]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
missing type description for typedef to pointer value
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
9ac4176b 64#include "arch-utils.h"
28010a5d 65#include "exceptions.h"
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40658b94
PH
107static int full_match (const char *, const char *);
108
40bc484c 109static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 110
4c4b4cd2 111static void ada_add_block_symbols (struct obstack *,
76a01679 112 struct block *, const char *,
2570f2b7 113 domain_enum, struct objfile *, int);
14f9c5c9 114
4c4b4cd2 115static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 116
76a01679 117static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 118 struct block *);
14f9c5c9 119
4c4b4cd2
PH
120static int num_defns_collected (struct obstack *);
121
122static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 123
4c4b4cd2 124static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 125 struct type *);
14f9c5c9 126
d2e4a39e 127static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 128 struct symbol *, struct block *);
14f9c5c9 129
d2e4a39e 130static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 131
4c4b4cd2
PH
132static char *ada_op_name (enum exp_opcode);
133
134static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 135
d2e4a39e 136static int numeric_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int integer_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int scalar_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int discrete_type_p (struct type *);
14f9c5c9 143
aeb5907d
JB
144static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
4c4b4cd2 152static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 153 int, int, int *);
4c4b4cd2 154
d2e4a39e 155static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 156
b4ba55a1
JB
157static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
d2e4a39e 160static int is_dynamic_field (struct type *, int);
14f9c5c9 161
10a2c479 162static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 163 const gdb_byte *,
4c4b4cd2
PH
164 CORE_ADDR, struct value *);
165
166static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 167
28c85d6c 168static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 169
d2e4a39e 170static struct type *to_static_fixed_type (struct type *);
f192137b 171static struct type *static_unwrap_type (struct type *type);
14f9c5c9 172
d2e4a39e 173static struct value *unwrap_value (struct value *);
14f9c5c9 174
ad82864c 175static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 176
ad82864c 177static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 178
ad82864c
JB
179static long decode_packed_array_bitsize (struct type *);
180
181static struct value *decode_constrained_packed_array (struct value *);
182
183static int ada_is_packed_array_type (struct type *);
184
185static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 188 struct value **);
14f9c5c9 189
50810684 190static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 191
4c4b4cd2
PH
192static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
14f9c5c9 194
d2e4a39e 195static struct value *get_var_value (char *, char *);
14f9c5c9 196
d2e4a39e 197static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 198
d2e4a39e 199static int equiv_types (struct type *, struct type *);
14f9c5c9 200
d2e4a39e 201static int is_name_suffix (const char *);
14f9c5c9 202
73589123
PH
203static int advance_wild_match (const char **, const char *, int);
204
205static int wild_match (const char *, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
4c4b4cd2
PH
230static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
4c4b4cd2
PH
234static int ada_is_direct_array_type (struct type *);
235
72d5681a
PH
236static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
714e53ab
PH
238
239static void check_size (const struct type *);
52ce6436
PH
240
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
4c4b4cd2
PH
272\f
273
76a01679 274
4c4b4cd2 275/* Maximum-sized dynamic type. */
14f9c5c9
AS
276static unsigned int varsize_limit;
277
4c4b4cd2
PH
278/* FIXME: brobecker/2003-09-17: No longer a const because it is
279 returned by a function that does not return a const char *. */
280static char *ada_completer_word_break_characters =
281#ifdef VMS
282 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
283#else
14f9c5c9 284 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 285#endif
14f9c5c9 286
4c4b4cd2 287/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 288static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 289 = "__gnat_ada_main_program_name";
14f9c5c9 290
4c4b4cd2
PH
291/* Limit on the number of warnings to raise per expression evaluation. */
292static int warning_limit = 2;
293
294/* Number of warning messages issued; reset to 0 by cleanups after
295 expression evaluation. */
296static int warnings_issued = 0;
297
298static const char *known_runtime_file_name_patterns[] = {
299 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
300};
301
302static const char *known_auxiliary_function_name_patterns[] = {
303 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
304};
305
306/* Space for allocating results of ada_lookup_symbol_list. */
307static struct obstack symbol_list_obstack;
308
e802dbe0
JB
309 /* Inferior-specific data. */
310
311/* Per-inferior data for this module. */
312
313struct ada_inferior_data
314{
315 /* The ada__tags__type_specific_data type, which is used when decoding
316 tagged types. With older versions of GNAT, this type was directly
317 accessible through a component ("tsd") in the object tag. But this
318 is no longer the case, so we cache it for each inferior. */
319 struct type *tsd_type;
320};
321
322/* Our key to this module's inferior data. */
323static const struct inferior_data *ada_inferior_data;
324
325/* A cleanup routine for our inferior data. */
326static void
327ada_inferior_data_cleanup (struct inferior *inf, void *arg)
328{
329 struct ada_inferior_data *data;
330
331 data = inferior_data (inf, ada_inferior_data);
332 if (data != NULL)
333 xfree (data);
334}
335
336/* Return our inferior data for the given inferior (INF).
337
338 This function always returns a valid pointer to an allocated
339 ada_inferior_data structure. If INF's inferior data has not
340 been previously set, this functions creates a new one with all
341 fields set to zero, sets INF's inferior to it, and then returns
342 a pointer to that newly allocated ada_inferior_data. */
343
344static struct ada_inferior_data *
345get_ada_inferior_data (struct inferior *inf)
346{
347 struct ada_inferior_data *data;
348
349 data = inferior_data (inf, ada_inferior_data);
350 if (data == NULL)
351 {
352 data = XZALLOC (struct ada_inferior_data);
353 set_inferior_data (inf, ada_inferior_data, data);
354 }
355
356 return data;
357}
358
359/* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362static void
363ada_inferior_exit (struct inferior *inf)
364{
365 ada_inferior_data_cleanup (inf, NULL);
366 set_inferior_data (inf, ada_inferior_data, NULL);
367}
368
4c4b4cd2
PH
369 /* Utilities */
370
720d1a40 371/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 372 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
373
374 Normally, we really expect a typedef type to only have 1 typedef layer.
375 In other words, we really expect the target type of a typedef type to be
376 a non-typedef type. This is particularly true for Ada units, because
377 the language does not have a typedef vs not-typedef distinction.
378 In that respect, the Ada compiler has been trying to eliminate as many
379 typedef definitions in the debugging information, since they generally
380 do not bring any extra information (we still use typedef under certain
381 circumstances related mostly to the GNAT encoding).
382
383 Unfortunately, we have seen situations where the debugging information
384 generated by the compiler leads to such multiple typedef layers. For
385 instance, consider the following example with stabs:
386
387 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
388 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
389
390 This is an error in the debugging information which causes type
391 pck__float_array___XUP to be defined twice, and the second time,
392 it is defined as a typedef of a typedef.
393
394 This is on the fringe of legality as far as debugging information is
395 concerned, and certainly unexpected. But it is easy to handle these
396 situations correctly, so we can afford to be lenient in this case. */
397
398static struct type *
399ada_typedef_target_type (struct type *type)
400{
401 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
402 type = TYPE_TARGET_TYPE (type);
403 return type;
404}
405
41d27058
JB
406/* Given DECODED_NAME a string holding a symbol name in its
407 decoded form (ie using the Ada dotted notation), returns
408 its unqualified name. */
409
410static const char *
411ada_unqualified_name (const char *decoded_name)
412{
413 const char *result = strrchr (decoded_name, '.');
414
415 if (result != NULL)
416 result++; /* Skip the dot... */
417 else
418 result = decoded_name;
419
420 return result;
421}
422
423/* Return a string starting with '<', followed by STR, and '>'.
424 The result is good until the next call. */
425
426static char *
427add_angle_brackets (const char *str)
428{
429 static char *result = NULL;
430
431 xfree (result);
88c15c34 432 result = xstrprintf ("<%s>", str);
41d27058
JB
433 return result;
434}
96d887e8 435
4c4b4cd2
PH
436static char *
437ada_get_gdb_completer_word_break_characters (void)
438{
439 return ada_completer_word_break_characters;
440}
441
e79af960
JB
442/* Print an array element index using the Ada syntax. */
443
444static void
445ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 446 const struct value_print_options *options)
e79af960 447{
79a45b7d 448 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
449 fprintf_filtered (stream, " => ");
450}
451
f27cf670 452/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 453 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 454 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 455
f27cf670
AS
456void *
457grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 458{
d2e4a39e
AS
459 if (*size < min_size)
460 {
461 *size *= 2;
462 if (*size < min_size)
4c4b4cd2 463 *size = min_size;
f27cf670 464 vect = xrealloc (vect, *size * element_size);
d2e4a39e 465 }
f27cf670 466 return vect;
14f9c5c9
AS
467}
468
469/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 470 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
471
472static int
ebf56fd3 473field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
474{
475 int len = strlen (target);
5b4ee69b 476
d2e4a39e 477 return
4c4b4cd2
PH
478 (strncmp (field_name, target, len) == 0
479 && (field_name[len] == '\0'
480 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
481 && strcmp (field_name + strlen (field_name) - 6,
482 "___XVN") != 0)));
14f9c5c9
AS
483}
484
485
872c8b51
JB
486/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
487 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
488 and return its index. This function also handles fields whose name
489 have ___ suffixes because the compiler sometimes alters their name
490 by adding such a suffix to represent fields with certain constraints.
491 If the field could not be found, return a negative number if
492 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
493
494int
495ada_get_field_index (const struct type *type, const char *field_name,
496 int maybe_missing)
497{
498 int fieldno;
872c8b51
JB
499 struct type *struct_type = check_typedef ((struct type *) type);
500
501 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
502 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
503 return fieldno;
504
505 if (!maybe_missing)
323e0a4a 506 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 507 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
508
509 return -1;
510}
511
512/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
513
514int
d2e4a39e 515ada_name_prefix_len (const char *name)
14f9c5c9
AS
516{
517 if (name == NULL)
518 return 0;
d2e4a39e 519 else
14f9c5c9 520 {
d2e4a39e 521 const char *p = strstr (name, "___");
5b4ee69b 522
14f9c5c9 523 if (p == NULL)
4c4b4cd2 524 return strlen (name);
14f9c5c9 525 else
4c4b4cd2 526 return p - name;
14f9c5c9
AS
527 }
528}
529
4c4b4cd2
PH
530/* Return non-zero if SUFFIX is a suffix of STR.
531 Return zero if STR is null. */
532
14f9c5c9 533static int
d2e4a39e 534is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
535{
536 int len1, len2;
5b4ee69b 537
14f9c5c9
AS
538 if (str == NULL)
539 return 0;
540 len1 = strlen (str);
541 len2 = strlen (suffix);
4c4b4cd2 542 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
543}
544
4c4b4cd2
PH
545/* The contents of value VAL, treated as a value of type TYPE. The
546 result is an lval in memory if VAL is. */
14f9c5c9 547
d2e4a39e 548static struct value *
4c4b4cd2 549coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 550{
61ee279c 551 type = ada_check_typedef (type);
df407dfe 552 if (value_type (val) == type)
4c4b4cd2 553 return val;
d2e4a39e 554 else
14f9c5c9 555 {
4c4b4cd2
PH
556 struct value *result;
557
558 /* Make sure that the object size is not unreasonable before
559 trying to allocate some memory for it. */
714e53ab 560 check_size (type);
4c4b4cd2 561
41e8491f
JK
562 if (value_lazy (val)
563 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
564 result = allocate_value_lazy (type);
565 else
566 {
567 result = allocate_value (type);
568 memcpy (value_contents_raw (result), value_contents (val),
569 TYPE_LENGTH (type));
570 }
74bcbdf3 571 set_value_component_location (result, val);
9bbda503
AC
572 set_value_bitsize (result, value_bitsize (val));
573 set_value_bitpos (result, value_bitpos (val));
42ae5230 574 set_value_address (result, value_address (val));
14f9c5c9
AS
575 return result;
576 }
577}
578
fc1a4b47
AC
579static const gdb_byte *
580cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
581{
582 if (valaddr == NULL)
583 return NULL;
584 else
585 return valaddr + offset;
586}
587
588static CORE_ADDR
ebf56fd3 589cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
590{
591 if (address == 0)
592 return 0;
d2e4a39e 593 else
14f9c5c9
AS
594 return address + offset;
595}
596
4c4b4cd2
PH
597/* Issue a warning (as for the definition of warning in utils.c, but
598 with exactly one argument rather than ...), unless the limit on the
599 number of warnings has passed during the evaluation of the current
600 expression. */
a2249542 601
77109804
AC
602/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
603 provided by "complaint". */
a0b31db1 604static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 605
14f9c5c9 606static void
a2249542 607lim_warning (const char *format, ...)
14f9c5c9 608{
a2249542 609 va_list args;
a2249542 610
5b4ee69b 611 va_start (args, format);
4c4b4cd2
PH
612 warnings_issued += 1;
613 if (warnings_issued <= warning_limit)
a2249542
MK
614 vwarning (format, args);
615
616 va_end (args);
4c4b4cd2
PH
617}
618
714e53ab
PH
619/* Issue an error if the size of an object of type T is unreasonable,
620 i.e. if it would be a bad idea to allocate a value of this type in
621 GDB. */
622
623static void
624check_size (const struct type *type)
625{
626 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 627 error (_("object size is larger than varsize-limit"));
714e53ab
PH
628}
629
0963b4bd 630/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 631static LONGEST
c3e5cd34 632max_of_size (int size)
4c4b4cd2 633{
76a01679 634 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 635
76a01679 636 return top_bit | (top_bit - 1);
4c4b4cd2
PH
637}
638
0963b4bd 639/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641min_of_size (int size)
4c4b4cd2 642{
c3e5cd34 643 return -max_of_size (size) - 1;
4c4b4cd2
PH
644}
645
0963b4bd 646/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 647static ULONGEST
c3e5cd34 648umax_of_size (int size)
4c4b4cd2 649{
76a01679 650 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 651
76a01679 652 return top_bit | (top_bit - 1);
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
656static LONGEST
657max_of_type (struct type *t)
4c4b4cd2 658{
c3e5cd34
PH
659 if (TYPE_UNSIGNED (t))
660 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
661 else
662 return max_of_size (TYPE_LENGTH (t));
663}
664
0963b4bd 665/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667min_of_type (struct type *t)
668{
669 if (TYPE_UNSIGNED (t))
670 return 0;
671 else
672 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
673}
674
675/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
676LONGEST
677ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 678{
76a01679 679 switch (TYPE_CODE (type))
4c4b4cd2
PH
680 {
681 case TYPE_CODE_RANGE:
690cc4eb 682 return TYPE_HIGH_BOUND (type);
4c4b4cd2 683 case TYPE_CODE_ENUM:
690cc4eb
PH
684 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
685 case TYPE_CODE_BOOL:
686 return 1;
687 case TYPE_CODE_CHAR:
76a01679 688 case TYPE_CODE_INT:
690cc4eb 689 return max_of_type (type);
4c4b4cd2 690 default:
43bbcdc2 691 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
692 }
693}
694
695/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
696LONGEST
697ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 698{
76a01679 699 switch (TYPE_CODE (type))
4c4b4cd2
PH
700 {
701 case TYPE_CODE_RANGE:
690cc4eb 702 return TYPE_LOW_BOUND (type);
4c4b4cd2 703 case TYPE_CODE_ENUM:
690cc4eb
PH
704 return TYPE_FIELD_BITPOS (type, 0);
705 case TYPE_CODE_BOOL:
706 return 0;
707 case TYPE_CODE_CHAR:
76a01679 708 case TYPE_CODE_INT:
690cc4eb 709 return min_of_type (type);
4c4b4cd2 710 default:
43bbcdc2 711 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
712 }
713}
714
715/* The identity on non-range types. For range types, the underlying
76a01679 716 non-range scalar type. */
4c4b4cd2
PH
717
718static struct type *
719base_type (struct type *type)
720{
721 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
722 {
76a01679
JB
723 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
724 return type;
4c4b4cd2
PH
725 type = TYPE_TARGET_TYPE (type);
726 }
727 return type;
14f9c5c9 728}
4c4b4cd2 729\f
76a01679 730
4c4b4cd2 731 /* Language Selection */
14f9c5c9
AS
732
733/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 734 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 735
14f9c5c9 736enum language
ccefe4c4 737ada_update_initial_language (enum language lang)
14f9c5c9 738{
d2e4a39e 739 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
740 (struct objfile *) NULL) != NULL)
741 return language_ada;
14f9c5c9
AS
742
743 return lang;
744}
96d887e8
PH
745
746/* If the main procedure is written in Ada, then return its name.
747 The result is good until the next call. Return NULL if the main
748 procedure doesn't appear to be in Ada. */
749
750char *
751ada_main_name (void)
752{
753 struct minimal_symbol *msym;
f9bc20b9 754 static char *main_program_name = NULL;
6c038f32 755
96d887e8
PH
756 /* For Ada, the name of the main procedure is stored in a specific
757 string constant, generated by the binder. Look for that symbol,
758 extract its address, and then read that string. If we didn't find
759 that string, then most probably the main procedure is not written
760 in Ada. */
761 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
762
763 if (msym != NULL)
764 {
f9bc20b9
JB
765 CORE_ADDR main_program_name_addr;
766 int err_code;
767
96d887e8
PH
768 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
769 if (main_program_name_addr == 0)
323e0a4a 770 error (_("Invalid address for Ada main program name."));
96d887e8 771
f9bc20b9
JB
772 xfree (main_program_name);
773 target_read_string (main_program_name_addr, &main_program_name,
774 1024, &err_code);
775
776 if (err_code != 0)
777 return NULL;
96d887e8
PH
778 return main_program_name;
779 }
780
781 /* The main procedure doesn't seem to be in Ada. */
782 return NULL;
783}
14f9c5c9 784\f
4c4b4cd2 785 /* Symbols */
d2e4a39e 786
4c4b4cd2
PH
787/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
788 of NULLs. */
14f9c5c9 789
d2e4a39e
AS
790const struct ada_opname_map ada_opname_table[] = {
791 {"Oadd", "\"+\"", BINOP_ADD},
792 {"Osubtract", "\"-\"", BINOP_SUB},
793 {"Omultiply", "\"*\"", BINOP_MUL},
794 {"Odivide", "\"/\"", BINOP_DIV},
795 {"Omod", "\"mod\"", BINOP_MOD},
796 {"Orem", "\"rem\"", BINOP_REM},
797 {"Oexpon", "\"**\"", BINOP_EXP},
798 {"Olt", "\"<\"", BINOP_LESS},
799 {"Ole", "\"<=\"", BINOP_LEQ},
800 {"Ogt", "\">\"", BINOP_GTR},
801 {"Oge", "\">=\"", BINOP_GEQ},
802 {"Oeq", "\"=\"", BINOP_EQUAL},
803 {"One", "\"/=\"", BINOP_NOTEQUAL},
804 {"Oand", "\"and\"", BINOP_BITWISE_AND},
805 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
806 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
807 {"Oconcat", "\"&\"", BINOP_CONCAT},
808 {"Oabs", "\"abs\"", UNOP_ABS},
809 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
810 {"Oadd", "\"+\"", UNOP_PLUS},
811 {"Osubtract", "\"-\"", UNOP_NEG},
812 {NULL, NULL}
14f9c5c9
AS
813};
814
4c4b4cd2
PH
815/* The "encoded" form of DECODED, according to GNAT conventions.
816 The result is valid until the next call to ada_encode. */
817
14f9c5c9 818char *
4c4b4cd2 819ada_encode (const char *decoded)
14f9c5c9 820{
4c4b4cd2
PH
821 static char *encoding_buffer = NULL;
822 static size_t encoding_buffer_size = 0;
d2e4a39e 823 const char *p;
14f9c5c9 824 int k;
d2e4a39e 825
4c4b4cd2 826 if (decoded == NULL)
14f9c5c9
AS
827 return NULL;
828
4c4b4cd2
PH
829 GROW_VECT (encoding_buffer, encoding_buffer_size,
830 2 * strlen (decoded) + 10);
14f9c5c9
AS
831
832 k = 0;
4c4b4cd2 833 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 834 {
cdc7bb92 835 if (*p == '.')
4c4b4cd2
PH
836 {
837 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
838 k += 2;
839 }
14f9c5c9 840 else if (*p == '"')
4c4b4cd2
PH
841 {
842 const struct ada_opname_map *mapping;
843
844 for (mapping = ada_opname_table;
1265e4aa
JB
845 mapping->encoded != NULL
846 && strncmp (mapping->decoded, p,
847 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
848 ;
849 if (mapping->encoded == NULL)
323e0a4a 850 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
851 strcpy (encoding_buffer + k, mapping->encoded);
852 k += strlen (mapping->encoded);
853 break;
854 }
d2e4a39e 855 else
4c4b4cd2
PH
856 {
857 encoding_buffer[k] = *p;
858 k += 1;
859 }
14f9c5c9
AS
860 }
861
4c4b4cd2
PH
862 encoding_buffer[k] = '\0';
863 return encoding_buffer;
14f9c5c9
AS
864}
865
866/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
867 quotes, unfolded, but with the quotes stripped away. Result good
868 to next call. */
869
d2e4a39e
AS
870char *
871ada_fold_name (const char *name)
14f9c5c9 872{
d2e4a39e 873 static char *fold_buffer = NULL;
14f9c5c9
AS
874 static size_t fold_buffer_size = 0;
875
876 int len = strlen (name);
d2e4a39e 877 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
878
879 if (name[0] == '\'')
880 {
d2e4a39e
AS
881 strncpy (fold_buffer, name + 1, len - 2);
882 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
883 }
884 else
885 {
886 int i;
5b4ee69b 887
14f9c5c9 888 for (i = 0; i <= len; i += 1)
4c4b4cd2 889 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
890 }
891
892 return fold_buffer;
893}
894
529cad9c
PH
895/* Return nonzero if C is either a digit or a lowercase alphabet character. */
896
897static int
898is_lower_alphanum (const char c)
899{
900 return (isdigit (c) || (isalpha (c) && islower (c)));
901}
902
c90092fe
JB
903/* ENCODED is the linkage name of a symbol and LEN contains its length.
