]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
2012-03-02 Tom Tromey <tromey@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
14f9c5c9
AS
584 return result;
585 }
586}
587
fc1a4b47
AC
588static const gdb_byte *
589cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
590{
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595}
596
597static CORE_ADDR
ebf56fd3 598cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
599{
600 if (address == 0)
601 return 0;
d2e4a39e 602 else
14f9c5c9
AS
603 return address + offset;
604}
605
4c4b4cd2
PH
606/* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
a2249542 610
77109804
AC
611/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
a0b31db1 613static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 614
14f9c5c9 615static void
a2249542 616lim_warning (const char *format, ...)
14f9c5c9 617{
a2249542 618 va_list args;
a2249542 619
5b4ee69b 620 va_start (args, format);
4c4b4cd2
PH
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
a2249542
MK
623 vwarning (format, args);
624
625 va_end (args);
4c4b4cd2
PH
626}
627
714e53ab
PH
628/* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632static void
633check_size (const struct type *type)
634{
635 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 636 error (_("object size is larger than varsize-limit"));
714e53ab
PH
637}
638
0963b4bd 639/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641max_of_size (int size)
4c4b4cd2 642{
76a01679 643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 644
76a01679 645 return top_bit | (top_bit - 1);
4c4b4cd2
PH
646}
647
0963b4bd 648/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 649static LONGEST
c3e5cd34 650min_of_size (int size)
4c4b4cd2 651{
c3e5cd34 652 return -max_of_size (size) - 1;
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 656static ULONGEST
c3e5cd34 657umax_of_size (int size)
4c4b4cd2 658{
76a01679 659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 660
76a01679 661 return top_bit | (top_bit - 1);
4c4b4cd2
PH
662}
663
0963b4bd 664/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
665static LONGEST
666max_of_type (struct type *t)
4c4b4cd2 667{
c3e5cd34
PH
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672}
673
0963b4bd 674/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
675static LONGEST
676min_of_type (struct type *t)
677{
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
682}
683
684/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 687{
76a01679 688 switch (TYPE_CODE (type))
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
690cc4eb 691 return TYPE_HIGH_BOUND (type);
4c4b4cd2 692 case TYPE_CODE_ENUM:
690cc4eb
PH
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
76a01679 697 case TYPE_CODE_INT:
690cc4eb 698 return max_of_type (type);
4c4b4cd2 699 default:
43bbcdc2 700 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
701 }
702}
703
704/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
705LONGEST
706ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 707{
76a01679 708 switch (TYPE_CODE (type))
4c4b4cd2
PH
709 {
710 case TYPE_CODE_RANGE:
690cc4eb 711 return TYPE_LOW_BOUND (type);
4c4b4cd2 712 case TYPE_CODE_ENUM:
690cc4eb
PH
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
76a01679 717 case TYPE_CODE_INT:
690cc4eb 718 return min_of_type (type);
4c4b4cd2 719 default:
43bbcdc2 720 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
721 }
722}
723
724/* The identity on non-range types. For range types, the underlying
76a01679 725 non-range scalar type. */
4c4b4cd2
PH
726
727static struct type *
18af8284 728get_base_type (struct type *type)
4c4b4cd2
PH
729{
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
76a01679
JB
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
4c4b4cd2
PH
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
14f9c5c9 737}
41246937
JB
738
739/* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744struct value *
745ada_get_decoded_value (struct value *value)
746{
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762}
763
764/* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769struct type *
770ada_get_decoded_type (struct type *type)
771{
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776}
777
4c4b4cd2 778\f
76a01679 779
4c4b4cd2 780 /* Language Selection */
14f9c5c9
AS
781
782/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 783 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 784
14f9c5c9 785enum language
ccefe4c4 786ada_update_initial_language (enum language lang)
14f9c5c9 787{
d2e4a39e 788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
14f9c5c9
AS
791
792 return lang;
793}
96d887e8
PH
794
795/* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799char *
800ada_main_name (void)
801{
802 struct minimal_symbol *msym;
f9bc20b9 803 static char *main_program_name = NULL;
6c038f32 804
96d887e8
PH
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
f9bc20b9
JB
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
96d887e8
PH
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
323e0a4a 819 error (_("Invalid address for Ada main program name."));
96d887e8 820
f9bc20b9
JB
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
96d887e8
PH
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832}
14f9c5c9 833\f
4c4b4cd2 834 /* Symbols */
d2e4a39e 835
4c4b4cd2
PH
836/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
14f9c5c9 838
d2e4a39e
AS
839const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
14f9c5c9
AS
862};
863
4c4b4cd2
PH
864/* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
14f9c5c9 867char *
4c4b4cd2 868ada_encode (const char *decoded)
14f9c5c9 869{
4c4b4cd2
PH
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
d2e4a39e 872 const char *p;
14f9c5c9 873 int k;
d2e4a39e 874
4c4b4cd2 875 if (decoded == NULL)
14f9c5c9
AS
876 return NULL;
877
4c4b4cd2
PH
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
14f9c5c9
AS
880
881 k = 0;
4c4b4cd2 882 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 883 {
cdc7bb92 884 if (*p == '.')
4c4b4cd2
PH
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
14f9c5c9 889 else if (*p == '"')
4c4b4cd2
PH
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
1265e4aa
JB
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
897 ;
898 if (mapping->encoded == NULL)
323e0a4a 899 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
d2e4a39e 904 else
4c4b4cd2
PH
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
14f9c5c9
AS
909 }
910
4c4b4cd2
PH
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
14f9c5c9
AS
913}
914
915/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
d2e4a39e
AS
919char *
920ada_fold_name (const char *name)
14f9c5c9 921{
d2e4a39e 922 static char *fold_buffer = NULL;
14f9c5c9
AS
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
d2e4a39e 926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
927
928 if (name[0] == '\'')
929 {
d2e4a39e
AS
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
932 }
933 else
934 {
935 int i;
5b4ee69b 936
14f9c5c9 937 for (i = 0; i <= len; i += 1)
4c4b4cd2 938 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
939 }
940
941 return fold_buffer;
942}
943
529cad9c
PH
944/* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946static int
947is_lower_alphanum (const char c)
948{
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950}
951
c90092fe
JB
952/* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
29480c32
JB
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
c90092fe 959
29480c32
JB
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964static void
965ada_remove_trailing_digits (const char *encoded, int *len)
966{
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
5b4ee69b 970
29480c32
JB
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982}
983
984/* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987static void
988ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989{
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
0963b4bd 995 the 'P' suffix. The second calls the first one after handling
29480c32
JB
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004}
1005
69fadcdf
JB
1006/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008static void
1009ada_remove_Xbn_suffix (const char *encoded, int *len)
1010{
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024}
1025
29480c32
JB
1026/* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
14f9c5c9 1029
4c4b4cd2 1030 The resulting string is valid until the next call of ada_decode.
29480c32 1031 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1032 is returned. */
1033
1034const char *
1035ada_decode (const char *encoded)
14f9c5c9
AS
1036{
1037 int i, j;
1038 int len0;
d2e4a39e 1039 const char *p;
4c4b4cd2 1040 char *decoded;
14f9c5c9 1041 int at_start_name;
4c4b4cd2
PH
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
d2e4a39e 1044
29480c32
JB
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
4c4b4cd2
PH
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
14f9c5c9 1050
29480c32
JB
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
4c4b4cd2 1054 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1055 goto Suppress;
1056
4c4b4cd2 1057 len0 = strlen (encoded);
4c4b4cd2 1058
29480c32
JB
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1061
4c4b4cd2
PH
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1068 {
1069 if (p[3] == 'X')
4c4b4cd2 1070 len0 = p - encoded;
14f9c5c9 1071 else
4c4b4cd2 1072 goto Suppress;
14f9c5c9 1073 }
4c4b4cd2 1074
29480c32
JB
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
4c4b4cd2 1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1080 len0 -= 3;
76a01679 1081
a10967fa
JB
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
29480c32
JB
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
4c4b4cd2 1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1093 len0 -= 1;
1094
4c4b4cd2 1095 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1096
4c4b4cd2
PH
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
14f9c5c9 1099
29480c32
JB
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
4c4b4cd2 1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1103 {
4c4b4cd2
PH
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
d2e4a39e 1112 }
14f9c5c9 1113
29480c32
JB
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
4c4b4cd2
PH
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
14f9c5c9
AS
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
29480c32 1123 /* Is this a symbol function? */
4c4b4cd2
PH
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
5b4ee69b 1127
4c4b4cd2
PH
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
14f9c5c9
AS
1145 at_start_name = 0;
1146
529cad9c
PH
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
4c4b4cd2
PH
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
529cad9c 1152
29480c32
JB
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
529cad9c
PH
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1175 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
4c4b4cd2
PH
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
29480c32
JB
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
4c4b4cd2
PH
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
cdc7bb92 1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1240 {
29480c32 1241 /* Replace '__' by '.'. */
4c4b4cd2
PH
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
14f9c5c9 1247 else
4c4b4cd2 1248 {
29480c32
JB
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
4c4b4cd2
PH
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
14f9c5c9 1255 }
4c4b4cd2 1256 decoded[j] = '\000';
14f9c5c9 1257
29480c32
JB
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
4c4b4cd2
PH
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1263 goto Suppress;
1264
4c4b4cd2
PH
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
14f9c5c9
AS
1269
1270Suppress:
4c4b4cd2
PH
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
14f9c5c9 1275 else
88c15c34 1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1277 return decoded;
1278
1279}
1280
1281/* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286static struct htab *decoded_names_store;
1287
1288/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1293 GSYMBOL).
4c4b4cd2
PH
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1296 when a decoded name is cached in it. */
4c4b4cd2 1297
76a01679
JB
1298char *
1299ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1300{
76a01679 1301 char **resultp =
afa16725 1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1303
4c4b4cd2
PH
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1307
714835d5 1308 if (gsymbol->obj_section != NULL)
76a01679 1309 {
714835d5 1310 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1311
714835d5
UW
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
76a01679 1314 }
4c4b4cd2 1315 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
4c4b4cd2 1319 if (*resultp == NULL)
76a01679
JB
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
5b4ee69b 1323
76a01679
JB
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
4c4b4cd2 1328 }
14f9c5c9 1329
4c4b4cd2
PH
1330 return *resultp;
1331}
76a01679 1332
2c0b251b 1333static char *
76a01679 1334ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1335{
1336 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1337}
1338
1339/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
14f9c5c9 1345
2c0b251b 1346static int
40658b94 1347match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1348{
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
73589123 1352 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1353 else
1354 {
1355 int len_name = strlen (name);
5b4ee69b 1356
4c4b4cd2
PH
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1362 }
14f9c5c9 1363}
14f9c5c9 1364\f
d2e4a39e 1365
4c4b4cd2 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421}
1422
4c4b4cd2 1423/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1424
d2e4a39e
AS
1425static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428};
1429
1430/* Maximum number of array dimensions we are prepared to handle. */
1431
4c4b4cd2 1432#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1433
14f9c5c9 1434
4c4b4cd2
PH
1435/* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
14f9c5c9
AS
1437
1438/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1439 level of indirection, if needed. */
1440
d2e4a39e
AS
1441static struct type *
1442desc_base_type (struct type *type)
14f9c5c9
AS
1443{
1444 if (type == NULL)
1445 return NULL;
61ee279c 1446 type = ada_check_typedef (type);
720d1a40
JB
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1265e4aa
JB
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1454 else
1455 return type;
1456}
1457
4c4b4cd2
PH
1458/* True iff TYPE indicates a "thin" array pointer type. */
1459
14f9c5c9 1460static int
d2e4a39e 1461is_thin_pntr (struct type *type)
14f9c5c9 1462{
d2e4a39e 1463 return
14f9c5c9
AS
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466}
1467
4c4b4cd2
PH
1468/* The descriptor type for thin pointer type TYPE. */
1469
d2e4a39e
AS
1470static struct type *
1471thin_descriptor_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *base_type = desc_base_type (type);
5b4ee69b 1474
14f9c5c9
AS
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
d2e4a39e 1479 else
14f9c5c9 1480 {
d2e4a39e 1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1482
14f9c5c9 1483 if (alt_type == NULL)
4c4b4cd2 1484 return base_type;
14f9c5c9 1485 else
4c4b4cd2 1486 return alt_type;
14f9c5c9
AS
1487 }
1488}
1489
4c4b4cd2
PH
1490/* A pointer to the array data for thin-pointer value VAL. */
1491
d2e4a39e
AS
1492static struct value *
1493thin_data_pntr (struct value *val)
14f9c5c9 1494{
828292f2 1495 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1497
556bdfd4
UW
1498 data_type = lookup_pointer_type (data_type);
1499
14f9c5c9 1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1501 return value_cast (data_type, value_copy (val));
d2e4a39e 1502 else
42ae5230 1503 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1504}
1505
4c4b4cd2
PH
1506/* True iff TYPE indicates a "thick" array pointer type. */
1507
14f9c5c9 1508static int
d2e4a39e 1509is_thick_pntr (struct type *type)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1514}
1515
4c4b4cd2
PH
1516/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1518
d2e4a39e
AS
1519static struct type *
1520desc_bounds_type (struct type *type)
14f9c5c9 1521{
d2e4a39e 1522 struct type *r;
14f9c5c9
AS
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
4c4b4cd2 1532 return NULL;
14f9c5c9
AS
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
61ee279c 1535 return ada_check_typedef (r);
14f9c5c9
AS
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1542 }
1543 return NULL;
1544}
1545
1546/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
d2e4a39e
AS
1549static struct value *
1550desc_bounds (struct value *arr)
14f9c5c9 1551{
df407dfe 1552 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1553
d2e4a39e 1554 if (is_thin_pntr (type))
14f9c5c9 1555 {
d2e4a39e 1556 struct type *bounds_type =
4c4b4cd2 1557 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1558 LONGEST addr;
1559
4cdfadb1 1560 if (bounds_type == NULL)
323e0a4a 1561 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1562
1563 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1564 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1565 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1567 addr = value_as_long (arr);
d2e4a39e 1568 else
42ae5230 1569 addr = value_address (arr);
14f9c5c9 1570
d2e4a39e 1571 return
4c4b4cd2
PH
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1574 }
1575
1576 else if (is_thick_pntr (type))
05e522ef
JB
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
14f9c5c9
AS
1597 else
1598 return NULL;
1599}
1600
4c4b4cd2
PH
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1606{
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608}
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 size of the field containing the address of the bounds data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617
d2e4a39e 1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
61ee279c 1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1622}
1623
4c4b4cd2 1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
4c4b4cd2 1628
d2e4a39e 1629static struct type *
556bdfd4 1630desc_data_target_type (struct type *type)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
4c4b4cd2 1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1635 if (is_thin_pntr (type))
556bdfd4 1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1637 else if (is_thick_pntr (type))
556bdfd4
UW
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1644 }
1645
1646 return NULL;
14f9c5c9
AS
1647}
1648
1649/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
4c4b4cd2 1651
d2e4a39e
AS
1652static struct value *
1653desc_data (struct value *arr)
14f9c5c9 1654{
df407dfe 1655 struct type *type = value_type (arr);
5b4ee69b 1656
14f9c5c9
AS
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
d2e4a39e 1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1661 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1662 else
1663 return NULL;
1664}
1665
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 position of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1686 else
14f9c5c9
AS
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688}
1689
4c4b4cd2 1690/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
d2e4a39e
AS
1694static struct value *
1695desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1698 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1699}
1700
1701/* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
14f9c5c9 1705static int
d2e4a39e 1706desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1707{
d2e4a39e 1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1709}
1710
1711/* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
76a01679 1715static int
d2e4a39e 1716desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
d2e4a39e
AS
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1724}
1725
1726/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
d2e4a39e
AS
1729static struct type *
1730desc_index_type (struct type *type, int i)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
14f9c5c9
AS
1737 return NULL;
1738}
1739
4c4b4cd2
PH
1740/* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
14f9c5c9 1743static int
d2e4a39e 1744desc_arity (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751}
1752
4c4b4cd2
PH
1753/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
76a01679
JB
1757static int
1758ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1759{
1760 if (type == NULL)
1761 return 0;
61ee279c 1762 type = ada_check_typedef (type);
4c4b4cd2 1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1764 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1765}
1766
52ce6436 1767/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1768 * to one. */
52ce6436 1769
2c0b251b 1770static int
52ce6436
PH
1771ada_is_array_type (struct type *type)
1772{
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778}
1779
4c4b4cd2 1780/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1781
14f9c5c9 1782int
4c4b4cd2 1783ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1784{
1785 if (type == NULL)
1786 return 0;
61ee279c 1787 type = ada_check_typedef (type);
14f9c5c9 1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1792}
1793
4c4b4cd2
PH
1794/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
14f9c5c9 1796int
4c4b4cd2 1797ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1798{
556bdfd4 1799 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1800
1801 if (type == NULL)
1802 return 0;
61ee279c 1803 type = ada_check_typedef (type);
556bdfd4
UW
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1807}
1808
1809/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1810 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1811 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1812 is still needed. */
1813
14f9c5c9 1814int
ebf56fd3 1815ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1816{
d2e4a39e 1817 return
14f9c5c9
AS
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1823}
1824
1825
4c4b4cd2 1826/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1827 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1829 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1832 a descriptor. */
d2e4a39e
AS
1833struct type *
1834ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1835{
ad82864c
JB
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1838
df407dfe
AC
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
d2e4a39e
AS
1841
1842 if (!bounds)
ad82864c
JB
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
14f9c5c9
AS
1853 else
1854 {
d2e4a39e 1855 struct type *elt_type;
14f9c5c9 1856 int arity;
d2e4a39e 1857 struct value *descriptor;
14f9c5c9 1858
df407dfe
AC
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
14f9c5c9 1861
d2e4a39e 1862 if (elt_type == NULL || arity == 0)
df407dfe 1863 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1864
1865 descriptor = desc_bounds (arr);
d2e4a39e 1866 if (value_as_long (descriptor) == 0)
4c4b4cd2 1867 return NULL;
d2e4a39e 1868 while (arity > 0)
4c4b4cd2 1869 {
e9bb382b
UW
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1874
5b4ee69b 1875 arity -= 1;
df407dfe 1876 create_range_type (range_type, value_type (low),
529cad9c
PH
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
4c4b4cd2 1879 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
4c4b4cd2 1901 }
14f9c5c9
AS
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905}
1906
1907/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
d2e4a39e
AS
1912struct value *
1913ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1914{
df407dfe 1915 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1916 {
d2e4a39e 1917 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1918
14f9c5c9 1919 if (arrType == NULL)
4c4b4cd2 1920 return NULL;
14f9c5c9
AS
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
ad82864c
JB
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1925 else
1926 return arr;
1927}
1928
1929/* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1931 be ARR itself if it already is in the proper form). */
1932
720d1a40 1933struct value *
d2e4a39e 1934ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1935{
df407dfe 1936 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1937 {
d2e4a39e 1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1939
14f9c5c9 1940 if (arrVal == NULL)
323e0a4a 1941 error (_("Bounds unavailable for null array pointer."));
529cad9c 1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1943 return value_ind (arrVal);
1944 }
ad82864c
JB
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
d2e4a39e 1947 else
14f9c5c9
AS
1948 return arr;
1949}
1950
1951/* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1953 packing). For other types, is the identity. */
1954
d2e4a39e
AS
1955struct type *
1956ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1957{
ad82864c
JB
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
17280b9f
UW
1960
1961 if (ada_is_array_descriptor_type (type))
556bdfd4 1962 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1963
1964 return type;
14f9c5c9
AS
1965}
1966
4c4b4cd2
PH
1967/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
ad82864c
JB
1969static int
1970ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1971{
1972 if (type == NULL)
1973 return 0;
4c4b4cd2 1974 type = desc_base_type (type);
61ee279c 1975 type = ada_check_typedef (type);
d2e4a39e 1976 return
14f9c5c9
AS
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979}
1980
ad82864c
JB
1981/* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984int
1985ada_is_constrained_packed_array_type (struct type *type)
1986{
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989}
1990
1991/* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994static int
1995ada_is_unconstrained_packed_array_type (struct type *type)
1996{
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999}
2000
2001/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004static long
2005decode_packed_array_bitsize (struct type *type)
2006{
0d5cff50
DE
2007 const char *raw_name;
2008 const char *tail;
ad82864c
JB
2009 long bits;
2010
720d1a40
JB
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
720d1a40 2025 gdb_assert (tail != NULL);
ad82864c
JB
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035}
2036
14f9c5c9
AS
2037/* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
d2e4a39e 2046static struct type *
ad82864c 2047constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2048{
d2e4a39e
AS
2049 struct type *new_elt_type;
2050 struct type *new_type;
99b1c762
JB
2051 struct type *index_type_desc;
2052 struct type *index_type;
14f9c5c9
AS
2053 LONGEST low_bound, high_bound;
2054
61ee279c 2055 type = ada_check_typedef (type);
14f9c5c9
AS
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
99b1c762
JB
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
e9bb382b 2066 new_type = alloc_type_copy (type);
ad82864c
JB
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
99b1c762 2070 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
99b1c762 2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2078 else
14f9c5c9
AS
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2081 TYPE_LENGTH (new_type) =
4c4b4cd2 2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2083 }
2084
876cecd0 2085 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2086 return new_type;
2087}
2088
ad82864c
JB
2089/* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2091
d2e4a39e 2092static struct type *
ad82864c 2093decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2094{
0d5cff50 2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2096 char *name;
0d5cff50 2097 const char *tail;
d2e4a39e 2098 struct type *shadow_type;
14f9c5c9 2099 long bits;
14f9c5c9 2100
727e3d2e
JB
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2109 type = desc_base_type (type);
2110
14f9c5c9
AS
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
b4ba55a1
JB
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
14f9c5c9 2117 {
323e0a4a 2118 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2119 return NULL;
2120 }
cb249c71 2121 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
0963b4bd
MS
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
14f9c5c9
AS
2127 return NULL;
2128 }
d2e4a39e 2129
ad82864c
JB
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2132}
2133
ad82864c
JB
2134/* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
4c4b4cd2 2138 type length is set appropriately. */
14f9c5c9 2139
d2e4a39e 2140static struct value *
ad82864c 2141decode_constrained_packed_array (struct value *arr)
14f9c5c9 2142{
4c4b4cd2 2143 struct type *type;
14f9c5c9 2144
4c4b4cd2 2145 arr = ada_coerce_ref (arr);
284614f0
JB
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
828292f2 2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2154 arr = value_ind (arr);
4c4b4cd2 2155
ad82864c 2156 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2157 if (type == NULL)
2158 {
323e0a4a 2159 error (_("can't unpack array"));
14f9c5c9
AS
2160 return NULL;
2161 }
61ee279c 2162
50810684 2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2164 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
df407dfe 2173 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
df407dfe 2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
4c4b4cd2 2188 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2189}
2190
2191
2192/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2193 given in IND. ARR must be a simple array. */
14f9c5c9 2194
d2e4a39e
AS
2195static struct value *
2196value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2197{
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
d2e4a39e
AS
2201 struct type *elt_type;
2202 struct value *v;
14f9c5c9
AS
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
df407dfe 2206 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2207 for (i = 0; i < arity; i += 1)
14f9c5c9 2208 {
d2e4a39e 2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
0963b4bd
MS
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
14f9c5c9 2214 else
4c4b4cd2
PH
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
323e0a4a 2222 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2223 lowerbound = upperbound = 0;
2224 }
2225
3cb382c9 2226 idx = pos_atr (ind[i]);
4c4b4cd2 2227 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
4c4b4cd2
PH
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2233 }
14f9c5c9
AS
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2239 bits, elt_type);
14f9c5c9
AS
2240 return v;
2241}
2242
4c4b4cd2 2243/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2244
2245static int
d2e4a39e 2246has_negatives (struct type *type)
14f9c5c9 2247{
d2e4a39e
AS
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
14f9c5c9 2257}
d2e4a39e 2258
14f9c5c9
AS
2259
2260/* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2263 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2268
d2e4a39e 2269struct value *
fc1a4b47 2270ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2271 long offset, int bit_offset, int bit_size,
4c4b4cd2 2272 struct type *type)
14f9c5c9 2273{
d2e4a39e 2274 struct value *v;
4c4b4cd2
PH
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2283 unsigned char *unpacked;
4c4b4cd2 2284 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
50810684 2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2290
61ee279c 2291 type = ada_check_typedef (type);
14f9c5c9
AS
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
d2e4a39e 2296 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2297 }
9214ee5f 2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2299 {
2300 v = value_at (type,
42ae5230 2301 value_address (obj) + offset);
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
42ae5230 2303 read_memory (value_address (v), bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
42ae5230 2313 CORE_ADDR new_addr;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
42ae5230 2316 new_addr = value_address (obj) + offset;
9bbda503
AC
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
df407dfe 2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2320 {
42ae5230 2321 ++new_addr;
9bbda503 2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2323 }
42ae5230 2324 set_value_address (v, new_addr);
14f9c5c9
AS
2325 }
2326 else
9bbda503 2327 set_value_bitsize (v, bit_size);
0fd88904 2328 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2329
2330 srcBitsLeft = bit_size;
2331 nsrc = len;
2332 ntarg = TYPE_LENGTH (type);
2333 sign = 0;
2334 if (bit_size == 0)
2335 {
2336 memset (unpacked, 0, TYPE_LENGTH (type));
2337 return v;
2338 }
50810684 2339 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2340 {
d2e4a39e 2341 src = len - 1;
1265e4aa
JB
2342 if (has_negatives (type)
2343 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2344 sign = ~0;
d2e4a39e
AS
2345
2346 unusedLS =
4c4b4cd2
PH
2347 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2348 % HOST_CHAR_BIT;
14f9c5c9
AS
2349
2350 switch (TYPE_CODE (type))
4c4b4cd2
PH
2351 {
2352 case TYPE_CODE_ARRAY:
2353 case TYPE_CODE_UNION:
2354 case TYPE_CODE_STRUCT:
2355 /* Non-scalar values must be aligned at a byte boundary... */
2356 accumSize =
2357 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2358 /* ... And are placed at the beginning (most-significant) bytes
2359 of the target. */
529cad9c 2360 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2361 ntarg = targ + 1;
4c4b4cd2
PH
2362 break;
2363 default:
2364 accumSize = 0;
2365 targ = TYPE_LENGTH (type) - 1;
2366 break;
2367 }
14f9c5c9 2368 }
d2e4a39e 2369 else
14f9c5c9
AS
2370 {
2371 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2372
2373 src = targ = 0;
2374 unusedLS = bit_offset;
2375 accumSize = 0;
2376
d2e4a39e 2377 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2378 sign = ~0;
14f9c5c9 2379 }
d2e4a39e 2380
14f9c5c9
AS
2381 accum = 0;
2382 while (nsrc > 0)
2383 {
2384 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2385 part of the value. */
d2e4a39e 2386 unsigned int unusedMSMask =
4c4b4cd2
PH
2387 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2388 1;
2389 /* Sign-extend bits for this byte. */
14f9c5c9 2390 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2391
d2e4a39e 2392 accum |=
4c4b4cd2 2393 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2394 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2395 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2396 {
2397 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2398 accumSize -= HOST_CHAR_BIT;
2399 accum >>= HOST_CHAR_BIT;
2400 ntarg -= 1;
2401 targ += delta;
2402 }
14f9c5c9
AS
2403 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2404 unusedLS = 0;
2405 nsrc -= 1;
2406 src += delta;
2407 }
2408 while (ntarg > 0)
2409 {
2410 accum |= sign << accumSize;
2411 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2412 accumSize -= HOST_CHAR_BIT;
2413 accum >>= HOST_CHAR_BIT;
2414 ntarg -= 1;
2415 targ += delta;
2416 }
2417
2418 return v;
2419}
d2e4a39e 2420
14f9c5c9
AS
2421/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2422 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2423 not overlap. */
14f9c5c9 2424static void
fc1a4b47 2425move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2426 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2427{
2428 unsigned int accum, mask;
2429 int accum_bits, chunk_size;
2430
2431 target += targ_offset / HOST_CHAR_BIT;
2432 targ_offset %= HOST_CHAR_BIT;
2433 source += src_offset / HOST_CHAR_BIT;
2434 src_offset %= HOST_CHAR_BIT;
50810684 2435 if (bits_big_endian_p)
14f9c5c9
AS
2436 {
2437 accum = (unsigned char) *source;
2438 source += 1;
2439 accum_bits = HOST_CHAR_BIT - src_offset;
2440
d2e4a39e 2441 while (n > 0)
4c4b4cd2
PH
2442 {
2443 int unused_right;
5b4ee69b 2444
4c4b4cd2
PH
2445 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2446 accum_bits += HOST_CHAR_BIT;
2447 source += 1;
2448 chunk_size = HOST_CHAR_BIT - targ_offset;
2449 if (chunk_size > n)
2450 chunk_size = n;
2451 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2452 mask = ((1 << chunk_size) - 1) << unused_right;
2453 *target =
2454 (*target & ~mask)
2455 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2456 n -= chunk_size;
2457 accum_bits -= chunk_size;
2458 target += 1;
2459 targ_offset = 0;
2460 }
14f9c5c9
AS
2461 }
2462 else
2463 {
2464 accum = (unsigned char) *source >> src_offset;
2465 source += 1;
2466 accum_bits = HOST_CHAR_BIT - src_offset;
2467
d2e4a39e 2468 while (n > 0)
4c4b4cd2
PH
2469 {
2470 accum = accum + ((unsigned char) *source << accum_bits);
2471 accum_bits += HOST_CHAR_BIT;
2472 source += 1;
2473 chunk_size = HOST_CHAR_BIT - targ_offset;
2474 if (chunk_size > n)
2475 chunk_size = n;
2476 mask = ((1 << chunk_size) - 1) << targ_offset;
2477 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2478 n -= chunk_size;
2479 accum_bits -= chunk_size;
2480 accum >>= chunk_size;
2481 target += 1;
2482 targ_offset = 0;
2483 }
14f9c5c9
AS
2484 }
2485}
2486
14f9c5c9
AS
2487/* Store the contents of FROMVAL into the location of TOVAL.
2488 Return a new value with the location of TOVAL and contents of
2489 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2490 floating-point or non-scalar types. */
14f9c5c9 2491
d2e4a39e
AS
2492static struct value *
2493ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2494{
df407dfe
AC
2495 struct type *type = value_type (toval);
2496 int bits = value_bitsize (toval);
14f9c5c9 2497
52ce6436
PH
2498 toval = ada_coerce_ref (toval);
2499 fromval = ada_coerce_ref (fromval);
2500
2501 if (ada_is_direct_array_type (value_type (toval)))
2502 toval = ada_coerce_to_simple_array (toval);
2503 if (ada_is_direct_array_type (value_type (fromval)))
2504 fromval = ada_coerce_to_simple_array (fromval);
2505
88e3b34b 2506 if (!deprecated_value_modifiable (toval))
323e0a4a 2507 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2508
d2e4a39e 2509 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2510 && bits > 0
d2e4a39e 2511 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2512 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2513 {
df407dfe
AC
2514 int len = (value_bitpos (toval)
2515 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2516 int from_size;
d2e4a39e
AS
2517 char *buffer = (char *) alloca (len);
2518 struct value *val;
42ae5230 2519 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2520
2521 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2522 fromval = value_cast (type, fromval);
14f9c5c9 2523
52ce6436 2524 read_memory (to_addr, buffer, len);
aced2898
PH
2525 from_size = value_bitsize (fromval);
2526 if (from_size == 0)
2527 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2528 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2529 move_bits (buffer, value_bitpos (toval),
50810684 2530 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2531 else
50810684
UW
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), 0, bits, 0);
52ce6436 2534 write_memory (to_addr, buffer, len);
8cebebb9
PP
2535 observer_notify_memory_changed (to_addr, len, buffer);
2536
14f9c5c9 2537 val = value_copy (toval);
0fd88904 2538 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2539 TYPE_LENGTH (type));
04624583 2540 deprecated_set_value_type (val, type);
d2e4a39e 2541
14f9c5c9
AS
2542 return val;
2543 }
2544
2545 return value_assign (toval, fromval);
2546}
2547
2548
52ce6436
PH
2549/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2550 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2551 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2552 * COMPONENT, and not the inferior's memory. The current contents
2553 * of COMPONENT are ignored. */
2554static void
2555value_assign_to_component (struct value *container, struct value *component,
2556 struct value *val)
2557{
2558 LONGEST offset_in_container =
42ae5230 2559 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2560 int bit_offset_in_container =
2561 value_bitpos (component) - value_bitpos (container);
2562 int bits;
2563
2564 val = value_cast (value_type (component), val);
2565
2566 if (value_bitsize (component) == 0)
2567 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2568 else
2569 bits = value_bitsize (component);
2570
50810684 2571 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2572 move_bits (value_contents_writeable (container) + offset_in_container,
2573 value_bitpos (container) + bit_offset_in_container,
2574 value_contents (val),
2575 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2576 bits, 1);
52ce6436
PH
2577 else
2578 move_bits (value_contents_writeable (container) + offset_in_container,
2579 value_bitpos (container) + bit_offset_in_container,
50810684 2580 value_contents (val), 0, bits, 0);
52ce6436
PH
2581}
2582
4c4b4cd2
PH
2583/* The value of the element of array ARR at the ARITY indices given in IND.
2584 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2585 thereto. */
2586
d2e4a39e
AS
2587struct value *
2588ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2589{
2590 int k;
d2e4a39e
AS
2591 struct value *elt;
2592 struct type *elt_type;
14f9c5c9
AS
2593
2594 elt = ada_coerce_to_simple_array (arr);
2595
df407dfe 2596 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2597 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2598 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2599 return value_subscript_packed (elt, arity, ind);
2600
2601 for (k = 0; k < arity; k += 1)
2602 {
2603 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2604 error (_("too many subscripts (%d expected)"), k);
2497b498 2605 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2606 }
2607 return elt;
2608}
2609
2610/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2611 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2612 IND. Does not read the entire array into memory. */
14f9c5c9 2613
2c0b251b 2614static struct value *
d2e4a39e 2615ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2616 struct value **ind)
14f9c5c9
AS
2617{
2618 int k;
2619
2620 for (k = 0; k < arity; k += 1)
2621 {
2622 LONGEST lwb, upb;
14f9c5c9
AS
2623
2624 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2625 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2626 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2627 value_copy (arr));
14f9c5c9 2628 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2629 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2630 type = TYPE_TARGET_TYPE (type);
2631 }
2632
2633 return value_ind (arr);
2634}
2635
0b5d8877 2636/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2637 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2638 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2639 per Ada rules. */
0b5d8877 2640static struct value *
f5938064
JG
2641ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2642 int low, int high)
0b5d8877 2643{
b0dd7688 2644 struct type *type0 = ada_check_typedef (type);
6c038f32 2645 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2646 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2647 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2648 struct type *index_type =
b0dd7688 2649 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2650 low, high);
6c038f32 2651 struct type *slice_type =
b0dd7688 2652 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2653
f5938064 2654 return value_at_lazy (slice_type, base);
0b5d8877
PH
2655}
2656
2657
2658static struct value *
2659ada_value_slice (struct value *array, int low, int high)
2660{
b0dd7688 2661 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2662 struct type *index_type =
0b5d8877 2663 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2664 struct type *slice_type =
0b5d8877 2665 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2666
6c038f32 2667 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2668}
2669
14f9c5c9
AS
2670/* If type is a record type in the form of a standard GNAT array
2671 descriptor, returns the number of dimensions for type. If arr is a
2672 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2673 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2674
2675int
d2e4a39e 2676ada_array_arity (struct type *type)
14f9c5c9
AS
2677{
2678 int arity;
2679
2680 if (type == NULL)
2681 return 0;
2682
2683 type = desc_base_type (type);
2684
2685 arity = 0;
d2e4a39e 2686 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2687 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2688 else
2689 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2690 {
4c4b4cd2 2691 arity += 1;
61ee279c 2692 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2693 }
d2e4a39e 2694
14f9c5c9
AS
2695 return arity;
2696}
2697
2698/* If TYPE is a record type in the form of a standard GNAT array
2699 descriptor or a simple array type, returns the element type for
2700 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2701 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2702
d2e4a39e
AS
2703struct type *
2704ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2705{
2706 type = desc_base_type (type);
2707
d2e4a39e 2708 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2709 {
2710 int k;
d2e4a39e 2711 struct type *p_array_type;
14f9c5c9 2712
556bdfd4 2713 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2714
2715 k = ada_array_arity (type);
2716 if (k == 0)
4c4b4cd2 2717 return NULL;
d2e4a39e 2718
4c4b4cd2 2719 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2720 if (nindices >= 0 && k > nindices)
4c4b4cd2 2721 k = nindices;
d2e4a39e 2722 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2723 {
61ee279c 2724 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2725 k -= 1;
2726 }
14f9c5c9
AS
2727 return p_array_type;
2728 }
2729 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2730 {
2731 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2732 {
2733 type = TYPE_TARGET_TYPE (type);
2734 nindices -= 1;
2735 }
14f9c5c9
AS
2736 return type;
2737 }
2738
2739 return NULL;
2740}
2741
4c4b4cd2 2742/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2743 Does not examine memory. Throws an error if N is invalid or TYPE
2744 is not an array type. NAME is the name of the Ada attribute being
2745 evaluated ('range, 'first, 'last, or 'length); it is used in building
2746 the error message. */
14f9c5c9 2747
1eea4ebd
UW
2748static struct type *
2749ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2750{
4c4b4cd2
PH
2751 struct type *result_type;
2752
14f9c5c9
AS
2753 type = desc_base_type (type);
2754
1eea4ebd
UW
2755 if (n < 0 || n > ada_array_arity (type))
2756 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2757
4c4b4cd2 2758 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2759 {
2760 int i;
2761
2762 for (i = 1; i < n; i += 1)
4c4b4cd2 2763 type = TYPE_TARGET_TYPE (type);
262452ec 2764 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2765 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2766 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2767 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2768 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2769 result_type = NULL;
14f9c5c9 2770 }
d2e4a39e 2771 else
1eea4ebd
UW
2772 {
2773 result_type = desc_index_type (desc_bounds_type (type), n);
2774 if (result_type == NULL)
2775 error (_("attempt to take bound of something that is not an array"));
2776 }
2777
2778 return result_type;
14f9c5c9
AS
2779}
2780
2781/* Given that arr is an array type, returns the lower bound of the
2782 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2783 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2784 array-descriptor type. It works for other arrays with bounds supplied
2785 by run-time quantities other than discriminants. */
14f9c5c9 2786
abb68b3e 2787static LONGEST
1eea4ebd 2788ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2789{
1ce677a4 2790 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2791 int i;
262452ec
JK
2792
2793 gdb_assert (which == 0 || which == 1);
14f9c5c9 2794
ad82864c
JB
2795 if (ada_is_constrained_packed_array_type (arr_type))
2796 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2797
4c4b4cd2 2798 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2799 return (LONGEST) - which;
14f9c5c9
AS
2800
2801 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2802 type = TYPE_TARGET_TYPE (arr_type);
2803 else
2804 type = arr_type;
2805
1ce677a4
UW
2806 elt_type = type;
2807 for (i = n; i > 1; i--)
2808 elt_type = TYPE_TARGET_TYPE (type);
2809
14f9c5c9 2810 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2811 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2812 if (index_type_desc != NULL)
28c85d6c
JB
2813 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2814 NULL);
262452ec 2815 else
1ce677a4 2816 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2817
43bbcdc2
PH
2818 return
2819 (LONGEST) (which == 0
2820 ? ada_discrete_type_low_bound (index_type)
2821 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2822}
2823
2824/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2825 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2826 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2827 supplied by run-time quantities other than discriminants. */
14f9c5c9 2828
1eea4ebd 2829static LONGEST
4dc81987 2830ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2831{
df407dfe 2832 struct type *arr_type = value_type (arr);
14f9c5c9 2833
ad82864c
JB
2834 if (ada_is_constrained_packed_array_type (arr_type))
2835 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2836 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2837 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2838 else
1eea4ebd 2839 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2840}
2841
2842/* Given that arr is an array value, returns the length of the
2843 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2844 supplied by run-time quantities other than discriminants.
