined than that of SYM1. */
14f9c5c9
AS
4311
4312static int
d2e4a39e 4313lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4314{
4315 if (sym0 == sym1)
4316 return 1;
176620f1 4317 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4318 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4319 return 0;
4320
d2e4a39e 4321 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4322 {
4323 case LOC_UNDEF:
4324 return 1;
4325 case LOC_TYPEDEF:
4326 {
4c4b4cd2
PH
4327 struct type *type0 = SYMBOL_TYPE (sym0);
4328 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4329 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4330 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4331 int len0 = strlen (name0);
5b4ee69b 4332
4c4b4cd2
PH
4333 return
4334 TYPE_CODE (type0) == TYPE_CODE (type1)
4335 && (equiv_types (type0, type1)
4336 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4337 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4338 }
4339 case LOC_CONST:
4340 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4341 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4342 default:
4343 return 0;
14f9c5c9
AS
4344 }
4345}
4346
4c4b4cd2
PH
4347/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4348 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4349
4350static void
76a01679
JB
4351add_defn_to_vec (struct obstack *obstackp,
4352 struct symbol *sym,
2570f2b7 4353 struct block *block)
14f9c5c9
AS
4354{
4355 int i;
4c4b4cd2 4356 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4357
529cad9c
PH
4358 /* Do not try to complete stub types, as the debugger is probably
4359 already scanning all symbols matching a certain name at the
4360 time when this function is called. Trying to replace the stub
4361 type by its associated full type will cause us to restart a scan
4362 which may lead to an infinite recursion. Instead, the client
4363 collecting the matching symbols will end up collecting several
4364 matches, with at least one of them complete. It can then filter
4365 out the stub ones if needed. */
4366
4c4b4cd2
PH
4367 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4368 {
4369 if (lesseq_defined_than (sym, prevDefns[i].sym))
4370 return;
4371 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4372 {
4373 prevDefns[i].sym = sym;
4374 prevDefns[i].block = block;
4c4b4cd2 4375 return;
76a01679 4376 }
4c4b4cd2
PH
4377 }
4378
4379 {
4380 struct ada_symbol_info info;
4381
4382 info.sym = sym;
4383 info.block = block;
4c4b4cd2
PH
4384 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4385 }
4386}
4387
4388/* Number of ada_symbol_info structures currently collected in
4389 current vector in *OBSTACKP. */
4390
76a01679
JB
4391static int
4392num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4393{
4394 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4395}
4396
4397/* Vector of ada_symbol_info structures currently collected in current
4398 vector in *OBSTACKP. If FINISH, close off the vector and return
4399 its final address. */
4400
76a01679 4401static struct ada_symbol_info *
4c4b4cd2
PH
4402defns_collected (struct obstack *obstackp, int finish)
4403{
4404 if (finish)
4405 return obstack_finish (obstackp);
4406 else
4407 return (struct ada_symbol_info *) obstack_base (obstackp);
4408}
4409
96d887e8 4410/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4411 rules. Returns NULL if there is no such minimal symbol. Names
4412 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4413 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4414
96d887e8
PH
4415struct minimal_symbol *
4416ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4417{
4c4b4cd2 4418 struct objfile *objfile;
96d887e8 4419 struct minimal_symbol *msymbol;
dc4024cd 4420 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4421
c0431670
JB
4422 /* Special case: If the user specifies a symbol name inside package
4423 Standard, do a non-wild matching of the symbol name without
4424 the "standard__" prefix. This was primarily introduced in order
4425 to allow the user to specifically access the standard exceptions
4426 using, for instance, Standard.Constraint_Error when Constraint_Error
4427 is ambiguous (due to the user defining its own Constraint_Error
4428 entity inside its program). */
96d887e8 4429 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4430 name += sizeof ("standard__") - 1;
4c4b4cd2 4431
96d887e8
PH
4432 ALL_MSYMBOLS (objfile, msymbol)
4433 {
dc4024cd 4434 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4435 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4436 return msymbol;
4437 }
4c4b4cd2 4438
96d887e8
PH
4439 return NULL;
4440}
4c4b4cd2 4441
96d887e8
PH
4442/* For all subprograms that statically enclose the subprogram of the
4443 selected frame, add symbols matching identifier NAME in DOMAIN
4444 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4445 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4446 with a wildcard prefix. */
4c4b4cd2 4447
96d887e8
PH
4448static void
4449add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4450 const char *name, domain_enum namespace,
48b78332 4451 int wild_match_p)
96d887e8 4452{
96d887e8 4453}
14f9c5c9 4454
96d887e8
PH
4455/* True if TYPE is definitely an artificial type supplied to a symbol
4456 for which no debugging information was given in the symbol file. */
14f9c5c9 4457
96d887e8
PH
4458static int
4459is_nondebugging_type (struct type *type)
4460{
0d5cff50 4461 const char *name = ada_type_name (type);
5b4ee69b 4462
96d887e8
PH
4463 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4464}
4c4b4cd2 4465
8f17729f
JB
4466/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4467 that are deemed "identical" for practical purposes.
4468
4469 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4470 types and that their number of enumerals is identical (in other
4471 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4472
4473static int
4474ada_identical_enum_types_p (struct type *type1, struct type *type2)
4475{
4476 int i;
4477
4478 /* The heuristic we use here is fairly conservative. We consider
4479 that 2 enumerate types are identical if they have the same
4480 number of enumerals and that all enumerals have the same
4481 underlying value and name. */
4482
4483 /* All enums in the type should have an identical underlying value. */
4484 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4485 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4486 return 0;
4487
4488 /* All enumerals should also have the same name (modulo any numerical
4489 suffix). */
4490 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4491 {
0d5cff50
DE
4492 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4493 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4494 int len_1 = strlen (name_1);
4495 int len_2 = strlen (name_2);
4496
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4498 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4499 if (len_1 != len_2
4500 || strncmp (TYPE_FIELD_NAME (type1, i),
4501 TYPE_FIELD_NAME (type2, i),
4502 len_1) != 0)
4503 return 0;
4504 }
4505
4506 return 1;
4507}
4508
4509/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4510 that are deemed "identical" for practical purposes. Sometimes,
4511 enumerals are not strictly identical, but their types are so similar
4512 that they can be considered identical.
4513
4514 For instance, consider the following code:
4515
4516 type Color is (Black, Red, Green, Blue, White);
4517 type RGB_Color is new Color range Red .. Blue;
4518
4519 Type RGB_Color is a subrange of an implicit type which is a copy
4520 of type Color. If we call that implicit type RGB_ColorB ("B" is
4521 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4522 As a result, when an expression references any of the enumeral
4523 by name (Eg. "print green"), the expression is technically
4524 ambiguous and the user should be asked to disambiguate. But
4525 doing so would only hinder the user, since it wouldn't matter
4526 what choice he makes, the outcome would always be the same.
4527 So, for practical purposes, we consider them as the same. */
4528
4529static int
4530symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4531{
4532 int i;
4533
4534 /* Before performing a thorough comparison check of each type,
4535 we perform a series of inexpensive checks. We expect that these
4536 checks will quickly fail in the vast majority of cases, and thus
4537 help prevent the unnecessary use of a more expensive comparison.
4538 Said comparison also expects us to make some of these checks
4539 (see ada_identical_enum_types_p). */
4540
4541 /* Quick check: All symbols should have an enum type. */
4542 for (i = 0; i < nsyms; i++)
4543 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4544 return 0;
4545
4546 /* Quick check: They should all have the same value. */
4547 for (i = 1; i < nsyms; i++)
4548 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4549 return 0;
4550
4551 /* Quick check: They should all have the same number of enumerals. */
4552 for (i = 1; i < nsyms; i++)
4553 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4554 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4555 return 0;
4556
4557 /* All the sanity checks passed, so we might have a set of
4558 identical enumeration types. Perform a more complete
4559 comparison of the type of each symbol. */
4560 for (i = 1; i < nsyms; i++)
4561 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4562 SYMBOL_TYPE (syms[0].sym)))
4563 return 0;
4564
4565 return 1;
4566}
4567
96d887e8
PH
4568/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4569 duplicate other symbols in the list (The only case I know of where
4570 this happens is when object files containing stabs-in-ecoff are
4571 linked with files containing ordinary ecoff debugging symbols (or no
4572 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4573 Returns the number of items in the modified list. */
4c4b4cd2 4574
96d887e8
PH
4575static int
4576remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4577{
4578 int i, j;
4c4b4cd2 4579
8f17729f
JB
4580 /* We should never be called with less than 2 symbols, as there
4581 cannot be any extra symbol in that case. But it's easy to
4582 handle, since we have nothing to do in that case. */
4583 if (nsyms < 2)
4584 return nsyms;
4585
96d887e8
PH
4586 i = 0;
4587 while (i < nsyms)
4588 {
a35ddb44 4589 int remove_p = 0;
339c13b6
JB
4590
4591 /* If two symbols have the same name and one of them is a stub type,
4592 the get rid of the stub. */
4593
4594 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4595 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4596 {
4597 for (j = 0; j < nsyms; j++)
4598 {
4599 if (j != i
4600 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4601 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4602 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4603 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4604 remove_p = 1;
339c13b6
JB
4605 }
4606 }
4607
4608 /* Two symbols with the same name, same class and same address
4609 should be identical. */
4610
4611 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4612 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4613 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4614 {
4615 for (j = 0; j < nsyms; j += 1)
4616 {
4617 if (i != j
4618 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4619 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4620 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4621 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4622 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4623 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4624 remove_p = 1;
4c4b4cd2 4625 }
4c4b4cd2 4626 }
339c13b6 4627
a35ddb44 4628 if (remove_p)
339c13b6
JB
4629 {
4630 for (j = i + 1; j < nsyms; j += 1)
4631 syms[j - 1] = syms[j];
4632 nsyms -= 1;
4633 }
4634
96d887e8 4635 i += 1;
14f9c5c9 4636 }
8f17729f
JB
4637
4638 /* If all the remaining symbols are identical enumerals, then
4639 just keep the first one and discard the rest.
4640
4641 Unlike what we did previously, we do not discard any entry
4642 unless they are ALL identical. This is because the symbol
4643 comparison is not a strict comparison, but rather a practical
4644 comparison. If all symbols are considered identical, then
4645 we can just go ahead and use the first one and discard the rest.
4646 But if we cannot reduce the list to a single element, we have
4647 to ask the user to disambiguate anyways. And if we have to
4648 present a multiple-choice menu, it's less confusing if the list
4649 isn't missing some choices that were identical and yet distinct. */
4650 if (symbols_are_identical_enums (syms, nsyms))
4651 nsyms = 1;
4652
96d887e8 4653 return nsyms;
14f9c5c9
AS
4654}
4655
96d887e8
PH
4656/* Given a type that corresponds to a renaming entity, use the type name
4657 to extract the scope (package name or function name, fully qualified,
4658 and following the GNAT encoding convention) where this renaming has been
4659 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4660
96d887e8
PH
4661static char *
4662xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4663{
96d887e8 4664 /* The renaming types adhere to the following convention:
0963b4bd 4665 <scope>__<rename>___<XR extension>.
96d887e8
PH
4666 So, to extract the scope, we search for the "___XR" extension,
4667 and then backtrack until we find the first "__". */
76a01679 4668
96d887e8
PH
4669 const char *name = type_name_no_tag (renaming_type);
4670 char *suffix = strstr (name, "___XR");
4671 char *last;
4672 int scope_len;
4673 char *scope;
14f9c5c9 4674
96d887e8
PH
4675 /* Now, backtrack a bit until we find the first "__". Start looking
4676 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4677
96d887e8
PH
4678 for (last = suffix - 3; last > name; last--)
4679 if (last[0] == '_' && last[1] == '_')
4680 break;
76a01679 4681
96d887e8 4682 /* Make a copy of scope and return it. */
14f9c5c9 4683
96d887e8
PH
4684 scope_len = last - name;
4685 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4686
96d887e8
PH
4687 strncpy (scope, name, scope_len);
4688 scope[scope_len] = '\0';
4c4b4cd2 4689
96d887e8 4690 return scope;
4c4b4cd2
PH
4691}
4692
96d887e8 4693/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4694
96d887e8
PH
4695static int
4696is_package_name (const char *name)
4c4b4cd2 4697{
96d887e8
PH
4698 /* Here, We take advantage of the fact that no symbols are generated
4699 for packages, while symbols are generated for each function.
4700 So the condition for NAME represent a package becomes equivalent
4701 to NAME not existing in our list of symbols. There is only one
4702 small complication with library-level functions (see below). */
4c4b4cd2 4703
96d887e8 4704 char *fun_name;
76a01679 4705
96d887e8
PH
4706 /* If it is a function that has not been defined at library level,
4707 then we should be able to look it up in the symbols. */
4708 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4709 return 0;
14f9c5c9 4710
96d887e8
PH
4711 /* Library-level function names start with "_ada_". See if function
4712 "_ada_" followed by NAME can be found. */
14f9c5c9 4713
96d887e8 4714 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4715 functions names cannot contain "__" in them. */
96d887e8
PH
4716 if (strstr (name, "__") != NULL)
4717 return 0;
4c4b4cd2 4718
b435e160 4719 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4720
96d887e8
PH
4721 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4722}
14f9c5c9 4723
96d887e8 4724/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4725 not visible from FUNCTION_NAME. */
14f9c5c9 4726
96d887e8 4727static int
0d5cff50 4728old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4729{
aeb5907d
JB
4730 char *scope;
4731
4732 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4733 return 0;
4734
4735 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4736
96d887e8 4737 make_cleanup (xfree, scope);
14f9c5c9 4738
96d887e8
PH
4739 /* If the rename has been defined in a package, then it is visible. */
4740 if (is_package_name (scope))
aeb5907d 4741 return 0;
14f9c5c9 4742
96d887e8
PH
4743 /* Check that the rename is in the current function scope by checking
4744 that its name starts with SCOPE. */
76a01679 4745
96d887e8
PH
4746 /* If the function name starts with "_ada_", it means that it is
4747 a library-level function. Strip this prefix before doing the
4748 comparison, as the encoding for the renaming does not contain
4749 this prefix. */
4750 if (strncmp (function_name, "_ada_", 5) == 0)
4751 function_name += 5;
f26caa11 4752
aeb5907d 4753 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4754}
4755
aeb5907d
JB
4756/* Remove entries from SYMS that corresponds to a renaming entity that
4757 is not visible from the function associated with CURRENT_BLOCK or
4758 that is superfluous due to the presence of more specific renaming
4759 information. Places surviving symbols in the initial entries of
4760 SYMS and returns the number of surviving symbols.
96d887e8
PH
4761
4762 Rationale:
aeb5907d
JB
4763 First, in cases where an object renaming is implemented as a
4764 reference variable, GNAT may produce both the actual reference
4765 variable and the renaming encoding. In this case, we discard the
4766 latter.
4767
4768 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4769 entity. Unfortunately, STABS currently does not support the definition
4770 of types that are local to a given lexical block, so all renamings types
4771 are emitted at library level. As a consequence, if an application
4772 contains two renaming entities using the same name, and a user tries to
4773 print the value of one of these entities, the result of the ada symbol
4774 lookup will also contain the wrong renaming type.
f26caa11 4775
96d887e8
PH
4776 This function partially covers for this limitation by attempting to
4777 remove from the SYMS list renaming symbols that should be visible
4778 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4779 method with the current information available. The implementation
4780 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4781
4782 - When the user tries to print a rename in a function while there
4783 is another rename entity defined in a package: Normally, the
4784 rename in the function has precedence over the rename in the
4785 package, so the latter should be removed from the list. This is
4786 currently not the case.
4787
4788 - This function will incorrectly remove valid renames if
4789 the CURRENT_BLOCK corresponds to a function which symbol name
4790 has been changed by an "Export" pragma. As a consequence,
4791 the user will be unable to print such rename entities. */
4c4b4cd2 4792
14f9c5c9 4793static int
aeb5907d
JB
4794remove_irrelevant_renamings (struct ada_symbol_info *syms,
4795 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4796{
4797 struct symbol *current_function;
0d5cff50 4798 const char *current_function_name;
4c4b4cd2 4799 int i;
aeb5907d
JB
4800 int is_new_style_renaming;
4801
4802 /* If there is both a renaming foo___XR... encoded as a variable and
4803 a simple variable foo in the same block, discard the latter.
0963b4bd 4804 First, zero out such symbols, then compress. */
aeb5907d
JB
4805 is_new_style_renaming = 0;
4806 for (i = 0; i < nsyms; i += 1)
4807 {
4808 struct symbol *sym = syms[i].sym;
270140bd 4809 const struct block *block = syms[i].block;
aeb5907d
JB
4810 const char *name;
4811 const char *suffix;
4812
4813 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4814 continue;
4815 name = SYMBOL_LINKAGE_NAME (sym);
4816 suffix = strstr (name, "___XR");
4817
4818 if (suffix != NULL)
4819 {
4820 int name_len = suffix - name;
4821 int j;
5b4ee69b 4822
aeb5907d
JB
4823 is_new_style_renaming = 1;
4824 for (j = 0; j < nsyms; j += 1)
4825 if (i != j && syms[j].sym != NULL
4826 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4827 name_len) == 0
4828 && block == syms[j].block)
4829 syms[j].sym = NULL;
4830 }
4831 }
4832 if (is_new_style_renaming)
4833 {
4834 int j, k;
4835
4836 for (j = k = 0; j < nsyms; j += 1)
4837 if (syms[j].sym != NULL)
4838 {
4839 syms[k] = syms[j];
4840 k += 1;
4841 }
4842 return k;
4843 }
4c4b4cd2
PH
4844
4845 /* Extract the function name associated to CURRENT_BLOCK.
4846 Abort if unable to do so. */
76a01679 4847
4c4b4cd2
PH
4848 if (current_block == NULL)
4849 return nsyms;
76a01679 4850
7f0df278 4851 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4852 if (current_function == NULL)
4853 return nsyms;
4854
4855 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4856 if (current_function_name == NULL)
4857 return nsyms;
4858
4859 /* Check each of the symbols, and remove it from the list if it is
4860 a type corresponding to a renaming that is out of the scope of
4861 the current block. */
4862
4863 i = 0;
4864 while (i < nsyms)
4865 {
aeb5907d
JB
4866 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4867 == ADA_OBJECT_RENAMING
4868 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4869 {
4870 int j;
5b4ee69b 4871
aeb5907d 4872 for (j = i + 1; j < nsyms; j += 1)
76a01679 4873 syms[j - 1] = syms[j];
4c4b4cd2
PH
4874 nsyms -= 1;
4875 }
4876 else
4877 i += 1;
4878 }
4879
4880 return nsyms;
4881}
4882
339c13b6
JB
4883/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4884 whose name and domain match NAME and DOMAIN respectively.
4885 If no match was found, then extend the search to "enclosing"
4886 routines (in other words, if we're inside a nested function,
4887 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4888 If WILD_MATCH_P is nonzero, perform the naming matching in
4889 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4890
4891 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4892
4893static void
4894ada_add_local_symbols (struct obstack *obstackp, const char *name,
4895 struct block *block, domain_enum domain,
d0a8ab18 4896 int wild_match_p)
339c13b6
JB
4897{
4898 int block_depth = 0;
4899
4900 while (block != NULL)
4901 {
4902 block_depth += 1;
d0a8ab18
JB
4903 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4904 wild_match_p);
339c13b6
JB
4905
4906 /* If we found a non-function match, assume that's the one. */
4907 if (is_nonfunction (defns_collected (obstackp, 0),
4908 num_defns_collected (obstackp)))
4909 return;
4910
4911 block = BLOCK_SUPERBLOCK (block);
4912 }
4913
4914 /* If no luck so far, try to find NAME as a local symbol in some lexically
4915 enclosing subprogram. */
4916 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4917 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4918}
4919
ccefe4c4 4920/* An object of this type is used as the user_data argument when
40658b94 4921 calling the map_matching_symbols method. */
ccefe4c4 4922
40658b94 4923struct match_data
ccefe4c4 4924{
40658b94 4925 struct objfile *objfile;
ccefe4c4 4926 struct obstack *obstackp;
40658b94
PH
4927 struct symbol *arg_sym;
4928 int found_sym;
ccefe4c4
TT
4929};
4930
40658b94
PH
4931/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4932 to a list of symbols. DATA0 is a pointer to a struct match_data *
4933 containing the obstack that collects the symbol list, the file that SYM
4934 must come from, a flag indicating whether a non-argument symbol has
4935 been found in the current block, and the last argument symbol
4936 passed in SYM within the current block (if any). When SYM is null,
4937 marking the end of a block, the argument symbol is added if no
4938 other has been found. */
ccefe4c4 4939
40658b94
PH
4940static int
4941aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4942{
40658b94
PH
4943 struct match_data *data = (struct match_data *) data0;
4944
4945 if (sym == NULL)
4946 {
4947 if (!data->found_sym && data->arg_sym != NULL)
4948 add_defn_to_vec (data->obstackp,
4949 fixup_symbol_section (data->arg_sym, data->objfile),
4950 block);
4951 data->found_sym = 0;
4952 data->arg_sym = NULL;
4953 }
4954 else
4955 {
4956 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4957 return 0;
4958 else if (SYMBOL_IS_ARGUMENT (sym))
4959 data->arg_sym = sym;
4960 else
4961 {
4962 data->found_sym = 1;
4963 add_defn_to_vec (data->obstackp,
4964 fixup_symbol_section (sym, data->objfile),
4965 block);
4966 }
4967 }
4968 return 0;
4969}
4970
4971/* Compare STRING1 to STRING2, with results as for strcmp.
4972 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4973 implies compare_names (STRING1, STRING2) (they may differ as to
4974 what symbols compare equal). */
5b4ee69b 4975
40658b94
PH
4976static int
4977compare_names (const char *string1, const char *string2)
4978{
4979 while (*string1 != '\0' && *string2 != '\0')
4980 {
4981 if (isspace (*string1) || isspace (*string2))
4982 return strcmp_iw_ordered (string1, string2);
4983 if (*string1 != *string2)
4984 break;
4985 string1 += 1;
4986 string2 += 1;
4987 }
4988 switch (*string1)
4989 {
4990 case '(':
4991 return strcmp_iw_ordered (string1, string2);
4992 case '_':
4993 if (*string2 == '\0')
4994 {
052874e8 4995 if (is_name_suffix (string1))
40658b94
PH
4996 return 0;
4997 else
1a1d5513 4998 return 1;
40658b94 4999 }
dbb8534f 5000 /* FALLTHROUGH */
40658b94
PH
5001 default:
5002 if (*string2 == '(')
5003 return strcmp_iw_ordered (string1, string2);
5004 else
5005 return *string1 - *string2;
5006 }
ccefe4c4
TT
5007}
5008
339c13b6
JB
5009/* Add to OBSTACKP all non-local symbols whose name and domain match
5010 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5011 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5012
5013static void
40658b94
PH
5014add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5015 domain_enum domain, int global,
5016 int is_wild_match)
339c13b6
JB
5017{
5018 struct objfile *objfile;
40658b94 5019 struct match_data data;
339c13b6 5020
6475f2fe 5021 memset (&data, 0, sizeof data);
ccefe4c4 5022 data.obstackp = obstackp;
339c13b6 5023
ccefe4c4 5024 ALL_OBJFILES (objfile)
40658b94
PH
5025 {
5026 data.objfile = objfile;
5027
5028 if (is_wild_match)
5029 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5030 aux_add_nonlocal_symbols, &data,
5031 wild_match, NULL);
5032 else
5033 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5034 aux_add_nonlocal_symbols, &data,
5035 full_match, compare_names);
5036 }
5037
5038 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5039 {
5040 ALL_OBJFILES (objfile)
5041 {
5042 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5043 strcpy (name1, "_ada_");
5044 strcpy (name1 + sizeof ("_ada_") - 1, name);
5045 data.objfile = objfile;
0963b4bd
MS
5046 objfile->sf->qf->map_matching_symbols (name1, domain,
5047 objfile, global,
5048 aux_add_nonlocal_symbols,
5049 &data,
40658b94
PH
5050 full_match, compare_names);
5051 }
5052 }
339c13b6
JB
5053}
5054
4eeaa230
DE
5055/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5056 non-zero, enclosing scope and in global scopes, returning the number of
5057 matches.
9f88c959 5058 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5059 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5060 any) in which they were found. This vector is transient---good only to
5061 the next call of ada_lookup_symbol_list.
5062
5063 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5064 symbol match within the nest of blocks whose innermost member is BLOCK0,
5065 is the one match returned (no other matches in that or
d9680e73 5066 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5067 surrounding BLOCK0, then these alone are returned.
5068
9f88c959 5069 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5070 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5071
4eeaa230
DE
5072static int
5073ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5074 domain_enum namespace,
5075 struct ada_symbol_info **results,
5076 int full_search)
14f9c5c9
AS
5077{
5078 struct symbol *sym;
14f9c5c9 5079 struct block *block;
4c4b4cd2 5080 const char *name;
82ccd55e 5081 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5082 int cacheIfUnique;
4c4b4cd2 5083 int ndefns;
14f9c5c9 5084
4c4b4cd2
PH
5085 obstack_free (&symbol_list_obstack, NULL);
5086 obstack_init (&symbol_list_obstack);
14f9c5c9 5087
14f9c5c9
AS
5088 cacheIfUnique = 0;
5089
5090 /* Search specified block and its superiors. */
5091
4c4b4cd2 5092 name = name0;
76a01679
JB
5093 block = (struct block *) block0; /* FIXME: No cast ought to be
5094 needed, but adding const will
5095 have a cascade effect. */
339c13b6
JB
5096
5097 /* Special case: If the user specifies a symbol name inside package
5098 Standard, do a non-wild matching of the symbol name without
5099 the "standard__" prefix. This was primarily introduced in order
5100 to allow the user to specifically access the standard exceptions
5101 using, for instance, Standard.Constraint_Error when Constraint_Error
5102 is ambiguous (due to the user defining its own Constraint_Error
5103 entity inside its program). */
4c4b4cd2
PH
5104 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5105 {
4c4b4cd2
PH
5106 block = NULL;
5107 name = name0 + sizeof ("standard__") - 1;
5108 }
5109
339c13b6 5110 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5111
4eeaa230
DE
5112 if (block != NULL)
5113 {
5114 if (full_search)
5115 {
5116 ada_add_local_symbols (&symbol_list_obstack, name, block,
5117 namespace, wild_match_p);
5118 }
5119 else
5120 {
5121 /* In the !full_search case we're are being called by
5122 ada_iterate_over_symbols, and we don't want to search
5123 superblocks. */
5124 ada_add_block_symbols (&symbol_list_obstack, block, name,
5125 namespace, NULL, wild_match_p);
5126 }
5127 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5128 goto done;
5129 }
d2e4a39e 5130
339c13b6
JB
5131 /* No non-global symbols found. Check our cache to see if we have
5132 already performed this search before. If we have, then return
5133 the same result. */
5134
14f9c5c9 5135 cacheIfUnique = 1;
2570f2b7 5136 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5137 {
5138 if (sym != NULL)
2570f2b7 5139 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5140 goto done;
5141 }
14f9c5c9 5142
339c13b6
JB
5143 /* Search symbols from all global blocks. */
5144
40658b94 5145 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5146 wild_match_p);
d2e4a39e 5147
4c4b4cd2 5148 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5149 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5150
4c4b4cd2 5151 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5152 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5153 wild_match_p);
14f9c5c9 5154
4c4b4cd2
PH
5155done:
5156 ndefns = num_defns_collected (&symbol_list_obstack);
5157 *results = defns_collected (&symbol_list_obstack, 1);
5158
5159 ndefns = remove_extra_symbols (*results, ndefns);
5160
2ad01556 5161 if (ndefns == 0 && full_search)
2570f2b7 5162 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5163
2ad01556 5164 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5165 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5166
aeb5907d 5167 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5168
14f9c5c9
AS
5169 return ndefns;
5170}
5171
4eeaa230
DE
5172/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5173 in global scopes, returning the number of matches, and setting *RESULTS
5174 to a vector of (SYM,BLOCK) tuples.
5175 See ada_lookup_symbol_list_worker for further details. */
5176
5177int
5178ada_lookup_symbol_list (const char *name0, const struct block *block0,
5179 domain_enum domain, struct ada_symbol_info **results)
5180{
5181 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5182}
5183
5184/* Implementation of the la_iterate_over_symbols method. */
5185
5186static void
5187ada_iterate_over_symbols (const struct block *block,
5188 const char *name, domain_enum domain,
5189 symbol_found_callback_ftype *callback,
5190 void *data)
5191{
5192 int ndefs, i;
5193 struct ada_symbol_info *results;
5194
5195 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5196 for (i = 0; i < ndefs; ++i)
5197 {
5198 if (! (*callback) (results[i].sym, data))
5199 break;
5200 }
5201}
5202
f8eba3c6
TT
5203/* If NAME is the name of an entity, return a string that should
5204 be used to look that entity up in Ada units. This string should
5205 be deallocated after use using xfree.
5206
5207 NAME can have any form that the "break" or "print" commands might
5208 recognize. In other words, it does not have to be the "natural"
5209 name, or the "encoded" name. */
5210
5211char *
5212ada_name_for_lookup (const char *name)
5213{
5214 char *canon;
5215 int nlen = strlen (name);
5216
5217 if (name[0] == '<' && name[nlen - 1] == '>')
5218 {
5219 canon = xmalloc (nlen - 1);
5220 memcpy (canon, name + 1, nlen - 2);
5221 canon[nlen - 2] = '\0';
5222 }
5223 else
5224 canon = xstrdup (ada_encode (ada_fold_name (name)));
5225 return canon;
5226}
5227
4e5c77fe
JB
5228/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5229 to 1, but choosing the first symbol found if there are multiple
5230 choices.
5231
5e2336be
JB
5232 The result is stored in *INFO, which must be non-NULL.
5233 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5234
5235void
5236ada_lookup_encoded_symbol (const char *name, const struct block *block,
5237 domain_enum namespace,
5e2336be 5238 struct ada_symbol_info *info)
14f9c5c9 5239{
4c4b4cd2 5240 struct ada_symbol_info *candidates;
14f9c5c9
AS
5241 int n_candidates;
5242
5e2336be
JB
5243 gdb_assert (info != NULL);
5244 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5245
4eeaa230 5246 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5247 if (n_candidates == 0)
4e5c77fe 5248 return;
4c4b4cd2 5249
5e2336be
JB
5250 *info = candidates[0];
5251 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5252}
aeb5907d
JB
5253
5254/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5255 scope and in global scopes, or NULL if none. NAME is folded and
5256 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5257 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5258 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5259
aeb5907d
JB
5260struct symbol *
5261ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5262 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5263{
5e2336be 5264 struct ada_symbol_info info;
4e5c77fe 5265
aeb5907d
JB
5266 if (is_a_field_of_this != NULL)
5267 *is_a_field_of_this = 0;
5268
4e5c77fe 5269 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5270 block0, namespace, &info);
5271 return info.sym;
4c4b4cd2 5272}
14f9c5c9 5273
4c4b4cd2
PH
5274static struct symbol *
5275ada_lookup_symbol_nonlocal (const char *name,
76a01679 5276 const struct block *block,
21b556f4 5277 const domain_enum domain)
4c4b4cd2 5278{
94af9270 5279 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5280}
5281
5282
4c4b4cd2
PH
5283/* True iff STR is a possible encoded suffix of a normal Ada name
5284 that is to be ignored for matching purposes. Suffixes of parallel
5285 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5286 are given by any of the regular expressions:
4c4b4cd2 5287
babe1480
JB
5288 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5289 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5290 TKB [subprogram suffix for task bodies]
babe1480 5291 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5292 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5293
5294 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5295 match is performed. This sequence is used to differentiate homonyms,
5296 is an optional part of a valid name suffix. */
4c4b4cd2 5297
14f9c5c9 5298static int
d2e4a39e 5299is_name_suffix (const char *str)
14f9c5c9
AS
5300{
5301 int k;
4c4b4cd2
PH
5302 const char *matching;
5303 const int len = strlen (str);
5304
babe1480
JB
5305 /* Skip optional leading __[0-9]+. */
5306
4c4b4cd2
PH
5307 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5308 {
babe1480
JB
5309 str += 3;
5310 while (isdigit (str[0]))
5311 str += 1;
4c4b4cd2 5312 }
babe1480
JB
5313
5314 /* [.$][0-9]+ */
4c4b4cd2 5315
babe1480 5316 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5317 {
babe1480 5318 matching = str + 1;
4c4b4cd2
PH
5319 while (isdigit (matching[0]))
5320 matching += 1;
5321 if (matching[0] == '\0')
5322 return 1;
5323 }
5324
5325 /* ___[0-9]+ */
babe1480 5326
4c4b4cd2
PH
5327 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5328 {
5329 matching = str + 3;
5330 while (isdigit (matching[0]))
5331 matching += 1;
5332 if (matching[0] == '\0')
5333 return 1;
5334 }
5335
9ac7f98e
JB
5336 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5337
5338 if (strcmp (str, "TKB") == 0)
5339 return 1;
5340
529cad9c
PH
5341#if 0
5342 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5343 with a N at the end. Unfortunately, the compiler uses the same
5344 convention for other internal types it creates. So treating
529cad9c 5345 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5346 some regressions. For instance, consider the case of an enumerated
5347 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5348 name ends with N.