904 This function saves in LEN the length of that same symbol name but
905 without either of these suffixes:
29480c32
JB
906 . .{DIGIT}+
907 . ${DIGIT}+
908 . ___{DIGIT}+
909 . __{DIGIT}+.
c90092fe 910
29480c32
JB
911 These are suffixes introduced by the compiler for entities such as
912 nested subprogram for instance, in order to avoid name clashes.
913 They do not serve any purpose for the debugger. */
914
915static void
916ada_remove_trailing_digits (const char *encoded, int *len)
917{
918 if (*len > 1 && isdigit (encoded[*len - 1]))
919 {
920 int i = *len - 2;
5b4ee69b 921
29480c32
JB
922 while (i > 0 && isdigit (encoded[i]))
923 i--;
924 if (i >= 0 && encoded[i] == '.')
925 *len = i;
926 else if (i >= 0 && encoded[i] == '$')
927 *len = i;
928 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
929 *len = i - 2;
930 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
931 *len = i - 1;
932 }
933}
934
935/* Remove the suffix introduced by the compiler for protected object
936 subprograms. */
937
938static void
939ada_remove_po_subprogram_suffix (const char *encoded, int *len)
940{
941 /* Remove trailing N. */
942
943 /* Protected entry subprograms are broken into two
944 separate subprograms: The first one is unprotected, and has
945 a 'N' suffix; the second is the protected version, and has
0963b4bd 946 the 'P' suffix. The second calls the first one after handling
29480c32
JB
947 the protection. Since the P subprograms are internally generated,
948 we leave these names undecoded, giving the user a clue that this
949 entity is internal. */
950
951 if (*len > 1
952 && encoded[*len - 1] == 'N'
953 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
954 *len = *len - 1;
955}
956
69fadcdf
JB
957/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
958
959static void
960ada_remove_Xbn_suffix (const char *encoded, int *len)
961{
962 int i = *len - 1;
963
964 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
965 i--;
966
967 if (encoded[i] != 'X')
968 return;
969
970 if (i == 0)
971 return;
972
973 if (isalnum (encoded[i-1]))
974 *len = i;
975}
976
29480c32
JB
977/* If ENCODED follows the GNAT entity encoding conventions, then return
978 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
979 replaced by ENCODED.
14f9c5c9 980
4c4b4cd2 981 The resulting string is valid until the next call of ada_decode.
29480c32 982 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
983 is returned. */
984
985const char *
986ada_decode (const char *encoded)
14f9c5c9
AS
987{
988 int i, j;
989 int len0;
d2e4a39e 990 const char *p;
4c4b4cd2 991 char *decoded;
14f9c5c9 992 int at_start_name;
4c4b4cd2
PH
993 static char *decoding_buffer = NULL;
994 static size_t decoding_buffer_size = 0;
d2e4a39e 995
29480c32
JB
996 /* The name of the Ada main procedure starts with "_ada_".
997 This prefix is not part of the decoded name, so skip this part
998 if we see this prefix. */
4c4b4cd2
PH
999 if (strncmp (encoded, "_ada_", 5) == 0)
1000 encoded += 5;
14f9c5c9 1001
29480c32
JB
1002 /* If the name starts with '_', then it is not a properly encoded
1003 name, so do not attempt to decode it. Similarly, if the name
1004 starts with '<', the name should not be decoded. */
4c4b4cd2 1005 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1006 goto Suppress;
1007
4c4b4cd2 1008 len0 = strlen (encoded);
4c4b4cd2 1009
29480c32
JB
1010 ada_remove_trailing_digits (encoded, &len0);
1011 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1012
4c4b4cd2
PH
1013 /* Remove the ___X.* suffix if present. Do not forget to verify that
1014 the suffix is located before the current "end" of ENCODED. We want
1015 to avoid re-matching parts of ENCODED that have previously been
1016 marked as discarded (by decrementing LEN0). */
1017 p = strstr (encoded, "___");
1018 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1019 {
1020 if (p[3] == 'X')
4c4b4cd2 1021 len0 = p - encoded;
14f9c5c9 1022 else
4c4b4cd2 1023 goto Suppress;
14f9c5c9 1024 }
4c4b4cd2 1025
29480c32
JB
1026 /* Remove any trailing TKB suffix. It tells us that this symbol
1027 is for the body of a task, but that information does not actually
1028 appear in the decoded name. */
1029
4c4b4cd2 1030 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1031 len0 -= 3;
76a01679 1032
a10967fa
JB
1033 /* Remove any trailing TB suffix. The TB suffix is slightly different
1034 from the TKB suffix because it is used for non-anonymous task
1035 bodies. */
1036
1037 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1038 len0 -= 2;
1039
29480c32
JB
1040 /* Remove trailing "B" suffixes. */
1041 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1042
4c4b4cd2 1043 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1044 len0 -= 1;
1045
4c4b4cd2 1046 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1047
4c4b4cd2
PH
1048 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1049 decoded = decoding_buffer;
14f9c5c9 1050
29480c32
JB
1051 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1052
4c4b4cd2 1053 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1054 {
4c4b4cd2
PH
1055 i = len0 - 2;
1056 while ((i >= 0 && isdigit (encoded[i]))
1057 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1058 i -= 1;
1059 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1060 len0 = i - 1;
1061 else if (encoded[i] == '$')
1062 len0 = i;
d2e4a39e 1063 }
14f9c5c9 1064
29480c32
JB
1065 /* The first few characters that are not alphabetic are not part
1066 of any encoding we use, so we can copy them over verbatim. */
1067
4c4b4cd2
PH
1068 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1069 decoded[j] = encoded[i];
14f9c5c9
AS
1070
1071 at_start_name = 1;
1072 while (i < len0)
1073 {
29480c32 1074 /* Is this a symbol function? */
4c4b4cd2
PH
1075 if (at_start_name && encoded[i] == 'O')
1076 {
1077 int k;
5b4ee69b 1078
4c4b4cd2
PH
1079 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1080 {
1081 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1082 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1083 op_len - 1) == 0)
1084 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1085 {
1086 strcpy (decoded + j, ada_opname_table[k].decoded);
1087 at_start_name = 0;
1088 i += op_len;
1089 j += strlen (ada_opname_table[k].decoded);
1090 break;
1091 }
1092 }
1093 if (ada_opname_table[k].encoded != NULL)
1094 continue;
1095 }
14f9c5c9
AS
1096 at_start_name = 0;
1097
529cad9c
PH
1098 /* Replace "TK__" with "__", which will eventually be translated
1099 into "." (just below). */
1100
4c4b4cd2
PH
1101 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1102 i += 2;
529cad9c 1103
29480c32
JB
1104 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1105 be translated into "." (just below). These are internal names
1106 generated for anonymous blocks inside which our symbol is nested. */
1107
1108 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1109 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1110 && isdigit (encoded [i+4]))
1111 {
1112 int k = i + 5;
1113
1114 while (k < len0 && isdigit (encoded[k]))
1115 k++; /* Skip any extra digit. */
1116
1117 /* Double-check that the "__B_{DIGITS}+" sequence we found
1118 is indeed followed by "__". */
1119 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1120 i = k;
1121 }
1122
529cad9c
PH
1123 /* Remove _E{DIGITS}+[sb] */
1124
1125 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1126 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1127 one implements the actual entry code, and has a suffix following
1128 the convention above; the second one implements the barrier and
1129 uses the same convention as above, except that the 'E' is replaced
1130 by a 'B'.
1131
1132 Just as above, we do not decode the name of barrier functions
1133 to give the user a clue that the code he is debugging has been
1134 internally generated. */
1135
1136 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1137 && isdigit (encoded[i+2]))
1138 {
1139 int k = i + 3;
1140
1141 while (k < len0 && isdigit (encoded[k]))
1142 k++;
1143
1144 if (k < len0
1145 && (encoded[k] == 'b' || encoded[k] == 's'))
1146 {
1147 k++;
1148 /* Just as an extra precaution, make sure that if this
1149 suffix is followed by anything else, it is a '_'.
1150 Otherwise, we matched this sequence by accident. */
1151 if (k == len0
1152 || (k < len0 && encoded[k] == '_'))
1153 i = k;
1154 }
1155 }
1156
1157 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1158 the GNAT front-end in protected object subprograms. */
1159
1160 if (i < len0 + 3
1161 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1162 {
1163 /* Backtrack a bit up until we reach either the begining of
1164 the encoded name, or "__". Make sure that we only find
1165 digits or lowercase characters. */
1166 const char *ptr = encoded + i - 1;
1167
1168 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1169 ptr--;
1170 if (ptr < encoded
1171 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1172 i++;
1173 }
1174
4c4b4cd2
PH
1175 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1176 {
29480c32
JB
1177 /* This is a X[bn]* sequence not separated from the previous
1178 part of the name with a non-alpha-numeric character (in other
1179 words, immediately following an alpha-numeric character), then
1180 verify that it is placed at the end of the encoded name. If
1181 not, then the encoding is not valid and we should abort the
1182 decoding. Otherwise, just skip it, it is used in body-nested
1183 package names. */
4c4b4cd2
PH
1184 do
1185 i += 1;
1186 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1187 if (i < len0)
1188 goto Suppress;
1189 }
cdc7bb92 1190 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1191 {
29480c32 1192 /* Replace '__' by '.'. */
4c4b4cd2
PH
1193 decoded[j] = '.';
1194 at_start_name = 1;
1195 i += 2;
1196 j += 1;
1197 }
14f9c5c9 1198 else
4c4b4cd2 1199 {
29480c32
JB
1200 /* It's a character part of the decoded name, so just copy it
1201 over. */
4c4b4cd2
PH
1202 decoded[j] = encoded[i];
1203 i += 1;
1204 j += 1;
1205 }
14f9c5c9 1206 }
4c4b4cd2 1207 decoded[j] = '\000';
14f9c5c9 1208
29480c32
JB
1209 /* Decoded names should never contain any uppercase character.
1210 Double-check this, and abort the decoding if we find one. */
1211
4c4b4cd2
PH
1212 for (i = 0; decoded[i] != '\0'; i += 1)
1213 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1214 goto Suppress;
1215
4c4b4cd2
PH
1216 if (strcmp (decoded, encoded) == 0)
1217 return encoded;
1218 else
1219 return decoded;
14f9c5c9
AS
1220
1221Suppress:
4c4b4cd2
PH
1222 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1223 decoded = decoding_buffer;
1224 if (encoded[0] == '<')
1225 strcpy (decoded, encoded);
14f9c5c9 1226 else
88c15c34 1227 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1228 return decoded;
1229
1230}
1231
1232/* Table for keeping permanent unique copies of decoded names. Once
1233 allocated, names in this table are never released. While this is a
1234 storage leak, it should not be significant unless there are massive
1235 changes in the set of decoded names in successive versions of a
1236 symbol table loaded during a single session. */
1237static struct htab *decoded_names_store;
1238
1239/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1240 in the language-specific part of GSYMBOL, if it has not been
1241 previously computed. Tries to save the decoded name in the same
1242 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1243 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1244 GSYMBOL).
4c4b4cd2
PH
1245 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1246 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1247 when a decoded name is cached in it. */
4c4b4cd2 1248
76a01679
JB
1249char *
1250ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1251{
76a01679 1252 char **resultp =
afa16725 1253 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1254
4c4b4cd2
PH
1255 if (*resultp == NULL)
1256 {
1257 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1258
714835d5 1259 if (gsymbol->obj_section != NULL)
76a01679 1260 {
714835d5 1261 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1262
714835d5
UW
1263 *resultp = obsavestring (decoded, strlen (decoded),
1264 &objf->objfile_obstack);
76a01679 1265 }
4c4b4cd2 1266 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1267 case, we put the result on the heap. Since we only decode
1268 when needed, we hope this usually does not cause a
1269 significant memory leak (FIXME). */
4c4b4cd2 1270 if (*resultp == NULL)
76a01679
JB
1271 {
1272 char **slot = (char **) htab_find_slot (decoded_names_store,
1273 decoded, INSERT);
5b4ee69b 1274
76a01679
JB
1275 if (*slot == NULL)
1276 *slot = xstrdup (decoded);
1277 *resultp = *slot;
1278 }
4c4b4cd2 1279 }
14f9c5c9 1280
4c4b4cd2
PH
1281 return *resultp;
1282}
76a01679 1283
2c0b251b 1284static char *
76a01679 1285ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1286{
1287 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1288}
1289
1290/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1291 suffixes that encode debugging information or leading _ada_ on
1292 SYM_NAME (see is_name_suffix commentary for the debugging
1293 information that is ignored). If WILD, then NAME need only match a
1294 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1295 either argument is NULL. */
14f9c5c9 1296
2c0b251b 1297static int
40658b94 1298match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1299{
1300 if (sym_name == NULL || name == NULL)
1301 return 0;
1302 else if (wild)
73589123 1303 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1304 else
1305 {
1306 int len_name = strlen (name);
5b4ee69b 1307
4c4b4cd2
PH
1308 return (strncmp (sym_name, name, len_name) == 0
1309 && is_name_suffix (sym_name + len_name))
1310 || (strncmp (sym_name, "_ada_", 5) == 0
1311 && strncmp (sym_name + 5, name, len_name) == 0
1312 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1313 }
14f9c5c9 1314}
14f9c5c9 1315\f
d2e4a39e 1316
4c4b4cd2 1317 /* Arrays */
14f9c5c9 1318
28c85d6c
JB
1319/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1320 generated by the GNAT compiler to describe the index type used
1321 for each dimension of an array, check whether it follows the latest
1322 known encoding. If not, fix it up to conform to the latest encoding.
1323 Otherwise, do nothing. This function also does nothing if
1324 INDEX_DESC_TYPE is NULL.
1325
1326 The GNAT encoding used to describle the array index type evolved a bit.
1327 Initially, the information would be provided through the name of each
1328 field of the structure type only, while the type of these fields was
1329 described as unspecified and irrelevant. The debugger was then expected
1330 to perform a global type lookup using the name of that field in order
1331 to get access to the full index type description. Because these global
1332 lookups can be very expensive, the encoding was later enhanced to make
1333 the global lookup unnecessary by defining the field type as being
1334 the full index type description.
1335
1336 The purpose of this routine is to allow us to support older versions
1337 of the compiler by detecting the use of the older encoding, and by
1338 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1339 we essentially replace each field's meaningless type by the associated
1340 index subtype). */
1341
1342void
1343ada_fixup_array_indexes_type (struct type *index_desc_type)
1344{
1345 int i;
1346
1347 if (index_desc_type == NULL)
1348 return;
1349 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1350
1351 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1352 to check one field only, no need to check them all). If not, return
1353 now.
1354
1355 If our INDEX_DESC_TYPE was generated using the older encoding,
1356 the field type should be a meaningless integer type whose name
1357 is not equal to the field name. */
1358 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1359 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1360 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1361 return;
1362
1363 /* Fixup each field of INDEX_DESC_TYPE. */
1364 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1365 {
1366 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1367 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1368
1369 if (raw_type)
1370 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1371 }
1372}
1373
4c4b4cd2 1374/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1375
d2e4a39e
AS
1376static char *bound_name[] = {
1377 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1378 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1379};
1380
1381/* Maximum number of array dimensions we are prepared to handle. */
1382
4c4b4cd2 1383#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1384
14f9c5c9 1385
4c4b4cd2
PH
1386/* The desc_* routines return primitive portions of array descriptors
1387 (fat pointers). */
14f9c5c9
AS
1388
1389/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1390 level of indirection, if needed. */
1391
d2e4a39e
AS
1392static struct type *
1393desc_base_type (struct type *type)
14f9c5c9
AS
1394{
1395 if (type == NULL)
1396 return NULL;
61ee279c 1397 type = ada_check_typedef (type);
720d1a40
JB
1398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1399 type = ada_typedef_target_type (type);
1400
1265e4aa
JB
1401 if (type != NULL
1402 && (TYPE_CODE (type) == TYPE_CODE_PTR
1403 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1404 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1405 else
1406 return type;
1407}
1408
4c4b4cd2
PH
1409/* True iff TYPE indicates a "thin" array pointer type. */
1410
14f9c5c9 1411static int
d2e4a39e 1412is_thin_pntr (struct type *type)
14f9c5c9 1413{
d2e4a39e 1414 return
14f9c5c9
AS
1415 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1416 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1417}
1418
4c4b4cd2
PH
1419/* The descriptor type for thin pointer type TYPE. */
1420
d2e4a39e
AS
1421static struct type *
1422thin_descriptor_type (struct type *type)
14f9c5c9 1423{
d2e4a39e 1424 struct type *base_type = desc_base_type (type);
5b4ee69b 1425
14f9c5c9
AS
1426 if (base_type == NULL)
1427 return NULL;
1428 if (is_suffix (ada_type_name (base_type), "___XVE"))
1429 return base_type;
d2e4a39e 1430 else
14f9c5c9 1431 {
d2e4a39e 1432 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1433
14f9c5c9 1434 if (alt_type == NULL)
4c4b4cd2 1435 return base_type;
14f9c5c9 1436 else
4c4b4cd2 1437 return alt_type;
14f9c5c9
AS
1438 }
1439}
1440
4c4b4cd2
PH
1441/* A pointer to the array data for thin-pointer value VAL. */
1442
d2e4a39e
AS
1443static struct value *
1444thin_data_pntr (struct value *val)
14f9c5c9 1445{
828292f2 1446 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1447 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1448
556bdfd4
UW
1449 data_type = lookup_pointer_type (data_type);
1450
14f9c5c9 1451 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1452 return value_cast (data_type, value_copy (val));
d2e4a39e 1453 else
42ae5230 1454 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1455}
1456
4c4b4cd2
PH
1457/* True iff TYPE indicates a "thick" array pointer type. */
1458
14f9c5c9 1459static int
d2e4a39e 1460is_thick_pntr (struct type *type)
14f9c5c9
AS
1461{
1462 type = desc_base_type (type);
1463 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1464 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1465}
1466
4c4b4cd2
PH
1467/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1468 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1469
d2e4a39e
AS
1470static struct type *
1471desc_bounds_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *r;
14f9c5c9
AS
1474
1475 type = desc_base_type (type);
1476
1477 if (type == NULL)
1478 return NULL;
1479 else if (is_thin_pntr (type))
1480 {
1481 type = thin_descriptor_type (type);
1482 if (type == NULL)
4c4b4cd2 1483 return NULL;
14f9c5c9
AS
1484 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1485 if (r != NULL)
61ee279c 1486 return ada_check_typedef (r);
14f9c5c9
AS
1487 }
1488 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1489 {
1490 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1491 if (r != NULL)
61ee279c 1492 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1493 }
1494 return NULL;
1495}
1496
1497/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1498 one, a pointer to its bounds data. Otherwise NULL. */
1499
d2e4a39e
AS
1500static struct value *
1501desc_bounds (struct value *arr)
14f9c5c9 1502{
df407dfe 1503 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1504
d2e4a39e 1505 if (is_thin_pntr (type))
14f9c5c9 1506 {
d2e4a39e 1507 struct type *bounds_type =
4c4b4cd2 1508 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1509 LONGEST addr;
1510
4cdfadb1 1511 if (bounds_type == NULL)
323e0a4a 1512 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1513
1514 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1515 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1516 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1517 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1518 addr = value_as_long (arr);
d2e4a39e 1519 else
42ae5230 1520 addr = value_address (arr);
14f9c5c9 1521
d2e4a39e 1522 return
4c4b4cd2
PH
1523 value_from_longest (lookup_pointer_type (bounds_type),
1524 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1525 }
1526
1527 else if (is_thick_pntr (type))
05e522ef
JB
1528 {
1529 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1530 _("Bad GNAT array descriptor"));
1531 struct type *p_bounds_type = value_type (p_bounds);
1532
1533 if (p_bounds_type
1534 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1535 {
1536 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1537
1538 if (TYPE_STUB (target_type))
1539 p_bounds = value_cast (lookup_pointer_type
1540 (ada_check_typedef (target_type)),
1541 p_bounds);
1542 }
1543 else
1544 error (_("Bad GNAT array descriptor"));
1545
1546 return p_bounds;
1547 }
14f9c5c9
AS
1548 else
1549 return NULL;
1550}
1551
4c4b4cd2
PH
1552/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1553 position of the field containing the address of the bounds data. */
1554
14f9c5c9 1555static int
d2e4a39e 1556fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1557{
1558 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1559}
1560
1561/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1562 size of the field containing the address of the bounds data. */
1563
14f9c5c9 1564static int
d2e4a39e 1565fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1566{
1567 type = desc_base_type (type);
1568
d2e4a39e 1569 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1570 return TYPE_FIELD_BITSIZE (type, 1);
1571 else
61ee279c 1572 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1573}
1574
4c4b4cd2 1575/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1576 pointer to one, the type of its array data (a array-with-no-bounds type);
1577 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1578 data. */
4c4b4cd2 1579
d2e4a39e 1580static struct type *
556bdfd4 1581desc_data_target_type (struct type *type)
14f9c5c9
AS
1582{
1583 type = desc_base_type (type);
1584
4c4b4cd2 1585 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1586 if (is_thin_pntr (type))
556bdfd4 1587 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1588 else if (is_thick_pntr (type))
556bdfd4
UW
1589 {
1590 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1591
1592 if (data_type
1593 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1594 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1595 }
1596
1597 return NULL;
14f9c5c9
AS
1598}
1599
1600/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1601 its array data. */
4c4b4cd2 1602
d2e4a39e
AS
1603static struct value *
1604desc_data (struct value *arr)
14f9c5c9 1605{
df407dfe 1606 struct type *type = value_type (arr);
5b4ee69b 1607
14f9c5c9
AS
1608 if (is_thin_pntr (type))
1609 return thin_data_pntr (arr);
1610 else if (is_thick_pntr (type))
d2e4a39e 1611 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1612 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1613 else
1614 return NULL;
1615}
1616
1617
1618/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1619 position of the field containing the address of the data. */
1620
14f9c5c9 1621static int
d2e4a39e 1622fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1623{
1624 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1625}
1626
1627/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1628 size of the field containing the address of the data. */
1629
14f9c5c9 1630static int
d2e4a39e 1631fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
1635 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1636 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1637 else
14f9c5c9
AS
1638 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1639}
1640
4c4b4cd2 1641/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1642 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1643 bound, if WHICH is 1. The first bound is I=1. */
1644
d2e4a39e
AS
1645static struct value *
1646desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1647{
d2e4a39e 1648 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1649 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1650}
1651
1652/* If BOUNDS is an array-bounds structure type, return the bit position
1653 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1654 bound, if WHICH is 1. The first bound is I=1. */
1655
14f9c5c9 1656static int
d2e4a39e 1657desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1658{
d2e4a39e 1659 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1660}
1661
1662/* If BOUNDS is an array-bounds structure type, return the bit field size
1663 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1664 bound, if WHICH is 1. The first bound is I=1. */
1665
76a01679 1666static int
d2e4a39e 1667desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1668{
1669 type = desc_base_type (type);
1670
d2e4a39e
AS
1671 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1672 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1673 else
1674 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1675}
1676
1677/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1678 Ith bound (numbering from 1). Otherwise, NULL. */
1679
d2e4a39e
AS
1680static struct type *
1681desc_index_type (struct type *type, int i)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1686 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1687 else
14f9c5c9
AS
1688 return NULL;
1689}
1690
4c4b4cd2
PH
1691/* The number of index positions in the array-bounds type TYPE.