2845 Does not work for arrays indexed by enumeration types with representation
2846 clauses at the moment. */
14f9c5c9 2847
1eea4ebd 2848static LONGEST
d2e4a39e 2849ada_array_length (struct value *arr, int n)
14f9c5c9 2850{
df407dfe 2851 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2852
ad82864c
JB
2853 if (ada_is_constrained_packed_array_type (arr_type))
2854 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2855
4c4b4cd2 2856 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2857 return (ada_array_bound_from_type (arr_type, n, 1)
2858 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2859 else
1eea4ebd
UW
2860 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2861 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2862}
2863
2864/* An empty array whose type is that of ARR_TYPE (an array type),
2865 with bounds LOW to LOW-1. */
2866
2867static struct value *
2868empty_array (struct type *arr_type, int low)
2869{
b0dd7688 2870 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2871 struct type *index_type =
b0dd7688 2872 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2873 low, low - 1);
b0dd7688 2874 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2875
0b5d8877 2876 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2877}
14f9c5c9 2878\f
d2e4a39e 2879
4c4b4cd2 2880 /* Name resolution */
14f9c5c9 2881
4c4b4cd2
PH
2882/* The "decoded" name for the user-definable Ada operator corresponding
2883 to OP. */
14f9c5c9 2884
d2e4a39e 2885static const char *
4c4b4cd2 2886ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2887{
2888 int i;
2889
4c4b4cd2 2890 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2891 {
2892 if (ada_opname_table[i].op == op)
4c4b4cd2 2893 return ada_opname_table[i].decoded;
14f9c5c9 2894 }
323e0a4a 2895 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2896}
2897
2898
4c4b4cd2
PH
2899/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2900 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2901 undefined namespace) and converts operators that are
2902 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2903 non-null, it provides a preferred result type [at the moment, only
2904 type void has any effect---causing procedures to be preferred over
2905 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2906 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2907
4c4b4cd2
PH
2908static void
2909resolve (struct expression **expp, int void_context_p)
14f9c5c9 2910{
30b15541
UW
2911 struct type *context_type = NULL;
2912 int pc = 0;
2913
2914 if (void_context_p)
2915 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2916
2917 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2918}
2919
4c4b4cd2
PH
2920/* Resolve the operator of the subexpression beginning at
2921 position *POS of *EXPP. "Resolving" consists of replacing
2922 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2923 with their resolutions, replacing built-in operators with
2924 function calls to user-defined operators, where appropriate, and,
2925 when DEPROCEDURE_P is non-zero, converting function-valued variables
2926 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2927 are as in ada_resolve, above. */
14f9c5c9 2928
d2e4a39e 2929static struct value *
4c4b4cd2 2930resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2931 struct type *context_type)
14f9c5c9
AS
2932{
2933 int pc = *pos;
2934 int i;
4c4b4cd2 2935 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2936 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2937 struct value **argvec; /* Vector of operand types (alloca'ed). */
2938 int nargs; /* Number of operands. */
52ce6436 2939 int oplen;
14f9c5c9
AS
2940
2941 argvec = NULL;
2942 nargs = 0;
2943 exp = *expp;
2944
52ce6436
PH
2945 /* Pass one: resolve operands, saving their types and updating *pos,
2946 if needed. */
14f9c5c9
AS
2947 switch (op)
2948 {
4c4b4cd2
PH
2949 case OP_FUNCALL:
2950 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2951 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2952 *pos += 7;
4c4b4cd2
PH
2953 else
2954 {
2955 *pos += 3;
2956 resolve_subexp (expp, pos, 0, NULL);
2957 }
2958 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2959 break;
2960
14f9c5c9 2961 case UNOP_ADDR:
4c4b4cd2
PH
2962 *pos += 1;
2963 resolve_subexp (expp, pos, 0, NULL);
2964 break;
2965
52ce6436
PH
2966 case UNOP_QUAL:
2967 *pos += 3;
17466c1a 2968 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2969 break;
2970
52ce6436 2971 case OP_ATR_MODULUS:
4c4b4cd2
PH
2972 case OP_ATR_SIZE:
2973 case OP_ATR_TAG:
4c4b4cd2
PH
2974 case OP_ATR_FIRST:
2975 case OP_ATR_LAST:
2976 case OP_ATR_LENGTH:
2977 case OP_ATR_POS:
2978 case OP_ATR_VAL:
4c4b4cd2
PH
2979 case OP_ATR_MIN:
2980 case OP_ATR_MAX:
52ce6436
PH
2981 case TERNOP_IN_RANGE:
2982 case BINOP_IN_BOUNDS:
2983 case UNOP_IN_RANGE:
2984 case OP_AGGREGATE:
2985 case OP_OTHERS:
2986 case OP_CHOICES:
2987 case OP_POSITIONAL:
2988 case OP_DISCRETE_RANGE:
2989 case OP_NAME:
2990 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2991 *pos += oplen;
14f9c5c9
AS
2992 break;
2993
2994 case BINOP_ASSIGN:
2995 {
4c4b4cd2
PH
2996 struct value *arg1;
2997
2998 *pos += 1;
2999 arg1 = resolve_subexp (expp, pos, 0, NULL);
3000 if (arg1 == NULL)
3001 resolve_subexp (expp, pos, 1, NULL);
3002 else
df407dfe 3003 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3004 break;
14f9c5c9
AS
3005 }
3006
4c4b4cd2 3007 case UNOP_CAST:
4c4b4cd2
PH
3008 *pos += 3;
3009 nargs = 1;
3010 break;
14f9c5c9 3011
4c4b4cd2
PH
3012 case BINOP_ADD:
3013 case BINOP_SUB:
3014 case BINOP_MUL:
3015 case BINOP_DIV:
3016 case BINOP_REM:
3017 case BINOP_MOD:
3018 case BINOP_EXP:
3019 case BINOP_CONCAT:
3020 case BINOP_LOGICAL_AND:
3021 case BINOP_LOGICAL_OR:
3022 case BINOP_BITWISE_AND:
3023 case BINOP_BITWISE_IOR:
3024 case BINOP_BITWISE_XOR:
14f9c5c9 3025
4c4b4cd2
PH
3026 case BINOP_EQUAL:
3027 case BINOP_NOTEQUAL:
3028 case BINOP_LESS:
3029 case BINOP_GTR:
3030 case BINOP_LEQ:
3031 case BINOP_GEQ:
14f9c5c9 3032
4c4b4cd2
PH
3033 case BINOP_REPEAT:
3034 case BINOP_SUBSCRIPT:
3035 case BINOP_COMMA:
40c8aaa9
JB
3036 *pos += 1;
3037 nargs = 2;
3038 break;
14f9c5c9 3039
4c4b4cd2
PH
3040 case UNOP_NEG:
3041 case UNOP_PLUS:
3042 case UNOP_LOGICAL_NOT:
3043 case UNOP_ABS:
3044 case UNOP_IND:
3045 *pos += 1;
3046 nargs = 1;
3047 break;
14f9c5c9 3048
4c4b4cd2
PH
3049 case OP_LONG:
3050 case OP_DOUBLE:
3051 case OP_VAR_VALUE:
3052 *pos += 4;
3053 break;
14f9c5c9 3054
4c4b4cd2
PH
3055 case OP_TYPE:
3056 case OP_BOOL:
3057 case OP_LAST:
4c4b4cd2
PH
3058 case OP_INTERNALVAR:
3059 *pos += 3;
3060 break;
14f9c5c9 3061
4c4b4cd2
PH
3062 case UNOP_MEMVAL:
3063 *pos += 3;
3064 nargs = 1;
3065 break;
3066
67f3407f
DJ
3067 case OP_REGISTER:
3068 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3069 break;
3070
4c4b4cd2
PH
3071 case STRUCTOP_STRUCT:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 nargs = 1;
3074 break;
3075
4c4b4cd2 3076 case TERNOP_SLICE:
4c4b4cd2
PH
3077 *pos += 1;
3078 nargs = 3;
3079 break;
3080
52ce6436 3081 case OP_STRING:
14f9c5c9 3082 break;
4c4b4cd2
PH
3083
3084 default:
323e0a4a 3085 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3086 }
3087
76a01679 3088 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3089 for (i = 0; i < nargs; i += 1)
3090 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3091 argvec[i] = NULL;
3092 exp = *expp;
3093
3094 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3095 switch (op)
3096 {
3097 default:
3098 break;
3099
14f9c5c9 3100 case OP_VAR_VALUE:
4c4b4cd2 3101 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3102 {
3103 struct ada_symbol_info *candidates;
3104 int n_candidates;
3105
3106 n_candidates =
3107 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3108 (exp->elts[pc + 2].symbol),
3109 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3110 &candidates, 1);
76a01679
JB
3111
3112 if (n_candidates > 1)
3113 {
3114 /* Types tend to get re-introduced locally, so if there
3115 are any local symbols that are not types, first filter
3116 out all types. */
3117 int j;
3118 for (j = 0; j < n_candidates; j += 1)
3119 switch (SYMBOL_CLASS (candidates[j].sym))
3120 {
3121 case LOC_REGISTER:
3122 case LOC_ARG:
3123 case LOC_REF_ARG:
76a01679
JB
3124 case LOC_REGPARM_ADDR:
3125 case LOC_LOCAL:
76a01679 3126 case LOC_COMPUTED:
76a01679
JB
3127 goto FoundNonType;
3128 default:
3129 break;
3130 }
3131 FoundNonType:
3132 if (j < n_candidates)
3133 {
3134 j = 0;
3135 while (j < n_candidates)
3136 {
3137 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3138 {
3139 candidates[j] = candidates[n_candidates - 1];
3140 n_candidates -= 1;
3141 }
3142 else
3143 j += 1;
3144 }
3145 }
3146 }
3147
3148 if (n_candidates == 0)
323e0a4a 3149 error (_("No definition found for %s"),
76a01679
JB
3150 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3151 else if (n_candidates == 1)
3152 i = 0;
3153 else if (deprocedure_p
3154 && !is_nonfunction (candidates, n_candidates))
3155 {
06d5cf63
JB
3156 i = ada_resolve_function
3157 (candidates, n_candidates, NULL, 0,
3158 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3159 context_type);
76a01679 3160 if (i < 0)
323e0a4a 3161 error (_("Could not find a match for %s"),
76a01679
JB
3162 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3163 }
3164 else
3165 {
323e0a4a 3166 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168 user_select_syms (candidates, n_candidates, 1);
3169 i = 0;
3170 }
3171
3172 exp->elts[pc + 1].block = candidates[i].block;
3173 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3174 if (innermost_block == NULL
3175 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3176 innermost_block = candidates[i].block;
3177 }
3178
3179 if (deprocedure_p
3180 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3181 == TYPE_CODE_FUNC))
3182 {
3183 replace_operator_with_call (expp, pc, 0, 0,
3184 exp->elts[pc + 2].symbol,
3185 exp->elts[pc + 1].block);
3186 exp = *expp;
3187 }
14f9c5c9
AS
3188 break;
3189
3190 case OP_FUNCALL:
3191 {
4c4b4cd2 3192 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3193 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3194 {
3195 struct ada_symbol_info *candidates;
3196 int n_candidates;
3197
3198 n_candidates =
76a01679
JB
3199 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3200 (exp->elts[pc + 5].symbol),
3201 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3202 &candidates, 1);
4c4b4cd2
PH
3203 if (n_candidates == 1)
3204 i = 0;
3205 else
3206 {
06d5cf63
JB
3207 i = ada_resolve_function
3208 (candidates, n_candidates,
3209 argvec, nargs,
3210 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3211 context_type);
4c4b4cd2 3212 if (i < 0)
323e0a4a 3213 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3214 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3215 }
3216
3217 exp->elts[pc + 4].block = candidates[i].block;
3218 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3219 if (innermost_block == NULL
3220 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3221 innermost_block = candidates[i].block;
3222 }
14f9c5c9
AS
3223 }
3224 break;
3225 case BINOP_ADD:
3226 case BINOP_SUB:
3227 case BINOP_MUL:
3228 case BINOP_DIV:
3229 case BINOP_REM:
3230 case BINOP_MOD:
3231 case BINOP_CONCAT:
3232 case BINOP_BITWISE_AND:
3233 case BINOP_BITWISE_IOR:
3234 case BINOP_BITWISE_XOR:
3235 case BINOP_EQUAL:
3236 case BINOP_NOTEQUAL:
3237 case BINOP_LESS:
3238 case BINOP_GTR:
3239 case BINOP_LEQ:
3240 case BINOP_GEQ:
3241 case BINOP_EXP:
3242 case UNOP_NEG:
3243 case UNOP_PLUS:
3244 case UNOP_LOGICAL_NOT:
3245 case UNOP_ABS:
3246 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3247 {
3248 struct ada_symbol_info *candidates;
3249 int n_candidates;
3250
3251 n_candidates =
3252 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3253 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3254 &candidates, 1);
4c4b4cd2 3255 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3256 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3257 if (i < 0)
3258 break;
3259
76a01679
JB
3260 replace_operator_with_call (expp, pc, nargs, 1,
3261 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3262 exp = *expp;
3263 }
14f9c5c9 3264 break;
4c4b4cd2
PH
3265
3266 case OP_TYPE:
b3dbf008 3267 case OP_REGISTER:
4c4b4cd2 3268 return NULL;
14f9c5c9
AS
3269 }
3270
3271 *pos = pc;
3272 return evaluate_subexp_type (exp, pos);
3273}
3274
3275/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3276 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3277 a non-pointer. */
14f9c5c9 3278/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3279 liberal. */
14f9c5c9
AS
3280
3281static int
4dc81987 3282ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3283{
61ee279c
PH
3284 ftype = ada_check_typedef (ftype);
3285 atype = ada_check_typedef (atype);
14f9c5c9
AS
3286
3287 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3288 ftype = TYPE_TARGET_TYPE (ftype);
3289 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3290 atype = TYPE_TARGET_TYPE (atype);
3291
d2e4a39e 3292 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3293 {
3294 default:
5b3d5b7d 3295 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3296 case TYPE_CODE_PTR:
3297 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3298 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3299 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3300 else
1265e4aa
JB
3301 return (may_deref
3302 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3303 case TYPE_CODE_INT:
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_RANGE:
3306 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3307 {
3308 case TYPE_CODE_INT:
3309 case TYPE_CODE_ENUM:
3310 case TYPE_CODE_RANGE:
3311 return 1;
3312 default:
3313 return 0;
3314 }
14f9c5c9
AS
3315
3316 case TYPE_CODE_ARRAY:
d2e4a39e 3317 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3318 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3319
3320 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3321 if (ada_is_array_descriptor_type (ftype))
3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323 || ada_is_array_descriptor_type (atype));
14f9c5c9 3324 else
4c4b4cd2
PH
3325 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3326 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3327
3328 case TYPE_CODE_UNION:
3329 case TYPE_CODE_FLT:
3330 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3331 }
3332}
3333
3334/* Return non-zero if the formals of FUNC "sufficiently match" the
3335 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3336 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3337 argument function. */
14f9c5c9
AS
3338
3339static int
d2e4a39e 3340ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3341{
3342 int i;
d2e4a39e 3343 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3344
1265e4aa
JB
3345 if (SYMBOL_CLASS (func) == LOC_CONST
3346 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3347 return (n_actuals == 0);
3348 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3349 return 0;
3350
3351 if (TYPE_NFIELDS (func_type) != n_actuals)
3352 return 0;
3353
3354 for (i = 0; i < n_actuals; i += 1)
3355 {
4c4b4cd2 3356 if (actuals[i] == NULL)
76a01679
JB
3357 return 0;
3358 else
3359 {
5b4ee69b
MS
3360 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3361 i));
df407dfe 3362 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3363
76a01679
JB
3364 if (!ada_type_match (ftype, atype, 1))
3365 return 0;
3366 }
14f9c5c9
AS
3367 }
3368 return 1;
3369}
3370
3371/* False iff function type FUNC_TYPE definitely does not produce a value
3372 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3373 FUNC_TYPE is not a valid function type with a non-null return type
3374 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3375
3376static int
d2e4a39e 3377return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3378{
d2e4a39e 3379 struct type *return_type;
14f9c5c9
AS
3380
3381 if (func_type == NULL)
3382 return 1;
3383
4c4b4cd2 3384 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3385 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3386 else
18af8284 3387 return_type = get_base_type (func_type);
14f9c5c9
AS
3388 if (return_type == NULL)
3389 return 1;
3390
18af8284 3391 context_type = get_base_type (context_type);
14f9c5c9
AS
3392
3393 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3394 return context_type == NULL || return_type == context_type;
3395 else if (context_type == NULL)
3396 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3397 else
3398 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3399}
3400
3401
4c4b4cd2 3402/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3403 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3404 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3405 that returns that type, then eliminate matches that don't. If
3406 CONTEXT_TYPE is void and there is at least one match that does not
3407 return void, eliminate all matches that do.
3408
14f9c5c9
AS
3409 Asks the user if there is more than one match remaining. Returns -1
3410 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3411 solely for messages. May re-arrange and modify SYMS in
3412 the process; the index returned is for the modified vector. */
14f9c5c9 3413
4c4b4cd2
PH
3414static int
3415ada_resolve_function (struct ada_symbol_info syms[],
3416 int nsyms, struct value **args, int nargs,
3417 const char *name, struct type *context_type)
14f9c5c9 3418{
30b15541 3419 int fallback;
14f9c5c9 3420 int k;
4c4b4cd2 3421 int m; /* Number of hits */
14f9c5c9 3422
d2e4a39e 3423 m = 0;
30b15541
UW
3424 /* In the first pass of the loop, we only accept functions matching
3425 context_type. If none are found, we add a second pass of the loop
3426 where every function is accepted. */
3427 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3428 {
3429 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3430 {
61ee279c 3431 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3432
3433 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3434 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3435 {
3436 syms[m] = syms[k];
3437 m += 1;
3438 }
3439 }
14f9c5c9
AS
3440 }
3441
3442 if (m == 0)
3443 return -1;
3444 else if (m > 1)
3445 {
323e0a4a 3446 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3447 user_select_syms (syms, m, 1);
14f9c5c9
AS
3448 return 0;
3449 }
3450 return 0;
3451}
3452
4c4b4cd2
PH
3453/* Returns true (non-zero) iff decoded name N0 should appear before N1
3454 in a listing of choices during disambiguation (see sort_choices, below).
3455 The idea is that overloadings of a subprogram name from the
3456 same package should sort in their source order. We settle for ordering
3457 such symbols by their trailing number (__N or $N). */
3458
14f9c5c9 3459static int
0d5cff50 3460encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3461{
3462 if (N1 == NULL)
3463 return 0;
3464 else if (N0 == NULL)
3465 return 1;
3466 else
3467 {
3468 int k0, k1;
5b4ee69b 3469
d2e4a39e 3470 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3471 ;
d2e4a39e 3472 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3473 ;
d2e4a39e 3474 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3475 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3476 {
3477 int n0, n1;
5b4ee69b 3478
4c4b4cd2
PH
3479 n0 = k0;
3480 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3481 n0 -= 1;
3482 n1 = k1;
3483 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3484 n1 -= 1;
3485 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3486 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3487 }
14f9c5c9
AS
3488 return (strcmp (N0, N1) < 0);
3489 }
3490}
d2e4a39e 3491
4c4b4cd2
PH
3492/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3493 encoded names. */
3494
d2e4a39e 3495static void
4c4b4cd2 3496sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3497{
4c4b4cd2 3498 int i;
5b4ee69b 3499
d2e4a39e 3500 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3501 {
4c4b4cd2 3502 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3503 int j;
3504
d2e4a39e 3505 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3506 {
3507 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3508 SYMBOL_LINKAGE_NAME (sym.sym)))
3509 break;
3510 syms[j + 1] = syms[j];
3511 }
d2e4a39e 3512 syms[j + 1] = sym;
14f9c5c9
AS
3513 }
3514}
3515
4c4b4cd2
PH
3516/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3517 by asking the user (if necessary), returning the number selected,
3518 and setting the first elements of SYMS items. Error if no symbols
3519 selected. */
14f9c5c9
AS
3520
3521/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3522 to be re-integrated one of these days. */
14f9c5c9
AS
3523
3524int
4c4b4cd2 3525user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3526{
3527 int i;
d2e4a39e 3528 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3529 int n_chosen;
3530 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3531 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3532
3533 if (max_results < 1)
323e0a4a 3534 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3535 if (nsyms <= 1)
3536 return nsyms;
3537
717d2f5a
JB
3538 if (select_mode == multiple_symbols_cancel)
3539 error (_("\
3540canceled because the command is ambiguous\n\
3541See set/show multiple-symbol."));
3542
3543 /* If select_mode is "all", then return all possible symbols.
3544 Only do that if more than one symbol can be selected, of course.
3545 Otherwise, display the menu as usual. */
3546 if (select_mode == multiple_symbols_all && max_results > 1)
3547 return nsyms;
3548
323e0a4a 3549 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3550 if (max_results > 1)
323e0a4a 3551 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3552
4c4b4cd2 3553 sort_choices (syms, nsyms);
14f9c5c9
AS
3554
3555 for (i = 0; i < nsyms; i += 1)
3556 {
4c4b4cd2
PH
3557 if (syms[i].sym == NULL)
3558 continue;
3559
3560 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3561 {
76a01679
JB
3562 struct symtab_and_line sal =
3563 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3564
323e0a4a
AC
3565 if (sal.symtab == NULL)
3566 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym),
3569 sal.line);
3570 else
3571 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3574 continue;
3575 }
d2e4a39e 3576 else
4c4b4cd2
PH
3577 {
3578 int is_enumeral =
3579 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3580 && SYMBOL_TYPE (syms[i].sym) != NULL
3581 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3582 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3583
3584 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3585 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3586 i + first_choice,
3587 SYMBOL_PRINT_NAME (syms[i].sym),
3588 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3589 else if (is_enumeral
3590 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3591 {
a3f17187 3592 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3593 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3594 gdb_stdout, -1, 0);
323e0a4a 3595 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3596 SYMBOL_PRINT_NAME (syms[i].sym));
3597 }
3598 else if (symtab != NULL)
3599 printf_unfiltered (is_enumeral
323e0a4a
AC
3600 ? _("[%d] %s in %s (enumeral)\n")
3601 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3602 i + first_choice,
3603 SYMBOL_PRINT_NAME (syms[i].sym),
3604 symtab->filename);
3605 else
3606 printf_unfiltered (is_enumeral
323e0a4a
AC
3607 ? _("[%d] %s (enumeral)\n")
3608 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3609 i + first_choice,
3610 SYMBOL_PRINT_NAME (syms[i].sym));
3611 }
14f9c5c9 3612 }
d2e4a39e 3613
14f9c5c9 3614 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3615 "overload-choice");
14f9c5c9
AS
3616
3617 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3618 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3619
3620 return n_chosen;
3621}
3622
3623/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3624 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3625 order in CHOICES[0 .. N-1], and return N.
3626
3627 The user types choices as a sequence of numbers on one line
3628 separated by blanks, encoding them as follows:
3629
4c4b4cd2 3630 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3631 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3632 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3633
4c4b4cd2 3634 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3635
3636 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3637 prompts (for use with the -f switch). */
14f9c5c9
AS
3638
3639int
d2e4a39e 3640get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3641 int is_all_choice, char *annotation_suffix)
14f9c5c9 3642{
d2e4a39e 3643 char *args;
0bcd0149 3644 char *prompt;
14f9c5c9
AS
3645 int n_chosen;
3646 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3647
14f9c5c9
AS
3648 prompt = getenv ("PS2");
3649 if (prompt == NULL)
0bcd0149 3650 prompt = "> ";
14f9c5c9 3651
0bcd0149 3652 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3653
14f9c5c9 3654 if (args == NULL)
323e0a4a 3655 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3656
3657 n_chosen = 0;
76a01679 3658
4c4b4cd2
PH
3659 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3660 order, as given in args. Choices are validated. */
14f9c5c9
AS
3661 while (1)
3662 {
d2e4a39e 3663 char *args2;
14f9c5c9
AS
3664 int choice, j;
3665
0fcd72ba 3666 args = skip_spaces (args);
14f9c5c9 3667 if (*args == '\0' && n_chosen == 0)
323e0a4a 3668 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3669 else if (*args == '\0')
4c4b4cd2 3670 break;
14f9c5c9
AS
3671
3672 choice = strtol (args, &args2, 10);
d2e4a39e 3673 if (args == args2 || choice < 0
4c4b4cd2 3674 || choice > n_choices + first_choice - 1)
323e0a4a 3675 error (_("Argument must be choice number"));
14f9c5c9
AS
3676 args = args2;
3677
d2e4a39e 3678 if (choice == 0)
323e0a4a 3679 error (_("cancelled"));
14f9c5c9
AS
3680
3681 if (choice < first_choice)
4c4b4cd2
PH
3682 {
3683 n_chosen = n_choices;
3684 for (j = 0; j < n_choices; j += 1)
3685 choices[j] = j;
3686 break;
3687 }
14f9c5c9
AS
3688 choice -= first_choice;
3689
d2e4a39e 3690 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3691 {
3692 }
14f9c5c9
AS
3693
3694 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3695 {
3696 int k;
5b4ee69b 3697
4c4b4cd2
PH
3698 for (k = n_chosen - 1; k > j; k -= 1)
3699 choices[k + 1] = choices[k];
3700 choices[j + 1] = choice;
3701 n_chosen += 1;
3702 }
14f9c5c9
AS
3703 }
3704
3705 if (n_chosen > max_results)
323e0a4a 3706 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3707
14f9c5c9
AS
3708 return n_chosen;
3709}
3710
4c4b4cd2
PH
3711/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3712 on the function identified by SYM and BLOCK, and taking NARGS
3713 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3714
3715static void
d2e4a39e 3716replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3717 int oplen, struct symbol *sym,
3718 struct block *block)
14f9c5c9
AS
3719{
3720 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3721 symbol, -oplen for operator being replaced). */
d2e4a39e 3722 struct expression *newexp = (struct expression *)
8c1a34e7 3723 xzalloc (sizeof (struct expression)
4c4b4cd2 3724 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3725 struct expression *exp = *expp;
14f9c5c9
AS
3726
3727 newexp->nelts = exp->nelts + 7 - oplen;
3728 newexp->language_defn = exp->language_defn;
3489610d 3729 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3730 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3731 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3732 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3733
3734 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3735 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3736
3737 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3738 newexp->elts[pc + 4].block = block;
3739 newexp->elts[pc + 5].symbol = sym;
3740
3741 *expp = newexp;
aacb1f0a 3742 xfree (exp);
d2e4a39e 3743}
14f9c5c9
AS
3744
3745/* Type-class predicates */
3746
4c4b4cd2
PH
3747/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3748 or FLOAT). */
14f9c5c9
AS
3749
3750static int
d2e4a39e 3751numeric_type_p (struct type *type)
14f9c5c9
AS
3752{
3753 if (type == NULL)
3754 return 0;
d2e4a39e
AS
3755 else
3756 {
3757 switch (TYPE_CODE (type))
4c4b4cd2
PH
3758 {
3759 case TYPE_CODE_INT:
3760 case TYPE_CODE_FLT:
3761 return 1;
3762 case TYPE_CODE_RANGE:
3763 return (type == TYPE_TARGET_TYPE (type)
3764 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3765 default:
3766 return 0;
3767 }
d2e4a39e 3768 }
14f9c5c9
AS
3769}
3770
4c4b4cd2 3771/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3772
3773static int
d2e4a39e 3774integer_type_p (struct type *type)
14f9c5c9
AS
3775{
3776 if (type == NULL)
3777 return 0;
d2e4a39e
AS
3778 else
3779 {
3780 switch (TYPE_CODE (type))
4c4b4cd2
PH
3781 {
3782 case TYPE_CODE_INT:
3783 return 1;
3784 case TYPE_CODE_RANGE:
3785 return (type == TYPE_TARGET_TYPE (type)
3786 || integer_type_p (TYPE_TARGET_TYPE (type)));
3787 default:
3788 return 0;
3789 }
d2e4a39e 3790 }
14f9c5c9
AS
3791}
3792
4c4b4cd2 3793/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3794
3795static int
d2e4a39e 3796scalar_type_p (struct type *type)
14f9c5c9
AS
3797{
3798 if (type == NULL)
3799 return 0;
d2e4a39e
AS
3800 else
3801 {
3802 switch (TYPE_CODE (type))
4c4b4cd2
PH
3803 {
3804 case TYPE_CODE_INT:
3805 case TYPE_CODE_RANGE:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_FLT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
d2e4a39e 3812 }
14f9c5c9
AS
3813}
3814
4c4b4cd2 3815/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3816
3817static int
d2e4a39e 3818discrete_type_p (struct type *type)
14f9c5c9
AS
3819{
3820 if (type == NULL)
3821 return 0;
d2e4a39e
AS
3822 else
3823 {
3824 switch (TYPE_CODE (type))
4c4b4cd2
PH
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
872f0337 3829 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3830 return 1;
3831 default:
3832 return 0;
3833 }
d2e4a39e 3834 }
14f9c5c9
AS
3835}
3836
4c4b4cd2
PH
3837/* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
14f9c5c9
AS
3840
3841static int
d2e4a39e 3842possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3843{
76a01679 3844 struct type *type0 =
df407dfe 3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3846 struct type *type1 =
df407dfe 3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3848
4c4b4cd2
PH
3849 if (type0 == NULL)
3850 return 0;
3851
14f9c5c9
AS
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
d2e4a39e 3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
d2e4a39e 3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
d2e4a39e 3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3877
3878 case BINOP_CONCAT:
ee90b9ab 3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3880
3881 case BINOP_EXP:
d2e4a39e 3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
14f9c5c9
AS
3889
3890 }
3891}
3892\f
4c4b4cd2 3893 /* Renaming */
14f9c5c9 3894
aeb5907d
JB
3895/* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907/* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
0963b4bd 3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926enum ada_renaming_category
3927ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930{
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
14f9c5c9 3938 {
aeb5907d
JB
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_TYPEDEF:
3942 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3943 renamed_entity, len, renaming_expr);
3944 case LOC_LOCAL:
3945 case LOC_STATIC:
3946 case LOC_COMPUTED:
3947 case LOC_OPTIMIZED_OUT:
3948 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3949 if (info == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (info[5])
3952 {
3953 case '_':
3954 kind = ADA_OBJECT_RENAMING;
3955 info += 6;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 info += 7;
3960 break;
3961 case 'P':
3962 kind = ADA_PACKAGE_RENAMING;
3963 info += 7;
3964 break;
3965 case 'S':
3966 kind = ADA_SUBPROGRAM_RENAMING;
3967 info += 7;
3968 break;
3969 default:
3970 return ADA_NOT_RENAMING;
3971 }
14f9c5c9 3972 }
4c4b4cd2 3973
aeb5907d
JB
3974 if (renamed_entity != NULL)
3975 *renamed_entity = info;
3976 suffix = strstr (info, "___XE");
3977 if (suffix == NULL || suffix == info)
3978 return ADA_NOT_RENAMING;
3979 if (len != NULL)
3980 *len = strlen (info) - strlen (suffix);
3981 suffix += 5;
3982 if (renaming_expr != NULL)
3983 *renaming_expr = suffix;
3984 return kind;
3985}
3986
3987/* Assuming TYPE encodes a renaming according to the old encoding in
3988 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3989 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3990 ADA_NOT_RENAMING otherwise. */
3991static enum ada_renaming_category
3992parse_old_style_renaming (struct type *type,
3993 const char **renamed_entity, int *len,
3994 const char **renaming_expr)
3995{
3996 enum ada_renaming_category kind;
3997 const char *name;
3998 const char *info;
3999 const char *suffix;
14f9c5c9 4000
aeb5907d
JB
4001 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4002 || TYPE_NFIELDS (type) != 1)
4003 return ADA_NOT_RENAMING;
14f9c5c9 4004
aeb5907d
JB
4005 name = type_name_no_tag (type);
4006 if (name == NULL)
4007 return ADA_NOT_RENAMING;
4008
4009 name = strstr (name, "___XR");
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012 switch (name[5])
4013 {
4014 case '\0':
4015 case '_':
4016 kind = ADA_OBJECT_RENAMING;
4017 break;
4018 case 'E':
4019 kind = ADA_EXCEPTION_RENAMING;
4020 break;
4021 case 'P':
4022 kind = ADA_PACKAGE_RENAMING;
4023 break;
4024 case 'S':
4025 kind = ADA_SUBPROGRAM_RENAMING;
4026 break;
4027 default:
4028 return ADA_NOT_RENAMING;
4029 }
14f9c5c9 4030
aeb5907d
JB
4031 info = TYPE_FIELD_NAME (type, 0);
4032 if (info == NULL)
4033 return ADA_NOT_RENAMING;
4034 if (renamed_entity != NULL)
4035 *renamed_entity = info;
4036 suffix = strstr (info, "___XE");
4037 if (renaming_expr != NULL)
4038 *renaming_expr = suffix + 5;
4039 if (suffix == NULL || suffix == info)
4040 return ADA_NOT_RENAMING;
4041 if (len != NULL)
4042 *len = suffix - info;
4043 return kind;
4044}
52ce6436 4045
14f9c5c9 4046\f
d2e4a39e 4047
4c4b4cd2 4048 /* Evaluation: Function Calls */
14f9c5c9 4049
4c4b4cd2 4050/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4051 lvalues, and otherwise has the side-effect of allocating memory
4052 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4053
d2e4a39e 4054static struct value *
40bc484c 4055ensure_lval (struct value *val)
14f9c5c9 4056{
40bc484c
JB
4057 if (VALUE_LVAL (val) == not_lval
4058 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4059 {
df407dfe 4060 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4061 const CORE_ADDR addr =
4062 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4063
40bc484c 4064 set_value_address (val, addr);
a84a8a0d 4065 VALUE_LVAL (val) = lval_memory;
40bc484c 4066 write_memory (addr, value_contents (val), len);
c3e5cd34 4067 }
14f9c5c9
AS
4068
4069 return val;
4070}
4071
4072/* Return the value ACTUAL, converted to be an appropriate value for a
4073 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4074 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4075 values not residing in memory, updating it as needed. */
14f9c5c9 4076
a93c0eb6 4077struct value *
40bc484c 4078ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4079{
df407dfe 4080 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4081 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4082 struct type *formal_target =
4083 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4084 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4085 struct type *actual_target =
4086 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4087 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4088
4c4b4cd2 4089 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4090 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4091 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4092 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4093 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4094 {
a84a8a0d 4095 struct value *result;
5b4ee69b 4096
14f9c5c9 4097 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4098 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4099 result = desc_data (actual);
14f9c5c9 4100 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4101 {
4102 if (VALUE_LVAL (actual) != lval_memory)
4103 {
4104 struct value *val;
5b4ee69b 4105
df407dfe 4106 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4107 val = allocate_value (actual_type);
990a07ab 4108 memcpy ((char *) value_contents_raw (val),
0fd88904 4109 (char *) value_contents (actual),
4c4b4cd2 4110 TYPE_LENGTH (actual_type));
40bc484c 4111 actual = ensure_lval (val);
4c4b4cd2 4112 }
a84a8a0d 4113 result = value_addr (actual);
4c4b4cd2 4114 }
a84a8a0d
JB
4115 else
4116 return actual;
4117 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4118 }
4119 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4120 return ada_value_ind (actual);
4121
4122 return actual;
4123}
4124
438c98a1
JB
4125/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4126 type TYPE. This is usually an inefficient no-op except on some targets
4127 (such as AVR) where the representation of a pointer and an address
4128 differs. */
4129
4130static CORE_ADDR
4131value_pointer (struct value *value, struct type *type)
4132{
4133 struct gdbarch *gdbarch = get_type_arch (type);
4134 unsigned len = TYPE_LENGTH (type);
4135 gdb_byte *buf = alloca (len);
4136 CORE_ADDR addr;
4137
4138 addr = value_address (value);
4139 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4140 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4141 return addr;
4142}
4143
14f9c5c9 4144
4c4b4cd2
PH
4145/* Push a descriptor of type TYPE for array value ARR on the stack at
4146 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4147 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4148 to-descriptor type rather than a descriptor type), a struct value *
4149 representing a pointer to this descriptor. */
14f9c5c9 4150
d2e4a39e 4151static struct value *
40bc484c 4152make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4153{
d2e4a39e
AS
4154 struct type *bounds_type = desc_bounds_type (type);
4155 struct type *desc_type = desc_base_type (type);
4156 struct value *descriptor = allocate_value (desc_type);
4157 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4158 int i;
d2e4a39e 4159
0963b4bd
MS
4160 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4161 i > 0; i -= 1)
14f9c5c9 4162 {
19f220c3
JK
4163 modify_field (value_type (bounds), value_contents_writeable (bounds),
4164 ada_array_bound (arr, i, 0),
4165 desc_bound_bitpos (bounds_type, i, 0),
4166 desc_bound_bitsize (bounds_type, i, 0));
4167 modify_field (value_type (bounds), value_contents_writeable (bounds),
4168 ada_array_bound (arr, i, 1),
4169 desc_bound_bitpos (bounds_type, i, 1),
4170 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4171 }
d2e4a39e 4172
40bc484c 4173 bounds = ensure_lval (bounds);
d2e4a39e 4174
19f220c3
JK
4175 modify_field (value_type (descriptor),
4176 value_contents_writeable (descriptor),
4177 value_pointer (ensure_lval (arr),
4178 TYPE_FIELD_TYPE (desc_type, 0)),
4179 fat_pntr_data_bitpos (desc_type),
4180 fat_pntr_data_bitsize (desc_type));
4181
4182 modify_field (value_type (descriptor),
4183 value_contents_writeable (descriptor),
4184 value_pointer (bounds,
4185 TYPE_FIELD_TYPE (desc_type, 1)),
4186 fat_pntr_bounds_bitpos (desc_type),
4187 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4188
40bc484c 4189 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4190
4191 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4192 return value_addr (descriptor);
4193 else
4194 return descriptor;
4195}
14f9c5c9 4196\f
963a6417 4197/* Dummy definitions for an experimental caching module that is not
0963b4bd 4198 * used in the public sources. */
96d887e8 4199
96d887e8
PH
4200static int
4201lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4202 struct symbol **sym, struct block **block)
96d887e8
PH
4203{
4204 return 0;
4205}
4206
4207static void
4208cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4209 struct block *block)
96d887e8
PH
4210{
4211}
4c4b4cd2
PH
4212\f
4213 /* Symbol Lookup */
4214
c0431670
JB
4215/* Return nonzero if wild matching should be used when searching for
4216 all symbols matching LOOKUP_NAME.
4217
4218 LOOKUP_NAME is expected to be a symbol name after transformation
4219 for Ada lookups (see ada_name_for_lookup). */
4220
4221static int
4222should_use_wild_match (const char *lookup_name)
4223{
4224 return (strstr (lookup_name, "__") == NULL);
4225}
4226
4c4b4cd2
PH
4227/* Return the result of a standard (literal, C-like) lookup of NAME in
4228 given DOMAIN, visible from lexical block BLOCK. */
4229
4230static struct symbol *
4231standard_lookup (const char *name, const struct block *block,
4232 domain_enum domain)
4233{
4234 struct symbol *sym;
4c4b4cd2 4235
2570f2b7 4236 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4237 return sym;
2570f2b7
UW
4238 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4239 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4240 return sym;
4241}
4242
4243
4244/* Non-zero iff there is at least one non-function/non-enumeral symbol
4245 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4246 since they contend in overloading in the same way. */
4247static int
4248is_nonfunction (struct ada_symbol_info syms[], int n)
4249{
4250 int i;
4251
4252 for (i = 0; i < n; i += 1)
4253 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4254 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4255 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4256 return 1;
4257
4258 return 0;
4259}
4260
4261/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4262 struct types. Otherwise, they may not. */
14f9c5c9
AS
4263
4264static int
d2e4a39e 4265equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4266{
d2e4a39e 4267 if (type0 == type1)
14f9c5c9 4268 return 1;
d2e4a39e 4269 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4270 || TYPE_CODE (type0) != TYPE_CODE (type1))
4271 return 0;
d2e4a39e 4272 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4273 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4274 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4275 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4276 return 1;
d2e4a39e 4277
14f9c5c9
AS
4278 return 0;
4279}
4280
4281/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4282 no more defined than that of SYM1. */
14f9c5c9
AS
4283
4284static int
d2e4a39e 4285lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4286{
4287 if (sym0 == sym1)
4288 return 1;
176620f1 4289 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4290 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4291 return 0;
4292
d2e4a39e 4293 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4294 {
4295 case LOC_UNDEF:
4296 return 1;
4297 case LOC_TYPEDEF:
4298 {
4c4b4cd2
PH
4299 struct type *type0 = SYMBOL_TYPE (sym0);
4300 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4301 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4302 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4303 int len0 = strlen (name0);
5b4ee69b 4304
4c4b4cd2
PH
4305 return
4306 TYPE_CODE (type0) == TYPE_CODE (type1)
4307 && (equiv_types (type0, type1)
4308 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4309 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4310 }
4311 case LOC_CONST:
4312 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4313 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4314 default:
4315 return 0;
14f9c5c9
AS
4316 }
4317}
4318
4c4b4cd2
PH
4319/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4320 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4321
4322static void
76a01679
JB
4323add_defn_to_vec (struct obstack *obstackp,
4324 struct symbol *sym,
2570f2b7 4325 struct block *block)
14f9c5c9
AS
4326{
4327 int i;
4c4b4cd2 4328 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4329
529cad9c
PH
4330 /* Do not try to complete stub types, as the debugger is probably
4331 already scanning all symbols matching a certain name at the
4332 time when this function is called. Trying to replace the stub
4333 type by its associated full type will cause us to restart a scan
4334 which may lead to an infinite recursion. Instead, the client
4335 collecting the matching symbols will end up collecting several
4336 matches, with at least one of them complete. It can then filter
4337 out the stub ones if needed. */
4338
4c4b4cd2
PH
4339 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4340 {
4341 if (lesseq_defined_than (sym, prevDefns[i].sym))
4342 return;
4343 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4344 {
4345 prevDefns[i].sym = sym;
4346 prevDefns[i].block = block;
4c4b4cd2 4347 return;
76a01679 4348 }
4c4b4cd2
PH
4349 }
4350
4351 {
4352 struct ada_symbol_info info;
4353
4354 info.sym = sym;
4355 info.block = block;
4c4b4cd2
PH
4356 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4357 }
4358}
4359
4360/* Number of ada_symbol_info structures currently collected in
4361 current vector in *OBSTACKP. */
4362
76a01679
JB
4363static int
4364num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4365{
4366 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4367}
4368
4369/* Vector of ada_symbol_info structures currently collected in current
4370 vector in *OBSTACKP. If FINISH, close off the vector and return
4371 its final address. */
4372
76a01679 4373static struct ada_symbol_info *
4c4b4cd2
PH
4374defns_collected (struct obstack *obstackp, int finish)
4375{
4376 if (finish)
4377 return obstack_finish (obstackp);
4378 else
4379 return (struct ada_symbol_info *) obstack_base (obstackp);
4380}
4381
96d887e8
PH
4382/* Return a minimal symbol matching NAME according to Ada decoding
4383 rules. Returns NULL if there is no such minimal symbol. Names
4384 prefixed with "standard__" are handled specially: "standard__" is
4385 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4386
96d887e8
PH
4387struct minimal_symbol *
4388ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4389{
4c4b4cd2 4390 struct objfile *objfile;
96d887e8 4391 struct minimal_symbol *msymbol;
c0431670 4392 const int wild_match = should_use_wild_match (name);
4c4b4cd2 4393
c0431670
JB
4394 /* Special case: If the user specifies a symbol name inside package
4395 Standard, do a non-wild matching of the symbol name without
4396 the "standard__" prefix. This was primarily introduced in order
4397 to allow the user to specifically access the standard exceptions
4398 using, for instance, Standard.Constraint_Error when Constraint_Error
4399 is ambiguous (due to the user defining its own Constraint_Error
4400 entity inside its program). */
96d887e8 4401 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4402 name += sizeof ("standard__") - 1;
4c4b4cd2 4403
96d887e8
PH
4404 ALL_MSYMBOLS (objfile, msymbol)
4405 {
40658b94 4406 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4407 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4408 return msymbol;
4409 }
4c4b4cd2 4410
96d887e8
PH
4411 return NULL;
4412}
4c4b4cd2 4413
96d887e8
PH
4414/* For all subprograms that statically enclose the subprogram of the
4415 selected frame, add symbols matching identifier NAME in DOMAIN
4416 and their blocks to the list of data in OBSTACKP, as for
4417 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4418 wildcard prefix. */
4c4b4cd2 4419
96d887e8
PH
4420static void
4421add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4422 const char *name, domain_enum namespace,
96d887e8
PH
4423 int wild_match)
4424{
96d887e8 4425}
14f9c5c9 4426
96d887e8
PH
4427/* True if TYPE is definitely an artificial type supplied to a symbol
4428 for which no debugging information was given in the symbol file. */
14f9c5c9 4429
96d887e8
PH
4430static int
4431is_nondebugging_type (struct type *type)
4432{
0d5cff50 4433 const char *name = ada_type_name (type);
5b4ee69b 4434
96d887e8
PH
4435 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4436}
4c4b4cd2 4437
8f17729f
JB
4438/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4439 that are deemed "identical" for practical purposes.