5349 Having a single character like this as a suffix carrying some
0963b4bd 5350 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5351 to be something like "_N" instead. In the meantime, do not do
5352 the following check. */
5353 /* Protected Object Subprograms */
5354 if (len == 1 && str [0] == 'N')
5355 return 1;
5356#endif
5357
5358 /* _E[0-9]+[bs]$ */
5359 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5360 {
5361 matching = str + 3;
5362 while (isdigit (matching[0]))
5363 matching += 1;
5364 if ((matching[0] == 'b' || matching[0] == 's')
5365 && matching [1] == '\0')
5366 return 1;
5367 }
5368
4c4b4cd2
PH
5369 /* ??? We should not modify STR directly, as we are doing below. This
5370 is fine in this case, but may become problematic later if we find
5371 that this alternative did not work, and want to try matching
5372 another one from the begining of STR. Since we modified it, we
5373 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5374 if (str[0] == 'X')
5375 {
5376 str += 1;
d2e4a39e 5377 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5378 {
5379 if (str[0] != 'n' && str[0] != 'b')
5380 return 0;
5381 str += 1;
5382 }
14f9c5c9 5383 }
babe1480 5384
14f9c5c9
AS
5385 if (str[0] == '\000')
5386 return 1;
babe1480 5387
d2e4a39e 5388 if (str[0] == '_')
14f9c5c9
AS
5389 {
5390 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5391 return 0;
d2e4a39e 5392 if (str[2] == '_')
4c4b4cd2 5393 {
61ee279c
PH
5394 if (strcmp (str + 3, "JM") == 0)
5395 return 1;
5396 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5397 the LJM suffix in favor of the JM one. But we will
5398 still accept LJM as a valid suffix for a reasonable
5399 amount of time, just to allow ourselves to debug programs
5400 compiled using an older version of GNAT. */
4c4b4cd2
PH
5401 if (strcmp (str + 3, "LJM") == 0)
5402 return 1;
5403 if (str[3] != 'X')
5404 return 0;
1265e4aa
JB
5405 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5406 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5407 return 1;
5408 if (str[4] == 'R' && str[5] != 'T')
5409 return 1;
5410 return 0;
5411 }
5412 if (!isdigit (str[2]))
5413 return 0;
5414 for (k = 3; str[k] != '\0'; k += 1)
5415 if (!isdigit (str[k]) && str[k] != '_')
5416 return 0;
14f9c5c9
AS
5417 return 1;
5418 }
4c4b4cd2 5419 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5420 {
4c4b4cd2
PH
5421 for (k = 2; str[k] != '\0'; k += 1)
5422 if (!isdigit (str[k]) && str[k] != '_')
5423 return 0;
14f9c5c9
AS
5424 return 1;
5425 }
5426 return 0;
5427}
d2e4a39e 5428
aeb5907d
JB
5429/* Return non-zero if the string starting at NAME and ending before
5430 NAME_END contains no capital letters. */
529cad9c
PH
5431
5432static int
5433is_valid_name_for_wild_match (const char *name0)
5434{
5435 const char *decoded_name = ada_decode (name0);
5436 int i;
5437
5823c3ef
JB
5438 /* If the decoded name starts with an angle bracket, it means that
5439 NAME0 does not follow the GNAT encoding format. It should then
5440 not be allowed as a possible wild match. */
5441 if (decoded_name[0] == '<')
5442 return 0;
5443
529cad9c
PH
5444 for (i=0; decoded_name[i] != '\0'; i++)
5445 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5446 return 0;
5447
5448 return 1;
5449}
5450
73589123
PH
5451/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5452 that could start a simple name. Assumes that *NAMEP points into
5453 the string beginning at NAME0. */
4c4b4cd2 5454
14f9c5c9 5455static int
73589123 5456advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5457{
73589123 5458 const char *name = *namep;
5b4ee69b 5459
5823c3ef 5460 while (1)
14f9c5c9 5461 {
aa27d0b3 5462 int t0, t1;
73589123
PH
5463
5464 t0 = *name;
5465 if (t0 == '_')
5466 {
5467 t1 = name[1];
5468 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5469 {
5470 name += 1;
5471 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5472 break;
5473 else
5474 name += 1;
5475 }
aa27d0b3
JB
5476 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5477 || name[2] == target0))
73589123
PH
5478 {
5479 name += 2;
5480 break;
5481 }
5482 else
5483 return 0;
5484 }
5485 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5486 name += 1;
5487 else
5823c3ef 5488 return 0;
73589123
PH
5489 }
5490
5491 *namep = name;
5492 return 1;
5493}
5494
5495/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5496 informational suffixes of NAME (i.e., for which is_name_suffix is
5497 true). Assumes that PATN is a lower-cased Ada simple name. */
5498
5499static int
5500wild_match (const char *name, const char *patn)
5501{
22e048c9 5502 const char *p;
73589123
PH
5503 const char *name0 = name;
5504
5505 while (1)
5506 {
5507 const char *match = name;
5508
5509 if (*name == *patn)
5510 {
5511 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5512 if (*p != *name)
5513 break;
5514 if (*p == '\0' && is_name_suffix (name))
5515 return match != name0 && !is_valid_name_for_wild_match (name0);
5516
5517 if (name[-1] == '_')
5518 name -= 1;
5519 }
5520 if (!advance_wild_match (&name, name0, *patn))
5521 return 1;
96d887e8 5522 }
96d887e8
PH
5523}
5524
40658b94
PH
5525/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5526 informational suffix. */
5527
c4d840bd
PH
5528static int
5529full_match (const char *sym_name, const char *search_name)
5530{
40658b94 5531 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5532}
5533
5534
96d887e8
PH
5535/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5536 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5537 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5538 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5539
5540static void
5541ada_add_block_symbols (struct obstack *obstackp,
76a01679 5542 struct block *block, const char *name,
96d887e8 5543 domain_enum domain, struct objfile *objfile,
2570f2b7 5544 int wild)
96d887e8 5545{
8157b174 5546 struct block_iterator iter;
96d887e8
PH
5547 int name_len = strlen (name);
5548 /* A matching argument symbol, if any. */
5549 struct symbol *arg_sym;
5550 /* Set true when we find a matching non-argument symbol. */
5551 int found_sym;
5552 struct symbol *sym;
5553
5554 arg_sym = NULL;
5555 found_sym = 0;
5556 if (wild)
5557 {
8157b174
TT
5558 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5559 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5560 {
5eeb2539
AR
5561 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5562 SYMBOL_DOMAIN (sym), domain)
73589123 5563 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5564 {
2a2d4dc3
AS
5565 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5566 continue;
5567 else if (SYMBOL_IS_ARGUMENT (sym))
5568 arg_sym = sym;
5569 else
5570 {
76a01679
JB
5571 found_sym = 1;
5572 add_defn_to_vec (obstackp,
5573 fixup_symbol_section (sym, objfile),
2570f2b7 5574 block);
76a01679
JB
5575 }
5576 }
5577 }
96d887e8
PH
5578 }
5579 else
5580 {
8157b174
TT
5581 for (sym = block_iter_match_first (block, name, full_match, &iter);
5582 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5583 {
5eeb2539
AR
5584 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5585 SYMBOL_DOMAIN (sym), domain))
76a01679 5586 {
c4d840bd
PH
5587 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5588 {
5589 if (SYMBOL_IS_ARGUMENT (sym))
5590 arg_sym = sym;
5591 else
2a2d4dc3 5592 {
c4d840bd
PH
5593 found_sym = 1;
5594 add_defn_to_vec (obstackp,
5595 fixup_symbol_section (sym, objfile),
5596 block);
2a2d4dc3 5597 }
c4d840bd 5598 }
76a01679
JB
5599 }
5600 }
96d887e8
PH
5601 }
5602
5603 if (!found_sym && arg_sym != NULL)
5604 {
76a01679
JB
5605 add_defn_to_vec (obstackp,
5606 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5607 block);
96d887e8
PH
5608 }
5609
5610 if (!wild)
5611 {
5612 arg_sym = NULL;
5613 found_sym = 0;
5614
5615 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5616 {
5eeb2539
AR
5617 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5618 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5619 {
5620 int cmp;
5621
5622 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5623 if (cmp == 0)
5624 {
5625 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5626 if (cmp == 0)
5627 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5628 name_len);
5629 }
5630
5631 if (cmp == 0
5632 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5633 {
2a2d4dc3
AS
5634 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5635 {
5636 if (SYMBOL_IS_ARGUMENT (sym))
5637 arg_sym = sym;
5638 else
5639 {
5640 found_sym = 1;
5641 add_defn_to_vec (obstackp,
5642 fixup_symbol_section (sym, objfile),
5643 block);
5644 }
5645 }
76a01679
JB
5646 }
5647 }
76a01679 5648 }
96d887e8
PH
5649
5650 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5651 They aren't parameters, right? */
5652 if (!found_sym && arg_sym != NULL)
5653 {
5654 add_defn_to_vec (obstackp,
76a01679 5655 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5656 block);
96d887e8
PH
5657 }
5658 }
5659}
5660\f
41d27058
JB
5661
5662 /* Symbol Completion */
5663
5664/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5665 name in a form that's appropriate for the completion. The result
5666 does not need to be deallocated, but is only good until the next call.
5667
5668 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5669 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5670 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5671 in its encoded form. */
5672
5673static const char *
5674symbol_completion_match (const char *sym_name,
5675 const char *text, int text_len,
6ea35997 5676 int wild_match_p, int encoded_p)
41d27058 5677{
41d27058
JB
5678 const int verbatim_match = (text[0] == '<');
5679 int match = 0;
5680
5681 if (verbatim_match)
5682 {
5683 /* Strip the leading angle bracket. */
5684 text = text + 1;
5685 text_len--;
5686 }
5687
5688 /* First, test against the fully qualified name of the symbol. */
5689
5690 if (strncmp (sym_name, text, text_len) == 0)
5691 match = 1;
5692
6ea35997 5693 if (match && !encoded_p)
41d27058
JB
5694 {
5695 /* One needed check before declaring a positive match is to verify
5696 that iff we are doing a verbatim match, the decoded version
5697 of the symbol name starts with '<'. Otherwise, this symbol name
5698 is not a suitable completion. */
5699 const char *sym_name_copy = sym_name;
5700 int has_angle_bracket;
5701
5702 sym_name = ada_decode (sym_name);
5703 has_angle_bracket = (sym_name[0] == '<');
5704 match = (has_angle_bracket == verbatim_match);
5705 sym_name = sym_name_copy;
5706 }
5707
5708 if (match && !verbatim_match)
5709 {
5710 /* When doing non-verbatim match, another check that needs to
5711 be done is to verify that the potentially matching symbol name
5712 does not include capital letters, because the ada-mode would
5713 not be able to understand these symbol names without the
5714 angle bracket notation. */
5715 const char *tmp;
5716
5717 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5718 if (*tmp != '\0')
5719 match = 0;
5720 }
5721
5722 /* Second: Try wild matching... */
5723
e701b3c0 5724 if (!match && wild_match_p)
41d27058
JB
5725 {
5726 /* Since we are doing wild matching, this means that TEXT
5727 may represent an unqualified symbol name. We therefore must
5728 also compare TEXT against the unqualified name of the symbol. */
5729 sym_name = ada_unqualified_name (ada_decode (sym_name));
5730
5731 if (strncmp (sym_name, text, text_len) == 0)
5732 match = 1;
5733 }
5734
5735 /* Finally: If we found a mach, prepare the result to return. */
5736
5737 if (!match)
5738 return NULL;
5739
5740 if (verbatim_match)
5741 sym_name = add_angle_brackets (sym_name);
5742
6ea35997 5743 if (!encoded_p)
41d27058
JB
5744 sym_name = ada_decode (sym_name);
5745
5746 return sym_name;
5747}
5748
5749/* A companion function to ada_make_symbol_completion_list().
5750 Check if SYM_NAME represents a symbol which name would be suitable
5751 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5752 it is appended at the end of the given string vector SV.
5753
5754 ORIG_TEXT is the string original string from the user command
5755 that needs to be completed. WORD is the entire command on which
5756 completion should be performed. These two parameters are used to
5757 determine which part of the symbol name should be added to the
5758 completion vector.
c0af1706 5759 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5760 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5761 encoded formed (in which case the completion should also be
5762 encoded). */
5763
5764static void
d6565258 5765symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5766 const char *sym_name,
5767 const char *text, int text_len,
5768 const char *orig_text, const char *word,
cb8e9b97 5769 int wild_match_p, int encoded_p)
41d27058
JB
5770{
5771 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5772 wild_match_p, encoded_p);
41d27058
JB
5773 char *completion;
5774
5775 if (match == NULL)
5776 return;
5777
5778 /* We found a match, so add the appropriate completion to the given
5779 string vector. */
5780
5781 if (word == orig_text)
5782 {
5783 completion = xmalloc (strlen (match) + 5);
5784 strcpy (completion, match);
5785 }
5786 else if (word > orig_text)
5787 {
5788 /* Return some portion of sym_name. */
5789 completion = xmalloc (strlen (match) + 5);
5790 strcpy (completion, match + (word - orig_text));
5791 }
5792 else
5793 {
5794 /* Return some of ORIG_TEXT plus sym_name. */
5795 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5796 strncpy (completion, word, orig_text - word);
5797 completion[orig_text - word] = '\0';
5798 strcat (completion, match);
5799 }
5800
d6565258 5801 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5802}
5803
ccefe4c4 5804/* An object of this type is passed as the user_data argument to the
7b08b9eb 5805 expand_partial_symbol_names method. */
ccefe4c4
TT
5806struct add_partial_datum
5807{
5808 VEC(char_ptr) **completions;
5809 char *text;
5810 int text_len;
5811 char *text0;
5812 char *word;
5813 int wild_match;
5814 int encoded;
5815};
5816
7b08b9eb
JK
5817/* A callback for expand_partial_symbol_names. */
5818static int
e078317b 5819ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5820{
5821 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5822
5823 return symbol_completion_match (name, data->text, data->text_len,
5824 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5825}
5826
49c4e619
TT
5827/* Return a list of possible symbol names completing TEXT0. WORD is
5828 the entire command on which completion is made. */
41d27058 5829
49c4e619 5830static VEC (char_ptr) *
2f68a895 5831ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
41d27058
JB
5832{
5833 char *text;
5834 int text_len;
b1ed564a
JB
5835 int wild_match_p;
5836 int encoded_p;
2ba95b9b 5837 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5838 struct symbol *sym;
5839 struct symtab *s;
41d27058
JB
5840 struct minimal_symbol *msymbol;
5841 struct objfile *objfile;
5842 struct block *b, *surrounding_static_block = 0;
5843 int i;
8157b174 5844 struct block_iterator iter;
41d27058 5845
2f68a895
TT
5846 gdb_assert (code == TYPE_CODE_UNDEF);
5847
41d27058
JB
5848 if (text0[0] == '<')
5849 {
5850 text = xstrdup (text0);
5851 make_cleanup (xfree, text);
5852 text_len = strlen (text);
b1ed564a
JB
5853 wild_match_p = 0;
5854 encoded_p = 1;
41d27058
JB
5855 }
5856 else
5857 {
5858 text = xstrdup (ada_encode (text0));
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5861 for (i = 0; i < text_len; i++)
5862 text[i] = tolower (text[i]);
5863
b1ed564a 5864 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5865 /* If the name contains a ".", then the user is entering a fully
5866 qualified entity name, and the match must not be done in wild
5867 mode. Similarly, if the user wants to complete what looks like
5868 an encoded name, the match must not be done in wild mode. */
b1ed564a 5869 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5870 }
5871
5872 /* First, look at the partial symtab symbols. */
41d27058 5873 {
ccefe4c4
TT
5874 struct add_partial_datum data;
5875
5876 data.completions = &completions;
5877 data.text = text;
5878 data.text_len = text_len;
5879 data.text0 = text0;
5880 data.word = word;
b1ed564a
JB
5881 data.wild_match = wild_match_p;
5882 data.encoded = encoded_p;
7b08b9eb 5883 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5884 }
5885
5886 /* At this point scan through the misc symbol vectors and add each
5887 symbol you find to the list. Eventually we want to ignore
5888 anything that isn't a text symbol (everything else will be
5889 handled by the psymtab code above). */
5890
5891 ALL_MSYMBOLS (objfile, msymbol)
5892 {
5893 QUIT;
d6565258 5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5895 text, text_len, text0, word, wild_match_p,
5896 encoded_p);
41d27058
JB
5897 }
5898
5899 /* Search upwards from currently selected frame (so that we can
5900 complete on local vars. */
5901
5902 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5903 {
5904 if (!BLOCK_SUPERBLOCK (b))
5905 surrounding_static_block = b; /* For elmin of dups */
5906
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
d6565258 5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5910 text, text_len, text0, word,
b1ed564a 5911 wild_match_p, encoded_p);
41d27058
JB
5912 }
5913 }
5914
5915 /* Go through the symtabs and check the externs and statics for
5916 symbols which match. */
5917
5918 ALL_SYMTABS (objfile, s)
5919 {
5920 QUIT;
5921 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5922 ALL_BLOCK_SYMBOLS (b, iter, sym)
5923 {
d6565258 5924 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5925 text, text_len, text0, word,
b1ed564a 5926 wild_match_p, encoded_p);
41d27058
JB
5927 }
5928 }
5929
5930 ALL_SYMTABS (objfile, s)
5931 {
5932 QUIT;
5933 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5934 /* Don't do this block twice. */
5935 if (b == surrounding_static_block)
5936 continue;
5937 ALL_BLOCK_SYMBOLS (b, iter, sym)
5938 {
d6565258 5939 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5940 text, text_len, text0, word,
b1ed564a 5941 wild_match_p, encoded_p);
41d27058
JB
5942 }
5943 }
5944
49c4e619 5945 return completions;
41d27058
JB
5946}
5947
963a6417 5948 /* Field Access */
96d887e8 5949
73fb9985
JB
5950/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5951 for tagged types. */
5952
5953static int
5954ada_is_dispatch_table_ptr_type (struct type *type)
5955{
0d5cff50 5956 const char *name;
73fb9985
JB
5957
5958 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5959 return 0;
5960
5961 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5962 if (name == NULL)
5963 return 0;
5964
5965 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5966}
5967
ac4a2da4
JG
5968/* Return non-zero if TYPE is an interface tag. */
5969
5970static int
5971ada_is_interface_tag (struct type *type)
5972{
5973 const char *name = TYPE_NAME (type);
5974
5975 if (name == NULL)
5976 return 0;
5977
5978 return (strcmp (name, "ada__tags__interface_tag") == 0);
5979}
5980
963a6417
PH
5981/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5982 to be invisible to users. */
96d887e8 5983
963a6417
PH
5984int
5985ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5986{
963a6417
PH
5987 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5988 return 1;
ffde82bf 5989
73fb9985
JB
5990 /* Check the name of that field. */
5991 {
5992 const char *name = TYPE_FIELD_NAME (type, field_num);
5993
5994 /* Anonymous field names should not be printed.
5995 brobecker/2007-02-20: I don't think this can actually happen
5996 but we don't want to print the value of annonymous fields anyway. */
5997 if (name == NULL)
5998 return 1;
5999
ffde82bf
JB
6000 /* Normally, fields whose name start with an underscore ("_")
6001 are fields that have been internally generated by the compiler,
6002 and thus should not be printed. The "_parent" field is special,
6003 however: This is a field internally generated by the compiler
6004 for tagged types, and it contains the components inherited from
6005 the parent type. This field should not be printed as is, but
6006 should not be ignored either. */
73fb9985
JB
6007 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6008 return 1;
6009 }
6010
ac4a2da4
JG
6011 /* If this is the dispatch table of a tagged type or an interface tag,
6012 then ignore. */
73fb9985 6013 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6014 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6015 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6016 return 1;
6017
6018 /* Not a special field, so it should not be ignored. */
6019 return 0;
963a6417 6020}
96d887e8 6021
963a6417 6022/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6023 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6024
963a6417
PH
6025int
6026ada_is_tagged_type (struct type *type, int refok)
6027{
6028 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6029}
96d887e8 6030
963a6417 6031/* True iff TYPE represents the type of X'Tag */
96d887e8 6032
963a6417
PH
6033int
6034ada_is_tag_type (struct type *type)
6035{
6036 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6037 return 0;
6038 else
96d887e8 6039 {
963a6417 6040 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6041
963a6417
PH
6042 return (name != NULL
6043 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6044 }
96d887e8
PH
6045}
6046
963a6417 6047/* The type of the tag on VAL. */
76a01679 6048
963a6417
PH
6049struct type *
6050ada_tag_type (struct value *val)
96d887e8 6051{
df407dfe 6052 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6053}
96d887e8 6054
b50d69b5
JG
6055/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6056 retired at Ada 05). */
6057
6058static int
6059is_ada95_tag (struct value *tag)
6060{
6061 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6062}
6063
963a6417 6064/* The value of the tag on VAL. */
96d887e8 6065
963a6417
PH
6066struct value *
6067ada_value_tag (struct value *val)
6068{
03ee6b2e 6069 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6070}
6071
963a6417
PH
6072/* The value of the tag on the object of type TYPE whose contents are
6073 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6074 ADDRESS. */
96d887e8 6075
963a6417 6076static struct value *
10a2c479 6077value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6078 const gdb_byte *valaddr,
963a6417 6079 CORE_ADDR address)
96d887e8 6080{
b5385fc0 6081 int tag_byte_offset;
963a6417 6082 struct type *tag_type;
5b4ee69b 6083
963a6417 6084 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6085 NULL, NULL, NULL))
96d887e8 6086 {
fc1a4b47 6087 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6088 ? NULL
6089 : valaddr + tag_byte_offset);
963a6417 6090 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6091
963a6417 6092 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6093 }
963a6417
PH
6094 return NULL;
6095}
96d887e8 6096
963a6417
PH
6097static struct type *
6098type_from_tag (struct value *tag)
6099{
6100 const char *type_name = ada_tag_name (tag);
5b4ee69b 6101
963a6417
PH
6102 if (type_name != NULL)
6103 return ada_find_any_type (ada_encode (type_name));
6104 return NULL;
6105}
96d887e8 6106
b50d69b5
JG
6107/* Given a value OBJ of a tagged type, return a value of this
6108 type at the base address of the object. The base address, as
6109 defined in Ada.Tags, it is the address of the primary tag of
6110 the object, and therefore where the field values of its full
6111 view can be fetched. */
6112
6113struct value *
6114ada_tag_value_at_base_address (struct value *obj)
6115{
6116 volatile struct gdb_exception e;
6117 struct value *val;
6118 LONGEST offset_to_top = 0;
6119 struct type *ptr_type, *obj_type;
6120 struct value *tag;
6121 CORE_ADDR base_address;
6122
6123 obj_type = value_type (obj);
6124
6125 /* It is the responsability of the caller to deref pointers. */
6126
6127 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6128 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6129 return obj;
6130
6131 tag = ada_value_tag (obj);
6132 if (!tag)
6133 return obj;
6134
6135 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6136
6137 if (is_ada95_tag (tag))
6138 return obj;
6139
6140 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6141 ptr_type = lookup_pointer_type (ptr_type);
6142 val = value_cast (ptr_type, tag);
6143 if (!val)
6144 return obj;
6145
6146 /* It is perfectly possible that an exception be raised while
6147 trying to determine the base address, just like for the tag;
6148 see ada_tag_name for more details. We do not print the error
6149 message for the same reason. */
6150
6151 TRY_CATCH (e, RETURN_MASK_ERROR)
6152 {
6153 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6154 }
6155
6156 if (e.reason < 0)
6157 return obj;
6158
6159 /* If offset is null, nothing to do. */
6160
6161 if (offset_to_top == 0)
6162 return obj;
6163
6164 /* -1 is a special case in Ada.Tags; however, what should be done
6165 is not quite clear from the documentation. So do nothing for
6166 now. */
6167
6168 if (offset_to_top == -1)
6169 return obj;
6170
6171 base_address = value_address (obj) - offset_to_top;
6172 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6173
6174 /* Make sure that we have a proper tag at the new address.
6175 Otherwise, offset_to_top is bogus (which can happen when
6176 the object is not initialized yet). */
6177
6178 if (!tag)
6179 return obj;
6180
6181 obj_type = type_from_tag (tag);
6182
6183 if (!obj_type)
6184 return obj;
6185
6186 return value_from_contents_and_address (obj_type, NULL, base_address);
6187}
6188
1b611343
JB
6189/* Return the "ada__tags__type_specific_data" type. */
6190
6191static struct type *
6192ada_get_tsd_type (struct inferior *inf)
963a6417 6193{
1b611343 6194 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6195
1b611343
JB
6196 if (data->tsd_type == 0)
6197 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6198 return data->tsd_type;
6199}
529cad9c 6200
1b611343
JB
6201/* Return the TSD (type-specific data) associated to the given TAG.
6202 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6203
1b611343 6204 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6205
1b611343
JB
6206static struct value *
6207ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6208{
4c4b4cd2 6209 struct value *val;
1b611343 6210 struct type *type;
5b4ee69b 6211
1b611343
JB
6212 /* First option: The TSD is simply stored as a field of our TAG.
6213 Only older versions of GNAT would use this format, but we have
6214 to test it first, because there are no visible markers for
6215 the current approach except the absence of that field. */
529cad9c 6216
1b611343
JB
6217 val = ada_value_struct_elt (tag, "tsd", 1);
6218 if (val)
6219 return val;
e802dbe0 6220
1b611343
JB
6221 /* Try the second representation for the dispatch table (in which
6222 there is no explicit 'tsd' field in the referent of the tag pointer,
6223 and instead the tsd pointer is stored just before the dispatch
6224 table. */
e802dbe0 6225
1b611343
JB
6226 type = ada_get_tsd_type (current_inferior());
6227 if (type == NULL)
6228 return NULL;
6229 type = lookup_pointer_type (lookup_pointer_type (type));
6230 val = value_cast (type, tag);
6231 if (val == NULL)
6232 return NULL;
6233 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6234}
6235
1b611343
JB
6236/* Given the TSD of a tag (type-specific data), return a string
6237 containing the name of the associated type.
6238
6239 The returned value is good until the next call. May return NULL
6240 if we are unable to determine the tag name. */
6241
6242static char *
6243ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6244{
529cad9c
PH
6245 static char name[1024];
6246 char *p;
1b611343 6247 struct value *val;
529cad9c 6248
1b611343 6249 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6250 if (val == NULL)
1b611343 6251 return NULL;
4c4b4cd2
PH
6252 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6253 for (p = name; *p != '\0'; p += 1)
6254 if (isalpha (*p))
6255 *p = tolower (*p);
1b611343 6256 return name;
4c4b4cd2
PH
6257}
6258
6259/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6260 a C string.
6261
6262 Return NULL if the TAG is not an Ada tag, or if we were unable to
6263 determine the name of that tag. The result is good until the next
6264 call. */
4c4b4cd2
PH
6265
6266const char *
6267ada_tag_name (struct value *tag)
6268{
1b611343
JB
6269 volatile struct gdb_exception e;
6270 char *name = NULL;
5b4ee69b 6271
df407dfe 6272 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6273 return NULL;
1b611343
JB
6274
6275 /* It is perfectly possible that an exception be raised while trying
6276 to determine the TAG's name, even under normal circumstances:
6277 The associated variable may be uninitialized or corrupted, for
6278 instance. We do not let any exception propagate past this point.
6279 instead we return NULL.
6280
6281 We also do not print the error message either (which often is very
6282 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6283 the caller print a more meaningful message if necessary. */
6284 TRY_CATCH (e, RETURN_MASK_ERROR)
6285 {
6286 struct value *tsd = ada_get_tsd_from_tag (tag);
6287
6288 if (tsd != NULL)
6289 name = ada_tag_name_from_tsd (tsd);
6290 }
6291
6292 return name;
4c4b4cd2
PH
6293}
6294
6295/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6296
d2e4a39e 6297struct type *
ebf56fd3 6298ada_parent_type (struct type *type)
14f9c5c9
AS
6299{
6300 int i;
6301
61ee279c 6302 type = ada_check_typedef (type);
14f9c5c9
AS
6303
6304 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6305 return NULL;
6306
6307 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6308 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6309 {
6310 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6311
6312 /* If the _parent field is a pointer, then dereference it. */
6313 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6314 parent_type = TYPE_TARGET_TYPE (parent_type);
6315 /* If there is a parallel XVS type, get the actual base type. */
6316 parent_type = ada_get_base_type (parent_type);
6317
6318 return ada_check_typedef (parent_type);
6319 }
14f9c5c9
AS
6320
6321 return NULL;
6322}
6323
4c4b4cd2
PH
6324/* True iff field number FIELD_NUM of structure type TYPE contains the
6325 parent-type (inherited) fields of a derived type. Assumes TYPE is
6326 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6327
6328int
ebf56fd3 6329ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6330{
61ee279c 6331 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6332
4c4b4cd2
PH
6333 return (name != NULL
6334 && (strncmp (name, "PARENT", 6) == 0
6335 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6336}
6337
4c4b4cd2 6338/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6339 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6340 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6341 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6342 structures. */
14f9c5c9
AS
6343
6344int
ebf56fd3 6345ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6346{
d2e4a39e 6347 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6348
d2e4a39e 6349 return (name != NULL
4c4b4cd2
PH
6350 && (strncmp (name, "PARENT", 6) == 0
6351 || strcmp (name, "REP") == 0
6352 || strncmp (name, "_parent", 7) == 0
6353 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6354}
6355
4c4b4cd2
PH
6356/* True iff field number FIELD_NUM of structure or union type TYPE
6357 is a variant wrapper. Assumes TYPE is a structure type with at least
6358 FIELD_NUM+1 fields. */
14f9c5c9
AS
6359
6360int
ebf56fd3 6361ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6362{
d2e4a39e 6363 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6364
14f9c5c9 6365 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6366 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6367 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6368 == TYPE_CODE_UNION)));
14f9c5c9
AS
6369}
6370
6371/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6372 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6373 returns the type of the controlling discriminant for the variant.
6374 May return NULL if the type could not be found. */
14f9c5c9 6375
d2e4a39e 6376struct type *
ebf56fd3 6377ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6378{
d2e4a39e 6379 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6380
7c964f07 6381 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6382}
6383
4c4b4cd2 6384/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6385 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6386 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6387
6388int
ebf56fd3 6389ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6390{
d2e4a39e 6391 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6392
14f9c5c9
AS
6393 return (name != NULL && name[0] == 'O');
6394}
6395
6396/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6397 returns the name of the discriminant controlling the variant.
6398 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6399
d2e4a39e 6400char *
ebf56fd3 6401ada_variant_discrim_name (struct type *type0)
14f9c5c9 6402{
d2e4a39e 6403 static char *result = NULL;
14f9c5c9 6404 static size_t result_len = 0;
d2e4a39e
AS
6405 struct type *type;
6406 const char *name;
6407 const char *discrim_end;
6408 const char *discrim_start;
14f9c5c9
AS
6409
6410 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6411 type = TYPE_TARGET_TYPE (type0);
6412 else
6413 type = type0;
6414
6415 name = ada_type_name (type);
6416
6417 if (name == NULL || name[0] == '\000')
6418 return "";
6419
6420 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6421 discrim_end -= 1)
6422 {
4c4b4cd2
PH
6423 if (strncmp (discrim_end, "___XVN", 6) == 0)
6424 break;
14f9c5c9
AS
6425 }
6426 if (discrim_end == name)
6427 return "";
6428
d2e4a39e 6429 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6430 discrim_start -= 1)
6431 {
d2e4a39e 6432 if (discrim_start == name + 1)
4c4b4cd2 6433 return "";
76a01679 6434 if ((discrim_start > name + 3
4c4b4cd2
PH
6435 && strncmp (discrim_start - 3, "___", 3) == 0)
6436 || discrim_start[-1] == '.')
6437 break;
14f9c5c9
AS
6438 }
6439
6440 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6441 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6442 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6443 return result;
6444}
6445
4c4b4cd2
PH
6446/* Scan STR for a subtype-encoded number, beginning at position K.
6447 Put the position of the character just past the number scanned in
6448 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6449 Return 1 if there was a valid number at the given position, and 0
6450 otherwise. A "subtype-encoded" number consists of the absolute value
6451 in decimal, followed by the letter 'm' to indicate a negative number.
6452 Assumes 0m does not occur. */
14f9c5c9
AS
6453
6454int
d2e4a39e 6455ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6456{
6457 ULONGEST RU;
6458
d2e4a39e 6459 if (!isdigit (str[k]))
14f9c5c9
AS
6460 return 0;
6461
4c4b4cd2 6462 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6463 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6464 LONGEST. */
14f9c5c9
AS
6465 RU = 0;
6466 while (isdigit (str[k]))
6467 {
d2e4a39e 6468 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6469 k += 1;
6470 }
6471
d2e4a39e 6472 if (str[k] == 'm')
14f9c5c9
AS
6473 {
6474 if (R != NULL)
4c4b4cd2 6475 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6476 k += 1;
6477 }
6478 else if (R != NULL)
6479 *R = (LONGEST) RU;
6480
4c4b4cd2 6481 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6482 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6483 number representable as a LONGEST (although either would probably work
6484 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6485 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6486
6487 if (new_k != NULL)
6488 *new_k = k;
6489 return 1;
6490}
6491
4c4b4cd2
PH
6492/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6493 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6494 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6495
d2e4a39e 6496int
ebf56fd3 6497ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6498{
d2e4a39e 6499 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6500 int p;
6501
6502 p = 0;
6503 while (1)
6504 {
d2e4a39e 6505 switch (name[p])
4c4b4cd2
PH
6506 {
6507 case '\0':
6508 return 0;
6509 case 'S':
6510 {
6511 LONGEST W;
5b4ee69b 6512
4c4b4cd2
PH
6513 if (!ada_scan_number (name, p + 1, &W, &p))
6514 return 0;
6515 if (val == W)
6516 return 1;
6517 break;
6518 }
6519 case 'R':
6520 {
6521 LONGEST L, U;
5b4ee69b 6522
4c4b4cd2
PH
6523 if (!ada_scan_number (name, p + 1, &L, &p)
6524 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6525 return 0;
6526 if (val >= L && val <= U)
6527 return 1;
6528 break;
6529 }
6530 case 'O':
6531 return 1;
6532 default:
6533 return 0;
6534 }
6535 }
6536}
6537
0963b4bd 6538/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6539
6540/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6541 ARG_TYPE, extract and return the value of one of its (non-static)
6542 fields. FIELDNO says which field. Differs from value_primitive_field
6543 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6544
4c4b4cd2 6545static struct value *
d2e4a39e 6546ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6547 struct type *arg_type)
14f9c5c9 6548{
14f9c5c9
AS
6549 struct type *type;
6550
61ee279c 6551 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6552 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6553
4c4b4cd2 6554 /* Handle packed fields. */
14f9c5c9
AS
6555
6556 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6557 {
6558 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6559 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6560
0fd88904 6561 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6562 offset + bit_pos / 8,
6563 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6564 }
6565 else
6566 return value_primitive_field (arg1, offset, fieldno, arg_type);
6567}
6568
52ce6436
PH
6569/* Find field with name NAME in object of type TYPE. If found,
6570 set the following for each argument that is non-null:
6571 - *FIELD_TYPE_P to the field's type;
6572 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6573 an object of that type;
6574 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6575 - *BIT_SIZE_P to its size in bits if the field is packed, and
6576 0 otherwise;
6577 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6578 fields up to but not including the desired field, or by the total
6579 number of fields if not found. A NULL value of NAME never
6580 matches; the function just counts visible fields in this case.