1692 Return 0 if TYPE is NULL. */
1693
14f9c5c9 1694static int
d2e4a39e 1695desc_arity (struct type *type)
14f9c5c9
AS
1696{
1697 type = desc_base_type (type);
1698
1699 if (type != NULL)
1700 return TYPE_NFIELDS (type) / 2;
1701 return 0;
1702}
1703
4c4b4cd2
PH
1704/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1705 an array descriptor type (representing an unconstrained array
1706 type). */
1707
76a01679
JB
1708static int
1709ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1710{
1711 if (type == NULL)
1712 return 0;
61ee279c 1713 type = ada_check_typedef (type);
4c4b4cd2 1714 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1715 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1716}
1717
52ce6436 1718/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1719 * to one. */
52ce6436 1720
2c0b251b 1721static int
52ce6436
PH
1722ada_is_array_type (struct type *type)
1723{
1724 while (type != NULL
1725 && (TYPE_CODE (type) == TYPE_CODE_PTR
1726 || TYPE_CODE (type) == TYPE_CODE_REF))
1727 type = TYPE_TARGET_TYPE (type);
1728 return ada_is_direct_array_type (type);
1729}
1730
4c4b4cd2 1731/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1732
14f9c5c9 1733int
4c4b4cd2 1734ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1735{
1736 if (type == NULL)
1737 return 0;
61ee279c 1738 type = ada_check_typedef (type);
14f9c5c9 1739 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1740 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1741 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1742 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1743}
1744
4c4b4cd2
PH
1745/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1746
14f9c5c9 1747int
4c4b4cd2 1748ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1749{
556bdfd4 1750 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1751
1752 if (type == NULL)
1753 return 0;
61ee279c 1754 type = ada_check_typedef (type);
556bdfd4
UW
1755 return (data_type != NULL
1756 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1757 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1758}
1759
1760/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1761 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1762 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1763 is still needed. */
1764
14f9c5c9 1765int
ebf56fd3 1766ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1767{
d2e4a39e 1768 return
14f9c5c9
AS
1769 type != NULL
1770 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1771 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1772 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1773 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1774}
1775
1776
4c4b4cd2 1777/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1778 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1779 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1780 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1781 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1782 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1783 a descriptor. */
d2e4a39e
AS
1784struct type *
1785ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1786{
ad82864c
JB
1787 if (ada_is_constrained_packed_array_type (value_type (arr)))
1788 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1789
df407dfe
AC
1790 if (!ada_is_array_descriptor_type (value_type (arr)))
1791 return value_type (arr);
d2e4a39e
AS
1792
1793 if (!bounds)
ad82864c
JB
1794 {
1795 struct type *array_type =
1796 ada_check_typedef (desc_data_target_type (value_type (arr)));
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 TYPE_FIELD_BITSIZE (array_type, 0) =
1800 decode_packed_array_bitsize (value_type (arr));
1801
1802 return array_type;
1803 }
14f9c5c9
AS
1804 else
1805 {
d2e4a39e 1806 struct type *elt_type;
14f9c5c9 1807 int arity;
d2e4a39e 1808 struct value *descriptor;
14f9c5c9 1809
df407dfe
AC
1810 elt_type = ada_array_element_type (value_type (arr), -1);
1811 arity = ada_array_arity (value_type (arr));
14f9c5c9 1812
d2e4a39e 1813 if (elt_type == NULL || arity == 0)
df407dfe 1814 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1815
1816 descriptor = desc_bounds (arr);
d2e4a39e 1817 if (value_as_long (descriptor) == 0)
4c4b4cd2 1818 return NULL;
d2e4a39e 1819 while (arity > 0)
4c4b4cd2 1820 {
e9bb382b
UW
1821 struct type *range_type = alloc_type_copy (value_type (arr));
1822 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1823 struct value *low = desc_one_bound (descriptor, arity, 0);
1824 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1825
5b4ee69b 1826 arity -= 1;
df407dfe 1827 create_range_type (range_type, value_type (low),
529cad9c
PH
1828 longest_to_int (value_as_long (low)),
1829 longest_to_int (value_as_long (high)));
4c4b4cd2 1830 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1831
1832 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1833 {
1834 /* We need to store the element packed bitsize, as well as
1835 recompute the array size, because it was previously
1836 computed based on the unpacked element size. */
1837 LONGEST lo = value_as_long (low);
1838 LONGEST hi = value_as_long (high);
1839
1840 TYPE_FIELD_BITSIZE (elt_type, 0) =
1841 decode_packed_array_bitsize (value_type (arr));
1842 /* If the array has no element, then the size is already
1843 zero, and does not need to be recomputed. */
1844 if (lo < hi)
1845 {
1846 int array_bitsize =
1847 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1848
1849 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1850 }
1851 }
4c4b4cd2 1852 }
14f9c5c9
AS
1853
1854 return lookup_pointer_type (elt_type);
1855 }
1856}
1857
1858/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1859 Otherwise, returns either a standard GDB array with bounds set
1860 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1861 GDB array. Returns NULL if ARR is a null fat pointer. */
1862
d2e4a39e
AS
1863struct value *
1864ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1865{
df407dfe 1866 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1867 {
d2e4a39e 1868 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1869
14f9c5c9 1870 if (arrType == NULL)
4c4b4cd2 1871 return NULL;
14f9c5c9
AS
1872 return value_cast (arrType, value_copy (desc_data (arr)));
1873 }
ad82864c
JB
1874 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1875 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1876 else
1877 return arr;
1878}
1879
1880/* If ARR does not represent an array, returns ARR unchanged.
1881 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1882 be ARR itself if it already is in the proper form). */
1883
720d1a40 1884struct value *
d2e4a39e 1885ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1886{
df407dfe 1887 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1888 {
d2e4a39e 1889 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1890
14f9c5c9 1891 if (arrVal == NULL)
323e0a4a 1892 error (_("Bounds unavailable for null array pointer."));
529cad9c 1893 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1894 return value_ind (arrVal);
1895 }
ad82864c
JB
1896 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1897 return decode_constrained_packed_array (arr);
d2e4a39e 1898 else
14f9c5c9
AS
1899 return arr;
1900}
1901
1902/* If TYPE represents a GNAT array type, return it translated to an
1903 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1904 packing). For other types, is the identity. */
1905
d2e4a39e
AS
1906struct type *
1907ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1908{
ad82864c
JB
1909 if (ada_is_constrained_packed_array_type (type))
1910 return decode_constrained_packed_array_type (type);
17280b9f
UW
1911
1912 if (ada_is_array_descriptor_type (type))
556bdfd4 1913 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1914
1915 return type;
14f9c5c9
AS
1916}
1917
4c4b4cd2
PH
1918/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1919
ad82864c
JB
1920static int
1921ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1922{
1923 if (type == NULL)
1924 return 0;
4c4b4cd2 1925 type = desc_base_type (type);
61ee279c 1926 type = ada_check_typedef (type);
d2e4a39e 1927 return
14f9c5c9
AS
1928 ada_type_name (type) != NULL
1929 && strstr (ada_type_name (type), "___XP") != NULL;
1930}
1931
ad82864c
JB
1932/* Non-zero iff TYPE represents a standard GNAT constrained
1933 packed-array type. */
1934
1935int
1936ada_is_constrained_packed_array_type (struct type *type)
1937{
1938 return ada_is_packed_array_type (type)
1939 && !ada_is_array_descriptor_type (type);
1940}
1941
1942/* Non-zero iff TYPE represents an array descriptor for a
1943 unconstrained packed-array type. */
1944
1945static int
1946ada_is_unconstrained_packed_array_type (struct type *type)
1947{
1948 return ada_is_packed_array_type (type)
1949 && ada_is_array_descriptor_type (type);
1950}
1951
1952/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1953 return the size of its elements in bits. */
1954
1955static long
1956decode_packed_array_bitsize (struct type *type)
1957{
720d1a40 1958 char *raw_name;
ad82864c
JB
1959 char *tail;
1960 long bits;
1961
720d1a40
JB
1962 /* Access to arrays implemented as fat pointers are encoded as a typedef
1963 of the fat pointer type. We need the name of the fat pointer type
1964 to do the decoding, so strip the typedef layer. */
1965 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1966 type = ada_typedef_target_type (type);
1967
1968 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1969 if (!raw_name)
1970 raw_name = ada_type_name (desc_base_type (type));
1971
1972 if (!raw_name)
1973 return 0;
1974
1975 tail = strstr (raw_name, "___XP");
720d1a40 1976 gdb_assert (tail != NULL);
ad82864c
JB
1977
1978 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1979 {
1980 lim_warning
1981 (_("could not understand bit size information on packed array"));
1982 return 0;
1983 }
1984
1985 return bits;
1986}
1987
14f9c5c9
AS
1988/* Given that TYPE is a standard GDB array type with all bounds filled
1989 in, and that the element size of its ultimate scalar constituents
1990 (that is, either its elements, or, if it is an array of arrays, its
1991 elements' elements, etc.) is *ELT_BITS, return an identical type,
1992 but with the bit sizes of its elements (and those of any
1993 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1994 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1995 in bits. */
1996
d2e4a39e 1997static struct type *
ad82864c 1998constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1999{
d2e4a39e
AS
2000 struct type *new_elt_type;
2001 struct type *new_type;
14f9c5c9
AS
2002 LONGEST low_bound, high_bound;
2003
61ee279c 2004 type = ada_check_typedef (type);
14f9c5c9
AS
2005 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2006 return type;
2007
e9bb382b 2008 new_type = alloc_type_copy (type);
ad82864c
JB
2009 new_elt_type =
2010 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2011 elt_bits);
262452ec 2012 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2013 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2014 TYPE_NAME (new_type) = ada_type_name (type);
2015
262452ec 2016 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2017 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2018 low_bound = high_bound = 0;
2019 if (high_bound < low_bound)
2020 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2021 else
14f9c5c9
AS
2022 {
2023 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2024 TYPE_LENGTH (new_type) =
4c4b4cd2 2025 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2026 }
2027
876cecd0 2028 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2029 return new_type;
2030}
2031
ad82864c
JB
2032/* The array type encoded by TYPE, where
2033 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2034
d2e4a39e 2035static struct type *
ad82864c 2036decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2037{
727e3d2e
JB
2038 char *raw_name = ada_type_name (ada_check_typedef (type));
2039 char *name;
2040 char *tail;
d2e4a39e 2041 struct type *shadow_type;
14f9c5c9 2042 long bits;
14f9c5c9 2043
727e3d2e
JB
2044 if (!raw_name)
2045 raw_name = ada_type_name (desc_base_type (type));
2046
2047 if (!raw_name)
2048 return NULL;
2049
2050 name = (char *) alloca (strlen (raw_name) + 1);
2051 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2052 type = desc_base_type (type);
2053
14f9c5c9
AS
2054 memcpy (name, raw_name, tail - raw_name);
2055 name[tail - raw_name] = '\000';
2056
b4ba55a1
JB
2057 shadow_type = ada_find_parallel_type_with_name (type, name);
2058
2059 if (shadow_type == NULL)
14f9c5c9 2060 {
323e0a4a 2061 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2062 return NULL;
2063 }
cb249c71 2064 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2065
2066 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2067 {
0963b4bd
MS
2068 lim_warning (_("could not understand bounds "
2069 "information on packed array"));
14f9c5c9
AS
2070 return NULL;
2071 }
d2e4a39e 2072
ad82864c
JB
2073 bits = decode_packed_array_bitsize (type);
2074 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2075}
2076
ad82864c
JB
2077/* Given that ARR is a struct value *indicating a GNAT constrained packed
2078 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2079 standard GDB array type except that the BITSIZEs of the array
2080 target types are set to the number of bits in each element, and the
4c4b4cd2 2081 type length is set appropriately. */
14f9c5c9 2082
d2e4a39e 2083static struct value *
ad82864c 2084decode_constrained_packed_array (struct value *arr)
14f9c5c9 2085{
4c4b4cd2 2086 struct type *type;
14f9c5c9 2087
4c4b4cd2 2088 arr = ada_coerce_ref (arr);
284614f0
JB
2089
2090 /* If our value is a pointer, then dererence it. Make sure that
2091 this operation does not cause the target type to be fixed, as
2092 this would indirectly cause this array to be decoded. The rest
2093 of the routine assumes that the array hasn't been decoded yet,
2094 so we use the basic "value_ind" routine to perform the dereferencing,
2095 as opposed to using "ada_value_ind". */
828292f2 2096 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2097 arr = value_ind (arr);
4c4b4cd2 2098
ad82864c 2099 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2100 if (type == NULL)
2101 {
323e0a4a 2102 error (_("can't unpack array"));
14f9c5c9
AS
2103 return NULL;
2104 }
61ee279c 2105
50810684 2106 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2107 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2108 {
2109 /* This is a (right-justified) modular type representing a packed
2110 array with no wrapper. In order to interpret the value through
2111 the (left-justified) packed array type we just built, we must
2112 first left-justify it. */
2113 int bit_size, bit_pos;
2114 ULONGEST mod;
2115
df407dfe 2116 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2117 bit_size = 0;
2118 while (mod > 0)
2119 {
2120 bit_size += 1;
2121 mod >>= 1;
2122 }
df407dfe 2123 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2124 arr = ada_value_primitive_packed_val (arr, NULL,
2125 bit_pos / HOST_CHAR_BIT,
2126 bit_pos % HOST_CHAR_BIT,
2127 bit_size,
2128 type);
2129 }
2130
4c4b4cd2 2131 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2132}
2133
2134
2135/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2136 given in IND. ARR must be a simple array. */
14f9c5c9 2137
d2e4a39e
AS
2138static struct value *
2139value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2140{
2141 int i;
2142 int bits, elt_off, bit_off;
2143 long elt_total_bit_offset;
d2e4a39e
AS
2144 struct type *elt_type;
2145 struct value *v;
14f9c5c9
AS
2146
2147 bits = 0;
2148 elt_total_bit_offset = 0;
df407dfe 2149 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2150 for (i = 0; i < arity; i += 1)
14f9c5c9 2151 {
d2e4a39e 2152 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2153 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2154 error
0963b4bd
MS
2155 (_("attempt to do packed indexing of "
2156 "something other than a packed array"));
14f9c5c9 2157 else
4c4b4cd2
PH
2158 {
2159 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2160 LONGEST lowerbound, upperbound;
2161 LONGEST idx;
2162
2163 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2164 {
323e0a4a 2165 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2166 lowerbound = upperbound = 0;
2167 }
2168
3cb382c9 2169 idx = pos_atr (ind[i]);
4c4b4cd2 2170 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2171 lim_warning (_("packed array index %ld out of bounds"),
2172 (long) idx);
4c4b4cd2
PH
2173 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2174 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2175 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2176 }
14f9c5c9
AS
2177 }
2178 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2179 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2180
2181 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2182 bits, elt_type);
14f9c5c9
AS
2183 return v;
2184}
2185
4c4b4cd2 2186/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2187
2188static int
d2e4a39e 2189has_negatives (struct type *type)
14f9c5c9 2190{
d2e4a39e
AS
2191 switch (TYPE_CODE (type))
2192 {
2193 default:
2194 return 0;
2195 case TYPE_CODE_INT:
2196 return !TYPE_UNSIGNED (type);
2197 case TYPE_CODE_RANGE:
2198 return TYPE_LOW_BOUND (type) < 0;
2199 }
14f9c5c9 2200}
d2e4a39e 2201
14f9c5c9
AS
2202
2203/* Create a new value of type TYPE from the contents of OBJ starting
2204 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2205 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2206 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2207 VALADDR is ignored unless OBJ is NULL, in which case,
2208 VALADDR+OFFSET must address the start of storage containing the
2209 packed value. The value returned in this case is never an lval.
2210 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2211
d2e4a39e 2212struct value *
fc1a4b47 2213ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2214 long offset, int bit_offset, int bit_size,
4c4b4cd2 2215 struct type *type)
14f9c5c9 2216{
d2e4a39e 2217 struct value *v;
4c4b4cd2
PH
2218 int src, /* Index into the source area */
2219 targ, /* Index into the target area */
2220 srcBitsLeft, /* Number of source bits left to move */
2221 nsrc, ntarg, /* Number of source and target bytes */
2222 unusedLS, /* Number of bits in next significant
2223 byte of source that are unused */
2224 accumSize; /* Number of meaningful bits in accum */
2225 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2226 unsigned char *unpacked;
4c4b4cd2 2227 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2228 unsigned char sign;
2229 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2230 /* Transmit bytes from least to most significant; delta is the direction
2231 the indices move. */
50810684 2232 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2233
61ee279c 2234 type = ada_check_typedef (type);
14f9c5c9
AS
2235
2236 if (obj == NULL)
2237 {
2238 v = allocate_value (type);
d2e4a39e 2239 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2240 }
9214ee5f 2241 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2242 {
2243 v = value_at (type,
42ae5230 2244 value_address (obj) + offset);
d2e4a39e 2245 bytes = (unsigned char *) alloca (len);
42ae5230 2246 read_memory (value_address (v), bytes, len);
14f9c5c9 2247 }
d2e4a39e 2248 else
14f9c5c9
AS
2249 {
2250 v = allocate_value (type);
0fd88904 2251 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2252 }
d2e4a39e
AS
2253
2254 if (obj != NULL)
14f9c5c9 2255 {
42ae5230 2256 CORE_ADDR new_addr;
5b4ee69b 2257
74bcbdf3 2258 set_value_component_location (v, obj);
42ae5230 2259 new_addr = value_address (obj) + offset;
9bbda503
AC
2260 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2261 set_value_bitsize (v, bit_size);
df407dfe 2262 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2263 {
42ae5230 2264 ++new_addr;
9bbda503 2265 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2266 }
42ae5230 2267 set_value_address (v, new_addr);
14f9c5c9
AS
2268 }
2269 else
9bbda503 2270 set_value_bitsize (v, bit_size);
0fd88904 2271 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2272
2273 srcBitsLeft = bit_size;
2274 nsrc = len;
2275 ntarg = TYPE_LENGTH (type);
2276 sign = 0;
2277 if (bit_size == 0)
2278 {
2279 memset (unpacked, 0, TYPE_LENGTH (type));
2280 return v;
2281 }
50810684 2282 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2283 {
d2e4a39e 2284 src = len - 1;
1265e4aa
JB
2285 if (has_negatives (type)
2286 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2287 sign = ~0;
d2e4a39e
AS
2288
2289 unusedLS =
4c4b4cd2
PH
2290 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2291 % HOST_CHAR_BIT;
14f9c5c9
AS
2292
2293 switch (TYPE_CODE (type))
4c4b4cd2
PH
2294 {
2295 case TYPE_CODE_ARRAY:
2296 case TYPE_CODE_UNION:
2297 case TYPE_CODE_STRUCT:
2298 /* Non-scalar values must be aligned at a byte boundary... */
2299 accumSize =
2300 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2301 /* ... And are placed at the beginning (most-significant) bytes
2302 of the target. */
529cad9c 2303 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2304 ntarg = targ + 1;
4c4b4cd2
PH
2305 break;
2306 default:
2307 accumSize = 0;
2308 targ = TYPE_LENGTH (type) - 1;
2309 break;
2310 }
14f9c5c9 2311 }
d2e4a39e 2312 else
14f9c5c9
AS
2313 {
2314 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2315
2316 src = targ = 0;
2317 unusedLS = bit_offset;
2318 accumSize = 0;
2319
d2e4a39e 2320 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2321 sign = ~0;
14f9c5c9 2322 }
d2e4a39e 2323
14f9c5c9
AS
2324 accum = 0;
2325 while (nsrc > 0)
2326 {
2327 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2328 part of the value. */
d2e4a39e 2329 unsigned int unusedMSMask =
4c4b4cd2
PH
2330 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2331 1;
2332 /* Sign-extend bits for this byte. */
14f9c5c9 2333 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2334
d2e4a39e 2335 accum |=
4c4b4cd2 2336 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2337 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2338 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2339 {
2340 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2341 accumSize -= HOST_CHAR_BIT;
2342 accum >>= HOST_CHAR_BIT;
2343 ntarg -= 1;
2344 targ += delta;
2345 }
14f9c5c9
AS
2346 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2347 unusedLS = 0;
2348 nsrc -= 1;
2349 src += delta;
2350 }
2351 while (ntarg > 0)
2352 {
2353 accum |= sign << accumSize;
2354 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2355 accumSize -= HOST_CHAR_BIT;
2356 accum >>= HOST_CHAR_BIT;
2357 ntarg -= 1;
2358 targ += delta;
2359 }
2360
2361 return v;
2362}
d2e4a39e 2363
14f9c5c9
AS
2364/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2365 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2366 not overlap. */
14f9c5c9 2367static void
fc1a4b47 2368move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2369 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2370{
2371 unsigned int accum, mask;
2372 int accum_bits, chunk_size;
2373
2374 target += targ_offset / HOST_CHAR_BIT;
2375 targ_offset %= HOST_CHAR_BIT;
2376 source += src_offset / HOST_CHAR_BIT;
2377 src_offset %= HOST_CHAR_BIT;
50810684 2378 if (bits_big_endian_p)
14f9c5c9
AS
2379 {
2380 accum = (unsigned char) *source;
2381 source += 1;
2382 accum_bits = HOST_CHAR_BIT - src_offset;
2383
d2e4a39e 2384 while (n > 0)
4c4b4cd2
PH
2385 {
2386 int unused_right;
5b4ee69b 2387
4c4b4cd2
PH
2388 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2389 accum_bits += HOST_CHAR_BIT;
2390 source += 1;
2391 chunk_size = HOST_CHAR_BIT - targ_offset;
2392 if (chunk_size > n)
2393 chunk_size = n;
2394 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2395 mask = ((1 << chunk_size) - 1) << unused_right;
2396 *target =
2397 (*target & ~mask)
2398 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2399 n -= chunk_size;
2400 accum_bits -= chunk_size;
2401 target += 1;
2402 targ_offset = 0;
2403 }
14f9c5c9
AS
2404 }
2405 else
2406 {
2407 accum = (unsigned char) *source >> src_offset;
2408 source += 1;
2409 accum_bits = HOST_CHAR_BIT - src_offset;
2410
d2e4a39e 2411 while (n > 0)
4c4b4cd2
PH
2412 {
2413 accum = accum + ((unsigned char) *source << accum_bits);
2414 accum_bits += HOST_CHAR_BIT;
2415 source += 1;
2416 chunk_size = HOST_CHAR_BIT - targ_offset;
2417 if (chunk_size > n)
2418 chunk_size = n;
2419 mask = ((1 << chunk_size) - 1) << targ_offset;
2420 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2421 n -= chunk_size;
2422 accum_bits -= chunk_size;
2423 accum >>= chunk_size;
2424 target += 1;
2425 targ_offset = 0;
2426 }
14f9c5c9
AS
2427 }
2428}
2429
14f9c5c9
AS
2430/* Store the contents of FROMVAL into the location of TOVAL.