4440
4441 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4442 types and that their number of enumerals is identical (in other
4443 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4444
4445static int
4446ada_identical_enum_types_p (struct type *type1, struct type *type2)
4447{
4448 int i;
4449
4450 /* The heuristic we use here is fairly conservative. We consider
4451 that 2 enumerate types are identical if they have the same
4452 number of enumerals and that all enumerals have the same
4453 underlying value and name. */
4454
4455 /* All enums in the type should have an identical underlying value. */
4456 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4457 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4458 return 0;
4459
4460 /* All enumerals should also have the same name (modulo any numerical
4461 suffix). */
4462 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4463 {
0d5cff50
DE
4464 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4465 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4466 int len_1 = strlen (name_1);
4467 int len_2 = strlen (name_2);
4468
4469 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4470 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4471 if (len_1 != len_2
4472 || strncmp (TYPE_FIELD_NAME (type1, i),
4473 TYPE_FIELD_NAME (type2, i),
4474 len_1) != 0)
4475 return 0;
4476 }
4477
4478 return 1;
4479}
4480
4481/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4482 that are deemed "identical" for practical purposes. Sometimes,
4483 enumerals are not strictly identical, but their types are so similar
4484 that they can be considered identical.
4485
4486 For instance, consider the following code:
4487
4488 type Color is (Black, Red, Green, Blue, White);
4489 type RGB_Color is new Color range Red .. Blue;
4490
4491 Type RGB_Color is a subrange of an implicit type which is a copy
4492 of type Color. If we call that implicit type RGB_ColorB ("B" is
4493 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4494 As a result, when an expression references any of the enumeral
4495 by name (Eg. "print green"), the expression is technically
4496 ambiguous and the user should be asked to disambiguate. But
4497 doing so would only hinder the user, since it wouldn't matter
4498 what choice he makes, the outcome would always be the same.
4499 So, for practical purposes, we consider them as the same. */
4500
4501static int
4502symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4503{
4504 int i;
4505
4506 /* Before performing a thorough comparison check of each type,
4507 we perform a series of inexpensive checks. We expect that these
4508 checks will quickly fail in the vast majority of cases, and thus
4509 help prevent the unnecessary use of a more expensive comparison.
4510 Said comparison also expects us to make some of these checks
4511 (see ada_identical_enum_types_p). */
4512
4513 /* Quick check: All symbols should have an enum type. */
4514 for (i = 0; i < nsyms; i++)
4515 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4516 return 0;
4517
4518 /* Quick check: They should all have the same value. */
4519 for (i = 1; i < nsyms; i++)
4520 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4521 return 0;
4522
4523 /* Quick check: They should all have the same number of enumerals. */
4524 for (i = 1; i < nsyms; i++)
4525 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4526 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4527 return 0;
4528
4529 /* All the sanity checks passed, so we might have a set of
4530 identical enumeration types. Perform a more complete
4531 comparison of the type of each symbol. */
4532 for (i = 1; i < nsyms; i++)
4533 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4534 SYMBOL_TYPE (syms[0].sym)))
4535 return 0;
4536
4537 return 1;
4538}
4539
96d887e8
PH
4540/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4541 duplicate other symbols in the list (The only case I know of where
4542 this happens is when object files containing stabs-in-ecoff are
4543 linked with files containing ordinary ecoff debugging symbols (or no
4544 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4545 Returns the number of items in the modified list. */
4c4b4cd2 4546
96d887e8
PH
4547static int
4548remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4549{
4550 int i, j;
4c4b4cd2 4551
8f17729f
JB
4552 /* We should never be called with less than 2 symbols, as there
4553 cannot be any extra symbol in that case. But it's easy to
4554 handle, since we have nothing to do in that case. */
4555 if (nsyms < 2)
4556 return nsyms;
4557
96d887e8
PH
4558 i = 0;
4559 while (i < nsyms)
4560 {
a35ddb44 4561 int remove_p = 0;
339c13b6
JB
4562
4563 /* If two symbols have the same name and one of them is a stub type,
4564 the get rid of the stub. */
4565
4566 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4567 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4568 {
4569 for (j = 0; j < nsyms; j++)
4570 {
4571 if (j != i
4572 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4573 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4574 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4575 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4576 remove_p = 1;
339c13b6
JB
4577 }
4578 }
4579
4580 /* Two symbols with the same name, same class and same address
4581 should be identical. */
4582
4583 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4584 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4585 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4586 {
4587 for (j = 0; j < nsyms; j += 1)
4588 {
4589 if (i != j
4590 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4591 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4592 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4593 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4594 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4595 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4596 remove_p = 1;
4c4b4cd2 4597 }
4c4b4cd2 4598 }
339c13b6 4599
a35ddb44 4600 if (remove_p)
339c13b6
JB
4601 {
4602 for (j = i + 1; j < nsyms; j += 1)
4603 syms[j - 1] = syms[j];
4604 nsyms -= 1;
4605 }
4606
96d887e8 4607 i += 1;
14f9c5c9 4608 }
8f17729f
JB
4609
4610 /* If all the remaining symbols are identical enumerals, then
4611 just keep the first one and discard the rest.
4612
4613 Unlike what we did previously, we do not discard any entry
4614 unless they are ALL identical. This is because the symbol
4615 comparison is not a strict comparison, but rather a practical
4616 comparison. If all symbols are considered identical, then
4617 we can just go ahead and use the first one and discard the rest.
4618 But if we cannot reduce the list to a single element, we have
4619 to ask the user to disambiguate anyways. And if we have to
4620 present a multiple-choice menu, it's less confusing if the list
4621 isn't missing some choices that were identical and yet distinct. */
4622 if (symbols_are_identical_enums (syms, nsyms))
4623 nsyms = 1;
4624
96d887e8 4625 return nsyms;
14f9c5c9
AS
4626}
4627
96d887e8
PH
4628/* Given a type that corresponds to a renaming entity, use the type name
4629 to extract the scope (package name or function name, fully qualified,
4630 and following the GNAT encoding convention) where this renaming has been
4631 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4632
96d887e8
PH
4633static char *
4634xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4635{
96d887e8 4636 /* The renaming types adhere to the following convention:
0963b4bd 4637 <scope>__<rename>___<XR extension>.
96d887e8
PH
4638 So, to extract the scope, we search for the "___XR" extension,
4639 and then backtrack until we find the first "__". */
76a01679 4640
96d887e8
PH
4641 const char *name = type_name_no_tag (renaming_type);
4642 char *suffix = strstr (name, "___XR");
4643 char *last;
4644 int scope_len;
4645 char *scope;
14f9c5c9 4646
96d887e8
PH
4647 /* Now, backtrack a bit until we find the first "__". Start looking
4648 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4649
96d887e8
PH
4650 for (last = suffix - 3; last > name; last--)
4651 if (last[0] == '_' && last[1] == '_')
4652 break;
76a01679 4653
96d887e8 4654 /* Make a copy of scope and return it. */
14f9c5c9 4655
96d887e8
PH
4656 scope_len = last - name;
4657 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4658
96d887e8
PH
4659 strncpy (scope, name, scope_len);
4660 scope[scope_len] = '\0';
4c4b4cd2 4661
96d887e8 4662 return scope;
4c4b4cd2
PH
4663}
4664
96d887e8 4665/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4666
96d887e8
PH
4667static int
4668is_package_name (const char *name)
4c4b4cd2 4669{
96d887e8
PH
4670 /* Here, We take advantage of the fact that no symbols are generated
4671 for packages, while symbols are generated for each function.
4672 So the condition for NAME represent a package becomes equivalent
4673 to NAME not existing in our list of symbols. There is only one
4674 small complication with library-level functions (see below). */
4c4b4cd2 4675
96d887e8 4676 char *fun_name;
76a01679 4677
96d887e8
PH
4678 /* If it is a function that has not been defined at library level,
4679 then we should be able to look it up in the symbols. */
4680 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4681 return 0;
14f9c5c9 4682
96d887e8
PH
4683 /* Library-level function names start with "_ada_". See if function
4684 "_ada_" followed by NAME can be found. */
14f9c5c9 4685
96d887e8 4686 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4687 functions names cannot contain "__" in them. */
96d887e8
PH
4688 if (strstr (name, "__") != NULL)
4689 return 0;
4c4b4cd2 4690
b435e160 4691 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4692
96d887e8
PH
4693 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4694}
14f9c5c9 4695
96d887e8 4696/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4697 not visible from FUNCTION_NAME. */
14f9c5c9 4698
96d887e8 4699static int
0d5cff50 4700old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4701{
aeb5907d
JB
4702 char *scope;
4703
4704 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4705 return 0;
4706
4707 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4708
96d887e8 4709 make_cleanup (xfree, scope);
14f9c5c9 4710
96d887e8
PH
4711 /* If the rename has been defined in a package, then it is visible. */
4712 if (is_package_name (scope))
aeb5907d 4713 return 0;
14f9c5c9 4714
96d887e8
PH
4715 /* Check that the rename is in the current function scope by checking
4716 that its name starts with SCOPE. */
76a01679 4717
96d887e8
PH
4718 /* If the function name starts with "_ada_", it means that it is
4719 a library-level function. Strip this prefix before doing the
4720 comparison, as the encoding for the renaming does not contain
4721 this prefix. */
4722 if (strncmp (function_name, "_ada_", 5) == 0)
4723 function_name += 5;
f26caa11 4724
aeb5907d 4725 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4726}
4727
aeb5907d
JB
4728/* Remove entries from SYMS that corresponds to a renaming entity that
4729 is not visible from the function associated with CURRENT_BLOCK or
4730 that is superfluous due to the presence of more specific renaming
4731 information. Places surviving symbols in the initial entries of
4732 SYMS and returns the number of surviving symbols.
96d887e8
PH
4733
4734 Rationale:
aeb5907d
JB
4735 First, in cases where an object renaming is implemented as a
4736 reference variable, GNAT may produce both the actual reference
4737 variable and the renaming encoding. In this case, we discard the
4738 latter.
4739
4740 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4741 entity. Unfortunately, STABS currently does not support the definition
4742 of types that are local to a given lexical block, so all renamings types
4743 are emitted at library level. As a consequence, if an application
4744 contains two renaming entities using the same name, and a user tries to
4745 print the value of one of these entities, the result of the ada symbol
4746 lookup will also contain the wrong renaming type.
f26caa11 4747
96d887e8
PH
4748 This function partially covers for this limitation by attempting to
4749 remove from the SYMS list renaming symbols that should be visible
4750 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4751 method with the current information available. The implementation
4752 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4753
4754 - When the user tries to print a rename in a function while there
4755 is another rename entity defined in a package: Normally, the
4756 rename in the function has precedence over the rename in the
4757 package, so the latter should be removed from the list. This is
4758 currently not the case.
4759
4760 - This function will incorrectly remove valid renames if
4761 the CURRENT_BLOCK corresponds to a function which symbol name
4762 has been changed by an "Export" pragma. As a consequence,
4763 the user will be unable to print such rename entities. */
4c4b4cd2 4764
14f9c5c9 4765static int
aeb5907d
JB
4766remove_irrelevant_renamings (struct ada_symbol_info *syms,
4767 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4768{
4769 struct symbol *current_function;
0d5cff50 4770 const char *current_function_name;
4c4b4cd2 4771 int i;
aeb5907d
JB
4772 int is_new_style_renaming;
4773
4774 /* If there is both a renaming foo___XR... encoded as a variable and
4775 a simple variable foo in the same block, discard the latter.
0963b4bd 4776 First, zero out such symbols, then compress. */
aeb5907d
JB
4777 is_new_style_renaming = 0;
4778 for (i = 0; i < nsyms; i += 1)
4779 {
4780 struct symbol *sym = syms[i].sym;
4781 struct block *block = syms[i].block;
4782 const char *name;
4783 const char *suffix;
4784
4785 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4786 continue;
4787 name = SYMBOL_LINKAGE_NAME (sym);
4788 suffix = strstr (name, "___XR");
4789
4790 if (suffix != NULL)
4791 {
4792 int name_len = suffix - name;
4793 int j;
5b4ee69b 4794
aeb5907d
JB
4795 is_new_style_renaming = 1;
4796 for (j = 0; j < nsyms; j += 1)
4797 if (i != j && syms[j].sym != NULL
4798 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4799 name_len) == 0
4800 && block == syms[j].block)
4801 syms[j].sym = NULL;
4802 }
4803 }
4804 if (is_new_style_renaming)
4805 {
4806 int j, k;
4807
4808 for (j = k = 0; j < nsyms; j += 1)
4809 if (syms[j].sym != NULL)
4810 {
4811 syms[k] = syms[j];
4812 k += 1;
4813 }
4814 return k;
4815 }
4c4b4cd2
PH
4816
4817 /* Extract the function name associated to CURRENT_BLOCK.
4818 Abort if unable to do so. */
76a01679 4819
4c4b4cd2
PH
4820 if (current_block == NULL)
4821 return nsyms;
76a01679 4822
7f0df278 4823 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4824 if (current_function == NULL)
4825 return nsyms;
4826
4827 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4828 if (current_function_name == NULL)
4829 return nsyms;
4830
4831 /* Check each of the symbols, and remove it from the list if it is
4832 a type corresponding to a renaming that is out of the scope of
4833 the current block. */
4834
4835 i = 0;
4836 while (i < nsyms)
4837 {
aeb5907d
JB
4838 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4839 == ADA_OBJECT_RENAMING
4840 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4841 {
4842 int j;
5b4ee69b 4843
aeb5907d 4844 for (j = i + 1; j < nsyms; j += 1)
76a01679 4845 syms[j - 1] = syms[j];
4c4b4cd2
PH
4846 nsyms -= 1;
4847 }
4848 else
4849 i += 1;
4850 }
4851
4852 return nsyms;
4853}
4854
339c13b6
JB
4855/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4856 whose name and domain match NAME and DOMAIN respectively.
4857 If no match was found, then extend the search to "enclosing"
4858 routines (in other words, if we're inside a nested function,
4859 search the symbols defined inside the enclosing functions).
4860
4861 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4862
4863static void
4864ada_add_local_symbols (struct obstack *obstackp, const char *name,
4865 struct block *block, domain_enum domain,
4866 int wild_match)
4867{
4868 int block_depth = 0;
4869
4870 while (block != NULL)
4871 {
4872 block_depth += 1;
4873 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4874
4875 /* If we found a non-function match, assume that's the one. */
4876 if (is_nonfunction (defns_collected (obstackp, 0),
4877 num_defns_collected (obstackp)))
4878 return;
4879
4880 block = BLOCK_SUPERBLOCK (block);
4881 }
4882
4883 /* If no luck so far, try to find NAME as a local symbol in some lexically
4884 enclosing subprogram. */
4885 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4886 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4887}
4888
ccefe4c4 4889/* An object of this type is used as the user_data argument when
40658b94 4890 calling the map_matching_symbols method. */
ccefe4c4 4891
40658b94 4892struct match_data
ccefe4c4 4893{
40658b94 4894 struct objfile *objfile;
ccefe4c4 4895 struct obstack *obstackp;
40658b94
PH
4896 struct symbol *arg_sym;
4897 int found_sym;
ccefe4c4
TT
4898};
4899
40658b94
PH
4900/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4901 to a list of symbols. DATA0 is a pointer to a struct match_data *
4902 containing the obstack that collects the symbol list, the file that SYM
4903 must come from, a flag indicating whether a non-argument symbol has
4904 been found in the current block, and the last argument symbol
4905 passed in SYM within the current block (if any). When SYM is null,
4906 marking the end of a block, the argument symbol is added if no
4907 other has been found. */
ccefe4c4 4908
40658b94
PH
4909static int
4910aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4911{
40658b94
PH
4912 struct match_data *data = (struct match_data *) data0;
4913
4914 if (sym == NULL)
4915 {
4916 if (!data->found_sym && data->arg_sym != NULL)
4917 add_defn_to_vec (data->obstackp,
4918 fixup_symbol_section (data->arg_sym, data->objfile),
4919 block);
4920 data->found_sym = 0;
4921 data->arg_sym = NULL;
4922 }
4923 else
4924 {
4925 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4926 return 0;
4927 else if (SYMBOL_IS_ARGUMENT (sym))
4928 data->arg_sym = sym;
4929 else
4930 {
4931 data->found_sym = 1;
4932 add_defn_to_vec (data->obstackp,
4933 fixup_symbol_section (sym, data->objfile),
4934 block);
4935 }
4936 }
4937 return 0;
4938}
4939
4940/* Compare STRING1 to STRING2, with results as for strcmp.
4941 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4942 implies compare_names (STRING1, STRING2) (they may differ as to
4943 what symbols compare equal). */
5b4ee69b 4944
40658b94
PH
4945static int
4946compare_names (const char *string1, const char *string2)
4947{
4948 while (*string1 != '\0' && *string2 != '\0')
4949 {
4950 if (isspace (*string1) || isspace (*string2))
4951 return strcmp_iw_ordered (string1, string2);
4952 if (*string1 != *string2)
4953 break;
4954 string1 += 1;
4955 string2 += 1;
4956 }
4957 switch (*string1)
4958 {
4959 case '(':
4960 return strcmp_iw_ordered (string1, string2);
4961 case '_':
4962 if (*string2 == '\0')
4963 {
052874e8 4964 if (is_name_suffix (string1))
40658b94
PH
4965 return 0;
4966 else
1a1d5513 4967 return 1;
40658b94 4968 }
dbb8534f 4969 /* FALLTHROUGH */
40658b94
PH
4970 default:
4971 if (*string2 == '(')
4972 return strcmp_iw_ordered (string1, string2);
4973 else
4974 return *string1 - *string2;
4975 }
ccefe4c4
TT
4976}
4977
339c13b6
JB
4978/* Add to OBSTACKP all non-local symbols whose name and domain match
4979 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4980 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4981
4982static void
40658b94
PH
4983add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4984 domain_enum domain, int global,
4985 int is_wild_match)
339c13b6
JB
4986{
4987 struct objfile *objfile;
40658b94 4988 struct match_data data;
339c13b6 4989
6475f2fe 4990 memset (&data, 0, sizeof data);
ccefe4c4 4991 data.obstackp = obstackp;
339c13b6 4992
ccefe4c4 4993 ALL_OBJFILES (objfile)
40658b94
PH
4994 {
4995 data.objfile = objfile;
4996
4997 if (is_wild_match)
4998 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4999 aux_add_nonlocal_symbols, &data,
5000 wild_match, NULL);
5001 else
5002 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5003 aux_add_nonlocal_symbols, &data,
5004 full_match, compare_names);
5005 }
5006
5007 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5008 {
5009 ALL_OBJFILES (objfile)
5010 {
5011 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5012 strcpy (name1, "_ada_");
5013 strcpy (name1 + sizeof ("_ada_") - 1, name);
5014 data.objfile = objfile;
0963b4bd
MS
5015 objfile->sf->qf->map_matching_symbols (name1, domain,
5016 objfile, global,
5017 aux_add_nonlocal_symbols,
5018 &data,
40658b94
PH
5019 full_match, compare_names);
5020 }
5021 }
339c13b6
JB
5022}
5023
4c4b4cd2
PH
5024/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5025 scope and in global scopes, returning the number of matches. Sets
6c9353d3 5026 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
5027 indicating the symbols found and the blocks and symbol tables (if
5028 any) in which they were found. This vector are transient---good only to
5029 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5030 symbol match within the nest of blocks whose innermost member is BLOCK0,
5031 is the one match returned (no other matches in that or
d9680e73
TT
5032 enclosing blocks is returned). If there are any matches in or
5033 surrounding BLOCK0, then these alone are returned. Otherwise, if
5034 FULL_SEARCH is non-zero, then the search extends to global and
5035 file-scope (static) symbol tables.
4c4b4cd2
PH
5036 Names prefixed with "standard__" are handled specially: "standard__"
5037 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5038
5039int
4c4b4cd2 5040ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5041 domain_enum namespace,
5042 struct ada_symbol_info **results,
5043 int full_search)
14f9c5c9
AS
5044{
5045 struct symbol *sym;
14f9c5c9 5046 struct block *block;
4c4b4cd2 5047 const char *name;
c0431670 5048 const int wild_match = should_use_wild_match (name0);
14f9c5c9 5049 int cacheIfUnique;
4c4b4cd2 5050 int ndefns;
14f9c5c9 5051
4c4b4cd2
PH
5052 obstack_free (&symbol_list_obstack, NULL);
5053 obstack_init (&symbol_list_obstack);
14f9c5c9 5054
14f9c5c9
AS
5055 cacheIfUnique = 0;
5056
5057 /* Search specified block and its superiors. */
5058
4c4b4cd2 5059 name = name0;
76a01679
JB
5060 block = (struct block *) block0; /* FIXME: No cast ought to be
5061 needed, but adding const will
5062 have a cascade effect. */
339c13b6
JB
5063
5064 /* Special case: If the user specifies a symbol name inside package
5065 Standard, do a non-wild matching of the symbol name without
5066 the "standard__" prefix. This was primarily introduced in order
5067 to allow the user to specifically access the standard exceptions
5068 using, for instance, Standard.Constraint_Error when Constraint_Error
5069 is ambiguous (due to the user defining its own Constraint_Error
5070 entity inside its program). */
4c4b4cd2
PH
5071 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5072 {
4c4b4cd2
PH
5073 block = NULL;
5074 name = name0 + sizeof ("standard__") - 1;
5075 }
5076
339c13b6 5077 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5078
339c13b6
JB
5079 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5080 wild_match);
d9680e73 5081 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5082 goto done;
d2e4a39e 5083
339c13b6
JB
5084 /* No non-global symbols found. Check our cache to see if we have
5085 already performed this search before. If we have, then return
5086 the same result. */
5087
14f9c5c9 5088 cacheIfUnique = 1;
2570f2b7 5089 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5090 {
5091 if (sym != NULL)
2570f2b7 5092 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5093 goto done;
5094 }
14f9c5c9 5095
339c13b6
JB
5096 /* Search symbols from all global blocks. */
5097
40658b94
PH
5098 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5099 wild_match);
d2e4a39e 5100
4c4b4cd2 5101 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5102 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5103
4c4b4cd2 5104 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
5105 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5106 wild_match);
14f9c5c9 5107
4c4b4cd2
PH
5108done:
5109 ndefns = num_defns_collected (&symbol_list_obstack);
5110 *results = defns_collected (&symbol_list_obstack, 1);
5111
5112 ndefns = remove_extra_symbols (*results, ndefns);
5113
2ad01556 5114 if (ndefns == 0 && full_search)
2570f2b7 5115 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5116
2ad01556 5117 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5118 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5119
aeb5907d 5120 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5121
14f9c5c9
AS
5122 return ndefns;
5123}
5124
f8eba3c6
TT
5125/* If NAME is the name of an entity, return a string that should
5126 be used to look that entity up in Ada units. This string should
5127 be deallocated after use using xfree.
5128
5129 NAME can have any form that the "break" or "print" commands might
5130 recognize. In other words, it does not have to be the "natural"
5131 name, or the "encoded" name. */
5132
5133char *
5134ada_name_for_lookup (const char *name)
5135{
5136 char *canon;
5137 int nlen = strlen (name);
5138
5139 if (name[0] == '<' && name[nlen - 1] == '>')
5140 {
5141 canon = xmalloc (nlen - 1);
5142 memcpy (canon, name + 1, nlen - 2);
5143 canon[nlen - 2] = '\0';
5144 }
5145 else
5146 canon = xstrdup (ada_encode (ada_fold_name (name)));
5147 return canon;
5148}
5149
5150/* Implementation of the la_iterate_over_symbols method. */
5151
5152static void
5153ada_iterate_over_symbols (const struct block *block,
5154 const char *name, domain_enum domain,
8e704927 5155 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5156 void *data)
5157{
5158 int ndefs, i;
5159 struct ada_symbol_info *results;
5160
d9680e73 5161 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5162 for (i = 0; i < ndefs; ++i)
5163 {
5164 if (! (*callback) (results[i].sym, data))
5165 break;
5166 }
5167}
5168
d2e4a39e 5169struct symbol *
aeb5907d 5170ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 5171 domain_enum namespace, struct block **block_found)
14f9c5c9 5172{
4c4b4cd2 5173 struct ada_symbol_info *candidates;
14f9c5c9
AS
5174 int n_candidates;
5175
d9680e73
TT
5176 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5177 1);
14f9c5c9
AS
5178
5179 if (n_candidates == 0)
5180 return NULL;
4c4b4cd2 5181
aeb5907d
JB
5182 if (block_found != NULL)
5183 *block_found = candidates[0].block;
4c4b4cd2 5184
21b556f4 5185 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
5186}
5187
5188/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5189 scope and in global scopes, or NULL if none. NAME is folded and
5190 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5191 choosing the first symbol if there are multiple choices.
aeb5907d
JB
5192 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5193 table in which the symbol was found (in both cases, these
5194 assignments occur only if the pointers are non-null). */
5195struct symbol *
5196ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5197 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
5198{
5199 if (is_a_field_of_this != NULL)
5200 *is_a_field_of_this = 0;
5201
5202 return
5203 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 5204 block0, namespace, NULL);
4c4b4cd2 5205}
14f9c5c9 5206
4c4b4cd2
PH
5207static struct symbol *
5208ada_lookup_symbol_nonlocal (const char *name,
76a01679 5209 const struct block *block,
21b556f4 5210 const domain_enum domain)
4c4b4cd2 5211{
94af9270 5212 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5213}
5214
5215
4c4b4cd2
PH
5216/* True iff STR is a possible encoded suffix of a normal Ada name
5217 that is to be ignored for matching purposes. Suffixes of parallel
5218 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5219 are given by any of the regular expressions:
4c4b4cd2 5220
babe1480
JB
5221 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5222 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5223 TKB [subprogram suffix for task bodies]
babe1480 5224 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5225 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5226
5227 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5228 match is performed. This sequence is used to differentiate homonyms,
5229 is an optional part of a valid name suffix. */
4c4b4cd2 5230
14f9c5c9 5231static int
d2e4a39e 5232is_name_suffix (const char *str)
14f9c5c9
AS
5233{
5234 int k;
4c4b4cd2
PH
5235 const char *matching;
5236 const int len = strlen (str);
5237
babe1480
JB
5238 /* Skip optional leading __[0-9]+. */
5239
4c4b4cd2
PH
5240 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5241 {
babe1480
JB
5242 str += 3;
5243 while (isdigit (str[0]))
5244 str += 1;
4c4b4cd2 5245 }
babe1480
JB
5246
5247 /* [.$][0-9]+ */
4c4b4cd2 5248
babe1480 5249 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5250 {
babe1480 5251 matching = str + 1;
4c4b4cd2
PH
5252 while (isdigit (matching[0]))
5253 matching += 1;
5254 if (matching[0] == '\0')
5255 return 1;
5256 }
5257
5258 /* ___[0-9]+ */
babe1480 5259
4c4b4cd2
PH
5260 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5261 {
5262 matching = str + 3;
5263 while (isdigit (matching[0]))
5264 matching += 1;
5265 if (matching[0] == '\0')
5266 return 1;
5267 }
5268
9ac7f98e
JB
5269 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5270
5271 if (strcmp (str, "TKB") == 0)
5272 return 1;
5273
529cad9c
PH
5274#if 0
5275 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5276 with a N at the end. Unfortunately, the compiler uses the same
5277 convention for other internal types it creates. So treating
529cad9c 5278 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5279 some regressions. For instance, consider the case of an enumerated
5280 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5281 name ends with N.
5282 Having a single character like this as a suffix carrying some
0963b4bd 5283 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5284 to be something like "_N" instead. In the meantime, do not do
5285 the following check. */
5286 /* Protected Object Subprograms */
5287 if (len == 1 && str [0] == 'N')
5288 return 1;
5289#endif
5290
5291 /* _E[0-9]+[bs]$ */
5292 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5293 {
5294 matching = str + 3;
5295 while (isdigit (matching[0]))
5296 matching += 1;
5297 if ((matching[0] == 'b' || matching[0] == 's')
5298 && matching [1] == '\0')
5299 return 1;
5300 }
5301
4c4b4cd2
PH
5302 /* ??? We should not modify STR directly, as we are doing below. This
5303 is fine in this case, but may become problematic later if we find
5304 that this alternative did not work, and want to try matching
5305 another one from the begining of STR. Since we modified it, we
5306 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5307 if (str[0] == 'X')
5308 {
5309 str += 1;
d2e4a39e 5310 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5311 {
5312 if (str[0] != 'n' && str[0] != 'b')
5313 return 0;
5314 str += 1;
5315 }
14f9c5c9 5316 }
babe1480 5317
14f9c5c9
AS
5318 if (str[0] == '\000')
5319 return 1;
babe1480 5320
d2e4a39e 5321 if (str[0] == '_')
14f9c5c9
AS
5322 {
5323 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5324 return 0;
d2e4a39e 5325 if (str[2] == '_')
4c4b4cd2 5326 {
61ee279c
PH
5327 if (strcmp (str + 3, "JM") == 0)
5328 return 1;
5329 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5330 the LJM suffix in favor of the JM one. But we will
5331 still accept LJM as a valid suffix for a reasonable
5332 amount of time, just to allow ourselves to debug programs
5333 compiled using an older version of GNAT. */
4c4b4cd2
PH
5334 if (strcmp (str + 3, "LJM") == 0)
5335 return 1;
5336 if (str[3] != 'X')
5337 return 0;
1265e4aa
JB
5338 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5339 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5340 return 1;
5341 if (str[4] == 'R' && str[5] != 'T')
5342 return 1;
5343 return 0;
5344 }
5345 if (!isdigit (str[2]))
5346 return 0;
5347 for (k = 3; str[k] != '\0'; k += 1)
5348 if (!isdigit (str[k]) && str[k] != '_')
5349 return 0;
14f9c5c9
AS
5350 return 1;
5351 }
4c4b4cd2 5352 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5353 {
4c4b4cd2
PH
5354 for (k = 2; str[k] != '\0'; k += 1)
5355 if (!isdigit (str[k]) && str[k] != '_')
5356 return 0;
14f9c5c9
AS
5357 return 1;
5358 }
5359 return 0;
5360}
d2e4a39e 5361
aeb5907d
JB
5362/* Return non-zero if the string starting at NAME and ending before
5363 NAME_END contains no capital letters. */
529cad9c
PH
5364
5365static int
5366is_valid_name_for_wild_match (const char *name0)
5367{
5368 const char *decoded_name = ada_decode (name0);
5369 int i;
5370
5823c3ef
JB
5371 /* If the decoded name starts with an angle bracket, it means that
5372 NAME0 does not follow the GNAT encoding format. It should then
5373 not be allowed as a possible wild match. */
5374 if (decoded_name[0] == '<')
5375 return 0;
5376
529cad9c
PH
5377 for (i=0; decoded_name[i] != '\0'; i++)
5378 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5379 return 0;
5380
5381 return 1;
5382}
5383
73589123
PH
5384/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5385 that could start a simple name. Assumes that *NAMEP points into
5386 the string beginning at NAME0. */
4c4b4cd2 5387
14f9c5c9 5388static int
73589123 5389advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5390{
73589123 5391 const char *name = *namep;
5b4ee69b 5392
5823c3ef 5393 while (1)
14f9c5c9 5394 {
aa27d0b3 5395 int t0, t1;
73589123
PH
5396
5397 t0 = *name;
5398 if (t0 == '_')
5399 {
5400 t1 = name[1];
5401 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5402 {
5403 name += 1;
5404 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5405 break;
5406 else
5407 name += 1;
5408 }
aa27d0b3
JB
5409 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5410 || name[2] == target0))
73589123
PH
5411 {
5412 name += 2;
5413 break;
5414 }
5415 else
5416 return 0;
5417 }
5418 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5419 name += 1;
5420 else
5823c3ef 5421 return 0;
73589123
PH
5422 }
5423
5424 *namep = name;
5425 return 1;
5426}
5427
5428/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5429 informational suffixes of NAME (i.e., for which is_name_suffix is
5430 true). Assumes that PATN is a lower-cased Ada simple name. */
5431
5432static int
5433wild_match (const char *name, const char *patn)
5434{
5435 const char *p, *n;
5436 const char *name0 = name;
5437
5438 while (1)
5439 {
5440 const char *match = name;
5441
5442 if (*name == *patn)
5443 {
5444 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5445 if (*p != *name)
5446 break;
5447 if (*p == '\0' && is_name_suffix (name))
5448 return match != name0 && !is_valid_name_for_wild_match (name0);
5449
5450 if (name[-1] == '_')
5451 name -= 1;
5452 }
5453 if (!advance_wild_match (&name, name0, *patn))
5454 return 1;
96d887e8 5455 }
96d887e8
PH
5456}
5457
40658b94
PH
5458/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5459 informational suffix. */
5460
c4d840bd
PH
5461static int
5462full_match (const char *sym_name, const char *search_name)
5463{
40658b94 5464 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5465}
5466
5467
96d887e8
PH
5468/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5469 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5470 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5471 OBJFILE is the section containing BLOCK.
5472 SYMTAB is recorded with each symbol added. */
5473
5474static void
5475ada_add_block_symbols (struct obstack *obstackp,
76a01679 5476 struct block *block, const char *name,
96d887e8 5477 domain_enum domain, struct objfile *objfile,
2570f2b7 5478 int wild)
96d887e8
PH
5479{
5480 struct dict_iterator iter;
5481 int name_len = strlen (name);
5482 /* A matching argument symbol, if any. */
5483 struct symbol *arg_sym;
5484 /* Set true when we find a matching non-argument symbol. */
5485 int found_sym;
5486 struct symbol *sym;
5487
5488 arg_sym = NULL;
5489 found_sym = 0;
5490 if (wild)
5491 {
c4d840bd
PH
5492 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5493 wild_match, &iter);
5494 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5495 {
5eeb2539
AR
5496 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5497 SYMBOL_DOMAIN (sym), domain)
73589123 5498 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5499 {
2a2d4dc3
AS
5500 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5501 continue;
5502 else if (SYMBOL_IS_ARGUMENT (sym))
5503 arg_sym = sym;
5504 else
5505 {
76a01679
JB
5506 found_sym = 1;
5507 add_defn_to_vec (obstackp,
5508 fixup_symbol_section (sym, objfile),
2570f2b7 5509 block);
76a01679
JB
5510 }
5511 }
5512 }
96d887e8
PH
5513 }
5514 else
5515 {
c4d840bd 5516 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5517 full_match, &iter);
c4d840bd 5518 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5519 {
5eeb2539
AR
5520 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5521 SYMBOL_DOMAIN (sym), domain))
76a01679 5522 {
c4d840bd
PH
5523 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5524 {
5525 if (SYMBOL_IS_ARGUMENT (sym))
5526 arg_sym = sym;
5527 else
2a2d4dc3 5528 {
c4d840bd
PH
5529 found_sym = 1;
5530 add_defn_to_vec (obstackp,
5531 fixup_symbol_section (sym, objfile),
5532 block);
2a2d4dc3 5533 }
c4d840bd 5534 }
76a01679
JB
5535 }
5536 }
96d887e8
PH
5537 }
5538
5539 if (!found_sym && arg_sym != NULL)
5540 {
76a01679
JB
5541 add_defn_to_vec (obstackp,
5542 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5543 block);
96d887e8
PH
5544 }
5545
5546 if (!wild)
5547 {
5548 arg_sym = NULL;
5549 found_sym = 0;
5550
5551 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5552 {
5eeb2539
AR
5553 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5554 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5555 {
5556 int cmp;
5557
5558 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5559 if (cmp == 0)
5560 {
5561 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5562 if (cmp == 0)
5563 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5564 name_len);
5565 }
5566
5567 if (cmp == 0
5568 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5569 {
2a2d4dc3
AS
5570 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5571 {
5572 if (SYMBOL_IS_ARGUMENT (sym))
5573 arg_sym = sym;
5574 else
5575 {
5576 found_sym = 1;
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (sym, objfile),
5579 block);
5580 }
5581 }
76a01679
JB
5582 }
5583 }
76a01679 5584 }
96d887e8
PH
5585
5586 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5587 They aren't parameters, right? */
5588 if (!found_sym && arg_sym != NULL)
5589 {
5590 add_defn_to_vec (obstackp,
76a01679 5591 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5592 block);
96d887e8
PH
5593 }
5594 }
5595}
5596\f
41d27058
JB
5597
5598 /* Symbol Completion */
5599
5600/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5601 name in a form that's appropriate for the completion. The result
5602 does not need to be deallocated, but is only good until the next call.
5603
5604 TEXT_LEN is equal to the length of TEXT.
5605 Perform a wild match if WILD_MATCH is set.
5606 ENCODED should be set if TEXT represents the start of a symbol name
5607 in its encoded form. */
5608
5609static const char *
5610symbol_completion_match (const char *sym_name,
5611 const char *text, int text_len,
5612 int wild_match, int encoded)
5613{
41d27058
JB
5614 const int verbatim_match = (text[0] == '<');
5615 int match = 0;
5616
5617 if (verbatim_match)
5618 {
5619 /* Strip the leading angle bracket. */
5620 text = text + 1;
5621 text_len--;
5622 }
5623
5624 /* First, test against the fully qualified name of the symbol. */
5625
5626 if (strncmp (sym_name, text, text_len) == 0)
5627 match = 1;
5628
5629 if (match && !encoded)
5630 {
5631 /* One needed check before declaring a positive match is to verify
5632 that iff we are doing a verbatim match, the decoded version
5633 of the symbol name starts with '<'. Otherwise, this symbol name
5634 is not a suitable completion. */
5635 const char *sym_name_copy = sym_name;
5636 int has_angle_bracket;
5637
5638 sym_name = ada_decode (sym_name);
5639 has_angle_bracket = (sym_name[0] == '<');
5640 match = (has_angle_bracket == verbatim_match);
5641 sym_name = sym_name_copy;
5642 }
5643
5644 if (match && !verbatim_match)
5645 {
5646 /* When doing non-verbatim match, another check that needs to
5647 be done is to verify that the potentially matching symbol name
5648 does not include capital letters, because the ada-mode would
5649 not be able to understand these symbol names without the
5650 angle bracket notation. */
5651 const char *tmp;
5652
5653 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5654 if (*tmp != '\0')
5655 match = 0;
5656 }
5657
5658 /* Second: Try wild matching... */
5659
5660 if (!match && wild_match)
5661 {
5662 /* Since we are doing wild matching, this means that TEXT
5663 may represent an unqualified symbol name. We therefore must
5664 also compare TEXT against the unqualified name of the symbol. */
5665 sym_name = ada_unqualified_name (ada_decode (sym_name));
5666
5667 if (strncmp (sym_name, text, text_len) == 0)
5668 match = 1;
5669 }
5670
5671 /* Finally: If we found a mach, prepare the result to return. */
5672
5673 if (!match)
5674 return NULL;
5675
5676 if (verbatim_match)
5677 sym_name = add_angle_brackets (sym_name);
5678
5679 if (!encoded)
5680 sym_name = ada_decode (sym_name);
5681
5682 return sym_name;
5683}
5684
5685/* A companion function to ada_make_symbol_completion_list().
5686 Check if SYM_NAME represents a symbol which name would be suitable
5687 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5688 it is appended at the end of the given string vector SV.
5689
5690 ORIG_TEXT is the string original string from the user command
5691 that needs to be completed. WORD is the entire command on which
5692 completion should be performed. These two parameters are used to
5693 determine which part of the symbol name should be added to the
5694 completion vector.
5695 if WILD_MATCH is set, then wild matching is performed.