6581
0963b4bd 6582 Returns 1 if found, 0 otherwise. */
52ce6436 6583
4c4b4cd2 6584static int
0d5cff50 6585find_struct_field (const char *name, struct type *type, int offset,
76a01679 6586 struct type **field_type_p,
52ce6436
PH
6587 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6588 int *index_p)
4c4b4cd2
PH
6589{
6590 int i;
6591
61ee279c 6592 type = ada_check_typedef (type);
76a01679 6593
52ce6436
PH
6594 if (field_type_p != NULL)
6595 *field_type_p = NULL;
6596 if (byte_offset_p != NULL)
d5d6fca5 6597 *byte_offset_p = 0;
52ce6436
PH
6598 if (bit_offset_p != NULL)
6599 *bit_offset_p = 0;
6600 if (bit_size_p != NULL)
6601 *bit_size_p = 0;
6602
6603 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6604 {
6605 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6606 int fld_offset = offset + bit_pos / 8;
0d5cff50 6607 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6608
4c4b4cd2
PH
6609 if (t_field_name == NULL)
6610 continue;
6611
52ce6436 6612 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6613 {
6614 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6615
52ce6436
PH
6616 if (field_type_p != NULL)
6617 *field_type_p = TYPE_FIELD_TYPE (type, i);
6618 if (byte_offset_p != NULL)
6619 *byte_offset_p = fld_offset;
6620 if (bit_offset_p != NULL)
6621 *bit_offset_p = bit_pos % 8;
6622 if (bit_size_p != NULL)
6623 *bit_size_p = bit_size;
76a01679
JB
6624 return 1;
6625 }
4c4b4cd2
PH
6626 else if (ada_is_wrapper_field (type, i))
6627 {
52ce6436
PH
6628 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6629 field_type_p, byte_offset_p, bit_offset_p,
6630 bit_size_p, index_p))
76a01679
JB
6631 return 1;
6632 }
4c4b4cd2
PH
6633 else if (ada_is_variant_part (type, i))
6634 {
52ce6436
PH
6635 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6636 fixed type?? */
4c4b4cd2 6637 int j;
52ce6436
PH
6638 struct type *field_type
6639 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6640
52ce6436 6641 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6642 {
76a01679
JB
6643 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6644 fld_offset
6645 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6646 field_type_p, byte_offset_p,
52ce6436 6647 bit_offset_p, bit_size_p, index_p))
76a01679 6648 return 1;
4c4b4cd2
PH
6649 }
6650 }
52ce6436
PH
6651 else if (index_p != NULL)
6652 *index_p += 1;
4c4b4cd2
PH
6653 }
6654 return 0;
6655}
6656
0963b4bd 6657/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6658
52ce6436
PH
6659static int
6660num_visible_fields (struct type *type)
6661{
6662 int n;
5b4ee69b 6663
52ce6436
PH
6664 n = 0;
6665 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6666 return n;
6667}
14f9c5c9 6668
4c4b4cd2 6669/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6670 and search in it assuming it has (class) type TYPE.
6671 If found, return value, else return NULL.
6672
4c4b4cd2 6673 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6674
4c4b4cd2 6675static struct value *
d2e4a39e 6676ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6677 struct type *type)
14f9c5c9
AS
6678{
6679 int i;
14f9c5c9 6680
5b4ee69b 6681 type = ada_check_typedef (type);
52ce6436 6682 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6683 {
0d5cff50 6684 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6685
6686 if (t_field_name == NULL)
4c4b4cd2 6687 continue;
14f9c5c9
AS
6688
6689 else if (field_name_match (t_field_name, name))
4c4b4cd2 6690 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6691
6692 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6693 {
0963b4bd 6694 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6695 ada_search_struct_field (name, arg,
6696 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6697 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6698
4c4b4cd2
PH
6699 if (v != NULL)
6700 return v;
6701 }
14f9c5c9
AS
6702
6703 else if (ada_is_variant_part (type, i))
4c4b4cd2 6704 {
0963b4bd 6705 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6706 int j;
5b4ee69b
MS
6707 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6708 i));
4c4b4cd2
PH
6709 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6710
52ce6436 6711 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6712 {
0963b4bd
MS
6713 struct value *v = ada_search_struct_field /* Force line
6714 break. */
06d5cf63
JB
6715 (name, arg,
6716 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6717 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6718
4c4b4cd2
PH
6719 if (v != NULL)
6720 return v;
6721 }
6722 }
14f9c5c9
AS
6723 }
6724 return NULL;
6725}
d2e4a39e 6726
52ce6436
PH
6727static struct value *ada_index_struct_field_1 (int *, struct value *,
6728 int, struct type *);
6729
6730
6731/* Return field #INDEX in ARG, where the index is that returned by
6732 * find_struct_field through its INDEX_P argument. Adjust the address
6733 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6734 * If found, return value, else return NULL. */
52ce6436
PH
6735
6736static struct value *
6737ada_index_struct_field (int index, struct value *arg, int offset,
6738 struct type *type)
6739{
6740 return ada_index_struct_field_1 (&index, arg, offset, type);
6741}
6742
6743
6744/* Auxiliary function for ada_index_struct_field. Like
6745 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6746 * *INDEX_P. */
52ce6436
PH
6747
6748static struct value *
6749ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6750 struct type *type)
6751{
6752 int i;
6753 type = ada_check_typedef (type);
6754
6755 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6756 {
6757 if (TYPE_FIELD_NAME (type, i) == NULL)
6758 continue;
6759 else if (ada_is_wrapper_field (type, i))
6760 {
0963b4bd 6761 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6762 ada_index_struct_field_1 (index_p, arg,
6763 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6764 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6765
52ce6436
PH
6766 if (v != NULL)
6767 return v;
6768 }
6769
6770 else if (ada_is_variant_part (type, i))
6771 {
6772 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6773 find_struct_field. */
52ce6436
PH
6774 error (_("Cannot assign this kind of variant record"));
6775 }
6776 else if (*index_p == 0)
6777 return ada_value_primitive_field (arg, offset, i, type);
6778 else
6779 *index_p -= 1;
6780 }
6781 return NULL;
6782}
6783
4c4b4cd2
PH
6784/* Given ARG, a value of type (pointer or reference to a)*
6785 structure/union, extract the component named NAME from the ultimate
6786 target structure/union and return it as a value with its
f5938064 6787 appropriate type.
14f9c5c9 6788
4c4b4cd2
PH
6789 The routine searches for NAME among all members of the structure itself
6790 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6791 (e.g., '_parent').
6792
03ee6b2e
PH
6793 If NO_ERR, then simply return NULL in case of error, rather than
6794 calling error. */
14f9c5c9 6795
d2e4a39e 6796struct value *
03ee6b2e 6797ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6798{
4c4b4cd2 6799 struct type *t, *t1;
d2e4a39e 6800 struct value *v;
14f9c5c9 6801
4c4b4cd2 6802 v = NULL;
df407dfe 6803 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6804 if (TYPE_CODE (t) == TYPE_CODE_REF)
6805 {
6806 t1 = TYPE_TARGET_TYPE (t);
6807 if (t1 == NULL)
03ee6b2e 6808 goto BadValue;
61ee279c 6809 t1 = ada_check_typedef (t1);
4c4b4cd2 6810 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6811 {
994b9211 6812 arg = coerce_ref (arg);
76a01679
JB
6813 t = t1;
6814 }
4c4b4cd2 6815 }
14f9c5c9 6816
4c4b4cd2
PH
6817 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6818 {
6819 t1 = TYPE_TARGET_TYPE (t);
6820 if (t1 == NULL)
03ee6b2e 6821 goto BadValue;
61ee279c 6822 t1 = ada_check_typedef (t1);
4c4b4cd2 6823 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6824 {
6825 arg = value_ind (arg);
6826 t = t1;
6827 }
4c4b4cd2 6828 else
76a01679 6829 break;
4c4b4cd2 6830 }
14f9c5c9 6831
4c4b4cd2 6832 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6833 goto BadValue;
14f9c5c9 6834
4c4b4cd2
PH
6835 if (t1 == t)
6836 v = ada_search_struct_field (name, arg, 0, t);
6837 else
6838 {
6839 int bit_offset, bit_size, byte_offset;
6840 struct type *field_type;
6841 CORE_ADDR address;
6842
76a01679 6843 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6844 address = value_address (ada_value_ind (arg));
4c4b4cd2 6845 else
b50d69b5 6846 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6847
1ed6ede0 6848 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6849 if (find_struct_field (name, t1, 0,
6850 &field_type, &byte_offset, &bit_offset,
52ce6436 6851 &bit_size, NULL))
76a01679
JB
6852 {
6853 if (bit_size != 0)
6854 {
714e53ab
PH
6855 if (TYPE_CODE (t) == TYPE_CODE_REF)
6856 arg = ada_coerce_ref (arg);
6857 else
6858 arg = ada_value_ind (arg);
76a01679
JB
6859 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6860 bit_offset, bit_size,
6861 field_type);
6862 }
6863 else
f5938064 6864 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6865 }
6866 }
6867
03ee6b2e
PH
6868 if (v != NULL || no_err)
6869 return v;
6870 else
323e0a4a 6871 error (_("There is no member named %s."), name);
14f9c5c9 6872
03ee6b2e
PH
6873 BadValue:
6874 if (no_err)
6875 return NULL;
6876 else
0963b4bd
MS
6877 error (_("Attempt to extract a component of "
6878 "a value that is not a record."));
14f9c5c9
AS
6879}
6880
6881/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6882 If DISPP is non-null, add its byte displacement from the beginning of a
6883 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6884 work for packed fields).
6885
6886 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6887 followed by "___".
14f9c5c9 6888
0963b4bd 6889 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6890 be a (pointer or reference)+ to a struct or union, and the
6891 ultimate target type will be searched.
14f9c5c9
AS
6892
6893 Looks recursively into variant clauses and parent types.
6894
4c4b4cd2
PH
6895 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6896 TYPE is not a type of the right kind. */
14f9c5c9 6897
4c4b4cd2 6898static struct type *
76a01679
JB
6899ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6900 int noerr, int *dispp)
14f9c5c9
AS
6901{
6902 int i;
6903
6904 if (name == NULL)
6905 goto BadName;
6906
76a01679 6907 if (refok && type != NULL)
4c4b4cd2
PH
6908 while (1)
6909 {
61ee279c 6910 type = ada_check_typedef (type);
76a01679
JB
6911 if (TYPE_CODE (type) != TYPE_CODE_PTR
6912 && TYPE_CODE (type) != TYPE_CODE_REF)
6913 break;
6914 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6915 }
14f9c5c9 6916
76a01679 6917 if (type == NULL
1265e4aa
JB
6918 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6919 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6920 {
4c4b4cd2 6921 if (noerr)
76a01679 6922 return NULL;
4c4b4cd2 6923 else
76a01679
JB
6924 {
6925 target_terminal_ours ();
6926 gdb_flush (gdb_stdout);
323e0a4a
AC
6927 if (type == NULL)
6928 error (_("Type (null) is not a structure or union type"));
6929 else
6930 {
6931 /* XXX: type_sprint */
6932 fprintf_unfiltered (gdb_stderr, _("Type "));
6933 type_print (type, "", gdb_stderr, -1);
6934 error (_(" is not a structure or union type"));
6935 }
76a01679 6936 }
14f9c5c9
AS
6937 }
6938
6939 type = to_static_fixed_type (type);
6940
6941 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6942 {
0d5cff50 6943 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6944 struct type *t;
6945 int disp;
d2e4a39e 6946
14f9c5c9 6947 if (t_field_name == NULL)
4c4b4cd2 6948 continue;
14f9c5c9
AS
6949
6950 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6951 {
6952 if (dispp != NULL)
6953 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6954 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6955 }
14f9c5c9
AS
6956
6957 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6958 {
6959 disp = 0;
6960 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6961 0, 1, &disp);
6962 if (t != NULL)
6963 {
6964 if (dispp != NULL)
6965 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6966 return t;
6967 }
6968 }
14f9c5c9
AS
6969
6970 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6971 {
6972 int j;
5b4ee69b
MS
6973 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6974 i));
4c4b4cd2
PH
6975
6976 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6977 {
b1f33ddd
JB
6978 /* FIXME pnh 2008/01/26: We check for a field that is
6979 NOT wrapped in a struct, since the compiler sometimes
6980 generates these for unchecked variant types. Revisit
0963b4bd 6981 if the compiler changes this practice. */
0d5cff50 6982 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6983 disp = 0;
b1f33ddd
JB
6984 if (v_field_name != NULL
6985 && field_name_match (v_field_name, name))
6986 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6987 else
0963b4bd
MS
6988 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6989 j),
b1f33ddd
JB
6990 name, 0, 1, &disp);
6991
4c4b4cd2
PH
6992 if (t != NULL)
6993 {
6994 if (dispp != NULL)
6995 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6996 return t;
6997 }
6998 }
6999 }
14f9c5c9
AS
7000
7001 }
7002
7003BadName:
d2e4a39e 7004 if (!noerr)
14f9c5c9
AS
7005 {
7006 target_terminal_ours ();
7007 gdb_flush (gdb_stdout);
323e0a4a
AC
7008 if (name == NULL)
7009 {
7010 /* XXX: type_sprint */
7011 fprintf_unfiltered (gdb_stderr, _("Type "));
7012 type_print (type, "", gdb_stderr, -1);
7013 error (_(" has no component named <null>"));
7014 }
7015 else
7016 {
7017 /* XXX: type_sprint */
7018 fprintf_unfiltered (gdb_stderr, _("Type "));
7019 type_print (type, "", gdb_stderr, -1);
7020 error (_(" has no component named %s"), name);
7021 }
14f9c5c9
AS
7022 }
7023
7024 return NULL;
7025}
7026
b1f33ddd
JB
7027/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7028 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7029 represents an unchecked union (that is, the variant part of a
0963b4bd 7030 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7031
7032static int
7033is_unchecked_variant (struct type *var_type, struct type *outer_type)
7034{
7035 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7036
b1f33ddd
JB
7037 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7038 == NULL);
7039}
7040
7041
14f9c5c9
AS
7042/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7043 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7044 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7045 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7046
d2e4a39e 7047int
ebf56fd3 7048ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7049 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7050{
7051 int others_clause;
7052 int i;
d2e4a39e 7053 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7054 struct value *outer;
7055 struct value *discrim;
14f9c5c9
AS
7056 LONGEST discrim_val;
7057
0c281816
JB
7058 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7059 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7060 if (discrim == NULL)
14f9c5c9 7061 return -1;
0c281816 7062 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7063
7064 others_clause = -1;
7065 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7066 {
7067 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7068 others_clause = i;
14f9c5c9 7069 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7070 return i;
14f9c5c9
AS
7071 }
7072
7073 return others_clause;
7074}
d2e4a39e 7075\f
14f9c5c9
AS
7076
7077
4c4b4cd2 7078 /* Dynamic-Sized Records */
14f9c5c9
AS
7079
7080/* Strategy: The type ostensibly attached to a value with dynamic size
7081 (i.e., a size that is not statically recorded in the debugging
7082 data) does not accurately reflect the size or layout of the value.
7083 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7084 conventional types that are constructed on the fly. */
14f9c5c9
AS
7085
7086/* There is a subtle and tricky problem here. In general, we cannot
7087 determine the size of dynamic records without its data. However,
7088 the 'struct value' data structure, which GDB uses to represent
7089 quantities in the inferior process (the target), requires the size
7090 of the type at the time of its allocation in order to reserve space
7091 for GDB's internal copy of the data. That's why the
7092 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7093 rather than struct value*s.
14f9c5c9
AS
7094
7095 However, GDB's internal history variables ($1, $2, etc.) are
7096 struct value*s containing internal copies of the data that are not, in
7097 general, the same as the data at their corresponding addresses in
7098 the target. Fortunately, the types we give to these values are all
7099 conventional, fixed-size types (as per the strategy described
7100 above), so that we don't usually have to perform the
7101 'to_fixed_xxx_type' conversions to look at their values.
7102 Unfortunately, there is one exception: if one of the internal
7103 history variables is an array whose elements are unconstrained
7104 records, then we will need to create distinct fixed types for each
7105 element selected. */
7106
7107/* The upshot of all of this is that many routines take a (type, host
7108 address, target address) triple as arguments to represent a value.
7109 The host address, if non-null, is supposed to contain an internal
7110 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7111 target at the target address. */
14f9c5c9
AS
7112
7113/* Assuming that VAL0 represents a pointer value, the result of
7114 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7115 dynamic-sized types. */
14f9c5c9 7116
d2e4a39e
AS
7117struct value *
7118ada_value_ind (struct value *val0)
14f9c5c9 7119{
c48db5ca 7120 struct value *val = value_ind (val0);
5b4ee69b 7121
b50d69b5
JG
7122 if (ada_is_tagged_type (value_type (val), 0))
7123 val = ada_tag_value_at_base_address (val);
7124
4c4b4cd2 7125 return ada_to_fixed_value (val);
14f9c5c9
AS
7126}
7127
7128/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7129 qualifiers on VAL0. */
7130
d2e4a39e
AS
7131static struct value *
7132ada_coerce_ref (struct value *val0)
7133{
df407dfe 7134 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7135 {
7136 struct value *val = val0;
5b4ee69b 7137
994b9211 7138 val = coerce_ref (val);
b50d69b5
JG
7139
7140 if (ada_is_tagged_type (value_type (val), 0))
7141 val = ada_tag_value_at_base_address (val);
7142
4c4b4cd2 7143 return ada_to_fixed_value (val);
d2e4a39e
AS
7144 }
7145 else
14f9c5c9
AS
7146 return val0;
7147}
7148
7149/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7150 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7151
7152static unsigned int
ebf56fd3 7153align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7154{
7155 return (off + alignment - 1) & ~(alignment - 1);
7156}
7157
4c4b4cd2 7158/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7159
7160static unsigned int
ebf56fd3 7161field_alignment (struct type *type, int f)
14f9c5c9 7162{
d2e4a39e 7163 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7164 int len;
14f9c5c9
AS
7165 int align_offset;
7166
64a1bf19
JB
7167 /* The field name should never be null, unless the debugging information
7168 is somehow malformed. In this case, we assume the field does not
7169 require any alignment. */
7170 if (name == NULL)
7171 return 1;
7172
7173 len = strlen (name);
7174
4c4b4cd2
PH
7175 if (!isdigit (name[len - 1]))
7176 return 1;
14f9c5c9 7177
d2e4a39e 7178 if (isdigit (name[len - 2]))
14f9c5c9
AS
7179 align_offset = len - 2;
7180 else
7181 align_offset = len - 1;
7182
4c4b4cd2 7183 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7184 return TARGET_CHAR_BIT;
7185
4c4b4cd2
PH
7186 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7187}
7188
852dff6c 7189/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7190
852dff6c
JB
7191static struct symbol *
7192ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7193{
7194 struct symbol *sym;
7195
7196 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7197 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7198 return sym;
7199
7200 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7201 return sym;
14f9c5c9
AS
7202}
7203
dddfab26
UW
7204/* Find a type named NAME. Ignores ambiguity. This routine will look
7205 solely for types defined by debug info, it will not search the GDB
7206 primitive types. */
4c4b4cd2 7207
852dff6c 7208static struct type *
ebf56fd3 7209ada_find_any_type (const char *name)
14f9c5c9 7210{
852dff6c 7211 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7212
14f9c5c9 7213 if (sym != NULL)
dddfab26 7214 return SYMBOL_TYPE (sym);
14f9c5c9 7215
dddfab26 7216 return NULL;
14f9c5c9
AS
7217}
7218
739593e0
JB
7219/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7220 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7221 symbol, in which case it is returned. Otherwise, this looks for
7222 symbols whose name is that of NAME_SYM suffixed with "___XR".
7223 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7224
7225struct symbol *
270140bd 7226ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7227{
739593e0 7228 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7229 struct symbol *sym;
7230
739593e0
JB
7231 if (strstr (name, "___XR") != NULL)
7232 return name_sym;
7233
aeb5907d
JB
7234 sym = find_old_style_renaming_symbol (name, block);
7235
7236 if (sym != NULL)
7237 return sym;
7238
0963b4bd 7239 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7240 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7241 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7242 return sym;
7243 else
7244 return NULL;
7245}
7246
7247static struct symbol *
270140bd 7248find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7249{
7f0df278 7250 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7251 char *rename;
7252
7253 if (function_sym != NULL)
7254 {
7255 /* If the symbol is defined inside a function, NAME is not fully
7256 qualified. This means we need to prepend the function name
7257 as well as adding the ``___XR'' suffix to build the name of
7258 the associated renaming symbol. */
0d5cff50 7259 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7260 /* Function names sometimes contain suffixes used
7261 for instance to qualify nested subprograms. When building
7262 the XR type name, we need to make sure that this suffix is
7263 not included. So do not include any suffix in the function
7264 name length below. */
69fadcdf 7265 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7266 const int rename_len = function_name_len + 2 /* "__" */
7267 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7268
529cad9c 7269 /* Strip the suffix if necessary. */
69fadcdf
JB
7270 ada_remove_trailing_digits (function_name, &function_name_len);
7271 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7272 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7273
4c4b4cd2
PH
7274 /* Library-level functions are a special case, as GNAT adds
7275 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7276 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7277 have this prefix, so we need to skip this prefix if present. */
7278 if (function_name_len > 5 /* "_ada_" */
7279 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7280 {
7281 function_name += 5;
7282 function_name_len -= 5;
7283 }
4c4b4cd2
PH
7284
7285 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7286 strncpy (rename, function_name, function_name_len);
7287 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7288 "__%s___XR", name);
4c4b4cd2
PH
7289 }
7290 else
7291 {
7292 const int rename_len = strlen (name) + 6;
5b4ee69b 7293
4c4b4cd2 7294 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7295 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7296 }
7297
852dff6c 7298 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7299}
7300
14f9c5c9 7301/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7302 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7303 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7304 otherwise return 0. */
7305
14f9c5c9 7306int
d2e4a39e 7307ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7308{
7309 if (type1 == NULL)
7310 return 1;
7311 else if (type0 == NULL)
7312 return 0;
7313 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7314 return 1;
7315 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7316 return 0;
4c4b4cd2
PH
7317 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7318 return 1;
ad82864c 7319 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7320 return 1;
4c4b4cd2
PH
7321 else if (ada_is_array_descriptor_type (type0)
7322 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7323 return 1;
aeb5907d
JB
7324 else
7325 {
7326 const char *type0_name = type_name_no_tag (type0);
7327 const char *type1_name = type_name_no_tag (type1);
7328
7329 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7330 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7331 return 1;
7332 }
14f9c5c9
AS
7333 return 0;
7334}
7335
7336/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7337 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7338
0d5cff50 7339const char *
d2e4a39e 7340ada_type_name (struct type *type)
14f9c5c9 7341{
d2e4a39e 7342 if (type == NULL)
14f9c5c9
AS
7343 return NULL;
7344 else if (TYPE_NAME (type) != NULL)
7345 return TYPE_NAME (type);
7346 else
7347 return TYPE_TAG_NAME (type);
7348}
7349
b4ba55a1
JB
7350/* Search the list of "descriptive" types associated to TYPE for a type
7351 whose name is NAME. */
7352
7353static struct type *
7354find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7355{
7356 struct type *result;
7357
7358 /* If there no descriptive-type info, then there is no parallel type
7359 to be found. */
7360 if (!HAVE_GNAT_AUX_INFO (type))
7361 return NULL;
7362
7363 result = TYPE_DESCRIPTIVE_TYPE (type);
7364 while (result != NULL)
7365 {
0d5cff50 7366 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7367
7368 if (result_name == NULL)
7369 {
7370 warning (_("unexpected null name on descriptive type"));
7371 return NULL;
7372 }
7373
7374 /* If the names match, stop. */
7375 if (strcmp (result_name, name) == 0)
7376 break;
7377
7378 /* Otherwise, look at the next item on the list, if any. */
7379 if (HAVE_GNAT_AUX_INFO (result))
7380 result = TYPE_DESCRIPTIVE_TYPE (result);
7381 else
7382 result = NULL;
7383 }
7384
7385 /* If we didn't find a match, see whether this is a packed array. With
7386 older compilers, the descriptive type information is either absent or
7387 irrelevant when it comes to packed arrays so the above lookup fails.
7388 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7389 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7390 return ada_find_any_type (name);
7391
7392 return result;
7393}
7394
7395/* Find a parallel type to TYPE with the specified NAME, using the
7396 descriptive type taken from the debugging information, if available,
7397 and otherwise using the (slower) name-based method. */
7398
7399static struct type *
7400ada_find_parallel_type_with_name (struct type *type, const char *name)
7401{
7402 struct type *result = NULL;
7403
7404 if (HAVE_GNAT_AUX_INFO (type))
7405 result = find_parallel_type_by_descriptive_type (type, name);
7406 else
7407 result = ada_find_any_type (name);
7408
7409 return result;
7410}
7411
7412/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7413 SUFFIX to the name of TYPE. */
14f9c5c9 7414
d2e4a39e 7415struct type *
ebf56fd3 7416ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7417{
0d5cff50
DE
7418 char *name;
7419 const char *typename = ada_type_name (type);
14f9c5c9 7420 int len;
d2e4a39e 7421
14f9c5c9
AS
7422 if (typename == NULL)
7423 return NULL;
7424
7425 len = strlen (typename);
7426
b4ba55a1 7427 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7428
7429 strcpy (name, typename);
7430 strcpy (name + len, suffix);
7431
b4ba55a1 7432 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7433}
7434
14f9c5c9 7435/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7436 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7437
d2e4a39e
AS
7438static struct type *
7439dynamic_template_type (struct type *type)
14f9c5c9 7440{
61ee279c 7441 type = ada_check_typedef (type);
14f9c5c9
AS
7442
7443 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7444 || ada_type_name (type) == NULL)
14f9c5c9 7445 return NULL;
d2e4a39e 7446 else
14f9c5c9
AS
7447 {
7448 int len = strlen (ada_type_name (type));
5b4ee69b 7449
4c4b4cd2
PH
7450 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7451 return type;
14f9c5c9 7452 else
4c4b4cd2 7453 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7454 }
7455}
7456
7457/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7458 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7459
d2e4a39e
AS
7460static int
7461is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7462{
7463 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7464
d2e4a39e 7465 return name != NULL
14f9c5c9
AS
7466 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7467 && strstr (name, "___XVL") != NULL;
7468}
7469
4c4b4cd2
PH
7470/* The index of the variant field of TYPE, or -1 if TYPE does not
7471 represent a variant record type. */
14f9c5c9 7472
d2e4a39e 7473static int
4c4b4cd2 7474variant_field_index (struct type *type)
14f9c5c9
AS
7475{
7476 int f;
7477
4c4b4cd2
PH
7478 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7479 return -1;
7480
7481 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7482 {
7483 if (ada_is_variant_part (type, f))
7484 return f;
7485 }
7486 return -1;
14f9c5c9
AS
7487}
7488
4c4b4cd2
PH
7489/* A record type with no fields. */
7490
d2e4a39e 7491static struct type *
e9bb382b 7492empty_record (struct type *template)
14f9c5c9 7493{
e9bb382b 7494 struct type *type = alloc_type_copy (template);
5b4ee69b 7495
14f9c5c9
AS
7496 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7497 TYPE_NFIELDS (type) = 0;
7498 TYPE_FIELDS (type) = NULL;
b1f33ddd 7499 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7500 TYPE_NAME (type) = "<empty>";
7501 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7502 TYPE_LENGTH (type) = 0;
7503 return type;
7504}
7505
7506/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7507 the value of type TYPE at VALADDR or ADDRESS (see comments at
7508 the beginning of this section) VAL according to GNAT conventions.
7509 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7510 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7511 an outer-level type (i.e., as opposed to a branch of a variant.) A
7512 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7513 of the variant.
14f9c5c9 7514
4c4b4cd2
PH
7515 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7516 length are not statically known are discarded. As a consequence,
7517 VALADDR, ADDRESS and DVAL0 are ignored.
7518
7519 NOTE: Limitations: For now, we assume that dynamic fields and
7520 variants occupy whole numbers of bytes. However, they need not be
7521 byte-aligned. */
7522
7523struct type *
10a2c479 7524ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7525 const gdb_byte *valaddr,
4c4b4cd2
PH
7526 CORE_ADDR address, struct value *dval0,
7527 int keep_dynamic_fields)
14f9c5c9 7528{
d2e4a39e
AS
7529 struct value *mark = value_mark ();
7530 struct value *dval;
7531 struct type *rtype;
14f9c5c9 7532 int nfields, bit_len;
4c4b4cd2 7533 int variant_field;
14f9c5c9 7534 long off;
d94e4f4f 7535 int fld_bit_len;
14f9c5c9
AS
7536 int f;
7537
4c4b4cd2
PH
7538 /* Compute the number of fields in this record type that are going
7539 to be processed: unless keep_dynamic_fields, this includes only
7540 fields whose position and length are static will be processed. */
7541 if (keep_dynamic_fields)
7542 nfields = TYPE_NFIELDS (type);
7543 else
7544 {
7545 nfields = 0;
76a01679 7546 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7547 && !ada_is_variant_part (type, nfields)
7548 && !is_dynamic_field (type, nfields))
7549 nfields++;
7550 }
7551
e9bb382b 7552 rtype = alloc_type_copy (type);
14f9c5c9
AS
7553 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7554 INIT_CPLUS_SPECIFIC (rtype);
7555 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7556 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7557 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7558 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7559 TYPE_NAME (rtype) = ada_type_name (type);
7560 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7561 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7562
d2e4a39e
AS
7563 off = 0;
7564 bit_len = 0;
4c4b4cd2
PH
7565 variant_field = -1;
7566
14f9c5c9
AS
7567 for (f = 0; f < nfields; f += 1)
7568 {
6c038f32
PH
7569 off = align_value (off, field_alignment (type, f))
7570 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7571 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7572 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7573
d2e4a39e 7574 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7575 {
7576 variant_field = f;
d94e4f4f 7577 fld_bit_len = 0;
4c4b4cd2 7578 }
14f9c5c9 7579 else if (is_dynamic_field (type, f))
4c4b4cd2 7580 {
284614f0
JB
7581 const gdb_byte *field_valaddr = valaddr;
7582 CORE_ADDR field_address = address;
7583 struct type *field_type =
7584 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7585
4c4b4cd2 7586 if (dval0 == NULL)
b5304971
JG
7587 {
7588 /* rtype's length is computed based on the run-time
7589 value of discriminants. If the discriminants are not
7590 initialized, the type size may be completely bogus and
0963b4bd 7591 GDB may fail to allocate a value for it. So check the
b5304971
JG
7592 size first before creating the value. */
7593 check_size (rtype);
7594 dval = value_from_contents_and_address (rtype, valaddr, address);
7595 }
4c4b4cd2
PH
7596 else
7597 dval = dval0;
7598
284614f0
JB
7599 /* If the type referenced by this field is an aligner type, we need
7600 to unwrap that aligner type, because its size might not be set.
7601 Keeping the aligner type would cause us to compute the wrong
7602 size for this field, impacting the offset of the all the fields
7603 that follow this one. */
7604 if (ada_is_aligner_type (field_type))
7605 {
7606 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7607
7608 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7609 field_address = cond_offset_target (field_address, field_offset);
7610 field_type = ada_aligned_type (field_type);
7611 }
7612
7613 field_valaddr = cond_offset_host (field_valaddr,
7614 off / TARGET_CHAR_BIT);
7615 field_address = cond_offset_target (field_address,
7616 off / TARGET_CHAR_BIT);
7617
7618 /* Get the fixed type of the field. Note that, in this case,
7619 we do not want to get the real type out of the tag: if
7620 the current field is the parent part of a tagged record,
7621 we will get the tag of the object. Clearly wrong: the real
7622 type of the parent is not the real type of the child. We
7623 would end up in an infinite loop. */
7624 field_type = ada_get_base_type (field_type);
7625 field_type = ada_to_fixed_type (field_type, field_valaddr,
7626 field_address, dval, 0);
27f2a97b
JB
7627 /* If the field size is already larger than the maximum
7628 object size, then the record itself will necessarily
7629 be larger than the maximum object size. We need to make
7630 this check now, because the size might be so ridiculously
7631 large (due to an uninitialized variable in the inferior)
7632 that it would cause an overflow when adding it to the
7633 record size. */
7634 check_size (field_type);
284614f0
JB
7635
7636 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7637 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7638 /* The multiplication can potentially overflow. But because
7639 the field length has been size-checked just above, and
7640 assuming that the maximum size is a reasonable value,
7641 an overflow should not happen in practice. So rather than
7642 adding overflow recovery code to this already complex code,
7643 we just assume that it's not going to happen. */
d94e4f4f 7644 fld_bit_len =
4c4b4cd2
PH
7645 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7646 }
14f9c5c9 7647 else
4c4b4cd2 7648 {
5ded5331
JB
7649 /* Note: If this field's type is a typedef, it is important
7650 to preserve the typedef layer.