2431 Return a new value with the location of TOVAL and contents of
2432 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2433 floating-point or non-scalar types. */
14f9c5c9 2434
d2e4a39e
AS
2435static struct value *
2436ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2437{
df407dfe
AC
2438 struct type *type = value_type (toval);
2439 int bits = value_bitsize (toval);
14f9c5c9 2440
52ce6436
PH
2441 toval = ada_coerce_ref (toval);
2442 fromval = ada_coerce_ref (fromval);
2443
2444 if (ada_is_direct_array_type (value_type (toval)))
2445 toval = ada_coerce_to_simple_array (toval);
2446 if (ada_is_direct_array_type (value_type (fromval)))
2447 fromval = ada_coerce_to_simple_array (fromval);
2448
88e3b34b 2449 if (!deprecated_value_modifiable (toval))
323e0a4a 2450 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2451
d2e4a39e 2452 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2453 && bits > 0
d2e4a39e 2454 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2455 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2456 {
df407dfe
AC
2457 int len = (value_bitpos (toval)
2458 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2459 int from_size;
d2e4a39e
AS
2460 char *buffer = (char *) alloca (len);
2461 struct value *val;
42ae5230 2462 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2463
2464 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2465 fromval = value_cast (type, fromval);
14f9c5c9 2466
52ce6436 2467 read_memory (to_addr, buffer, len);
aced2898
PH
2468 from_size = value_bitsize (fromval);
2469 if (from_size == 0)
2470 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2471 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2472 move_bits (buffer, value_bitpos (toval),
50810684 2473 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2474 else
50810684
UW
2475 move_bits (buffer, value_bitpos (toval),
2476 value_contents (fromval), 0, bits, 0);
52ce6436 2477 write_memory (to_addr, buffer, len);
8cebebb9
PP
2478 observer_notify_memory_changed (to_addr, len, buffer);
2479
14f9c5c9 2480 val = value_copy (toval);
0fd88904 2481 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2482 TYPE_LENGTH (type));
04624583 2483 deprecated_set_value_type (val, type);
d2e4a39e 2484
14f9c5c9
AS
2485 return val;
2486 }
2487
2488 return value_assign (toval, fromval);
2489}
2490
2491
52ce6436
PH
2492/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2493 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2494 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2495 * COMPONENT, and not the inferior's memory. The current contents
2496 * of COMPONENT are ignored. */
2497static void
2498value_assign_to_component (struct value *container, struct value *component,
2499 struct value *val)
2500{
2501 LONGEST offset_in_container =
42ae5230 2502 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2503 int bit_offset_in_container =
2504 value_bitpos (component) - value_bitpos (container);
2505 int bits;
2506
2507 val = value_cast (value_type (component), val);
2508
2509 if (value_bitsize (component) == 0)
2510 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2511 else
2512 bits = value_bitsize (component);
2513
50810684 2514 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2515 move_bits (value_contents_writeable (container) + offset_in_container,
2516 value_bitpos (container) + bit_offset_in_container,
2517 value_contents (val),
2518 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2519 bits, 1);
52ce6436
PH
2520 else
2521 move_bits (value_contents_writeable (container) + offset_in_container,
2522 value_bitpos (container) + bit_offset_in_container,
50810684 2523 value_contents (val), 0, bits, 0);
52ce6436
PH
2524}
2525
4c4b4cd2
PH
2526/* The value of the element of array ARR at the ARITY indices given in IND.
2527 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2528 thereto. */
2529
d2e4a39e
AS
2530struct value *
2531ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2532{
2533 int k;
d2e4a39e
AS
2534 struct value *elt;
2535 struct type *elt_type;
14f9c5c9
AS
2536
2537 elt = ada_coerce_to_simple_array (arr);
2538
df407dfe 2539 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2540 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2541 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2542 return value_subscript_packed (elt, arity, ind);
2543
2544 for (k = 0; k < arity; k += 1)
2545 {
2546 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2547 error (_("too many subscripts (%d expected)"), k);
2497b498 2548 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2549 }
2550 return elt;
2551}
2552
2553/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2554 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2555 IND. Does not read the entire array into memory. */
14f9c5c9 2556
2c0b251b 2557static struct value *
d2e4a39e 2558ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2559 struct value **ind)
14f9c5c9
AS
2560{
2561 int k;
2562
2563 for (k = 0; k < arity; k += 1)
2564 {
2565 LONGEST lwb, upb;
14f9c5c9
AS
2566
2567 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2568 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2569 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2570 value_copy (arr));
14f9c5c9 2571 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2572 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2573 type = TYPE_TARGET_TYPE (type);
2574 }
2575
2576 return value_ind (arr);
2577}
2578
0b5d8877 2579/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2580 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2581 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2582 per Ada rules. */
0b5d8877 2583static struct value *
f5938064
JG
2584ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2585 int low, int high)
0b5d8877 2586{
b0dd7688 2587 struct type *type0 = ada_check_typedef (type);
6c038f32 2588 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2589 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2590 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2591 struct type *index_type =
b0dd7688 2592 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2593 low, high);
6c038f32 2594 struct type *slice_type =
b0dd7688 2595 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2596
f5938064 2597 return value_at_lazy (slice_type, base);
0b5d8877
PH
2598}
2599
2600
2601static struct value *
2602ada_value_slice (struct value *array, int low, int high)
2603{
b0dd7688 2604 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2605 struct type *index_type =
0b5d8877 2606 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2607 struct type *slice_type =
0b5d8877 2608 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2609
6c038f32 2610 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2611}
2612
14f9c5c9
AS
2613/* If type is a record type in the form of a standard GNAT array
2614 descriptor, returns the number of dimensions for type. If arr is a
2615 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2616 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2617
2618int
d2e4a39e 2619ada_array_arity (struct type *type)
14f9c5c9
AS
2620{
2621 int arity;
2622
2623 if (type == NULL)
2624 return 0;
2625
2626 type = desc_base_type (type);
2627
2628 arity = 0;
d2e4a39e 2629 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2630 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2631 else
2632 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2633 {
4c4b4cd2 2634 arity += 1;
61ee279c 2635 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2636 }
d2e4a39e 2637
14f9c5c9
AS
2638 return arity;
2639}
2640
2641/* If TYPE is a record type in the form of a standard GNAT array
2642 descriptor or a simple array type, returns the element type for
2643 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2644 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2645
d2e4a39e
AS
2646struct type *
2647ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2648{
2649 type = desc_base_type (type);
2650
d2e4a39e 2651 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2652 {
2653 int k;
d2e4a39e 2654 struct type *p_array_type;
14f9c5c9 2655
556bdfd4 2656 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2657
2658 k = ada_array_arity (type);
2659 if (k == 0)
4c4b4cd2 2660 return NULL;
d2e4a39e 2661
4c4b4cd2 2662 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2663 if (nindices >= 0 && k > nindices)
4c4b4cd2 2664 k = nindices;
d2e4a39e 2665 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2666 {
61ee279c 2667 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2668 k -= 1;
2669 }
14f9c5c9
AS
2670 return p_array_type;
2671 }
2672 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2673 {
2674 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2675 {
2676 type = TYPE_TARGET_TYPE (type);
2677 nindices -= 1;
2678 }
14f9c5c9
AS
2679 return type;
2680 }
2681
2682 return NULL;
2683}
2684
4c4b4cd2 2685/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2686 Does not examine memory. Throws an error if N is invalid or TYPE
2687 is not an array type. NAME is the name of the Ada attribute being
2688 evaluated ('range, 'first, 'last, or 'length); it is used in building
2689 the error message. */
14f9c5c9 2690
1eea4ebd
UW
2691static struct type *
2692ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2693{
4c4b4cd2
PH
2694 struct type *result_type;
2695
14f9c5c9
AS
2696 type = desc_base_type (type);
2697
1eea4ebd
UW
2698 if (n < 0 || n > ada_array_arity (type))
2699 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2700
4c4b4cd2 2701 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2702 {
2703 int i;
2704
2705 for (i = 1; i < n; i += 1)
4c4b4cd2 2706 type = TYPE_TARGET_TYPE (type);
262452ec 2707 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2708 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2709 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2710 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2711 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2712 result_type = NULL;
14f9c5c9 2713 }
d2e4a39e 2714 else
1eea4ebd
UW
2715 {
2716 result_type = desc_index_type (desc_bounds_type (type), n);
2717 if (result_type == NULL)
2718 error (_("attempt to take bound of something that is not an array"));
2719 }
2720
2721 return result_type;
14f9c5c9
AS
2722}
2723
2724/* Given that arr is an array type, returns the lower bound of the
2725 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2726 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2727 array-descriptor type. It works for other arrays with bounds supplied
2728 by run-time quantities other than discriminants. */
14f9c5c9 2729
abb68b3e 2730static LONGEST
1eea4ebd 2731ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2732{
1ce677a4 2733 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2734 int i;
262452ec
JK
2735
2736 gdb_assert (which == 0 || which == 1);
14f9c5c9 2737
ad82864c
JB
2738 if (ada_is_constrained_packed_array_type (arr_type))
2739 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2740
4c4b4cd2 2741 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2742 return (LONGEST) - which;
14f9c5c9
AS
2743
2744 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2745 type = TYPE_TARGET_TYPE (arr_type);
2746 else
2747 type = arr_type;
2748
1ce677a4
UW
2749 elt_type = type;
2750 for (i = n; i > 1; i--)
2751 elt_type = TYPE_TARGET_TYPE (type);
2752
14f9c5c9 2753 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2754 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2755 if (index_type_desc != NULL)
28c85d6c
JB
2756 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2757 NULL);
262452ec 2758 else
1ce677a4 2759 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2760
43bbcdc2
PH
2761 return
2762 (LONGEST) (which == 0
2763 ? ada_discrete_type_low_bound (index_type)
2764 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2765}
2766
2767/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2768 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2769 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2770 supplied by run-time quantities other than discriminants. */
14f9c5c9 2771
1eea4ebd 2772static LONGEST
4dc81987 2773ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2774{
df407dfe 2775 struct type *arr_type = value_type (arr);
14f9c5c9 2776
ad82864c
JB
2777 if (ada_is_constrained_packed_array_type (arr_type))
2778 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2779 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2780 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2781 else
1eea4ebd 2782 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2783}
2784
2785/* Given that arr is an array value, returns the length of the
2786 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2787 supplied by run-time quantities other than discriminants.
2788 Does not work for arrays indexed by enumeration types with representation
2789 clauses at the moment. */
14f9c5c9 2790
1eea4ebd 2791static LONGEST
d2e4a39e 2792ada_array_length (struct value *arr, int n)
14f9c5c9 2793{
df407dfe 2794 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2795
ad82864c
JB
2796 if (ada_is_constrained_packed_array_type (arr_type))
2797 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2798
4c4b4cd2 2799 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2800 return (ada_array_bound_from_type (arr_type, n, 1)
2801 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2802 else
1eea4ebd
UW
2803 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2804 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2805}
2806
2807/* An empty array whose type is that of ARR_TYPE (an array type),
2808 with bounds LOW to LOW-1. */
2809
2810static struct value *
2811empty_array (struct type *arr_type, int low)
2812{
b0dd7688 2813 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2814 struct type *index_type =
b0dd7688 2815 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2816 low, low - 1);
b0dd7688 2817 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2818
0b5d8877 2819 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2820}
14f9c5c9 2821\f
d2e4a39e 2822
4c4b4cd2 2823 /* Name resolution */
14f9c5c9 2824
4c4b4cd2
PH
2825/* The "decoded" name for the user-definable Ada operator corresponding
2826 to OP. */
14f9c5c9 2827
d2e4a39e 2828static const char *
4c4b4cd2 2829ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2830{
2831 int i;
2832
4c4b4cd2 2833 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2834 {
2835 if (ada_opname_table[i].op == op)
4c4b4cd2 2836 return ada_opname_table[i].decoded;
14f9c5c9 2837 }
323e0a4a 2838 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2839}
2840
2841
4c4b4cd2
PH
2842/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2843 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2844 undefined namespace) and converts operators that are
2845 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2846 non-null, it provides a preferred result type [at the moment, only
2847 type void has any effect---causing procedures to be preferred over
2848 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2849 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2850
4c4b4cd2
PH
2851static void
2852resolve (struct expression **expp, int void_context_p)
14f9c5c9 2853{
30b15541
UW
2854 struct type *context_type = NULL;
2855 int pc = 0;
2856
2857 if (void_context_p)
2858 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2859
2860 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2861}
2862
4c4b4cd2
PH
2863/* Resolve the operator of the subexpression beginning at
2864 position *POS of *EXPP. "Resolving" consists of replacing
2865 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2866 with their resolutions, replacing built-in operators with
2867 function calls to user-defined operators, where appropriate, and,
2868 when DEPROCEDURE_P is non-zero, converting function-valued variables
2869 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2870 are as in ada_resolve, above. */
14f9c5c9 2871
d2e4a39e 2872static struct value *
4c4b4cd2 2873resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2874 struct type *context_type)
14f9c5c9
AS
2875{
2876 int pc = *pos;
2877 int i;
4c4b4cd2 2878 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2879 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2880 struct value **argvec; /* Vector of operand types (alloca'ed). */
2881 int nargs; /* Number of operands. */
52ce6436 2882 int oplen;
14f9c5c9
AS
2883
2884 argvec = NULL;
2885 nargs = 0;
2886 exp = *expp;
2887
52ce6436
PH
2888 /* Pass one: resolve operands, saving their types and updating *pos,
2889 if needed. */
14f9c5c9
AS
2890 switch (op)
2891 {
4c4b4cd2
PH
2892 case OP_FUNCALL:
2893 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2894 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2895 *pos += 7;
4c4b4cd2
PH
2896 else
2897 {
2898 *pos += 3;
2899 resolve_subexp (expp, pos, 0, NULL);
2900 }
2901 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2902 break;
2903
14f9c5c9 2904 case UNOP_ADDR:
4c4b4cd2
PH
2905 *pos += 1;
2906 resolve_subexp (expp, pos, 0, NULL);
2907 break;
2908
52ce6436
PH
2909 case UNOP_QUAL:
2910 *pos += 3;
17466c1a 2911 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2912 break;
2913
52ce6436 2914 case OP_ATR_MODULUS:
4c4b4cd2
PH
2915 case OP_ATR_SIZE:
2916 case OP_ATR_TAG:
4c4b4cd2
PH
2917 case OP_ATR_FIRST:
2918 case OP_ATR_LAST:
2919 case OP_ATR_LENGTH:
2920 case OP_ATR_POS:
2921 case OP_ATR_VAL:
4c4b4cd2
PH
2922 case OP_ATR_MIN:
2923 case OP_ATR_MAX:
52ce6436
PH
2924 case TERNOP_IN_RANGE:
2925 case BINOP_IN_BOUNDS:
2926 case UNOP_IN_RANGE:
2927 case OP_AGGREGATE:
2928 case OP_OTHERS:
2929 case OP_CHOICES:
2930 case OP_POSITIONAL:
2931 case OP_DISCRETE_RANGE:
2932 case OP_NAME:
2933 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2934 *pos += oplen;
14f9c5c9
AS
2935 break;
2936
2937 case BINOP_ASSIGN:
2938 {
4c4b4cd2
PH
2939 struct value *arg1;
2940
2941 *pos += 1;
2942 arg1 = resolve_subexp (expp, pos, 0, NULL);
2943 if (arg1 == NULL)
2944 resolve_subexp (expp, pos, 1, NULL);
2945 else
df407dfe 2946 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2947 break;
14f9c5c9
AS
2948 }
2949
4c4b4cd2 2950 case UNOP_CAST:
4c4b4cd2
PH
2951 *pos += 3;
2952 nargs = 1;
2953 break;
14f9c5c9 2954
4c4b4cd2
PH
2955 case BINOP_ADD:
2956 case BINOP_SUB:
2957 case BINOP_MUL:
2958 case BINOP_DIV:
2959 case BINOP_REM:
2960 case BINOP_MOD:
2961 case BINOP_EXP:
2962 case BINOP_CONCAT:
2963 case BINOP_LOGICAL_AND:
2964 case BINOP_LOGICAL_OR:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
14f9c5c9 2968
4c4b4cd2
PH
2969 case BINOP_EQUAL:
2970 case BINOP_NOTEQUAL:
2971 case BINOP_LESS:
2972 case BINOP_GTR:
2973 case BINOP_LEQ:
2974 case BINOP_GEQ:
14f9c5c9 2975
4c4b4cd2
PH
2976 case BINOP_REPEAT:
2977 case BINOP_SUBSCRIPT:
2978 case BINOP_COMMA:
40c8aaa9
JB
2979 *pos += 1;
2980 nargs = 2;
2981 break;
14f9c5c9 2982
4c4b4cd2
PH
2983 case UNOP_NEG:
2984 case UNOP_PLUS:
2985 case UNOP_LOGICAL_NOT:
2986 case UNOP_ABS:
2987 case UNOP_IND:
2988 *pos += 1;
2989 nargs = 1;
2990 break;
14f9c5c9 2991
4c4b4cd2
PH
2992 case OP_LONG:
2993 case OP_DOUBLE:
2994 case OP_VAR_VALUE:
2995 *pos += 4;
2996 break;
14f9c5c9 2997
4c4b4cd2
PH
2998 case OP_TYPE:
2999 case OP_BOOL:
3000 case OP_LAST:
4c4b4cd2
PH
3001 case OP_INTERNALVAR:
3002 *pos += 3;
3003 break;
14f9c5c9 3004
4c4b4cd2
PH
3005 case UNOP_MEMVAL:
3006 *pos += 3;
3007 nargs = 1;
3008 break;
3009
67f3407f
DJ
3010 case OP_REGISTER:
3011 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3012 break;
3013
4c4b4cd2
PH
3014 case STRUCTOP_STRUCT:
3015 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3016 nargs = 1;
3017 break;
3018
4c4b4cd2 3019 case TERNOP_SLICE:
4c4b4cd2
PH
3020 *pos += 1;
3021 nargs = 3;
3022 break;
3023
52ce6436 3024 case OP_STRING:
14f9c5c9 3025 break;
4c4b4cd2
PH
3026
3027 default:
323e0a4a 3028 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3029 }
3030
76a01679 3031 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3032 for (i = 0; i < nargs; i += 1)
3033 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3034 argvec[i] = NULL;
3035 exp = *expp;
3036
3037 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3038 switch (op)
3039 {
3040 default:
3041 break;
3042
14f9c5c9 3043 case OP_VAR_VALUE:
4c4b4cd2 3044 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3045 {
3046 struct ada_symbol_info *candidates;
3047 int n_candidates;
3048
3049 n_candidates =
3050 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3051 (exp->elts[pc + 2].symbol),
3052 exp->elts[pc + 1].block, VAR_DOMAIN,
3053 &candidates);
3054
3055 if (n_candidates > 1)
3056 {
3057 /* Types tend to get re-introduced locally, so if there
3058 are any local symbols that are not types, first filter
3059 out all types. */
3060 int j;
3061 for (j = 0; j < n_candidates; j += 1)
3062 switch (SYMBOL_CLASS (candidates[j].sym))
3063 {
3064 case LOC_REGISTER:
3065 case LOC_ARG:
3066 case LOC_REF_ARG:
76a01679
JB
3067 case LOC_REGPARM_ADDR:
3068 case LOC_LOCAL:
76a01679 3069 case LOC_COMPUTED:
76a01679
JB
3070 goto FoundNonType;
3071 default:
3072 break;
3073 }
3074 FoundNonType:
3075 if (j < n_candidates)
3076 {
3077 j = 0;
3078 while (j < n_candidates)
3079 {
3080 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3081 {
3082 candidates[j] = candidates[n_candidates - 1];
3083 n_candidates -= 1;
3084 }
3085 else
3086 j += 1;
3087 }
3088 }
3089 }
3090
3091 if (n_candidates == 0)
323e0a4a 3092 error (_("No definition found for %s"),
76a01679
JB
3093 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3094 else if (n_candidates == 1)
3095 i = 0;
3096 else if (deprocedure_p
3097 && !is_nonfunction (candidates, n_candidates))
3098 {
06d5cf63
JB
3099 i = ada_resolve_function
3100 (candidates, n_candidates, NULL, 0,
3101 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3102 context_type);
76a01679 3103 if (i < 0)
323e0a4a 3104 error (_("Could not find a match for %s"),
76a01679
JB
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 }
3107 else
3108 {
323e0a4a 3109 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3110 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3111 user_select_syms (candidates, n_candidates, 1);
3112 i = 0;
3113 }
3114
3115 exp->elts[pc + 1].block = candidates[i].block;