5696 ENCODED should be set if TEXT represents a symbol name in its
5697 encoded formed (in which case the completion should also be
5698 encoded). */
5699
5700static void
d6565258 5701symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5702 const char *sym_name,
5703 const char *text, int text_len,
5704 const char *orig_text, const char *word,
5705 int wild_match, int encoded)
5706{
5707 const char *match = symbol_completion_match (sym_name, text, text_len,
5708 wild_match, encoded);
5709 char *completion;
5710
5711 if (match == NULL)
5712 return;
5713
5714 /* We found a match, so add the appropriate completion to the given
5715 string vector. */
5716
5717 if (word == orig_text)
5718 {
5719 completion = xmalloc (strlen (match) + 5);
5720 strcpy (completion, match);
5721 }
5722 else if (word > orig_text)
5723 {
5724 /* Return some portion of sym_name. */
5725 completion = xmalloc (strlen (match) + 5);
5726 strcpy (completion, match + (word - orig_text));
5727 }
5728 else
5729 {
5730 /* Return some of ORIG_TEXT plus sym_name. */
5731 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5732 strncpy (completion, word, orig_text - word);
5733 completion[orig_text - word] = '\0';
5734 strcat (completion, match);
5735 }
5736
d6565258 5737 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5738}
5739
ccefe4c4 5740/* An object of this type is passed as the user_data argument to the
7b08b9eb 5741 expand_partial_symbol_names method. */
ccefe4c4
TT
5742struct add_partial_datum
5743{
5744 VEC(char_ptr) **completions;
5745 char *text;
5746 int text_len;
5747 char *text0;
5748 char *word;
5749 int wild_match;
5750 int encoded;
5751};
5752
7b08b9eb
JK
5753/* A callback for expand_partial_symbol_names. */
5754static int
e078317b 5755ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5756{
5757 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5758
5759 return symbol_completion_match (name, data->text, data->text_len,
5760 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5761}
5762
41d27058
JB
5763/* Return a list of possible symbol names completing TEXT0. The list
5764 is NULL terminated. WORD is the entire command on which completion
5765 is made. */
5766
5767static char **
5768ada_make_symbol_completion_list (char *text0, char *word)
5769{
5770 char *text;
5771 int text_len;
5772 int wild_match;
5773 int encoded;
2ba95b9b 5774 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5775 struct symbol *sym;
5776 struct symtab *s;
41d27058
JB
5777 struct minimal_symbol *msymbol;
5778 struct objfile *objfile;
5779 struct block *b, *surrounding_static_block = 0;
5780 int i;
5781 struct dict_iterator iter;
5782
5783 if (text0[0] == '<')
5784 {
5785 text = xstrdup (text0);
5786 make_cleanup (xfree, text);
5787 text_len = strlen (text);
5788 wild_match = 0;
5789 encoded = 1;
5790 }
5791 else
5792 {
5793 text = xstrdup (ada_encode (text0));
5794 make_cleanup (xfree, text);
5795 text_len = strlen (text);
5796 for (i = 0; i < text_len; i++)
5797 text[i] = tolower (text[i]);
5798
5799 encoded = (strstr (text0, "__") != NULL);
5800 /* If the name contains a ".", then the user is entering a fully
5801 qualified entity name, and the match must not be done in wild
5802 mode. Similarly, if the user wants to complete what looks like
5803 an encoded name, the match must not be done in wild mode. */
5804 wild_match = (strchr (text0, '.') == NULL && !encoded);
5805 }
5806
5807 /* First, look at the partial symtab symbols. */
41d27058 5808 {
ccefe4c4
TT
5809 struct add_partial_datum data;
5810
5811 data.completions = &completions;
5812 data.text = text;
5813 data.text_len = text_len;
5814 data.text0 = text0;
5815 data.word = word;
5816 data.wild_match = wild_match;
5817 data.encoded = encoded;
7b08b9eb 5818 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5819 }
5820
5821 /* At this point scan through the misc symbol vectors and add each
5822 symbol you find to the list. Eventually we want to ignore
5823 anything that isn't a text symbol (everything else will be
5824 handled by the psymtab code above). */
5825
5826 ALL_MSYMBOLS (objfile, msymbol)
5827 {
5828 QUIT;
d6565258 5829 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5830 text, text_len, text0, word, wild_match, encoded);
5831 }
5832
5833 /* Search upwards from currently selected frame (so that we can
5834 complete on local vars. */
5835
5836 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5837 {
5838 if (!BLOCK_SUPERBLOCK (b))
5839 surrounding_static_block = b; /* For elmin of dups */
5840
5841 ALL_BLOCK_SYMBOLS (b, iter, sym)
5842 {
d6565258 5843 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5844 text, text_len, text0, word,
5845 wild_match, encoded);
5846 }
5847 }
5848
5849 /* Go through the symtabs and check the externs and statics for
5850 symbols which match. */
5851
5852 ALL_SYMTABS (objfile, s)
5853 {
5854 QUIT;
5855 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5856 ALL_BLOCK_SYMBOLS (b, iter, sym)
5857 {
d6565258 5858 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5859 text, text_len, text0, word,
5860 wild_match, encoded);
5861 }
5862 }
5863
5864 ALL_SYMTABS (objfile, s)
5865 {
5866 QUIT;
5867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5868 /* Don't do this block twice. */
5869 if (b == surrounding_static_block)
5870 continue;
5871 ALL_BLOCK_SYMBOLS (b, iter, sym)
5872 {
d6565258 5873 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5874 text, text_len, text0, word,
5875 wild_match, encoded);
5876 }
5877 }
5878
5879 /* Append the closing NULL entry. */
2ba95b9b 5880 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5881
2ba95b9b
JB
5882 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5883 return the copy. It's unfortunate that we have to make a copy
5884 of an array that we're about to destroy, but there is nothing much
5885 we can do about it. Fortunately, it's typically not a very large
5886 array. */
5887 {
5888 const size_t completions_size =
5889 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5890 char **result = xmalloc (completions_size);
2ba95b9b
JB
5891
5892 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5893
5894 VEC_free (char_ptr, completions);
5895 return result;
5896 }
41d27058
JB
5897}
5898
963a6417 5899 /* Field Access */
96d887e8 5900
73fb9985
JB
5901/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5902 for tagged types. */
5903
5904static int
5905ada_is_dispatch_table_ptr_type (struct type *type)
5906{
0d5cff50 5907 const char *name;
73fb9985
JB
5908
5909 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5910 return 0;
5911
5912 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5913 if (name == NULL)
5914 return 0;
5915
5916 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5917}
5918
963a6417
PH
5919/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5920 to be invisible to users. */
96d887e8 5921
963a6417
PH
5922int
5923ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5924{
963a6417
PH
5925 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5926 return 1;
ffde82bf 5927
73fb9985
JB
5928 /* Check the name of that field. */
5929 {
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931
5932 /* Anonymous field names should not be printed.
5933 brobecker/2007-02-20: I don't think this can actually happen
5934 but we don't want to print the value of annonymous fields anyway. */
5935 if (name == NULL)
5936 return 1;
5937
ffde82bf
JB
5938 /* Normally, fields whose name start with an underscore ("_")
5939 are fields that have been internally generated by the compiler,
5940 and thus should not be printed. The "_parent" field is special,
5941 however: This is a field internally generated by the compiler
5942 for tagged types, and it contains the components inherited from
5943 the parent type. This field should not be printed as is, but
5944 should not be ignored either. */
73fb9985
JB
5945 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5946 return 1;
5947 }
5948
5949 /* If this is the dispatch table of a tagged type, then ignore. */
5950 if (ada_is_tagged_type (type, 1)
5951 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5952 return 1;
5953
5954 /* Not a special field, so it should not be ignored. */
5955 return 0;
963a6417 5956}
96d887e8 5957
963a6417 5958/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5959 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5960
963a6417
PH
5961int
5962ada_is_tagged_type (struct type *type, int refok)
5963{
5964 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5965}
96d887e8 5966
963a6417 5967/* True iff TYPE represents the type of X'Tag */
96d887e8 5968
963a6417
PH
5969int
5970ada_is_tag_type (struct type *type)
5971{
5972 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5973 return 0;
5974 else
96d887e8 5975 {
963a6417 5976 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5977
963a6417
PH
5978 return (name != NULL
5979 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5980 }
96d887e8
PH
5981}
5982
963a6417 5983/* The type of the tag on VAL. */
76a01679 5984
963a6417
PH
5985struct type *
5986ada_tag_type (struct value *val)
96d887e8 5987{
df407dfe 5988 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5989}
96d887e8 5990
963a6417 5991/* The value of the tag on VAL. */
96d887e8 5992
963a6417
PH
5993struct value *
5994ada_value_tag (struct value *val)
5995{
03ee6b2e 5996 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5997}
5998
963a6417
PH
5999/* The value of the tag on the object of type TYPE whose contents are
6000 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6001 ADDRESS. */
96d887e8 6002
963a6417 6003static struct value *
10a2c479 6004value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6005 const gdb_byte *valaddr,
963a6417 6006 CORE_ADDR address)
96d887e8 6007{
b5385fc0 6008 int tag_byte_offset;
963a6417 6009 struct type *tag_type;
5b4ee69b 6010
963a6417 6011 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6012 NULL, NULL, NULL))
96d887e8 6013 {
fc1a4b47 6014 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6015 ? NULL
6016 : valaddr + tag_byte_offset);
963a6417 6017 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6018
963a6417 6019 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6020 }
963a6417
PH
6021 return NULL;
6022}
96d887e8 6023
963a6417
PH
6024static struct type *
6025type_from_tag (struct value *tag)
6026{
6027 const char *type_name = ada_tag_name (tag);
5b4ee69b 6028
963a6417
PH
6029 if (type_name != NULL)
6030 return ada_find_any_type (ada_encode (type_name));
6031 return NULL;
6032}
96d887e8 6033
1b611343
JB
6034/* Return the "ada__tags__type_specific_data" type. */
6035
6036static struct type *
6037ada_get_tsd_type (struct inferior *inf)
963a6417 6038{
1b611343 6039 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6040
1b611343
JB
6041 if (data->tsd_type == 0)
6042 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6043 return data->tsd_type;
6044}
529cad9c 6045
1b611343
JB
6046/* Return the TSD (type-specific data) associated to the given TAG.
6047 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6048
1b611343 6049 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6050
1b611343
JB
6051static struct value *
6052ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6053{
4c4b4cd2 6054 struct value *val;
1b611343 6055 struct type *type;
5b4ee69b 6056
1b611343
JB
6057 /* First option: The TSD is simply stored as a field of our TAG.
6058 Only older versions of GNAT would use this format, but we have
6059 to test it first, because there are no visible markers for
6060 the current approach except the absence of that field. */
529cad9c 6061
1b611343
JB
6062 val = ada_value_struct_elt (tag, "tsd", 1);
6063 if (val)
6064 return val;
e802dbe0 6065
1b611343
JB
6066 /* Try the second representation for the dispatch table (in which
6067 there is no explicit 'tsd' field in the referent of the tag pointer,
6068 and instead the tsd pointer is stored just before the dispatch
6069 table. */
e802dbe0 6070
1b611343
JB
6071 type = ada_get_tsd_type (current_inferior());
6072 if (type == NULL)
6073 return NULL;
6074 type = lookup_pointer_type (lookup_pointer_type (type));
6075 val = value_cast (type, tag);
6076 if (val == NULL)
6077 return NULL;
6078 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6079}
6080
1b611343
JB
6081/* Given the TSD of a tag (type-specific data), return a string
6082 containing the name of the associated type.
6083
6084 The returned value is good until the next call. May return NULL
6085 if we are unable to determine the tag name. */
6086
6087static char *
6088ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6089{
529cad9c
PH
6090 static char name[1024];
6091 char *p;
1b611343 6092 struct value *val;
529cad9c 6093
1b611343 6094 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6095 if (val == NULL)
1b611343 6096 return NULL;
4c4b4cd2
PH
6097 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6098 for (p = name; *p != '\0'; p += 1)
6099 if (isalpha (*p))
6100 *p = tolower (*p);
1b611343 6101 return name;
4c4b4cd2
PH
6102}
6103
6104/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6105 a C string.
6106
6107 Return NULL if the TAG is not an Ada tag, or if we were unable to
6108 determine the name of that tag. The result is good until the next
6109 call. */
4c4b4cd2
PH
6110
6111const char *
6112ada_tag_name (struct value *tag)
6113{
1b611343
JB
6114 volatile struct gdb_exception e;
6115 char *name = NULL;
5b4ee69b 6116
df407dfe 6117 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6118 return NULL;
1b611343
JB
6119
6120 /* It is perfectly possible that an exception be raised while trying
6121 to determine the TAG's name, even under normal circumstances:
6122 The associated variable may be uninitialized or corrupted, for
6123 instance. We do not let any exception propagate past this point.
6124 instead we return NULL.
6125
6126 We also do not print the error message either (which often is very
6127 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6128 the caller print a more meaningful message if necessary. */
6129 TRY_CATCH (e, RETURN_MASK_ERROR)
6130 {
6131 struct value *tsd = ada_get_tsd_from_tag (tag);
6132
6133 if (tsd != NULL)
6134 name = ada_tag_name_from_tsd (tsd);
6135 }
6136
6137 return name;
4c4b4cd2
PH
6138}
6139
6140/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6141
d2e4a39e 6142struct type *
ebf56fd3 6143ada_parent_type (struct type *type)
14f9c5c9
AS
6144{
6145 int i;
6146
61ee279c 6147 type = ada_check_typedef (type);
14f9c5c9
AS
6148
6149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6150 return NULL;
6151
6152 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6153 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6154 {
6155 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6156
6157 /* If the _parent field is a pointer, then dereference it. */
6158 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6159 parent_type = TYPE_TARGET_TYPE (parent_type);
6160 /* If there is a parallel XVS type, get the actual base type. */
6161 parent_type = ada_get_base_type (parent_type);
6162
6163 return ada_check_typedef (parent_type);
6164 }
14f9c5c9
AS
6165
6166 return NULL;
6167}
6168
4c4b4cd2
PH
6169/* True iff field number FIELD_NUM of structure type TYPE contains the
6170 parent-type (inherited) fields of a derived type. Assumes TYPE is
6171 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6172
6173int
ebf56fd3 6174ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6175{
61ee279c 6176 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6177
4c4b4cd2
PH
6178 return (name != NULL
6179 && (strncmp (name, "PARENT", 6) == 0
6180 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6181}
6182
4c4b4cd2 6183/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6184 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6185 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6186 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6187 structures. */
14f9c5c9
AS
6188
6189int
ebf56fd3 6190ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6191{
d2e4a39e 6192 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6193
d2e4a39e 6194 return (name != NULL
4c4b4cd2
PH
6195 && (strncmp (name, "PARENT", 6) == 0
6196 || strcmp (name, "REP") == 0
6197 || strncmp (name, "_parent", 7) == 0
6198 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6199}
6200
4c4b4cd2
PH
6201/* True iff field number FIELD_NUM of structure or union type TYPE
6202 is a variant wrapper. Assumes TYPE is a structure type with at least
6203 FIELD_NUM+1 fields. */
14f9c5c9
AS
6204
6205int
ebf56fd3 6206ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6207{
d2e4a39e 6208 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6209
14f9c5c9 6210 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6211 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6212 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6213 == TYPE_CODE_UNION)));
14f9c5c9
AS
6214}
6215
6216/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6217 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6218 returns the type of the controlling discriminant for the variant.
6219 May return NULL if the type could not be found. */
14f9c5c9 6220
d2e4a39e 6221struct type *
ebf56fd3 6222ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6223{
d2e4a39e 6224 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6225
7c964f07 6226 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6227}
6228
4c4b4cd2 6229/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6230 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6231 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6232
6233int
ebf56fd3 6234ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6235{
d2e4a39e 6236 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6237
14f9c5c9
AS
6238 return (name != NULL && name[0] == 'O');
6239}
6240
6241/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6242 returns the name of the discriminant controlling the variant.
6243 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6244
d2e4a39e 6245char *
ebf56fd3 6246ada_variant_discrim_name (struct type *type0)
14f9c5c9 6247{
d2e4a39e 6248 static char *result = NULL;
14f9c5c9 6249 static size_t result_len = 0;
d2e4a39e
AS
6250 struct type *type;
6251 const char *name;
6252 const char *discrim_end;
6253 const char *discrim_start;
14f9c5c9
AS
6254
6255 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6256 type = TYPE_TARGET_TYPE (type0);
6257 else
6258 type = type0;
6259
6260 name = ada_type_name (type);
6261
6262 if (name == NULL || name[0] == '\000')
6263 return "";
6264
6265 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6266 discrim_end -= 1)
6267 {
4c4b4cd2
PH
6268 if (strncmp (discrim_end, "___XVN", 6) == 0)
6269 break;
14f9c5c9
AS
6270 }
6271 if (discrim_end == name)
6272 return "";
6273
d2e4a39e 6274 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6275 discrim_start -= 1)
6276 {
d2e4a39e 6277 if (discrim_start == name + 1)
4c4b4cd2 6278 return "";
76a01679 6279 if ((discrim_start > name + 3
4c4b4cd2
PH
6280 && strncmp (discrim_start - 3, "___", 3) == 0)
6281 || discrim_start[-1] == '.')
6282 break;
14f9c5c9
AS
6283 }
6284
6285 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6286 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6287 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6288 return result;
6289}
6290
4c4b4cd2
PH
6291/* Scan STR for a subtype-encoded number, beginning at position K.
6292 Put the position of the character just past the number scanned in
6293 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6294 Return 1 if there was a valid number at the given position, and 0
6295 otherwise. A "subtype-encoded" number consists of the absolute value
6296 in decimal, followed by the letter 'm' to indicate a negative number.
6297 Assumes 0m does not occur. */
14f9c5c9
AS
6298
6299int
d2e4a39e 6300ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6301{
6302 ULONGEST RU;
6303
d2e4a39e 6304 if (!isdigit (str[k]))
14f9c5c9
AS
6305 return 0;
6306
4c4b4cd2 6307 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6308 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6309 LONGEST. */
14f9c5c9
AS
6310 RU = 0;
6311 while (isdigit (str[k]))
6312 {
d2e4a39e 6313 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6314 k += 1;
6315 }
6316
d2e4a39e 6317 if (str[k] == 'm')
14f9c5c9
AS
6318 {
6319 if (R != NULL)
4c4b4cd2 6320 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6321 k += 1;
6322 }
6323 else if (R != NULL)
6324 *R = (LONGEST) RU;
6325
4c4b4cd2 6326 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6327 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6328 number representable as a LONGEST (although either would probably work
6329 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6330 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6331
6332 if (new_k != NULL)
6333 *new_k = k;
6334 return 1;
6335}
6336
4c4b4cd2
PH
6337/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6338 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6339 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6340
d2e4a39e 6341int
ebf56fd3 6342ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6343{
d2e4a39e 6344 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6345 int p;
6346
6347 p = 0;
6348 while (1)
6349 {
d2e4a39e 6350 switch (name[p])
4c4b4cd2
PH
6351 {
6352 case '\0':
6353 return 0;
6354 case 'S':
6355 {
6356 LONGEST W;
5b4ee69b 6357
4c4b4cd2
PH
6358 if (!ada_scan_number (name, p + 1, &W, &p))
6359 return 0;
6360 if (val == W)
6361 return 1;
6362 break;
6363 }
6364 case 'R':
6365 {
6366 LONGEST L, U;
5b4ee69b 6367
4c4b4cd2
PH
6368 if (!ada_scan_number (name, p + 1, &L, &p)
6369 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6370 return 0;
6371 if (val >= L && val <= U)
6372 return 1;
6373 break;
6374 }
6375 case 'O':
6376 return 1;
6377 default:
6378 return 0;
6379 }
6380 }
6381}
6382
0963b4bd 6383/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6384
6385/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6386 ARG_TYPE, extract and return the value of one of its (non-static)
6387 fields. FIELDNO says which field. Differs from value_primitive_field
6388 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6389
4c4b4cd2 6390static struct value *
d2e4a39e 6391ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6392 struct type *arg_type)
14f9c5c9 6393{
14f9c5c9
AS
6394 struct type *type;
6395
61ee279c 6396 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6397 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6398
4c4b4cd2 6399 /* Handle packed fields. */
14f9c5c9
AS
6400
6401 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6402 {
6403 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6404 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6405
0fd88904 6406 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6407 offset + bit_pos / 8,
6408 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6409 }
6410 else
6411 return value_primitive_field (arg1, offset, fieldno, arg_type);
6412}
6413
52ce6436
PH
6414/* Find field with name NAME in object of type TYPE. If found,
6415 set the following for each argument that is non-null:
6416 - *FIELD_TYPE_P to the field's type;
6417 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6418 an object of that type;
6419 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6420 - *BIT_SIZE_P to its size in bits if the field is packed, and
6421 0 otherwise;
6422 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6423 fields up to but not including the desired field, or by the total
6424 number of fields if not found. A NULL value of NAME never
6425 matches; the function just counts visible fields in this case.
6426
0963b4bd 6427 Returns 1 if found, 0 otherwise. */
52ce6436 6428
4c4b4cd2 6429static int
0d5cff50 6430find_struct_field (const char *name, struct type *type, int offset,
76a01679 6431 struct type **field_type_p,
52ce6436
PH
6432 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6433 int *index_p)
4c4b4cd2
PH
6434{
6435 int i;
6436
61ee279c 6437 type = ada_check_typedef (type);
76a01679 6438
52ce6436
PH
6439 if (field_type_p != NULL)
6440 *field_type_p = NULL;
6441 if (byte_offset_p != NULL)
d5d6fca5 6442 *byte_offset_p = 0;
52ce6436
PH
6443 if (bit_offset_p != NULL)
6444 *bit_offset_p = 0;
6445 if (bit_size_p != NULL)
6446 *bit_size_p = 0;
6447
6448 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6449 {
6450 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6451 int fld_offset = offset + bit_pos / 8;
0d5cff50 6452 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6453
4c4b4cd2
PH
6454 if (t_field_name == NULL)
6455 continue;
6456
52ce6436 6457 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6458 {
6459 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6460
52ce6436
PH
6461 if (field_type_p != NULL)
6462 *field_type_p = TYPE_FIELD_TYPE (type, i);
6463 if (byte_offset_p != NULL)
6464 *byte_offset_p = fld_offset;
6465 if (bit_offset_p != NULL)
6466 *bit_offset_p = bit_pos % 8;
6467 if (bit_size_p != NULL)
6468 *bit_size_p = bit_size;
76a01679
JB
6469 return 1;
6470 }
4c4b4cd2
PH
6471 else if (ada_is_wrapper_field (type, i))
6472 {
52ce6436
PH
6473 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6474 field_type_p, byte_offset_p, bit_offset_p,
6475 bit_size_p, index_p))
76a01679
JB
6476 return 1;
6477 }
4c4b4cd2
PH
6478 else if (ada_is_variant_part (type, i))
6479 {
52ce6436
PH
6480 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6481 fixed type?? */
4c4b4cd2 6482 int j;
52ce6436
PH
6483 struct type *field_type
6484 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6485
52ce6436 6486 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6487 {
76a01679
JB
6488 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6489 fld_offset
6490 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6491 field_type_p, byte_offset_p,
52ce6436 6492 bit_offset_p, bit_size_p, index_p))
76a01679 6493 return 1;
4c4b4cd2
PH
6494 }
6495 }
52ce6436
PH
6496 else if (index_p != NULL)
6497 *index_p += 1;
4c4b4cd2
PH
6498 }
6499 return 0;
6500}
6501
0963b4bd 6502/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6503
52ce6436
PH
6504static int
6505num_visible_fields (struct type *type)
6506{
6507 int n;
5b4ee69b 6508
52ce6436
PH
6509 n = 0;
6510 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6511 return n;
6512}
14f9c5c9 6513
4c4b4cd2 6514/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6515 and search in it assuming it has (class) type TYPE.
6516 If found, return value, else return NULL.
6517
4c4b4cd2 6518 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6519
4c4b4cd2 6520static struct value *
d2e4a39e 6521ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6522 struct type *type)
14f9c5c9
AS
6523{
6524 int i;
14f9c5c9 6525
5b4ee69b 6526 type = ada_check_typedef (type);
52ce6436 6527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6528 {
0d5cff50 6529 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6530
6531 if (t_field_name == NULL)
4c4b4cd2 6532 continue;
14f9c5c9
AS
6533
6534 else if (field_name_match (t_field_name, name))
4c4b4cd2 6535 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6536
6537 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6538 {
0963b4bd 6539 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6540 ada_search_struct_field (name, arg,
6541 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6542 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6543
4c4b4cd2
PH
6544 if (v != NULL)
6545 return v;
6546 }
14f9c5c9
AS
6547
6548 else if (ada_is_variant_part (type, i))
4c4b4cd2 6549 {
0963b4bd 6550 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6551 int j;
5b4ee69b
MS
6552 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6553 i));
4c4b4cd2
PH
6554 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6555
52ce6436 6556 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6557 {
0963b4bd
MS
6558 struct value *v = ada_search_struct_field /* Force line
6559 break. */
06d5cf63
JB
6560 (name, arg,
6561 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6562 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6563
4c4b4cd2
PH
6564 if (v != NULL)
6565 return v;
6566 }
6567 }
14f9c5c9
AS
6568 }
6569 return NULL;
6570}
d2e4a39e 6571
52ce6436
PH
6572static struct value *ada_index_struct_field_1 (int *, struct value *,
6573 int, struct type *);
6574
6575
6576/* Return field #INDEX in ARG, where the index is that returned by
6577 * find_struct_field through its INDEX_P argument. Adjust the address
6578 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6579 * If found, return value, else return NULL. */
52ce6436
PH
6580
6581static struct value *
6582ada_index_struct_field (int index, struct value *arg, int offset,
6583 struct type *type)
6584{
6585 return ada_index_struct_field_1 (&index, arg, offset, type);
6586}
6587
6588
6589/* Auxiliary function for ada_index_struct_field. Like
6590 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6591 * *INDEX_P. */
52ce6436
PH
6592
6593static struct value *
6594ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6595 struct type *type)
6596{
6597 int i;
6598 type = ada_check_typedef (type);
6599
6600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6601 {
6602 if (TYPE_FIELD_NAME (type, i) == NULL)
6603 continue;
6604 else if (ada_is_wrapper_field (type, i))
6605 {
0963b4bd 6606 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6607 ada_index_struct_field_1 (index_p, arg,
6608 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6609 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6610
52ce6436
PH
6611 if (v != NULL)
6612 return v;
6613 }
6614
6615 else if (ada_is_variant_part (type, i))
6616 {
6617 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6618 find_struct_field. */
52ce6436
PH
6619 error (_("Cannot assign this kind of variant record"));
6620 }
6621 else if (*index_p == 0)
6622 return ada_value_primitive_field (arg, offset, i, type);
6623 else
6624 *index_p -= 1;
6625 }
6626 return NULL;
6627}
6628
4c4b4cd2
PH
6629/* Given ARG, a value of type (pointer or reference to a)*
6630 structure/union, extract the component named NAME from the ultimate
6631 target structure/union and return it as a value with its
f5938064 6632 appropriate type.
14f9c5c9 6633
4c4b4cd2
PH
6634 The routine searches for NAME among all members of the structure itself
6635 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6636 (e.g., '_parent').
6637
03ee6b2e
PH
6638 If NO_ERR, then simply return NULL in case of error, rather than
6639 calling error. */
14f9c5c9 6640
d2e4a39e 6641struct value *
03ee6b2e 6642ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6643{
4c4b4cd2 6644 struct type *t, *t1;
d2e4a39e 6645 struct value *v;
14f9c5c9 6646
4c4b4cd2 6647 v = NULL;
df407dfe 6648 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6649 if (TYPE_CODE (t) == TYPE_CODE_REF)
6650 {
6651 t1 = TYPE_TARGET_TYPE (t);
6652 if (t1 == NULL)
03ee6b2e 6653 goto BadValue;
61ee279c 6654 t1 = ada_check_typedef (t1);
4c4b4cd2 6655 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6656 {
994b9211 6657 arg = coerce_ref (arg);
76a01679
JB
6658 t = t1;
6659 }
4c4b4cd2 6660 }
14f9c5c9 6661
4c4b4cd2
PH
6662 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6663 {
6664 t1 = TYPE_TARGET_TYPE (t);
6665 if (t1 == NULL)
03ee6b2e 6666 goto BadValue;
61ee279c 6667 t1 = ada_check_typedef (t1);
4c4b4cd2 6668 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6669 {
6670 arg = value_ind (arg);
6671 t = t1;
6672 }
4c4b4cd2 6673 else
76a01679 6674 break;
4c4b4cd2 6675 }
14f9c5c9 6676
4c4b4cd2 6677 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6678 goto BadValue;
14f9c5c9 6679
4c4b4cd2
PH
6680 if (t1 == t)
6681 v = ada_search_struct_field (name, arg, 0, t);
6682 else
6683 {
6684 int bit_offset, bit_size, byte_offset;
6685 struct type *field_type;
6686 CORE_ADDR address;
6687
76a01679
JB
6688 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6689 address = value_as_address (arg);
4c4b4cd2 6690 else
0fd88904 6691 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6692
1ed6ede0 6693 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6694 if (find_struct_field (name, t1, 0,
6695 &field_type, &byte_offset, &bit_offset,
52ce6436 6696 &bit_size, NULL))
76a01679
JB
6697 {
6698 if (bit_size != 0)
6699 {
714e53ab
PH
6700 if (TYPE_CODE (t) == TYPE_CODE_REF)
6701 arg = ada_coerce_ref (arg);
6702 else
6703 arg = ada_value_ind (arg);
76a01679
JB
6704 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6705 bit_offset, bit_size,
6706 field_type);
6707 }
6708 else
f5938064 6709 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6710 }
6711 }
6712
03ee6b2e
PH
6713 if (v != NULL || no_err)
6714 return v;
6715 else
323e0a4a 6716 error (_("There is no member named %s."), name);
14f9c5c9 6717
03ee6b2e
PH
6718 BadValue:
6719 if (no_err)
6720 return NULL;
6721 else
0963b4bd
MS
6722 error (_("Attempt to extract a component of "
6723 "a value that is not a record."));
14f9c5c9
AS
6724}
6725
6726/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6727 If DISPP is non-null, add its byte displacement from the beginning of a
6728 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6729 work for packed fields).
6730
6731 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6732 followed by "___".
14f9c5c9 6733
0963b4bd 6734 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6735 be a (pointer or reference)+ to a struct or union, and the
6736 ultimate target type will be searched.
14f9c5c9
AS
6737
6738 Looks recursively into variant clauses and parent types.
6739
4c4b4cd2
PH
6740 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6741 TYPE is not a type of the right kind. */
14f9c5c9 6742
4c4b4cd2 6743static struct type *
76a01679
JB
6744ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6745 int noerr, int *dispp)
14f9c5c9
AS
6746{
6747 int i;
6748
6749 if (name == NULL)
6750 goto BadName;
6751
76a01679 6752 if (refok && type != NULL)
4c4b4cd2
PH
6753 while (1)
6754 {
61ee279c 6755 type = ada_check_typedef (type);
76a01679
JB
6756 if (TYPE_CODE (type) != TYPE_CODE_PTR
6757 && TYPE_CODE (type) != TYPE_CODE_REF)
6758 break;
6759 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6760 }
14f9c5c9 6761
76a01679 6762 if (type == NULL
1265e4aa
JB
6763 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6764 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6765 {
4c4b4cd2 6766 if (noerr)
76a01679 6767 return NULL;
4c4b4cd2 6768 else
76a01679
JB
6769 {
6770 target_terminal_ours ();
6771 gdb_flush (gdb_stdout);
323e0a4a
AC
6772 if (type == NULL)
6773 error (_("Type (null) is not a structure or union type"));
6774 else
6775 {
6776 /* XXX: type_sprint */
6777 fprintf_unfiltered (gdb_stderr, _("Type "));
6778 type_print (type, "", gdb_stderr, -1);
6779 error (_(" is not a structure or union type"));
6780 }
76a01679 6781 }
14f9c5c9
AS
6782 }
6783
6784 type = to_static_fixed_type (type);
6785
6786 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6787 {
0d5cff50 6788 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6789 struct type *t;
6790 int disp;
d2e4a39e 6791
14f9c5c9 6792 if (t_field_name == NULL)
4c4b4cd2 6793 continue;
14f9c5c9
AS
6794
6795 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6796 {
6797 if (dispp != NULL)
6798 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6799 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6800 }
14f9c5c9
AS
6801
6802 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6803 {
6804 disp = 0;
6805 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6806 0, 1, &disp);
6807 if (t != NULL)
6808 {
6809 if (dispp != NULL)
6810 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6811 return t;
6812 }
6813 }
14f9c5c9
AS
6814
6815 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6816 {
6817 int j;
5b4ee69b
MS
6818 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6819 i));
4c4b4cd2
PH
6820
6821 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6822 {
b1f33ddd
JB
6823 /* FIXME pnh 2008/01/26: We check for a field that is
6824 NOT wrapped in a struct, since the compiler sometimes
6825 generates these for unchecked variant types. Revisit
0963b4bd 6826 if the compiler changes this practice. */
0d5cff50 6827 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6828 disp = 0;
b1f33ddd
JB
6829 if (v_field_name != NULL
6830 && field_name_match (v_field_name, name))
6831 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6832 else
0963b4bd
MS
6833 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6834 j),
b1f33ddd
JB
6835 name, 0, 1, &disp);
6836
4c4b4cd2
PH
6837 if (t != NULL)
6838 {
6839 if (dispp != NULL)
6840 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6841 return t;
6842 }
6843 }
6844 }
14f9c5c9
AS
6845
6846 }
6847
6848BadName:
d2e4a39e 6849 if (!noerr)
14f9c5c9
AS
6850 {
6851 target_terminal_ours ();
6852 gdb_flush (gdb_stdout);
323e0a4a
AC
6853 if (name == NULL)
6854 {
6855 /* XXX: type_sprint */
6856 fprintf_unfiltered (gdb_stderr, _("Type "));
6857 type_print (type, "", gdb_stderr, -1);
6858 error (_(" has no component named <null>"));
6859 }
6860 else
6861 {
6862 /* XXX: type_sprint */
6863 fprintf_unfiltered (gdb_stderr, _("Type "));
6864 type_print (type, "", gdb_stderr, -1);
6865 error (_(" has no component named %s"), name);
6866 }
14f9c5c9
AS
6867 }
6868
6869 return NULL;
6870}
6871
b1f33ddd
JB
6872/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6873 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6874 represents an unchecked union (that is, the variant part of a
0963b4bd 6875 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6876
6877static int
6878is_unchecked_variant (struct type *var_type, struct type *outer_type)
6879{
6880 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6881
b1f33ddd
JB
6882 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6883 == NULL);
6884}
6885
6886
14f9c5c9
AS
6887/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6888 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6889 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6890 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6891
d2e4a39e 6892int
ebf56fd3 6893ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6894 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6895{
6896 int others_clause;
6897 int i;
d2e4a39e 6898 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6899 struct value *outer;
6900 struct value *discrim;
14f9c5c9
AS
6901 LONGEST discrim_val;
6902
0c281816
JB
6903 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6904 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6905 if (discrim == NULL)
14f9c5c9 6906 return -1;
0c281816 6907 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6908
6909 others_clause = -1;
6910 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6911 {
6912 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6913 others_clause = i;
14f9c5c9 6914 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6915 return i;
14f9c5c9
AS
6916 }
6917
6918 return others_clause;
6919}
d2e4a39e 6920\f
14f9c5c9
AS
6921
6922
4c4b4cd2 6923 /* Dynamic-Sized Records */
14f9c5c9
AS
6924
6925/* Strategy: The type ostensibly attached to a value with dynamic size
6926 (i.e., a size that is not statically recorded in the debugging
6927 data) does not accurately reflect the size or layout of the value.
6928 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6929 conventional types that are constructed on the fly. */
14f9c5c9
AS
6930
6931/* There is a subtle and tricky problem here. In general, we cannot
6932 determine the size of dynamic records without its data. However,
6933 the 'struct value' data structure, which GDB uses to represent
6934 quantities in the inferior process (the target), requires the size
6935 of the type at the time of its allocation in order to reserve space
6936 for GDB's internal copy of the data. That's why the
6937 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6938 rather than struct value*s.
14f9c5c9
AS
6939
6940 However, GDB's internal history variables ($1, $2, etc.) are
6941 struct value*s containing internal copies of the data that are not, in
6942 general, the same as the data at their corresponding addresses in
6943 the target. Fortunately, the types we give to these values are all
6944 conventional, fixed-size types (as per the strategy described
6945 above), so that we don't usually have to perform the
6946 'to_fixed_xxx_type' conversions to look at their values.
6947 Unfortunately, there is one exception: if one of the internal
6948 history variables is an array whose elements are unconstrained
6949 records, then we will need to create distinct fixed types for each
6950 element selected. */
6951
6952/* The upshot of all of this is that many routines take a (type, host
6953 address, target address) triple as arguments to represent a value.
6954 The host address, if non-null, is supposed to contain an internal
6955 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6956 target at the target address. */
14f9c5c9
AS
6957
6958/* Assuming that VAL0 represents a pointer value, the result of
6959 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6960 dynamic-sized types. */
14f9c5c9 6961
d2e4a39e
AS
6962struct value *
6963ada_value_ind (struct value *val0)
14f9c5c9 6964{
c48db5ca 6965 struct value *val = value_ind (val0);
5b4ee69b 6966
4c4b4cd2 6967 return ada_to_fixed_value (val);
14f9c5c9
AS
6968}
6969
6970/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6971 qualifiers on VAL0. */
6972
d2e4a39e
AS
6973static struct value *
6974ada_coerce_ref (struct value *val0)
6975{
df407dfe 6976 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6977 {
6978 struct value *val = val0;
5b4ee69b 6979
994b9211 6980 val = coerce_ref (val);
4c4b4cd2 6981 return ada_to_fixed_value (val);
d2e4a39e
AS
6982 }
6983 else
14f9c5c9
AS
6984 return val0;
6985}
6986
6987/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6988 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6989
6990static unsigned int
ebf56fd3 6991align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6992{
6993 return (off + alignment - 1) & ~(alignment - 1);
6994}
6995
4c4b4cd2 6996/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6997
6998static unsigned int
ebf56fd3 6999field_alignment (struct type *type, int f)
14f9c5c9 7000{
d2e4a39e 7001 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7002 int len;
14f9c5c9
AS
7003 int align_offset;
7004
64a1bf19
JB
7005 /* The field name should never be null, unless the debugging information
7006 is somehow malformed. In this case, we assume the field does not
7007 require any alignment. */
7008 if (name == NULL)
7009 return 1;
7010
7011 len = strlen (name);
7012
4c4b4cd2
PH
7013 if (!isdigit (name[len - 1]))
7014 return 1;
14f9c5c9 7015
d2e4a39e 7016 if (isdigit (name[len - 2]))
14f9c5c9
AS
7017 align_offset = len - 2;
7018 else
7019 align_offset = len - 1;
7020
4c4b4cd2 7021 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7022 return TARGET_CHAR_BIT;
7023
4c4b4cd2
PH
7024 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7025}
7026
852dff6c 7027/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7028
852dff6c
JB
7029static struct symbol *
7030ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7031{
7032 struct symbol *sym;
7033
7034 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7035 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7036 return sym;
7037
7038 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7039 return sym;
14f9c5c9
AS
7040}
7041
dddfab26
UW
7042/* Find a type named NAME. Ignores ambiguity. This routine will look
7043 solely for types defined by debug info, it will not search the GDB
7044 primitive types. */
4c4b4cd2 7045
852dff6c 7046static struct type *
ebf56fd3 7047ada_find_any_type (const char *name)
14f9c5c9 7048{
852dff6c 7049 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7050
14f9c5c9 7051 if (sym != NULL)
dddfab26 7052 return SYMBOL_TYPE (sym);
14f9c5c9 7053
dddfab26 7054 return NULL;
14f9c5c9
AS
7055}
7056
739593e0
JB
7057/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7058 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7059 symbol, in which case it is returned. Otherwise, this looks for
7060 symbols whose name is that of NAME_SYM suffixed with "___XR".
7061 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7062
7063struct symbol *
739593e0 7064ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7065{
739593e0 7066 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7067 struct symbol *sym;
7068
739593e0
JB
7069 if (strstr (name, "___XR") != NULL)
7070 return name_sym;
7071
aeb5907d
JB
7072 sym = find_old_style_renaming_symbol (name, block);
7073
7074 if (sym != NULL)
7075 return sym;
7076
0963b4bd 7077 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7078 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7079 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7080 return sym;
7081 else
7082 return NULL;
7083}
7084
7085static struct symbol *
7086find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7087{
7f0df278 7088 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7089 char *rename;
7090
7091 if (function_sym != NULL)
7092 {
7093 /* If the symbol is defined inside a function, NAME is not fully
7094 qualified. This means we need to prepend the function name
7095 as well as adding the ``___XR'' suffix to build the name of
7096 the associated renaming symbol. */
0d5cff50 7097 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7098 /* Function names sometimes contain suffixes used
7099 for instance to qualify nested subprograms. When building
7100 the XR type name, we need to make sure that this suffix is
7101 not included. So do not include any suffix in the function
7102 name length below. */
69fadcdf 7103 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7104 const int rename_len = function_name_len + 2 /* "__" */
7105 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7106
529cad9c 7107 /* Strip the suffix if necessary. */
69fadcdf
JB
7108 ada_remove_trailing_digits (function_name, &function_name_len);
7109 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7110 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7111
4c4b4cd2
PH
7112 /* Library-level functions are a special case, as GNAT adds
7113 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7114 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7115 have this prefix, so we need to skip this prefix if present. */
7116 if (function_name_len > 5 /* "_ada_" */
7117 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7118 {
7119 function_name += 5;
7120 function_name_len -= 5;
7121 }
4c4b4cd2
PH
7122
7123 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7124 strncpy (rename, function_name, function_name_len);
7125 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7126 "__%s___XR", name);
4c4b4cd2
PH
7127 }
7128 else
7129 {
7130 const int rename_len = strlen (name) + 6;
5b4ee69b 7131
4c4b4cd2 7132 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7133 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7134 }
7135
852dff6c 7136 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7137}
7138
14f9c5c9 7139/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7140 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7141 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7142 otherwise return 0. */
7143
14f9c5c9 7144int
d2e4a39e 7145ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7146{
7147 if (type1 == NULL)
7148 return 1;
7149 else if (type0 == NULL)
7150 return 0;
7151 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7152 return 1;
7153 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7154 return 0;
4c4b4cd2
PH
7155 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7156 return 1;
ad82864c 7157 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7158 return 1;
4c4b4cd2
PH
7159 else if (ada_is_array_descriptor_type (type0)
7160 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7161 return 1;
aeb5907d
JB
7162 else
7163 {
7164 const char *type0_name = type_name_no_tag (type0);
7165 const char *type1_name = type_name_no_tag (type1);
7166
7167 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7168 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7169 return 1;
7170 }
14f9c5c9
AS
7171 return 0;
7172}
7173
7174/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7175 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7176
0d5cff50 7177const char *
d2e4a39e 7178ada_type_name (struct type *type)
14f9c5c9 7179{
d2e4a39e 7180 if (type == NULL)
14f9c5c9
AS
7181 return NULL;
7182 else if (TYPE_NAME (type) != NULL)
7183 return TYPE_NAME (type);
7184 else
7185 return TYPE_TAG_NAME (type);
7186}
7187
b4ba55a1
JB
7188/* Search the list of "descriptive" types associated to TYPE for a type
7189 whose name is NAME. */
7190
7191static struct type *
7192find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7193{
7194 struct type *result;
7195
7196 /* If there no descriptive-type info, then there is no parallel type
7197 to be found. */
7198 if (!HAVE_GNAT_AUX_INFO (type))
7199 return NULL;
7200
7201 result = TYPE_DESCRIPTIVE_TYPE (type);
7202 while (result != NULL)
7203 {
0d5cff50 7204 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7205
7206 if (result_name == NULL)
7207 {
7208 warning (_("unexpected null name on descriptive type"));
7209 return NULL;
7210 }
7211
7212 /* If the names match, stop. */
7213 if (strcmp (result_name, name) == 0)
7214 break;
7215
7216 /* Otherwise, look at the next item on the list, if any. */
7217 if (HAVE_GNAT_AUX_INFO (result))
7218 result = TYPE_DESCRIPTIVE_TYPE (result);
7219 else
7220 result = NULL;
7221 }
7222
7223 /* If we didn't find a match, see whether this is a packed array. With
7224 older compilers, the descriptive type information is either absent or
7225 irrelevant when it comes to packed arrays so the above lookup fails.