7651
7652 Otherwise, we might be transforming a typedef to a fat
7653 pointer (encoding a pointer to an unconstrained array),
7654 into a basic fat pointer (encoding an unconstrained
7655 array). As both types are implemented using the same
7656 structure, the typedef is the only clue which allows us
7657 to distinguish between the two options. Stripping it
7658 would prevent us from printing this field appropriately. */
7659 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7660 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7661 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7662 fld_bit_len =
4c4b4cd2
PH
7663 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7664 else
5ded5331
JB
7665 {
7666 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7667
7668 /* We need to be careful of typedefs when computing
7669 the length of our field. If this is a typedef,
7670 get the length of the target type, not the length
7671 of the typedef. */
7672 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7673 field_type = ada_typedef_target_type (field_type);
7674
7675 fld_bit_len =
7676 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7677 }
4c4b4cd2 7678 }
14f9c5c9 7679 if (off + fld_bit_len > bit_len)
4c4b4cd2 7680 bit_len = off + fld_bit_len;
d94e4f4f 7681 off += fld_bit_len;
4c4b4cd2
PH
7682 TYPE_LENGTH (rtype) =
7683 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7684 }
4c4b4cd2
PH
7685
7686 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7687 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7688 the record. This can happen in the presence of representation
7689 clauses. */
7690 if (variant_field >= 0)
7691 {
7692 struct type *branch_type;
7693
7694 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7695
7696 if (dval0 == NULL)
7697 dval = value_from_contents_and_address (rtype, valaddr, address);
7698 else
7699 dval = dval0;
7700
7701 branch_type =
7702 to_fixed_variant_branch_type
7703 (TYPE_FIELD_TYPE (type, variant_field),
7704 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7705 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7706 if (branch_type == NULL)
7707 {
7708 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7709 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7710 TYPE_NFIELDS (rtype) -= 1;
7711 }
7712 else
7713 {
7714 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7715 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7716 fld_bit_len =
7717 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7718 TARGET_CHAR_BIT;
7719 if (off + fld_bit_len > bit_len)
7720 bit_len = off + fld_bit_len;
7721 TYPE_LENGTH (rtype) =
7722 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7723 }
7724 }
7725
714e53ab
PH
7726 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7727 should contain the alignment of that record, which should be a strictly
7728 positive value. If null or negative, then something is wrong, most
7729 probably in the debug info. In that case, we don't round up the size
0963b4bd 7730 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7731 the current RTYPE length might be good enough for our purposes. */
7732 if (TYPE_LENGTH (type) <= 0)
7733 {
323e0a4a
AC
7734 if (TYPE_NAME (rtype))
7735 warning (_("Invalid type size for `%s' detected: %d."),
7736 TYPE_NAME (rtype), TYPE_LENGTH (type));
7737 else
7738 warning (_("Invalid type size for <unnamed> detected: %d."),
7739 TYPE_LENGTH (type));
714e53ab
PH
7740 }
7741 else
7742 {
7743 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7744 TYPE_LENGTH (type));
7745 }
14f9c5c9
AS
7746
7747 value_free_to_mark (mark);
d2e4a39e 7748 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7749 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7750 return rtype;
7751}
7752
4c4b4cd2
PH
7753/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7754 of 1. */
14f9c5c9 7755
d2e4a39e 7756static struct type *
fc1a4b47 7757template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7758 CORE_ADDR address, struct value *dval0)
7759{
7760 return ada_template_to_fixed_record_type_1 (type, valaddr,
7761 address, dval0, 1);
7762}
7763
7764/* An ordinary record type in which ___XVL-convention fields and
7765 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7766 static approximations, containing all possible fields. Uses
7767 no runtime values. Useless for use in values, but that's OK,
7768 since the results are used only for type determinations. Works on both
7769 structs and unions. Representation note: to save space, we memorize
7770 the result of this function in the TYPE_TARGET_TYPE of the
7771 template type. */
7772
7773static struct type *
7774template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7775{
7776 struct type *type;
7777 int nfields;
7778 int f;
7779
4c4b4cd2
PH
7780 if (TYPE_TARGET_TYPE (type0) != NULL)
7781 return TYPE_TARGET_TYPE (type0);
7782
7783 nfields = TYPE_NFIELDS (type0);
7784 type = type0;
14f9c5c9
AS
7785
7786 for (f = 0; f < nfields; f += 1)
7787 {
61ee279c 7788 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7789 struct type *new_type;
14f9c5c9 7790
4c4b4cd2
PH
7791 if (is_dynamic_field (type0, f))
7792 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7793 else
f192137b 7794 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7795 if (type == type0 && new_type != field_type)
7796 {
e9bb382b 7797 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7798 TYPE_CODE (type) = TYPE_CODE (type0);
7799 INIT_CPLUS_SPECIFIC (type);
7800 TYPE_NFIELDS (type) = nfields;
7801 TYPE_FIELDS (type) = (struct field *)
7802 TYPE_ALLOC (type, nfields * sizeof (struct field));
7803 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7804 sizeof (struct field) * nfields);
7805 TYPE_NAME (type) = ada_type_name (type0);
7806 TYPE_TAG_NAME (type) = NULL;
876cecd0 7807 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7808 TYPE_LENGTH (type) = 0;
7809 }
7810 TYPE_FIELD_TYPE (type, f) = new_type;
7811 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7812 }
14f9c5c9
AS
7813 return type;
7814}
7815
4c4b4cd2 7816/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7817 whose address in memory is ADDRESS, returns a revision of TYPE,
7818 which should be a non-dynamic-sized record, in which the variant
7819 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7820 for discriminant values in DVAL0, which can be NULL if the record
7821 contains the necessary discriminant values. */
7822
d2e4a39e 7823static struct type *
fc1a4b47 7824to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7825 CORE_ADDR address, struct value *dval0)
14f9c5c9 7826{
d2e4a39e 7827 struct value *mark = value_mark ();
4c4b4cd2 7828 struct value *dval;
d2e4a39e 7829 struct type *rtype;
14f9c5c9
AS
7830 struct type *branch_type;
7831 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7832 int variant_field = variant_field_index (type);
14f9c5c9 7833
4c4b4cd2 7834 if (variant_field == -1)
14f9c5c9
AS
7835 return type;
7836
4c4b4cd2
PH
7837 if (dval0 == NULL)
7838 dval = value_from_contents_and_address (type, valaddr, address);
7839 else
7840 dval = dval0;
7841
e9bb382b 7842 rtype = alloc_type_copy (type);
14f9c5c9 7843 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7844 INIT_CPLUS_SPECIFIC (rtype);
7845 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7846 TYPE_FIELDS (rtype) =
7847 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7848 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7849 sizeof (struct field) * nfields);
14f9c5c9
AS
7850 TYPE_NAME (rtype) = ada_type_name (type);
7851 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7852 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7853 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7854
4c4b4cd2
PH
7855 branch_type = to_fixed_variant_branch_type
7856 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7857 cond_offset_host (valaddr,
4c4b4cd2
PH
7858 TYPE_FIELD_BITPOS (type, variant_field)
7859 / TARGET_CHAR_BIT),
d2e4a39e 7860 cond_offset_target (address,
4c4b4cd2
PH
7861 TYPE_FIELD_BITPOS (type, variant_field)
7862 / TARGET_CHAR_BIT), dval);
d2e4a39e 7863 if (branch_type == NULL)
14f9c5c9 7864 {
4c4b4cd2 7865 int f;
5b4ee69b 7866
4c4b4cd2
PH
7867 for (f = variant_field + 1; f < nfields; f += 1)
7868 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7869 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7870 }
7871 else
7872 {
4c4b4cd2
PH
7873 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7874 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7875 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7876 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7877 }
4c4b4cd2 7878 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7879
4c4b4cd2 7880 value_free_to_mark (mark);
14f9c5c9
AS
7881 return rtype;
7882}
7883
7884/* An ordinary record type (with fixed-length fields) that describes
7885 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7886 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7887 should be in DVAL, a record value; it may be NULL if the object
7888 at ADDR itself contains any necessary discriminant values.
7889 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7890 values from the record are needed. Except in the case that DVAL,
7891 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7892 unchecked) is replaced by a particular branch of the variant.
7893
7894 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7895 is questionable and may be removed. It can arise during the
7896 processing of an unconstrained-array-of-record type where all the
7897 variant branches have exactly the same size. This is because in
7898 such cases, the compiler does not bother to use the XVS convention
7899 when encoding the record. I am currently dubious of this
7900 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7901
d2e4a39e 7902static struct type *
fc1a4b47 7903to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7904 CORE_ADDR address, struct value *dval)
14f9c5c9 7905{
d2e4a39e 7906 struct type *templ_type;
14f9c5c9 7907
876cecd0 7908 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7909 return type0;
7910
d2e4a39e 7911 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7912
7913 if (templ_type != NULL)
7914 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7915 else if (variant_field_index (type0) >= 0)
7916 {
7917 if (dval == NULL && valaddr == NULL && address == 0)
7918 return type0;
7919 return to_record_with_fixed_variant_part (type0, valaddr, address,
7920 dval);
7921 }
14f9c5c9
AS
7922 else
7923 {
876cecd0 7924 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7925 return type0;
7926 }
7927
7928}
7929
7930/* An ordinary record type (with fixed-length fields) that describes
7931 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7932 union type. Any necessary discriminants' values should be in DVAL,
7933 a record value. That is, this routine selects the appropriate
7934 branch of the union at ADDR according to the discriminant value
b1f33ddd 7935 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7936 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7937
d2e4a39e 7938static struct type *
fc1a4b47 7939to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7940 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7941{
7942 int which;
d2e4a39e
AS
7943 struct type *templ_type;
7944 struct type *var_type;
14f9c5c9
AS
7945
7946 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7947 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7948 else
14f9c5c9
AS
7949 var_type = var_type0;
7950
7951 templ_type = ada_find_parallel_type (var_type, "___XVU");
7952
7953 if (templ_type != NULL)
7954 var_type = templ_type;
7955
b1f33ddd
JB
7956 if (is_unchecked_variant (var_type, value_type (dval)))
7957 return var_type0;
d2e4a39e
AS
7958 which =
7959 ada_which_variant_applies (var_type,
0fd88904 7960 value_type (dval), value_contents (dval));
14f9c5c9
AS
7961
7962 if (which < 0)
e9bb382b 7963 return empty_record (var_type);
14f9c5c9 7964 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7965 return to_fixed_record_type
d2e4a39e
AS
7966 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7967 valaddr, address, dval);
4c4b4cd2 7968 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7969 return
7970 to_fixed_record_type
7971 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7972 else
7973 return TYPE_FIELD_TYPE (var_type, which);
7974}
7975
7976/* Assuming that TYPE0 is an array type describing the type of a value
7977 at ADDR, and that DVAL describes a record containing any
7978 discriminants used in TYPE0, returns a type for the value that
7979 contains no dynamic components (that is, no components whose sizes
7980 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7981 true, gives an error message if the resulting type's size is over
4c4b4cd2 7982 varsize_limit. */
14f9c5c9 7983
d2e4a39e
AS
7984static struct type *
7985to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7986 int ignore_too_big)
14f9c5c9 7987{
d2e4a39e
AS
7988 struct type *index_type_desc;
7989 struct type *result;
ad82864c 7990 int constrained_packed_array_p;
14f9c5c9 7991
b0dd7688 7992 type0 = ada_check_typedef (type0);
284614f0 7993 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7994 return type0;
14f9c5c9 7995
ad82864c
JB
7996 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7997 if (constrained_packed_array_p)
7998 type0 = decode_constrained_packed_array_type (type0);
284614f0 7999
14f9c5c9 8000 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8001 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8002 if (index_type_desc == NULL)
8003 {
61ee279c 8004 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8005
14f9c5c9 8006 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8007 depend on the contents of the array in properly constructed
8008 debugging data. */
529cad9c
PH
8009 /* Create a fixed version of the array element type.
8010 We're not providing the address of an element here,
e1d5a0d2 8011 and thus the actual object value cannot be inspected to do
529cad9c
PH
8012 the conversion. This should not be a problem, since arrays of
8013 unconstrained objects are not allowed. In particular, all
8014 the elements of an array of a tagged type should all be of
8015 the same type specified in the debugging info. No need to
8016 consult the object tag. */
1ed6ede0 8017 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8018
284614f0
JB
8019 /* Make sure we always create a new array type when dealing with
8020 packed array types, since we're going to fix-up the array
8021 type length and element bitsize a little further down. */
ad82864c 8022 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8023 result = type0;
14f9c5c9 8024 else
e9bb382b 8025 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8026 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8027 }
8028 else
8029 {
8030 int i;
8031 struct type *elt_type0;
8032
8033 elt_type0 = type0;
8034 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8035 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8036
8037 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8038 depend on the contents of the array in properly constructed
8039 debugging data. */
529cad9c
PH
8040 /* Create a fixed version of the array element type.
8041 We're not providing the address of an element here,
e1d5a0d2 8042 and thus the actual object value cannot be inspected to do
529cad9c
PH
8043 the conversion. This should not be a problem, since arrays of
8044 unconstrained objects are not allowed. In particular, all
8045 the elements of an array of a tagged type should all be of
8046 the same type specified in the debugging info. No need to
8047 consult the object tag. */
1ed6ede0
JB
8048 result =
8049 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8050
8051 elt_type0 = type0;
14f9c5c9 8052 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8053 {
8054 struct type *range_type =
28c85d6c 8055 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8056
e9bb382b 8057 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8058 result, range_type);
1ce677a4 8059 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8060 }
d2e4a39e 8061 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8062 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8063 }
8064
2e6fda7d
JB
8065 /* We want to preserve the type name. This can be useful when
8066 trying to get the type name of a value that has already been
8067 printed (for instance, if the user did "print VAR; whatis $". */
8068 TYPE_NAME (result) = TYPE_NAME (type0);
8069
ad82864c 8070 if (constrained_packed_array_p)
284614f0
JB
8071 {
8072 /* So far, the resulting type has been created as if the original
8073 type was a regular (non-packed) array type. As a result, the
8074 bitsize of the array elements needs to be set again, and the array
8075 length needs to be recomputed based on that bitsize. */
8076 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8077 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8078
8079 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8080 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8081 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8082 TYPE_LENGTH (result)++;
8083 }
8084
876cecd0 8085 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8086 return result;
d2e4a39e 8087}
14f9c5c9
AS
8088
8089
8090/* A standard type (containing no dynamically sized components)
8091 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8092 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8093 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8094 ADDRESS or in VALADDR contains these discriminants.
8095
1ed6ede0
JB
8096 If CHECK_TAG is not null, in the case of tagged types, this function
8097 attempts to locate the object's tag and use it to compute the actual
8098 type. However, when ADDRESS is null, we cannot use it to determine the
8099 location of the tag, and therefore compute the tagged type's actual type.
8100 So we return the tagged type without consulting the tag. */
529cad9c 8101
f192137b
JB
8102static struct type *
8103ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8104 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8105{
61ee279c 8106 type = ada_check_typedef (type);
d2e4a39e
AS
8107 switch (TYPE_CODE (type))
8108 {
8109 default:
14f9c5c9 8110 return type;
d2e4a39e 8111 case TYPE_CODE_STRUCT:
4c4b4cd2 8112 {
76a01679 8113 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8114 struct type *fixed_record_type =
8115 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8116
529cad9c
PH
8117 /* If STATIC_TYPE is a tagged type and we know the object's address,
8118 then we can determine its tag, and compute the object's actual
0963b4bd 8119 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8120 type (the parent part of the record may have dynamic fields
8121 and the way the location of _tag is expressed may depend on
8122 them). */
529cad9c 8123
1ed6ede0 8124 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8125 {
b50d69b5
JG
8126 struct value *tag =
8127 value_tag_from_contents_and_address
8128 (fixed_record_type,
8129 valaddr,
8130 address);
8131 struct type *real_type = type_from_tag (tag);
8132 struct value *obj =
8133 value_from_contents_and_address (fixed_record_type,
8134 valaddr,
8135 address);
76a01679 8136 if (real_type != NULL)
b50d69b5
JG
8137 return to_fixed_record_type
8138 (real_type, NULL,
8139 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8140 }
4af88198
JB
8141
8142 /* Check to see if there is a parallel ___XVZ variable.
8143 If there is, then it provides the actual size of our type. */
8144 else if (ada_type_name (fixed_record_type) != NULL)
8145 {
0d5cff50 8146 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8147 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8148 int xvz_found = 0;
8149 LONGEST size;
8150
88c15c34 8151 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8152 size = get_int_var_value (xvz_name, &xvz_found);
8153 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8154 {
8155 fixed_record_type = copy_type (fixed_record_type);
8156 TYPE_LENGTH (fixed_record_type) = size;
8157
8158 /* The FIXED_RECORD_TYPE may have be a stub. We have
8159 observed this when the debugging info is STABS, and
8160 apparently it is something that is hard to fix.
8161
8162 In practice, we don't need the actual type definition
8163 at all, because the presence of the XVZ variable allows us
8164 to assume that there must be a XVS type as well, which we
8165 should be able to use later, when we need the actual type
8166 definition.
8167
8168 In the meantime, pretend that the "fixed" type we are
8169 returning is NOT a stub, because this can cause trouble
8170 when using this type to create new types targeting it.
8171 Indeed, the associated creation routines often check
8172 whether the target type is a stub and will try to replace
0963b4bd 8173 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8174 might cause the new type to have the wrong size too.
8175 Consider the case of an array, for instance, where the size
8176 of the array is computed from the number of elements in
8177 our array multiplied by the size of its element. */
8178 TYPE_STUB (fixed_record_type) = 0;
8179 }
8180 }
1ed6ede0 8181 return fixed_record_type;
4c4b4cd2 8182 }
d2e4a39e 8183 case TYPE_CODE_ARRAY:
4c4b4cd2 8184 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8185 case TYPE_CODE_UNION:
8186 if (dval == NULL)
4c4b4cd2 8187 return type;
d2e4a39e 8188 else
4c4b4cd2 8189 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8190 }
14f9c5c9
AS
8191}
8192
f192137b
JB
8193/* The same as ada_to_fixed_type_1, except that it preserves the type
8194 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8195
8196 The typedef layer needs be preserved in order to differentiate between
8197 arrays and array pointers when both types are implemented using the same
8198 fat pointer. In the array pointer case, the pointer is encoded as
8199 a typedef of the pointer type. For instance, considering:
8200
8201 type String_Access is access String;
8202 S1 : String_Access := null;
8203
8204 To the debugger, S1 is defined as a typedef of type String. But
8205 to the user, it is a pointer. So if the user tries to print S1,
8206 we should not dereference the array, but print the array address
8207 instead.
8208
8209 If we didn't preserve the typedef layer, we would lose the fact that
8210 the type is to be presented as a pointer (needs de-reference before
8211 being printed). And we would also use the source-level type name. */
f192137b
JB
8212
8213struct type *
8214ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8215 CORE_ADDR address, struct value *dval, int check_tag)
8216
8217{
8218 struct type *fixed_type =
8219 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8220
96dbd2c1
JB
8221 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8222 then preserve the typedef layer.
8223
8224 Implementation note: We can only check the main-type portion of
8225 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8226 from TYPE now returns a type that has the same instance flags
8227 as TYPE. For instance, if TYPE is a "typedef const", and its
8228 target type is a "struct", then the typedef elimination will return
8229 a "const" version of the target type. See check_typedef for more
8230 details about how the typedef layer elimination is done.
8231
8232 brobecker/2010-11-19: It seems to me that the only case where it is
8233 useful to preserve the typedef layer is when dealing with fat pointers.
8234 Perhaps, we could add a check for that and preserve the typedef layer
8235 only in that situation. But this seems unecessary so far, probably
8236 because we call check_typedef/ada_check_typedef pretty much everywhere.
8237 */
f192137b 8238 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8239 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8240 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8241 return type;
8242
8243 return fixed_type;
8244}
8245
14f9c5c9 8246/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8247 TYPE0, but based on no runtime data. */
14f9c5c9 8248
d2e4a39e
AS
8249static struct type *
8250to_static_fixed_type (struct type *type0)
14f9c5c9 8251{
d2e4a39e 8252 struct type *type;
14f9c5c9
AS
8253
8254 if (type0 == NULL)
8255 return NULL;
8256
876cecd0 8257 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8258 return type0;
8259
61ee279c 8260 type0 = ada_check_typedef (type0);
d2e4a39e 8261
14f9c5c9
AS
8262 switch (TYPE_CODE (type0))
8263 {
8264 default:
8265 return type0;
8266 case TYPE_CODE_STRUCT:
8267 type = dynamic_template_type (type0);
d2e4a39e 8268 if (type != NULL)
4c4b4cd2
PH
8269 return template_to_static_fixed_type (type);
8270 else
8271 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8272 case TYPE_CODE_UNION:
8273 type = ada_find_parallel_type (type0, "___XVU");
8274 if (type != NULL)
4c4b4cd2
PH
8275 return template_to_static_fixed_type (type);
8276 else
8277 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8278 }
8279}
8280
4c4b4cd2
PH
8281/* A static approximation of TYPE with all type wrappers removed. */
8282
d2e4a39e
AS
8283static struct type *
8284static_unwrap_type (struct type *type)
14f9c5c9
AS
8285{
8286 if (ada_is_aligner_type (type))
8287 {
61ee279c 8288 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8289 if (ada_type_name (type1) == NULL)
4c4b4cd2 8290 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8291
8292 return static_unwrap_type (type1);
8293 }
d2e4a39e 8294 else
14f9c5c9 8295 {
d2e4a39e 8296 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8297
d2e4a39e 8298 if (raw_real_type == type)
4c4b4cd2 8299 return type;
14f9c5c9 8300 else
4c4b4cd2 8301 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8302 }
8303}
8304
8305/* In some cases, incomplete and private types require
4c4b4cd2 8306 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8307 type Foo;
8308 type FooP is access Foo;
8309 V: FooP;
8310 type Foo is array ...;
4c4b4cd2 8311 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8312 cross-references to such types, we instead substitute for FooP a
8313 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8314 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8315
8316/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8317 exists, otherwise TYPE. */
8318
d2e4a39e 8319struct type *
61ee279c 8320ada_check_typedef (struct type *type)
14f9c5c9 8321{
727e3d2e
JB
8322 if (type == NULL)
8323 return NULL;
8324
720d1a40
JB
8325 /* If our type is a typedef type of a fat pointer, then we're done.
8326 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8327 what allows us to distinguish between fat pointers that represent
8328 array types, and fat pointers that represent array access types
8329 (in both cases, the compiler implements them as fat pointers). */
8330 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8331 && is_thick_pntr (ada_typedef_target_type (type)))
8332 return type;
8333
14f9c5c9
AS
8334 CHECK_TYPEDEF (type);
8335 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8336 || !TYPE_STUB (type)
14f9c5c9
AS
8337 || TYPE_TAG_NAME (type) == NULL)
8338 return type;
d2e4a39e 8339 else
14f9c5c9 8340 {
0d5cff50 8341 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8342 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8343
05e522ef
JB
8344 if (type1 == NULL)
8345 return type;
8346
8347 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8348 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8349 types, only for the typedef-to-array types). If that's the case,
8350 strip the typedef layer. */
8351 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8352 type1 = ada_check_typedef (type1);
8353
8354 return type1;
14f9c5c9
AS
8355 }
8356}
8357
8358/* A value representing the data at VALADDR/ADDRESS as described by
8359 type TYPE0, but with a standard (static-sized) type that correctly
8360 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8361 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8362 creation of struct values]. */
14f9c5c9 8363
4c4b4cd2
PH
8364static struct value *
8365ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8366 struct value *val0)
14f9c5c9 8367{
1ed6ede0 8368 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8369
14f9c5c9
AS
8370 if (type == type0 && val0 != NULL)
8371 return val0;
d2e4a39e 8372 else
4c4b4cd2
PH
8373 return value_from_contents_and_address (type, 0, address);
8374}
8375
8376/* A value representing VAL, but with a standard (static-sized) type
8377 that correctly describes it. Does not necessarily create a new
8378 value. */
8379
0c3acc09 8380struct value *
4c4b4cd2
PH
8381ada_to_fixed_value (struct value *val)
8382{
c48db5ca
JB
8383 val = unwrap_value (val);
8384 val = ada_to_fixed_value_create (value_type (val),
8385 value_address (val),
8386 val);
8387 return val;
14f9c5c9 8388}
d2e4a39e 8389\f
14f9c5c9 8390
14f9c5c9
AS
8391/* Attributes */
8392
4c4b4cd2
PH
8393/* Table mapping attribute numbers to names.
8394 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8395
d2e4a39e 8396static const char *attribute_names[] = {
14f9c5c9
AS
8397 "<?>",
8398
d2e4a39e 8399 "first",
14f9c5c9
AS
8400 "last",
8401 "length",
8402 "image",
14f9c5c9
AS
8403 "max",
8404 "min",
4c4b4cd2
PH
8405 "modulus",
8406 "pos",
8407 "size",
8408 "tag",
14f9c5c9 8409 "val",
14f9c5c9
AS
8410 0
8411};
8412
d2e4a39e 8413const char *
4c4b4cd2 8414ada_attribute_name (enum exp_opcode n)
14f9c5c9 8415{
4c4b4cd2
PH
8416 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8417 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8418 else
8419 return attribute_names[0];
8420}
8421
4c4b4cd2 8422/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8423
4c4b4cd2
PH
8424static LONGEST
8425pos_atr (struct value *arg)
14f9c5c9 8426{
24209737
PH
8427 struct value *val = coerce_ref (arg);
8428 struct type *type = value_type (val);
14f9c5c9 8429
d2e4a39e 8430 if (!discrete_type_p (type))
323e0a4a 8431 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8432
8433 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8434 {
8435 int i;
24209737 8436 LONGEST v = value_as_long (val);
14f9c5c9 8437
d2e4a39e 8438 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8439 {
14e75d8e 8440 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8441 return i;
8442 }
323e0a4a 8443 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8444 }
8445 else
24209737 8446 return value_as_long (val);
4c4b4cd2
PH
8447}
8448
8449static struct value *
3cb382c9 8450value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8451{
3cb382c9 8452 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8453}
8454
4c4b4cd2 8455/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8456
d2e4a39e
AS
8457static struct value *
8458value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8459{
d2e4a39e 8460 if (!discrete_type_p (type))
323e0a4a 8461 error (_("'VAL only defined on discrete types"));
df407dfe 8462 if (!integer_type_p (value_type (arg)))
323e0a4a 8463 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8464
8465 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8466 {
8467 long pos = value_as_long (arg);
5b4ee69b 8468
14f9c5c9 8469 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8470 error (_("argument to 'VAL out of range"));
14e75d8e 8471 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8472 }
8473 else
8474 return value_from_longest (type, value_as_long (arg));
8475}
14f9c5c9 8476\f
d2e4a39e 8477
4c4b4cd2 8478 /* Evaluation */
14f9c5c9 8479
4c4b4cd2
PH
8480/* True if TYPE appears to be an Ada character type.
8481 [At the moment, this is true only for Character and Wide_Character;
8482 It is a heuristic test that could stand improvement]. */
14f9c5c9 8483
d2e4a39e
AS
8484int
8485ada_is_character_type (struct type *type)
14f9c5c9 8486{
7b9f71f2
JB
8487 const char *name;
8488
8489 /* If the type code says it's a character, then assume it really is,
8490 and don't check any further. */
8491 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8492 return 1;
8493
8494 /* Otherwise, assume it's a character type iff it is a discrete type
8495 with a known character type name. */
8496 name = ada_type_name (type);
8497 return (name != NULL
8498 && (TYPE_CODE (type) == TYPE_CODE_INT
8499 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8500 && (strcmp (name, "character") == 0
8501 || strcmp (name, "wide_character") == 0
5a517ebd 8502 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8503 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8504}
8505
4c4b4cd2 8506/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8507
8508int
ebf56fd3 8509ada_is_string_type (struct type *type)
14f9c5c9 8510{
61ee279c 8511 type = ada_check_typedef (type);
d2e4a39e 8512 if (type != NULL
14f9c5c9 8513 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8514 && (ada_is_simple_array_type (type)
8515 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8516 && ada_array_arity (type) == 1)
8517 {
8518 struct type *elttype = ada_array_element_type (type, 1);
8519
8520 return ada_is_character_type (elttype);
8521 }
d2e4a39e 8522 else
14f9c5c9
AS
8523 return 0;
8524}
8525
5bf03f13
JB
8526/* The compiler sometimes provides a parallel XVS type for a given
8527 PAD type. Normally, it is safe to follow the PAD type directly,
8528 but older versions of the compiler have a bug that causes the offset
8529 of its "F" field to be wrong. Following that field in that case
8530 would lead to incorrect results, but this can be worked around
8531 by ignoring the PAD type and using the associated XVS type instead.
8532
8533 Set to True if the debugger should trust the contents of PAD types.
8534 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8535static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8536
8537/* True if TYPE is a struct type introduced by the compiler to force the
8538 alignment of a value. Such types have a single field with a
4c4b4cd2 8539 distinctive name. */
14f9c5c9
AS
8540
8541int
ebf56fd3 8542ada_is_aligner_type (struct type *type)
14f9c5c9 8543{
61ee279c 8544 type = ada_check_typedef (type);
714e53ab 8545
5bf03f13 8546 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8547 return 0;
8548
14f9c5c9 8549 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8550 && TYPE_NFIELDS (type) == 1
8551 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8552}
8553
8554/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8555 the parallel type. */
14f9c5c9 8556
d2e4a39e
AS
8557struct type *
8558ada_get_base_type (struct type *raw_type)
14f9c5c9 8559{
d2e4a39e
AS
8560 struct type *real_type_namer;
8561 struct type *raw_real_type;
14f9c5c9
AS
8562
8563 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8564 return raw_type;
8565
284614f0
JB
8566 if (ada_is_aligner_type (raw_type))
8567 /* The encoding specifies that we should always use the aligner type.
8568 So, even if this aligner type has an associated XVS type, we should
8569 simply ignore it.
8570
8571 According to the compiler gurus, an XVS type parallel to an aligner
8572 type may exist because of a stabs limitation. In stabs, aligner
8573 types are empty because the field has a variable-sized type, and
8574 thus cannot actually be used as an aligner type. As a result,
8575 we need the associated parallel XVS type to decode the type.
8576 Since the policy in the compiler is to not change the internal
8577 representation based on the debugging info format, we sometimes
8578 end up having a redundant XVS type parallel to the aligner type. */
8579 return raw_type;
8580
14f9c5c9 8581 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8582 if (real_type_namer == NULL
14f9c5c9
AS
8583 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8584 || TYPE_NFIELDS (real_type_namer) != 1)
8585 return raw_type;
8586
f80d3ff2
JB
8587 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8588 {
8589 /* This is an older encoding form where the base type needs to be
8590 looked up by name. We prefer the newer enconding because it is
8591 more efficient. */
8592 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8593 if (raw_real_type == NULL)
8594 return raw_type;
8595 else
8596 return raw_real_type;
8597 }
8598
8599 /* The field in our XVS type is a reference to the base type. */
8600 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8601}
14f9c5c9 8602
4c4b4cd2 8603/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8604
d2e4a39e
AS
8605struct type *
8606ada_aligned_type (struct type *type)
14f9c5c9
AS
8607{
8608 if (ada_is_aligner_type (type))
8609 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8610 else
8611 return ada_get_base_type (type);
8612}
8613
8614
8615/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8616 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8617
fc1a4b47
AC
8618const gdb_byte *
8619ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8620{
d2e4a39e 8621 if (ada_is_aligner_type (type))
14f9c5c9 8622 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8623 valaddr +
8624 TYPE_FIELD_BITPOS (type,
8625 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8626 else
8627 return valaddr;
8628}
8629
4c4b4cd2
PH
8630
8631
14f9c5c9 8632/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8633 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8634const char *
8635ada_enum_name (const char *name)
14f9c5c9 8636{
4c4b4cd2
PH
8637 static char *result;
8638 static size_t result_len = 0;
d2e4a39e 8639 char *tmp;
14f9c5c9 8640
4c4b4cd2
PH
8641 /* First, unqualify the enumeration name:
8642 1. Search for the last '.' character. If we find one, then skip
177b42fe 8643 all the preceding characters, the unqualified name starts
76a01679 8644 right after that dot.