3116 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3117 if (innermost_block == NULL
3118 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3119 innermost_block = candidates[i].block;
3120 }
3121
3122 if (deprocedure_p
3123 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3124 == TYPE_CODE_FUNC))
3125 {
3126 replace_operator_with_call (expp, pc, 0, 0,
3127 exp->elts[pc + 2].symbol,
3128 exp->elts[pc + 1].block);
3129 exp = *expp;
3130 }
14f9c5c9
AS
3131 break;
3132
3133 case OP_FUNCALL:
3134 {
4c4b4cd2 3135 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3136 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3137 {
3138 struct ada_symbol_info *candidates;
3139 int n_candidates;
3140
3141 n_candidates =
76a01679
JB
3142 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3143 (exp->elts[pc + 5].symbol),
3144 exp->elts[pc + 4].block, VAR_DOMAIN,
3145 &candidates);
4c4b4cd2
PH
3146 if (n_candidates == 1)
3147 i = 0;
3148 else
3149 {
06d5cf63
JB
3150 i = ada_resolve_function
3151 (candidates, n_candidates,
3152 argvec, nargs,
3153 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3154 context_type);
4c4b4cd2 3155 if (i < 0)
323e0a4a 3156 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3157 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3158 }
3159
3160 exp->elts[pc + 4].block = candidates[i].block;
3161 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3162 if (innermost_block == NULL
3163 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3164 innermost_block = candidates[i].block;
3165 }
14f9c5c9
AS
3166 }
3167 break;
3168 case BINOP_ADD:
3169 case BINOP_SUB:
3170 case BINOP_MUL:
3171 case BINOP_DIV:
3172 case BINOP_REM:
3173 case BINOP_MOD:
3174 case BINOP_CONCAT:
3175 case BINOP_BITWISE_AND:
3176 case BINOP_BITWISE_IOR:
3177 case BINOP_BITWISE_XOR:
3178 case BINOP_EQUAL:
3179 case BINOP_NOTEQUAL:
3180 case BINOP_LESS:
3181 case BINOP_GTR:
3182 case BINOP_LEQ:
3183 case BINOP_GEQ:
3184 case BINOP_EXP:
3185 case UNOP_NEG:
3186 case UNOP_PLUS:
3187 case UNOP_LOGICAL_NOT:
3188 case UNOP_ABS:
3189 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3190 {
3191 struct ada_symbol_info *candidates;
3192 int n_candidates;
3193
3194 n_candidates =
3195 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3196 (struct block *) NULL, VAR_DOMAIN,
3197 &candidates);
3198 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3199 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3200 if (i < 0)
3201 break;
3202
76a01679
JB
3203 replace_operator_with_call (expp, pc, nargs, 1,
3204 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3205 exp = *expp;
3206 }
14f9c5c9 3207 break;
4c4b4cd2
PH
3208
3209 case OP_TYPE:
b3dbf008 3210 case OP_REGISTER:
4c4b4cd2 3211 return NULL;
14f9c5c9
AS
3212 }
3213
3214 *pos = pc;
3215 return evaluate_subexp_type (exp, pos);
3216}
3217
3218/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3219 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3220 a non-pointer. */
14f9c5c9 3221/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3222 liberal. */
14f9c5c9
AS
3223
3224static int
4dc81987 3225ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3226{
61ee279c
PH
3227 ftype = ada_check_typedef (ftype);
3228 atype = ada_check_typedef (atype);
14f9c5c9
AS
3229
3230 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3231 ftype = TYPE_TARGET_TYPE (ftype);
3232 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3233 atype = TYPE_TARGET_TYPE (atype);
3234
d2e4a39e 3235 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3236 {
3237 default:
5b3d5b7d 3238 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3239 case TYPE_CODE_PTR:
3240 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3241 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3242 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3243 else
1265e4aa
JB
3244 return (may_deref
3245 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3250 {
3251 case TYPE_CODE_INT:
3252 case TYPE_CODE_ENUM:
3253 case TYPE_CODE_RANGE:
3254 return 1;
3255 default:
3256 return 0;
3257 }
14f9c5c9
AS
3258
3259 case TYPE_CODE_ARRAY:
d2e4a39e 3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3261 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3262
3263 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3264 if (ada_is_array_descriptor_type (ftype))
3265 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3266 || ada_is_array_descriptor_type (atype));
14f9c5c9 3267 else
4c4b4cd2
PH
3268 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3269 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3270
3271 case TYPE_CODE_UNION:
3272 case TYPE_CODE_FLT:
3273 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3274 }
3275}
3276
3277/* Return non-zero if the formals of FUNC "sufficiently match" the
3278 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3279 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3280 argument function. */
14f9c5c9
AS
3281
3282static int
d2e4a39e 3283ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3284{
3285 int i;
d2e4a39e 3286 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3287
1265e4aa
JB
3288 if (SYMBOL_CLASS (func) == LOC_CONST
3289 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3290 return (n_actuals == 0);
3291 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3292 return 0;
3293
3294 if (TYPE_NFIELDS (func_type) != n_actuals)
3295 return 0;
3296
3297 for (i = 0; i < n_actuals; i += 1)
3298 {
4c4b4cd2 3299 if (actuals[i] == NULL)
76a01679
JB
3300 return 0;
3301 else
3302 {
5b4ee69b
MS
3303 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3304 i));
df407dfe 3305 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3306
76a01679
JB
3307 if (!ada_type_match (ftype, atype, 1))
3308 return 0;
3309 }
14f9c5c9
AS
3310 }
3311 return 1;
3312}
3313
3314/* False iff function type FUNC_TYPE definitely does not produce a value
3315 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3316 FUNC_TYPE is not a valid function type with a non-null return type
3317 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3318
3319static int
d2e4a39e 3320return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3321{
d2e4a39e 3322 struct type *return_type;
14f9c5c9
AS
3323
3324 if (func_type == NULL)
3325 return 1;
3326
4c4b4cd2
PH
3327 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3328 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3329 else
3330 return_type = base_type (func_type);
14f9c5c9
AS
3331 if (return_type == NULL)
3332 return 1;
3333
4c4b4cd2 3334 context_type = base_type (context_type);
14f9c5c9
AS
3335
3336 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3337 return context_type == NULL || return_type == context_type;
3338 else if (context_type == NULL)
3339 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3340 else
3341 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3342}
3343
3344
4c4b4cd2 3345/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3346 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3347 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3348 that returns that type, then eliminate matches that don't. If
3349 CONTEXT_TYPE is void and there is at least one match that does not
3350 return void, eliminate all matches that do.
3351
14f9c5c9
AS
3352 Asks the user if there is more than one match remaining. Returns -1
3353 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3354 solely for messages. May re-arrange and modify SYMS in
3355 the process; the index returned is for the modified vector. */
14f9c5c9 3356
4c4b4cd2
PH
3357static int
3358ada_resolve_function (struct ada_symbol_info syms[],
3359 int nsyms, struct value **args, int nargs,
3360 const char *name, struct type *context_type)
14f9c5c9 3361{
30b15541 3362 int fallback;
14f9c5c9 3363 int k;
4c4b4cd2 3364 int m; /* Number of hits */
14f9c5c9 3365
d2e4a39e 3366 m = 0;
30b15541
UW
3367 /* In the first pass of the loop, we only accept functions matching
3368 context_type. If none are found, we add a second pass of the loop
3369 where every function is accepted. */
3370 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3371 {
3372 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3373 {
61ee279c 3374 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3375
3376 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3377 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3378 {
3379 syms[m] = syms[k];
3380 m += 1;
3381 }
3382 }
14f9c5c9
AS
3383 }
3384
3385 if (m == 0)
3386 return -1;
3387 else if (m > 1)
3388 {
323e0a4a 3389 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3390 user_select_syms (syms, m, 1);
14f9c5c9
AS
3391 return 0;
3392 }
3393 return 0;
3394}
3395
4c4b4cd2
PH
3396/* Returns true (non-zero) iff decoded name N0 should appear before N1
3397 in a listing of choices during disambiguation (see sort_choices, below).
3398 The idea is that overloadings of a subprogram name from the
3399 same package should sort in their source order. We settle for ordering
3400 such symbols by their trailing number (__N or $N). */
3401
14f9c5c9 3402static int
4c4b4cd2 3403encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3404{
3405 if (N1 == NULL)
3406 return 0;
3407 else if (N0 == NULL)
3408 return 1;
3409 else
3410 {
3411 int k0, k1;
5b4ee69b 3412
d2e4a39e 3413 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3414 ;
d2e4a39e 3415 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3416 ;
d2e4a39e 3417 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3418 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3419 {
3420 int n0, n1;
5b4ee69b 3421
4c4b4cd2
PH
3422 n0 = k0;
3423 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3424 n0 -= 1;
3425 n1 = k1;
3426 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3427 n1 -= 1;
3428 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3429 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3430 }
14f9c5c9
AS
3431 return (strcmp (N0, N1) < 0);
3432 }
3433}
d2e4a39e 3434
4c4b4cd2
PH
3435/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3436 encoded names. */
3437
d2e4a39e 3438static void
4c4b4cd2 3439sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3440{
4c4b4cd2 3441 int i;
5b4ee69b 3442
d2e4a39e 3443 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3444 {
4c4b4cd2 3445 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3446 int j;
3447
d2e4a39e 3448 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3449 {
3450 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3451 SYMBOL_LINKAGE_NAME (sym.sym)))
3452 break;
3453 syms[j + 1] = syms[j];
3454 }
d2e4a39e 3455 syms[j + 1] = sym;
14f9c5c9
AS
3456 }
3457}
3458
4c4b4cd2
PH
3459/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3460 by asking the user (if necessary), returning the number selected,
3461 and setting the first elements of SYMS items. Error if no symbols
3462 selected. */
14f9c5c9
AS
3463
3464/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3465 to be re-integrated one of these days. */
14f9c5c9
AS
3466
3467int
4c4b4cd2 3468user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3469{
3470 int i;
d2e4a39e 3471 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3472 int n_chosen;
3473 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3474 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3475
3476 if (max_results < 1)
323e0a4a 3477 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3478 if (nsyms <= 1)
3479 return nsyms;
3480
717d2f5a
JB
3481 if (select_mode == multiple_symbols_cancel)
3482 error (_("\
3483canceled because the command is ambiguous\n\
3484See set/show multiple-symbol."));
3485
3486 /* If select_mode is "all", then return all possible symbols.
3487 Only do that if more than one symbol can be selected, of course.
3488 Otherwise, display the menu as usual. */
3489 if (select_mode == multiple_symbols_all && max_results > 1)
3490 return nsyms;
3491
323e0a4a 3492 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3493 if (max_results > 1)
323e0a4a 3494 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3495
4c4b4cd2 3496 sort_choices (syms, nsyms);
14f9c5c9
AS
3497
3498 for (i = 0; i < nsyms; i += 1)
3499 {
4c4b4cd2
PH
3500 if (syms[i].sym == NULL)
3501 continue;
3502
3503 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3504 {
76a01679
JB
3505 struct symtab_and_line sal =
3506 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3507
323e0a4a
AC
3508 if (sal.symtab == NULL)
3509 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3510 i + first_choice,
3511 SYMBOL_PRINT_NAME (syms[i].sym),
3512 sal.line);
3513 else
3514 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3515 SYMBOL_PRINT_NAME (syms[i].sym),
3516 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3517 continue;
3518 }
d2e4a39e 3519 else
4c4b4cd2
PH
3520 {
3521 int is_enumeral =
3522 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3523 && SYMBOL_TYPE (syms[i].sym) != NULL
3524 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3525 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3526
3527 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3528 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3529 i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3532 else if (is_enumeral
3533 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3534 {
a3f17187 3535 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3536 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3537 gdb_stdout, -1, 0);
323e0a4a 3538 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3539 SYMBOL_PRINT_NAME (syms[i].sym));
3540 }
3541 else if (symtab != NULL)
3542 printf_unfiltered (is_enumeral
323e0a4a
AC
3543 ? _("[%d] %s in %s (enumeral)\n")
3544 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3545 i + first_choice,
3546 SYMBOL_PRINT_NAME (syms[i].sym),
3547 symtab->filename);
3548 else
3549 printf_unfiltered (is_enumeral
323e0a4a
AC
3550 ? _("[%d] %s (enumeral)\n")
3551 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3552 i + first_choice,
3553 SYMBOL_PRINT_NAME (syms[i].sym));
3554 }
14f9c5c9 3555 }
d2e4a39e 3556
14f9c5c9 3557 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3558 "overload-choice");
14f9c5c9
AS
3559
3560 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3561 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3562
3563 return n_chosen;
3564}
3565
3566/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3567 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3568 order in CHOICES[0 .. N-1], and return N.
3569
3570 The user types choices as a sequence of numbers on one line
3571 separated by blanks, encoding them as follows:
3572
4c4b4cd2 3573 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3574 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3575 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3576
4c4b4cd2 3577 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3578
3579 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3580 prompts (for use with the -f switch). */
14f9c5c9
AS
3581
3582int
d2e4a39e 3583get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3584 int is_all_choice, char *annotation_suffix)
14f9c5c9 3585{
d2e4a39e 3586 char *args;
0bcd0149 3587 char *prompt;
14f9c5c9
AS
3588 int n_chosen;
3589 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3590
14f9c5c9
AS
3591 prompt = getenv ("PS2");
3592 if (prompt == NULL)
0bcd0149 3593 prompt = "> ";
14f9c5c9 3594
0bcd0149 3595 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3596
14f9c5c9 3597 if (args == NULL)
323e0a4a 3598 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3599
3600 n_chosen = 0;
76a01679 3601
4c4b4cd2
PH
3602 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3603 order, as given in args. Choices are validated. */
14f9c5c9
AS
3604 while (1)
3605 {
d2e4a39e 3606 char *args2;
14f9c5c9
AS
3607 int choice, j;
3608
3609 while (isspace (*args))
4c4b4cd2 3610 args += 1;
14f9c5c9 3611 if (*args == '\0' && n_chosen == 0)
323e0a4a 3612 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3613 else if (*args == '\0')
4c4b4cd2 3614 break;
14f9c5c9
AS
3615
3616 choice = strtol (args, &args2, 10);
d2e4a39e 3617 if (args == args2 || choice < 0
4c4b4cd2 3618 || choice > n_choices + first_choice - 1)
323e0a4a 3619 error (_("Argument must be choice number"));
14f9c5c9
AS
3620 args = args2;
3621
d2e4a39e 3622 if (choice == 0)
323e0a4a 3623 error (_("cancelled"));
14f9c5c9
AS
3624
3625 if (choice < first_choice)
4c4b4cd2
PH
3626 {
3627 n_chosen = n_choices;
3628 for (j = 0; j < n_choices; j += 1)
3629 choices[j] = j;
3630 break;
3631 }
14f9c5c9
AS
3632 choice -= first_choice;
3633
d2e4a39e 3634 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3635 {
3636 }
14f9c5c9
AS
3637
3638 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3639 {
3640 int k;
5b4ee69b 3641
4c4b4cd2
PH
3642 for (k = n_chosen - 1; k > j; k -= 1)
3643 choices[k + 1] = choices[k];
3644 choices[j + 1] = choice;
3645 n_chosen += 1;
3646 }
14f9c5c9
AS
3647 }
3648
3649 if (n_chosen > max_results)
323e0a4a 3650 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3651
14f9c5c9
AS
3652 return n_chosen;
3653}
3654
4c4b4cd2
PH
3655/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3656 on the function identified by SYM and BLOCK, and taking NARGS
3657 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3658
3659static void
d2e4a39e 3660replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3661 int oplen, struct symbol *sym,
3662 struct block *block)
14f9c5c9
AS
3663{
3664 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3665 symbol, -oplen for operator being replaced). */
d2e4a39e 3666 struct expression *newexp = (struct expression *)
8c1a34e7 3667 xzalloc (sizeof (struct expression)
4c4b4cd2 3668 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3669 struct expression *exp = *expp;
14f9c5c9
AS
3670
3671 newexp->nelts = exp->nelts + 7 - oplen;
3672 newexp->language_defn = exp->language_defn;
3489610d 3673 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3674 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3675 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3676 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3677
3678 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3679 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3680
3681 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3682 newexp->elts[pc + 4].block = block;
3683 newexp->elts[pc + 5].symbol = sym;
3684
3685 *expp = newexp;
aacb1f0a 3686 xfree (exp);
d2e4a39e 3687}
14f9c5c9
AS
3688
3689/* Type-class predicates */
3690
4c4b4cd2
PH
3691/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3692 or FLOAT). */
14f9c5c9
AS
3693
3694static int
d2e4a39e 3695numeric_type_p (struct type *type)
14f9c5c9
AS
3696{
3697 if (type == NULL)
3698 return 0;
d2e4a39e
AS
3699 else
3700 {
3701 switch (TYPE_CODE (type))
4c4b4cd2
PH
3702 {
3703 case TYPE_CODE_INT:
3704 case TYPE_CODE_FLT:
3705 return 1;
3706 case TYPE_CODE_RANGE:
3707 return (type == TYPE_TARGET_TYPE (type)
3708 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3709 default:
3710 return 0;
3711 }
d2e4a39e 3712 }
14f9c5c9
AS
3713}
3714
4c4b4cd2 3715/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3716
3717static int
d2e4a39e 3718integer_type_p (struct type *type)
14f9c5c9
AS
3719{
3720 if (type == NULL)
3721 return 0;
d2e4a39e
AS
3722 else
3723 {
3724 switch (TYPE_CODE (type))
4c4b4cd2
PH
3725 {
3726 case TYPE_CODE_INT:
3727 return 1;
3728 case TYPE_CODE_RANGE:
3729 return (type == TYPE_TARGET_TYPE (type)
3730 || integer_type_p (TYPE_TARGET_TYPE (type)));
3731 default:
3732 return 0;
3733 }
d2e4a39e 3734 }
14f9c5c9
AS
3735}
3736
4c4b4cd2 3737/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3738
3739static int
d2e4a39e 3740scalar_type_p (struct type *type)
14f9c5c9
AS
3741{
3742 if (type == NULL)
3743 return 0;
d2e4a39e
AS
3744 else
3745 {
3746 switch (TYPE_CODE (type))
4c4b4cd2
PH
3747 {
3748 case TYPE_CODE_INT:
3749 case TYPE_CODE_RANGE:
3750 case TYPE_CODE_ENUM:
3751 case TYPE_CODE_FLT:
3752 return 1;
3753 default:
3754 return 0;
3755 }
d2e4a39e 3756 }
14f9c5c9
AS
3757}
3758
4c4b4cd2 3759/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3760
3761static int
d2e4a39e 3762discrete_type_p (struct type *type)
14f9c5c9
AS
3763{
3764 if (type == NULL)
3765 return 0;
d2e4a39e
AS
3766 else
3767 {
3768 switch (TYPE_CODE (type))
4c4b4cd2
PH
3769 {
3770 case TYPE_CODE_INT:
3771 case TYPE_CODE_RANGE:
3772 case TYPE_CODE_ENUM:
872f0337 3773 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3774 return 1;
3775 default:
3776 return 0;
3777 }
d2e4a39e 3778 }
14f9c5c9
AS
3779}
3780
4c4b4cd2
PH
3781/* Returns non-zero if OP with operands in the vector ARGS could be
3782 a user-defined function. Errs on the side of pre-defined operators
3783 (i.e., result 0). */
14f9c5c9
AS
3784
3785static int
d2e4a39e 3786possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3787{
76a01679 3788 struct type *type0 =
df407dfe 3789 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3790 struct type *type1 =
df407dfe 3791 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3792
4c4b4cd2
PH
3793 if (type0 == NULL)
3794 return 0;
3795
14f9c5c9
AS
3796 switch (op)
3797 {
3798 default:
3799 return 0;
3800
3801 case BINOP_ADD:
3802 case BINOP_SUB:
3803 case BINOP_MUL:
3804 case BINOP_DIV:
d2e4a39e 3805 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3806
3807 case BINOP_REM:
3808 case BINOP_MOD:
3809 case BINOP_BITWISE_AND:
3810 case BINOP_BITWISE_IOR:
3811 case BINOP_BITWISE_XOR:
d2e4a39e 3812 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3813
3814 case BINOP_EQUAL:
3815 case BINOP_NOTEQUAL:
3816 case BINOP_LESS:
3817 case BINOP_GTR:
3818 case BINOP_LEQ:
3819 case BINOP_GEQ:
d2e4a39e 3820 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3821
3822 case BINOP_CONCAT:
ee90b9ab 3823 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3824
3825 case BINOP_EXP:
d2e4a39e 3826 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3827
3828 case UNOP_NEG:
3829 case UNOP_PLUS:
3830 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3831 case UNOP_ABS:
3832 return (!numeric_type_p (type0));
14f9c5c9
AS
3833
3834 }
3835}
3836\f
4c4b4cd2 3837 /* Renaming */
14f9c5c9 3838
aeb5907d
JB
3839/* NOTES:
3840
3841 1. In the following, we assume that a renaming type's name may
3842 have an ___XD suffix. It would be nice if this went away at some
3843 point.