7226 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7227 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7228 return ada_find_any_type (name);
7229
7230 return result;
7231}
7232
7233/* Find a parallel type to TYPE with the specified NAME, using the
7234 descriptive type taken from the debugging information, if available,
7235 and otherwise using the (slower) name-based method. */
7236
7237static struct type *
7238ada_find_parallel_type_with_name (struct type *type, const char *name)
7239{
7240 struct type *result = NULL;
7241
7242 if (HAVE_GNAT_AUX_INFO (type))
7243 result = find_parallel_type_by_descriptive_type (type, name);
7244 else
7245 result = ada_find_any_type (name);
7246
7247 return result;
7248}
7249
7250/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7251 SUFFIX to the name of TYPE. */
14f9c5c9 7252
d2e4a39e 7253struct type *
ebf56fd3 7254ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7255{
0d5cff50
DE
7256 char *name;
7257 const char *typename = ada_type_name (type);
14f9c5c9 7258 int len;
d2e4a39e 7259
14f9c5c9
AS
7260 if (typename == NULL)
7261 return NULL;
7262
7263 len = strlen (typename);
7264
b4ba55a1 7265 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7266
7267 strcpy (name, typename);
7268 strcpy (name + len, suffix);
7269
b4ba55a1 7270 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7271}
7272
14f9c5c9 7273/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7274 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7275
d2e4a39e
AS
7276static struct type *
7277dynamic_template_type (struct type *type)
14f9c5c9 7278{
61ee279c 7279 type = ada_check_typedef (type);
14f9c5c9
AS
7280
7281 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7282 || ada_type_name (type) == NULL)
14f9c5c9 7283 return NULL;
d2e4a39e 7284 else
14f9c5c9
AS
7285 {
7286 int len = strlen (ada_type_name (type));
5b4ee69b 7287
4c4b4cd2
PH
7288 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7289 return type;
14f9c5c9 7290 else
4c4b4cd2 7291 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7292 }
7293}
7294
7295/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7296 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7297
d2e4a39e
AS
7298static int
7299is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7300{
7301 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7302
d2e4a39e 7303 return name != NULL
14f9c5c9
AS
7304 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7305 && strstr (name, "___XVL") != NULL;
7306}
7307
4c4b4cd2
PH
7308/* The index of the variant field of TYPE, or -1 if TYPE does not
7309 represent a variant record type. */
14f9c5c9 7310
d2e4a39e 7311static int
4c4b4cd2 7312variant_field_index (struct type *type)
14f9c5c9
AS
7313{
7314 int f;
7315
4c4b4cd2
PH
7316 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7317 return -1;
7318
7319 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7320 {
7321 if (ada_is_variant_part (type, f))
7322 return f;
7323 }
7324 return -1;
14f9c5c9
AS
7325}
7326
4c4b4cd2
PH
7327/* A record type with no fields. */
7328
d2e4a39e 7329static struct type *
e9bb382b 7330empty_record (struct type *template)
14f9c5c9 7331{
e9bb382b 7332 struct type *type = alloc_type_copy (template);
5b4ee69b 7333
14f9c5c9
AS
7334 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7335 TYPE_NFIELDS (type) = 0;
7336 TYPE_FIELDS (type) = NULL;
b1f33ddd 7337 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7338 TYPE_NAME (type) = "<empty>";
7339 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7340 TYPE_LENGTH (type) = 0;
7341 return type;
7342}
7343
7344/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7345 the value of type TYPE at VALADDR or ADDRESS (see comments at
7346 the beginning of this section) VAL according to GNAT conventions.
7347 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7348 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7349 an outer-level type (i.e., as opposed to a branch of a variant.) A
7350 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7351 of the variant.
14f9c5c9 7352
4c4b4cd2
PH
7353 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7354 length are not statically known are discarded. As a consequence,
7355 VALADDR, ADDRESS and DVAL0 are ignored.
7356
7357 NOTE: Limitations: For now, we assume that dynamic fields and
7358 variants occupy whole numbers of bytes. However, they need not be
7359 byte-aligned. */
7360
7361struct type *
10a2c479 7362ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7363 const gdb_byte *valaddr,
4c4b4cd2
PH
7364 CORE_ADDR address, struct value *dval0,
7365 int keep_dynamic_fields)
14f9c5c9 7366{
d2e4a39e
AS
7367 struct value *mark = value_mark ();
7368 struct value *dval;
7369 struct type *rtype;
14f9c5c9 7370 int nfields, bit_len;
4c4b4cd2 7371 int variant_field;
14f9c5c9 7372 long off;
d94e4f4f 7373 int fld_bit_len;
14f9c5c9
AS
7374 int f;
7375
4c4b4cd2
PH
7376 /* Compute the number of fields in this record type that are going
7377 to be processed: unless keep_dynamic_fields, this includes only
7378 fields whose position and length are static will be processed. */
7379 if (keep_dynamic_fields)
7380 nfields = TYPE_NFIELDS (type);
7381 else
7382 {
7383 nfields = 0;
76a01679 7384 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7385 && !ada_is_variant_part (type, nfields)
7386 && !is_dynamic_field (type, nfields))
7387 nfields++;
7388 }
7389
e9bb382b 7390 rtype = alloc_type_copy (type);
14f9c5c9
AS
7391 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7392 INIT_CPLUS_SPECIFIC (rtype);
7393 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7394 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7395 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7396 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7397 TYPE_NAME (rtype) = ada_type_name (type);
7398 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7399 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7400
d2e4a39e
AS
7401 off = 0;
7402 bit_len = 0;
4c4b4cd2
PH
7403 variant_field = -1;
7404
14f9c5c9
AS
7405 for (f = 0; f < nfields; f += 1)
7406 {
6c038f32
PH
7407 off = align_value (off, field_alignment (type, f))
7408 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7409 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7410 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7411
d2e4a39e 7412 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7413 {
7414 variant_field = f;
d94e4f4f 7415 fld_bit_len = 0;
4c4b4cd2 7416 }
14f9c5c9 7417 else if (is_dynamic_field (type, f))
4c4b4cd2 7418 {
284614f0
JB
7419 const gdb_byte *field_valaddr = valaddr;
7420 CORE_ADDR field_address = address;
7421 struct type *field_type =
7422 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7423
4c4b4cd2 7424 if (dval0 == NULL)
b5304971
JG
7425 {
7426 /* rtype's length is computed based on the run-time
7427 value of discriminants. If the discriminants are not
7428 initialized, the type size may be completely bogus and
0963b4bd 7429 GDB may fail to allocate a value for it. So check the
b5304971
JG
7430 size first before creating the value. */
7431 check_size (rtype);
7432 dval = value_from_contents_and_address (rtype, valaddr, address);
7433 }
4c4b4cd2
PH
7434 else
7435 dval = dval0;
7436
284614f0
JB
7437 /* If the type referenced by this field is an aligner type, we need
7438 to unwrap that aligner type, because its size might not be set.
7439 Keeping the aligner type would cause us to compute the wrong
7440 size for this field, impacting the offset of the all the fields
7441 that follow this one. */
7442 if (ada_is_aligner_type (field_type))
7443 {
7444 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7445
7446 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7447 field_address = cond_offset_target (field_address, field_offset);
7448 field_type = ada_aligned_type (field_type);
7449 }
7450
7451 field_valaddr = cond_offset_host (field_valaddr,
7452 off / TARGET_CHAR_BIT);
7453 field_address = cond_offset_target (field_address,
7454 off / TARGET_CHAR_BIT);
7455
7456 /* Get the fixed type of the field. Note that, in this case,
7457 we do not want to get the real type out of the tag: if
7458 the current field is the parent part of a tagged record,
7459 we will get the tag of the object. Clearly wrong: the real
7460 type of the parent is not the real type of the child. We
7461 would end up in an infinite loop. */
7462 field_type = ada_get_base_type (field_type);
7463 field_type = ada_to_fixed_type (field_type, field_valaddr,
7464 field_address, dval, 0);
27f2a97b
JB
7465 /* If the field size is already larger than the maximum
7466 object size, then the record itself will necessarily
7467 be larger than the maximum object size. We need to make
7468 this check now, because the size might be so ridiculously
7469 large (due to an uninitialized variable in the inferior)
7470 that it would cause an overflow when adding it to the
7471 record size. */
7472 check_size (field_type);
284614f0
JB
7473
7474 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7475 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7476 /* The multiplication can potentially overflow. But because
7477 the field length has been size-checked just above, and
7478 assuming that the maximum size is a reasonable value,
7479 an overflow should not happen in practice. So rather than
7480 adding overflow recovery code to this already complex code,
7481 we just assume that it's not going to happen. */
d94e4f4f 7482 fld_bit_len =
4c4b4cd2
PH
7483 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7484 }
14f9c5c9 7485 else
4c4b4cd2 7486 {
9f0dec2d
JB
7487 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7488
720d1a40
JB
7489 /* If our field is a typedef type (most likely a typedef of
7490 a fat pointer, encoding an array access), then we need to
7491 look at its target type to determine its characteristics.
7492 In particular, we would miscompute the field size if we took
7493 the size of the typedef (zero), instead of the size of
7494 the target type. */
7495 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7496 field_type = ada_typedef_target_type (field_type);
7497
9f0dec2d 7498 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7499 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7500 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7501 fld_bit_len =
4c4b4cd2
PH
7502 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7503 else
d94e4f4f 7504 fld_bit_len =
9f0dec2d 7505 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7506 }
14f9c5c9 7507 if (off + fld_bit_len > bit_len)
4c4b4cd2 7508 bit_len = off + fld_bit_len;
d94e4f4f 7509 off += fld_bit_len;
4c4b4cd2
PH
7510 TYPE_LENGTH (rtype) =
7511 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7512 }
4c4b4cd2
PH
7513
7514 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7515 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7516 the record. This can happen in the presence of representation
7517 clauses. */
7518 if (variant_field >= 0)
7519 {
7520 struct type *branch_type;
7521
7522 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7523
7524 if (dval0 == NULL)
7525 dval = value_from_contents_and_address (rtype, valaddr, address);
7526 else
7527 dval = dval0;
7528
7529 branch_type =
7530 to_fixed_variant_branch_type
7531 (TYPE_FIELD_TYPE (type, variant_field),
7532 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7533 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7534 if (branch_type == NULL)
7535 {
7536 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7537 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7538 TYPE_NFIELDS (rtype) -= 1;
7539 }
7540 else
7541 {
7542 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7543 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7544 fld_bit_len =
7545 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7546 TARGET_CHAR_BIT;
7547 if (off + fld_bit_len > bit_len)
7548 bit_len = off + fld_bit_len;
7549 TYPE_LENGTH (rtype) =
7550 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7551 }
7552 }
7553
714e53ab
PH
7554 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7555 should contain the alignment of that record, which should be a strictly
7556 positive value. If null or negative, then something is wrong, most
7557 probably in the debug info. In that case, we don't round up the size
0963b4bd 7558 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7559 the current RTYPE length might be good enough for our purposes. */
7560 if (TYPE_LENGTH (type) <= 0)
7561 {
323e0a4a
AC
7562 if (TYPE_NAME (rtype))
7563 warning (_("Invalid type size for `%s' detected: %d."),
7564 TYPE_NAME (rtype), TYPE_LENGTH (type));
7565 else
7566 warning (_("Invalid type size for <unnamed> detected: %d."),
7567 TYPE_LENGTH (type));
714e53ab
PH
7568 }
7569 else
7570 {
7571 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7572 TYPE_LENGTH (type));
7573 }
14f9c5c9
AS
7574
7575 value_free_to_mark (mark);
d2e4a39e 7576 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7577 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7578 return rtype;
7579}
7580
4c4b4cd2
PH
7581/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7582 of 1. */
14f9c5c9 7583
d2e4a39e 7584static struct type *
fc1a4b47 7585template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7586 CORE_ADDR address, struct value *dval0)
7587{
7588 return ada_template_to_fixed_record_type_1 (type, valaddr,
7589 address, dval0, 1);
7590}
7591
7592/* An ordinary record type in which ___XVL-convention fields and
7593 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7594 static approximations, containing all possible fields. Uses
7595 no runtime values. Useless for use in values, but that's OK,
7596 since the results are used only for type determinations. Works on both
7597 structs and unions. Representation note: to save space, we memorize
7598 the result of this function in the TYPE_TARGET_TYPE of the
7599 template type. */
7600
7601static struct type *
7602template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7603{
7604 struct type *type;
7605 int nfields;
7606 int f;
7607
4c4b4cd2
PH
7608 if (TYPE_TARGET_TYPE (type0) != NULL)
7609 return TYPE_TARGET_TYPE (type0);
7610
7611 nfields = TYPE_NFIELDS (type0);
7612 type = type0;
14f9c5c9
AS
7613
7614 for (f = 0; f < nfields; f += 1)
7615 {
61ee279c 7616 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7617 struct type *new_type;
14f9c5c9 7618
4c4b4cd2
PH
7619 if (is_dynamic_field (type0, f))
7620 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7621 else
f192137b 7622 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7623 if (type == type0 && new_type != field_type)
7624 {
e9bb382b 7625 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7626 TYPE_CODE (type) = TYPE_CODE (type0);
7627 INIT_CPLUS_SPECIFIC (type);
7628 TYPE_NFIELDS (type) = nfields;
7629 TYPE_FIELDS (type) = (struct field *)
7630 TYPE_ALLOC (type, nfields * sizeof (struct field));
7631 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7632 sizeof (struct field) * nfields);
7633 TYPE_NAME (type) = ada_type_name (type0);
7634 TYPE_TAG_NAME (type) = NULL;
876cecd0 7635 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7636 TYPE_LENGTH (type) = 0;
7637 }
7638 TYPE_FIELD_TYPE (type, f) = new_type;
7639 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7640 }
14f9c5c9
AS
7641 return type;
7642}
7643
4c4b4cd2 7644/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7645 whose address in memory is ADDRESS, returns a revision of TYPE,
7646 which should be a non-dynamic-sized record, in which the variant
7647 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7648 for discriminant values in DVAL0, which can be NULL if the record
7649 contains the necessary discriminant values. */
7650
d2e4a39e 7651static struct type *
fc1a4b47 7652to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7653 CORE_ADDR address, struct value *dval0)
14f9c5c9 7654{
d2e4a39e 7655 struct value *mark = value_mark ();
4c4b4cd2 7656 struct value *dval;
d2e4a39e 7657 struct type *rtype;
14f9c5c9
AS
7658 struct type *branch_type;
7659 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7660 int variant_field = variant_field_index (type);
14f9c5c9 7661
4c4b4cd2 7662 if (variant_field == -1)
14f9c5c9
AS
7663 return type;
7664
4c4b4cd2
PH
7665 if (dval0 == NULL)
7666 dval = value_from_contents_and_address (type, valaddr, address);
7667 else
7668 dval = dval0;
7669
e9bb382b 7670 rtype = alloc_type_copy (type);
14f9c5c9 7671 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7672 INIT_CPLUS_SPECIFIC (rtype);
7673 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7674 TYPE_FIELDS (rtype) =
7675 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7676 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7677 sizeof (struct field) * nfields);
14f9c5c9
AS
7678 TYPE_NAME (rtype) = ada_type_name (type);
7679 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7680 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7681 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7682
4c4b4cd2
PH
7683 branch_type = to_fixed_variant_branch_type
7684 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7685 cond_offset_host (valaddr,
4c4b4cd2
PH
7686 TYPE_FIELD_BITPOS (type, variant_field)
7687 / TARGET_CHAR_BIT),
d2e4a39e 7688 cond_offset_target (address,
4c4b4cd2
PH
7689 TYPE_FIELD_BITPOS (type, variant_field)
7690 / TARGET_CHAR_BIT), dval);
d2e4a39e 7691 if (branch_type == NULL)
14f9c5c9 7692 {
4c4b4cd2 7693 int f;
5b4ee69b 7694
4c4b4cd2
PH
7695 for (f = variant_field + 1; f < nfields; f += 1)
7696 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7697 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7698 }
7699 else
7700 {
4c4b4cd2
PH
7701 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7702 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7703 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7704 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7705 }
4c4b4cd2 7706 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7707
4c4b4cd2 7708 value_free_to_mark (mark);
14f9c5c9
AS
7709 return rtype;
7710}
7711
7712/* An ordinary record type (with fixed-length fields) that describes
7713 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7714 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7715 should be in DVAL, a record value; it may be NULL if the object
7716 at ADDR itself contains any necessary discriminant values.
7717 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7718 values from the record are needed. Except in the case that DVAL,
7719 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7720 unchecked) is replaced by a particular branch of the variant.
7721
7722 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7723 is questionable and may be removed. It can arise during the
7724 processing of an unconstrained-array-of-record type where all the
7725 variant branches have exactly the same size. This is because in
7726 such cases, the compiler does not bother to use the XVS convention
7727 when encoding the record. I am currently dubious of this
7728 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7729
d2e4a39e 7730static struct type *
fc1a4b47 7731to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7732 CORE_ADDR address, struct value *dval)
14f9c5c9 7733{
d2e4a39e 7734 struct type *templ_type;
14f9c5c9 7735
876cecd0 7736 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7737 return type0;
7738
d2e4a39e 7739 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7740
7741 if (templ_type != NULL)
7742 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7743 else if (variant_field_index (type0) >= 0)
7744 {
7745 if (dval == NULL && valaddr == NULL && address == 0)
7746 return type0;
7747 return to_record_with_fixed_variant_part (type0, valaddr, address,
7748 dval);
7749 }
14f9c5c9
AS
7750 else
7751 {
876cecd0 7752 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7753 return type0;
7754 }
7755
7756}
7757
7758/* An ordinary record type (with fixed-length fields) that describes
7759 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7760 union type. Any necessary discriminants' values should be in DVAL,
7761 a record value. That is, this routine selects the appropriate
7762 branch of the union at ADDR according to the discriminant value
b1f33ddd 7763 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7764 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7765
d2e4a39e 7766static struct type *
fc1a4b47 7767to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7768 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7769{
7770 int which;
d2e4a39e
AS
7771 struct type *templ_type;
7772 struct type *var_type;
14f9c5c9
AS
7773
7774 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7775 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7776 else
14f9c5c9
AS
7777 var_type = var_type0;
7778
7779 templ_type = ada_find_parallel_type (var_type, "___XVU");
7780
7781 if (templ_type != NULL)
7782 var_type = templ_type;
7783
b1f33ddd
JB
7784 if (is_unchecked_variant (var_type, value_type (dval)))
7785 return var_type0;
d2e4a39e
AS
7786 which =
7787 ada_which_variant_applies (var_type,
0fd88904 7788 value_type (dval), value_contents (dval));
14f9c5c9
AS
7789
7790 if (which < 0)
e9bb382b 7791 return empty_record (var_type);
14f9c5c9 7792 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7793 return to_fixed_record_type
d2e4a39e
AS
7794 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7795 valaddr, address, dval);
4c4b4cd2 7796 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7797 return
7798 to_fixed_record_type
7799 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7800 else
7801 return TYPE_FIELD_TYPE (var_type, which);
7802}
7803
7804/* Assuming that TYPE0 is an array type describing the type of a value
7805 at ADDR, and that DVAL describes a record containing any
7806 discriminants used in TYPE0, returns a type for the value that
7807 contains no dynamic components (that is, no components whose sizes
7808 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7809 true, gives an error message if the resulting type's size is over
4c4b4cd2 7810 varsize_limit. */
14f9c5c9 7811
d2e4a39e
AS
7812static struct type *
7813to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7814 int ignore_too_big)
14f9c5c9 7815{
d2e4a39e
AS
7816 struct type *index_type_desc;
7817 struct type *result;
ad82864c 7818 int constrained_packed_array_p;
14f9c5c9 7819
b0dd7688 7820 type0 = ada_check_typedef (type0);
284614f0 7821 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7822 return type0;
14f9c5c9 7823
ad82864c
JB
7824 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7825 if (constrained_packed_array_p)
7826 type0 = decode_constrained_packed_array_type (type0);
284614f0 7827
14f9c5c9 7828 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7829 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7830 if (index_type_desc == NULL)
7831 {
61ee279c 7832 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7833
14f9c5c9 7834 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7835 depend on the contents of the array in properly constructed
7836 debugging data. */
529cad9c
PH
7837 /* Create a fixed version of the array element type.
7838 We're not providing the address of an element here,
e1d5a0d2 7839 and thus the actual object value cannot be inspected to do
529cad9c
PH
7840 the conversion. This should not be a problem, since arrays of
7841 unconstrained objects are not allowed. In particular, all
7842 the elements of an array of a tagged type should all be of
7843 the same type specified in the debugging info. No need to
7844 consult the object tag. */
1ed6ede0 7845 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7846
284614f0
JB
7847 /* Make sure we always create a new array type when dealing with
7848 packed array types, since we're going to fix-up the array
7849 type length and element bitsize a little further down. */
ad82864c 7850 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7851 result = type0;
14f9c5c9 7852 else
e9bb382b 7853 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7854 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7855 }
7856 else
7857 {
7858 int i;
7859 struct type *elt_type0;
7860
7861 elt_type0 = type0;
7862 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7863 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7864
7865 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7866 depend on the contents of the array in properly constructed
7867 debugging data. */
529cad9c
PH
7868 /* Create a fixed version of the array element type.
7869 We're not providing the address of an element here,
e1d5a0d2 7870 and thus the actual object value cannot be inspected to do
529cad9c
PH
7871 the conversion. This should not be a problem, since arrays of
7872 unconstrained objects are not allowed. In particular, all
7873 the elements of an array of a tagged type should all be of
7874 the same type specified in the debugging info. No need to
7875 consult the object tag. */
1ed6ede0
JB
7876 result =
7877 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7878
7879 elt_type0 = type0;
14f9c5c9 7880 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7881 {
7882 struct type *range_type =
28c85d6c 7883 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7884
e9bb382b 7885 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7886 result, range_type);
1ce677a4 7887 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7888 }
d2e4a39e 7889 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7890 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7891 }
7892
2e6fda7d
JB
7893 /* We want to preserve the type name. This can be useful when
7894 trying to get the type name of a value that has already been
7895 printed (for instance, if the user did "print VAR; whatis $". */
7896 TYPE_NAME (result) = TYPE_NAME (type0);
7897
ad82864c 7898 if (constrained_packed_array_p)
284614f0
JB
7899 {
7900 /* So far, the resulting type has been created as if the original
7901 type was a regular (non-packed) array type. As a result, the
7902 bitsize of the array elements needs to be set again, and the array
7903 length needs to be recomputed based on that bitsize. */
7904 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7905 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7906
7907 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7908 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7909 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7910 TYPE_LENGTH (result)++;
7911 }
7912
876cecd0 7913 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7914 return result;
d2e4a39e 7915}
14f9c5c9
AS
7916
7917
7918/* A standard type (containing no dynamically sized components)
7919 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7920 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7921 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7922 ADDRESS or in VALADDR contains these discriminants.
7923
1ed6ede0
JB
7924 If CHECK_TAG is not null, in the case of tagged types, this function
7925 attempts to locate the object's tag and use it to compute the actual
7926 type. However, when ADDRESS is null, we cannot use it to determine the
7927 location of the tag, and therefore compute the tagged type's actual type.
7928 So we return the tagged type without consulting the tag. */
529cad9c 7929
f192137b
JB
7930static struct type *
7931ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7932 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7933{
61ee279c 7934 type = ada_check_typedef (type);
d2e4a39e
AS
7935 switch (TYPE_CODE (type))
7936 {
7937 default:
14f9c5c9 7938 return type;
d2e4a39e 7939 case TYPE_CODE_STRUCT:
4c4b4cd2 7940 {
76a01679 7941 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7942 struct type *fixed_record_type =
7943 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7944
529cad9c
PH
7945 /* If STATIC_TYPE is a tagged type and we know the object's address,
7946 then we can determine its tag, and compute the object's actual
0963b4bd 7947 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7948 type (the parent part of the record may have dynamic fields
7949 and the way the location of _tag is expressed may depend on
7950 them). */
529cad9c 7951
1ed6ede0 7952 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7953 {
7954 struct type *real_type =
1ed6ede0
JB
7955 type_from_tag (value_tag_from_contents_and_address
7956 (fixed_record_type,
7957 valaddr,
7958 address));
5b4ee69b 7959
76a01679 7960 if (real_type != NULL)
1ed6ede0 7961 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7962 }
4af88198
JB
7963
7964 /* Check to see if there is a parallel ___XVZ variable.
7965 If there is, then it provides the actual size of our type. */
7966 else if (ada_type_name (fixed_record_type) != NULL)
7967 {
0d5cff50 7968 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
7969 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7970 int xvz_found = 0;
7971 LONGEST size;
7972
88c15c34 7973 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7974 size = get_int_var_value (xvz_name, &xvz_found);
7975 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7976 {
7977 fixed_record_type = copy_type (fixed_record_type);
7978 TYPE_LENGTH (fixed_record_type) = size;
7979
7980 /* The FIXED_RECORD_TYPE may have be a stub. We have
7981 observed this when the debugging info is STABS, and
7982 apparently it is something that is hard to fix.
7983
7984 In practice, we don't need the actual type definition
7985 at all, because the presence of the XVZ variable allows us
7986 to assume that there must be a XVS type as well, which we
7987 should be able to use later, when we need the actual type
7988 definition.
7989
7990 In the meantime, pretend that the "fixed" type we are
7991 returning is NOT a stub, because this can cause trouble
7992 when using this type to create new types targeting it.
7993 Indeed, the associated creation routines often check
7994 whether the target type is a stub and will try to replace
0963b4bd 7995 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7996 might cause the new type to have the wrong size too.
7997 Consider the case of an array, for instance, where the size
7998 of the array is computed from the number of elements in
7999 our array multiplied by the size of its element. */
8000 TYPE_STUB (fixed_record_type) = 0;
8001 }
8002 }
1ed6ede0 8003 return fixed_record_type;
4c4b4cd2 8004 }
d2e4a39e 8005 case TYPE_CODE_ARRAY:
4c4b4cd2 8006 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8007 case TYPE_CODE_UNION:
8008 if (dval == NULL)
4c4b4cd2 8009 return type;
d2e4a39e 8010 else
4c4b4cd2 8011 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8012 }
14f9c5c9
AS
8013}
8014
f192137b
JB
8015/* The same as ada_to_fixed_type_1, except that it preserves the type
8016 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8017
8018 The typedef layer needs be preserved in order to differentiate between
8019 arrays and array pointers when both types are implemented using the same
8020 fat pointer. In the array pointer case, the pointer is encoded as
8021 a typedef of the pointer type. For instance, considering:
8022
8023 type String_Access is access String;
8024 S1 : String_Access := null;
8025
8026 To the debugger, S1 is defined as a typedef of type String. But
8027 to the user, it is a pointer. So if the user tries to print S1,
8028 we should not dereference the array, but print the array address
8029 instead.
8030
8031 If we didn't preserve the typedef layer, we would lose the fact that
8032 the type is to be presented as a pointer (needs de-reference before
8033 being printed). And we would also use the source-level type name. */
f192137b
JB
8034
8035struct type *
8036ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8037 CORE_ADDR address, struct value *dval, int check_tag)
8038
8039{
8040 struct type *fixed_type =
8041 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8042
96dbd2c1
JB
8043 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8044 then preserve the typedef layer.
8045
8046 Implementation note: We can only check the main-type portion of
8047 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8048 from TYPE now returns a type that has the same instance flags
8049 as TYPE. For instance, if TYPE is a "typedef const", and its
8050 target type is a "struct", then the typedef elimination will return
8051 a "const" version of the target type. See check_typedef for more
8052 details about how the typedef layer elimination is done.
8053
8054 brobecker/2010-11-19: It seems to me that the only case where it is
8055 useful to preserve the typedef layer is when dealing with fat pointers.
8056 Perhaps, we could add a check for that and preserve the typedef layer
8057 only in that situation. But this seems unecessary so far, probably
8058 because we call check_typedef/ada_check_typedef pretty much everywhere.
8059 */
f192137b 8060 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8061 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8062 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8063 return type;
8064
8065 return fixed_type;
8066}
8067
14f9c5c9 8068/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8069 TYPE0, but based on no runtime data. */
14f9c5c9 8070
d2e4a39e
AS
8071static struct type *
8072to_static_fixed_type (struct type *type0)
14f9c5c9 8073{
d2e4a39e 8074 struct type *type;
14f9c5c9
AS
8075
8076 if (type0 == NULL)
8077 return NULL;
8078
876cecd0 8079 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8080 return type0;
8081
61ee279c 8082 type0 = ada_check_typedef (type0);
d2e4a39e 8083
14f9c5c9
AS
8084 switch (TYPE_CODE (type0))
8085 {
8086 default:
8087 return type0;
8088 case TYPE_CODE_STRUCT:
8089 type = dynamic_template_type (type0);
d2e4a39e 8090 if (type != NULL)
4c4b4cd2
PH
8091 return template_to_static_fixed_type (type);
8092 else
8093 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8094 case TYPE_CODE_UNION:
8095 type = ada_find_parallel_type (type0, "___XVU");
8096 if (type != NULL)
4c4b4cd2
PH
8097 return template_to_static_fixed_type (type);
8098 else
8099 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8100 }
8101}
8102
4c4b4cd2
PH
8103/* A static approximation of TYPE with all type wrappers removed. */
8104
d2e4a39e
AS
8105static struct type *
8106static_unwrap_type (struct type *type)
14f9c5c9
AS
8107{
8108 if (ada_is_aligner_type (type))
8109 {
61ee279c 8110 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8111 if (ada_type_name (type1) == NULL)
4c4b4cd2 8112 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8113
8114 return static_unwrap_type (type1);
8115 }
d2e4a39e 8116 else
14f9c5c9 8117 {
d2e4a39e 8118 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8119
d2e4a39e 8120 if (raw_real_type == type)
4c4b4cd2 8121 return type;
14f9c5c9 8122 else
4c4b4cd2 8123 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8124 }
8125}
8126
8127/* In some cases, incomplete and private types require
4c4b4cd2 8128 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8129 type Foo;
8130 type FooP is access Foo;
8131 V: FooP;
8132 type Foo is array ...;
4c4b4cd2 8133 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8134 cross-references to such types, we instead substitute for FooP a
8135 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8136 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8137
8138/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8139 exists, otherwise TYPE. */
8140
d2e4a39e 8141struct type *
61ee279c 8142ada_check_typedef (struct type *type)
14f9c5c9 8143{
727e3d2e
JB
8144 if (type == NULL)
8145 return NULL;
8146
720d1a40
JB
8147 /* If our type is a typedef type of a fat pointer, then we're done.
8148 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8149 what allows us to distinguish between fat pointers that represent
8150 array types, and fat pointers that represent array access types
8151 (in both cases, the compiler implements them as fat pointers). */
8152 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8153 && is_thick_pntr (ada_typedef_target_type (type)))
8154 return type;
8155
14f9c5c9
AS
8156 CHECK_TYPEDEF (type);
8157 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8158 || !TYPE_STUB (type)
14f9c5c9
AS
8159 || TYPE_TAG_NAME (type) == NULL)
8160 return type;
d2e4a39e 8161 else
14f9c5c9 8162 {
0d5cff50 8163 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8164 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8165
05e522ef
JB
8166 if (type1 == NULL)
8167 return type;
8168
8169 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8170 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8171 types, only for the typedef-to-array types). If that's the case,
8172 strip the typedef layer. */
8173 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8174 type1 = ada_check_typedef (type1);
8175
8176 return type1;
14f9c5c9
AS
8177 }
8178}
8179
8180/* A value representing the data at VALADDR/ADDRESS as described by
8181 type TYPE0, but with a standard (static-sized) type that correctly
8182 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8183 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8184 creation of struct values]. */
14f9c5c9 8185
4c4b4cd2
PH
8186static struct value *
8187ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8188 struct value *val0)
14f9c5c9 8189{
1ed6ede0 8190 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8191
14f9c5c9
AS
8192 if (type == type0 && val0 != NULL)
8193 return val0;
d2e4a39e 8194 else
4c4b4cd2
PH
8195 return value_from_contents_and_address (type, 0, address);
8196}
8197
8198/* A value representing VAL, but with a standard (static-sized) type
8199 that correctly describes it. Does not necessarily create a new
8200 value. */
8201
0c3acc09 8202struct value *
4c4b4cd2
PH
8203ada_to_fixed_value (struct value *val)
8204{
c48db5ca
JB
8205 val = unwrap_value (val);
8206 val = ada_to_fixed_value_create (value_type (val),
8207 value_address (val),
8208 val);
8209 return val;
14f9c5c9 8210}
d2e4a39e 8211\f
14f9c5c9 8212
14f9c5c9
AS
8213/* Attributes */
8214
4c4b4cd2
PH
8215/* Table mapping attribute numbers to names.
8216 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8217
d2e4a39e 8218static const char *attribute_names[] = {
14f9c5c9
AS
8219 "<?>",
8220
d2e4a39e 8221 "first",
14f9c5c9
AS
8222 "last",
8223 "length",
8224 "image",
14f9c5c9
AS
8225 "max",
8226 "min",
4c4b4cd2
PH
8227 "modulus",
8228 "pos",
8229 "size",
8230 "tag",
14f9c5c9 8231 "val",
14f9c5c9
AS
8232 0
8233};
8234
d2e4a39e 8235const char *
4c4b4cd2 8236ada_attribute_name (enum exp_opcode n)
14f9c5c9 8237{
4c4b4cd2
PH
8238 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8239 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8240 else
8241 return attribute_names[0];
8242}
8243
4c4b4cd2 8244/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8245
4c4b4cd2
PH
8246static LONGEST
8247pos_atr (struct value *arg)
14f9c5c9 8248{
24209737
PH
8249 struct value *val = coerce_ref (arg);
8250 struct type *type = value_type (val);
14f9c5c9 8251
d2e4a39e 8252 if (!discrete_type_p (type))
323e0a4a 8253 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8254
8255 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8256 {
8257 int i;
24209737 8258 LONGEST v = value_as_long (val);
14f9c5c9 8259
d2e4a39e 8260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
8261 {
8262 if (v == TYPE_FIELD_BITPOS (type, i))
8263 return i;
8264 }
323e0a4a 8265 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8266 }
8267 else
24209737 8268 return value_as_long (val);
4c4b4cd2
PH
8269}
8270
8271static struct value *
3cb382c9 8272value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8273{
3cb382c9 8274 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8275}
8276
4c4b4cd2 8277/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8278
d2e4a39e
AS
8279static struct value *
8280value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8281{
d2e4a39e 8282 if (!discrete_type_p (type))
323e0a4a 8283 error (_("'VAL only defined on discrete types"));
df407dfe 8284 if (!integer_type_p (value_type (arg)))
323e0a4a 8285 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8286
8287 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8288 {
8289 long pos = value_as_long (arg);
5b4ee69b 8290
14f9c5c9 8291 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8292 error (_("argument to 'VAL out of range"));
d2e4a39e 8293 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8294 }
8295 else
8296 return value_from_longest (type, value_as_long (arg));
8297}
14f9c5c9 8298\f
d2e4a39e 8299
4c4b4cd2 8300 /* Evaluation */
14f9c5c9 8301
4c4b4cd2
PH
8302/* True if TYPE appears to be an Ada character type.
8303 [At the moment, this is true only for Character and Wide_Character;
8304 It is a heuristic test that could stand improvement]. */
14f9c5c9 8305
d2e4a39e
AS
8306int
8307ada_is_character_type (struct type *type)
14f9c5c9 8308{
7b9f71f2
JB
8309 const char *name;
8310
8311 /* If the type code says it's a character, then assume it really is,
8312 and don't check any further. */
8313 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8314 return 1;
8315
8316 /* Otherwise, assume it's a character type iff it is a discrete type
8317 with a known character type name. */
8318 name = ada_type_name (type);
8319 return (name != NULL
8320 && (TYPE_CODE (type) == TYPE_CODE_INT
8321 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8322 && (strcmp (name, "character") == 0
8323 || strcmp (name, "wide_character") == 0
5a517ebd 8324 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8325 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8326}
8327
4c4b4cd2 8328/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8329
8330int
ebf56fd3 8331ada_is_string_type (struct type *type)
14f9c5c9 8332{
61ee279c 8333 type = ada_check_typedef (type);
d2e4a39e 8334 if (type != NULL
14f9c5c9 8335 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8336 && (ada_is_simple_array_type (type)
8337 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8338 && ada_array_arity (type) == 1)
8339 {
8340 struct type *elttype = ada_array_element_type (type, 1);
8341
8342 return ada_is_character_type (elttype);
8343 }
d2e4a39e 8344 else
14f9c5c9
AS
8345 return 0;
8346}
8347
5bf03f13
JB
8348/* The compiler sometimes provides a parallel XVS type for a given
8349 PAD type. Normally, it is safe to follow the PAD type directly,
8350 but older versions of the compiler have a bug that causes the offset
8351 of its "F" field to be wrong. Following that field in that case
8352 would lead to incorrect results, but this can be worked around
8353 by ignoring the PAD type and using the associated XVS type instead.
8354
8355 Set to True if the debugger should trust the contents of PAD types.
8356 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8357static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8358
8359/* True if TYPE is a struct type introduced by the compiler to force the
8360 alignment of a value. Such types have a single field with a
4c4b4cd2 8361 distinctive name. */
14f9c5c9
AS
8362
8363int
ebf56fd3 8364ada_is_aligner_type (struct type *type)
14f9c5c9 8365{
61ee279c 8366 type = ada_check_typedef (type);
714e53ab 8367
5bf03f13 8368 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8369 return 0;
8370
14f9c5c9 8371 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8372 && TYPE_NFIELDS (type) == 1
8373 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8374}
8375
8376/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8377 the parallel type. */
14f9c5c9 8378
d2e4a39e
AS
8379struct type *
8380ada_get_base_type (struct type *raw_type)
14f9c5c9 8381{
d2e4a39e
AS
8382 struct type *real_type_namer;
8383 struct type *raw_real_type;
14f9c5c9
AS
8384
8385 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8386 return raw_type;
8387
284614f0
JB
8388 if (ada_is_aligner_type (raw_type))
8389 /* The encoding specifies that we should always use the aligner type.
8390 So, even if this aligner type has an associated XVS type, we should
8391 simply ignore it.
8392
8393 According to the compiler gurus, an XVS type parallel to an aligner
8394 type may exist because of a stabs limitation. In stabs, aligner
8395 types are empty because the field has a variable-sized type, and
8396 thus cannot actually be used as an aligner type. As a result,
8397 we need the associated parallel XVS type to decode the type.
8398 Since the policy in the compiler is to not change the internal
8399 representation based on the debugging info format, we sometimes
8400 end up having a redundant XVS type parallel to the aligner type. */
8401 return raw_type;
8402
14f9c5c9 8403 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8404 if (real_type_namer == NULL
14f9c5c9
AS
8405 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8406 || TYPE_NFIELDS (real_type_namer) != 1)
8407 return raw_type;
8408
f80d3ff2
JB
8409 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8410 {
8411 /* This is an older encoding form where the base type needs to be
8412 looked up by name. We prefer the newer enconding because it is
8413 more efficient. */
8414 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8415 if (raw_real_type == NULL)
8416 return raw_type;
8417 else
8418 return raw_real_type;
8419 }
8420
8421 /* The field in our XVS type is a reference to the base type. */
8422 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8423}
14f9c5c9 8424
4c4b4cd2 8425/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8426
d2e4a39e
AS
8427struct type *
8428ada_aligned_type (struct type *type)
14f9c5c9
AS
8429{
8430 if (ada_is_aligner_type (type))
8431 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8432 else
8433 return ada_get_base_type (type);
8434}
8435
8436
8437/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8438 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8439
fc1a4b47
AC
8440const gdb_byte *
8441ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8442{
d2e4a39e 8443 if (ada_is_aligner_type (type))
14f9c5c9 8444 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8445 valaddr +
8446 TYPE_FIELD_BITPOS (type,
8447 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8448 else
8449 return valaddr;
8450}
8451
4c4b4cd2
PH
8452
8453
14f9c5c9 8454/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8455 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8456const char *
8457ada_enum_name (const char *name)
14f9c5c9 8458{
4c4b4cd2
PH
8459 static char *result;
8460 static size_t result_len = 0;
d2e4a39e 8461 char *tmp;
14f9c5c9 8462
4c4b4cd2
PH
8463 /* First, unqualify the enumeration name:
8464 1. Search for the last '.' character. If we find one, then skip
177b42fe 8465 all the preceding characters, the unqualified name starts
76a01679 8466 right after that dot.