4c4b4cd2 8645 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8646 translates dots into "__". Search forward for double underscores,
8647 but stop searching when we hit an overloading suffix, which is
8648 of the form "__" followed by digits. */
4c4b4cd2 8649
c3e5cd34
PH
8650 tmp = strrchr (name, '.');
8651 if (tmp != NULL)
4c4b4cd2
PH
8652 name = tmp + 1;
8653 else
14f9c5c9 8654 {
4c4b4cd2
PH
8655 while ((tmp = strstr (name, "__")) != NULL)
8656 {
8657 if (isdigit (tmp[2]))
8658 break;
8659 else
8660 name = tmp + 2;
8661 }
14f9c5c9
AS
8662 }
8663
8664 if (name[0] == 'Q')
8665 {
14f9c5c9 8666 int v;
5b4ee69b 8667
14f9c5c9 8668 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8669 {
8670 if (sscanf (name + 2, "%x", &v) != 1)
8671 return name;
8672 }
14f9c5c9 8673 else
4c4b4cd2 8674 return name;
14f9c5c9 8675
4c4b4cd2 8676 GROW_VECT (result, result_len, 16);
14f9c5c9 8677 if (isascii (v) && isprint (v))
88c15c34 8678 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8679 else if (name[1] == 'U')
88c15c34 8680 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8681 else
88c15c34 8682 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8683
8684 return result;
8685 }
d2e4a39e 8686 else
4c4b4cd2 8687 {
c3e5cd34
PH
8688 tmp = strstr (name, "__");
8689 if (tmp == NULL)
8690 tmp = strstr (name, "$");
8691 if (tmp != NULL)
4c4b4cd2
PH
8692 {
8693 GROW_VECT (result, result_len, tmp - name + 1);
8694 strncpy (result, name, tmp - name);
8695 result[tmp - name] = '\0';
8696 return result;
8697 }
8698
8699 return name;
8700 }
14f9c5c9
AS
8701}
8702
14f9c5c9
AS
8703/* Evaluate the subexpression of EXP starting at *POS as for
8704 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8705 expression. */
14f9c5c9 8706
d2e4a39e
AS
8707static struct value *
8708evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8709{
4b27a620 8710 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8711}
8712
8713/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8714 value it wraps. */
14f9c5c9 8715
d2e4a39e
AS
8716static struct value *
8717unwrap_value (struct value *val)
14f9c5c9 8718{
df407dfe 8719 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8720
14f9c5c9
AS
8721 if (ada_is_aligner_type (type))
8722 {
de4d072f 8723 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8724 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8725
14f9c5c9 8726 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8727 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8728
8729 return unwrap_value (v);
8730 }
d2e4a39e 8731 else
14f9c5c9 8732 {
d2e4a39e 8733 struct type *raw_real_type =
61ee279c 8734 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8735
5bf03f13
JB
8736 /* If there is no parallel XVS or XVE type, then the value is
8737 already unwrapped. Return it without further modification. */
8738 if ((type == raw_real_type)
8739 && ada_find_parallel_type (type, "___XVE") == NULL)
8740 return val;
14f9c5c9 8741
d2e4a39e 8742 return
4c4b4cd2
PH
8743 coerce_unspec_val_to_type
8744 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8745 value_address (val),
1ed6ede0 8746 NULL, 1));
14f9c5c9
AS
8747 }
8748}
d2e4a39e
AS
8749
8750static struct value *
8751cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8752{
8753 LONGEST val;
8754
df407dfe 8755 if (type == value_type (arg))
14f9c5c9 8756 return arg;
df407dfe 8757 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8758 val = ada_float_to_fixed (type,
df407dfe 8759 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8760 value_as_long (arg)));
d2e4a39e 8761 else
14f9c5c9 8762 {
a53b7a21 8763 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8764
14f9c5c9
AS
8765 val = ada_float_to_fixed (type, argd);
8766 }
8767
8768 return value_from_longest (type, val);
8769}
8770
d2e4a39e 8771static struct value *
a53b7a21 8772cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8773{
df407dfe 8774 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8775 value_as_long (arg));
5b4ee69b 8776
a53b7a21 8777 return value_from_double (type, val);
14f9c5c9
AS
8778}
8779
d99dcf51
JB
8780/* Given two array types T1 and T2, return nonzero iff both arrays
8781 contain the same number of elements. */
8782
8783static int
8784ada_same_array_size_p (struct type *t1, struct type *t2)
8785{
8786 LONGEST lo1, hi1, lo2, hi2;
8787
8788 /* Get the array bounds in order to verify that the size of
8789 the two arrays match. */
8790 if (!get_array_bounds (t1, &lo1, &hi1)
8791 || !get_array_bounds (t2, &lo2, &hi2))
8792 error (_("unable to determine array bounds"));
8793
8794 /* To make things easier for size comparison, normalize a bit
8795 the case of empty arrays by making sure that the difference
8796 between upper bound and lower bound is always -1. */
8797 if (lo1 > hi1)
8798 hi1 = lo1 - 1;
8799 if (lo2 > hi2)
8800 hi2 = lo2 - 1;
8801
8802 return (hi1 - lo1 == hi2 - lo2);
8803}
8804
8805/* Assuming that VAL is an array of integrals, and TYPE represents
8806 an array with the same number of elements, but with wider integral
8807 elements, return an array "casted" to TYPE. In practice, this
8808 means that the returned array is built by casting each element
8809 of the original array into TYPE's (wider) element type. */
8810
8811static struct value *
8812ada_promote_array_of_integrals (struct type *type, struct value *val)
8813{
8814 struct type *elt_type = TYPE_TARGET_TYPE (type);
8815 LONGEST lo, hi;
8816 struct value *res;
8817 LONGEST i;
8818
8819 /* Verify that both val and type are arrays of scalars, and
8820 that the size of val's elements is smaller than the size
8821 of type's element. */
8822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8823 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8824 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8825 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8826 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8827 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8828
8829 if (!get_array_bounds (type, &lo, &hi))
8830 error (_("unable to determine array bounds"));
8831
8832 res = allocate_value (type);
8833
8834 /* Promote each array element. */
8835 for (i = 0; i < hi - lo + 1; i++)
8836 {
8837 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8838
8839 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8840 value_contents_all (elt), TYPE_LENGTH (elt_type));
8841 }
8842
8843 return res;
8844}
8845
4c4b4cd2
PH
8846/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8847 return the converted value. */
8848
d2e4a39e
AS
8849static struct value *
8850coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8851{
df407dfe 8852 struct type *type2 = value_type (val);
5b4ee69b 8853
14f9c5c9
AS
8854 if (type == type2)
8855 return val;
8856
61ee279c
PH
8857 type2 = ada_check_typedef (type2);
8858 type = ada_check_typedef (type);
14f9c5c9 8859
d2e4a39e
AS
8860 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8861 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8862 {
8863 val = ada_value_ind (val);
df407dfe 8864 type2 = value_type (val);
14f9c5c9
AS
8865 }
8866
d2e4a39e 8867 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8868 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8869 {
d99dcf51
JB
8870 if (!ada_same_array_size_p (type, type2))
8871 error (_("cannot assign arrays of different length"));
8872
8873 if (is_integral_type (TYPE_TARGET_TYPE (type))
8874 && is_integral_type (TYPE_TARGET_TYPE (type2))
8875 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8876 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8877 {
8878 /* Allow implicit promotion of the array elements to
8879 a wider type. */
8880 return ada_promote_array_of_integrals (type, val);
8881 }
8882
8883 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8884 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8885 error (_("Incompatible types in assignment"));
04624583 8886 deprecated_set_value_type (val, type);
14f9c5c9 8887 }
d2e4a39e 8888 return val;
14f9c5c9
AS
8889}
8890
4c4b4cd2
PH
8891static struct value *
8892ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8893{
8894 struct value *val;
8895 struct type *type1, *type2;
8896 LONGEST v, v1, v2;
8897
994b9211
AC
8898 arg1 = coerce_ref (arg1);
8899 arg2 = coerce_ref (arg2);
18af8284
JB
8900 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8901 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8902
76a01679
JB
8903 if (TYPE_CODE (type1) != TYPE_CODE_INT
8904 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8905 return value_binop (arg1, arg2, op);
8906
76a01679 8907 switch (op)
4c4b4cd2
PH
8908 {
8909 case BINOP_MOD:
8910 case BINOP_DIV:
8911 case BINOP_REM:
8912 break;
8913 default:
8914 return value_binop (arg1, arg2, op);
8915 }
8916
8917 v2 = value_as_long (arg2);
8918 if (v2 == 0)
323e0a4a 8919 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8920
8921 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8922 return value_binop (arg1, arg2, op);
8923
8924 v1 = value_as_long (arg1);
8925 switch (op)
8926 {
8927 case BINOP_DIV:
8928 v = v1 / v2;
76a01679
JB
8929 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8930 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8931 break;
8932 case BINOP_REM:
8933 v = v1 % v2;
76a01679
JB
8934 if (v * v1 < 0)
8935 v -= v2;
4c4b4cd2
PH
8936 break;
8937 default:
8938 /* Should not reach this point. */
8939 v = 0;
8940 }
8941
8942 val = allocate_value (type1);
990a07ab 8943 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8944 TYPE_LENGTH (value_type (val)),
8945 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8946 return val;
8947}
8948
8949static int
8950ada_value_equal (struct value *arg1, struct value *arg2)
8951{
df407dfe
AC
8952 if (ada_is_direct_array_type (value_type (arg1))
8953 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8954 {
f58b38bf
JB
8955 /* Automatically dereference any array reference before
8956 we attempt to perform the comparison. */
8957 arg1 = ada_coerce_ref (arg1);
8958 arg2 = ada_coerce_ref (arg2);
8959
4c4b4cd2
PH
8960 arg1 = ada_coerce_to_simple_array (arg1);
8961 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8962 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8963 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8964 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8965 /* FIXME: The following works only for types whose
76a01679
JB
8966 representations use all bits (no padding or undefined bits)
8967 and do not have user-defined equality. */
8968 return
df407dfe 8969 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8970 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8971 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8972 }
8973 return value_equal (arg1, arg2);
8974}
8975
52ce6436
PH
8976/* Total number of component associations in the aggregate starting at
8977 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8978 OP_AGGREGATE. */
52ce6436
PH
8979
8980static int
8981num_component_specs (struct expression *exp, int pc)
8982{
8983 int n, m, i;
5b4ee69b 8984
52ce6436
PH
8985 m = exp->elts[pc + 1].longconst;
8986 pc += 3;
8987 n = 0;
8988 for (i = 0; i < m; i += 1)
8989 {
8990 switch (exp->elts[pc].opcode)
8991 {
8992 default:
8993 n += 1;
8994 break;
8995 case OP_CHOICES:
8996 n += exp->elts[pc + 1].longconst;
8997 break;
8998 }
8999 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9000 }
9001 return n;
9002}
9003
9004/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9005 component of LHS (a simple array or a record), updating *POS past
9006 the expression, assuming that LHS is contained in CONTAINER. Does
9007 not modify the inferior's memory, nor does it modify LHS (unless
9008 LHS == CONTAINER). */
9009
9010static void
9011assign_component (struct value *container, struct value *lhs, LONGEST index,
9012 struct expression *exp, int *pos)
9013{
9014 struct value *mark = value_mark ();
9015 struct value *elt;
5b4ee69b 9016
52ce6436
PH
9017 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9018 {
22601c15
UW
9019 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9020 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9021
52ce6436
PH
9022 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9023 }
9024 else
9025 {
9026 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9027 elt = ada_to_fixed_value (elt);
52ce6436
PH
9028 }
9029
9030 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9031 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9032 else
9033 value_assign_to_component (container, elt,
9034 ada_evaluate_subexp (NULL, exp, pos,
9035 EVAL_NORMAL));
9036
9037 value_free_to_mark (mark);
9038}
9039
9040/* Assuming that LHS represents an lvalue having a record or array
9041 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9042 of that aggregate's value to LHS, advancing *POS past the
9043 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9044 lvalue containing LHS (possibly LHS itself). Does not modify
9045 the inferior's memory, nor does it modify the contents of
0963b4bd 9046 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9047
9048static struct value *
9049assign_aggregate (struct value *container,
9050 struct value *lhs, struct expression *exp,
9051 int *pos, enum noside noside)
9052{
9053 struct type *lhs_type;
9054 int n = exp->elts[*pos+1].longconst;
9055 LONGEST low_index, high_index;
9056 int num_specs;
9057 LONGEST *indices;
9058 int max_indices, num_indices;
52ce6436 9059 int i;
52ce6436
PH
9060
9061 *pos += 3;
9062 if (noside != EVAL_NORMAL)
9063 {
52ce6436
PH
9064 for (i = 0; i < n; i += 1)
9065 ada_evaluate_subexp (NULL, exp, pos, noside);
9066 return container;
9067 }
9068
9069 container = ada_coerce_ref (container);
9070 if (ada_is_direct_array_type (value_type (container)))
9071 container = ada_coerce_to_simple_array (container);
9072 lhs = ada_coerce_ref (lhs);
9073 if (!deprecated_value_modifiable (lhs))
9074 error (_("Left operand of assignment is not a modifiable lvalue."));
9075
9076 lhs_type = value_type (lhs);
9077 if (ada_is_direct_array_type (lhs_type))
9078 {
9079 lhs = ada_coerce_to_simple_array (lhs);
9080 lhs_type = value_type (lhs);
9081 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9082 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9083 }
9084 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9085 {
9086 low_index = 0;
9087 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9088 }
9089 else
9090 error (_("Left-hand side must be array or record."));
9091
9092 num_specs = num_component_specs (exp, *pos - 3);
9093 max_indices = 4 * num_specs + 4;
9094 indices = alloca (max_indices * sizeof (indices[0]));
9095 indices[0] = indices[1] = low_index - 1;
9096 indices[2] = indices[3] = high_index + 1;
9097 num_indices = 4;
9098
9099 for (i = 0; i < n; i += 1)
9100 {
9101 switch (exp->elts[*pos].opcode)
9102 {
1fbf5ada
JB
9103 case OP_CHOICES:
9104 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9105 &num_indices, max_indices,
9106 low_index, high_index);
9107 break;
9108 case OP_POSITIONAL:
9109 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9110 &num_indices, max_indices,
9111 low_index, high_index);
1fbf5ada
JB
9112 break;
9113 case OP_OTHERS:
9114 if (i != n-1)
9115 error (_("Misplaced 'others' clause"));
9116 aggregate_assign_others (container, lhs, exp, pos, indices,
9117 num_indices, low_index, high_index);
9118 break;
9119 default:
9120 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9121 }
9122 }
9123
9124 return container;
9125}
9126
9127/* Assign into the component of LHS indexed by the OP_POSITIONAL
9128 construct at *POS, updating *POS past the construct, given that
9129 the positions are relative to lower bound LOW, where HIGH is the
9130 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9131 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9132 assign_aggregate. */
52ce6436
PH
9133static void
9134aggregate_assign_positional (struct value *container,
9135 struct value *lhs, struct expression *exp,
9136 int *pos, LONGEST *indices, int *num_indices,
9137 int max_indices, LONGEST low, LONGEST high)
9138{
9139 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9140
9141 if (ind - 1 == high)
e1d5a0d2 9142 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9143 if (ind <= high)
9144 {
9145 add_component_interval (ind, ind, indices, num_indices, max_indices);
9146 *pos += 3;
9147 assign_component (container, lhs, ind, exp, pos);
9148 }
9149 else
9150 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9151}
9152
9153/* Assign into the components of LHS indexed by the OP_CHOICES
9154 construct at *POS, updating *POS past the construct, given that
9155 the allowable indices are LOW..HIGH. Record the indices assigned
9156 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9157 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9158static void
9159aggregate_assign_from_choices (struct value *container,
9160 struct value *lhs, struct expression *exp,
9161 int *pos, LONGEST *indices, int *num_indices,
9162 int max_indices, LONGEST low, LONGEST high)
9163{
9164 int j;
9165 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9166 int choice_pos, expr_pc;
9167 int is_array = ada_is_direct_array_type (value_type (lhs));
9168
9169 choice_pos = *pos += 3;
9170
9171 for (j = 0; j < n_choices; j += 1)
9172 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9173 expr_pc = *pos;
9174 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9175
9176 for (j = 0; j < n_choices; j += 1)
9177 {
9178 LONGEST lower, upper;
9179 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9180
52ce6436
PH
9181 if (op == OP_DISCRETE_RANGE)
9182 {
9183 choice_pos += 1;
9184 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9185 EVAL_NORMAL));
9186 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9187 EVAL_NORMAL));
9188 }
9189 else if (is_array)
9190 {
9191 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9192 EVAL_NORMAL));
9193 upper = lower;
9194 }
9195 else
9196 {
9197 int ind;
0d5cff50 9198 const char *name;
5b4ee69b 9199
52ce6436
PH
9200 switch (op)
9201 {
9202 case OP_NAME:
9203 name = &exp->elts[choice_pos + 2].string;
9204 break;
9205 case OP_VAR_VALUE:
9206 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9207 break;
9208 default:
9209 error (_("Invalid record component association."));
9210 }
9211 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9212 ind = 0;
9213 if (! find_struct_field (name, value_type (lhs), 0,
9214 NULL, NULL, NULL, NULL, &ind))
9215 error (_("Unknown component name: %s."), name);
9216 lower = upper = ind;
9217 }
9218
9219 if (lower <= upper && (lower < low || upper > high))
9220 error (_("Index in component association out of bounds."));
9221
9222 add_component_interval (lower, upper, indices, num_indices,
9223 max_indices);
9224 while (lower <= upper)
9225 {
9226 int pos1;
5b4ee69b 9227
52ce6436
PH
9228 pos1 = expr_pc;
9229 assign_component (container, lhs, lower, exp, &pos1);
9230 lower += 1;
9231 }
9232 }
9233}
9234
9235/* Assign the value of the expression in the OP_OTHERS construct in
9236 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9237 have not been previously assigned. The index intervals already assigned
9238 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9239 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9240static void
9241aggregate_assign_others (struct value *container,
9242 struct value *lhs, struct expression *exp,
9243 int *pos, LONGEST *indices, int num_indices,
9244 LONGEST low, LONGEST high)
9245{
9246 int i;
5ce64950 9247 int expr_pc = *pos + 1;
52ce6436
PH
9248
9249 for (i = 0; i < num_indices - 2; i += 2)
9250 {
9251 LONGEST ind;
5b4ee69b 9252
52ce6436
PH
9253 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9254 {
5ce64950 9255 int localpos;
5b4ee69b 9256
5ce64950
MS
9257 localpos = expr_pc;
9258 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9259 }
9260 }
9261 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9262}
9263
9264/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9265 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9266 modifying *SIZE as needed. It is an error if *SIZE exceeds
9267 MAX_SIZE. The resulting intervals do not overlap. */
9268static void
9269add_component_interval (LONGEST low, LONGEST high,
9270 LONGEST* indices, int *size, int max_size)
9271{
9272 int i, j;
5b4ee69b 9273
52ce6436
PH
9274 for (i = 0; i < *size; i += 2) {
9275 if (high >= indices[i] && low <= indices[i + 1])
9276 {
9277 int kh;
5b4ee69b 9278
52ce6436
PH
9279 for (kh = i + 2; kh < *size; kh += 2)
9280 if (high < indices[kh])
9281 break;
9282 if (low < indices[i])
9283 indices[i] = low;
9284 indices[i + 1] = indices[kh - 1];
9285 if (high > indices[i + 1])
9286 indices[i + 1] = high;
9287 memcpy (indices + i + 2, indices + kh, *size - kh);
9288 *size -= kh - i - 2;
9289 return;
9290 }
9291 else if (high < indices[i])
9292 break;
9293 }
9294
9295 if (*size == max_size)
9296 error (_("Internal error: miscounted aggregate components."));
9297 *size += 2;
9298 for (j = *size-1; j >= i+2; j -= 1)
9299 indices[j] = indices[j - 2];
9300 indices[i] = low;
9301 indices[i + 1] = high;
9302}
9303
6e48bd2c
JB
9304/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9305 is different. */
9306
9307static struct value *
9308ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9309{
9310 if (type == ada_check_typedef (value_type (arg2)))
9311 return arg2;
9312
9313 if (ada_is_fixed_point_type (type))
9314 return (cast_to_fixed (type, arg2));
9315
9316 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9317 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9318
9319 return value_cast (type, arg2);
9320}
9321
284614f0
JB
9322/* Evaluating Ada expressions, and printing their result.
9323 ------------------------------------------------------
9324
21649b50
JB
9325 1. Introduction:
9326 ----------------
9327
284614f0
JB
9328 We usually evaluate an Ada expression in order to print its value.
9329 We also evaluate an expression in order to print its type, which
9330 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9331 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9332 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9333 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9334 similar.
9335
9336 Evaluating expressions is a little more complicated for Ada entities
9337 than it is for entities in languages such as C. The main reason for
9338 this is that Ada provides types whose definition might be dynamic.
9339 One example of such types is variant records. Or another example
9340 would be an array whose bounds can only be known at run time.
9341
9342 The following description is a general guide as to what should be
9343 done (and what should NOT be done) in order to evaluate an expression
9344 involving such types, and when. This does not cover how the semantic
9345 information is encoded by GNAT as this is covered separatly. For the
9346 document used as the reference for the GNAT encoding, see exp_dbug.ads
9347 in the GNAT sources.
9348
9349 Ideally, we should embed each part of this description next to its
9350 associated code. Unfortunately, the amount of code is so vast right
9351 now that it's hard to see whether the code handling a particular
9352 situation might be duplicated or not. One day, when the code is
9353 cleaned up, this guide might become redundant with the comments
9354 inserted in the code, and we might want to remove it.
9355
21649b50
JB
9356 2. ``Fixing'' an Entity, the Simple Case:
9357 -----------------------------------------
9358
284614f0
JB
9359 When evaluating Ada expressions, the tricky issue is that they may
9360 reference entities whose type contents and size are not statically
9361 known. Consider for instance a variant record:
9362
9363 type Rec (Empty : Boolean := True) is record
9364 case Empty is
9365 when True => null;
9366 when False => Value : Integer;
9367 end case;
9368 end record;
9369 Yes : Rec := (Empty => False, Value => 1);
9370 No : Rec := (empty => True);
9371
9372 The size and contents of that record depends on the value of the
9373 descriminant (Rec.Empty). At this point, neither the debugging
9374 information nor the associated type structure in GDB are able to
9375 express such dynamic types. So what the debugger does is to create
9376 "fixed" versions of the type that applies to the specific object.
9377 We also informally refer to this opperation as "fixing" an object,
9378 which means creating its associated fixed type.
9379
9380 Example: when printing the value of variable "Yes" above, its fixed
9381 type would look like this:
9382
9383 type Rec is record
9384 Empty : Boolean;
9385 Value : Integer;
9386 end record;
9387
9388 On the other hand, if we printed the value of "No", its fixed type
9389 would become:
9390
9391 type Rec is record
9392 Empty : Boolean;
9393 end record;
9394
9395 Things become a little more complicated when trying to fix an entity
9396 with a dynamic type that directly contains another dynamic type,
9397 such as an array of variant records, for instance. There are
9398 two possible cases: Arrays, and records.
9399
21649b50
JB
9400 3. ``Fixing'' Arrays:
9401 ---------------------
9402
9403 The type structure in GDB describes an array in terms of its bounds,
9404 and the type of its elements. By design, all elements in the array
9405 have the same type and we cannot represent an array of variant elements
9406 using the current type structure in GDB. When fixing an array,
9407 we cannot fix the array element, as we would potentially need one
9408 fixed type per element of the array. As a result, the best we can do
9409 when fixing an array is to produce an array whose bounds and size
9410 are correct (allowing us to read it from memory), but without having
9411 touched its element type. Fixing each element will be done later,
9412 when (if) necessary.
9413
9414 Arrays are a little simpler to handle than records, because the same
9415 amount of memory is allocated for each element of the array, even if
1b536f04 9416 the amount of space actually used by each element differs from element
21649b50 9417 to element. Consider for instance the following array of type Rec:
284614f0
JB
9418
9419 type Rec_Array is array (1 .. 2) of Rec;
9420
1b536f04
JB
9421 The actual amount of memory occupied by each element might be different
9422 from element to element, depending on the value of their discriminant.
21649b50 9423 But the amount of space reserved for each element in the array remains
1b536f04 9424 fixed regardless. So we simply need to compute that size using
21649b50
JB
9425 the debugging information available, from which we can then determine
9426 the array size (we multiply the number of elements of the array by
9427 the size of each element).
9428
9429 The simplest case is when we have an array of a constrained element
9430 type. For instance, consider the following type declarations:
9431
9432 type Bounded_String (Max_Size : Integer) is
9433 Length : Integer;
9434 Buffer : String (1 .. Max_Size);
9435 end record;
9436 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9437
9438 In this case, the compiler describes the array as an array of
9439 variable-size elements (identified by its XVS suffix) for which
9440 the size can be read in the parallel XVZ variable.
9441
9442 In the case of an array of an unconstrained element type, the compiler
9443 wraps the array element inside a private PAD type. This type should not
9444 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9445 that we also use the adjective "aligner" in our code to designate
9446 these wrapper types.
9447
1b536f04 9448 In some cases, the size allocated for each element is statically
21649b50
JB
9449 known. In that case, the PAD type already has the correct size,
9450 and the array element should remain unfixed.
9451
9452 But there are cases when this size is not statically known.
9453 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9454
9455 type Dynamic is array (1 .. Five) of Integer;
9456 type Wrapper (Has_Length : Boolean := False) is record
9457 Data : Dynamic;
9458 case Has_Length is
9459 when True => Length : Integer;
9460 when False => null;
9461 end case;
9462 end record;
9463 type Wrapper_Array is array (1 .. 2) of Wrapper;
9464
9465 Hello : Wrapper_Array := (others => (Has_Length => True,
9466 Data => (others => 17),
9467 Length => 1));
9468
9469
9470 The debugging info would describe variable Hello as being an
9471 array of a PAD type. The size of that PAD type is not statically
9472 known, but can be determined using a parallel XVZ variable.
9473 In that case, a copy of the PAD type with the correct size should
9474 be used for the fixed array.
9475
21649b50
JB
9476 3. ``Fixing'' record type objects:
9477 ----------------------------------
9478
9479 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9480 record types. In this case, in order to compute the associated
9481 fixed type, we need to determine the size and offset of each of
9482 its components. This, in turn, requires us to compute the fixed
9483 type of each of these components.
9484
9485 Consider for instance the example:
9486
9487 type Bounded_String (Max_Size : Natural) is record
9488 Str : String (1 .. Max_Size);
9489 Length : Natural;
9490 end record;
9491 My_String : Bounded_String (Max_Size => 10);
9492
9493 In that case, the position of field "Length" depends on the size
9494 of field Str, which itself depends on the value of the Max_Size
21649b50 9495 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9496 we need to fix the type of field Str. Therefore, fixing a variant
9497 record requires us to fix each of its components.
9498
9499 However, if a component does not have a dynamic size, the component
9500 should not be fixed. In particular, fields that use a PAD type
9501 should not fixed. Here is an example where this might happen
9502 (assuming type Rec above):
9503
9504 type Container (Big : Boolean) is record
9505 First : Rec;
9506 After : Integer;
9507 case Big is
9508 when True => Another : Integer;
9509 when False => null;
9510 end case;
9511 end record;
9512 My_Container : Container := (Big => False,
9513 First => (Empty => True),
9514 After => 42);
9515
9516 In that example, the compiler creates a PAD type for component First,
9517 whose size is constant, and then positions the component After just
9518 right after it. The offset of component After is therefore constant
9519 in this case.
9520
9521 The debugger computes the position of each field based on an algorithm
9522 that uses, among other things, the actual position and size of the field
21649b50
JB
9523 preceding it. Let's now imagine that the user is trying to print
9524 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9525 end up computing the offset of field After based on the size of the
9526 fixed version of field First. And since in our example First has
9527 only one actual field, the size of the fixed type is actually smaller
9528 than the amount of space allocated to that field, and thus we would
9529 compute the wrong offset of field After.
9530
21649b50
JB
9531 To make things more complicated, we need to watch out for dynamic
9532 components of variant records (identified by the ___XVL suffix in
9533 the component name). Even if the target type is a PAD type, the size
9534 of that type might not be statically known. So the PAD type needs
9535 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9536 we might end up with the wrong size for our component. This can be
9537 observed with the following type declarations:
284614f0
JB
9538
9539 type Octal is new Integer range 0 .. 7;
9540 type Octal_Array is array (Positive range <>) of Octal;
9541 pragma Pack (Octal_Array);
9542
9543 type Octal_Buffer (Size : Positive) is record
9544 Buffer : Octal_Array (1 .. Size);
9545 Length : Integer;
9546 end record;
9547
9548 In that case, Buffer is a PAD type whose size is unset and needs
9549 to be computed by fixing the unwrapped type.
9550
21649b50
JB
9551 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9552 ----------------------------------------------------------
9553
9554 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9555 thus far, be actually fixed?
9556
9557 The answer is: Only when referencing that element. For instance
9558 when selecting one component of a record, this specific component
9559 should be fixed at that point in time. Or when printing the value
9560 of a record, each component should be fixed before its value gets
9561 printed. Similarly for arrays, the element of the array should be
9562 fixed when printing each element of the array, or when extracting
9563 one element out of that array. On the other hand, fixing should
9564 not be performed on the elements when taking a slice of an array!
9565
9566 Note that one of the side-effects of miscomputing the offset and
9567 size of each field is that we end up also miscomputing the size
9568 of the containing type. This can have adverse results when computing
9569 the value of an entity. GDB fetches the value of an entity based
9570 on the size of its type, and thus a wrong size causes GDB to fetch
9571 the wrong amount of memory. In the case where the computed size is
9572 too small, GDB fetches too little data to print the value of our
9573 entiry. Results in this case as unpredicatble, as we usually read
9574 past the buffer containing the data =:-o. */
9575
9576/* Implement the evaluate_exp routine in the exp_descriptor structure
9577 for the Ada language. */
9578
52ce6436 9579static struct value *
ebf56fd3 9580ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9581 int *pos, enum noside noside)
14f9c5c9
AS
9582{
9583 enum exp_opcode op;
b5385fc0 9584 int tem;
14f9c5c9
AS
9585 int pc;
9586 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9587 struct type *type;
52ce6436 9588 int nargs, oplen;
d2e4a39e 9589 struct value **argvec;
14f9c5c9 9590
d2e4a39e
AS
9591 pc = *pos;
9592 *pos += 1;
14f9c5c9
AS
9593 op = exp->elts[pc].opcode;
9594
d2e4a39e 9595 switch (op)
14f9c5c9
AS
9596 {
9597 default:
9598 *pos -= 1;
6e48bd2c 9599 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9600
9601 if (noside == EVAL_NORMAL)
9602 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9603
9604 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9605 then we need to perform the conversion manually, because
9606 evaluate_subexp_standard doesn't do it. This conversion is
9607 necessary in Ada because the different kinds of float/fixed
9608 types in Ada have different representations.
9609
9610 Similarly, we need to perform the conversion from OP_LONG
9611 ourselves. */
9612 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9613 arg1 = ada_value_cast (expect_type, arg1, noside);
9614
9615 return arg1;
4c4b4cd2
PH
9616
9617 case OP_STRING:
9618 {
76a01679 9619 struct value *result;
5b4ee69b 9620
76a01679
JB
9621 *pos -= 1;
9622 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9623 /* The result type will have code OP_STRING, bashed there from
9624 OP_ARRAY. Bash it back. */
df407dfe
AC
9625 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9626 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9627 return result;
4c4b4cd2 9628 }
14f9c5c9
AS
9629
9630 case UNOP_CAST:
9631 (*pos) += 2;
9632 type = exp->elts[pc + 1].type;
9633 arg1 = evaluate_subexp (type, exp, pos, noside);
9634 if (noside == EVAL_SKIP)
4c4b4cd2 9635 goto nosideret;
6e48bd2c 9636 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9637 return arg1;
9638
4c4b4cd2
PH
9639 case UNOP_QUAL:
9640 (*pos) += 2;
9641 type = exp->elts[pc + 1].type;
9642 return ada_evaluate_subexp (type, exp, pos, noside);
9643
14f9c5c9
AS
9644 case BINOP_ASSIGN:
9645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9646 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9647 {
9648 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9649 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9650 return arg1;
9651 return ada_value_assign (arg1, arg1);
9652 }
003f3813
JB
9653 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9654 except if the lhs of our assignment is a convenience variable.