3844 2. We handle both the (old) purely type-based representation of
3845 renamings and the (new) variable-based encoding. At some point,
3846 it is devoutly to be hoped that the former goes away
3847 (FIXME: hilfinger-2007-07-09).
3848 3. Subprogram renamings are not implemented, although the XRS
3849 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3850
3851/* If SYM encodes a renaming,
3852
3853 <renaming> renames <renamed entity>,
3854
3855 sets *LEN to the length of the renamed entity's name,
3856 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3857 the string describing the subcomponent selected from the renamed
0963b4bd 3858 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3859 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3860 are undefined). Otherwise, returns a value indicating the category
3861 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3862 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3863 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3864 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3865 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3866 may be NULL, in which case they are not assigned.
3867
3868 [Currently, however, GCC does not generate subprogram renamings.] */
3869
3870enum ada_renaming_category
3871ada_parse_renaming (struct symbol *sym,
3872 const char **renamed_entity, int *len,
3873 const char **renaming_expr)
3874{
3875 enum ada_renaming_category kind;
3876 const char *info;
3877 const char *suffix;
3878
3879 if (sym == NULL)
3880 return ADA_NOT_RENAMING;
3881 switch (SYMBOL_CLASS (sym))
14f9c5c9 3882 {
aeb5907d
JB
3883 default:
3884 return ADA_NOT_RENAMING;
3885 case LOC_TYPEDEF:
3886 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3887 renamed_entity, len, renaming_expr);
3888 case LOC_LOCAL:
3889 case LOC_STATIC:
3890 case LOC_COMPUTED:
3891 case LOC_OPTIMIZED_OUT:
3892 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3893 if (info == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (info[5])
3896 {
3897 case '_':
3898 kind = ADA_OBJECT_RENAMING;
3899 info += 6;
3900 break;
3901 case 'E':
3902 kind = ADA_EXCEPTION_RENAMING;
3903 info += 7;
3904 break;
3905 case 'P':
3906 kind = ADA_PACKAGE_RENAMING;
3907 info += 7;
3908 break;
3909 case 'S':
3910 kind = ADA_SUBPROGRAM_RENAMING;
3911 info += 7;
3912 break;
3913 default:
3914 return ADA_NOT_RENAMING;
3915 }
14f9c5c9 3916 }
4c4b4cd2 3917
aeb5907d
JB
3918 if (renamed_entity != NULL)
3919 *renamed_entity = info;
3920 suffix = strstr (info, "___XE");
3921 if (suffix == NULL || suffix == info)
3922 return ADA_NOT_RENAMING;
3923 if (len != NULL)
3924 *len = strlen (info) - strlen (suffix);
3925 suffix += 5;
3926 if (renaming_expr != NULL)
3927 *renaming_expr = suffix;
3928 return kind;
3929}
3930
3931/* Assuming TYPE encodes a renaming according to the old encoding in
3932 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3933 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3934 ADA_NOT_RENAMING otherwise. */
3935static enum ada_renaming_category
3936parse_old_style_renaming (struct type *type,
3937 const char **renamed_entity, int *len,
3938 const char **renaming_expr)
3939{
3940 enum ada_renaming_category kind;
3941 const char *name;
3942 const char *info;
3943 const char *suffix;
14f9c5c9 3944
aeb5907d
JB
3945 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3946 || TYPE_NFIELDS (type) != 1)
3947 return ADA_NOT_RENAMING;
14f9c5c9 3948
aeb5907d
JB
3949 name = type_name_no_tag (type);
3950 if (name == NULL)
3951 return ADA_NOT_RENAMING;
3952
3953 name = strstr (name, "___XR");
3954 if (name == NULL)
3955 return ADA_NOT_RENAMING;
3956 switch (name[5])
3957 {
3958 case '\0':
3959 case '_':
3960 kind = ADA_OBJECT_RENAMING;
3961 break;
3962 case 'E':
3963 kind = ADA_EXCEPTION_RENAMING;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 break;
3971 default:
3972 return ADA_NOT_RENAMING;
3973 }
14f9c5c9 3974
aeb5907d
JB
3975 info = TYPE_FIELD_NAME (type, 0);
3976 if (info == NULL)
3977 return ADA_NOT_RENAMING;
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (renaming_expr != NULL)
3982 *renaming_expr = suffix + 5;
3983 if (suffix == NULL || suffix == info)
3984 return ADA_NOT_RENAMING;
3985 if (len != NULL)
3986 *len = suffix - info;
3987 return kind;
3988}
52ce6436 3989
14f9c5c9 3990\f
d2e4a39e 3991
4c4b4cd2 3992 /* Evaluation: Function Calls */
14f9c5c9 3993
4c4b4cd2 3994/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3995 lvalues, and otherwise has the side-effect of allocating memory
3996 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3997
d2e4a39e 3998static struct value *
40bc484c 3999ensure_lval (struct value *val)
14f9c5c9 4000{
40bc484c
JB
4001 if (VALUE_LVAL (val) == not_lval
4002 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4003 {
df407dfe 4004 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4005 const CORE_ADDR addr =
4006 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4007
40bc484c 4008 set_value_address (val, addr);
a84a8a0d 4009 VALUE_LVAL (val) = lval_memory;
40bc484c 4010 write_memory (addr, value_contents (val), len);
c3e5cd34 4011 }
14f9c5c9
AS
4012
4013 return val;
4014}
4015
4016/* Return the value ACTUAL, converted to be an appropriate value for a
4017 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4018 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4019 values not residing in memory, updating it as needed. */
14f9c5c9 4020
a93c0eb6 4021struct value *
40bc484c 4022ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4023{
df407dfe 4024 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4025 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4026 struct type *formal_target =
4027 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4028 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4029 struct type *actual_target =
4030 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4031 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4032
4c4b4cd2 4033 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4034 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4035 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4036 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4037 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4038 {
a84a8a0d 4039 struct value *result;
5b4ee69b 4040
14f9c5c9 4041 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4042 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4043 result = desc_data (actual);
14f9c5c9 4044 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4045 {
4046 if (VALUE_LVAL (actual) != lval_memory)
4047 {
4048 struct value *val;
5b4ee69b 4049
df407dfe 4050 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4051 val = allocate_value (actual_type);
990a07ab 4052 memcpy ((char *) value_contents_raw (val),
0fd88904 4053 (char *) value_contents (actual),
4c4b4cd2 4054 TYPE_LENGTH (actual_type));
40bc484c 4055 actual = ensure_lval (val);
4c4b4cd2 4056 }
a84a8a0d 4057 result = value_addr (actual);
4c4b4cd2 4058 }
a84a8a0d
JB
4059 else
4060 return actual;
4061 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4062 }
4063 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4064 return ada_value_ind (actual);
4065
4066 return actual;
4067}
4068
438c98a1
JB
4069/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4070 type TYPE. This is usually an inefficient no-op except on some targets
4071 (such as AVR) where the representation of a pointer and an address
4072 differs. */
4073
4074static CORE_ADDR
4075value_pointer (struct value *value, struct type *type)
4076{
4077 struct gdbarch *gdbarch = get_type_arch (type);
4078 unsigned len = TYPE_LENGTH (type);
4079 gdb_byte *buf = alloca (len);
4080 CORE_ADDR addr;
4081
4082 addr = value_address (value);
4083 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4084 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4085 return addr;
4086}
4087
14f9c5c9 4088
4c4b4cd2
PH
4089/* Push a descriptor of type TYPE for array value ARR on the stack at
4090 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4091 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4092 to-descriptor type rather than a descriptor type), a struct value *
4093 representing a pointer to this descriptor. */
14f9c5c9 4094
d2e4a39e 4095static struct value *
40bc484c 4096make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4097{
d2e4a39e
AS
4098 struct type *bounds_type = desc_bounds_type (type);
4099 struct type *desc_type = desc_base_type (type);
4100 struct value *descriptor = allocate_value (desc_type);
4101 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4102 int i;
d2e4a39e 4103
0963b4bd
MS
4104 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4105 i > 0; i -= 1)
14f9c5c9 4106 {
19f220c3
JK
4107 modify_field (value_type (bounds), value_contents_writeable (bounds),
4108 ada_array_bound (arr, i, 0),
4109 desc_bound_bitpos (bounds_type, i, 0),
4110 desc_bound_bitsize (bounds_type, i, 0));
4111 modify_field (value_type (bounds), value_contents_writeable (bounds),
4112 ada_array_bound (arr, i, 1),
4113 desc_bound_bitpos (bounds_type, i, 1),
4114 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4115 }
d2e4a39e 4116
40bc484c 4117 bounds = ensure_lval (bounds);
d2e4a39e 4118
19f220c3
JK
4119 modify_field (value_type (descriptor),
4120 value_contents_writeable (descriptor),
4121 value_pointer (ensure_lval (arr),
4122 TYPE_FIELD_TYPE (desc_type, 0)),
4123 fat_pntr_data_bitpos (desc_type),
4124 fat_pntr_data_bitsize (desc_type));
4125
4126 modify_field (value_type (descriptor),
4127 value_contents_writeable (descriptor),
4128 value_pointer (bounds,
4129 TYPE_FIELD_TYPE (desc_type, 1)),
4130 fat_pntr_bounds_bitpos (desc_type),
4131 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4132
40bc484c 4133 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4134
4135 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4136 return value_addr (descriptor);
4137 else
4138 return descriptor;
4139}
14f9c5c9 4140\f
963a6417 4141/* Dummy definitions for an experimental caching module that is not
0963b4bd 4142 * used in the public sources. */
96d887e8 4143
96d887e8
PH
4144static int
4145lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4146 struct symbol **sym, struct block **block)
96d887e8
PH
4147{
4148 return 0;
4149}
4150
4151static void
4152cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4153 struct block *block)
96d887e8
PH
4154{
4155}
4c4b4cd2
PH
4156\f
4157 /* Symbol Lookup */
4158
4159/* Return the result of a standard (literal, C-like) lookup of NAME in
4160 given DOMAIN, visible from lexical block BLOCK. */
4161
4162static struct symbol *
4163standard_lookup (const char *name, const struct block *block,
4164 domain_enum domain)
4165{
4166 struct symbol *sym;
4c4b4cd2 4167
2570f2b7 4168 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4169 return sym;
2570f2b7
UW
4170 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4171 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4172 return sym;
4173}
4174
4175
4176/* Non-zero iff there is at least one non-function/non-enumeral symbol
4177 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4178 since they contend in overloading in the same way. */
4179static int
4180is_nonfunction (struct ada_symbol_info syms[], int n)
4181{
4182 int i;
4183
4184 for (i = 0; i < n; i += 1)
4185 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4186 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4187 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4188 return 1;
4189
4190 return 0;
4191}
4192
4193/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4194 struct types. Otherwise, they may not. */
14f9c5c9
AS
4195
4196static int
d2e4a39e 4197equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4198{
d2e4a39e 4199 if (type0 == type1)
14f9c5c9 4200 return 1;
d2e4a39e 4201 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4202 || TYPE_CODE (type0) != TYPE_CODE (type1))
4203 return 0;
d2e4a39e 4204 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4205 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4206 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4207 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4208 return 1;
d2e4a39e 4209
14f9c5c9
AS
4210 return 0;
4211}
4212
4213/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4214 no more defined than that of SYM1. */
14f9c5c9
AS
4215
4216static int
d2e4a39e 4217lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4218{
4219 if (sym0 == sym1)
4220 return 1;
176620f1 4221 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4222 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4223 return 0;
4224
d2e4a39e 4225 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4226 {
4227 case LOC_UNDEF:
4228 return 1;
4229 case LOC_TYPEDEF:
4230 {
4c4b4cd2
PH
4231 struct type *type0 = SYMBOL_TYPE (sym0);
4232 struct type *type1 = SYMBOL_TYPE (sym1);
4233 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4234 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4235 int len0 = strlen (name0);
5b4ee69b 4236
4c4b4cd2
PH
4237 return
4238 TYPE_CODE (type0) == TYPE_CODE (type1)
4239 && (equiv_types (type0, type1)
4240 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4241 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4242 }
4243 case LOC_CONST:
4244 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4245 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4246 default:
4247 return 0;
14f9c5c9
AS
4248 }
4249}
4250
4c4b4cd2
PH
4251/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4252 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4253
4254static void
76a01679
JB
4255add_defn_to_vec (struct obstack *obstackp,
4256 struct symbol *sym,
2570f2b7 4257 struct block *block)
14f9c5c9
AS
4258{
4259 int i;
4c4b4cd2 4260 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4261
529cad9c
PH
4262 /* Do not try to complete stub types, as the debugger is probably
4263 already scanning all symbols matching a certain name at the
4264 time when this function is called. Trying to replace the stub
4265 type by its associated full type will cause us to restart a scan
4266 which may lead to an infinite recursion. Instead, the client
4267 collecting the matching symbols will end up collecting several
4268 matches, with at least one of them complete. It can then filter
4269 out the stub ones if needed. */
4270
4c4b4cd2
PH
4271 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4272 {
4273 if (lesseq_defined_than (sym, prevDefns[i].sym))
4274 return;
4275 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4276 {
4277 prevDefns[i].sym = sym;
4278 prevDefns[i].block = block;
4c4b4cd2 4279 return;
76a01679 4280 }
4c4b4cd2
PH
4281 }
4282
4283 {
4284 struct ada_symbol_info info;
4285
4286 info.sym = sym;
4287 info.block = block;
4c4b4cd2
PH
4288 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4289 }
4290}
4291
4292/* Number of ada_symbol_info structures currently collected in
4293 current vector in *OBSTACKP. */
4294
76a01679
JB
4295static int
4296num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4297{
4298 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4299}
4300
4301/* Vector of ada_symbol_info structures currently collected in current
4302 vector in *OBSTACKP. If FINISH, close off the vector and return
4303 its final address. */
4304
76a01679 4305static struct ada_symbol_info *
4c4b4cd2
PH
4306defns_collected (struct obstack *obstackp, int finish)
4307{
4308 if (finish)
4309 return obstack_finish (obstackp);
4310 else
4311 return (struct ada_symbol_info *) obstack_base (obstackp);
4312}
4313
96d887e8
PH
4314/* Return a minimal symbol matching NAME according to Ada decoding
4315 rules. Returns NULL if there is no such minimal symbol. Names
4316 prefixed with "standard__" are handled specially: "standard__" is
4317 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4318
96d887e8
PH
4319struct minimal_symbol *
4320ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4321{
4c4b4cd2 4322 struct objfile *objfile;
96d887e8
PH
4323 struct minimal_symbol *msymbol;
4324 int wild_match;
4c4b4cd2 4325
96d887e8 4326 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4327 {
96d887e8 4328 name += sizeof ("standard__") - 1;
4c4b4cd2 4329 wild_match = 0;
4c4b4cd2
PH
4330 }
4331 else
96d887e8 4332 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4333
96d887e8
PH
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
40658b94 4336 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4337 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4338 return msymbol;
4339 }
4c4b4cd2 4340
96d887e8
PH
4341 return NULL;
4342}
4c4b4cd2 4343
96d887e8
PH
4344/* For all subprograms that statically enclose the subprogram of the
4345 selected frame, add symbols matching identifier NAME in DOMAIN
4346 and their blocks to the list of data in OBSTACKP, as for
4347 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4348 wildcard prefix. */
4c4b4cd2 4349
96d887e8
PH
4350static void
4351add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4352 const char *name, domain_enum namespace,
96d887e8
PH
4353 int wild_match)
4354{
96d887e8 4355}
14f9c5c9 4356
96d887e8
PH
4357/* True if TYPE is definitely an artificial type supplied to a symbol
4358 for which no debugging information was given in the symbol file. */
14f9c5c9 4359
96d887e8
PH
4360static int
4361is_nondebugging_type (struct type *type)
4362{
4363 char *name = ada_type_name (type);
5b4ee69b 4364
96d887e8
PH
4365 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4366}
4c4b4cd2 4367
96d887e8
PH
4368/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4369 duplicate other symbols in the list (The only case I know of where
4370 this happens is when object files containing stabs-in-ecoff are
4371 linked with files containing ordinary ecoff debugging symbols (or no
4372 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4373 Returns the number of items in the modified list. */
4c4b4cd2 4374
96d887e8
PH
4375static int
4376remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4377{
4378 int i, j;
4c4b4cd2 4379
96d887e8
PH
4380 i = 0;
4381 while (i < nsyms)
4382 {
339c13b6
JB
4383 int remove = 0;
4384
4385 /* If two symbols have the same name and one of them is a stub type,
4386 the get rid of the stub. */
4387
4388 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4389 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4390 {
4391 for (j = 0; j < nsyms; j++)
4392 {
4393 if (j != i
4394 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4395 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4396 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4397 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4398 remove = 1;
4399 }
4400 }
4401
4402 /* Two symbols with the same name, same class and same address
4403 should be identical. */
4404
4405 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4406 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4407 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4408 {
4409 for (j = 0; j < nsyms; j += 1)
4410 {
4411 if (i != j
4412 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4413 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4414 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4415 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4416 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4417 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4418 remove = 1;
4c4b4cd2 4419 }
4c4b4cd2 4420 }
339c13b6
JB
4421
4422 if (remove)
4423 {
4424 for (j = i + 1; j < nsyms; j += 1)
4425 syms[j - 1] = syms[j];
4426 nsyms -= 1;
4427 }
4428
96d887e8 4429 i += 1;
14f9c5c9 4430 }
96d887e8 4431 return nsyms;
14f9c5c9
AS
4432}
4433
96d887e8
PH
4434/* Given a type that corresponds to a renaming entity, use the type name
4435 to extract the scope (package name or function name, fully qualified,
4436 and following the GNAT encoding convention) where this renaming has been
4437 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4438
96d887e8
PH
4439static char *
4440xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4441{
96d887e8 4442 /* The renaming types adhere to the following convention:
0963b4bd 4443 <scope>__<rename>___<XR extension>.
96d887e8
PH
4444 So, to extract the scope, we search for the "___XR" extension,
4445 and then backtrack until we find the first "__". */
76a01679 4446
96d887e8
PH
4447 const char *name = type_name_no_tag (renaming_type);
4448 char *suffix = strstr (name, "___XR");
4449 char *last;
4450 int scope_len;
4451 char *scope;
14f9c5c9 4452
96d887e8
PH
4453 /* Now, backtrack a bit until we find the first "__". Start looking
4454 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4455
96d887e8
PH
4456 for (last = suffix - 3; last > name; last--)
4457 if (last[0] == '_' && last[1] == '_')
4458 break;
76a01679 4459
96d887e8 4460 /* Make a copy of scope and return it. */
14f9c5c9 4461
96d887e8
PH
4462 scope_len = last - name;
4463 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4464
96d887e8
PH
4465 strncpy (scope, name, scope_len);
4466 scope[scope_len] = '\0';
4c4b4cd2 4467
96d887e8 4468 return scope;
4c4b4cd2
PH
4469}
4470
96d887e8 4471/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4472
96d887e8
PH
4473static int
4474is_package_name (const char *name)
4c4b4cd2 4475{
96d887e8
PH
4476 /* Here, We take advantage of the fact that no symbols are generated
4477 for packages, while symbols are generated for each function.