4c4b4cd2 8467 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8468 translates dots into "__". Search forward for double underscores,
8469 but stop searching when we hit an overloading suffix, which is
8470 of the form "__" followed by digits. */
4c4b4cd2 8471
c3e5cd34
PH
8472 tmp = strrchr (name, '.');
8473 if (tmp != NULL)
4c4b4cd2
PH
8474 name = tmp + 1;
8475 else
14f9c5c9 8476 {
4c4b4cd2
PH
8477 while ((tmp = strstr (name, "__")) != NULL)
8478 {
8479 if (isdigit (tmp[2]))
8480 break;
8481 else
8482 name = tmp + 2;
8483 }
14f9c5c9
AS
8484 }
8485
8486 if (name[0] == 'Q')
8487 {
14f9c5c9 8488 int v;
5b4ee69b 8489
14f9c5c9 8490 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8491 {
8492 if (sscanf (name + 2, "%x", &v) != 1)
8493 return name;
8494 }
14f9c5c9 8495 else
4c4b4cd2 8496 return name;
14f9c5c9 8497
4c4b4cd2 8498 GROW_VECT (result, result_len, 16);
14f9c5c9 8499 if (isascii (v) && isprint (v))
88c15c34 8500 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8501 else if (name[1] == 'U')
88c15c34 8502 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8503 else
88c15c34 8504 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8505
8506 return result;
8507 }
d2e4a39e 8508 else
4c4b4cd2 8509 {
c3e5cd34
PH
8510 tmp = strstr (name, "__");
8511 if (tmp == NULL)
8512 tmp = strstr (name, "$");
8513 if (tmp != NULL)
4c4b4cd2
PH
8514 {
8515 GROW_VECT (result, result_len, tmp - name + 1);
8516 strncpy (result, name, tmp - name);
8517 result[tmp - name] = '\0';
8518 return result;
8519 }
8520
8521 return name;
8522 }
14f9c5c9
AS
8523}
8524
14f9c5c9
AS
8525/* Evaluate the subexpression of EXP starting at *POS as for
8526 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8527 expression. */
14f9c5c9 8528
d2e4a39e
AS
8529static struct value *
8530evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8531{
4b27a620 8532 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8533}
8534
8535/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8536 value it wraps. */
14f9c5c9 8537
d2e4a39e
AS
8538static struct value *
8539unwrap_value (struct value *val)
14f9c5c9 8540{
df407dfe 8541 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8542
14f9c5c9
AS
8543 if (ada_is_aligner_type (type))
8544 {
de4d072f 8545 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8546 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8547
14f9c5c9 8548 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8549 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8550
8551 return unwrap_value (v);
8552 }
d2e4a39e 8553 else
14f9c5c9 8554 {
d2e4a39e 8555 struct type *raw_real_type =
61ee279c 8556 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8557
5bf03f13
JB
8558 /* If there is no parallel XVS or XVE type, then the value is
8559 already unwrapped. Return it without further modification. */
8560 if ((type == raw_real_type)
8561 && ada_find_parallel_type (type, "___XVE") == NULL)
8562 return val;
14f9c5c9 8563
d2e4a39e 8564 return
4c4b4cd2
PH
8565 coerce_unspec_val_to_type
8566 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8567 value_address (val),
1ed6ede0 8568 NULL, 1));
14f9c5c9
AS
8569 }
8570}
d2e4a39e
AS
8571
8572static struct value *
8573cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8574{
8575 LONGEST val;
8576
df407dfe 8577 if (type == value_type (arg))
14f9c5c9 8578 return arg;
df407dfe 8579 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8580 val = ada_float_to_fixed (type,
df407dfe 8581 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8582 value_as_long (arg)));
d2e4a39e 8583 else
14f9c5c9 8584 {
a53b7a21 8585 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8586
14f9c5c9
AS
8587 val = ada_float_to_fixed (type, argd);
8588 }
8589
8590 return value_from_longest (type, val);
8591}
8592
d2e4a39e 8593static struct value *
a53b7a21 8594cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8595{
df407dfe 8596 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8597 value_as_long (arg));
5b4ee69b 8598
a53b7a21 8599 return value_from_double (type, val);
14f9c5c9
AS
8600}
8601
4c4b4cd2
PH
8602/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8603 return the converted value. */
8604
d2e4a39e
AS
8605static struct value *
8606coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8607{
df407dfe 8608 struct type *type2 = value_type (val);
5b4ee69b 8609
14f9c5c9
AS
8610 if (type == type2)
8611 return val;
8612
61ee279c
PH
8613 type2 = ada_check_typedef (type2);
8614 type = ada_check_typedef (type);
14f9c5c9 8615
d2e4a39e
AS
8616 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8617 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8618 {
8619 val = ada_value_ind (val);
df407dfe 8620 type2 = value_type (val);
14f9c5c9
AS
8621 }
8622
d2e4a39e 8623 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8624 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8625 {
8626 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8627 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8628 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8629 error (_("Incompatible types in assignment"));
04624583 8630 deprecated_set_value_type (val, type);
14f9c5c9 8631 }
d2e4a39e 8632 return val;
14f9c5c9
AS
8633}
8634
4c4b4cd2
PH
8635static struct value *
8636ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8637{
8638 struct value *val;
8639 struct type *type1, *type2;
8640 LONGEST v, v1, v2;
8641
994b9211
AC
8642 arg1 = coerce_ref (arg1);
8643 arg2 = coerce_ref (arg2);
18af8284
JB
8644 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8645 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8646
76a01679
JB
8647 if (TYPE_CODE (type1) != TYPE_CODE_INT
8648 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8649 return value_binop (arg1, arg2, op);
8650
76a01679 8651 switch (op)
4c4b4cd2
PH
8652 {
8653 case BINOP_MOD:
8654 case BINOP_DIV:
8655 case BINOP_REM:
8656 break;
8657 default:
8658 return value_binop (arg1, arg2, op);
8659 }
8660
8661 v2 = value_as_long (arg2);
8662 if (v2 == 0)
323e0a4a 8663 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8664
8665 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8666 return value_binop (arg1, arg2, op);
8667
8668 v1 = value_as_long (arg1);
8669 switch (op)
8670 {
8671 case BINOP_DIV:
8672 v = v1 / v2;
76a01679
JB
8673 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8674 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8675 break;
8676 case BINOP_REM:
8677 v = v1 % v2;
76a01679
JB
8678 if (v * v1 < 0)
8679 v -= v2;
4c4b4cd2
PH
8680 break;
8681 default:
8682 /* Should not reach this point. */
8683 v = 0;
8684 }
8685
8686 val = allocate_value (type1);
990a07ab 8687 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8688 TYPE_LENGTH (value_type (val)),
8689 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8690 return val;
8691}
8692
8693static int
8694ada_value_equal (struct value *arg1, struct value *arg2)
8695{
df407dfe
AC
8696 if (ada_is_direct_array_type (value_type (arg1))
8697 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8698 {
f58b38bf
JB
8699 /* Automatically dereference any array reference before
8700 we attempt to perform the comparison. */
8701 arg1 = ada_coerce_ref (arg1);
8702 arg2 = ada_coerce_ref (arg2);
8703
4c4b4cd2
PH
8704 arg1 = ada_coerce_to_simple_array (arg1);
8705 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8706 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8707 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8708 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8709 /* FIXME: The following works only for types whose
76a01679
JB
8710 representations use all bits (no padding or undefined bits)
8711 and do not have user-defined equality. */
8712 return
df407dfe 8713 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8714 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8715 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8716 }
8717 return value_equal (arg1, arg2);
8718}
8719
52ce6436
PH
8720/* Total number of component associations in the aggregate starting at
8721 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8722 OP_AGGREGATE. */
52ce6436
PH
8723
8724static int
8725num_component_specs (struct expression *exp, int pc)
8726{
8727 int n, m, i;
5b4ee69b 8728
52ce6436
PH
8729 m = exp->elts[pc + 1].longconst;
8730 pc += 3;
8731 n = 0;
8732 for (i = 0; i < m; i += 1)
8733 {
8734 switch (exp->elts[pc].opcode)
8735 {
8736 default:
8737 n += 1;
8738 break;
8739 case OP_CHOICES:
8740 n += exp->elts[pc + 1].longconst;
8741 break;
8742 }
8743 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8744 }
8745 return n;
8746}
8747
8748/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8749 component of LHS (a simple array or a record), updating *POS past
8750 the expression, assuming that LHS is contained in CONTAINER. Does
8751 not modify the inferior's memory, nor does it modify LHS (unless
8752 LHS == CONTAINER). */
8753
8754static void
8755assign_component (struct value *container, struct value *lhs, LONGEST index,
8756 struct expression *exp, int *pos)
8757{
8758 struct value *mark = value_mark ();
8759 struct value *elt;
5b4ee69b 8760
52ce6436
PH
8761 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8762 {
22601c15
UW
8763 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8764 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8765
52ce6436
PH
8766 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8767 }
8768 else
8769 {
8770 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8771 elt = ada_to_fixed_value (elt);
52ce6436
PH
8772 }
8773
8774 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8775 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8776 else
8777 value_assign_to_component (container, elt,
8778 ada_evaluate_subexp (NULL, exp, pos,
8779 EVAL_NORMAL));
8780
8781 value_free_to_mark (mark);
8782}
8783
8784/* Assuming that LHS represents an lvalue having a record or array
8785 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8786 of that aggregate's value to LHS, advancing *POS past the
8787 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8788 lvalue containing LHS (possibly LHS itself). Does not modify
8789 the inferior's memory, nor does it modify the contents of
0963b4bd 8790 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8791
8792static struct value *
8793assign_aggregate (struct value *container,
8794 struct value *lhs, struct expression *exp,
8795 int *pos, enum noside noside)
8796{
8797 struct type *lhs_type;
8798 int n = exp->elts[*pos+1].longconst;
8799 LONGEST low_index, high_index;
8800 int num_specs;
8801 LONGEST *indices;
8802 int max_indices, num_indices;
8803 int is_array_aggregate;
8804 int i;
52ce6436
PH
8805
8806 *pos += 3;
8807 if (noside != EVAL_NORMAL)
8808 {
52ce6436
PH
8809 for (i = 0; i < n; i += 1)
8810 ada_evaluate_subexp (NULL, exp, pos, noside);
8811 return container;
8812 }
8813
8814 container = ada_coerce_ref (container);
8815 if (ada_is_direct_array_type (value_type (container)))
8816 container = ada_coerce_to_simple_array (container);
8817 lhs = ada_coerce_ref (lhs);
8818 if (!deprecated_value_modifiable (lhs))
8819 error (_("Left operand of assignment is not a modifiable lvalue."));
8820
8821 lhs_type = value_type (lhs);
8822 if (ada_is_direct_array_type (lhs_type))
8823 {
8824 lhs = ada_coerce_to_simple_array (lhs);
8825 lhs_type = value_type (lhs);
8826 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8827 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8828 is_array_aggregate = 1;
8829 }
8830 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8831 {
8832 low_index = 0;
8833 high_index = num_visible_fields (lhs_type) - 1;
8834 is_array_aggregate = 0;
8835 }
8836 else
8837 error (_("Left-hand side must be array or record."));
8838
8839 num_specs = num_component_specs (exp, *pos - 3);
8840 max_indices = 4 * num_specs + 4;
8841 indices = alloca (max_indices * sizeof (indices[0]));
8842 indices[0] = indices[1] = low_index - 1;
8843 indices[2] = indices[3] = high_index + 1;
8844 num_indices = 4;
8845
8846 for (i = 0; i < n; i += 1)
8847 {
8848 switch (exp->elts[*pos].opcode)
8849 {
1fbf5ada
JB
8850 case OP_CHOICES:
8851 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8852 &num_indices, max_indices,
8853 low_index, high_index);
8854 break;
8855 case OP_POSITIONAL:
8856 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8857 &num_indices, max_indices,
8858 low_index, high_index);
1fbf5ada
JB
8859 break;
8860 case OP_OTHERS:
8861 if (i != n-1)
8862 error (_("Misplaced 'others' clause"));
8863 aggregate_assign_others (container, lhs, exp, pos, indices,
8864 num_indices, low_index, high_index);
8865 break;
8866 default:
8867 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8868 }
8869 }
8870
8871 return container;
8872}
8873
8874/* Assign into the component of LHS indexed by the OP_POSITIONAL
8875 construct at *POS, updating *POS past the construct, given that
8876 the positions are relative to lower bound LOW, where HIGH is the
8877 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8878 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8879 assign_aggregate. */
52ce6436
PH
8880static void
8881aggregate_assign_positional (struct value *container,
8882 struct value *lhs, struct expression *exp,
8883 int *pos, LONGEST *indices, int *num_indices,
8884 int max_indices, LONGEST low, LONGEST high)
8885{
8886 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8887
8888 if (ind - 1 == high)
e1d5a0d2 8889 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8890 if (ind <= high)
8891 {
8892 add_component_interval (ind, ind, indices, num_indices, max_indices);
8893 *pos += 3;
8894 assign_component (container, lhs, ind, exp, pos);
8895 }
8896 else
8897 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8898}
8899
8900/* Assign into the components of LHS indexed by the OP_CHOICES
8901 construct at *POS, updating *POS past the construct, given that
8902 the allowable indices are LOW..HIGH. Record the indices assigned
8903 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8904 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8905static void
8906aggregate_assign_from_choices (struct value *container,
8907 struct value *lhs, struct expression *exp,
8908 int *pos, LONGEST *indices, int *num_indices,
8909 int max_indices, LONGEST low, LONGEST high)
8910{
8911 int j;
8912 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8913 int choice_pos, expr_pc;
8914 int is_array = ada_is_direct_array_type (value_type (lhs));
8915
8916 choice_pos = *pos += 3;
8917
8918 for (j = 0; j < n_choices; j += 1)
8919 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8920 expr_pc = *pos;
8921 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8922
8923 for (j = 0; j < n_choices; j += 1)
8924 {
8925 LONGEST lower, upper;
8926 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8927
52ce6436
PH
8928 if (op == OP_DISCRETE_RANGE)
8929 {
8930 choice_pos += 1;
8931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8932 EVAL_NORMAL));
8933 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8934 EVAL_NORMAL));
8935 }
8936 else if (is_array)
8937 {
8938 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8939 EVAL_NORMAL));
8940 upper = lower;
8941 }
8942 else
8943 {
8944 int ind;
0d5cff50 8945 const char *name;
5b4ee69b 8946
52ce6436
PH
8947 switch (op)
8948 {
8949 case OP_NAME:
8950 name = &exp->elts[choice_pos + 2].string;
8951 break;
8952 case OP_VAR_VALUE:
8953 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8954 break;
8955 default:
8956 error (_("Invalid record component association."));
8957 }
8958 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8959 ind = 0;
8960 if (! find_struct_field (name, value_type (lhs), 0,
8961 NULL, NULL, NULL, NULL, &ind))
8962 error (_("Unknown component name: %s."), name);
8963 lower = upper = ind;
8964 }
8965
8966 if (lower <= upper && (lower < low || upper > high))
8967 error (_("Index in component association out of bounds."));
8968
8969 add_component_interval (lower, upper, indices, num_indices,
8970 max_indices);
8971 while (lower <= upper)
8972 {
8973 int pos1;
5b4ee69b 8974
52ce6436
PH
8975 pos1 = expr_pc;
8976 assign_component (container, lhs, lower, exp, &pos1);
8977 lower += 1;
8978 }
8979 }
8980}
8981
8982/* Assign the value of the expression in the OP_OTHERS construct in
8983 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8984 have not been previously assigned. The index intervals already assigned
8985 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8986 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8987static void
8988aggregate_assign_others (struct value *container,
8989 struct value *lhs, struct expression *exp,
8990 int *pos, LONGEST *indices, int num_indices,
8991 LONGEST low, LONGEST high)
8992{
8993 int i;
5ce64950 8994 int expr_pc = *pos + 1;
52ce6436
PH
8995
8996 for (i = 0; i < num_indices - 2; i += 2)
8997 {
8998 LONGEST ind;
5b4ee69b 8999
52ce6436
PH
9000 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9001 {
5ce64950 9002 int localpos;
5b4ee69b 9003
5ce64950
MS
9004 localpos = expr_pc;
9005 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9006 }
9007 }
9008 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9009}
9010
9011/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9012 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9013 modifying *SIZE as needed. It is an error if *SIZE exceeds
9014 MAX_SIZE. The resulting intervals do not overlap. */
9015static void
9016add_component_interval (LONGEST low, LONGEST high,
9017 LONGEST* indices, int *size, int max_size)
9018{
9019 int i, j;
5b4ee69b 9020
52ce6436
PH
9021 for (i = 0; i < *size; i += 2) {
9022 if (high >= indices[i] && low <= indices[i + 1])
9023 {
9024 int kh;
5b4ee69b 9025
52ce6436
PH
9026 for (kh = i + 2; kh < *size; kh += 2)
9027 if (high < indices[kh])
9028 break;
9029 if (low < indices[i])
9030 indices[i] = low;
9031 indices[i + 1] = indices[kh - 1];
9032 if (high > indices[i + 1])
9033 indices[i + 1] = high;
9034 memcpy (indices + i + 2, indices + kh, *size - kh);
9035 *size -= kh - i - 2;
9036 return;
9037 }
9038 else if (high < indices[i])
9039 break;
9040 }
9041
9042 if (*size == max_size)
9043 error (_("Internal error: miscounted aggregate components."));
9044 *size += 2;
9045 for (j = *size-1; j >= i+2; j -= 1)
9046 indices[j] = indices[j - 2];
9047 indices[i] = low;
9048 indices[i + 1] = high;
9049}
9050
6e48bd2c
JB
9051/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9052 is different. */
9053
9054static struct value *
9055ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9056{
9057 if (type == ada_check_typedef (value_type (arg2)))
9058 return arg2;
9059
9060 if (ada_is_fixed_point_type (type))
9061 return (cast_to_fixed (type, arg2));
9062
9063 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9064 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9065
9066 return value_cast (type, arg2);
9067}
9068
284614f0
JB
9069/* Evaluating Ada expressions, and printing their result.
9070 ------------------------------------------------------
9071
21649b50
JB
9072 1. Introduction:
9073 ----------------
9074
284614f0
JB
9075 We usually evaluate an Ada expression in order to print its value.
9076 We also evaluate an expression in order to print its type, which
9077 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9078 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9079 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9080 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9081 similar.
9082
9083 Evaluating expressions is a little more complicated for Ada entities
9084 than it is for entities in languages such as C. The main reason for
9085 this is that Ada provides types whose definition might be dynamic.
9086 One example of such types is variant records. Or another example
9087 would be an array whose bounds can only be known at run time.
9088
9089 The following description is a general guide as to what should be
9090 done (and what should NOT be done) in order to evaluate an expression
9091 involving such types, and when. This does not cover how the semantic
9092 information is encoded by GNAT as this is covered separatly. For the
9093 document used as the reference for the GNAT encoding, see exp_dbug.ads
9094 in the GNAT sources.
9095
9096 Ideally, we should embed each part of this description next to its
9097 associated code. Unfortunately, the amount of code is so vast right
9098 now that it's hard to see whether the code handling a particular
9099 situation might be duplicated or not. One day, when the code is
9100 cleaned up, this guide might become redundant with the comments
9101 inserted in the code, and we might want to remove it.
9102
21649b50
JB
9103 2. ``Fixing'' an Entity, the Simple Case:
9104 -----------------------------------------
9105
284614f0
JB
9106 When evaluating Ada expressions, the tricky issue is that they may
9107 reference entities whose type contents and size are not statically
9108 known. Consider for instance a variant record:
9109
9110 type Rec (Empty : Boolean := True) is record
9111 case Empty is
9112 when True => null;
9113 when False => Value : Integer;
9114 end case;
9115 end record;
9116 Yes : Rec := (Empty => False, Value => 1);
9117 No : Rec := (empty => True);
9118
9119 The size and contents of that record depends on the value of the
9120 descriminant (Rec.Empty). At this point, neither the debugging
9121 information nor the associated type structure in GDB are able to
9122 express such dynamic types. So what the debugger does is to create
9123 "fixed" versions of the type that applies to the specific object.
9124 We also informally refer to this opperation as "fixing" an object,
9125 which means creating its associated fixed type.
9126
9127 Example: when printing the value of variable "Yes" above, its fixed
9128 type would look like this:
9129
9130 type Rec is record
9131 Empty : Boolean;
9132 Value : Integer;
9133 end record;
9134
9135 On the other hand, if we printed the value of "No", its fixed type
9136 would become:
9137
9138 type Rec is record
9139 Empty : Boolean;
9140 end record;
9141
9142 Things become a little more complicated when trying to fix an entity
9143 with a dynamic type that directly contains another dynamic type,
9144 such as an array of variant records, for instance. There are
9145 two possible cases: Arrays, and records.
9146
21649b50
JB
9147 3. ``Fixing'' Arrays:
9148 ---------------------
9149
9150 The type structure in GDB describes an array in terms of its bounds,
9151 and the type of its elements. By design, all elements in the array
9152 have the same type and we cannot represent an array of variant elements
9153 using the current type structure in GDB. When fixing an array,
9154 we cannot fix the array element, as we would potentially need one
9155 fixed type per element of the array. As a result, the best we can do
9156 when fixing an array is to produce an array whose bounds and size
9157 are correct (allowing us to read it from memory), but without having
9158 touched its element type. Fixing each element will be done later,
9159 when (if) necessary.
9160
9161 Arrays are a little simpler to handle than records, because the same
9162 amount of memory is allocated for each element of the array, even if
1b536f04 9163 the amount of space actually used by each element differs from element
21649b50 9164 to element. Consider for instance the following array of type Rec:
284614f0
JB
9165
9166 type Rec_Array is array (1 .. 2) of Rec;
9167
1b536f04
JB
9168 The actual amount of memory occupied by each element might be different
9169 from element to element, depending on the value of their discriminant.
21649b50 9170 But the amount of space reserved for each element in the array remains
1b536f04 9171 fixed regardless. So we simply need to compute that size using
21649b50
JB
9172 the debugging information available, from which we can then determine
9173 the array size (we multiply the number of elements of the array by
9174 the size of each element).
9175
9176 The simplest case is when we have an array of a constrained element
9177 type. For instance, consider the following type declarations:
9178
9179 type Bounded_String (Max_Size : Integer) is
9180 Length : Integer;
9181 Buffer : String (1 .. Max_Size);
9182 end record;
9183 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9184
9185 In this case, the compiler describes the array as an array of
9186 variable-size elements (identified by its XVS suffix) for which
9187 the size can be read in the parallel XVZ variable.
9188
9189 In the case of an array of an unconstrained element type, the compiler
9190 wraps the array element inside a private PAD type. This type should not
9191 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9192 that we also use the adjective "aligner" in our code to designate
9193 these wrapper types.
9194
1b536f04 9195 In some cases, the size allocated for each element is statically
21649b50
JB
9196 known. In that case, the PAD type already has the correct size,
9197 and the array element should remain unfixed.
9198
9199 But there are cases when this size is not statically known.
9200 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9201
9202 type Dynamic is array (1 .. Five) of Integer;
9203 type Wrapper (Has_Length : Boolean := False) is record
9204 Data : Dynamic;
9205 case Has_Length is
9206 when True => Length : Integer;
9207 when False => null;
9208 end case;
9209 end record;
9210 type Wrapper_Array is array (1 .. 2) of Wrapper;
9211
9212 Hello : Wrapper_Array := (others => (Has_Length => True,
9213 Data => (others => 17),
9214 Length => 1));
9215
9216
9217 The debugging info would describe variable Hello as being an
9218 array of a PAD type. The size of that PAD type is not statically
9219 known, but can be determined using a parallel XVZ variable.
9220 In that case, a copy of the PAD type with the correct size should
9221 be used for the fixed array.
9222
21649b50
JB
9223 3. ``Fixing'' record type objects:
9224 ----------------------------------
9225
9226 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9227 record types. In this case, in order to compute the associated
9228 fixed type, we need to determine the size and offset of each of
9229 its components. This, in turn, requires us to compute the fixed
9230 type of each of these components.
9231
9232 Consider for instance the example:
9233
9234 type Bounded_String (Max_Size : Natural) is record
9235 Str : String (1 .. Max_Size);
9236 Length : Natural;
9237 end record;
9238 My_String : Bounded_String (Max_Size => 10);
9239
9240 In that case, the position of field "Length" depends on the size
9241 of field Str, which itself depends on the value of the Max_Size
21649b50 9242 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9243 we need to fix the type of field Str. Therefore, fixing a variant
9244 record requires us to fix each of its components.
9245
9246 However, if a component does not have a dynamic size, the component
9247 should not be fixed. In particular, fields that use a PAD type
9248 should not fixed. Here is an example where this might happen
9249 (assuming type Rec above):
9250
9251 type Container (Big : Boolean) is record
9252 First : Rec;
9253 After : Integer;
9254 case Big is
9255 when True => Another : Integer;
9256 when False => null;
9257 end case;
9258 end record;
9259 My_Container : Container := (Big => False,
9260 First => (Empty => True),
9261 After => 42);
9262
9263 In that example, the compiler creates a PAD type for component First,
9264 whose size is constant, and then positions the component After just
9265 right after it. The offset of component After is therefore constant
9266 in this case.
9267
9268 The debugger computes the position of each field based on an algorithm
9269 that uses, among other things, the actual position and size of the field
21649b50
JB
9270 preceding it. Let's now imagine that the user is trying to print
9271 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9272 end up computing the offset of field After based on the size of the
9273 fixed version of field First. And since in our example First has
9274 only one actual field, the size of the fixed type is actually smaller
9275 than the amount of space allocated to that field, and thus we would
9276 compute the wrong offset of field After.
9277
21649b50
JB
9278 To make things more complicated, we need to watch out for dynamic
9279 components of variant records (identified by the ___XVL suffix in
9280 the component name). Even if the target type is a PAD type, the size
9281 of that type might not be statically known. So the PAD type needs
9282 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9283 we might end up with the wrong size for our component. This can be
9284 observed with the following type declarations:
284614f0
JB
9285
9286 type Octal is new Integer range 0 .. 7;
9287 type Octal_Array is array (Positive range <>) of Octal;
9288 pragma Pack (Octal_Array);
9289
9290 type Octal_Buffer (Size : Positive) is record
9291 Buffer : Octal_Array (1 .. Size);
9292 Length : Integer;
9293 end record;
9294
9295 In that case, Buffer is a PAD type whose size is unset and needs
9296 to be computed by fixing the unwrapped type.
9297
21649b50
JB
9298 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9299 ----------------------------------------------------------
9300
9301 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9302 thus far, be actually fixed?
9303
9304 The answer is: Only when referencing that element. For instance
9305 when selecting one component of a record, this specific component
9306 should be fixed at that point in time. Or when printing the value
9307 of a record, each component should be fixed before its value gets
9308 printed. Similarly for arrays, the element of the array should be
9309 fixed when printing each element of the array, or when extracting
9310 one element out of that array. On the other hand, fixing should
9311 not be performed on the elements when taking a slice of an array!
9312
9313 Note that one of the side-effects of miscomputing the offset and
9314 size of each field is that we end up also miscomputing the size
9315 of the containing type. This can have adverse results when computing
9316 the value of an entity. GDB fetches the value of an entity based
9317 on the size of its type, and thus a wrong size causes GDB to fetch
9318 the wrong amount of memory. In the case where the computed size is
9319 too small, GDB fetches too little data to print the value of our
9320 entiry. Results in this case as unpredicatble, as we usually read
9321 past the buffer containing the data =:-o. */
9322
9323/* Implement the evaluate_exp routine in the exp_descriptor structure
9324 for the Ada language. */
9325
52ce6436 9326static struct value *
ebf56fd3 9327ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9328 int *pos, enum noside noside)
14f9c5c9
AS
9329{
9330 enum exp_opcode op;
b5385fc0 9331 int tem;
14f9c5c9
AS
9332 int pc;
9333 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9334 struct type *type;
52ce6436 9335 int nargs, oplen;
d2e4a39e 9336 struct value **argvec;
14f9c5c9 9337
d2e4a39e
AS
9338 pc = *pos;
9339 *pos += 1;
14f9c5c9
AS
9340 op = exp->elts[pc].opcode;
9341
d2e4a39e 9342 switch (op)
14f9c5c9
AS
9343 {
9344 default:
9345 *pos -= 1;
6e48bd2c
JB
9346 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9347 arg1 = unwrap_value (arg1);
9348
9349 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9350 then we need to perform the conversion manually, because
9351 evaluate_subexp_standard doesn't do it. This conversion is
9352 necessary in Ada because the different kinds of float/fixed
9353 types in Ada have different representations.
9354
9355 Similarly, we need to perform the conversion from OP_LONG
9356 ourselves. */
9357 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9358 arg1 = ada_value_cast (expect_type, arg1, noside);
9359
9360 return arg1;
4c4b4cd2
PH
9361
9362 case OP_STRING:
9363 {
76a01679 9364 struct value *result;
5b4ee69b 9365
76a01679
JB
9366 *pos -= 1;
9367 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9368 /* The result type will have code OP_STRING, bashed there from
9369 OP_ARRAY. Bash it back. */
df407dfe
AC
9370 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9371 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9372 return result;
4c4b4cd2 9373 }
14f9c5c9
AS
9374
9375 case UNOP_CAST:
9376 (*pos) += 2;
9377 type = exp->elts[pc + 1].type;
9378 arg1 = evaluate_subexp (type, exp, pos, noside);
9379 if (noside == EVAL_SKIP)
4c4b4cd2 9380 goto nosideret;
6e48bd2c 9381 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9382 return arg1;
9383
4c4b4cd2
PH
9384 case UNOP_QUAL:
9385 (*pos) += 2;
9386 type = exp->elts[pc + 1].type;
9387 return ada_evaluate_subexp (type, exp, pos, noside);
9388
14f9c5c9
AS
9389 case BINOP_ASSIGN:
9390 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9391 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9392 {
9393 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9394 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9395 return arg1;
9396 return ada_value_assign (arg1, arg1);
9397 }
003f3813
JB
9398 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9399 except if the lhs of our assignment is a convenience variable.
9400 In the case of assigning to a convenience variable, the lhs
9401 should be exactly the result of the evaluation of the rhs. */
9402 type = value_type (arg1);
9403 if (VALUE_LVAL (arg1) == lval_internalvar)
9404 type = NULL;
9405 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9406 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9407 return arg1;
df407dfe
AC
9408 if (ada_is_fixed_point_type (value_type (arg1)))
9409 arg2 = cast_to_fixed (value_type (arg1), arg2);
9410 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9411 error
323e0a4a 9412 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9413 else
df407dfe 9414 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9415 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9416
9417 case BINOP_ADD:
9418 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9419 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9420 if (noside == EVAL_SKIP)
4c4b4cd2 9421 goto nosideret;
2ac8a782
JB
9422 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9423 return (value_from_longest
9424 (value_type (arg1),
9425 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9426 if ((ada_is_fixed_point_type (value_type (arg1))
9427 || ada_is_fixed_point_type (value_type (arg2)))
9428 && value_type (arg1) != value_type (arg2))
323e0a4a 9429 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9430 /* Do the addition, and cast the result to the type of the first
9431 argument. We cannot cast the result to a reference type, so if
9432 ARG1 is a reference type, find its underlying type. */
9433 type = value_type (arg1);
9434 while (TYPE_CODE (type) == TYPE_CODE_REF)
9435 type = TYPE_TARGET_TYPE (type);
f44316fa 9436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9437 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9438
9439 case BINOP_SUB:
9440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9442 if (noside == EVAL_SKIP)
4c4b4cd2 9443 goto nosideret;
2ac8a782
JB
9444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9445 return (value_from_longest
9446 (value_type (arg1),
9447 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9448 if ((ada_is_fixed_point_type (value_type (arg1))
9449 || ada_is_fixed_point_type (value_type (arg2)))
9450 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9451 error (_("Operands of fixed-point subtraction "
9452 "must have the same type"));
b7789565
JB
9453 /* Do the substraction, and cast the result to the type of the first
9454 argument. We cannot cast the result to a reference type, so if
9455 ARG1 is a reference type, find its underlying type. */
9456 type = value_type (arg1);
9457 while (TYPE_CODE (type) == TYPE_CODE_REF)
9458 type = TYPE_TARGET_TYPE (type);
f44316fa 9459 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9460 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9461
9462 case BINOP_MUL:
9463 case BINOP_DIV:
e1578042
JB
9464 case BINOP_REM:
9465 case BINOP_MOD:
14f9c5c9
AS
9466 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9468 if (noside == EVAL_SKIP)
4c4b4cd2 9469 goto nosideret;
e1578042 9470 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9471 {
9472 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9473 return value_zero (value_type (arg1), not_lval);
9474 }
14f9c5c9 9475 else
4c4b4cd2 9476 {
a53b7a21 9477 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9478 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9479 arg1 = cast_from_fixed (type, arg1);
df407dfe 9480 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9481 arg2 = cast_from_fixed (type, arg2);
f44316fa 9482 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9483 return ada_value_binop (arg1, arg2, op);
9484 }
9485
4c4b4cd2
PH
9486 case BINOP_EQUAL:
9487 case BINOP_NOTEQUAL:
14f9c5c9 9488 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9489 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9490 if (noside == EVAL_SKIP)
76a01679 9491 goto nosideret;
4c4b4cd2 9492 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9493 tem = 0;
4c4b4cd2 9494 else
f44316fa
UW
9495 {
9496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9497 tem = ada_value_equal (arg1, arg2);
9498 }
4c4b4cd2 9499 if (op == BINOP_NOTEQUAL)
76a01679 9500 tem = !tem;
fbb06eb1
UW
9501 type = language_bool_type (exp->language_defn, exp->gdbarch);
9502 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9503
9504 case UNOP_NEG:
9505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9506 if (noside == EVAL_SKIP)
9507 goto nosideret;
df407dfe
AC
9508 else if (ada_is_fixed_point_type (value_type (arg1)))
9509 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9510 else
f44316fa
UW
9511 {
9512 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9513 return value_neg (arg1);
9514 }
4c4b4cd2 9515
2330c6c6
JB
9516 case BINOP_LOGICAL_AND:
9517 case BINOP_LOGICAL_OR:
9518 case UNOP_LOGICAL_NOT:
000d5124
JB
9519 {
9520 struct value *val;
9521
9522 *pos -= 1;
9523 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9524 type = language_bool_type (exp->language_defn, exp->gdbarch);
9525 return value_cast (type, val);
000d5124 9526 }
2330c6c6
JB
9527
9528 case BINOP_BITWISE_AND:
9529 case BINOP_BITWISE_IOR:
9530 case BINOP_BITWISE_XOR:
000d5124
JB
9531 {
9532 struct value *val;
9533
9534 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9535 *pos = pc;
9536 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9537
9538 return value_cast (value_type (arg1), val);
9539 }
2330c6c6 9540
14f9c5c9
AS
9541 case OP_VAR_VALUE:
9542 *pos -= 1;
6799def4 9543
14f9c5c9 9544 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9545 {
9546 *pos += 4;
9547 goto nosideret;
9548 }
9549 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9550 /* Only encountered when an unresolved symbol occurs in a
9551 context other than a function call, in which case, it is
52ce6436 9552 invalid. */
323e0a4a 9553 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9554 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9555 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9556 {
0c1f74cf 9557 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9558 /* Check to see if this is a tagged type. We also need to handle
9559 the case where the type is a reference to a tagged type, but
9560 we have to be careful to exclude pointers to tagged types.
9561 The latter should be shown as usual (as a pointer), whereas
9562 a reference should mostly be transparent to the user. */
9563 if (ada_is_tagged_type (type, 0)
9564 || (TYPE_CODE(type) == TYPE_CODE_REF
9565 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9566 {
9567 /* Tagged types are a little special in the fact that the real
9568 type is dynamic and can only be determined by inspecting the
9569 object's tag. This means that we need to get the object's
9570 value first (EVAL_NORMAL) and then extract the actual object
9571 type from its tag.
9572
9573 Note that we cannot skip the final step where we extract
9574 the object type from its tag, because the EVAL_NORMAL phase
9575 results in dynamic components being resolved into fixed ones.
9576 This can cause problems when trying to print the type
9577 description of tagged types whose parent has a dynamic size:
9578 We use the type name of the "_parent" component in order
9579 to print the name of the ancestor type in the type description.
9580 If that component had a dynamic size, the resolution into
9581 a fixed type would result in the loss of that type name,
9582 thus preventing us from printing the name of the ancestor
9583 type in the type description. */
b79819ba
JB
9584 struct type *actual_type;
9585
0c1f74cf 9586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9587 actual_type = type_from_tag (ada_value_tag (arg1));
9588 if (actual_type == NULL)
9589 /* If, for some reason, we were unable to determine
9590 the actual type from the tag, then use the static
9591 approximation that we just computed as a fallback.
9592 This can happen if the debugging information is
9593 incomplete, for instance. */
9594 actual_type = type;
9595
9596 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9597 }
9598
4c4b4cd2
PH
9599 *pos += 4;
9600 return value_zero
9601 (to_static_fixed_type
9602 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9603 not_lval);
9604 }
d2e4a39e 9605 else
4c4b4cd2 9606 {
284614f0 9607 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9608 return ada_to_fixed_value (arg1);
9609 }
9610
9611 case OP_FUNCALL:
9612 (*pos) += 2;
9613
9614 /* Allocate arg vector, including space for the function to be
9615 called in argvec[0] and a terminating NULL. */
9616 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9617 argvec =
9618 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9619
9620 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9621 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9622 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9623 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9624 else
9625 {
9626 for (tem = 0; tem <= nargs; tem += 1)
9627 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9628 argvec[tem] = 0;
9629
9630 if (noside == EVAL_SKIP)
9631 goto nosideret;
9632 }
9633
ad82864c
JB
9634 if (ada_is_constrained_packed_array_type
9635 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9636 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9637 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9638 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9639 /* This is a packed array that has already been fixed, and
9640 therefore already coerced to a simple array. Nothing further
9641 to do. */
9642 ;
df407dfe
AC
9643 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9644 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9645 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9646 argvec[0] = value_addr (argvec[0]);
9647
df407dfe 9648 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9649
9650 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9651 them. So, if this is an array typedef (encoding use for array
9652 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9653 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9654 type = ada_typedef_target_type (type);
9655
4c4b4cd2
PH
9656 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9657 {
61ee279c 9658 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9659 {
9660 case TYPE_CODE_FUNC:
61ee279c 9661 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9662 break;
9663 case TYPE_CODE_ARRAY:
9664 break;
9665 case TYPE_CODE_STRUCT:
9666 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9667 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9668 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9669 break;
9670 default:
323e0a4a 9671 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9672 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9673 break;
9674 }
9675 }
9676
9677 switch (TYPE_CODE (type))
9678 {
9679 case TYPE_CODE_FUNC:
9680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9681 return allocate_value (TYPE_TARGET_TYPE (type));
9682 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9683 case TYPE_CODE_STRUCT:
9684 {
9685 int arity;
9686
4c4b4cd2
PH
9687 arity = ada_array_arity (type);
9688 type = ada_array_element_type (type, nargs);
9689 if (type == NULL)
323e0a4a 9690 error (_("cannot subscript or call a record"));
4c4b4cd2 9691 if (arity != nargs)
323e0a4a 9692 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9693 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9694 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9695 return
9696 unwrap_value (ada_value_subscript
9697 (argvec[0], nargs, argvec + 1));
9698 }
9699 case TYPE_CODE_ARRAY:
9700 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9701 {
9702 type = ada_array_element_type (type, nargs);
9703 if (type == NULL)
323e0a4a 9704 error (_("element type of array unknown"));
4c4b4cd2 9705 else
0a07e705 9706 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9707 }
9708 return
9709 unwrap_value (ada_value_subscript
9710 (ada_coerce_to_simple_array (argvec[0]),
9711 nargs, argvec + 1));
9712 case TYPE_CODE_PTR: /* Pointer to array */
9713 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9715 {
9716 type = ada_array_element_type (type, nargs);
9717 if (type == NULL)
323e0a4a 9718 error (_("element type of array unknown"));
4c4b4cd2 9719 else
0a07e705 9720 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9721 }
9722 return
9723 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9724 nargs, argvec + 1));
9725
9726 default:
e1d5a0d2
PH
9727 error (_("Attempt to index or call something other than an "
9728 "array or function"));
4c4b4cd2
PH
9729 }
9730
9731 case TERNOP_SLICE:
9732 {
9733 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9734 struct value *low_bound_val =
9735 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9736 struct value *high_bound_val =
9737 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9738 LONGEST low_bound;
9739 LONGEST high_bound;
5b4ee69b 9740
994b9211
AC
9741 low_bound_val = coerce_ref (low_bound_val);
9742 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9743 low_bound = pos_atr (low_bound_val);
9744 high_bound = pos_atr (high_bound_val);
963a6417 9745
4c4b4cd2
PH
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
9748
4c4b4cd2
PH
9749 /* If this is a reference to an aligner type, then remove all
9750 the aligners. */
df407dfe
AC
9751 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9752 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9753 TYPE_TARGET_TYPE (value_type (array)) =
9754 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9755
ad82864c 9756 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9757 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9758
9759 /* If this is a reference to an array or an array lvalue,
9760 convert to a pointer. */
df407dfe
AC
9761 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9762 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9763 && VALUE_LVAL (array) == lval_memory))
9764 array = value_addr (array);
9765
1265e4aa 9766 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9767 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9768 (value_type (array))))
0b5d8877 9769 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9770
9771 array = ada_coerce_to_simple_array_ptr (array);
9772
714e53ab
PH
9773 /* If we have more than one level of pointer indirection,
9774 dereference the value until we get only one level. */
df407dfe
AC
9775 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9776 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9777 == TYPE_CODE_PTR))
9778 array = value_ind (array);
9779
9780 /* Make sure we really do have an array type before going further,
9781 to avoid a SEGV when trying to get the index type or the target
9782 type later down the road if the debug info generated by
9783 the compiler is incorrect or incomplete. */
df407dfe 9784 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9785 error (_("cannot take slice of non-array"));
714e53ab 9786
828292f2
JB
9787 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9788 == TYPE_CODE_PTR)
4c4b4cd2 9789 {
828292f2
JB
9790 struct type *type0 = ada_check_typedef (value_type (array));
9791
0b5d8877 9792 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9793 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9794 else
9795 {
9796 struct type *arr_type0 =
828292f2 9797 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9798
f5938064
JG
9799 return ada_value_slice_from_ptr (array, arr_type0,
9800 longest_to_int (low_bound),
9801 longest_to_int (high_bound));
4c4b4cd2
PH
9802 }
9803 }
9804 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9805 return array;
9806 else if (high_bound < low_bound)
df407dfe 9807 return empty_array (value_type (array), low_bound);
4c4b4cd2 9808 else
529cad9c
PH
9809 return ada_value_slice (array, longest_to_int (low_bound),
9810 longest_to_int (high_bound));
4c4b4cd2 9811 }
14f9c5c9 9812
4c4b4cd2
PH
9813 case UNOP_IN_RANGE:
9814 (*pos) += 2;
9815 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9816 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9817
14f9c5c9 9818 if (noside == EVAL_SKIP)
4c4b4cd2 9819 goto nosideret;
14f9c5c9 9820
4c4b4cd2
PH
9821 switch (TYPE_CODE (type))
9822 {
9823 default:
e1d5a0d2
PH
9824 lim_warning (_("Membership test incompletely implemented; "
9825 "always returns true"));
fbb06eb1
UW
9826 type = language_bool_type (exp->language_defn, exp->gdbarch);
9827 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9828
9829 case TYPE_CODE_RANGE:
030b4912
UW
9830 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9831 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9834 type = language_bool_type (exp->language_defn, exp->gdbarch);
9835 return
9836 value_from_longest (type,
4c4b4cd2
PH
9837 (value_less (arg1, arg3)
9838 || value_equal (arg1, arg3))
9839 && (value_less (arg2, arg1)
9840 || value_equal (arg2, arg1)));
9841 }
9842
9843 case BINOP_IN_BOUNDS:
14f9c5c9 9844 (*pos) += 2;
4c4b4cd2
PH
9845 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9846 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9847
4c4b4cd2
PH
9848 if (noside == EVAL_SKIP)
9849 goto nosideret;
14f9c5c9 9850
4c4b4cd2 9851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9852 {
9853 type = language_bool_type (exp->language_defn, exp->gdbarch);
9854 return value_zero (type, not_lval);
9855 }
14f9c5c9 9856
4c4b4cd2 9857 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9858
1eea4ebd
UW
9859 type = ada_index_type (value_type (arg2), tem, "range");
9860 if (!type)
9861 type = value_type (arg1);
14f9c5c9 9862
1eea4ebd
UW
9863 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9864 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9865
f44316fa
UW
9866 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9867 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9868 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9869 return
fbb06eb1 9870 value_from_longest (type,
4c4b4cd2
PH
9871 (value_less (arg1, arg3)
9872 || value_equal (arg1, arg3))
9873 && (value_less (arg2, arg1)
9874 || value_equal (arg2, arg1)));
9875
9876 case TERNOP_IN_RANGE:
9877 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9878 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9879 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9880
9881 if (noside == EVAL_SKIP)
9882 goto nosideret;
9883
f44316fa
UW
9884 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9885 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9886 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9887 return
fbb06eb1 9888 value_from_longest (type,
4c4b4cd2
PH
9889 (value_less (arg1, arg3)
9890 || value_equal (arg1, arg3))
9891 && (value_less (arg2, arg1)
9892 || value_equal (arg2, arg1)));
9893
9894 case OP_ATR_FIRST:
9895 case OP_ATR_LAST:
9896 case OP_ATR_LENGTH:
9897 {
76a01679 9898 struct type *type_arg;
5b4ee69b 9899
76a01679
JB
9900 if (exp->elts[*pos].opcode == OP_TYPE)
9901 {
9902 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9903 arg1 = NULL;
5bc23cb3 9904 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9905 }
9906 else
9907 {
9908 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9909 type_arg = NULL;
9910 }
9911
9912 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9913 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9914 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9915 *pos += 4;
9916
9917 if (noside == EVAL_SKIP)
9918 goto nosideret;
9919
9920 if (type_arg == NULL)
9921 {
9922 arg1 = ada_coerce_ref (arg1);
9923
ad82864c 9924 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9925 arg1 = ada_coerce_to_simple_array (arg1);
9926
1eea4ebd
UW
9927 type = ada_index_type (value_type (arg1), tem,
9928 ada_attribute_name (op));
9929 if (type == NULL)
9930 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9931
9932 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9933 return allocate_value (type);
76a01679
JB
9934
9935 switch (op)
9936 {
9937 default: /* Should never happen. */
323e0a4a 9938 error (_("unexpected attribute encountered"));
76a01679 9939 case OP_ATR_FIRST:
1eea4ebd
UW
9940 return value_from_longest
9941 (type, ada_array_bound (arg1, tem, 0));
76a01679 9942 case OP_ATR_LAST:
1eea4ebd
UW
9943 return value_from_longest
9944 (type, ada_array_bound (arg1, tem, 1));
76a01679 9945 case OP_ATR_LENGTH:
1eea4ebd
UW
9946 return value_from_longest
9947 (type, ada_array_length (arg1, tem));
76a01679
JB
9948 }
9949 }
9950 else if (discrete_type_p (type_arg))
9951 {
9952 struct type *range_type;
0d5cff50 9953 const char *name = ada_type_name (type_arg);
5b4ee69b 9954
76a01679
JB
9955 range_type = NULL;
9956 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9957 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9958 if (range_type == NULL)
9959 range_type = type_arg;
9960 switch (op)
9961 {
9962 default:
323e0a4a 9963 error (_("unexpected attribute encountered"));
76a01679 9964 case OP_ATR_FIRST:
690cc4eb 9965 return value_from_longest
43bbcdc2 9966 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9967 case OP_ATR_LAST:
690cc4eb 9968 return value_from_longest
43bbcdc2 9969 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9970 case OP_ATR_LENGTH:
323e0a4a 9971 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9972 }
9973 }
9974 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9975 error (_("unimplemented type attribute"));
76a01679
JB
9976 else
9977 {
9978 LONGEST low, high;
9979
ad82864c
JB
9980 if (ada_is_constrained_packed_array_type (type_arg))
9981 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9982
1eea4ebd 9983 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9984 if (type == NULL)
1eea4ebd
UW
9985 type = builtin_type (exp->gdbarch)->builtin_int;
9986
76a01679
JB
9987 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9988 return allocate_value (type);
9989
9990 switch (op)
9991 {
9992 default:
323e0a4a 9993 error (_("unexpected attribute encountered"));
76a01679 9994 case OP_ATR_FIRST:
1eea4ebd 9995 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9996 return value_from_longest (type, low);
9997 case OP_ATR_LAST:
1eea4ebd 9998 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9999 return value_from_longest (type, high);
10000 case OP_ATR_LENGTH:
1eea4ebd
UW
10001 low = ada_array_bound_from_type (type_arg, tem, 0);
10002 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10003 return value_from_longest (type, high - low + 1);
10004 }
10005 }
14f9c5c9
AS
10006 }
10007
4c4b4cd2
PH
10008 case OP_ATR_TAG:
10009 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10010 if (noside == EVAL_SKIP)
76a01679 10011 goto nosideret;
4c4b4cd2
PH
10012
10013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10014 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10015
10016 return ada_value_tag (arg1);
10017
10018 case OP_ATR_MIN:
10019 case OP_ATR_MAX:
10020 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 if (noside == EVAL_SKIP)
76a01679 10024 goto nosideret;
d2e4a39e 10025 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10026 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10027 else
f44316fa
UW
10028 {
10029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10030 return value_binop (arg1, arg2,
10031 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10032 }
14f9c5c9 10033
4c4b4cd2
PH
10034 case OP_ATR_MODULUS:
10035 {
31dedfee 10036 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10037
5b4ee69b 10038 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10039 if (noside == EVAL_SKIP)
10040 goto nosideret;
4c4b4cd2 10041
76a01679 10042 if (!ada_is_modular_type (type_arg))
323e0a4a 10043 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10044
76a01679
JB
10045 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10046 ada_modulus (type_arg));
4c4b4cd2
PH
10047 }
10048
10049
10050 case OP_ATR_POS:
10051 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10053 if (noside == EVAL_SKIP)
76a01679 10054 goto nosideret;
3cb382c9
UW
10055 type = builtin_type (exp->gdbarch)->builtin_int;
10056 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10057 return value_zero (type, not_lval);
14f9c5c9 10058 else
3cb382c9 10059 return value_pos_atr (type, arg1);
14f9c5c9 10060
4c4b4cd2
PH
10061 case OP_ATR_SIZE:
10062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10063 type = value_type (arg1);
10064
10065 /* If the argument is a reference, then dereference its type, since
10066 the user is really asking for the size of the actual object,
10067 not the size of the pointer. */
10068 if (TYPE_CODE (type) == TYPE_CODE_REF)
10069 type = TYPE_TARGET_TYPE (type);
10070
4c4b4cd2 10071 if (noside == EVAL_SKIP)
76a01679 10072 goto nosideret;
4c4b4cd2 10073 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10074 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10075 else
22601c15 10076 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10077 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10078
10079 case OP_ATR_VAL:
10080 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10082 type = exp->elts[pc + 2].type;
14f9c5c9 10083 if (noside == EVAL_SKIP)
76a01679 10084 goto nosideret;
4c4b4cd2 10085 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10086 return value_zero (type, not_lval);
4c4b4cd2 10087 else
76a01679 10088 return value_val_atr (type, arg1);
4c4b4cd2
PH
10089
10090 case BINOP_EXP:
10091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10093 if (noside == EVAL_SKIP)
10094 goto nosideret;
10095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10096 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10097 else
f44316fa
UW
10098 {
10099 /* For integer exponentiation operations,
10100 only promote the first argument. */
10101 if (is_integral_type (value_type (arg2)))
10102 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10103 else
10104 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10105
10106 return value_binop (arg1, arg2, op);
10107 }
4c4b4cd2
PH
10108
10109 case UNOP_PLUS:
10110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10111 if (noside == EVAL_SKIP)
10112 goto nosideret;
10113 else
10114 return arg1;
10115
10116 case UNOP_ABS:
10117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10118 if (noside == EVAL_SKIP)
10119 goto nosideret;
f44316fa 10120 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10121 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10122 return value_neg (arg1);
14f9c5c9 10123 else
4c4b4cd2 10124 return arg1;
14f9c5c9
AS
10125
10126 case UNOP_IND:
6b0d7253 10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10128 if (noside == EVAL_SKIP)
4c4b4cd2 10129 goto nosideret;
df407dfe 10130 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10132 {
10133 if (ada_is_array_descriptor_type (type))
10134 /* GDB allows dereferencing GNAT array descriptors. */
10135 {
10136 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10137
4c4b4cd2 10138 if (arrType == NULL)
323e0a4a 10139 error (_("Attempt to dereference null array pointer."));
00a4c844 10140 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10141 }
10142 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10143 || TYPE_CODE (type) == TYPE_CODE_REF
10144 /* In C you can dereference an array to get the 1st elt. */
10145 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10146 {
10147 type = to_static_fixed_type
10148 (ada_aligned_type
10149 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10150 check_size (type);
10151 return value_zero (type, lval_memory);
10152 }
4c4b4cd2 10153 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10154 {
10155 /* GDB allows dereferencing an int. */
10156 if (expect_type == NULL)
10157 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10158 lval_memory);
10159 else
10160 {
10161 expect_type =
10162 to_static_fixed_type (ada_aligned_type (expect_type));
10163 return value_zero (expect_type, lval_memory);
10164 }
10165 }
4c4b4cd2 10166 else
323e0a4a 10167 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10168 }
0963b4bd 10169 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10170 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10171
96967637
JB
10172 if (TYPE_CODE (type) == TYPE_CODE_INT)
10173 /* GDB allows dereferencing an int. If we were given
10174 the expect_type, then use that as the target type.