9655 In the case of assigning to a convenience variable, the lhs
9656 should be exactly the result of the evaluation of the rhs. */
9657 type = value_type (arg1);
9658 if (VALUE_LVAL (arg1) == lval_internalvar)
9659 type = NULL;
9660 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9661 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9662 return arg1;
df407dfe
AC
9663 if (ada_is_fixed_point_type (value_type (arg1)))
9664 arg2 = cast_to_fixed (value_type (arg1), arg2);
9665 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9666 error
323e0a4a 9667 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9668 else
df407dfe 9669 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9670 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9671
9672 case BINOP_ADD:
9673 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9675 if (noside == EVAL_SKIP)
4c4b4cd2 9676 goto nosideret;
2ac8a782
JB
9677 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9678 return (value_from_longest
9679 (value_type (arg1),
9680 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9681 if ((ada_is_fixed_point_type (value_type (arg1))
9682 || ada_is_fixed_point_type (value_type (arg2)))
9683 && value_type (arg1) != value_type (arg2))
323e0a4a 9684 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9685 /* Do the addition, and cast the result to the type of the first
9686 argument. We cannot cast the result to a reference type, so if
9687 ARG1 is a reference type, find its underlying type. */
9688 type = value_type (arg1);
9689 while (TYPE_CODE (type) == TYPE_CODE_REF)
9690 type = TYPE_TARGET_TYPE (type);
f44316fa 9691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9692 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9693
9694 case BINOP_SUB:
9695 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9696 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9697 if (noside == EVAL_SKIP)
4c4b4cd2 9698 goto nosideret;
2ac8a782
JB
9699 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9700 return (value_from_longest
9701 (value_type (arg1),
9702 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9703 if ((ada_is_fixed_point_type (value_type (arg1))
9704 || ada_is_fixed_point_type (value_type (arg2)))
9705 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9706 error (_("Operands of fixed-point subtraction "
9707 "must have the same type"));
b7789565
JB
9708 /* Do the substraction, and cast the result to the type of the first
9709 argument. We cannot cast the result to a reference type, so if
9710 ARG1 is a reference type, find its underlying type. */
9711 type = value_type (arg1);
9712 while (TYPE_CODE (type) == TYPE_CODE_REF)
9713 type = TYPE_TARGET_TYPE (type);
f44316fa 9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9715 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9716
9717 case BINOP_MUL:
9718 case BINOP_DIV:
e1578042
JB
9719 case BINOP_REM:
9720 case BINOP_MOD:
14f9c5c9
AS
9721 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9722 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9723 if (noside == EVAL_SKIP)
4c4b4cd2 9724 goto nosideret;
e1578042 9725 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9726 {
9727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9728 return value_zero (value_type (arg1), not_lval);
9729 }
14f9c5c9 9730 else
4c4b4cd2 9731 {
a53b7a21 9732 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9733 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9734 arg1 = cast_from_fixed (type, arg1);
df407dfe 9735 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9736 arg2 = cast_from_fixed (type, arg2);
f44316fa 9737 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9738 return ada_value_binop (arg1, arg2, op);
9739 }
9740
4c4b4cd2
PH
9741 case BINOP_EQUAL:
9742 case BINOP_NOTEQUAL:
14f9c5c9 9743 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9744 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9745 if (noside == EVAL_SKIP)
76a01679 9746 goto nosideret;
4c4b4cd2 9747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9748 tem = 0;
4c4b4cd2 9749 else
f44316fa
UW
9750 {
9751 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9752 tem = ada_value_equal (arg1, arg2);
9753 }
4c4b4cd2 9754 if (op == BINOP_NOTEQUAL)
76a01679 9755 tem = !tem;
fbb06eb1
UW
9756 type = language_bool_type (exp->language_defn, exp->gdbarch);
9757 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9758
9759 case UNOP_NEG:
9760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9761 if (noside == EVAL_SKIP)
9762 goto nosideret;
df407dfe
AC
9763 else if (ada_is_fixed_point_type (value_type (arg1)))
9764 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9765 else
f44316fa
UW
9766 {
9767 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9768 return value_neg (arg1);
9769 }
4c4b4cd2 9770
2330c6c6
JB
9771 case BINOP_LOGICAL_AND:
9772 case BINOP_LOGICAL_OR:
9773 case UNOP_LOGICAL_NOT:
000d5124
JB
9774 {
9775 struct value *val;
9776
9777 *pos -= 1;
9778 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9779 type = language_bool_type (exp->language_defn, exp->gdbarch);
9780 return value_cast (type, val);
000d5124 9781 }
2330c6c6
JB
9782
9783 case BINOP_BITWISE_AND:
9784 case BINOP_BITWISE_IOR:
9785 case BINOP_BITWISE_XOR:
000d5124
JB
9786 {
9787 struct value *val;
9788
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9790 *pos = pc;
9791 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9792
9793 return value_cast (value_type (arg1), val);
9794 }
2330c6c6 9795
14f9c5c9
AS
9796 case OP_VAR_VALUE:
9797 *pos -= 1;
6799def4 9798
14f9c5c9 9799 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9800 {
9801 *pos += 4;
9802 goto nosideret;
9803 }
9804 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9805 /* Only encountered when an unresolved symbol occurs in a
9806 context other than a function call, in which case, it is
52ce6436 9807 invalid. */
323e0a4a 9808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9809 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9810 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9811 {
0c1f74cf 9812 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9813 /* Check to see if this is a tagged type. We also need to handle
9814 the case where the type is a reference to a tagged type, but
9815 we have to be careful to exclude pointers to tagged types.
9816 The latter should be shown as usual (as a pointer), whereas
9817 a reference should mostly be transparent to the user. */
9818 if (ada_is_tagged_type (type, 0)
9819 || (TYPE_CODE(type) == TYPE_CODE_REF
9820 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9821 {
9822 /* Tagged types are a little special in the fact that the real
9823 type is dynamic and can only be determined by inspecting the
9824 object's tag. This means that we need to get the object's
9825 value first (EVAL_NORMAL) and then extract the actual object
9826 type from its tag.
9827
9828 Note that we cannot skip the final step where we extract
9829 the object type from its tag, because the EVAL_NORMAL phase
9830 results in dynamic components being resolved into fixed ones.
9831 This can cause problems when trying to print the type
9832 description of tagged types whose parent has a dynamic size:
9833 We use the type name of the "_parent" component in order
9834 to print the name of the ancestor type in the type description.
9835 If that component had a dynamic size, the resolution into
9836 a fixed type would result in the loss of that type name,
9837 thus preventing us from printing the name of the ancestor
9838 type in the type description. */
9839 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9840
9841 if (TYPE_CODE (type) != TYPE_CODE_REF)
9842 {
9843 struct type *actual_type;
9844
9845 actual_type = type_from_tag (ada_value_tag (arg1));
9846 if (actual_type == NULL)
9847 /* If, for some reason, we were unable to determine
9848 the actual type from the tag, then use the static
9849 approximation that we just computed as a fallback.
9850 This can happen if the debugging information is
9851 incomplete, for instance. */
9852 actual_type = type;
9853 return value_zero (actual_type, not_lval);
9854 }
9855 else
9856 {
9857 /* In the case of a ref, ada_coerce_ref takes care
9858 of determining the actual type. But the evaluation
9859 should return a ref as it should be valid to ask
9860 for its address; so rebuild a ref after coerce. */
9861 arg1 = ada_coerce_ref (arg1);
9862 return value_ref (arg1);
9863 }
0c1f74cf
JB
9864 }
9865
4c4b4cd2
PH
9866 *pos += 4;
9867 return value_zero
9868 (to_static_fixed_type
9869 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9870 not_lval);
9871 }
d2e4a39e 9872 else
4c4b4cd2 9873 {
284614f0 9874 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9875 return ada_to_fixed_value (arg1);
9876 }
9877
9878 case OP_FUNCALL:
9879 (*pos) += 2;
9880
9881 /* Allocate arg vector, including space for the function to be
9882 called in argvec[0] and a terminating NULL. */
9883 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9884 argvec =
9885 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9886
9887 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9888 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9889 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9890 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9891 else
9892 {
9893 for (tem = 0; tem <= nargs; tem += 1)
9894 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9895 argvec[tem] = 0;
9896
9897 if (noside == EVAL_SKIP)
9898 goto nosideret;
9899 }
9900
ad82864c
JB
9901 if (ada_is_constrained_packed_array_type
9902 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9903 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9904 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9905 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9906 /* This is a packed array that has already been fixed, and
9907 therefore already coerced to a simple array. Nothing further
9908 to do. */
9909 ;
df407dfe
AC
9910 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9911 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9912 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9913 argvec[0] = value_addr (argvec[0]);
9914
df407dfe 9915 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9916
9917 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9918 them. So, if this is an array typedef (encoding use for array
9919 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9920 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9921 type = ada_typedef_target_type (type);
9922
4c4b4cd2
PH
9923 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9924 {
61ee279c 9925 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9926 {
9927 case TYPE_CODE_FUNC:
61ee279c 9928 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9929 break;
9930 case TYPE_CODE_ARRAY:
9931 break;
9932 case TYPE_CODE_STRUCT:
9933 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9934 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9935 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9936 break;
9937 default:
323e0a4a 9938 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9939 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9940 break;
9941 }
9942 }
9943
9944 switch (TYPE_CODE (type))
9945 {
9946 case TYPE_CODE_FUNC:
9947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9948 {
9949 struct type *rtype = TYPE_TARGET_TYPE (type);
9950
9951 if (TYPE_GNU_IFUNC (type))
9952 return allocate_value (TYPE_TARGET_TYPE (rtype));
9953 return allocate_value (rtype);
9954 }
4c4b4cd2 9955 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9956 case TYPE_CODE_INTERNAL_FUNCTION:
9957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9958 /* We don't know anything about what the internal
9959 function might return, but we have to return
9960 something. */
9961 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9962 not_lval);
9963 else
9964 return call_internal_function (exp->gdbarch, exp->language_defn,
9965 argvec[0], nargs, argvec + 1);
9966
4c4b4cd2
PH
9967 case TYPE_CODE_STRUCT:
9968 {
9969 int arity;
9970
4c4b4cd2
PH
9971 arity = ada_array_arity (type);
9972 type = ada_array_element_type (type, nargs);
9973 if (type == NULL)
323e0a4a 9974 error (_("cannot subscript or call a record"));
4c4b4cd2 9975 if (arity != nargs)
323e0a4a 9976 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9978 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9979 return
9980 unwrap_value (ada_value_subscript
9981 (argvec[0], nargs, argvec + 1));
9982 }
9983 case TYPE_CODE_ARRAY:
9984 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9985 {
9986 type = ada_array_element_type (type, nargs);
9987 if (type == NULL)
323e0a4a 9988 error (_("element type of array unknown"));
4c4b4cd2 9989 else
0a07e705 9990 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9991 }
9992 return
9993 unwrap_value (ada_value_subscript
9994 (ada_coerce_to_simple_array (argvec[0]),
9995 nargs, argvec + 1));
9996 case TYPE_CODE_PTR: /* Pointer to array */
9997 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9998 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9999 {
10000 type = ada_array_element_type (type, nargs);
10001 if (type == NULL)
323e0a4a 10002 error (_("element type of array unknown"));
4c4b4cd2 10003 else
0a07e705 10004 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10005 }
10006 return
10007 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10008 nargs, argvec + 1));
10009
10010 default:
e1d5a0d2
PH
10011 error (_("Attempt to index or call something other than an "
10012 "array or function"));
4c4b4cd2
PH
10013 }
10014
10015 case TERNOP_SLICE:
10016 {
10017 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10018 struct value *low_bound_val =
10019 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10020 struct value *high_bound_val =
10021 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 LONGEST low_bound;
10023 LONGEST high_bound;
5b4ee69b 10024
994b9211
AC
10025 low_bound_val = coerce_ref (low_bound_val);
10026 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10027 low_bound = pos_atr (low_bound_val);
10028 high_bound = pos_atr (high_bound_val);
963a6417 10029
4c4b4cd2
PH
10030 if (noside == EVAL_SKIP)
10031 goto nosideret;
10032
4c4b4cd2
PH
10033 /* If this is a reference to an aligner type, then remove all
10034 the aligners. */
df407dfe
AC
10035 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10036 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10037 TYPE_TARGET_TYPE (value_type (array)) =
10038 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10039
ad82864c 10040 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10041 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10042
10043 /* If this is a reference to an array or an array lvalue,
10044 convert to a pointer. */
df407dfe
AC
10045 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10046 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10047 && VALUE_LVAL (array) == lval_memory))
10048 array = value_addr (array);
10049
1265e4aa 10050 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10051 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10052 (value_type (array))))
0b5d8877 10053 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10054
10055 array = ada_coerce_to_simple_array_ptr (array);
10056
714e53ab
PH
10057 /* If we have more than one level of pointer indirection,
10058 dereference the value until we get only one level. */
df407dfe
AC
10059 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10060 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10061 == TYPE_CODE_PTR))
10062 array = value_ind (array);
10063
10064 /* Make sure we really do have an array type before going further,
10065 to avoid a SEGV when trying to get the index type or the target
10066 type later down the road if the debug info generated by
10067 the compiler is incorrect or incomplete. */
df407dfe 10068 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10069 error (_("cannot take slice of non-array"));
714e53ab 10070
828292f2
JB
10071 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10072 == TYPE_CODE_PTR)
4c4b4cd2 10073 {
828292f2
JB
10074 struct type *type0 = ada_check_typedef (value_type (array));
10075
0b5d8877 10076 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10077 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10078 else
10079 {
10080 struct type *arr_type0 =
828292f2 10081 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10082
f5938064
JG
10083 return ada_value_slice_from_ptr (array, arr_type0,
10084 longest_to_int (low_bound),
10085 longest_to_int (high_bound));
4c4b4cd2
PH
10086 }
10087 }
10088 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10089 return array;
10090 else if (high_bound < low_bound)
df407dfe 10091 return empty_array (value_type (array), low_bound);
4c4b4cd2 10092 else
529cad9c
PH
10093 return ada_value_slice (array, longest_to_int (low_bound),
10094 longest_to_int (high_bound));
4c4b4cd2 10095 }
14f9c5c9 10096
4c4b4cd2
PH
10097 case UNOP_IN_RANGE:
10098 (*pos) += 2;
10099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10100 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10101
14f9c5c9 10102 if (noside == EVAL_SKIP)
4c4b4cd2 10103 goto nosideret;
14f9c5c9 10104
4c4b4cd2
PH
10105 switch (TYPE_CODE (type))
10106 {
10107 default:
e1d5a0d2
PH
10108 lim_warning (_("Membership test incompletely implemented; "
10109 "always returns true"));
fbb06eb1
UW
10110 type = language_bool_type (exp->language_defn, exp->gdbarch);
10111 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10112
10113 case TYPE_CODE_RANGE:
030b4912
UW
10114 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10115 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10118 type = language_bool_type (exp->language_defn, exp->gdbarch);
10119 return
10120 value_from_longest (type,
4c4b4cd2
PH
10121 (value_less (arg1, arg3)
10122 || value_equal (arg1, arg3))
10123 && (value_less (arg2, arg1)
10124 || value_equal (arg2, arg1)));
10125 }
10126
10127 case BINOP_IN_BOUNDS:
14f9c5c9 10128 (*pos) += 2;
4c4b4cd2
PH
10129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10131
4c4b4cd2
PH
10132 if (noside == EVAL_SKIP)
10133 goto nosideret;
14f9c5c9 10134
4c4b4cd2 10135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10136 {
10137 type = language_bool_type (exp->language_defn, exp->gdbarch);
10138 return value_zero (type, not_lval);
10139 }
14f9c5c9 10140
4c4b4cd2 10141 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10142
1eea4ebd
UW
10143 type = ada_index_type (value_type (arg2), tem, "range");
10144 if (!type)
10145 type = value_type (arg1);
14f9c5c9 10146
1eea4ebd
UW
10147 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10148 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10149
f44316fa
UW
10150 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10152 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10153 return
fbb06eb1 10154 value_from_longest (type,
4c4b4cd2
PH
10155 (value_less (arg1, arg3)
10156 || value_equal (arg1, arg3))
10157 && (value_less (arg2, arg1)
10158 || value_equal (arg2, arg1)));
10159
10160 case TERNOP_IN_RANGE:
10161 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10162 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167
f44316fa
UW
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10170 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10171 return
fbb06eb1 10172 value_from_longest (type,
4c4b4cd2
PH
10173 (value_less (arg1, arg3)
10174 || value_equal (arg1, arg3))
10175 && (value_less (arg2, arg1)
10176 || value_equal (arg2, arg1)));
10177
10178 case OP_ATR_FIRST:
10179 case OP_ATR_LAST:
10180 case OP_ATR_LENGTH:
10181 {
76a01679 10182 struct type *type_arg;
5b4ee69b 10183
76a01679
JB
10184 if (exp->elts[*pos].opcode == OP_TYPE)
10185 {
10186 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10187 arg1 = NULL;
5bc23cb3 10188 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10189 }
10190 else
10191 {
10192 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10193 type_arg = NULL;
10194 }
10195
10196 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10197 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10198 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10199 *pos += 4;
10200
10201 if (noside == EVAL_SKIP)
10202 goto nosideret;
10203
10204 if (type_arg == NULL)
10205 {
10206 arg1 = ada_coerce_ref (arg1);
10207
ad82864c 10208 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10209 arg1 = ada_coerce_to_simple_array (arg1);
10210
1eea4ebd
UW
10211 type = ada_index_type (value_type (arg1), tem,
10212 ada_attribute_name (op));
10213 if (type == NULL)
10214 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10215
10216 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10217 return allocate_value (type);
76a01679
JB
10218
10219 switch (op)
10220 {
10221 default: /* Should never happen. */
323e0a4a 10222 error (_("unexpected attribute encountered"));
76a01679 10223 case OP_ATR_FIRST:
1eea4ebd
UW
10224 return value_from_longest
10225 (type, ada_array_bound (arg1, tem, 0));
76a01679 10226 case OP_ATR_LAST:
1eea4ebd
UW
10227 return value_from_longest
10228 (type, ada_array_bound (arg1, tem, 1));
76a01679 10229 case OP_ATR_LENGTH:
1eea4ebd
UW
10230 return value_from_longest
10231 (type, ada_array_length (arg1, tem));
76a01679
JB
10232 }
10233 }
10234 else if (discrete_type_p (type_arg))
10235 {
10236 struct type *range_type;
0d5cff50 10237 const char *name = ada_type_name (type_arg);
5b4ee69b 10238
76a01679
JB
10239 range_type = NULL;
10240 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10241 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10242 if (range_type == NULL)
10243 range_type = type_arg;
10244 switch (op)
10245 {
10246 default:
323e0a4a 10247 error (_("unexpected attribute encountered"));
76a01679 10248 case OP_ATR_FIRST:
690cc4eb 10249 return value_from_longest
43bbcdc2 10250 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10251 case OP_ATR_LAST:
690cc4eb 10252 return value_from_longest
43bbcdc2 10253 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10254 case OP_ATR_LENGTH:
323e0a4a 10255 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10256 }
10257 }
10258 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10259 error (_("unimplemented type attribute"));
76a01679
JB
10260 else
10261 {
10262 LONGEST low, high;
10263
ad82864c
JB
10264 if (ada_is_constrained_packed_array_type (type_arg))
10265 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10266
1eea4ebd 10267 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10268 if (type == NULL)
1eea4ebd
UW
10269 type = builtin_type (exp->gdbarch)->builtin_int;
10270
76a01679
JB
10271 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10272 return allocate_value (type);
10273
10274 switch (op)
10275 {
10276 default:
323e0a4a 10277 error (_("unexpected attribute encountered"));
76a01679 10278 case OP_ATR_FIRST:
1eea4ebd 10279 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10280 return value_from_longest (type, low);
10281 case OP_ATR_LAST:
1eea4ebd 10282 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10283 return value_from_longest (type, high);
10284 case OP_ATR_LENGTH:
1eea4ebd
UW
10285 low = ada_array_bound_from_type (type_arg, tem, 0);
10286 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10287 return value_from_longest (type, high - low + 1);
10288 }
10289 }
14f9c5c9
AS
10290 }
10291
4c4b4cd2
PH
10292 case OP_ATR_TAG:
10293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10294 if (noside == EVAL_SKIP)
76a01679 10295 goto nosideret;
4c4b4cd2
PH
10296
10297 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10298 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10299
10300 return ada_value_tag (arg1);
10301
10302 case OP_ATR_MIN:
10303 case OP_ATR_MAX:
10304 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10306 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 if (noside == EVAL_SKIP)
76a01679 10308 goto nosideret;
d2e4a39e 10309 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10310 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10311 else
f44316fa
UW
10312 {
10313 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10314 return value_binop (arg1, arg2,
10315 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10316 }
14f9c5c9 10317
4c4b4cd2
PH
10318 case OP_ATR_MODULUS:
10319 {
31dedfee 10320 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10321
5b4ee69b 10322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10323 if (noside == EVAL_SKIP)
10324 goto nosideret;
4c4b4cd2 10325
76a01679 10326 if (!ada_is_modular_type (type_arg))
323e0a4a 10327 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10328
76a01679
JB
10329 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10330 ada_modulus (type_arg));
4c4b4cd2
PH
10331 }
10332
10333
10334 case OP_ATR_POS:
10335 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10337 if (noside == EVAL_SKIP)
76a01679 10338 goto nosideret;
3cb382c9
UW
10339 type = builtin_type (exp->gdbarch)->builtin_int;
10340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10341 return value_zero (type, not_lval);
14f9c5c9 10342 else
3cb382c9 10343 return value_pos_atr (type, arg1);
14f9c5c9 10344
4c4b4cd2
PH
10345 case OP_ATR_SIZE:
10346 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10347 type = value_type (arg1);
10348
10349 /* If the argument is a reference, then dereference its type, since
10350 the user is really asking for the size of the actual object,
10351 not the size of the pointer. */
10352 if (TYPE_CODE (type) == TYPE_CODE_REF)
10353 type = TYPE_TARGET_TYPE (type);
10354
4c4b4cd2 10355 if (noside == EVAL_SKIP)
76a01679 10356 goto nosideret;
4c4b4cd2 10357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10358 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10359 else
22601c15 10360 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10361 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10362
10363 case OP_ATR_VAL:
10364 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10365 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10366 type = exp->elts[pc + 2].type;
14f9c5c9 10367 if (noside == EVAL_SKIP)
76a01679 10368 goto nosideret;
4c4b4cd2 10369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10370 return value_zero (type, not_lval);
4c4b4cd2 10371 else
76a01679 10372 return value_val_atr (type, arg1);
4c4b4cd2
PH
10373
10374 case BINOP_EXP:
10375 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10376 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 if (noside == EVAL_SKIP)
10378 goto nosideret;
10379 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10380 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10381 else
f44316fa
UW
10382 {
10383 /* For integer exponentiation operations,
10384 only promote the first argument. */
10385 if (is_integral_type (value_type (arg2)))
10386 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10387 else
10388 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10389
10390 return value_binop (arg1, arg2, op);
10391 }
4c4b4cd2
PH
10392
10393 case UNOP_PLUS:
10394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10395 if (noside == EVAL_SKIP)
10396 goto nosideret;
10397 else
10398 return arg1;
10399
10400 case UNOP_ABS:
10401 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10402 if (noside == EVAL_SKIP)
10403 goto nosideret;
f44316fa 10404 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10405 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10406 return value_neg (arg1);
14f9c5c9 10407 else
4c4b4cd2 10408 return arg1;
14f9c5c9
AS
10409
10410 case UNOP_IND:
6b0d7253 10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10412 if (noside == EVAL_SKIP)
4c4b4cd2 10413 goto nosideret;
df407dfe 10414 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10415 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10416 {
10417 if (ada_is_array_descriptor_type (type))
10418 /* GDB allows dereferencing GNAT array descriptors. */
10419 {
10420 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10421
4c4b4cd2 10422 if (arrType == NULL)
323e0a4a 10423 error (_("Attempt to dereference null array pointer."));
00a4c844 10424 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10425 }
10426 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10427 || TYPE_CODE (type) == TYPE_CODE_REF
10428 /* In C you can dereference an array to get the 1st elt. */
10429 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10430 {
10431 type = to_static_fixed_type
10432 (ada_aligned_type
10433 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10434 check_size (type);
10435 return value_zero (type, lval_memory);
10436 }
4c4b4cd2 10437 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10438 {
10439 /* GDB allows dereferencing an int. */
10440 if (expect_type == NULL)
10441 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10442 lval_memory);
10443 else
10444 {
10445 expect_type =
10446 to_static_fixed_type (ada_aligned_type (expect_type));
10447 return value_zero (expect_type, lval_memory);
10448 }
10449 }
4c4b4cd2 10450 else
323e0a4a 10451 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10452 }
0963b4bd 10453 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10454 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10455
96967637
JB
10456 if (TYPE_CODE (type) == TYPE_CODE_INT)
10457 /* GDB allows dereferencing an int. If we were given
10458 the expect_type, then use that as the target type.
10459 Otherwise, assume that the target type is an int. */
10460 {
10461 if (expect_type != NULL)
10462 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10463 arg1));
10464 else
10465 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10466 (CORE_ADDR) value_as_address (arg1));
10467 }
6b0d7253 10468
4c4b4cd2
PH
10469 if (ada_is_array_descriptor_type (type))
10470 /* GDB allows dereferencing GNAT array descriptors. */
10471 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10472 else
4c4b4cd2 10473 return ada_value_ind (arg1);
14f9c5c9
AS
10474
10475 case STRUCTOP_STRUCT:
10476 tem = longest_to_int (exp->elts[pc + 1].longconst);
10477 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 if (noside == EVAL_SKIP)
4c4b4cd2 10480 goto nosideret;
14f9c5c9 10481 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10482 {
df407dfe 10483 struct type *type1 = value_type (arg1);
5b4ee69b 10484
76a01679
JB
10485 if (ada_is_tagged_type (type1, 1))
10486 {
10487 type = ada_lookup_struct_elt_type (type1,
10488 &exp->elts[pc + 2].string,
10489 1, 1, NULL);
10490 if (type == NULL)
10491 /* In this case, we assume that the field COULD exist
10492 in some extension of the type. Return an object of
10493 "type" void, which will match any formal
0963b4bd 10494 (see ada_type_match). */
30b15541
UW
10495 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10496 lval_memory);
76a01679
JB
10497 }
10498 else
10499 type =
10500 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10501 0, NULL);
10502
10503 return value_zero (ada_aligned_type (type), lval_memory);
10504 }
14f9c5c9 10505 else
284614f0
JB
10506 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10507 arg1 = unwrap_value (arg1);
10508 return ada_to_fixed_value (arg1);
10509
14f9c5c9 10510 case OP_TYPE:
4c4b4cd2
PH
10511 /* The value is not supposed to be used. This is here to make it
10512 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10513 (*pos) += 2;
10514 if (noside == EVAL_SKIP)
4c4b4cd2 10515 goto nosideret;
14f9c5c9 10516 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10517 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10518 else
323e0a4a 10519 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10520
10521 case OP_AGGREGATE:
10522 case OP_CHOICES:
10523 case OP_OTHERS:
10524 case OP_DISCRETE_RANGE:
10525 case OP_POSITIONAL:
10526 case OP_NAME:
10527 if (noside == EVAL_NORMAL)
10528 switch (op)
10529 {
10530 case OP_NAME:
10531 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10532 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10533 case OP_AGGREGATE:
10534 error (_("Aggregates only allowed on the right of an assignment"));
10535 default:
0963b4bd
MS
10536 internal_error (__FILE__, __LINE__,
10537 _("aggregate apparently mangled"));
52ce6436
PH
10538 }
10539
10540 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10541 *pos += oplen - 1;
10542 for (tem = 0; tem < nargs; tem += 1)
10543 ada_evaluate_subexp (NULL, exp, pos, noside);
10544 goto nosideret;
14f9c5c9
AS
10545 }
10546
10547nosideret:
22601c15 10548 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10549}
14f9c5c9 10550\f
d2e4a39e 10551
4c4b4cd2 10552 /* Fixed point */
14f9c5c9
AS
10553
10554/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10555 type name that encodes the 'small and 'delta information.
4c4b4cd2 10556 Otherwise, return NULL. */
14f9c5c9 10557
d2e4a39e 10558static const char *
ebf56fd3 10559fixed_type_info (struct type *type)
14f9c5c9 10560{
d2e4a39e 10561 const char *name = ada_type_name (type);
14f9c5c9
AS
10562 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10563
d2e4a39e
AS
10564 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10565 {
14f9c5c9 10566 const char *tail = strstr (name, "___XF_");
5b4ee69b 10567
14f9c5c9 10568 if (tail == NULL)
4c4b4cd2 10569 return NULL;
d2e4a39e 10570 else
4c4b4cd2 10571 return tail + 5;
14f9c5c9
AS
10572 }
10573 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10574 return fixed_type_info (TYPE_TARGET_TYPE (type));
10575 else
10576 return NULL;
10577}
10578
4c4b4cd2 10579/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10580
10581int
ebf56fd3 10582ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10583{
10584 return fixed_type_info (type) != NULL;
10585}
10586
4c4b4cd2
PH
10587/* Return non-zero iff TYPE represents a System.Address type. */
10588
10589int
10590ada_is_system_address_type (struct type *type)
10591{
10592 return (TYPE_NAME (type)
10593 && strcmp (TYPE_NAME (type), "system__address") == 0);
10594}
10595
14f9c5c9
AS
10596/* Assuming that TYPE is the representation of an Ada fixed-point
10597 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10598 delta cannot be determined. */
14f9c5c9
AS
10599
10600DOUBLEST
ebf56fd3 10601ada_delta (struct type *type)
14f9c5c9
AS
10602{
10603 const char *encoding = fixed_type_info (type);
facc390f 10604 DOUBLEST num, den;
14f9c5c9 10605
facc390f
JB
10606 /* Strictly speaking, num and den are encoded as integer. However,
10607 they may not fit into a long, and they will have to be converted
10608 to DOUBLEST anyway. So scan them as DOUBLEST. */
10609 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10610 &num, &den) < 2)
14f9c5c9 10611 return -1.0;
d2e4a39e 10612 else
facc390f 10613 return num / den;
14f9c5c9
AS
10614}
10615
10616/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10617 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10618
10619static DOUBLEST
ebf56fd3 10620scaling_factor (struct type *type)
14f9c5c9
AS
10621{
10622 const char *encoding = fixed_type_info (type);
facc390f 10623 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10624 int n;
d2e4a39e 10625
facc390f
JB
10626 /* Strictly speaking, num's and den's are encoded as integer. However,
10627 they may not fit into a long, and they will have to be converted
10628 to DOUBLEST anyway. So scan them as DOUBLEST. */
10629 n = sscanf (encoding,
10630 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10631 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10632 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10633
10634 if (n < 2)
10635 return 1.0;
10636 else if (n == 4)
facc390f 10637 return num1 / den1;
d2e4a39e 10638 else
facc390f 10639 return num0 / den0;
14f9c5c9
AS
10640}
10641
10642
10643/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10644 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10645
10646DOUBLEST
ebf56fd3 10647ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10648{
d2e4a39e 10649 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10650}
10651
4c4b4cd2
PH
10652/* The representation of a fixed-point value of type TYPE
10653 corresponding to the value X. */
14f9c5c9
AS
10654
10655LONGEST
ebf56fd3 10656ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10657{
10658 return (LONGEST) (x / scaling_factor (type) + 0.5);
10659}
10660
14f9c5c9 10661\f
d2e4a39e 10662
4c4b4cd2 10663 /* Range types */
14f9c5c9
AS
10664
10665/* Scan STR beginning at position K for a discriminant name, and
10666 return the value of that discriminant field of DVAL in *PX. If
10667 PNEW_K is not null, put the position of the character beyond the
10668 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10669 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10670
10671static int
07d8f827 10672scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10673 int *pnew_k)
14f9c5c9
AS
10674{
10675 static char *bound_buffer = NULL;
10676 static size_t bound_buffer_len = 0;
10677 char *bound;
10678 char *pend;
d2e4a39e 10679 struct value *bound_val;
14f9c5c9
AS
10680
10681 if (dval == NULL || str == NULL || str[k] == '\0')
10682 return 0;
10683
d2e4a39e 10684 pend = strstr (str + k, "__");
14f9c5c9
AS
10685 if (pend == NULL)
10686 {
d2e4a39e 10687 bound = str + k;
14f9c5c9
AS
10688 k += strlen (bound);
10689 }
d2e4a39e 10690 else
14f9c5c9 10691 {
d2e4a39e 10692 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10693 bound = bound_buffer;
d2e4a39e
AS
10694 strncpy (bound_buffer, str + k, pend - (str + k));
10695 bound[pend - (str + k)] = '\0';
10696 k = pend - str;
14f9c5c9 10697 }
d2e4a39e 10698
df407dfe 10699 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10700 if (bound_val == NULL)
10701 return 0;
10702
10703 *px = value_as_long (bound_val);
10704 if (pnew_k != NULL)
10705 *pnew_k = k;
10706 return 1;
10707}
10708
10709/* Value of variable named NAME in the current environment. If
10710 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10711 otherwise causes an error with message ERR_MSG. */
10712
d2e4a39e
AS
10713static struct value *
10714get_var_value (char *name, char *err_msg)
14f9c5c9 10715{
4c4b4cd2 10716 struct ada_symbol_info *syms;
14f9c5c9
AS
10717 int nsyms;
10718
4c4b4cd2 10719 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10720 &syms);
14f9c5c9
AS
10721
10722 if (nsyms != 1)
10723 {
10724 if (err_msg == NULL)
4c4b4cd2 10725 return 0;
14f9c5c9 10726 else
8a3fe4f8 10727 error (("%s"), err_msg);
14f9c5c9
AS
10728 }
10729
4c4b4cd2 10730 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10731}
d2e4a39e 10732
14f9c5c9 10733/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10734 no such variable found, returns 0, and sets *FLAG to 0. If
10735 successful, sets *FLAG to 1. */
10736
14f9c5c9 10737LONGEST
4c4b4cd2 10738get_int_var_value (char *name, int *flag)
14f9c5c9 10739{
4c4b4cd2 10740 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10741
14f9c5c9
AS
10742 if (var_val == 0)
10743 {
10744 if (flag != NULL)
4c4b4cd2 10745 *flag = 0;
14f9c5c9
AS
10746 return 0;
10747 }
10748 else
10749 {
10750 if (flag != NULL)
4c4b4cd2 10751 *flag = 1;
14f9c5c9
AS
10752 return value_as_long (var_val);
10753 }
10754}
d2e4a39e 10755
14f9c5c9
AS
10756
10757/* Return a range type whose base type is that of the range type named
10758 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10759 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10760 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10761 corresponding range type from debug information; fall back to using it
10762 if symbol lookup fails. If a new type must be created, allocate it
10763 like ORIG_TYPE was. The bounds information, in general, is encoded
10764 in NAME, the base type given in the named range type. */
14f9c5c9 10765
d2e4a39e 10766static struct type *
28c85d6c 10767to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10768{
0d5cff50 10769 const char *name;
14f9c5c9 10770 struct type *base_type;
d2e4a39e 10771 char *subtype_info;
14f9c5c9 10772
28c85d6c
JB
10773 gdb_assert (raw_type != NULL);
10774 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10775
1ce677a4 10776 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10777 base_type = TYPE_TARGET_TYPE (raw_type);
10778 else
10779 base_type = raw_type;
10780
28c85d6c 10781 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10782 subtype_info = strstr (name, "___XD");
10783 if (subtype_info == NULL)
690cc4eb 10784 {
43bbcdc2
PH
10785 LONGEST L = ada_discrete_type_low_bound (raw_type);
10786 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10787
690cc4eb
PH
10788 if (L < INT_MIN || U > INT_MAX)
10789 return raw_type;
10790 else
28c85d6c 10791 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10792 ada_discrete_type_low_bound (raw_type),
10793 ada_discrete_type_high_bound (raw_type));
690cc4eb 10794 }
14f9c5c9
AS
10795 else
10796 {
10797 static char *name_buf = NULL;
10798 static size_t name_len = 0;
10799 int prefix_len = subtype_info - name;
10800 LONGEST L, U;
10801 struct type *type;
10802 char *bounds_str;
10803 int n;
10804
10805 GROW_VECT (name_buf, name_len, prefix_len + 5);
10806 strncpy (name_buf, name, prefix_len);
10807 name_buf[prefix_len] = '\0';
10808
10809 subtype_info += 5;
10810 bounds_str = strchr (subtype_info, '_');
10811 n = 1;
10812
d2e4a39e 10813 if (*subtype_info == 'L')
4c4b4cd2
PH
10814 {
10815 if (!ada_scan_number (bounds_str, n, &L, &n)
10816 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10817 return raw_type;
10818 if (bounds_str[n] == '_')
10819 n += 2;
0963b4bd 10820 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10821 n += 1;
10822 subtype_info += 1;
10823 }
d2e4a39e 10824 else
4c4b4cd2
PH
10825 {
10826 int ok;
5b4ee69b 10827
4c4b4cd2
PH
10828 strcpy (name_buf + prefix_len, "___L");
10829 L = get_int_var_value (name_buf, &ok);
10830 if (!ok)
10831 {
323e0a4a 10832 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10833 L = 1;
10834 }
10835 }
14f9c5c9 10836
d2e4a39e 10837 if (*subtype_info == 'U')
4c4b4cd2
PH
10838 {
10839 if (!ada_scan_number (bounds_str, n, &U, &n)
10840 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10841 return raw_type;
10842 }
d2e4a39e 10843 else
4c4b4cd2
PH
10844 {
10845 int ok;
5b4ee69b 10846
4c4b4cd2
PH
10847 strcpy (name_buf + prefix_len, "___U");
10848 U = get_int_var_value (name_buf, &ok);
10849 if (!ok)
10850 {
323e0a4a 10851 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10852 U = L;
10853 }
10854 }
14f9c5c9 10855
28c85d6c 10856 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10857 TYPE_NAME (type) = name;
14f9c5c9
AS
10858 return type;
10859 }
10860}
10861
4c4b4cd2
PH
10862/* True iff NAME is the name of a range type. */
10863
14f9c5c9 10864int
d2e4a39e 10865ada_is_range_type_name (const char *name)
14f9c5c9
AS
10866{
10867 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10868}
14f9c5c9 10869\f
d2e4a39e 10870
4c4b4cd2
PH
10871 /* Modular types */
10872
10873/* True iff TYPE is an Ada modular type. */
14f9c5c9 10874
14f9c5c9 10875int
d2e4a39e 10876ada_is_modular_type (struct type *type)
14f9c5c9 10877{
18af8284 10878 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10879
10880 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10881 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10882 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10883}
10884
4c4b4cd2
PH
10885/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10886
61ee279c 10887ULONGEST
0056e4d5 10888ada_modulus (struct type *type)
14f9c5c9 10889{
43bbcdc2 10890 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10891}
d2e4a39e 10892\f
f7f9143b
JB
10893
10894/* Ada exception catchpoint support:
10895 ---------------------------------
10896
10897 We support 3 kinds of exception catchpoints:
10898 . catchpoints on Ada exceptions
10899 . catchpoints on unhandled Ada exceptions
10900 . catchpoints on failed assertions
10901
10902 Exceptions raised during failed assertions, or unhandled exceptions
10903 could perfectly be caught with the general catchpoint on Ada exceptions.