4478 So the condition for NAME represent a package becomes equivalent
4479 to NAME not existing in our list of symbols. There is only one
4480 small complication with library-level functions (see below). */
4c4b4cd2 4481
96d887e8 4482 char *fun_name;
76a01679 4483
96d887e8
PH
4484 /* If it is a function that has not been defined at library level,
4485 then we should be able to look it up in the symbols. */
4486 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4487 return 0;
14f9c5c9 4488
96d887e8
PH
4489 /* Library-level function names start with "_ada_". See if function
4490 "_ada_" followed by NAME can be found. */
14f9c5c9 4491
96d887e8 4492 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4493 functions names cannot contain "__" in them. */
96d887e8
PH
4494 if (strstr (name, "__") != NULL)
4495 return 0;
4c4b4cd2 4496
b435e160 4497 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4498
96d887e8
PH
4499 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4500}
14f9c5c9 4501
96d887e8 4502/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4503 not visible from FUNCTION_NAME. */
14f9c5c9 4504
96d887e8 4505static int
aeb5907d 4506old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4507{
aeb5907d
JB
4508 char *scope;
4509
4510 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4511 return 0;
4512
4513 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4514
96d887e8 4515 make_cleanup (xfree, scope);
14f9c5c9 4516
96d887e8
PH
4517 /* If the rename has been defined in a package, then it is visible. */
4518 if (is_package_name (scope))
aeb5907d 4519 return 0;
14f9c5c9 4520
96d887e8
PH
4521 /* Check that the rename is in the current function scope by checking
4522 that its name starts with SCOPE. */
76a01679 4523
96d887e8
PH
4524 /* If the function name starts with "_ada_", it means that it is
4525 a library-level function. Strip this prefix before doing the
4526 comparison, as the encoding for the renaming does not contain
4527 this prefix. */
4528 if (strncmp (function_name, "_ada_", 5) == 0)
4529 function_name += 5;
f26caa11 4530
aeb5907d 4531 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4532}
4533
aeb5907d
JB
4534/* Remove entries from SYMS that corresponds to a renaming entity that
4535 is not visible from the function associated with CURRENT_BLOCK or
4536 that is superfluous due to the presence of more specific renaming
4537 information. Places surviving symbols in the initial entries of
4538 SYMS and returns the number of surviving symbols.
96d887e8
PH
4539
4540 Rationale:
aeb5907d
JB
4541 First, in cases where an object renaming is implemented as a
4542 reference variable, GNAT may produce both the actual reference
4543 variable and the renaming encoding. In this case, we discard the
4544 latter.
4545
4546 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4547 entity. Unfortunately, STABS currently does not support the definition
4548 of types that are local to a given lexical block, so all renamings types
4549 are emitted at library level. As a consequence, if an application
4550 contains two renaming entities using the same name, and a user tries to
4551 print the value of one of these entities, the result of the ada symbol
4552 lookup will also contain the wrong renaming type.
f26caa11 4553
96d887e8
PH
4554 This function partially covers for this limitation by attempting to
4555 remove from the SYMS list renaming symbols that should be visible
4556 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4557 method with the current information available. The implementation
4558 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4559
4560 - When the user tries to print a rename in a function while there
4561 is another rename entity defined in a package: Normally, the
4562 rename in the function has precedence over the rename in the
4563 package, so the latter should be removed from the list. This is
4564 currently not the case.
4565
4566 - This function will incorrectly remove valid renames if
4567 the CURRENT_BLOCK corresponds to a function which symbol name
4568 has been changed by an "Export" pragma. As a consequence,
4569 the user will be unable to print such rename entities. */
4c4b4cd2 4570
14f9c5c9 4571static int
aeb5907d
JB
4572remove_irrelevant_renamings (struct ada_symbol_info *syms,
4573 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4574{
4575 struct symbol *current_function;
4576 char *current_function_name;
4577 int i;
aeb5907d
JB
4578 int is_new_style_renaming;
4579
4580 /* If there is both a renaming foo___XR... encoded as a variable and
4581 a simple variable foo in the same block, discard the latter.
0963b4bd 4582 First, zero out such symbols, then compress. */
aeb5907d
JB
4583 is_new_style_renaming = 0;
4584 for (i = 0; i < nsyms; i += 1)
4585 {
4586 struct symbol *sym = syms[i].sym;
4587 struct block *block = syms[i].block;
4588 const char *name;
4589 const char *suffix;
4590
4591 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4592 continue;
4593 name = SYMBOL_LINKAGE_NAME (sym);
4594 suffix = strstr (name, "___XR");
4595
4596 if (suffix != NULL)
4597 {
4598 int name_len = suffix - name;
4599 int j;
5b4ee69b 4600
aeb5907d
JB
4601 is_new_style_renaming = 1;
4602 for (j = 0; j < nsyms; j += 1)
4603 if (i != j && syms[j].sym != NULL
4604 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4605 name_len) == 0
4606 && block == syms[j].block)
4607 syms[j].sym = NULL;
4608 }
4609 }
4610 if (is_new_style_renaming)
4611 {
4612 int j, k;
4613
4614 for (j = k = 0; j < nsyms; j += 1)
4615 if (syms[j].sym != NULL)
4616 {
4617 syms[k] = syms[j];
4618 k += 1;
4619 }
4620 return k;
4621 }
4c4b4cd2
PH
4622
4623 /* Extract the function name associated to CURRENT_BLOCK.
4624 Abort if unable to do so. */
76a01679 4625
4c4b4cd2
PH
4626 if (current_block == NULL)
4627 return nsyms;
76a01679 4628
7f0df278 4629 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4630 if (current_function == NULL)
4631 return nsyms;
4632
4633 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4634 if (current_function_name == NULL)
4635 return nsyms;
4636
4637 /* Check each of the symbols, and remove it from the list if it is
4638 a type corresponding to a renaming that is out of the scope of
4639 the current block. */
4640
4641 i = 0;
4642 while (i < nsyms)
4643 {
aeb5907d
JB
4644 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4645 == ADA_OBJECT_RENAMING
4646 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4647 {
4648 int j;
5b4ee69b 4649
aeb5907d 4650 for (j = i + 1; j < nsyms; j += 1)
76a01679 4651 syms[j - 1] = syms[j];
4c4b4cd2
PH
4652 nsyms -= 1;
4653 }
4654 else
4655 i += 1;
4656 }
4657
4658 return nsyms;
4659}
4660
339c13b6
JB
4661/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4662 whose name and domain match NAME and DOMAIN respectively.
4663 If no match was found, then extend the search to "enclosing"
4664 routines (in other words, if we're inside a nested function,
4665 search the symbols defined inside the enclosing functions).
4666
4667 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4668
4669static void
4670ada_add_local_symbols (struct obstack *obstackp, const char *name,
4671 struct block *block, domain_enum domain,
4672 int wild_match)
4673{
4674 int block_depth = 0;
4675
4676 while (block != NULL)
4677 {
4678 block_depth += 1;
4679 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4680
4681 /* If we found a non-function match, assume that's the one. */
4682 if (is_nonfunction (defns_collected (obstackp, 0),
4683 num_defns_collected (obstackp)))
4684 return;
4685
4686 block = BLOCK_SUPERBLOCK (block);
4687 }
4688
4689 /* If no luck so far, try to find NAME as a local symbol in some lexically
4690 enclosing subprogram. */
4691 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4692 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4693}
4694
ccefe4c4 4695/* An object of this type is used as the user_data argument when
40658b94 4696 calling the map_matching_symbols method. */
ccefe4c4 4697
40658b94 4698struct match_data
ccefe4c4 4699{
40658b94 4700 struct objfile *objfile;
ccefe4c4 4701 struct obstack *obstackp;
40658b94
PH
4702 struct symbol *arg_sym;
4703 int found_sym;
ccefe4c4
TT
4704};
4705
40658b94
PH
4706/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4707 to a list of symbols. DATA0 is a pointer to a struct match_data *
4708 containing the obstack that collects the symbol list, the file that SYM
4709 must come from, a flag indicating whether a non-argument symbol has
4710 been found in the current block, and the last argument symbol
4711 passed in SYM within the current block (if any). When SYM is null,
4712 marking the end of a block, the argument symbol is added if no
4713 other has been found. */
ccefe4c4 4714
40658b94
PH
4715static int
4716aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4717{
40658b94
PH
4718 struct match_data *data = (struct match_data *) data0;
4719
4720 if (sym == NULL)
4721 {
4722 if (!data->found_sym && data->arg_sym != NULL)
4723 add_defn_to_vec (data->obstackp,
4724 fixup_symbol_section (data->arg_sym, data->objfile),
4725 block);
4726 data->found_sym = 0;
4727 data->arg_sym = NULL;
4728 }
4729 else
4730 {
4731 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4732 return 0;
4733 else if (SYMBOL_IS_ARGUMENT (sym))
4734 data->arg_sym = sym;
4735 else
4736 {
4737 data->found_sym = 1;
4738 add_defn_to_vec (data->obstackp,
4739 fixup_symbol_section (sym, data->objfile),
4740 block);
4741 }
4742 }
4743 return 0;
4744}
4745
4746/* Compare STRING1 to STRING2, with results as for strcmp.
4747 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4748 implies compare_names (STRING1, STRING2) (they may differ as to
4749 what symbols compare equal). */
5b4ee69b 4750
40658b94
PH
4751static int
4752compare_names (const char *string1, const char *string2)
4753{
4754 while (*string1 != '\0' && *string2 != '\0')
4755 {
4756 if (isspace (*string1) || isspace (*string2))
4757 return strcmp_iw_ordered (string1, string2);
4758 if (*string1 != *string2)
4759 break;
4760 string1 += 1;
4761 string2 += 1;
4762 }
4763 switch (*string1)
4764 {
4765 case '(':
4766 return strcmp_iw_ordered (string1, string2);
4767 case '_':
4768 if (*string2 == '\0')
4769 {
052874e8 4770 if (is_name_suffix (string1))
40658b94
PH
4771 return 0;
4772 else
4773 return -1;
4774 }
dbb8534f 4775 /* FALLTHROUGH */
40658b94
PH
4776 default:
4777 if (*string2 == '(')
4778 return strcmp_iw_ordered (string1, string2);
4779 else
4780 return *string1 - *string2;
4781 }
ccefe4c4
TT
4782}
4783
339c13b6
JB
4784/* Add to OBSTACKP all non-local symbols whose name and domain match
4785 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4786 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4787
4788static void
40658b94
PH
4789add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4790 domain_enum domain, int global,
4791 int is_wild_match)
339c13b6
JB
4792{
4793 struct objfile *objfile;
40658b94 4794 struct match_data data;
339c13b6 4795
ccefe4c4 4796 data.obstackp = obstackp;
40658b94 4797 data.arg_sym = NULL;
339c13b6 4798
ccefe4c4 4799 ALL_OBJFILES (objfile)
40658b94
PH
4800 {
4801 data.objfile = objfile;
4802
4803 if (is_wild_match)
4804 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4805 aux_add_nonlocal_symbols, &data,
4806 wild_match, NULL);
4807 else
4808 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4809 aux_add_nonlocal_symbols, &data,
4810 full_match, compare_names);
4811 }
4812
4813 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4814 {
4815 ALL_OBJFILES (objfile)
4816 {
4817 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4818 strcpy (name1, "_ada_");
4819 strcpy (name1 + sizeof ("_ada_") - 1, name);
4820 data.objfile = objfile;
0963b4bd
MS
4821 objfile->sf->qf->map_matching_symbols (name1, domain,
4822 objfile, global,
4823 aux_add_nonlocal_symbols,
4824 &data,
40658b94
PH
4825 full_match, compare_names);
4826 }
4827 }
339c13b6
JB
4828}
4829
4c4b4cd2
PH
4830/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4831 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4832 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4833 indicating the symbols found and the blocks and symbol tables (if
4834 any) in which they were found. This vector are transient---good only to
4835 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4836 symbol match within the nest of blocks whose innermost member is BLOCK0,
4837 is the one match returned (no other matches in that or
4838 enclosing blocks is returned). If there are any matches in or
4839 surrounding BLOCK0, then these alone are returned. Otherwise, the
4840 search extends to global and file-scope (static) symbol tables.
4841 Names prefixed with "standard__" are handled specially: "standard__"
4842 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4843
4844int
4c4b4cd2 4845ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4846 domain_enum namespace,
4847 struct ada_symbol_info **results)
14f9c5c9
AS
4848{
4849 struct symbol *sym;
14f9c5c9 4850 struct block *block;
4c4b4cd2 4851 const char *name;
4c4b4cd2 4852 int wild_match;
14f9c5c9 4853 int cacheIfUnique;
4c4b4cd2 4854 int ndefns;
14f9c5c9 4855
4c4b4cd2
PH
4856 obstack_free (&symbol_list_obstack, NULL);
4857 obstack_init (&symbol_list_obstack);
14f9c5c9 4858
14f9c5c9
AS
4859 cacheIfUnique = 0;
4860
4861 /* Search specified block and its superiors. */
4862
4c4b4cd2
PH
4863 wild_match = (strstr (name0, "__") == NULL);
4864 name = name0;
76a01679
JB
4865 block = (struct block *) block0; /* FIXME: No cast ought to be
4866 needed, but adding const will
4867 have a cascade effect. */
339c13b6
JB
4868
4869 /* Special case: If the user specifies a symbol name inside package
4870 Standard, do a non-wild matching of the symbol name without
4871 the "standard__" prefix. This was primarily introduced in order
4872 to allow the user to specifically access the standard exceptions
4873 using, for instance, Standard.Constraint_Error when Constraint_Error
4874 is ambiguous (due to the user defining its own Constraint_Error
4875 entity inside its program). */
4c4b4cd2
PH
4876 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4877 {
4878 wild_match = 0;
4879 block = NULL;
4880 name = name0 + sizeof ("standard__") - 1;
4881 }
4882
339c13b6 4883 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4884
339c13b6
JB
4885 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4886 wild_match);
4c4b4cd2 4887 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4888 goto done;
d2e4a39e 4889
339c13b6
JB
4890 /* No non-global symbols found. Check our cache to see if we have
4891 already performed this search before. If we have, then return
4892 the same result. */
4893
14f9c5c9 4894 cacheIfUnique = 1;
2570f2b7 4895 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4896 {
4897 if (sym != NULL)
2570f2b7 4898 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4899 goto done;
4900 }
14f9c5c9 4901
339c13b6
JB
4902 /* Search symbols from all global blocks. */
4903
40658b94
PH
4904 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4905 wild_match);
d2e4a39e 4906
4c4b4cd2 4907 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4908 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4909
4c4b4cd2 4910 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4911 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4912 wild_match);
14f9c5c9 4913
4c4b4cd2
PH
4914done:
4915 ndefns = num_defns_collected (&symbol_list_obstack);
4916 *results = defns_collected (&symbol_list_obstack, 1);
4917
4918 ndefns = remove_extra_symbols (*results, ndefns);
4919
d2e4a39e 4920 if (ndefns == 0)
2570f2b7 4921 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4922
4c4b4cd2 4923 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4924 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4925
aeb5907d 4926 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4927
14f9c5c9
AS
4928 return ndefns;
4929}
4930
d2e4a39e 4931struct symbol *
aeb5907d 4932ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4933 domain_enum namespace, struct block **block_found)
14f9c5c9 4934{
4c4b4cd2 4935 struct ada_symbol_info *candidates;
14f9c5c9
AS
4936 int n_candidates;
4937
aeb5907d 4938 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4939
4940 if (n_candidates == 0)
4941 return NULL;
4c4b4cd2 4942
aeb5907d
JB
4943 if (block_found != NULL)
4944 *block_found = candidates[0].block;
4c4b4cd2 4945
21b556f4 4946 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4947}
4948
4949/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4950 scope and in global scopes, or NULL if none. NAME is folded and
4951 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 4952 choosing the first symbol if there are multiple choices.
aeb5907d
JB
4953 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4954 table in which the symbol was found (in both cases, these
4955 assignments occur only if the pointers are non-null). */
4956struct symbol *
4957ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4958 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4959{
4960 if (is_a_field_of_this != NULL)
4961 *is_a_field_of_this = 0;
4962
4963 return
4964 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4965 block0, namespace, NULL);
4c4b4cd2 4966}
14f9c5c9 4967
4c4b4cd2
PH
4968static struct symbol *
4969ada_lookup_symbol_nonlocal (const char *name,
76a01679 4970 const struct block *block,
21b556f4 4971 const domain_enum domain)
4c4b4cd2 4972{
94af9270 4973 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4974}
4975
4976
4c4b4cd2
PH
4977/* True iff STR is a possible encoded suffix of a normal Ada name
4978 that is to be ignored for matching purposes. Suffixes of parallel
4979 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4980 are given by any of the regular expressions:
4c4b4cd2 4981
babe1480
JB
4982 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4983 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4984 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4985 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4986
4987 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4988 match is performed. This sequence is used to differentiate homonyms,
4989 is an optional part of a valid name suffix. */
4c4b4cd2 4990
14f9c5c9 4991static int
d2e4a39e 4992is_name_suffix (const char *str)
14f9c5c9
AS
4993{
4994 int k;
4c4b4cd2
PH
4995 const char *matching;
4996 const int len = strlen (str);
4997
babe1480
JB
4998 /* Skip optional leading __[0-9]+. */
4999
4c4b4cd2
PH
5000 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5001 {
babe1480
JB
5002 str += 3;
5003 while (isdigit (str[0]))
5004 str += 1;
4c4b4cd2 5005 }
babe1480
JB
5006
5007 /* [.$][0-9]+ */
4c4b4cd2 5008
babe1480 5009 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5010 {
babe1480 5011 matching = str + 1;
4c4b4cd2
PH
5012 while (isdigit (matching[0]))
5013 matching += 1;
5014 if (matching[0] == '\0')
5015 return 1;
5016 }
5017
5018 /* ___[0-9]+ */
babe1480 5019
4c4b4cd2
PH
5020 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5021 {
5022 matching = str + 3;
5023 while (isdigit (matching[0]))
5024 matching += 1;
5025 if (matching[0] == '\0')
5026 return 1;
5027 }
5028
529cad9c
PH
5029#if 0
5030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5031 with a N at the end. Unfortunately, the compiler uses the same
5032 convention for other internal types it creates. So treating
529cad9c 5033 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5034 some regressions. For instance, consider the case of an enumerated
5035 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5036 name ends with N.
5037 Having a single character like this as a suffix carrying some
0963b4bd 5038 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5039 to be something like "_N" instead. In the meantime, do not do
5040 the following check. */
5041 /* Protected Object Subprograms */
5042 if (len == 1 && str [0] == 'N')
5043 return 1;
5044#endif
5045
5046 /* _E[0-9]+[bs]$ */
5047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5048 {
5049 matching = str + 3;
5050 while (isdigit (matching[0]))
5051 matching += 1;
5052 if ((matching[0] == 'b' || matching[0] == 's')
5053 && matching [1] == '\0')
5054 return 1;
5055 }
5056
4c4b4cd2
PH
5057 /* ??? We should not modify STR directly, as we are doing below. This
5058 is fine in this case, but may become problematic later if we find
5059 that this alternative did not work, and want to try matching
5060 another one from the begining of STR. Since we modified it, we
5061 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5062 if (str[0] == 'X')
5063 {
5064 str += 1;
d2e4a39e 5065 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5066 {
5067 if (str[0] != 'n' && str[0] != 'b')
5068 return 0;
5069 str += 1;
5070 }
14f9c5c9 5071 }
babe1480 5072
14f9c5c9
AS
5073 if (str[0] == '\000')
5074 return 1;
babe1480 5075
d2e4a39e 5076 if (str[0] == '_')
14f9c5c9
AS
5077 {
5078 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5079 return 0;
d2e4a39e 5080 if (str[2] == '_')
4c4b4cd2 5081 {
61ee279c
PH
5082 if (strcmp (str + 3, "JM") == 0)
5083 return 1;
5084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5085 the LJM suffix in favor of the JM one. But we will
5086 still accept LJM as a valid suffix for a reasonable
5087 amount of time, just to allow ourselves to debug programs
5088 compiled using an older version of GNAT. */
4c4b4cd2
PH
5089 if (strcmp (str + 3, "LJM") == 0)
5090 return 1;
5091 if (str[3] != 'X')
5092 return 0;
1265e4aa
JB
5093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5094 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5095 return 1;
5096 if (str[4] == 'R' && str[5] != 'T')
5097 return 1;
5098 return 0;
5099 }
5100 if (!isdigit (str[2]))
5101 return 0;
5102 for (k = 3; str[k] != '\0'; k += 1)
5103 if (!isdigit (str[k]) && str[k] != '_')
5104 return 0;
14f9c5c9
AS
5105 return 1;
5106 }
4c4b4cd2 5107 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5108 {
4c4b4cd2
PH
5109 for (k = 2; str[k] != '\0'; k += 1)
5110 if (!isdigit (str[k]) && str[k] != '_')
5111 return 0;
14f9c5c9
AS
5112 return 1;
5113 }
5114 return 0;
5115}
d2e4a39e 5116
aeb5907d
JB
5117/* Return non-zero if the string starting at NAME and ending before
5118 NAME_END contains no capital letters. */
529cad9c
PH
5119
5120static int
5121is_valid_name_for_wild_match (const char *name0)
5122{
5123 const char *decoded_name = ada_decode (name0);
5124 int i;
5125
5823c3ef
JB
5126 /* If the decoded name starts with an angle bracket, it means that
5127 NAME0 does not follow the GNAT encoding format. It should then
5128 not be allowed as a possible wild match. */
5129 if (decoded_name[0] == '<')
5130 return 0;
5131
529cad9c
PH
5132 for (i=0; decoded_name[i] != '\0'; i++)
5133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5134 return 0;
5135
5136 return 1;
5137}
5138
73589123
PH
5139/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5140 that could start a simple name. Assumes that *NAMEP points into
5141 the string beginning at NAME0. */
4c4b4cd2 5142
14f9c5c9 5143static int
73589123 5144advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5145{
73589123 5146 const char *name = *namep;
5b4ee69b 5147
5823c3ef 5148 while (1)
14f9c5c9 5149 {
aa27d0b3 5150 int t0, t1;
73589123
PH
5151
5152 t0 = *name;
5153 if (t0 == '_')
5154 {
5155 t1 = name[1];
5156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5157 {
5158 name += 1;
5159 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5160 break;
5161 else
5162 name += 1;
5163 }
aa27d0b3
JB
5164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5165 || name[2] == target0))
73589123
PH
5166 {
5167 name += 2;
5168 break;
5169 }
5170 else
5171 return 0;
5172 }
5173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5174 name += 1;
5175 else
5823c3ef 5176 return 0;
73589123
PH
5177 }
5178
5179 *namep = name;
5180 return 1;
5181}
5182
5183/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5184 informational suffixes of NAME (i.e., for which is_name_suffix is
5185 true). Assumes that PATN is a lower-cased Ada simple name. */
5186
5187static int
5188wild_match (const char *name, const char *patn)
5189{
5190 const char *p, *n;
5191 const char *name0 = name;
5192
5193 while (1)
5194 {
5195 const char *match = name;
5196
5197 if (*name == *patn)
5198 {
5199 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5200 if (*p != *name)
5201 break;
5202 if (*p == '\0' && is_name_suffix (name))
5203 return match != name0 && !is_valid_name_for_wild_match (name0);
5204
5205 if (name[-1] == '_')
5206 name -= 1;
5207 }
5208 if (!advance_wild_match (&name, name0, *patn))
5209 return 1;
96d887e8 5210 }
96d887e8
PH
5211}
5212
40658b94
PH
5213/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5214 informational suffix. */
5215
c4d840bd
PH
5216static int
5217full_match (const char *sym_name, const char *search_name)
5218{
40658b94 5219 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5220}
5221
5222
96d887e8
PH
5223/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5224 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5225 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5226 OBJFILE is the section containing BLOCK.