10175 Otherwise, assume that the target type is an int. */
10176 {
10177 if (expect_type != NULL)
10178 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10179 arg1));
10180 else
10181 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10182 (CORE_ADDR) value_as_address (arg1));
10183 }
6b0d7253 10184
4c4b4cd2
PH
10185 if (ada_is_array_descriptor_type (type))
10186 /* GDB allows dereferencing GNAT array descriptors. */
10187 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10188 else
4c4b4cd2 10189 return ada_value_ind (arg1);
14f9c5c9
AS
10190
10191 case STRUCTOP_STRUCT:
10192 tem = longest_to_int (exp->elts[pc + 1].longconst);
10193 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10194 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10195 if (noside == EVAL_SKIP)
4c4b4cd2 10196 goto nosideret;
14f9c5c9 10197 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10198 {
df407dfe 10199 struct type *type1 = value_type (arg1);
5b4ee69b 10200
76a01679
JB
10201 if (ada_is_tagged_type (type1, 1))
10202 {
10203 type = ada_lookup_struct_elt_type (type1,
10204 &exp->elts[pc + 2].string,
10205 1, 1, NULL);
10206 if (type == NULL)
10207 /* In this case, we assume that the field COULD exist
10208 in some extension of the type. Return an object of
10209 "type" void, which will match any formal
0963b4bd 10210 (see ada_type_match). */
30b15541
UW
10211 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10212 lval_memory);
76a01679
JB
10213 }
10214 else
10215 type =
10216 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10217 0, NULL);
10218
10219 return value_zero (ada_aligned_type (type), lval_memory);
10220 }
14f9c5c9 10221 else
284614f0
JB
10222 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10223 arg1 = unwrap_value (arg1);
10224 return ada_to_fixed_value (arg1);
10225
14f9c5c9 10226 case OP_TYPE:
4c4b4cd2
PH
10227 /* The value is not supposed to be used. This is here to make it
10228 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10229 (*pos) += 2;
10230 if (noside == EVAL_SKIP)
4c4b4cd2 10231 goto nosideret;
14f9c5c9 10232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10233 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10234 else
323e0a4a 10235 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10236
10237 case OP_AGGREGATE:
10238 case OP_CHOICES:
10239 case OP_OTHERS:
10240 case OP_DISCRETE_RANGE:
10241 case OP_POSITIONAL:
10242 case OP_NAME:
10243 if (noside == EVAL_NORMAL)
10244 switch (op)
10245 {
10246 case OP_NAME:
10247 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10248 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10249 case OP_AGGREGATE:
10250 error (_("Aggregates only allowed on the right of an assignment"));
10251 default:
0963b4bd
MS
10252 internal_error (__FILE__, __LINE__,
10253 _("aggregate apparently mangled"));
52ce6436
PH
10254 }
10255
10256 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10257 *pos += oplen - 1;
10258 for (tem = 0; tem < nargs; tem += 1)
10259 ada_evaluate_subexp (NULL, exp, pos, noside);
10260 goto nosideret;
14f9c5c9
AS
10261 }
10262
10263nosideret:
22601c15 10264 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10265}
14f9c5c9 10266\f
d2e4a39e 10267
4c4b4cd2 10268 /* Fixed point */
14f9c5c9
AS
10269
10270/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10271 type name that encodes the 'small and 'delta information.
4c4b4cd2 10272 Otherwise, return NULL. */
14f9c5c9 10273
d2e4a39e 10274static const char *
ebf56fd3 10275fixed_type_info (struct type *type)
14f9c5c9 10276{
d2e4a39e 10277 const char *name = ada_type_name (type);
14f9c5c9
AS
10278 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10279
d2e4a39e
AS
10280 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10281 {
14f9c5c9 10282 const char *tail = strstr (name, "___XF_");
5b4ee69b 10283
14f9c5c9 10284 if (tail == NULL)
4c4b4cd2 10285 return NULL;
d2e4a39e 10286 else
4c4b4cd2 10287 return tail + 5;
14f9c5c9
AS
10288 }
10289 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10290 return fixed_type_info (TYPE_TARGET_TYPE (type));
10291 else
10292 return NULL;
10293}
10294
4c4b4cd2 10295/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10296
10297int
ebf56fd3 10298ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10299{
10300 return fixed_type_info (type) != NULL;
10301}
10302
4c4b4cd2
PH
10303/* Return non-zero iff TYPE represents a System.Address type. */
10304
10305int
10306ada_is_system_address_type (struct type *type)
10307{
10308 return (TYPE_NAME (type)
10309 && strcmp (TYPE_NAME (type), "system__address") == 0);
10310}
10311
14f9c5c9
AS
10312/* Assuming that TYPE is the representation of an Ada fixed-point
10313 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10314 delta cannot be determined. */
14f9c5c9
AS
10315
10316DOUBLEST
ebf56fd3 10317ada_delta (struct type *type)
14f9c5c9
AS
10318{
10319 const char *encoding = fixed_type_info (type);
facc390f 10320 DOUBLEST num, den;
14f9c5c9 10321
facc390f
JB
10322 /* Strictly speaking, num and den are encoded as integer. However,
10323 they may not fit into a long, and they will have to be converted
10324 to DOUBLEST anyway. So scan them as DOUBLEST. */
10325 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10326 &num, &den) < 2)
14f9c5c9 10327 return -1.0;
d2e4a39e 10328 else
facc390f 10329 return num / den;
14f9c5c9
AS
10330}
10331
10332/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10333 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10334
10335static DOUBLEST
ebf56fd3 10336scaling_factor (struct type *type)
14f9c5c9
AS
10337{
10338 const char *encoding = fixed_type_info (type);
facc390f 10339 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10340 int n;
d2e4a39e 10341
facc390f
JB
10342 /* Strictly speaking, num's and den's are encoded as integer. However,
10343 they may not fit into a long, and they will have to be converted
10344 to DOUBLEST anyway. So scan them as DOUBLEST. */
10345 n = sscanf (encoding,
10346 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10347 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10348 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10349
10350 if (n < 2)
10351 return 1.0;
10352 else if (n == 4)
facc390f 10353 return num1 / den1;
d2e4a39e 10354 else
facc390f 10355 return num0 / den0;
14f9c5c9
AS
10356}
10357
10358
10359/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10360 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10361
10362DOUBLEST
ebf56fd3 10363ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10364{
d2e4a39e 10365 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10366}
10367
4c4b4cd2
PH
10368/* The representation of a fixed-point value of type TYPE
10369 corresponding to the value X. */
14f9c5c9
AS
10370
10371LONGEST
ebf56fd3 10372ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10373{
10374 return (LONGEST) (x / scaling_factor (type) + 0.5);
10375}
10376
14f9c5c9 10377\f
d2e4a39e 10378
4c4b4cd2 10379 /* Range types */
14f9c5c9
AS
10380
10381/* Scan STR beginning at position K for a discriminant name, and
10382 return the value of that discriminant field of DVAL in *PX. If
10383 PNEW_K is not null, put the position of the character beyond the
10384 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10385 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10386
10387static int
07d8f827 10388scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10389 int *pnew_k)
14f9c5c9
AS
10390{
10391 static char *bound_buffer = NULL;
10392 static size_t bound_buffer_len = 0;
10393 char *bound;
10394 char *pend;
d2e4a39e 10395 struct value *bound_val;
14f9c5c9
AS
10396
10397 if (dval == NULL || str == NULL || str[k] == '\0')
10398 return 0;
10399
d2e4a39e 10400 pend = strstr (str + k, "__");
14f9c5c9
AS
10401 if (pend == NULL)
10402 {
d2e4a39e 10403 bound = str + k;
14f9c5c9
AS
10404 k += strlen (bound);
10405 }
d2e4a39e 10406 else
14f9c5c9 10407 {
d2e4a39e 10408 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10409 bound = bound_buffer;
d2e4a39e
AS
10410 strncpy (bound_buffer, str + k, pend - (str + k));
10411 bound[pend - (str + k)] = '\0';
10412 k = pend - str;
14f9c5c9 10413 }
d2e4a39e 10414
df407dfe 10415 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10416 if (bound_val == NULL)
10417 return 0;
10418
10419 *px = value_as_long (bound_val);
10420 if (pnew_k != NULL)
10421 *pnew_k = k;
10422 return 1;
10423}
10424
10425/* Value of variable named NAME in the current environment. If
10426 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10427 otherwise causes an error with message ERR_MSG. */
10428
d2e4a39e
AS
10429static struct value *
10430get_var_value (char *name, char *err_msg)
14f9c5c9 10431{
4c4b4cd2 10432 struct ada_symbol_info *syms;
14f9c5c9
AS
10433 int nsyms;
10434
4c4b4cd2 10435 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10436 &syms, 1);
14f9c5c9
AS
10437
10438 if (nsyms != 1)
10439 {
10440 if (err_msg == NULL)
4c4b4cd2 10441 return 0;
14f9c5c9 10442 else
8a3fe4f8 10443 error (("%s"), err_msg);
14f9c5c9
AS
10444 }
10445
4c4b4cd2 10446 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10447}
d2e4a39e 10448
14f9c5c9 10449/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10450 no such variable found, returns 0, and sets *FLAG to 0. If
10451 successful, sets *FLAG to 1. */
10452
14f9c5c9 10453LONGEST
4c4b4cd2 10454get_int_var_value (char *name, int *flag)
14f9c5c9 10455{
4c4b4cd2 10456 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10457
14f9c5c9
AS
10458 if (var_val == 0)
10459 {
10460 if (flag != NULL)
4c4b4cd2 10461 *flag = 0;
14f9c5c9
AS
10462 return 0;
10463 }
10464 else
10465 {
10466 if (flag != NULL)
4c4b4cd2 10467 *flag = 1;
14f9c5c9
AS
10468 return value_as_long (var_val);
10469 }
10470}
d2e4a39e 10471
14f9c5c9
AS
10472
10473/* Return a range type whose base type is that of the range type named
10474 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10475 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10476 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10477 corresponding range type from debug information; fall back to using it
10478 if symbol lookup fails. If a new type must be created, allocate it
10479 like ORIG_TYPE was. The bounds information, in general, is encoded
10480 in NAME, the base type given in the named range type. */
14f9c5c9 10481
d2e4a39e 10482static struct type *
28c85d6c 10483to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10484{
0d5cff50 10485 const char *name;
14f9c5c9 10486 struct type *base_type;
d2e4a39e 10487 char *subtype_info;
14f9c5c9 10488
28c85d6c
JB
10489 gdb_assert (raw_type != NULL);
10490 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10491
1ce677a4 10492 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10493 base_type = TYPE_TARGET_TYPE (raw_type);
10494 else
10495 base_type = raw_type;
10496
28c85d6c 10497 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10498 subtype_info = strstr (name, "___XD");
10499 if (subtype_info == NULL)
690cc4eb 10500 {
43bbcdc2
PH
10501 LONGEST L = ada_discrete_type_low_bound (raw_type);
10502 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10503
690cc4eb
PH
10504 if (L < INT_MIN || U > INT_MAX)
10505 return raw_type;
10506 else
28c85d6c 10507 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10508 ada_discrete_type_low_bound (raw_type),
10509 ada_discrete_type_high_bound (raw_type));
690cc4eb 10510 }
14f9c5c9
AS
10511 else
10512 {
10513 static char *name_buf = NULL;
10514 static size_t name_len = 0;
10515 int prefix_len = subtype_info - name;
10516 LONGEST L, U;
10517 struct type *type;
10518 char *bounds_str;
10519 int n;
10520
10521 GROW_VECT (name_buf, name_len, prefix_len + 5);
10522 strncpy (name_buf, name, prefix_len);
10523 name_buf[prefix_len] = '\0';
10524
10525 subtype_info += 5;
10526 bounds_str = strchr (subtype_info, '_');
10527 n = 1;
10528
d2e4a39e 10529 if (*subtype_info == 'L')
4c4b4cd2
PH
10530 {
10531 if (!ada_scan_number (bounds_str, n, &L, &n)
10532 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10533 return raw_type;
10534 if (bounds_str[n] == '_')
10535 n += 2;
0963b4bd 10536 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10537 n += 1;
10538 subtype_info += 1;
10539 }
d2e4a39e 10540 else
4c4b4cd2
PH
10541 {
10542 int ok;
5b4ee69b 10543
4c4b4cd2
PH
10544 strcpy (name_buf + prefix_len, "___L");
10545 L = get_int_var_value (name_buf, &ok);
10546 if (!ok)
10547 {
323e0a4a 10548 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10549 L = 1;
10550 }
10551 }
14f9c5c9 10552
d2e4a39e 10553 if (*subtype_info == 'U')
4c4b4cd2
PH
10554 {
10555 if (!ada_scan_number (bounds_str, n, &U, &n)
10556 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10557 return raw_type;
10558 }
d2e4a39e 10559 else
4c4b4cd2
PH
10560 {
10561 int ok;
5b4ee69b 10562
4c4b4cd2
PH
10563 strcpy (name_buf + prefix_len, "___U");
10564 U = get_int_var_value (name_buf, &ok);
10565 if (!ok)
10566 {
323e0a4a 10567 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10568 U = L;
10569 }
10570 }
14f9c5c9 10571
28c85d6c 10572 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10573 TYPE_NAME (type) = name;
14f9c5c9
AS
10574 return type;
10575 }
10576}
10577
4c4b4cd2
PH
10578/* True iff NAME is the name of a range type. */
10579
14f9c5c9 10580int
d2e4a39e 10581ada_is_range_type_name (const char *name)
14f9c5c9
AS
10582{
10583 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10584}
14f9c5c9 10585\f
d2e4a39e 10586
4c4b4cd2
PH
10587 /* Modular types */
10588
10589/* True iff TYPE is an Ada modular type. */
14f9c5c9 10590
14f9c5c9 10591int
d2e4a39e 10592ada_is_modular_type (struct type *type)
14f9c5c9 10593{
18af8284 10594 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10595
10596 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10597 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10598 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10599}
10600
4c4b4cd2
PH
10601/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10602
61ee279c 10603ULONGEST
0056e4d5 10604ada_modulus (struct type *type)
14f9c5c9 10605{
43bbcdc2 10606 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10607}
d2e4a39e 10608\f
f7f9143b
JB
10609
10610/* Ada exception catchpoint support:
10611 ---------------------------------
10612
10613 We support 3 kinds of exception catchpoints:
10614 . catchpoints on Ada exceptions
10615 . catchpoints on unhandled Ada exceptions
10616 . catchpoints on failed assertions
10617
10618 Exceptions raised during failed assertions, or unhandled exceptions
10619 could perfectly be caught with the general catchpoint on Ada exceptions.
10620 However, we can easily differentiate these two special cases, and having
10621 the option to distinguish these two cases from the rest can be useful
10622 to zero-in on certain situations.
10623
10624 Exception catchpoints are a specialized form of breakpoint,
10625 since they rely on inserting breakpoints inside known routines
10626 of the GNAT runtime. The implementation therefore uses a standard
10627 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10628 of breakpoint_ops.
10629
0259addd
JB
10630 Support in the runtime for exception catchpoints have been changed
10631 a few times already, and these changes affect the implementation
10632 of these catchpoints. In order to be able to support several
10633 variants of the runtime, we use a sniffer that will determine
28010a5d 10634 the runtime variant used by the program being debugged. */
f7f9143b
JB
10635
10636/* The different types of catchpoints that we introduced for catching
10637 Ada exceptions. */
10638
10639enum exception_catchpoint_kind
10640{
10641 ex_catch_exception,
10642 ex_catch_exception_unhandled,
10643 ex_catch_assert
10644};
10645
3d0b0fa3
JB
10646/* Ada's standard exceptions. */
10647
10648static char *standard_exc[] = {
10649 "constraint_error",
10650 "program_error",
10651 "storage_error",
10652 "tasking_error"
10653};
10654
0259addd
JB
10655typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10656
10657/* A structure that describes how to support exception catchpoints
10658 for a given executable. */
10659
10660struct exception_support_info
10661{
10662 /* The name of the symbol to break on in order to insert
10663 a catchpoint on exceptions. */
10664 const char *catch_exception_sym;
10665
10666 /* The name of the symbol to break on in order to insert
10667 a catchpoint on unhandled exceptions. */
10668 const char *catch_exception_unhandled_sym;
10669
10670 /* The name of the symbol to break on in order to insert
10671 a catchpoint on failed assertions. */
10672 const char *catch_assert_sym;
10673
10674 /* Assuming that the inferior just triggered an unhandled exception
10675 catchpoint, this function is responsible for returning the address
10676 in inferior memory where the name of that exception is stored.
10677 Return zero if the address could not be computed. */
10678 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10679};
10680
10681static CORE_ADDR ada_unhandled_exception_name_addr (void);
10682static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10683
10684/* The following exception support info structure describes how to
10685 implement exception catchpoints with the latest version of the
10686 Ada runtime (as of 2007-03-06). */
10687
10688static const struct exception_support_info default_exception_support_info =
10689{
10690 "__gnat_debug_raise_exception", /* catch_exception_sym */
10691 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10692 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10693 ada_unhandled_exception_name_addr
10694};
10695
10696/* The following exception support info structure describes how to
10697 implement exception catchpoints with a slightly older version
10698 of the Ada runtime. */
10699
10700static const struct exception_support_info exception_support_info_fallback =
10701{
10702 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10703 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10704 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10705 ada_unhandled_exception_name_addr_from_raise
10706};
10707
f17011e0
JB
10708/* Return nonzero if we can detect the exception support routines
10709 described in EINFO.
10710
10711 This function errors out if an abnormal situation is detected
10712 (for instance, if we find the exception support routines, but
10713 that support is found to be incomplete). */
10714
10715static int
10716ada_has_this_exception_support (const struct exception_support_info *einfo)
10717{
10718 struct symbol *sym;
10719
10720 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10721 that should be compiled with debugging information. As a result, we
10722 expect to find that symbol in the symtabs. */
10723
10724 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10725 if (sym == NULL)
a6af7abe
JB
10726 {
10727 /* Perhaps we did not find our symbol because the Ada runtime was
10728 compiled without debugging info, or simply stripped of it.
10729 It happens on some GNU/Linux distributions for instance, where
10730 users have to install a separate debug package in order to get
10731 the runtime's debugging info. In that situation, let the user
10732 know why we cannot insert an Ada exception catchpoint.
10733
10734 Note: Just for the purpose of inserting our Ada exception
10735 catchpoint, we could rely purely on the associated minimal symbol.
10736 But we would be operating in degraded mode anyway, since we are
10737 still lacking the debugging info needed later on to extract
10738 the name of the exception being raised (this name is printed in
10739 the catchpoint message, and is also used when trying to catch
10740 a specific exception). We do not handle this case for now. */
10741 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10742 error (_("Your Ada runtime appears to be missing some debugging "
10743 "information.\nCannot insert Ada exception catchpoint "
10744 "in this configuration."));
10745
10746 return 0;
10747 }
f17011e0
JB
10748
10749 /* Make sure that the symbol we found corresponds to a function. */
10750
10751 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10752 error (_("Symbol \"%s\" is not a function (class = %d)"),
10753 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10754
10755 return 1;
10756}
10757
0259addd
JB
10758/* Inspect the Ada runtime and determine which exception info structure
10759 should be used to provide support for exception catchpoints.
10760
3eecfa55
JB
10761 This function will always set the per-inferior exception_info,
10762 or raise an error. */
0259addd
JB
10763
10764static void
10765ada_exception_support_info_sniffer (void)
10766{
3eecfa55 10767 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10768 struct symbol *sym;
10769
10770 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10771 if (data->exception_info != NULL)
0259addd
JB
10772 return;
10773
10774 /* Check the latest (default) exception support info. */
f17011e0 10775 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10776 {
3eecfa55 10777 data->exception_info = &default_exception_support_info;
0259addd
JB
10778 return;
10779 }
10780
10781 /* Try our fallback exception suport info. */
f17011e0 10782 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10783 {
3eecfa55 10784 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10785 return;
10786 }
10787
10788 /* Sometimes, it is normal for us to not be able to find the routine
10789 we are looking for. This happens when the program is linked with
10790 the shared version of the GNAT runtime, and the program has not been
10791 started yet. Inform the user of these two possible causes if
10792 applicable. */
10793
ccefe4c4 10794 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10795 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10796
10797 /* If the symbol does not exist, then check that the program is
10798 already started, to make sure that shared libraries have been
10799 loaded. If it is not started, this may mean that the symbol is
10800 in a shared library. */
10801
10802 if (ptid_get_pid (inferior_ptid) == 0)
10803 error (_("Unable to insert catchpoint. Try to start the program first."));
10804
10805 /* At this point, we know that we are debugging an Ada program and
10806 that the inferior has been started, but we still are not able to
0963b4bd 10807 find the run-time symbols. That can mean that we are in
0259addd
JB
10808 configurable run time mode, or that a-except as been optimized
10809 out by the linker... In any case, at this point it is not worth
10810 supporting this feature. */
10811
7dda8cff 10812 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10813}
10814
f7f9143b
JB
10815/* True iff FRAME is very likely to be that of a function that is
10816 part of the runtime system. This is all very heuristic, but is
10817 intended to be used as advice as to what frames are uninteresting
10818 to most users. */
10819
10820static int
10821is_known_support_routine (struct frame_info *frame)
10822{
4ed6b5be 10823 struct symtab_and_line sal;
0d5cff50 10824 const char *func_name;
692465f1 10825 enum language func_lang;
f7f9143b 10826 int i;
f7f9143b 10827
4ed6b5be
JB
10828 /* If this code does not have any debugging information (no symtab),
10829 This cannot be any user code. */
f7f9143b 10830
4ed6b5be 10831 find_frame_sal (frame, &sal);
f7f9143b
JB
10832 if (sal.symtab == NULL)
10833 return 1;
10834
4ed6b5be
JB
10835 /* If there is a symtab, but the associated source file cannot be
10836 located, then assume this is not user code: Selecting a frame
10837 for which we cannot display the code would not be very helpful
10838 for the user. This should also take care of case such as VxWorks
10839 where the kernel has some debugging info provided for a few units. */
f7f9143b 10840
9bbc9174 10841 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10842 return 1;
10843
4ed6b5be
JB
10844 /* Check the unit filename againt the Ada runtime file naming.
10845 We also check the name of the objfile against the name of some
10846 known system libraries that sometimes come with debugging info
10847 too. */
10848
f7f9143b
JB
10849 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10850 {
10851 re_comp (known_runtime_file_name_patterns[i]);
10852 if (re_exec (sal.symtab->filename))
10853 return 1;
4ed6b5be
JB
10854 if (sal.symtab->objfile != NULL
10855 && re_exec (sal.symtab->objfile->name))
10856 return 1;
f7f9143b
JB
10857 }
10858
4ed6b5be 10859 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10860
e9e07ba6 10861 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10862 if (func_name == NULL)
10863 return 1;
10864
10865 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10866 {
10867 re_comp (known_auxiliary_function_name_patterns[i]);
10868 if (re_exec (func_name))
10869 return 1;
10870 }
10871
10872 return 0;
10873}
10874
10875/* Find the first frame that contains debugging information and that is not
10876 part of the Ada run-time, starting from FI and moving upward. */
10877
0ef643c8 10878void
f7f9143b
JB
10879ada_find_printable_frame (struct frame_info *fi)
10880{
10881 for (; fi != NULL; fi = get_prev_frame (fi))
10882 {
10883 if (!is_known_support_routine (fi))
10884 {
10885 select_frame (fi);
10886 break;
10887 }
10888 }
10889
10890}
10891
10892/* Assuming that the inferior just triggered an unhandled exception
10893 catchpoint, return the address in inferior memory where the name
10894 of the exception is stored.
10895
10896 Return zero if the address could not be computed. */
10897
10898static CORE_ADDR
10899ada_unhandled_exception_name_addr (void)
0259addd
JB
10900{
10901 return parse_and_eval_address ("e.full_name");
10902}
10903
10904/* Same as ada_unhandled_exception_name_addr, except that this function
10905 should be used when the inferior uses an older version of the runtime,
10906 where the exception name needs to be extracted from a specific frame
10907 several frames up in the callstack. */
10908
10909static CORE_ADDR
10910ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10911{
10912 int frame_level;
10913 struct frame_info *fi;
3eecfa55 10914 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10915
10916 /* To determine the name of this exception, we need to select
10917 the frame corresponding to RAISE_SYM_NAME. This frame is
10918 at least 3 levels up, so we simply skip the first 3 frames
10919 without checking the name of their associated function. */
10920 fi = get_current_frame ();
10921 for (frame_level = 0; frame_level < 3; frame_level += 1)
10922 if (fi != NULL)
10923 fi = get_prev_frame (fi);
10924
10925 while (fi != NULL)
10926 {
0d5cff50 10927 const char *func_name;
692465f1
JB
10928 enum language func_lang;
10929
e9e07ba6 10930 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10931 if (func_name != NULL
3eecfa55 10932 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10933 break; /* We found the frame we were looking for... */
10934 fi = get_prev_frame (fi);
10935 }
10936
10937 if (fi == NULL)
10938 return 0;
10939
10940 select_frame (fi);
10941 return parse_and_eval_address ("id.full_name");
10942}
10943
10944/* Assuming the inferior just triggered an Ada exception catchpoint
10945 (of any type), return the address in inferior memory where the name
10946 of the exception is stored, if applicable.
10947
10948 Return zero if the address could not be computed, or if not relevant. */
10949
10950static CORE_ADDR
10951ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10952 struct breakpoint *b)
10953{
3eecfa55
JB
10954 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10955
f7f9143b
JB
10956 switch (ex)
10957 {
10958 case ex_catch_exception:
10959 return (parse_and_eval_address ("e.full_name"));
10960 break;
10961
10962 case ex_catch_exception_unhandled:
3eecfa55 10963 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10964 break;
10965
10966 case ex_catch_assert:
10967 return 0; /* Exception name is not relevant in this case. */
10968 break;
10969
10970 default:
10971 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10972 break;
10973 }
10974
10975 return 0; /* Should never be reached. */
10976}
10977
10978/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10979 any error that ada_exception_name_addr_1 might cause to be thrown.
10980 When an error is intercepted, a warning with the error message is printed,
10981 and zero is returned. */
10982
10983static CORE_ADDR
10984ada_exception_name_addr (enum exception_catchpoint_kind ex,
10985 struct breakpoint *b)
10986{
bfd189b1 10987 volatile struct gdb_exception e;
f7f9143b
JB
10988 CORE_ADDR result = 0;
10989
10990 TRY_CATCH (e, RETURN_MASK_ERROR)
10991 {
10992 result = ada_exception_name_addr_1 (ex, b);
10993 }
10994
10995 if (e.reason < 0)
10996 {
10997 warning (_("failed to get exception name: %s"), e.message);
10998 return 0;
10999 }
11000
11001 return result;
11002}
11003
28010a5d
PA
11004static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11005 char *, char **,
c0a91b2b 11006 const struct breakpoint_ops **);
28010a5d
PA
11007static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11008
11009/* Ada catchpoints.
11010
11011 In the case of catchpoints on Ada exceptions, the catchpoint will
11012 stop the target on every exception the program throws. When a user
11013 specifies the name of a specific exception, we translate this
11014 request into a condition expression (in text form), and then parse
11015 it into an expression stored in each of the catchpoint's locations.
11016 We then use this condition to check whether the exception that was
11017 raised is the one the user is interested in. If not, then the
11018 target is resumed again. We store the name of the requested
11019 exception, in order to be able to re-set the condition expression
11020 when symbols change. */
11021
11022/* An instance of this type is used to represent an Ada catchpoint
11023 breakpoint location. It includes a "struct bp_location" as a kind
11024 of base class; users downcast to "struct bp_location *" when
11025 needed. */
11026
11027struct ada_catchpoint_location
11028{
11029 /* The base class. */
11030 struct bp_location base;
11031
11032 /* The condition that checks whether the exception that was raised
11033 is the specific exception the user specified on catchpoint
11034 creation. */
11035 struct expression *excep_cond_expr;
11036};
11037
11038/* Implement the DTOR method in the bp_location_ops structure for all
11039 Ada exception catchpoint kinds. */
11040
11041static void
11042ada_catchpoint_location_dtor (struct bp_location *bl)
11043{
11044 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11045
11046 xfree (al->excep_cond_expr);
11047}
11048
11049/* The vtable to be used in Ada catchpoint locations. */
11050
11051static const struct bp_location_ops ada_catchpoint_location_ops =
11052{
11053 ada_catchpoint_location_dtor
11054};
11055
11056/* An instance of this type is used to represent an Ada catchpoint.
11057 It includes a "struct breakpoint" as a kind of base class; users
11058 downcast to "struct breakpoint *" when needed. */
11059
11060struct ada_catchpoint
11061{
11062 /* The base class. */
11063 struct breakpoint base;
11064
11065 /* The name of the specific exception the user specified. */
11066 char *excep_string;
11067};
11068
11069/* Parse the exception condition string in the context of each of the
11070 catchpoint's locations, and store them for later evaluation. */
11071
11072static void
11073create_excep_cond_exprs (struct ada_catchpoint *c)
11074{
11075 struct cleanup *old_chain;
11076 struct bp_location *bl;
11077 char *cond_string;
11078
11079 /* Nothing to do if there's no specific exception to catch. */
11080 if (c->excep_string == NULL)
11081 return;
11082
11083 /* Same if there are no locations... */
11084 if (c->base.loc == NULL)
11085 return;
11086
11087 /* Compute the condition expression in text form, from the specific
11088 expection we want to catch. */
11089 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11090 old_chain = make_cleanup (xfree, cond_string);
11091
11092 /* Iterate over all the catchpoint's locations, and parse an
11093 expression for each. */
11094 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11095 {
11096 struct ada_catchpoint_location *ada_loc
11097 = (struct ada_catchpoint_location *) bl;
11098 struct expression *exp = NULL;
11099
11100 if (!bl->shlib_disabled)
11101 {
11102 volatile struct gdb_exception e;
11103 char *s;
11104
11105 s = cond_string;
11106 TRY_CATCH (e, RETURN_MASK_ERROR)
11107 {
11108 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11109 }
11110 if (e.reason < 0)
11111 warning (_("failed to reevaluate internal exception condition "
11112 "for catchpoint %d: %s"),
11113 c->base.number, e.message);
11114 }
11115
11116 ada_loc->excep_cond_expr = exp;
11117 }
11118
11119 do_cleanups (old_chain);
11120}
11121
11122/* Implement the DTOR method in the breakpoint_ops structure for all
11123 exception catchpoint kinds. */
11124
11125static void
11126dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11127{
11128 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11129
11130 xfree (c->excep_string);
348d480f 11131
2060206e 11132 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11133}
11134
11135/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11136 structure for all exception catchpoint kinds. */
11137
11138static struct bp_location *
11139allocate_location_exception (enum exception_catchpoint_kind ex,
11140 struct breakpoint *self)
11141{
11142 struct ada_catchpoint_location *loc;
11143
11144 loc = XNEW (struct ada_catchpoint_location);
11145 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11146 loc->excep_cond_expr = NULL;
11147 return &loc->base;
11148}
11149
11150/* Implement the RE_SET method in the breakpoint_ops structure for all
11151 exception catchpoint kinds. */
11152
11153static void
11154re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11155{
11156 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11157
11158 /* Call the base class's method. This updates the catchpoint's
11159 locations. */
2060206e 11160 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11161
11162 /* Reparse the exception conditional expressions. One for each
11163 location. */
11164 create_excep_cond_exprs (c);
11165}
11166
11167/* Returns true if we should stop for this breakpoint hit. If the
11168 user specified a specific exception, we only want to cause a stop
11169 if the program thrown that exception. */
11170
11171static int
11172should_stop_exception (const struct bp_location *bl)
11173{
11174 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11175 const struct ada_catchpoint_location *ada_loc
11176 = (const struct ada_catchpoint_location *) bl;
11177 volatile struct gdb_exception ex;
11178 int stop;
11179
11180 /* With no specific exception, should always stop. */
11181 if (c->excep_string == NULL)
11182 return 1;
11183
11184 if (ada_loc->excep_cond_expr == NULL)
11185 {
11186 /* We will have a NULL expression if back when we were creating
11187 the expressions, this location's had failed to parse. */
11188 return 1;
11189 }
11190
11191 stop = 1;
11192 TRY_CATCH (ex, RETURN_MASK_ALL)
11193 {
11194 struct value *mark;
11195
11196 mark = value_mark ();
11197 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11198 value_free_to_mark (mark);
11199 }
11200 if (ex.reason < 0)
11201 exception_fprintf (gdb_stderr, ex,
11202 _("Error in testing exception condition:\n"));
11203 return stop;
11204}
11205
11206/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11207 for all exception catchpoint kinds. */
11208
11209static void
11210check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11211{
11212 bs->stop = should_stop_exception (bs->bp_location_at);
11213}
11214
f7f9143b
JB
11215/* Implement the PRINT_IT method in the breakpoint_ops structure
11216 for all exception catchpoint kinds. */
11217
11218static enum print_stop_action
348d480f 11219print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11220{
79a45e25 11221 struct ui_out *uiout = current_uiout;
348d480f
PA
11222 struct breakpoint *b = bs->breakpoint_at;
11223
956a9fb9 11224 annotate_catchpoint (b->number);
f7f9143b 11225
956a9fb9 11226 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11227 {
956a9fb9
JB
11228 ui_out_field_string (uiout, "reason",
11229 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11230 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11231 }
11232
00eb2c4a
JB
11233 ui_out_text (uiout,
11234 b->disposition == disp_del ? "\nTemporary catchpoint "
11235 : "\nCatchpoint ");
956a9fb9
JB
11236 ui_out_field_int (uiout, "bkptno", b->number);
11237 ui_out_text (uiout, ", ");
f7f9143b 11238
f7f9143b
JB
11239 switch (ex)
11240 {
11241 case ex_catch_exception:
f7f9143b 11242 case ex_catch_exception_unhandled:
956a9fb9
JB
11243 {
11244 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11245 char exception_name[256];
11246
11247 if (addr != 0)
11248 {
11249 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11250 exception_name [sizeof (exception_name) - 1] = '\0';
11251 }
11252 else
11253 {
11254 /* For some reason, we were unable to read the exception
11255 name. This could happen if the Runtime was compiled
11256 without debugging info, for instance. In that case,
11257 just replace the exception name by the generic string
11258 "exception" - it will read as "an exception" in the
11259 notification we are about to print. */
967cff16 11260 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11261 }
11262 /* In the case of unhandled exception breakpoints, we print
11263 the exception name as "unhandled EXCEPTION_NAME", to make
11264 it clearer to the user which kind of catchpoint just got
11265 hit. We used ui_out_text to make sure that this extra
11266 info does not pollute the exception name in the MI case. */
11267 if (ex == ex_catch_exception_unhandled)
11268 ui_out_text (uiout, "unhandled ");
11269 ui_out_field_string (uiout, "exception-name", exception_name);
11270 }
11271 break;
f7f9143b 11272 case ex_catch_assert:
956a9fb9
JB
11273 /* In this case, the name of the exception is not really
11274 important. Just print "failed assertion" to make it clearer
11275 that his program just hit an assertion-failure catchpoint.