10904 However, we can easily differentiate these two special cases, and having
10905 the option to distinguish these two cases from the rest can be useful
10906 to zero-in on certain situations.
10907
10908 Exception catchpoints are a specialized form of breakpoint,
10909 since they rely on inserting breakpoints inside known routines
10910 of the GNAT runtime. The implementation therefore uses a standard
10911 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10912 of breakpoint_ops.
10913
0259addd
JB
10914 Support in the runtime for exception catchpoints have been changed
10915 a few times already, and these changes affect the implementation
10916 of these catchpoints. In order to be able to support several
10917 variants of the runtime, we use a sniffer that will determine
28010a5d 10918 the runtime variant used by the program being debugged. */
f7f9143b
JB
10919
10920/* The different types of catchpoints that we introduced for catching
10921 Ada exceptions. */
10922
10923enum exception_catchpoint_kind
10924{
10925 ex_catch_exception,
10926 ex_catch_exception_unhandled,
10927 ex_catch_assert
10928};
10929
3d0b0fa3
JB
10930/* Ada's standard exceptions. */
10931
10932static char *standard_exc[] = {
10933 "constraint_error",
10934 "program_error",
10935 "storage_error",
10936 "tasking_error"
10937};
10938
0259addd
JB
10939typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10940
10941/* A structure that describes how to support exception catchpoints
10942 for a given executable. */
10943
10944struct exception_support_info
10945{
10946 /* The name of the symbol to break on in order to insert
10947 a catchpoint on exceptions. */
10948 const char *catch_exception_sym;
10949
10950 /* The name of the symbol to break on in order to insert
10951 a catchpoint on unhandled exceptions. */
10952 const char *catch_exception_unhandled_sym;
10953
10954 /* The name of the symbol to break on in order to insert
10955 a catchpoint on failed assertions. */
10956 const char *catch_assert_sym;
10957
10958 /* Assuming that the inferior just triggered an unhandled exception
10959 catchpoint, this function is responsible for returning the address
10960 in inferior memory where the name of that exception is stored.
10961 Return zero if the address could not be computed. */
10962 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10963};
10964
10965static CORE_ADDR ada_unhandled_exception_name_addr (void);
10966static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10967
10968/* The following exception support info structure describes how to
10969 implement exception catchpoints with the latest version of the
10970 Ada runtime (as of 2007-03-06). */
10971
10972static const struct exception_support_info default_exception_support_info =
10973{
10974 "__gnat_debug_raise_exception", /* catch_exception_sym */
10975 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10976 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10977 ada_unhandled_exception_name_addr
10978};
10979
10980/* The following exception support info structure describes how to
10981 implement exception catchpoints with a slightly older version
10982 of the Ada runtime. */
10983
10984static const struct exception_support_info exception_support_info_fallback =
10985{
10986 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10987 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10988 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10989 ada_unhandled_exception_name_addr_from_raise
10990};
10991
f17011e0
JB
10992/* Return nonzero if we can detect the exception support routines
10993 described in EINFO.
10994
10995 This function errors out if an abnormal situation is detected
10996 (for instance, if we find the exception support routines, but
10997 that support is found to be incomplete). */
10998
10999static int
11000ada_has_this_exception_support (const struct exception_support_info *einfo)
11001{
11002 struct symbol *sym;
11003
11004 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11005 that should be compiled with debugging information. As a result, we
11006 expect to find that symbol in the symtabs. */
11007
11008 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11009 if (sym == NULL)
a6af7abe
JB
11010 {
11011 /* Perhaps we did not find our symbol because the Ada runtime was
11012 compiled without debugging info, or simply stripped of it.
11013 It happens on some GNU/Linux distributions for instance, where
11014 users have to install a separate debug package in order to get
11015 the runtime's debugging info. In that situation, let the user
11016 know why we cannot insert an Ada exception catchpoint.
11017
11018 Note: Just for the purpose of inserting our Ada exception
11019 catchpoint, we could rely purely on the associated minimal symbol.
11020 But we would be operating in degraded mode anyway, since we are
11021 still lacking the debugging info needed later on to extract
11022 the name of the exception being raised (this name is printed in
11023 the catchpoint message, and is also used when trying to catch
11024 a specific exception). We do not handle this case for now. */
11025 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11026 error (_("Your Ada runtime appears to be missing some debugging "
11027 "information.\nCannot insert Ada exception catchpoint "
11028 "in this configuration."));
11029
11030 return 0;
11031 }
f17011e0
JB
11032
11033 /* Make sure that the symbol we found corresponds to a function. */
11034
11035 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11036 error (_("Symbol \"%s\" is not a function (class = %d)"),
11037 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11038
11039 return 1;
11040}
11041
0259addd
JB
11042/* Inspect the Ada runtime and determine which exception info structure
11043 should be used to provide support for exception catchpoints.
11044
3eecfa55
JB
11045 This function will always set the per-inferior exception_info,
11046 or raise an error. */
0259addd
JB
11047
11048static void
11049ada_exception_support_info_sniffer (void)
11050{
3eecfa55 11051 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11052
11053 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11054 if (data->exception_info != NULL)
0259addd
JB
11055 return;
11056
11057 /* Check the latest (default) exception support info. */
f17011e0 11058 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11059 {
3eecfa55 11060 data->exception_info = &default_exception_support_info;
0259addd
JB
11061 return;
11062 }
11063
11064 /* Try our fallback exception suport info. */
f17011e0 11065 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11066 {
3eecfa55 11067 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11068 return;
11069 }
11070
11071 /* Sometimes, it is normal for us to not be able to find the routine
11072 we are looking for. This happens when the program is linked with
11073 the shared version of the GNAT runtime, and the program has not been
11074 started yet. Inform the user of these two possible causes if
11075 applicable. */
11076
ccefe4c4 11077 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11078 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11079
11080 /* If the symbol does not exist, then check that the program is
11081 already started, to make sure that shared libraries have been
11082 loaded. If it is not started, this may mean that the symbol is
11083 in a shared library. */
11084
11085 if (ptid_get_pid (inferior_ptid) == 0)
11086 error (_("Unable to insert catchpoint. Try to start the program first."));
11087
11088 /* At this point, we know that we are debugging an Ada program and
11089 that the inferior has been started, but we still are not able to
0963b4bd 11090 find the run-time symbols. That can mean that we are in
0259addd
JB
11091 configurable run time mode, or that a-except as been optimized
11092 out by the linker... In any case, at this point it is not worth
11093 supporting this feature. */
11094
7dda8cff 11095 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11096}
11097
f7f9143b
JB
11098/* True iff FRAME is very likely to be that of a function that is
11099 part of the runtime system. This is all very heuristic, but is
11100 intended to be used as advice as to what frames are uninteresting
11101 to most users. */
11102
11103static int
11104is_known_support_routine (struct frame_info *frame)
11105{
4ed6b5be 11106 struct symtab_and_line sal;
0d5cff50 11107 const char *func_name;
692465f1 11108 enum language func_lang;
f7f9143b 11109 int i;
f35a17b5 11110 const char *fullname;
f7f9143b 11111
4ed6b5be
JB
11112 /* If this code does not have any debugging information (no symtab),
11113 This cannot be any user code. */
f7f9143b 11114
4ed6b5be 11115 find_frame_sal (frame, &sal);
f7f9143b
JB
11116 if (sal.symtab == NULL)
11117 return 1;
11118
4ed6b5be
JB
11119 /* If there is a symtab, but the associated source file cannot be
11120 located, then assume this is not user code: Selecting a frame
11121 for which we cannot display the code would not be very helpful
11122 for the user. This should also take care of case such as VxWorks
11123 where the kernel has some debugging info provided for a few units. */
f7f9143b 11124
f35a17b5
JK
11125 fullname = symtab_to_fullname (sal.symtab);
11126 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11127 return 1;
11128
4ed6b5be
JB
11129 /* Check the unit filename againt the Ada runtime file naming.
11130 We also check the name of the objfile against the name of some
11131 known system libraries that sometimes come with debugging info
11132 too. */
11133
f7f9143b
JB
11134 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11135 {
11136 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11137 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11138 return 1;
4ed6b5be
JB
11139 if (sal.symtab->objfile != NULL
11140 && re_exec (sal.symtab->objfile->name))
11141 return 1;
f7f9143b
JB
11142 }
11143
4ed6b5be 11144 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11145
e9e07ba6 11146 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11147 if (func_name == NULL)
11148 return 1;
11149
11150 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11151 {
11152 re_comp (known_auxiliary_function_name_patterns[i]);
11153 if (re_exec (func_name))
11154 return 1;
11155 }
11156
11157 return 0;
11158}
11159
11160/* Find the first frame that contains debugging information and that is not
11161 part of the Ada run-time, starting from FI and moving upward. */
11162
0ef643c8 11163void
f7f9143b
JB
11164ada_find_printable_frame (struct frame_info *fi)
11165{
11166 for (; fi != NULL; fi = get_prev_frame (fi))
11167 {
11168 if (!is_known_support_routine (fi))
11169 {
11170 select_frame (fi);
11171 break;
11172 }
11173 }
11174
11175}
11176
11177/* Assuming that the inferior just triggered an unhandled exception
11178 catchpoint, return the address in inferior memory where the name
11179 of the exception is stored.
11180
11181 Return zero if the address could not be computed. */
11182
11183static CORE_ADDR
11184ada_unhandled_exception_name_addr (void)
0259addd
JB
11185{
11186 return parse_and_eval_address ("e.full_name");
11187}
11188
11189/* Same as ada_unhandled_exception_name_addr, except that this function
11190 should be used when the inferior uses an older version of the runtime,
11191 where the exception name needs to be extracted from a specific frame
11192 several frames up in the callstack. */
11193
11194static CORE_ADDR
11195ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11196{
11197 int frame_level;
11198 struct frame_info *fi;
3eecfa55 11199 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
11200
11201 /* To determine the name of this exception, we need to select
11202 the frame corresponding to RAISE_SYM_NAME. This frame is
11203 at least 3 levels up, so we simply skip the first 3 frames
11204 without checking the name of their associated function. */
11205 fi = get_current_frame ();
11206 for (frame_level = 0; frame_level < 3; frame_level += 1)
11207 if (fi != NULL)
11208 fi = get_prev_frame (fi);
11209
11210 while (fi != NULL)
11211 {
0d5cff50 11212 const char *func_name;
692465f1
JB
11213 enum language func_lang;
11214
e9e07ba6 11215 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 11216 if (func_name != NULL
3eecfa55 11217 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
11218 break; /* We found the frame we were looking for... */
11219 fi = get_prev_frame (fi);
11220 }
11221
11222 if (fi == NULL)
11223 return 0;
11224
11225 select_frame (fi);
11226 return parse_and_eval_address ("id.full_name");
11227}
11228
11229/* Assuming the inferior just triggered an Ada exception catchpoint
11230 (of any type), return the address in inferior memory where the name
11231 of the exception is stored, if applicable.
11232
11233 Return zero if the address could not be computed, or if not relevant. */
11234
11235static CORE_ADDR
11236ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11237 struct breakpoint *b)
11238{
3eecfa55
JB
11239 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11240
f7f9143b
JB
11241 switch (ex)
11242 {
11243 case ex_catch_exception:
11244 return (parse_and_eval_address ("e.full_name"));
11245 break;
11246
11247 case ex_catch_exception_unhandled:
3eecfa55 11248 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11249 break;
11250
11251 case ex_catch_assert:
11252 return 0; /* Exception name is not relevant in this case. */
11253 break;
11254
11255 default:
11256 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11257 break;
11258 }
11259
11260 return 0; /* Should never be reached. */
11261}
11262
11263/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11264 any error that ada_exception_name_addr_1 might cause to be thrown.
11265 When an error is intercepted, a warning with the error message is printed,
11266 and zero is returned. */
11267
11268static CORE_ADDR
11269ada_exception_name_addr (enum exception_catchpoint_kind ex,
11270 struct breakpoint *b)
11271{
bfd189b1 11272 volatile struct gdb_exception e;
f7f9143b
JB
11273 CORE_ADDR result = 0;
11274
11275 TRY_CATCH (e, RETURN_MASK_ERROR)
11276 {
11277 result = ada_exception_name_addr_1 (ex, b);
11278 }
11279
11280 if (e.reason < 0)
11281 {
11282 warning (_("failed to get exception name: %s"), e.message);
11283 return 0;
11284 }
11285
11286 return result;
11287}
11288
28010a5d
PA
11289static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11290 char *, char **,
c0a91b2b 11291 const struct breakpoint_ops **);
28010a5d
PA
11292static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11293
11294/* Ada catchpoints.
11295
11296 In the case of catchpoints on Ada exceptions, the catchpoint will
11297 stop the target on every exception the program throws. When a user
11298 specifies the name of a specific exception, we translate this
11299 request into a condition expression (in text form), and then parse
11300 it into an expression stored in each of the catchpoint's locations.
11301 We then use this condition to check whether the exception that was
11302 raised is the one the user is interested in. If not, then the
11303 target is resumed again. We store the name of the requested
11304 exception, in order to be able to re-set the condition expression
11305 when symbols change. */
11306
11307/* An instance of this type is used to represent an Ada catchpoint
11308 breakpoint location. It includes a "struct bp_location" as a kind
11309 of base class; users downcast to "struct bp_location *" when
11310 needed. */
11311
11312struct ada_catchpoint_location
11313{
11314 /* The base class. */
11315 struct bp_location base;
11316
11317 /* The condition that checks whether the exception that was raised
11318 is the specific exception the user specified on catchpoint
11319 creation. */
11320 struct expression *excep_cond_expr;
11321};
11322
11323/* Implement the DTOR method in the bp_location_ops structure for all
11324 Ada exception catchpoint kinds. */
11325
11326static void
11327ada_catchpoint_location_dtor (struct bp_location *bl)
11328{
11329 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11330
11331 xfree (al->excep_cond_expr);
11332}
11333
11334/* The vtable to be used in Ada catchpoint locations. */
11335
11336static const struct bp_location_ops ada_catchpoint_location_ops =
11337{
11338 ada_catchpoint_location_dtor
11339};
11340
11341/* An instance of this type is used to represent an Ada catchpoint.
11342 It includes a "struct breakpoint" as a kind of base class; users
11343 downcast to "struct breakpoint *" when needed. */
11344
11345struct ada_catchpoint
11346{
11347 /* The base class. */
11348 struct breakpoint base;
11349
11350 /* The name of the specific exception the user specified. */
11351 char *excep_string;
11352};
11353
11354/* Parse the exception condition string in the context of each of the
11355 catchpoint's locations, and store them for later evaluation. */
11356
11357static void
11358create_excep_cond_exprs (struct ada_catchpoint *c)
11359{
11360 struct cleanup *old_chain;
11361 struct bp_location *bl;
11362 char *cond_string;
11363
11364 /* Nothing to do if there's no specific exception to catch. */
11365 if (c->excep_string == NULL)
11366 return;
11367
11368 /* Same if there are no locations... */
11369 if (c->base.loc == NULL)
11370 return;
11371
11372 /* Compute the condition expression in text form, from the specific
11373 expection we want to catch. */
11374 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11375 old_chain = make_cleanup (xfree, cond_string);
11376
11377 /* Iterate over all the catchpoint's locations, and parse an
11378 expression for each. */
11379 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11380 {
11381 struct ada_catchpoint_location *ada_loc
11382 = (struct ada_catchpoint_location *) bl;
11383 struct expression *exp = NULL;
11384
11385 if (!bl->shlib_disabled)
11386 {
11387 volatile struct gdb_exception e;
11388 char *s;
11389
11390 s = cond_string;
11391 TRY_CATCH (e, RETURN_MASK_ERROR)
11392 {
1bb9788d
TT
11393 exp = parse_exp_1 (&s, bl->address,
11394 block_for_pc (bl->address), 0);
28010a5d
PA
11395 }
11396 if (e.reason < 0)
11397 warning (_("failed to reevaluate internal exception condition "
11398 "for catchpoint %d: %s"),
11399 c->base.number, e.message);
11400 }
11401
11402 ada_loc->excep_cond_expr = exp;
11403 }
11404
11405 do_cleanups (old_chain);
11406}
11407
11408/* Implement the DTOR method in the breakpoint_ops structure for all
11409 exception catchpoint kinds. */
11410
11411static void
11412dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11413{
11414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11415
11416 xfree (c->excep_string);
348d480f 11417
2060206e 11418 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11419}
11420
11421/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11422 structure for all exception catchpoint kinds. */
11423
11424static struct bp_location *
11425allocate_location_exception (enum exception_catchpoint_kind ex,
11426 struct breakpoint *self)
11427{
11428 struct ada_catchpoint_location *loc;
11429
11430 loc = XNEW (struct ada_catchpoint_location);
11431 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11432 loc->excep_cond_expr = NULL;
11433 return &loc->base;
11434}
11435
11436/* Implement the RE_SET method in the breakpoint_ops structure for all
11437 exception catchpoint kinds. */
11438
11439static void
11440re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11441{
11442 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11443
11444 /* Call the base class's method. This updates the catchpoint's
11445 locations. */
2060206e 11446 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11447
11448 /* Reparse the exception conditional expressions. One for each
11449 location. */
11450 create_excep_cond_exprs (c);
11451}
11452
11453/* Returns true if we should stop for this breakpoint hit. If the
11454 user specified a specific exception, we only want to cause a stop
11455 if the program thrown that exception. */
11456
11457static int
11458should_stop_exception (const struct bp_location *bl)
11459{
11460 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11461 const struct ada_catchpoint_location *ada_loc
11462 = (const struct ada_catchpoint_location *) bl;
11463 volatile struct gdb_exception ex;
11464 int stop;
11465
11466 /* With no specific exception, should always stop. */
11467 if (c->excep_string == NULL)
11468 return 1;
11469
11470 if (ada_loc->excep_cond_expr == NULL)
11471 {
11472 /* We will have a NULL expression if back when we were creating
11473 the expressions, this location's had failed to parse. */
11474 return 1;
11475 }
11476
11477 stop = 1;
11478 TRY_CATCH (ex, RETURN_MASK_ALL)
11479 {
11480 struct value *mark;
11481
11482 mark = value_mark ();
11483 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11484 value_free_to_mark (mark);
11485 }
11486 if (ex.reason < 0)
11487 exception_fprintf (gdb_stderr, ex,
11488 _("Error in testing exception condition:\n"));
11489 return stop;
11490}
11491
11492/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11493 for all exception catchpoint kinds. */
11494
11495static void
11496check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11497{
11498 bs->stop = should_stop_exception (bs->bp_location_at);
11499}
11500
f7f9143b
JB
11501/* Implement the PRINT_IT method in the breakpoint_ops structure
11502 for all exception catchpoint kinds. */
11503
11504static enum print_stop_action
348d480f 11505print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11506{
79a45e25 11507 struct ui_out *uiout = current_uiout;
348d480f
PA
11508 struct breakpoint *b = bs->breakpoint_at;
11509
956a9fb9 11510 annotate_catchpoint (b->number);
f7f9143b 11511
956a9fb9 11512 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11513 {
956a9fb9
JB
11514 ui_out_field_string (uiout, "reason",
11515 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11516 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11517 }
11518
00eb2c4a
JB
11519 ui_out_text (uiout,
11520 b->disposition == disp_del ? "\nTemporary catchpoint "
11521 : "\nCatchpoint ");
956a9fb9
JB
11522 ui_out_field_int (uiout, "bkptno", b->number);
11523 ui_out_text (uiout, ", ");
f7f9143b 11524
f7f9143b
JB
11525 switch (ex)
11526 {
11527 case ex_catch_exception:
f7f9143b 11528 case ex_catch_exception_unhandled:
956a9fb9
JB
11529 {
11530 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11531 char exception_name[256];
11532
11533 if (addr != 0)
11534 {
11535 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11536 exception_name [sizeof (exception_name) - 1] = '\0';
11537 }
11538 else
11539 {
11540 /* For some reason, we were unable to read the exception
11541 name. This could happen if the Runtime was compiled
11542 without debugging info, for instance. In that case,
11543 just replace the exception name by the generic string
11544 "exception" - it will read as "an exception" in the
11545 notification we are about to print. */
967cff16 11546 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11547 }
11548 /* In the case of unhandled exception breakpoints, we print
11549 the exception name as "unhandled EXCEPTION_NAME", to make
11550 it clearer to the user which kind of catchpoint just got
11551 hit. We used ui_out_text to make sure that this extra
11552 info does not pollute the exception name in the MI case. */
11553 if (ex == ex_catch_exception_unhandled)
11554 ui_out_text (uiout, "unhandled ");
11555 ui_out_field_string (uiout, "exception-name", exception_name);
11556 }
11557 break;
f7f9143b 11558 case ex_catch_assert:
956a9fb9
JB
11559 /* In this case, the name of the exception is not really
11560 important. Just print "failed assertion" to make it clearer
11561 that his program just hit an assertion-failure catchpoint.
11562 We used ui_out_text because this info does not belong in
11563 the MI output. */
11564 ui_out_text (uiout, "failed assertion");
11565 break;
f7f9143b 11566 }
956a9fb9
JB
11567 ui_out_text (uiout, " at ");
11568 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11569
11570 return PRINT_SRC_AND_LOC;
11571}
11572
11573/* Implement the PRINT_ONE method in the breakpoint_ops structure
11574 for all exception catchpoint kinds. */
11575
11576static void
11577print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11578 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11579{
79a45e25 11580 struct ui_out *uiout = current_uiout;
28010a5d 11581 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11582 struct value_print_options opts;
11583
11584 get_user_print_options (&opts);
11585 if (opts.addressprint)
f7f9143b
JB
11586 {
11587 annotate_field (4);
5af949e3 11588 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11589 }
11590
11591 annotate_field (5);
a6d9a66e 11592 *last_loc = b->loc;
f7f9143b
JB
11593 switch (ex)
11594 {
11595 case ex_catch_exception:
28010a5d 11596 if (c->excep_string != NULL)
f7f9143b 11597 {
28010a5d
PA
11598 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11599
f7f9143b
JB
11600 ui_out_field_string (uiout, "what", msg);
11601 xfree (msg);
11602 }
11603 else
11604 ui_out_field_string (uiout, "what", "all Ada exceptions");
11605
11606 break;
11607
11608 case ex_catch_exception_unhandled:
11609 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11610 break;
11611
11612 case ex_catch_assert:
11613 ui_out_field_string (uiout, "what", "failed Ada assertions");
11614 break;
11615
11616 default:
11617 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11618 break;
11619 }
11620}
11621
11622/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11623 for all exception catchpoint kinds. */
11624
11625static void
11626print_mention_exception (enum exception_catchpoint_kind ex,
11627 struct breakpoint *b)
11628{
28010a5d 11629 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11630 struct ui_out *uiout = current_uiout;
28010a5d 11631
00eb2c4a
JB
11632 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11633 : _("Catchpoint "));
11634 ui_out_field_int (uiout, "bkptno", b->number);
11635 ui_out_text (uiout, ": ");
11636
f7f9143b
JB
11637 switch (ex)
11638 {
11639 case ex_catch_exception:
28010a5d 11640 if (c->excep_string != NULL)
00eb2c4a
JB
11641 {
11642 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11643 struct cleanup *old_chain = make_cleanup (xfree, info);
11644
11645 ui_out_text (uiout, info);
11646 do_cleanups (old_chain);
11647 }
f7f9143b 11648 else
00eb2c4a 11649 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11650 break;
11651
11652 case ex_catch_exception_unhandled:
00eb2c4a 11653 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11654 break;
11655
11656 case ex_catch_assert:
00eb2c4a 11657 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11658 break;
11659
11660 default:
11661 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11662 break;
11663 }
11664}
11665
6149aea9
PA
11666/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11667 for all exception catchpoint kinds. */
11668
11669static void
11670print_recreate_exception (enum exception_catchpoint_kind ex,
11671 struct breakpoint *b, struct ui_file *fp)
11672{
28010a5d
PA
11673 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11674
6149aea9
PA
11675 switch (ex)
11676 {
11677 case ex_catch_exception:
11678 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11679 if (c->excep_string != NULL)
11680 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11681 break;
11682
11683 case ex_catch_exception_unhandled:
78076abc 11684 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11685 break;
11686
11687 case ex_catch_assert:
11688 fprintf_filtered (fp, "catch assert");
11689 break;
11690
11691 default:
11692 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11693 }
d9b3f62e 11694 print_recreate_thread (b, fp);
6149aea9
PA
11695}
11696
f7f9143b
JB
11697/* Virtual table for "catch exception" breakpoints. */
11698
28010a5d
PA
11699static void
11700dtor_catch_exception (struct breakpoint *b)
11701{
11702 dtor_exception (ex_catch_exception, b);
11703}
11704
11705static struct bp_location *
11706allocate_location_catch_exception (struct breakpoint *self)
11707{
11708 return allocate_location_exception (ex_catch_exception, self);
11709}
11710
11711static void
11712re_set_catch_exception (struct breakpoint *b)
11713{
11714 re_set_exception (ex_catch_exception, b);
11715}
11716
11717static void
11718check_status_catch_exception (bpstat bs)
11719{
11720 check_status_exception (ex_catch_exception, bs);
11721}
11722
f7f9143b 11723static enum print_stop_action
348d480f 11724print_it_catch_exception (bpstat bs)
f7f9143b 11725{
348d480f 11726 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11727}
11728
11729static void
a6d9a66e 11730print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11731{
a6d9a66e 11732 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11733}
11734
11735static void
11736print_mention_catch_exception (struct breakpoint *b)
11737{
11738 print_mention_exception (ex_catch_exception, b);
11739}
11740
6149aea9
PA
11741static void
11742print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11743{
11744 print_recreate_exception (ex_catch_exception, b, fp);
11745}
11746
2060206e 11747static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11748
11749/* Virtual table for "catch exception unhandled" breakpoints. */
11750
28010a5d
PA
11751static void
11752dtor_catch_exception_unhandled (struct breakpoint *b)
11753{
11754 dtor_exception (ex_catch_exception_unhandled, b);
11755}
11756
11757static struct bp_location *
11758allocate_location_catch_exception_unhandled (struct breakpoint *self)
11759{
11760 return allocate_location_exception (ex_catch_exception_unhandled, self);
11761}
11762
11763static void
11764re_set_catch_exception_unhandled (struct breakpoint *b)
11765{
11766 re_set_exception (ex_catch_exception_unhandled, b);
11767}
11768
11769static void
11770check_status_catch_exception_unhandled (bpstat bs)
11771{
11772 check_status_exception (ex_catch_exception_unhandled, bs);
11773}
11774
f7f9143b 11775static enum print_stop_action
348d480f 11776print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11777{
348d480f 11778 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11779}
11780
11781static void
a6d9a66e
UW
11782print_one_catch_exception_unhandled (struct breakpoint *b,
11783 struct bp_location **last_loc)
f7f9143b 11784{
a6d9a66e 11785 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11786}
11787
11788static void
11789print_mention_catch_exception_unhandled (struct breakpoint *b)
11790{
11791 print_mention_exception (ex_catch_exception_unhandled, b);
11792}
11793
6149aea9
PA
11794static void
11795print_recreate_catch_exception_unhandled (struct breakpoint *b,
11796 struct ui_file *fp)
11797{
11798 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11799}
11800
2060206e 11801static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11802
11803/* Virtual table for "catch assert" breakpoints. */
11804
28010a5d
PA
11805static void
11806dtor_catch_assert (struct breakpoint *b)
11807{
11808 dtor_exception (ex_catch_assert, b);
11809}
11810
11811static struct bp_location *
11812allocate_location_catch_assert (struct breakpoint *self)
11813{
11814 return allocate_location_exception (ex_catch_assert, self);
11815}
11816
11817static void
11818re_set_catch_assert (struct breakpoint *b)
11819{
843e694d 11820 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11821}
11822
11823static void
11824check_status_catch_assert (bpstat bs)
11825{
11826 check_status_exception (ex_catch_assert, bs);
11827}
11828
f7f9143b 11829static enum print_stop_action
348d480f 11830print_it_catch_assert (bpstat bs)
f7f9143b 11831{
348d480f 11832 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11833}
11834
11835static void
a6d9a66e 11836print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11837{
a6d9a66e 11838 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11839}
11840
11841static void
11842print_mention_catch_assert (struct breakpoint *b)
11843{
11844 print_mention_exception (ex_catch_assert, b);
11845}
11846
6149aea9
PA
11847static void
11848print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11849{
11850 print_recreate_exception (ex_catch_assert, b, fp);
11851}
11852
2060206e 11853static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11854
f7f9143b
JB
11855/* Return a newly allocated copy of the first space-separated token
11856 in ARGSP, and then adjust ARGSP to point immediately after that
11857 token.
11858
11859 Return NULL if ARGPS does not contain any more tokens. */
11860
11861static char *
11862ada_get_next_arg (char **argsp)
11863{
11864 char *args = *argsp;
11865 char *end;
11866 char *result;
11867
0fcd72ba 11868 args = skip_spaces (args);
f7f9143b
JB
11869 if (args[0] == '\0')
11870 return NULL; /* No more arguments. */
11871
11872 /* Find the end of the current argument. */
11873
0fcd72ba 11874 end = skip_to_space (args);
f7f9143b
JB
11875
11876 /* Adjust ARGSP to point to the start of the next argument. */
11877
11878 *argsp = end;
11879
11880 /* Make a copy of the current argument and return it. */
11881
11882 result = xmalloc (end - args + 1);
11883 strncpy (result, args, end - args);
11884 result[end - args] = '\0';
11885
11886 return result;
11887}
11888
11889/* Split the arguments specified in a "catch exception" command.
11890 Set EX to the appropriate catchpoint type.
28010a5d 11891 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11892 specified by the user.
11893 If a condition is found at the end of the arguments, the condition
11894 expression is stored in COND_STRING (memory must be deallocated
11895 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11896
11897static void
11898catch_ada_exception_command_split (char *args,
11899 enum exception_catchpoint_kind *ex,
5845583d
JB
11900 char **excep_string,
11901 char **cond_string)
f7f9143b
JB
11902{
11903 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11904 char *exception_name;
5845583d 11905 char *cond = NULL;
f7f9143b
JB
11906
11907 exception_name = ada_get_next_arg (&args);
5845583d
JB
11908 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11909 {
11910 /* This is not an exception name; this is the start of a condition
11911 expression for a catchpoint on all exceptions. So, "un-get"
11912 this token, and set exception_name to NULL. */
11913 xfree (exception_name);
11914 exception_name = NULL;
11915 args -= 2;
11916 }
f7f9143b
JB
11917 make_cleanup (xfree, exception_name);
11918
5845583d 11919 /* Check to see if we have a condition. */
f7f9143b 11920
0fcd72ba 11921 args = skip_spaces (args);
5845583d
JB
11922 if (strncmp (args, "if", 2) == 0
11923 && (isspace (args[2]) || args[2] == '\0'))
11924 {
11925 args += 2;
11926 args = skip_spaces (args);
11927
11928 if (args[0] == '\0')
11929 error (_("Condition missing after `if' keyword"));
11930 cond = xstrdup (args);
11931 make_cleanup (xfree, cond);
11932
11933 args += strlen (args);
11934 }
11935
11936 /* Check that we do not have any more arguments. Anything else
11937 is unexpected. */
f7f9143b
JB
11938
11939 if (args[0] != '\0')
11940 error (_("Junk at end of expression"));
11941
11942 discard_cleanups (old_chain);
11943
11944 if (exception_name == NULL)
11945 {
11946 /* Catch all exceptions. */
11947 *ex = ex_catch_exception;
28010a5d 11948 *excep_string = NULL;
f7f9143b
JB
11949 }
11950 else if (strcmp (exception_name, "unhandled") == 0)
11951 {
11952 /* Catch unhandled exceptions. */
11953 *ex = ex_catch_exception_unhandled;
28010a5d 11954 *excep_string = NULL;
f7f9143b
JB
11955 }
11956 else
11957 {
11958 /* Catch a specific exception. */
11959 *ex = ex_catch_exception;
28010a5d 11960 *excep_string = exception_name;
f7f9143b 11961 }
5845583d 11962 *cond_string = cond;
f7f9143b
JB
11963}
11964
11965/* Return the name of the symbol on which we should break in order to
11966 implement a catchpoint of the EX kind. */
11967
11968static const char *
11969ada_exception_sym_name (enum exception_catchpoint_kind ex)
11970{
3eecfa55
JB
11971 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11972
11973 gdb_assert (data->exception_info != NULL);
0259addd 11974
f7f9143b
JB
11975 switch (ex)
11976 {
11977 case ex_catch_exception:
3eecfa55 11978 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11979 break;
11980 case ex_catch_exception_unhandled:
3eecfa55 11981 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11982 break;
11983 case ex_catch_assert:
3eecfa55 11984 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11985 break;
11986 default:
11987 internal_error (__FILE__, __LINE__,
11988 _("unexpected catchpoint kind (%d)"), ex);
11989 }
11990}
11991
11992/* Return the breakpoint ops "virtual table" used for catchpoints
11993 of the EX kind. */
11994
c0a91b2b 11995static const struct breakpoint_ops *
4b9eee8c 11996ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11997{
11998 switch (ex)
11999 {
12000 case ex_catch_exception:
12001 return (&catch_exception_breakpoint_ops);
12002 break;
12003 case ex_catch_exception_unhandled:
12004 return (&catch_exception_unhandled_breakpoint_ops);
12005 break;
12006 case ex_catch_assert:
12007 return (&catch_assert_breakpoint_ops);
12008 break;
12009 default:
12010 internal_error (__FILE__, __LINE__,
12011 _("unexpected catchpoint kind (%d)"), ex);
12012 }
12013}
12014
12015/* Return the condition that will be used to match the current exception
12016 being raised with the exception that the user wants to catch. This
12017 assumes that this condition is used when the inferior just triggered
12018 an exception catchpoint.
12019
12020 The string returned is a newly allocated string that needs to be
12021 deallocated later. */
12022
12023static char *
28010a5d 12024ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12025{
3d0b0fa3
JB
12026 int i;
12027
0963b4bd 12028 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12029 runtime units that have been compiled without debugging info; if
28010a5d 12030 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12031 exception (e.g. "constraint_error") then, during the evaluation
12032 of the condition expression, the symbol lookup on this name would
0963b4bd 12033 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12034 may then be set only on user-defined exceptions which have the
12035 same not-fully-qualified name (e.g. my_package.constraint_error).
12036
12037 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12038 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12039 exception constraint_error" is rewritten into "catch exception
12040 standard.constraint_error".
12041
12042 If an exception named contraint_error is defined in another package of
12043 the inferior program, then the only way to specify this exception as a
12044 breakpoint condition is to use its fully-qualified named:
12045 e.g. my_package.constraint_error. */
12046
12047 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12048 {
28010a5d 12049 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12050 {
12051 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12052 excep_string);
3d0b0fa3
JB
12053 }
12054 }
28010a5d 12055 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12056}
12057
12058/* Return the symtab_and_line that should be used to insert an exception
12059 catchpoint of the TYPE kind.
12060
28010a5d
PA
12061 EXCEP_STRING should contain the name of a specific exception that
12062 the catchpoint should catch, or NULL otherwise.
f7f9143b 12063
28010a5d
PA
12064 ADDR_STRING returns the name of the function where the real
12065 breakpoint that implements the catchpoints is set, depending on the
12066 type of catchpoint we need to create. */
f7f9143b
JB
12067
12068static struct symtab_and_line
28010a5d 12069ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12070 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12071{
12072 const char *sym_name;
12073 struct symbol *sym;
f7f9143b 12074
0259addd
JB
12075 /* First, find out which exception support info to use. */
12076 ada_exception_support_info_sniffer ();
12077
12078 /* Then lookup the function on which we will break in order to catch
f7f9143b 12079 the Ada exceptions requested by the user. */
f7f9143b
JB
12080 sym_name = ada_exception_sym_name (ex);
12081 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12082
f17011e0
JB
12083 /* We can assume that SYM is not NULL at this stage. If the symbol
12084 did not exist, ada_exception_support_info_sniffer would have
12085 raised an exception.
f7f9143b 12086
f17011e0
JB
12087 Also, ada_exception_support_info_sniffer should have already
12088 verified that SYM is a function symbol. */
12089 gdb_assert (sym != NULL);
12090 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12091
12092 /* Set ADDR_STRING. */
f7f9143b
JB
12093 *addr_string = xstrdup (sym_name);
12094
f7f9143b 12095 /* Set OPS. */
4b9eee8c 12096 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12097
f17011e0 12098 return find_function_start_sal (sym, 1);
f7f9143b
JB
12099}
12100
12101/* Parse the arguments (ARGS) of the "catch exception" command.
12102
f7f9143b
JB
12103 If the user asked the catchpoint to catch only a specific
12104 exception, then save the exception name in ADDR_STRING.
12105
5845583d
JB
12106 If the user provided a condition, then set COND_STRING to
12107 that condition expression (the memory must be deallocated
12108 after use). Otherwise, set COND_STRING to NULL.
12109
f7f9143b
JB
12110 See ada_exception_sal for a description of all the remaining
12111 function arguments of this function. */
12112
9ac4176b 12113static struct symtab_and_line
f7f9143b 12114ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12115 char **excep_string,
5845583d 12116 char **cond_string,
c0a91b2b 12117 const struct breakpoint_ops **ops)
f7f9143b
JB
12118{
12119 enum exception_catchpoint_kind ex;
12120
5845583d 12121 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12122 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12123}
12124
12125/* Create an Ada exception catchpoint. */
12126
12127static void
12128create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12129 struct symtab_and_line sal,
12130 char *addr_string,
12131 char *excep_string,
5845583d 12132 char *cond_string,
c0a91b2b 12133 const struct breakpoint_ops *ops,
28010a5d
PA
12134 int tempflag,
12135 int from_tty)
12136{
12137 struct ada_catchpoint *c;
12138
12139 c = XNEW (struct ada_catchpoint);
12140 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12141 ops, tempflag, from_tty);
12142 c->excep_string = excep_string;
12143 create_excep_cond_exprs (c);
5845583d
JB
12144 if (cond_string != NULL)
12145 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12146 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12147}
12148
9ac4176b
PA
12149/* Implement the "catch exception" command. */
12150
12151static void
12152catch_ada_exception_command (char *arg, int from_tty,
12153 struct cmd_list_element *command)
12154{
12155 struct gdbarch *gdbarch = get_current_arch ();
12156 int tempflag;
12157 struct symtab_and_line sal;
12158 char *addr_string = NULL;
28010a5d 12159 char *excep_string = NULL;
5845583d 12160 char *cond_string = NULL;
c0a91b2b 12161 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12162
12163 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12164
12165 if (!arg)
12166 arg = "";
5845583d
JB
12167 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12168 &cond_string, &ops);
28010a5d 12169 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12170 excep_string, cond_string, ops,
12171 tempflag, from_tty);
9ac4176b
PA
12172}
12173
5845583d
JB
12174/* Assuming that ARGS contains the arguments of a "catch assert"
12175 command, parse those arguments and return a symtab_and_line object
12176 for a failed assertion catchpoint.
12177
12178 Set ADDR_STRING to the name of the function where the real
12179 breakpoint that implements the catchpoint is set.
12180
12181 If ARGS contains a condition, set COND_STRING to that condition
12182 (the memory needs to be deallocated after use). Otherwise, set
12183 COND_STRING to NULL. */
12184
9ac4176b 12185static struct symtab_and_line
f7f9143b 12186ada_decode_assert_location (char *args, char **addr_string,
5845583d 12187 char **cond_string,
c0a91b2b 12188 const struct breakpoint_ops **ops)
f7f9143b 12189{
5845583d 12190 args = skip_spaces (args);
f7f9143b 12191
5845583d
JB
12192 /* Check whether a condition was provided. */
12193 if (strncmp (args, "if", 2) == 0
12194 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12195 {
5845583d 12196 args += 2;
0fcd72ba 12197 args = skip_spaces (args);
5845583d
JB
12198 if (args[0] == '\0')
12199 error (_("condition missing after `if' keyword"));
12200 *cond_string = xstrdup (args);
f7f9143b
JB
12201 }
12202
5845583d
JB
12203 /* Otherwise, there should be no other argument at the end of
12204 the command. */
12205 else if (args[0] != '\0')
12206 error (_("Junk at end of arguments."));
12207
28010a5d 12208 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12209}
12210
9ac4176b
PA
12211/* Implement the "catch assert" command. */
12212
12213static void
12214catch_assert_command (char *arg, int from_tty,
12215 struct cmd_list_element *command)
12216{
12217 struct gdbarch *gdbarch = get_current_arch ();
12218 int tempflag;
12219 struct symtab_and_line sal;
12220 char *addr_string = NULL;
5845583d 12221 char *cond_string = NULL;
c0a91b2b 12222 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12223
12224 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12225
12226 if (!arg)
12227 arg = "";
5845583d 12228 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12229 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12230 NULL, cond_string, ops, tempflag,
12231 from_tty);
9ac4176b 12232}
4c4b4cd2
PH
12233 /* Operators */
12234/* Information about operators given special treatment in functions
12235 below. */
12236/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12237
12238#define ADA_OPERATORS \
12239 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12240 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12241 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12242 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12243 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12244 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12247 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12248 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12249 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12250 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12252 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12253 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12254 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12255 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12256 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12257 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12258
12259static void
554794dc
SDJ
12260ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12261 int *argsp)
4c4b4cd2
PH
12262{
12263 switch (exp->elts[pc - 1].opcode)
12264 {
76a01679 12265 default:
4c4b4cd2
PH
12266 operator_length_standard (exp, pc, oplenp, argsp);
12267 break;
12268
12269#define OP_DEFN(op, len, args, binop) \
12270 case op: *oplenp = len; *argsp = args; break;
12271 ADA_OPERATORS;
12272#undef OP_DEFN
52ce6436
PH
12273
12274 case OP_AGGREGATE:
12275 *oplenp = 3;
12276 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12277 break;
12278
12279 case OP_CHOICES:
12280 *oplenp = 3;
12281 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12282 break;
4c4b4cd2
PH
12283 }
12284}
12285
c0201579
JK
12286/* Implementation of the exp_descriptor method operator_check. */
12287
12288static int
12289ada_operator_check (struct expression *exp, int pos,
12290 int (*objfile_func) (struct objfile *objfile, void *data),
12291 void *data)
12292{
12293 const union exp_element *const elts = exp->elts;
12294 struct type *type = NULL;
12295
12296 switch (elts[pos].opcode)
12297 {
12298 case UNOP_IN_RANGE:
12299 case UNOP_QUAL:
12300 type = elts[pos + 1].type;
12301 break;
12302
12303 default:
12304 return operator_check_standard (exp, pos, objfile_func, data);
12305 }
12306
12307 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12308
12309 if (type && TYPE_OBJFILE (type)
12310 && (*objfile_func) (TYPE_OBJFILE (type), data))
12311 return 1;
12312
12313 return 0;
12314}
12315
4c4b4cd2
PH
12316static char *
12317ada_op_name (enum exp_opcode opcode)
12318{
12319 switch (opcode)
12320 {
76a01679 12321 default:
4c4b4cd2 12322 return op_name_standard (opcode);
52ce6436 12323
4c4b4cd2
PH
12324#define OP_DEFN(op, len, args, binop) case op: return #op;
12325 ADA_OPERATORS;
12326#undef OP_DEFN
52ce6436
PH
12327
12328 case OP_AGGREGATE:
12329 return "OP_AGGREGATE";
12330 case OP_CHOICES:
12331 return "OP_CHOICES";
12332 case OP_NAME:
12333 return "OP_NAME";
4c4b4cd2
PH
12334 }
12335}
12336
12337/* As for operator_length, but assumes PC is pointing at the first
12338 element of the operator, and gives meaningful results only for the
52ce6436 12339 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12340
12341static void
76a01679
JB
12342ada_forward_operator_length (struct expression *exp, int pc,
12343 int *oplenp, int *argsp)
4c4b4cd2 12344{
76a01679 12345 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12346 {
12347 default:
12348 *oplenp = *argsp = 0;
12349 break;
52ce6436 12350
4c4b4cd2
PH
12351#define OP_DEFN(op, len, args, binop) \
12352 case op: *oplenp = len; *argsp = args; break;
12353 ADA_OPERATORS;
12354#undef OP_DEFN
52ce6436
PH
12355
12356 case OP_AGGREGATE:
12357 *oplenp = 3;
12358 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12359 break;
12360
12361 case OP_CHOICES:
12362 *oplenp = 3;
12363 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12364 break;
12365
12366 case OP_STRING:
12367 case OP_NAME:
12368 {
12369 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12370
52ce6436
PH
12371 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12372 *argsp = 0;
12373 break;
12374 }
4c4b4cd2
PH
12375 }
12376}
12377
12378static int
12379ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12380{
12381 enum exp_opcode op = exp->elts[elt].opcode;
12382 int oplen, nargs;
12383 int pc = elt;
12384 int i;
76a01679 12385
4c4b4cd2
PH
12386 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12387
76a01679 12388 switch (op)
4c4b4cd2 12389 {
76a01679 12390 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12391 case OP_ATR_FIRST:
12392 case OP_ATR_LAST:
12393 case OP_ATR_LENGTH:
12394 case OP_ATR_IMAGE:
12395 case OP_ATR_MAX:
12396 case OP_ATR_MIN:
12397 case OP_ATR_MODULUS:
12398 case OP_ATR_POS:
12399 case OP_ATR_SIZE:
12400 case OP_ATR_TAG:
12401 case OP_ATR_VAL:
12402 break;
12403
12404 case UNOP_IN_RANGE:
12405 case UNOP_QUAL:
323e0a4a
AC
12406 /* XXX: gdb_sprint_host_address, type_sprint */
12407 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12408 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12409 fprintf_filtered (stream, " (");
12410 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12411 fprintf_filtered (stream, ")");
12412 break;
12413 case BINOP_IN_BOUNDS:
52ce6436
PH
12414 fprintf_filtered (stream, " (%d)",
12415 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12416 break;
12417 case TERNOP_IN_RANGE:
12418 break;
12419
52ce6436
PH
12420 case OP_AGGREGATE:
12421 case OP_OTHERS:
12422 case OP_DISCRETE_RANGE:
12423 case OP_POSITIONAL:
12424 case OP_CHOICES:
12425 break;
12426
12427 case OP_NAME:
12428 case OP_STRING:
12429 {
12430 char *name = &exp->elts[elt + 2].string;
12431 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12432
52ce6436
PH
12433 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12434 break;
12435 }
12436
4c4b4cd2
PH
12437 default:
12438 return dump_subexp_body_standard (exp, stream, elt);
12439 }
12440
12441 elt += oplen;
12442 for (i = 0; i < nargs; i += 1)
12443 elt = dump_subexp (exp, stream, elt);
12444
12445 return elt;
12446}
12447
12448/* The Ada extension of print_subexp (q.v.). */
12449
76a01679
JB
12450static void
12451ada_print_subexp (struct expression *exp, int *pos,
12452 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12453{
52ce6436 12454 int oplen, nargs, i;
4c4b4cd2
PH
12455 int pc = *pos;
12456 enum exp_opcode op = exp->elts[pc].opcode;
12457
12458 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12459
52ce6436 12460 *pos += oplen;
4c4b4cd2
PH
12461 switch (op)
12462 {
12463 default:
52ce6436 12464 *pos -= oplen;
4c4b4cd2
PH
12465 print_subexp_standard (exp, pos, stream, prec);
12466 return;
12467
12468 case OP_VAR_VALUE:
4c4b4cd2
PH
12469 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12470 return;
12471
12472 case BINOP_IN_BOUNDS:
323e0a4a 12473 /* XXX: sprint_subexp */
4c4b4cd2 12474 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12475 fputs_filtered (" in ", stream);
4c4b4cd2 12476 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12477 fputs_filtered ("'range", stream);
4c4b4cd2 12478 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12479 fprintf_filtered (stream, "(%ld)",
12480 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12481 return;
12482
12483 case TERNOP_IN_RANGE:
4c4b4cd2 12484 if (prec >= PREC_EQUAL)
76a01679 12485 fputs_filtered ("(", stream);
323e0a4a 12486 /* XXX: sprint_subexp */
4c4b4cd2 12487 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12488 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12489 print_subexp (exp, pos, stream, PREC_EQUAL);
12490 fputs_filtered (" .. ", stream);
12491 print_subexp (exp, pos, stream, PREC_EQUAL);
12492 if (prec >= PREC_EQUAL)
76a01679
JB
12493 fputs_filtered (")", stream);
12494 return;
4c4b4cd2
PH
12495
12496 case OP_ATR_FIRST:
12497 case OP_ATR_LAST:
12498 case OP_ATR_LENGTH:
12499 case OP_ATR_IMAGE:
12500 case OP_ATR_MAX:
12501 case OP_ATR_MIN:
12502 case OP_ATR_MODULUS:
12503 case OP_ATR_POS:
12504 case OP_ATR_SIZE:
12505 case OP_ATR_TAG:
12506 case OP_ATR_VAL:
4c4b4cd2 12507 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12508 {
12509 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12510 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12511 &type_print_raw_options);
76a01679
JB
12512 *pos += 3;
12513 }
4c4b4cd2 12514 else
76a01679 12515 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12516 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12517 if (nargs > 1)
76a01679
JB
12518 {
12519 int tem;
5b4ee69b 12520
76a01679
JB
12521 for (tem = 1; tem < nargs; tem += 1)
12522 {
12523 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12524 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12525 }
12526 fputs_filtered (")", stream);
12527 }
4c4b4cd2 12528 return;
14f9c5c9 12529
4c4b4cd2 12530 case UNOP_QUAL:
4c4b4cd2
PH
12531 type_print (exp->elts[pc + 1].type, "", stream, 0);
12532 fputs_filtered ("'(", stream);
12533 print_subexp (exp, pos, stream, PREC_PREFIX);
12534 fputs_filtered (")", stream);
12535 return;
14f9c5c9 12536
4c4b4cd2 12537 case UNOP_IN_RANGE:
323e0a4a 12538 /* XXX: sprint_subexp */
4c4b4cd2 12539 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12540 fputs_filtered (" in ", stream);
79d43c61
TT
12541 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12542 &type_print_raw_options);
4c4b4cd2 12543 return;
52ce6436
PH
12544
12545 case OP_DISCRETE_RANGE:
12546 print_subexp (exp, pos, stream, PREC_SUFFIX);
12547 fputs_filtered ("..", stream);
12548 print_subexp (exp, pos, stream, PREC_SUFFIX);
12549 return;
12550
12551 case OP_OTHERS:
12552 fputs_filtered ("others => ", stream);
12553 print_subexp (exp, pos, stream, PREC_SUFFIX);
12554 return;
12555
12556 case OP_CHOICES:
12557 for (i = 0; i < nargs-1; i += 1)
12558 {
12559 if (i > 0)
12560 fputs_filtered ("|", stream);
12561 print_subexp (exp, pos, stream, PREC_SUFFIX);
12562 }
12563 fputs_filtered (" => ", stream);
12564 print_subexp (exp, pos, stream, PREC_SUFFIX);
12565 return;
12566
12567 case OP_POSITIONAL:
12568 print_subexp (exp, pos, stream, PREC_SUFFIX);
12569 return;
12570
12571 case OP_AGGREGATE:
12572 fputs_filtered ("(", stream);
12573 for (i = 0; i < nargs; i += 1)
12574 {
12575 if (i > 0)
12576 fputs_filtered (", ", stream);
12577 print_subexp (exp, pos, stream, PREC_SUFFIX);
12578 }
12579 fputs_filtered (")", stream);
12580 return;
4c4b4cd2
PH
12581 }
12582}
14f9c5c9
AS
12583
12584/* Table mapping opcodes into strings for printing operators
12585 and precedences of the operators. */
12586
d2e4a39e
AS
12587static const struct op_print ada_op_print_tab[] = {
12588 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12589 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12590 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12591 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12592 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12593 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12594 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12595 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12596 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12597 {">=", BINOP_GEQ, PREC_ORDER, 0},
12598 {">", BINOP_GTR, PREC_ORDER, 0},
12599 {"<", BINOP_LESS, PREC_ORDER, 0},
12600 {">>", BINOP_RSH, PREC_SHIFT, 0},
12601 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12602 {"+", BINOP_ADD, PREC_ADD, 0},
12603 {"-", BINOP_SUB, PREC_ADD, 0},
12604 {"&", BINOP_CONCAT, PREC_ADD, 0},
12605 {"*", BINOP_MUL, PREC_MUL, 0},
12606 {"/", BINOP_DIV, PREC_MUL, 0},
12607 {"rem", BINOP_REM, PREC_MUL, 0},
12608 {"mod", BINOP_MOD, PREC_MUL, 0},
12609 {"**", BINOP_EXP, PREC_REPEAT, 0},
12610 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12611 {"-", UNOP_NEG, PREC_PREFIX, 0},
12612 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12613 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12614 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12615 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12616 {".all", UNOP_IND, PREC_SUFFIX, 1},
12617 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12618 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12619 {NULL, 0, 0, 0}
14f9c5c9
AS
12620};
12621\f
72d5681a
PH
12622enum ada_primitive_types {
12623 ada_primitive_type_int,
12624 ada_primitive_type_long,
12625 ada_primitive_type_short,
12626 ada_primitive_type_char,
12627 ada_primitive_type_float,
12628 ada_primitive_type_double,
12629 ada_primitive_type_void,
12630 ada_primitive_type_long_long,
12631 ada_primitive_type_long_double,
12632 ada_primitive_type_natural,
12633 ada_primitive_type_positive,
12634 ada_primitive_type_system_address,
12635 nr_ada_primitive_types
12636};
6c038f32
PH
12637
12638static void
d4a9a881 12639ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12640 struct language_arch_info *lai)
12641{
d4a9a881 12642 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12643
72d5681a 12644 lai->primitive_type_vector
d4a9a881 12645 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12646 struct type *);
e9bb382b
UW
12647
12648 lai->primitive_type_vector [ada_primitive_type_int]
12649 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12650 0, "integer");
12651 lai->primitive_type_vector [ada_primitive_type_long]
12652 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12653 0, "long_integer");
12654 lai->primitive_type_vector [ada_primitive_type_short]
12655 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12656 0, "short_integer");
12657 lai->string_char_type
12658 = lai->primitive_type_vector [ada_primitive_type_char]
12659 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12660 lai->primitive_type_vector [ada_primitive_type_float]
12661 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12662 "float", NULL);
12663 lai->primitive_type_vector [ada_primitive_type_double]
12664 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12665 "long_float", NULL);
12666 lai->primitive_type_vector [ada_primitive_type_long_long]
12667 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12668 0, "long_long_integer");
12669 lai->primitive_type_vector [ada_primitive_type_long_double]
12670 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12671 "long_long_float", NULL);
12672 lai->primitive_type_vector [ada_primitive_type_natural]
12673 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12674 0, "natural");
12675 lai->primitive_type_vector [ada_primitive_type_positive]
12676 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12677 0, "positive");
12678 lai->primitive_type_vector [ada_primitive_type_void]
12679 = builtin->builtin_void;
12680
12681 lai->primitive_type_vector [ada_primitive_type_system_address]
12682 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12683 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12684 = "system__address";
fbb06eb1 12685
47e729a8 12686 lai->bool_type_symbol = NULL;
fbb06eb1 12687 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12688}
6c038f32
PH
12689\f
12690 /* Language vector */
12691
12692/* Not really used, but needed in the ada_language_defn. */
12693
12694static void
6c7a06a3 12695emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12696{
6c7a06a3 12697 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12698}
12699
12700static int
12701parse (void)
12702{
12703 warnings_issued = 0;
12704 return ada_parse ();
12705}
12706
12707static const struct exp_descriptor ada_exp_descriptor = {
12708 ada_print_subexp,
12709 ada_operator_length,
c0201579 12710 ada_operator_check,
6c038f32
PH
12711 ada_op_name,
12712 ada_dump_subexp_body,
12713 ada_evaluate_subexp
12714};
12715
1a119f36 12716/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12717 for Ada. */
12718
1a119f36
JB
12719static symbol_name_cmp_ftype
12720ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12721{
12722 if (should_use_wild_match (lookup_name))
12723 return wild_match;
12724 else
12725 return compare_names;
12726}
12727
a5ee536b
JB
12728/* Implement the "la_read_var_value" language_defn method for Ada. */
12729
12730static struct value *
12731ada_read_var_value (struct symbol *var, struct frame_info *frame)
12732{
12733 struct block *frame_block = NULL;
12734 struct symbol *renaming_sym = NULL;
12735
12736 /* The only case where default_read_var_value is not sufficient
12737 is when VAR is a renaming... */
12738 if (frame)
12739 frame_block = get_frame_block (frame, NULL);
12740 if (frame_block)
12741 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12742 if (renaming_sym != NULL)
12743 return ada_read_renaming_var_value (renaming_sym, frame_block);
12744
12745 /* This is a typical case where we expect the default_read_var_value
12746 function to work. */
12747 return default_read_var_value (var, frame);
12748}
12749
6c038f32
PH
12750const struct language_defn ada_language_defn = {
12751 "ada", /* Language name */
12752 language_ada,
6c038f32 12753 range_check_off,
6c038f32
PH
12754 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12755 that's not quite what this means. */
6c038f32 12756 array_row_major,
9a044a89 12757 macro_expansion_no,
6c038f32
PH
12758 &ada_exp_descriptor,
12759 parse,
12760 ada_error,
12761 resolve,
12762 ada_printchar, /* Print a character constant */
12763 ada_printstr, /* Function to print string constant */
12764 emit_char, /* Function to print single char (not used) */
6c038f32 12765 ada_print_type, /* Print a type using appropriate syntax */
be942545 12766 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12767 ada_val_print, /* Print a value using appropriate syntax */
12768 ada_value_print, /* Print a top-level value */
a5ee536b 12769 ada_read_var_value, /* la_read_var_value */
6c038f32 12770 NULL, /* Language specific skip_trampoline */
2b2d9e11 12771 NULL, /* name_of_this */
6c038f32
PH
12772 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12773 basic_lookup_transparent_type, /* lookup_transparent_type */
12774 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12775 NULL, /* Language specific
12776 class_name_from_physname */
6c038f32
PH
12777 ada_op_print_tab, /* expression operators for printing */
12778 0, /* c-style arrays */
12779 1, /* String lower bound */
6c038f32 12780 ada_get_gdb_completer_word_break_characters,
41d27058 12781 ada_make_symbol_completion_list,
72d5681a 12782 ada_language_arch_info,
e79af960 12783 ada_print_array_index,
41f1b697 12784 default_pass_by_reference,
ae6a3a4c 12785 c_get_string,
1a119f36 12786 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12787 ada_iterate_over_symbols,
6c038f32
PH
12788 LANG_MAGIC
12789};
12790
2c0b251b
PA
12791/* Provide a prototype to silence -Wmissing-prototypes. */
12792extern initialize_file_ftype _initialize_ada_language;
12793
5bf03f13
JB
12794/* Command-list for the "set/show ada" prefix command. */
12795static struct cmd_list_element *set_ada_list;
12796static struct cmd_list_element *show_ada_list;
12797
12798/* Implement the "set ada" prefix command. */
12799
12800static void
12801set_ada_command (char *arg, int from_tty)
12802{
12803 printf_unfiltered (_(\
12804"\"set ada\" must be followed by the name of a setting.\n"));
12805 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12806}
12807
12808/* Implement the "show ada" prefix command. */
12809
12810static void
12811show_ada_command (char *args, int from_tty)
12812{
12813 cmd_show_list (show_ada_list, from_tty, "");
12814}
12815
2060206e
PA
12816static void
12817initialize_ada_catchpoint_ops (void)
12818{
12819 struct breakpoint_ops *ops;
12820
12821 initialize_breakpoint_ops ();
12822
12823 ops = &catch_exception_breakpoint_ops;
12824 *ops = bkpt_breakpoint_ops;
12825 ops->dtor = dtor_catch_exception;
12826 ops->allocate_location = allocate_location_catch_exception;
12827 ops->re_set = re_set_catch_exception;
12828 ops->check_status = check_status_catch_exception;
12829 ops->print_it = print_it_catch_exception;
12830 ops->print_one = print_one_catch_exception;
12831 ops->print_mention = print_mention_catch_exception;
12832 ops->print_recreate = print_recreate_catch_exception;
12833
12834 ops = &catch_exception_unhandled_breakpoint_ops;
12835 *ops = bkpt_breakpoint_ops;
12836 ops->dtor = dtor_catch_exception_unhandled;
12837 ops->allocate_location = allocate_location_catch_exception_unhandled;
12838 ops->re_set = re_set_catch_exception_unhandled;
12839 ops->check_status = check_status_catch_exception_unhandled;
12840 ops->print_it = print_it_catch_exception_unhandled;
12841 ops->print_one = print_one_catch_exception_unhandled;
12842 ops->print_mention = print_mention_catch_exception_unhandled;
12843 ops->print_recreate = print_recreate_catch_exception_unhandled;
12844
12845 ops = &catch_assert_breakpoint_ops;
12846 *ops = bkpt_breakpoint_ops;
12847 ops->dtor = dtor_catch_assert;
12848 ops->allocate_location = allocate_location_catch_assert;
12849 ops->re_set = re_set_catch_assert;
12850 ops->check_status = check_status_catch_assert;
12851 ops->print_it = print_it_catch_assert;
12852 ops->print_one = print_one_catch_assert;
12853 ops->print_mention = print_mention_catch_assert;
12854 ops->print_recreate = print_recreate_catch_assert;
12855}
12856
d2e4a39e 12857void
6c038f32 12858_initialize_ada_language (void)
14f9c5c9 12859{
6c038f32
PH
12860 add_language (&ada_language_defn);
12861
2060206e
PA
12862 initialize_ada_catchpoint_ops ();
12863
5bf03f13
JB
12864 add_prefix_cmd ("ada", no_class, set_ada_command,
12865 _("Prefix command for changing Ada-specfic settings"),
12866 &set_ada_list, "set ada ", 0, &setlist);
12867
12868 add_prefix_cmd ("ada", no_class, show_ada_command,
12869 _("Generic command for showing Ada-specific settings."),
12870 &show_ada_list, "show ada ", 0, &showlist);
12871
12872 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12873 &trust_pad_over_xvs, _("\
12874Enable or disable an optimization trusting PAD types over XVS types"), _("\
12875Show whether an optimization trusting PAD types over XVS types is activated"),
12876 _("\
12877This is related to the encoding used by the GNAT compiler. The debugger\n\
12878should normally trust the contents of PAD types, but certain older versions\n\
12879of GNAT have a bug that sometimes causes the information in the PAD type\n\
12880to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12881work around this bug. It is always safe to turn this option \"off\", but\n\
12882this incurs a slight performance penalty, so it is recommended to NOT change\n\
12883this option to \"off\" unless necessary."),
12884 NULL, NULL, &set_ada_list, &show_ada_list);
12885
9ac4176b
PA
12886 add_catch_command ("exception", _("\
12887Catch Ada exceptions, when raised.\n\
12888With an argument, catch only exceptions with the given name."),
12889 catch_ada_exception_command,
12890 NULL,
12891 CATCH_PERMANENT,
12892 CATCH_TEMPORARY);
12893 add_catch_command ("assert", _("\
12894Catch failed Ada assertions, when raised.\n\
12895With an argument, catch only exceptions with the given name."),
12896 catch_assert_command,
12897 NULL,
12898 CATCH_PERMANENT,
12899 CATCH_TEMPORARY);
12900
6c038f32 12901 varsize_limit = 65536;
6c038f32
PH
12902
12903 obstack_init (&symbol_list_obstack);
12904
12905 decoded_names_store = htab_create_alloc
12906 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12907 NULL, xcalloc, xfree);
6b69afc4 12908
e802dbe0
JB
12909 /* Setup per-inferior data. */
12910 observer_attach_inferior_exit (ada_inferior_exit);
12911 ada_inferior_data
8e260fc0 12912 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12913}