11276 We used ui_out_text because this info does not belong in
11277 the MI output. */
11278 ui_out_text (uiout, "failed assertion");
11279 break;
f7f9143b 11280 }
956a9fb9
JB
11281 ui_out_text (uiout, " at ");
11282 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11283
11284 return PRINT_SRC_AND_LOC;
11285}
11286
11287/* Implement the PRINT_ONE method in the breakpoint_ops structure
11288 for all exception catchpoint kinds. */
11289
11290static void
11291print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11292 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11293{
79a45e25 11294 struct ui_out *uiout = current_uiout;
28010a5d 11295 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11296 struct value_print_options opts;
11297
11298 get_user_print_options (&opts);
11299 if (opts.addressprint)
f7f9143b
JB
11300 {
11301 annotate_field (4);
5af949e3 11302 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11303 }
11304
11305 annotate_field (5);
a6d9a66e 11306 *last_loc = b->loc;
f7f9143b
JB
11307 switch (ex)
11308 {
11309 case ex_catch_exception:
28010a5d 11310 if (c->excep_string != NULL)
f7f9143b 11311 {
28010a5d
PA
11312 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11313
f7f9143b
JB
11314 ui_out_field_string (uiout, "what", msg);
11315 xfree (msg);
11316 }
11317 else
11318 ui_out_field_string (uiout, "what", "all Ada exceptions");
11319
11320 break;
11321
11322 case ex_catch_exception_unhandled:
11323 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11324 break;
11325
11326 case ex_catch_assert:
11327 ui_out_field_string (uiout, "what", "failed Ada assertions");
11328 break;
11329
11330 default:
11331 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11332 break;
11333 }
11334}
11335
11336/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11337 for all exception catchpoint kinds. */
11338
11339static void
11340print_mention_exception (enum exception_catchpoint_kind ex,
11341 struct breakpoint *b)
11342{
28010a5d 11343 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11344 struct ui_out *uiout = current_uiout;
28010a5d 11345
00eb2c4a
JB
11346 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11347 : _("Catchpoint "));
11348 ui_out_field_int (uiout, "bkptno", b->number);
11349 ui_out_text (uiout, ": ");
11350
f7f9143b
JB
11351 switch (ex)
11352 {
11353 case ex_catch_exception:
28010a5d 11354 if (c->excep_string != NULL)
00eb2c4a
JB
11355 {
11356 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11357 struct cleanup *old_chain = make_cleanup (xfree, info);
11358
11359 ui_out_text (uiout, info);
11360 do_cleanups (old_chain);
11361 }
f7f9143b 11362 else
00eb2c4a 11363 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11364 break;
11365
11366 case ex_catch_exception_unhandled:
00eb2c4a 11367 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11368 break;
11369
11370 case ex_catch_assert:
00eb2c4a 11371 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11372 break;
11373
11374 default:
11375 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11376 break;
11377 }
11378}
11379
6149aea9
PA
11380/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11381 for all exception catchpoint kinds. */
11382
11383static void
11384print_recreate_exception (enum exception_catchpoint_kind ex,
11385 struct breakpoint *b, struct ui_file *fp)
11386{
28010a5d
PA
11387 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11388
6149aea9
PA
11389 switch (ex)
11390 {
11391 case ex_catch_exception:
11392 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11393 if (c->excep_string != NULL)
11394 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11395 break;
11396
11397 case ex_catch_exception_unhandled:
78076abc 11398 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11399 break;
11400
11401 case ex_catch_assert:
11402 fprintf_filtered (fp, "catch assert");
11403 break;
11404
11405 default:
11406 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11407 }
d9b3f62e 11408 print_recreate_thread (b, fp);
6149aea9
PA
11409}
11410
f7f9143b
JB
11411/* Virtual table for "catch exception" breakpoints. */
11412
28010a5d
PA
11413static void
11414dtor_catch_exception (struct breakpoint *b)
11415{
11416 dtor_exception (ex_catch_exception, b);
11417}
11418
11419static struct bp_location *
11420allocate_location_catch_exception (struct breakpoint *self)
11421{
11422 return allocate_location_exception (ex_catch_exception, self);
11423}
11424
11425static void
11426re_set_catch_exception (struct breakpoint *b)
11427{
11428 re_set_exception (ex_catch_exception, b);
11429}
11430
11431static void
11432check_status_catch_exception (bpstat bs)
11433{
11434 check_status_exception (ex_catch_exception, bs);
11435}
11436
f7f9143b 11437static enum print_stop_action
348d480f 11438print_it_catch_exception (bpstat bs)
f7f9143b 11439{
348d480f 11440 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11441}
11442
11443static void
a6d9a66e 11444print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11445{
a6d9a66e 11446 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11447}
11448
11449static void
11450print_mention_catch_exception (struct breakpoint *b)
11451{
11452 print_mention_exception (ex_catch_exception, b);
11453}
11454
6149aea9
PA
11455static void
11456print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11457{
11458 print_recreate_exception (ex_catch_exception, b, fp);
11459}
11460
2060206e 11461static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11462
11463/* Virtual table for "catch exception unhandled" breakpoints. */
11464
28010a5d
PA
11465static void
11466dtor_catch_exception_unhandled (struct breakpoint *b)
11467{
11468 dtor_exception (ex_catch_exception_unhandled, b);
11469}
11470
11471static struct bp_location *
11472allocate_location_catch_exception_unhandled (struct breakpoint *self)
11473{
11474 return allocate_location_exception (ex_catch_exception_unhandled, self);
11475}
11476
11477static void
11478re_set_catch_exception_unhandled (struct breakpoint *b)
11479{
11480 re_set_exception (ex_catch_exception_unhandled, b);
11481}
11482
11483static void
11484check_status_catch_exception_unhandled (bpstat bs)
11485{
11486 check_status_exception (ex_catch_exception_unhandled, bs);
11487}
11488
f7f9143b 11489static enum print_stop_action
348d480f 11490print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11491{
348d480f 11492 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11493}
11494
11495static void
a6d9a66e
UW
11496print_one_catch_exception_unhandled (struct breakpoint *b,
11497 struct bp_location **last_loc)
f7f9143b 11498{
a6d9a66e 11499 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11500}
11501
11502static void
11503print_mention_catch_exception_unhandled (struct breakpoint *b)
11504{
11505 print_mention_exception (ex_catch_exception_unhandled, b);
11506}
11507
6149aea9
PA
11508static void
11509print_recreate_catch_exception_unhandled (struct breakpoint *b,
11510 struct ui_file *fp)
11511{
11512 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11513}
11514
2060206e 11515static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11516
11517/* Virtual table for "catch assert" breakpoints. */
11518
28010a5d
PA
11519static void
11520dtor_catch_assert (struct breakpoint *b)
11521{
11522 dtor_exception (ex_catch_assert, b);
11523}
11524
11525static struct bp_location *
11526allocate_location_catch_assert (struct breakpoint *self)
11527{
11528 return allocate_location_exception (ex_catch_assert, self);
11529}
11530
11531static void
11532re_set_catch_assert (struct breakpoint *b)
11533{
11534 return re_set_exception (ex_catch_assert, b);
11535}
11536
11537static void
11538check_status_catch_assert (bpstat bs)
11539{
11540 check_status_exception (ex_catch_assert, bs);
11541}
11542
f7f9143b 11543static enum print_stop_action
348d480f 11544print_it_catch_assert (bpstat bs)
f7f9143b 11545{
348d480f 11546 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11547}
11548
11549static void
a6d9a66e 11550print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11551{
a6d9a66e 11552 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11553}
11554
11555static void
11556print_mention_catch_assert (struct breakpoint *b)
11557{
11558 print_mention_exception (ex_catch_assert, b);
11559}
11560
6149aea9
PA
11561static void
11562print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11563{
11564 print_recreate_exception (ex_catch_assert, b, fp);
11565}
11566
2060206e 11567static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11568
f7f9143b
JB
11569/* Return a newly allocated copy of the first space-separated token
11570 in ARGSP, and then adjust ARGSP to point immediately after that
11571 token.
11572
11573 Return NULL if ARGPS does not contain any more tokens. */
11574
11575static char *
11576ada_get_next_arg (char **argsp)
11577{
11578 char *args = *argsp;
11579 char *end;
11580 char *result;
11581
0fcd72ba 11582 args = skip_spaces (args);
f7f9143b
JB
11583 if (args[0] == '\0')
11584 return NULL; /* No more arguments. */
11585
11586 /* Find the end of the current argument. */
11587
0fcd72ba 11588 end = skip_to_space (args);
f7f9143b
JB
11589
11590 /* Adjust ARGSP to point to the start of the next argument. */
11591
11592 *argsp = end;
11593
11594 /* Make a copy of the current argument and return it. */
11595
11596 result = xmalloc (end - args + 1);
11597 strncpy (result, args, end - args);
11598 result[end - args] = '\0';
11599
11600 return result;
11601}
11602
11603/* Split the arguments specified in a "catch exception" command.
11604 Set EX to the appropriate catchpoint type.
28010a5d 11605 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11606 specified by the user.
11607 If a condition is found at the end of the arguments, the condition
11608 expression is stored in COND_STRING (memory must be deallocated
11609 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11610
11611static void
11612catch_ada_exception_command_split (char *args,
11613 enum exception_catchpoint_kind *ex,
5845583d
JB
11614 char **excep_string,
11615 char **cond_string)
f7f9143b
JB
11616{
11617 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11618 char *exception_name;
5845583d 11619 char *cond = NULL;
f7f9143b
JB
11620
11621 exception_name = ada_get_next_arg (&args);
5845583d
JB
11622 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11623 {
11624 /* This is not an exception name; this is the start of a condition
11625 expression for a catchpoint on all exceptions. So, "un-get"
11626 this token, and set exception_name to NULL. */
11627 xfree (exception_name);
11628 exception_name = NULL;
11629 args -= 2;
11630 }
f7f9143b
JB
11631 make_cleanup (xfree, exception_name);
11632
5845583d 11633 /* Check to see if we have a condition. */
f7f9143b 11634
0fcd72ba 11635 args = skip_spaces (args);
5845583d
JB
11636 if (strncmp (args, "if", 2) == 0
11637 && (isspace (args[2]) || args[2] == '\0'))
11638 {
11639 args += 2;
11640 args = skip_spaces (args);
11641
11642 if (args[0] == '\0')
11643 error (_("Condition missing after `if' keyword"));
11644 cond = xstrdup (args);
11645 make_cleanup (xfree, cond);
11646
11647 args += strlen (args);
11648 }
11649
11650 /* Check that we do not have any more arguments. Anything else
11651 is unexpected. */
f7f9143b
JB
11652
11653 if (args[0] != '\0')
11654 error (_("Junk at end of expression"));
11655
11656 discard_cleanups (old_chain);
11657
11658 if (exception_name == NULL)
11659 {
11660 /* Catch all exceptions. */
11661 *ex = ex_catch_exception;
28010a5d 11662 *excep_string = NULL;
f7f9143b
JB
11663 }
11664 else if (strcmp (exception_name, "unhandled") == 0)
11665 {
11666 /* Catch unhandled exceptions. */
11667 *ex = ex_catch_exception_unhandled;
28010a5d 11668 *excep_string = NULL;
f7f9143b
JB
11669 }
11670 else
11671 {
11672 /* Catch a specific exception. */
11673 *ex = ex_catch_exception;
28010a5d 11674 *excep_string = exception_name;
f7f9143b 11675 }
5845583d 11676 *cond_string = cond;
f7f9143b
JB
11677}
11678
11679/* Return the name of the symbol on which we should break in order to
11680 implement a catchpoint of the EX kind. */
11681
11682static const char *
11683ada_exception_sym_name (enum exception_catchpoint_kind ex)
11684{
3eecfa55
JB
11685 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11686
11687 gdb_assert (data->exception_info != NULL);
0259addd 11688
f7f9143b
JB
11689 switch (ex)
11690 {
11691 case ex_catch_exception:
3eecfa55 11692 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11693 break;
11694 case ex_catch_exception_unhandled:
3eecfa55 11695 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11696 break;
11697 case ex_catch_assert:
3eecfa55 11698 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11699 break;
11700 default:
11701 internal_error (__FILE__, __LINE__,
11702 _("unexpected catchpoint kind (%d)"), ex);
11703 }
11704}
11705
11706/* Return the breakpoint ops "virtual table" used for catchpoints
11707 of the EX kind. */
11708
c0a91b2b 11709static const struct breakpoint_ops *
4b9eee8c 11710ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11711{
11712 switch (ex)
11713 {
11714 case ex_catch_exception:
11715 return (&catch_exception_breakpoint_ops);
11716 break;
11717 case ex_catch_exception_unhandled:
11718 return (&catch_exception_unhandled_breakpoint_ops);
11719 break;
11720 case ex_catch_assert:
11721 return (&catch_assert_breakpoint_ops);
11722 break;
11723 default:
11724 internal_error (__FILE__, __LINE__,
11725 _("unexpected catchpoint kind (%d)"), ex);
11726 }
11727}
11728
11729/* Return the condition that will be used to match the current exception
11730 being raised with the exception that the user wants to catch. This
11731 assumes that this condition is used when the inferior just triggered
11732 an exception catchpoint.
11733
11734 The string returned is a newly allocated string that needs to be
11735 deallocated later. */
11736
11737static char *
28010a5d 11738ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11739{
3d0b0fa3
JB
11740 int i;
11741
0963b4bd 11742 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11743 runtime units that have been compiled without debugging info; if
28010a5d 11744 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11745 exception (e.g. "constraint_error") then, during the evaluation
11746 of the condition expression, the symbol lookup on this name would
0963b4bd 11747 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11748 may then be set only on user-defined exceptions which have the
11749 same not-fully-qualified name (e.g. my_package.constraint_error).
11750
11751 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11752 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11753 exception constraint_error" is rewritten into "catch exception
11754 standard.constraint_error".
11755
11756 If an exception named contraint_error is defined in another package of
11757 the inferior program, then the only way to specify this exception as a
11758 breakpoint condition is to use its fully-qualified named:
11759 e.g. my_package.constraint_error. */
11760
11761 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11762 {
28010a5d 11763 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11764 {
11765 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11766 excep_string);
3d0b0fa3
JB
11767 }
11768 }
28010a5d 11769 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11770}
11771
11772/* Return the symtab_and_line that should be used to insert an exception
11773 catchpoint of the TYPE kind.
11774
28010a5d
PA
11775 EXCEP_STRING should contain the name of a specific exception that
11776 the catchpoint should catch, or NULL otherwise.
f7f9143b 11777
28010a5d
PA
11778 ADDR_STRING returns the name of the function where the real
11779 breakpoint that implements the catchpoints is set, depending on the
11780 type of catchpoint we need to create. */
f7f9143b
JB
11781
11782static struct symtab_and_line
28010a5d 11783ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11784 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11785{
11786 const char *sym_name;
11787 struct symbol *sym;
f7f9143b 11788
0259addd
JB
11789 /* First, find out which exception support info to use. */
11790 ada_exception_support_info_sniffer ();
11791
11792 /* Then lookup the function on which we will break in order to catch
f7f9143b 11793 the Ada exceptions requested by the user. */
f7f9143b
JB
11794 sym_name = ada_exception_sym_name (ex);
11795 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11796
f17011e0
JB
11797 /* We can assume that SYM is not NULL at this stage. If the symbol
11798 did not exist, ada_exception_support_info_sniffer would have
11799 raised an exception.
f7f9143b 11800
f17011e0
JB
11801 Also, ada_exception_support_info_sniffer should have already
11802 verified that SYM is a function symbol. */
11803 gdb_assert (sym != NULL);
11804 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11805
11806 /* Set ADDR_STRING. */
f7f9143b
JB
11807 *addr_string = xstrdup (sym_name);
11808
f7f9143b 11809 /* Set OPS. */
4b9eee8c 11810 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11811
f17011e0 11812 return find_function_start_sal (sym, 1);
f7f9143b
JB
11813}
11814
11815/* Parse the arguments (ARGS) of the "catch exception" command.
11816
f7f9143b
JB
11817 If the user asked the catchpoint to catch only a specific
11818 exception, then save the exception name in ADDR_STRING.
11819
5845583d
JB
11820 If the user provided a condition, then set COND_STRING to
11821 that condition expression (the memory must be deallocated
11822 after use). Otherwise, set COND_STRING to NULL.
11823
f7f9143b
JB
11824 See ada_exception_sal for a description of all the remaining
11825 function arguments of this function. */
11826
9ac4176b 11827static struct symtab_and_line
f7f9143b 11828ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11829 char **excep_string,
5845583d 11830 char **cond_string,
c0a91b2b 11831 const struct breakpoint_ops **ops)
f7f9143b
JB
11832{
11833 enum exception_catchpoint_kind ex;
11834
5845583d 11835 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11836 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11837}
11838
11839/* Create an Ada exception catchpoint. */
11840
11841static void
11842create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11843 struct symtab_and_line sal,
11844 char *addr_string,
11845 char *excep_string,
5845583d 11846 char *cond_string,
c0a91b2b 11847 const struct breakpoint_ops *ops,
28010a5d
PA
11848 int tempflag,
11849 int from_tty)
11850{
11851 struct ada_catchpoint *c;
11852
11853 c = XNEW (struct ada_catchpoint);
11854 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11855 ops, tempflag, from_tty);
11856 c->excep_string = excep_string;
11857 create_excep_cond_exprs (c);
5845583d
JB
11858 if (cond_string != NULL)
11859 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11860 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11861}
11862
9ac4176b
PA
11863/* Implement the "catch exception" command. */
11864
11865static void
11866catch_ada_exception_command (char *arg, int from_tty,
11867 struct cmd_list_element *command)
11868{
11869 struct gdbarch *gdbarch = get_current_arch ();
11870 int tempflag;
11871 struct symtab_and_line sal;
11872 char *addr_string = NULL;
28010a5d 11873 char *excep_string = NULL;
5845583d 11874 char *cond_string = NULL;
c0a91b2b 11875 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11876
11877 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11878
11879 if (!arg)
11880 arg = "";
5845583d
JB
11881 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11882 &cond_string, &ops);
28010a5d 11883 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11884 excep_string, cond_string, ops,
11885 tempflag, from_tty);
9ac4176b
PA
11886}
11887
5845583d
JB
11888/* Assuming that ARGS contains the arguments of a "catch assert"
11889 command, parse those arguments and return a symtab_and_line object
11890 for a failed assertion catchpoint.
11891
11892 Set ADDR_STRING to the name of the function where the real
11893 breakpoint that implements the catchpoint is set.
11894
11895 If ARGS contains a condition, set COND_STRING to that condition
11896 (the memory needs to be deallocated after use). Otherwise, set
11897 COND_STRING to NULL. */
11898
9ac4176b 11899static struct symtab_and_line
f7f9143b 11900ada_decode_assert_location (char *args, char **addr_string,
5845583d 11901 char **cond_string,
c0a91b2b 11902 const struct breakpoint_ops **ops)
f7f9143b 11903{
5845583d 11904 args = skip_spaces (args);
f7f9143b 11905
5845583d
JB
11906 /* Check whether a condition was provided. */
11907 if (strncmp (args, "if", 2) == 0
11908 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11909 {
5845583d 11910 args += 2;
0fcd72ba 11911 args = skip_spaces (args);
5845583d
JB
11912 if (args[0] == '\0')
11913 error (_("condition missing after `if' keyword"));
11914 *cond_string = xstrdup (args);
f7f9143b
JB
11915 }
11916
5845583d
JB
11917 /* Otherwise, there should be no other argument at the end of
11918 the command. */
11919 else if (args[0] != '\0')
11920 error (_("Junk at end of arguments."));
11921
28010a5d 11922 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11923}
11924
9ac4176b
PA
11925/* Implement the "catch assert" command. */
11926
11927static void
11928catch_assert_command (char *arg, int from_tty,
11929 struct cmd_list_element *command)
11930{
11931 struct gdbarch *gdbarch = get_current_arch ();
11932 int tempflag;
11933 struct symtab_and_line sal;
11934 char *addr_string = NULL;
5845583d 11935 char *cond_string = NULL;
c0a91b2b 11936 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11937
11938 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11939
11940 if (!arg)
11941 arg = "";
5845583d 11942 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11943 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11944 NULL, cond_string, ops, tempflag,
11945 from_tty);
9ac4176b 11946}
4c4b4cd2
PH
11947 /* Operators */
11948/* Information about operators given special treatment in functions
11949 below. */
11950/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11951
11952#define ADA_OPERATORS \
11953 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11954 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11955 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11956 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11957 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11958 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11959 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11960 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11961 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11962 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11963 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11964 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11965 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11966 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11967 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11968 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11969 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11970 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11971 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11972
11973static void
554794dc
SDJ
11974ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11975 int *argsp)
4c4b4cd2
PH
11976{
11977 switch (exp->elts[pc - 1].opcode)
11978 {
76a01679 11979 default:
4c4b4cd2
PH
11980 operator_length_standard (exp, pc, oplenp, argsp);
11981 break;
11982
11983#define OP_DEFN(op, len, args, binop) \
11984 case op: *oplenp = len; *argsp = args; break;
11985 ADA_OPERATORS;
11986#undef OP_DEFN
52ce6436
PH
11987
11988 case OP_AGGREGATE:
11989 *oplenp = 3;
11990 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11991 break;
11992
11993 case OP_CHOICES:
11994 *oplenp = 3;
11995 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11996 break;
4c4b4cd2
PH
11997 }
11998}
11999
c0201579
JK
12000/* Implementation of the exp_descriptor method operator_check. */
12001
12002static int
12003ada_operator_check (struct expression *exp, int pos,
12004 int (*objfile_func) (struct objfile *objfile, void *data),
12005 void *data)
12006{
12007 const union exp_element *const elts = exp->elts;
12008 struct type *type = NULL;
12009
12010 switch (elts[pos].opcode)
12011 {
12012 case UNOP_IN_RANGE:
12013 case UNOP_QUAL:
12014 type = elts[pos + 1].type;
12015 break;
12016
12017 default:
12018 return operator_check_standard (exp, pos, objfile_func, data);
12019 }
12020
12021 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12022
12023 if (type && TYPE_OBJFILE (type)
12024 && (*objfile_func) (TYPE_OBJFILE (type), data))
12025 return 1;
12026
12027 return 0;
12028}
12029
4c4b4cd2
PH
12030static char *
12031ada_op_name (enum exp_opcode opcode)
12032{
12033 switch (opcode)
12034 {
76a01679 12035 default:
4c4b4cd2 12036 return op_name_standard (opcode);
52ce6436 12037
4c4b4cd2
PH
12038#define OP_DEFN(op, len, args, binop) case op: return #op;
12039 ADA_OPERATORS;
12040#undef OP_DEFN
52ce6436
PH
12041
12042 case OP_AGGREGATE:
12043 return "OP_AGGREGATE";
12044 case OP_CHOICES:
12045 return "OP_CHOICES";
12046 case OP_NAME:
12047 return "OP_NAME";
4c4b4cd2
PH
12048 }
12049}
12050
12051/* As for operator_length, but assumes PC is pointing at the first
12052 element of the operator, and gives meaningful results only for the
52ce6436 12053 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12054
12055static void
76a01679
JB
12056ada_forward_operator_length (struct expression *exp, int pc,
12057 int *oplenp, int *argsp)
4c4b4cd2 12058{
76a01679 12059 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12060 {
12061 default:
12062 *oplenp = *argsp = 0;
12063 break;
52ce6436 12064
4c4b4cd2
PH
12065#define OP_DEFN(op, len, args, binop) \
12066 case op: *oplenp = len; *argsp = args; break;
12067 ADA_OPERATORS;
12068#undef OP_DEFN
52ce6436
PH
12069
12070 case OP_AGGREGATE:
12071 *oplenp = 3;
12072 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12073 break;
12074
12075 case OP_CHOICES:
12076 *oplenp = 3;
12077 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12078 break;
12079
12080 case OP_STRING:
12081 case OP_NAME:
12082 {
12083 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12084
52ce6436
PH
12085 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12086 *argsp = 0;
12087 break;
12088 }
4c4b4cd2
PH
12089 }
12090}
12091
12092static int
12093ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12094{
12095 enum exp_opcode op = exp->elts[elt].opcode;
12096 int oplen, nargs;
12097 int pc = elt;
12098 int i;
76a01679 12099
4c4b4cd2
PH
12100 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12101
76a01679 12102 switch (op)
4c4b4cd2 12103 {
76a01679 12104 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12105 case OP_ATR_FIRST:
12106 case OP_ATR_LAST:
12107 case OP_ATR_LENGTH:
12108 case OP_ATR_IMAGE:
12109 case OP_ATR_MAX:
12110 case OP_ATR_MIN:
12111 case OP_ATR_MODULUS:
12112 case OP_ATR_POS:
12113 case OP_ATR_SIZE:
12114 case OP_ATR_TAG:
12115 case OP_ATR_VAL:
12116 break;
12117
12118 case UNOP_IN_RANGE:
12119 case UNOP_QUAL:
323e0a4a
AC
12120 /* XXX: gdb_sprint_host_address, type_sprint */
12121 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12122 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12123 fprintf_filtered (stream, " (");
12124 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12125 fprintf_filtered (stream, ")");
12126 break;
12127 case BINOP_IN_BOUNDS:
52ce6436
PH
12128 fprintf_filtered (stream, " (%d)",
12129 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12130 break;
12131 case TERNOP_IN_RANGE:
12132 break;
12133
52ce6436
PH
12134 case OP_AGGREGATE:
12135 case OP_OTHERS:
12136 case OP_DISCRETE_RANGE:
12137 case OP_POSITIONAL:
12138 case OP_CHOICES:
12139 break;
12140
12141 case OP_NAME:
12142 case OP_STRING:
12143 {
12144 char *name = &exp->elts[elt + 2].string;
12145 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12146
52ce6436
PH
12147 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12148 break;
12149 }
12150
4c4b4cd2
PH
12151 default:
12152 return dump_subexp_body_standard (exp, stream, elt);
12153 }
12154
12155 elt += oplen;
12156 for (i = 0; i < nargs; i += 1)
12157 elt = dump_subexp (exp, stream, elt);
12158
12159 return elt;
12160}
12161
12162/* The Ada extension of print_subexp (q.v.). */
12163
76a01679
JB
12164static void
12165ada_print_subexp (struct expression *exp, int *pos,
12166 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12167{
52ce6436 12168 int oplen, nargs, i;
4c4b4cd2
PH
12169 int pc = *pos;
12170 enum exp_opcode op = exp->elts[pc].opcode;
12171
12172 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12173
52ce6436 12174 *pos += oplen;
4c4b4cd2
PH
12175 switch (op)
12176 {
12177 default:
52ce6436 12178 *pos -= oplen;
4c4b4cd2
PH
12179 print_subexp_standard (exp, pos, stream, prec);
12180 return;
12181
12182 case OP_VAR_VALUE:
4c4b4cd2
PH
12183 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12184 return;
12185
12186 case BINOP_IN_BOUNDS:
323e0a4a 12187 /* XXX: sprint_subexp */
4c4b4cd2 12188 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12189 fputs_filtered (" in ", stream);
4c4b4cd2 12190 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12191 fputs_filtered ("'range", stream);
4c4b4cd2 12192 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12193 fprintf_filtered (stream, "(%ld)",
12194 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12195 return;
12196
12197 case TERNOP_IN_RANGE:
4c4b4cd2 12198 if (prec >= PREC_EQUAL)
76a01679 12199 fputs_filtered ("(", stream);
323e0a4a 12200 /* XXX: sprint_subexp */
4c4b4cd2 12201 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12202 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12203 print_subexp (exp, pos, stream, PREC_EQUAL);
12204 fputs_filtered (" .. ", stream);
12205 print_subexp (exp, pos, stream, PREC_EQUAL);
12206 if (prec >= PREC_EQUAL)
76a01679
JB
12207 fputs_filtered (")", stream);
12208 return;
4c4b4cd2
PH
12209
12210 case OP_ATR_FIRST:
12211 case OP_ATR_LAST:
12212 case OP_ATR_LENGTH:
12213 case OP_ATR_IMAGE:
12214 case OP_ATR_MAX:
12215 case OP_ATR_MIN:
12216 case OP_ATR_MODULUS:
12217 case OP_ATR_POS:
12218 case OP_ATR_SIZE:
12219 case OP_ATR_TAG:
12220 case OP_ATR_VAL:
4c4b4cd2 12221 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12222 {
12223 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12224 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12225 *pos += 3;
12226 }
4c4b4cd2 12227 else
76a01679 12228 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12229 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12230 if (nargs > 1)
76a01679
JB
12231 {
12232 int tem;
5b4ee69b 12233
76a01679
JB
12234 for (tem = 1; tem < nargs; tem += 1)
12235 {
12236 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12237 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12238 }
12239 fputs_filtered (")", stream);
12240 }
4c4b4cd2 12241 return;
14f9c5c9 12242
4c4b4cd2 12243 case UNOP_QUAL:
4c4b4cd2
PH
12244 type_print (exp->elts[pc + 1].type, "", stream, 0);
12245 fputs_filtered ("'(", stream);
12246 print_subexp (exp, pos, stream, PREC_PREFIX);
12247 fputs_filtered (")", stream);
12248 return;
14f9c5c9 12249
4c4b4cd2 12250 case UNOP_IN_RANGE:
323e0a4a 12251 /* XXX: sprint_subexp */
4c4b4cd2 12252 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12253 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12254 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12255 return;
52ce6436
PH
12256
12257 case OP_DISCRETE_RANGE:
12258 print_subexp (exp, pos, stream, PREC_SUFFIX);
12259 fputs_filtered ("..", stream);
12260 print_subexp (exp, pos, stream, PREC_SUFFIX);
12261 return;
12262
12263 case OP_OTHERS:
12264 fputs_filtered ("others => ", stream);
12265 print_subexp (exp, pos, stream, PREC_SUFFIX);
12266 return;
12267
12268 case OP_CHOICES:
12269 for (i = 0; i < nargs-1; i += 1)
12270 {
12271 if (i > 0)
12272 fputs_filtered ("|", stream);
12273 print_subexp (exp, pos, stream, PREC_SUFFIX);
12274 }
12275 fputs_filtered (" => ", stream);
12276 print_subexp (exp, pos, stream, PREC_SUFFIX);
12277 return;
12278
12279 case OP_POSITIONAL:
12280 print_subexp (exp, pos, stream, PREC_SUFFIX);
12281 return;
12282
12283 case OP_AGGREGATE:
12284 fputs_filtered ("(", stream);
12285 for (i = 0; i < nargs; i += 1)
12286 {
12287 if (i > 0)
12288 fputs_filtered (", ", stream);
12289 print_subexp (exp, pos, stream, PREC_SUFFIX);
12290 }
12291 fputs_filtered (")", stream);
12292 return;
4c4b4cd2
PH
12293 }
12294}
14f9c5c9
AS
12295
12296/* Table mapping opcodes into strings for printing operators
12297 and precedences of the operators. */
12298
d2e4a39e
AS
12299static const struct op_print ada_op_print_tab[] = {
12300 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12301 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12302 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12303 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12304 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12305 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12306 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12307 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12308 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12309 {">=", BINOP_GEQ, PREC_ORDER, 0},
12310 {">", BINOP_GTR, PREC_ORDER, 0},
12311 {"<", BINOP_LESS, PREC_ORDER, 0},
12312 {">>", BINOP_RSH, PREC_SHIFT, 0},
12313 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12314 {"+", BINOP_ADD, PREC_ADD, 0},
12315 {"-", BINOP_SUB, PREC_ADD, 0},
12316 {"&", BINOP_CONCAT, PREC_ADD, 0},
12317 {"*", BINOP_MUL, PREC_MUL, 0},
12318 {"/", BINOP_DIV, PREC_MUL, 0},
12319 {"rem", BINOP_REM, PREC_MUL, 0},
12320 {"mod", BINOP_MOD, PREC_MUL, 0},
12321 {"**", BINOP_EXP, PREC_REPEAT, 0},
12322 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12323 {"-", UNOP_NEG, PREC_PREFIX, 0},
12324 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12325 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12326 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12327 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12328 {".all", UNOP_IND, PREC_SUFFIX, 1},
12329 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12330 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12331 {NULL, 0, 0, 0}
14f9c5c9
AS
12332};
12333\f
72d5681a
PH
12334enum ada_primitive_types {
12335 ada_primitive_type_int,
12336 ada_primitive_type_long,
12337 ada_primitive_type_short,
12338 ada_primitive_type_char,
12339 ada_primitive_type_float,
12340 ada_primitive_type_double,
12341 ada_primitive_type_void,
12342 ada_primitive_type_long_long,
12343 ada_primitive_type_long_double,
12344 ada_primitive_type_natural,
12345 ada_primitive_type_positive,
12346 ada_primitive_type_system_address,
12347 nr_ada_primitive_types
12348};
6c038f32
PH
12349
12350static void
d4a9a881 12351ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12352 struct language_arch_info *lai)
12353{
d4a9a881 12354 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12355
72d5681a 12356 lai->primitive_type_vector
d4a9a881 12357 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12358 struct type *);
e9bb382b
UW
12359
12360 lai->primitive_type_vector [ada_primitive_type_int]
12361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12362 0, "integer");
12363 lai->primitive_type_vector [ada_primitive_type_long]
12364 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12365 0, "long_integer");
12366 lai->primitive_type_vector [ada_primitive_type_short]
12367 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12368 0, "short_integer");
12369 lai->string_char_type
12370 = lai->primitive_type_vector [ada_primitive_type_char]
12371 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12372 lai->primitive_type_vector [ada_primitive_type_float]
12373 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12374 "float", NULL);
12375 lai->primitive_type_vector [ada_primitive_type_double]
12376 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12377 "long_float", NULL);
12378 lai->primitive_type_vector [ada_primitive_type_long_long]
12379 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12380 0, "long_long_integer");
12381 lai->primitive_type_vector [ada_primitive_type_long_double]
12382 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12383 "long_long_float", NULL);
12384 lai->primitive_type_vector [ada_primitive_type_natural]
12385 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12386 0, "natural");
12387 lai->primitive_type_vector [ada_primitive_type_positive]
12388 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12389 0, "positive");
12390 lai->primitive_type_vector [ada_primitive_type_void]
12391 = builtin->builtin_void;
12392
12393 lai->primitive_type_vector [ada_primitive_type_system_address]
12394 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12395 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12396 = "system__address";
fbb06eb1 12397
47e729a8 12398 lai->bool_type_symbol = NULL;
fbb06eb1 12399 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12400}
6c038f32
PH
12401\f
12402 /* Language vector */
12403
12404/* Not really used, but needed in the ada_language_defn. */
12405
12406static void
6c7a06a3 12407emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12408{
6c7a06a3 12409 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12410}
12411
12412static int
12413parse (void)
12414{
12415 warnings_issued = 0;
12416 return ada_parse ();
12417}
12418
12419static const struct exp_descriptor ada_exp_descriptor = {
12420 ada_print_subexp,
12421 ada_operator_length,
c0201579 12422 ada_operator_check,
6c038f32
PH
12423 ada_op_name,
12424 ada_dump_subexp_body,
12425 ada_evaluate_subexp
12426};
12427
1a119f36 12428/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12429 for Ada. */
12430
1a119f36
JB
12431static symbol_name_cmp_ftype
12432ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12433{
12434 if (should_use_wild_match (lookup_name))
12435 return wild_match;
12436 else
12437 return compare_names;
12438}
12439
6c038f32
PH
12440const struct language_defn ada_language_defn = {
12441 "ada", /* Language name */
12442 language_ada,
6c038f32
PH
12443 range_check_off,
12444 type_check_off,
12445 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12446 that's not quite what this means. */
6c038f32 12447 array_row_major,
9a044a89 12448 macro_expansion_no,
6c038f32
PH
12449 &ada_exp_descriptor,
12450 parse,
12451 ada_error,
12452 resolve,
12453 ada_printchar, /* Print a character constant */
12454 ada_printstr, /* Function to print string constant */
12455 emit_char, /* Function to print single char (not used) */
6c038f32 12456 ada_print_type, /* Print a type using appropriate syntax */
be942545 12457 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12458 ada_val_print, /* Print a value using appropriate syntax */
12459 ada_value_print, /* Print a top-level value */
12460 NULL, /* Language specific skip_trampoline */
2b2d9e11 12461 NULL, /* name_of_this */
6c038f32
PH
12462 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12463 basic_lookup_transparent_type, /* lookup_transparent_type */
12464 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12465 NULL, /* Language specific
12466 class_name_from_physname */
6c038f32
PH
12467 ada_op_print_tab, /* expression operators for printing */
12468 0, /* c-style arrays */
12469 1, /* String lower bound */
6c038f32 12470 ada_get_gdb_completer_word_break_characters,
41d27058 12471 ada_make_symbol_completion_list,
72d5681a 12472 ada_language_arch_info,
e79af960 12473 ada_print_array_index,
41f1b697 12474 default_pass_by_reference,
ae6a3a4c 12475 c_get_string,
1a119f36 12476 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12477 ada_iterate_over_symbols,
6c038f32
PH
12478 LANG_MAGIC
12479};
12480
2c0b251b
PA
12481/* Provide a prototype to silence -Wmissing-prototypes. */
12482extern initialize_file_ftype _initialize_ada_language;
12483
5bf03f13
JB
12484/* Command-list for the "set/show ada" prefix command. */
12485static struct cmd_list_element *set_ada_list;
12486static struct cmd_list_element *show_ada_list;
12487
12488/* Implement the "set ada" prefix command. */
12489
12490static void
12491set_ada_command (char *arg, int from_tty)
12492{
12493 printf_unfiltered (_(\
12494"\"set ada\" must be followed by the name of a setting.\n"));
12495 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12496}
12497
12498/* Implement the "show ada" prefix command. */
12499
12500static void
12501show_ada_command (char *args, int from_tty)
12502{
12503 cmd_show_list (show_ada_list, from_tty, "");
12504}
12505
2060206e
PA
12506static void
12507initialize_ada_catchpoint_ops (void)
12508{
12509 struct breakpoint_ops *ops;
12510
12511 initialize_breakpoint_ops ();
12512
12513 ops = &catch_exception_breakpoint_ops;
12514 *ops = bkpt_breakpoint_ops;
12515 ops->dtor = dtor_catch_exception;
12516 ops->allocate_location = allocate_location_catch_exception;
12517 ops->re_set = re_set_catch_exception;
12518 ops->check_status = check_status_catch_exception;
12519 ops->print_it = print_it_catch_exception;
12520 ops->print_one = print_one_catch_exception;
12521 ops->print_mention = print_mention_catch_exception;
12522 ops->print_recreate = print_recreate_catch_exception;
12523
12524 ops = &catch_exception_unhandled_breakpoint_ops;
12525 *ops = bkpt_breakpoint_ops;
12526 ops->dtor = dtor_catch_exception_unhandled;
12527 ops->allocate_location = allocate_location_catch_exception_unhandled;
12528 ops->re_set = re_set_catch_exception_unhandled;
12529 ops->check_status = check_status_catch_exception_unhandled;
12530 ops->print_it = print_it_catch_exception_unhandled;
12531 ops->print_one = print_one_catch_exception_unhandled;
12532 ops->print_mention = print_mention_catch_exception_unhandled;
12533 ops->print_recreate = print_recreate_catch_exception_unhandled;
12534
12535 ops = &catch_assert_breakpoint_ops;
12536 *ops = bkpt_breakpoint_ops;
12537 ops->dtor = dtor_catch_assert;
12538 ops->allocate_location = allocate_location_catch_assert;
12539 ops->re_set = re_set_catch_assert;
12540 ops->check_status = check_status_catch_assert;
12541 ops->print_it = print_it_catch_assert;
12542 ops->print_one = print_one_catch_assert;
12543 ops->print_mention = print_mention_catch_assert;
12544 ops->print_recreate = print_recreate_catch_assert;
12545}
12546
d2e4a39e 12547void
6c038f32 12548_initialize_ada_language (void)
14f9c5c9 12549{
6c038f32
PH
12550 add_language (&ada_language_defn);
12551
2060206e
PA
12552 initialize_ada_catchpoint_ops ();
12553
5bf03f13
JB
12554 add_prefix_cmd ("ada", no_class, set_ada_command,
12555 _("Prefix command for changing Ada-specfic settings"),
12556 &set_ada_list, "set ada ", 0, &setlist);
12557
12558 add_prefix_cmd ("ada", no_class, show_ada_command,
12559 _("Generic command for showing Ada-specific settings."),
12560 &show_ada_list, "show ada ", 0, &showlist);
12561
12562 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12563 &trust_pad_over_xvs, _("\
12564Enable or disable an optimization trusting PAD types over XVS types"), _("\
12565Show whether an optimization trusting PAD types over XVS types is activated"),
12566 _("\
12567This is related to the encoding used by the GNAT compiler. The debugger\n\
12568should normally trust the contents of PAD types, but certain older versions\n\
12569of GNAT have a bug that sometimes causes the information in the PAD type\n\
12570to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12571work around this bug. It is always safe to turn this option \"off\", but\n\
12572this incurs a slight performance penalty, so it is recommended to NOT change\n\
12573this option to \"off\" unless necessary."),
12574 NULL, NULL, &set_ada_list, &show_ada_list);
12575
9ac4176b
PA
12576 add_catch_command ("exception", _("\
12577Catch Ada exceptions, when raised.\n\
12578With an argument, catch only exceptions with the given name."),
12579 catch_ada_exception_command,
12580 NULL,
12581 CATCH_PERMANENT,
12582 CATCH_TEMPORARY);
12583 add_catch_command ("assert", _("\
12584Catch failed Ada assertions, when raised.\n\
12585With an argument, catch only exceptions with the given name."),
12586 catch_assert_command,
12587 NULL,
12588 CATCH_PERMANENT,
12589 CATCH_TEMPORARY);
12590
6c038f32 12591 varsize_limit = 65536;
6c038f32
PH
12592
12593 obstack_init (&symbol_list_obstack);
12594
12595 decoded_names_store = htab_create_alloc
12596 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12597 NULL, xcalloc, xfree);
6b69afc4 12598
e802dbe0
JB
12599 /* Setup per-inferior data. */
12600 observer_attach_inferior_exit (ada_inferior_exit);
12601 ada_inferior_data
12602 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12603}