5227 SYMTAB is recorded with each symbol added. */
5228
5229static void
5230ada_add_block_symbols (struct obstack *obstackp,
76a01679 5231 struct block *block, const char *name,
96d887e8 5232 domain_enum domain, struct objfile *objfile,
2570f2b7 5233 int wild)
96d887e8
PH
5234{
5235 struct dict_iterator iter;
5236 int name_len = strlen (name);
5237 /* A matching argument symbol, if any. */
5238 struct symbol *arg_sym;
5239 /* Set true when we find a matching non-argument symbol. */
5240 int found_sym;
5241 struct symbol *sym;
5242
5243 arg_sym = NULL;
5244 found_sym = 0;
5245 if (wild)
5246 {
c4d840bd
PH
5247 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5248 wild_match, &iter);
5249 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5250 {
5eeb2539
AR
5251 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5252 SYMBOL_DOMAIN (sym), domain)
73589123 5253 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5254 {
2a2d4dc3
AS
5255 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5256 continue;
5257 else if (SYMBOL_IS_ARGUMENT (sym))
5258 arg_sym = sym;
5259 else
5260 {
76a01679
JB
5261 found_sym = 1;
5262 add_defn_to_vec (obstackp,
5263 fixup_symbol_section (sym, objfile),
2570f2b7 5264 block);
76a01679
JB
5265 }
5266 }
5267 }
96d887e8
PH
5268 }
5269 else
5270 {
c4d840bd 5271 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5272 full_match, &iter);
c4d840bd 5273 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5274 {
5eeb2539
AR
5275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5276 SYMBOL_DOMAIN (sym), domain))
76a01679 5277 {
c4d840bd
PH
5278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5279 {
5280 if (SYMBOL_IS_ARGUMENT (sym))
5281 arg_sym = sym;
5282 else
2a2d4dc3 5283 {
c4d840bd
PH
5284 found_sym = 1;
5285 add_defn_to_vec (obstackp,
5286 fixup_symbol_section (sym, objfile),
5287 block);
2a2d4dc3 5288 }
c4d840bd 5289 }
76a01679
JB
5290 }
5291 }
96d887e8
PH
5292 }
5293
5294 if (!found_sym && arg_sym != NULL)
5295 {
76a01679
JB
5296 add_defn_to_vec (obstackp,
5297 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5298 block);
96d887e8
PH
5299 }
5300
5301 if (!wild)
5302 {
5303 arg_sym = NULL;
5304 found_sym = 0;
5305
5306 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5307 {
5eeb2539
AR
5308 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5309 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5310 {
5311 int cmp;
5312
5313 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5314 if (cmp == 0)
5315 {
5316 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5317 if (cmp == 0)
5318 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5319 name_len);
5320 }
5321
5322 if (cmp == 0
5323 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5324 {
2a2d4dc3
AS
5325 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5326 {
5327 if (SYMBOL_IS_ARGUMENT (sym))
5328 arg_sym = sym;
5329 else
5330 {
5331 found_sym = 1;
5332 add_defn_to_vec (obstackp,
5333 fixup_symbol_section (sym, objfile),
5334 block);
5335 }
5336 }
76a01679
JB
5337 }
5338 }
76a01679 5339 }
96d887e8
PH
5340
5341 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5342 They aren't parameters, right? */
5343 if (!found_sym && arg_sym != NULL)
5344 {
5345 add_defn_to_vec (obstackp,
76a01679 5346 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5347 block);
96d887e8
PH
5348 }
5349 }
5350}
5351\f
41d27058
JB
5352
5353 /* Symbol Completion */
5354
5355/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5356 name in a form that's appropriate for the completion. The result
5357 does not need to be deallocated, but is only good until the next call.
5358
5359 TEXT_LEN is equal to the length of TEXT.
5360 Perform a wild match if WILD_MATCH is set.
5361 ENCODED should be set if TEXT represents the start of a symbol name
5362 in its encoded form. */
5363
5364static const char *
5365symbol_completion_match (const char *sym_name,
5366 const char *text, int text_len,
5367 int wild_match, int encoded)
5368{
41d27058
JB
5369 const int verbatim_match = (text[0] == '<');
5370 int match = 0;
5371
5372 if (verbatim_match)
5373 {
5374 /* Strip the leading angle bracket. */
5375 text = text + 1;
5376 text_len--;
5377 }
5378
5379 /* First, test against the fully qualified name of the symbol. */
5380
5381 if (strncmp (sym_name, text, text_len) == 0)
5382 match = 1;
5383
5384 if (match && !encoded)
5385 {
5386 /* One needed check before declaring a positive match is to verify
5387 that iff we are doing a verbatim match, the decoded version
5388 of the symbol name starts with '<'. Otherwise, this symbol name
5389 is not a suitable completion. */
5390 const char *sym_name_copy = sym_name;
5391 int has_angle_bracket;
5392
5393 sym_name = ada_decode (sym_name);
5394 has_angle_bracket = (sym_name[0] == '<');
5395 match = (has_angle_bracket == verbatim_match);
5396 sym_name = sym_name_copy;
5397 }
5398
5399 if (match && !verbatim_match)
5400 {
5401 /* When doing non-verbatim match, another check that needs to
5402 be done is to verify that the potentially matching symbol name
5403 does not include capital letters, because the ada-mode would
5404 not be able to understand these symbol names without the
5405 angle bracket notation. */
5406 const char *tmp;
5407
5408 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5409 if (*tmp != '\0')
5410 match = 0;
5411 }
5412
5413 /* Second: Try wild matching... */
5414
5415 if (!match && wild_match)
5416 {
5417 /* Since we are doing wild matching, this means that TEXT
5418 may represent an unqualified symbol name. We therefore must
5419 also compare TEXT against the unqualified name of the symbol. */
5420 sym_name = ada_unqualified_name (ada_decode (sym_name));
5421
5422 if (strncmp (sym_name, text, text_len) == 0)
5423 match = 1;
5424 }
5425
5426 /* Finally: If we found a mach, prepare the result to return. */
5427
5428 if (!match)
5429 return NULL;
5430
5431 if (verbatim_match)
5432 sym_name = add_angle_brackets (sym_name);
5433
5434 if (!encoded)
5435 sym_name = ada_decode (sym_name);
5436
5437 return sym_name;
5438}
5439
2ba95b9b
JB
5440DEF_VEC_P (char_ptr);
5441
41d27058
JB
5442/* A companion function to ada_make_symbol_completion_list().
5443 Check if SYM_NAME represents a symbol which name would be suitable
5444 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5445 it is appended at the end of the given string vector SV.
5446
5447 ORIG_TEXT is the string original string from the user command
5448 that needs to be completed. WORD is the entire command on which
5449 completion should be performed. These two parameters are used to
5450 determine which part of the symbol name should be added to the
5451 completion vector.
5452 if WILD_MATCH is set, then wild matching is performed.
5453 ENCODED should be set if TEXT represents a symbol name in its
5454 encoded formed (in which case the completion should also be
5455 encoded). */
5456
5457static void
d6565258 5458symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5459 const char *sym_name,
5460 const char *text, int text_len,
5461 const char *orig_text, const char *word,
5462 int wild_match, int encoded)
5463{
5464 const char *match = symbol_completion_match (sym_name, text, text_len,
5465 wild_match, encoded);
5466 char *completion;
5467
5468 if (match == NULL)
5469 return;
5470
5471 /* We found a match, so add the appropriate completion to the given
5472 string vector. */
5473
5474 if (word == orig_text)
5475 {
5476 completion = xmalloc (strlen (match) + 5);
5477 strcpy (completion, match);
5478 }
5479 else if (word > orig_text)
5480 {
5481 /* Return some portion of sym_name. */
5482 completion = xmalloc (strlen (match) + 5);
5483 strcpy (completion, match + (word - orig_text));
5484 }
5485 else
5486 {
5487 /* Return some of ORIG_TEXT plus sym_name. */
5488 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5489 strncpy (completion, word, orig_text - word);
5490 completion[orig_text - word] = '\0';
5491 strcat (completion, match);
5492 }
5493
d6565258 5494 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5495}
5496
ccefe4c4 5497/* An object of this type is passed as the user_data argument to the
7b08b9eb 5498 expand_partial_symbol_names method. */
ccefe4c4
TT
5499struct add_partial_datum
5500{
5501 VEC(char_ptr) **completions;
5502 char *text;
5503 int text_len;
5504 char *text0;
5505 char *word;
5506 int wild_match;
5507 int encoded;
5508};
5509
7b08b9eb
JK
5510/* A callback for expand_partial_symbol_names. */
5511static int
5512ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5513{
5514 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5515
5516 return symbol_completion_match (name, data->text, data->text_len,
5517 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5518}
5519
41d27058
JB
5520/* Return a list of possible symbol names completing TEXT0. The list
5521 is NULL terminated. WORD is the entire command on which completion
5522 is made. */
5523
5524static char **
5525ada_make_symbol_completion_list (char *text0, char *word)
5526{
5527 char *text;
5528 int text_len;
5529 int wild_match;
5530 int encoded;
2ba95b9b 5531 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5532 struct symbol *sym;
5533 struct symtab *s;
41d27058
JB
5534 struct minimal_symbol *msymbol;
5535 struct objfile *objfile;
5536 struct block *b, *surrounding_static_block = 0;
5537 int i;
5538 struct dict_iterator iter;
5539
5540 if (text0[0] == '<')
5541 {
5542 text = xstrdup (text0);
5543 make_cleanup (xfree, text);
5544 text_len = strlen (text);
5545 wild_match = 0;
5546 encoded = 1;
5547 }
5548 else
5549 {
5550 text = xstrdup (ada_encode (text0));
5551 make_cleanup (xfree, text);
5552 text_len = strlen (text);
5553 for (i = 0; i < text_len; i++)
5554 text[i] = tolower (text[i]);
5555
5556 encoded = (strstr (text0, "__") != NULL);
5557 /* If the name contains a ".", then the user is entering a fully
5558 qualified entity name, and the match must not be done in wild
5559 mode. Similarly, if the user wants to complete what looks like
5560 an encoded name, the match must not be done in wild mode. */
5561 wild_match = (strchr (text0, '.') == NULL && !encoded);
5562 }
5563
5564 /* First, look at the partial symtab symbols. */
41d27058 5565 {
ccefe4c4
TT
5566 struct add_partial_datum data;
5567
5568 data.completions = &completions;
5569 data.text = text;
5570 data.text_len = text_len;
5571 data.text0 = text0;
5572 data.word = word;
5573 data.wild_match = wild_match;
5574 data.encoded = encoded;
7b08b9eb 5575 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5576 }
5577
5578 /* At this point scan through the misc symbol vectors and add each
5579 symbol you find to the list. Eventually we want to ignore
5580 anything that isn't a text symbol (everything else will be
5581 handled by the psymtab code above). */
5582
5583 ALL_MSYMBOLS (objfile, msymbol)
5584 {
5585 QUIT;
d6565258 5586 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5587 text, text_len, text0, word, wild_match, encoded);
5588 }
5589
5590 /* Search upwards from currently selected frame (so that we can
5591 complete on local vars. */
5592
5593 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5594 {
5595 if (!BLOCK_SUPERBLOCK (b))
5596 surrounding_static_block = b; /* For elmin of dups */
5597
5598 ALL_BLOCK_SYMBOLS (b, iter, sym)
5599 {
d6565258 5600 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5601 text, text_len, text0, word,
5602 wild_match, encoded);
5603 }
5604 }
5605
5606 /* Go through the symtabs and check the externs and statics for
5607 symbols which match. */
5608
5609 ALL_SYMTABS (objfile, s)
5610 {
5611 QUIT;
5612 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5613 ALL_BLOCK_SYMBOLS (b, iter, sym)
5614 {
d6565258 5615 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5616 text, text_len, text0, word,
5617 wild_match, encoded);
5618 }
5619 }
5620
5621 ALL_SYMTABS (objfile, s)
5622 {
5623 QUIT;
5624 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5625 /* Don't do this block twice. */
5626 if (b == surrounding_static_block)
5627 continue;
5628 ALL_BLOCK_SYMBOLS (b, iter, sym)
5629 {
d6565258 5630 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5631 text, text_len, text0, word,
5632 wild_match, encoded);
5633 }
5634 }
5635
5636 /* Append the closing NULL entry. */
2ba95b9b 5637 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5638
2ba95b9b
JB
5639 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5640 return the copy. It's unfortunate that we have to make a copy
5641 of an array that we're about to destroy, but there is nothing much
5642 we can do about it. Fortunately, it's typically not a very large
5643 array. */
5644 {
5645 const size_t completions_size =
5646 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5647 char **result = xmalloc (completions_size);
2ba95b9b
JB
5648
5649 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5650
5651 VEC_free (char_ptr, completions);
5652 return result;
5653 }
41d27058
JB
5654}
5655
963a6417 5656 /* Field Access */
96d887e8 5657
73fb9985
JB
5658/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5659 for tagged types. */
5660
5661static int
5662ada_is_dispatch_table_ptr_type (struct type *type)
5663{
5664 char *name;
5665
5666 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5667 return 0;
5668
5669 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5670 if (name == NULL)
5671 return 0;
5672
5673 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5674}
5675
963a6417
PH
5676/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5677 to be invisible to users. */
96d887e8 5678
963a6417
PH
5679int
5680ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5681{
963a6417
PH
5682 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5683 return 1;
73fb9985
JB
5684
5685 /* Check the name of that field. */
5686 {
5687 const char *name = TYPE_FIELD_NAME (type, field_num);
5688
5689 /* Anonymous field names should not be printed.
5690 brobecker/2007-02-20: I don't think this can actually happen
5691 but we don't want to print the value of annonymous fields anyway. */
5692 if (name == NULL)
5693 return 1;
5694
5695 /* A field named "_parent" is internally generated by GNAT for
5696 tagged types, and should not be printed either. */
5697 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5698 return 1;
5699 }
5700
5701 /* If this is the dispatch table of a tagged type, then ignore. */
5702 if (ada_is_tagged_type (type, 1)
5703 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5704 return 1;
5705
5706 /* Not a special field, so it should not be ignored. */
5707 return 0;
963a6417 5708}
96d887e8 5709
963a6417 5710/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5711 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5712
963a6417
PH
5713int
5714ada_is_tagged_type (struct type *type, int refok)
5715{
5716 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5717}
96d887e8 5718
963a6417 5719/* True iff TYPE represents the type of X'Tag */
96d887e8 5720
963a6417
PH
5721int
5722ada_is_tag_type (struct type *type)
5723{
5724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5725 return 0;
5726 else
96d887e8 5727 {
963a6417 5728 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5729
963a6417
PH
5730 return (name != NULL
5731 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5732 }
96d887e8
PH
5733}
5734
963a6417 5735/* The type of the tag on VAL. */
76a01679 5736
963a6417
PH
5737struct type *
5738ada_tag_type (struct value *val)
96d887e8 5739{
df407dfe 5740 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5741}
96d887e8 5742
963a6417 5743/* The value of the tag on VAL. */
96d887e8 5744
963a6417
PH
5745struct value *
5746ada_value_tag (struct value *val)
5747{
03ee6b2e 5748 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5749}
5750
963a6417
PH
5751/* The value of the tag on the object of type TYPE whose contents are
5752 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5753 ADDRESS. */
96d887e8 5754
963a6417 5755static struct value *
10a2c479 5756value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5757 const gdb_byte *valaddr,
963a6417 5758 CORE_ADDR address)
96d887e8 5759{
b5385fc0 5760 int tag_byte_offset;
963a6417 5761 struct type *tag_type;
5b4ee69b 5762
963a6417 5763 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5764 NULL, NULL, NULL))
96d887e8 5765 {
fc1a4b47 5766 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5767 ? NULL
5768 : valaddr + tag_byte_offset);
963a6417 5769 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5770
963a6417 5771 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5772 }
963a6417
PH
5773 return NULL;
5774}
96d887e8 5775
963a6417
PH
5776static struct type *
5777type_from_tag (struct value *tag)
5778{
5779 const char *type_name = ada_tag_name (tag);
5b4ee69b 5780
963a6417
PH
5781 if (type_name != NULL)
5782 return ada_find_any_type (ada_encode (type_name));
5783 return NULL;
5784}
96d887e8 5785
963a6417
PH
5786struct tag_args
5787{
5788 struct value *tag;
5789 char *name;
5790};
4c4b4cd2 5791
529cad9c
PH
5792
5793static int ada_tag_name_1 (void *);
5794static int ada_tag_name_2 (struct tag_args *);
5795
4c4b4cd2 5796/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5797 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5798 The value stored in ARGS->name is valid until the next call to
5799 ada_tag_name_1. */
5800
5801static int
5802ada_tag_name_1 (void *args0)
5803{
5804 struct tag_args *args = (struct tag_args *) args0;
5805 static char name[1024];
76a01679 5806 char *p;
4c4b4cd2 5807 struct value *val;
5b4ee69b 5808
4c4b4cd2 5809 args->name = NULL;
03ee6b2e 5810 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5811 if (val == NULL)
5812 return ada_tag_name_2 (args);
03ee6b2e 5813 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5814 if (val == NULL)
5815 return 0;
5816 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5817 for (p = name; *p != '\0'; p += 1)
5818 if (isalpha (*p))
5819 *p = tolower (*p);
5820 args->name = name;
5821 return 0;
5822}
5823
e802dbe0
JB
5824/* Return the "ada__tags__type_specific_data" type. */
5825
5826static struct type *
5827ada_get_tsd_type (struct inferior *inf)
5828{
5829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5830
5831 if (data->tsd_type == 0)
5832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5833 return data->tsd_type;
5834}
5835
529cad9c
PH
5836/* Utility function for ada_tag_name_1 that tries the second
5837 representation for the dispatch table (in which there is no
5838 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 5839 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
5840
5841static int
5842ada_tag_name_2 (struct tag_args *args)
5843{
5844 struct type *info_type;
5845 static char name[1024];
5846 char *p;
5847 struct value *val, *valp;
5848
5849 args->name = NULL;
e802dbe0 5850 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5851 if (info_type == NULL)
5852 return 0;
5853 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5854 valp = value_cast (info_type, args->tag);
5855 if (valp == NULL)
5856 return 0;
2497b498 5857 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5858 if (val == NULL)
5859 return 0;
03ee6b2e 5860 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5861 if (val == NULL)
5862 return 0;
5863 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5864 for (p = name; *p != '\0'; p += 1)
5865 if (isalpha (*p))
5866 *p = tolower (*p);
5867 args->name = name;
5868 return 0;
5869}
5870
5871/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5872 a C string. */
4c4b4cd2
PH
5873
5874const char *
5875ada_tag_name (struct value *tag)
5876{
5877 struct tag_args args;
5b4ee69b 5878
df407dfe 5879 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5880 return NULL;
76a01679 5881 args.tag = tag;
4c4b4cd2
PH
5882 args.name = NULL;
5883 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5884 return args.name;
5885}
5886
5887/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5888
d2e4a39e 5889struct type *
ebf56fd3 5890ada_parent_type (struct type *type)
14f9c5c9
AS
5891{
5892 int i;
5893
61ee279c 5894 type = ada_check_typedef (type);
14f9c5c9
AS
5895
5896 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5897 return NULL;
5898
5899 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5900 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5901 {
5902 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5903
5904 /* If the _parent field is a pointer, then dereference it. */
5905 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5906 parent_type = TYPE_TARGET_TYPE (parent_type);
5907 /* If there is a parallel XVS type, get the actual base type. */
5908 parent_type = ada_get_base_type (parent_type);
5909
5910 return ada_check_typedef (parent_type);
5911 }
14f9c5c9
AS
5912
5913 return NULL;
5914}
5915
4c4b4cd2
PH
5916/* True iff field number FIELD_NUM of structure type TYPE contains the
5917 parent-type (inherited) fields of a derived type. Assumes TYPE is
5918 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5919
5920int
ebf56fd3 5921ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5922{
61ee279c 5923 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5924
4c4b4cd2
PH
5925 return (name != NULL
5926 && (strncmp (name, "PARENT", 6) == 0
5927 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5928}
5929
4c4b4cd2 5930/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5931 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5932 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5933 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5934 structures. */
14f9c5c9
AS
5935
5936int
ebf56fd3 5937ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5938{
d2e4a39e 5939 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5940
d2e4a39e 5941 return (name != NULL
4c4b4cd2
PH
5942 && (strncmp (name, "PARENT", 6) == 0
5943 || strcmp (name, "REP") == 0
5944 || strncmp (name, "_parent", 7) == 0
5945 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5946}
5947
4c4b4cd2
PH
5948/* True iff field number FIELD_NUM of structure or union type TYPE
5949 is a variant wrapper. Assumes TYPE is a structure type with at least
5950 FIELD_NUM+1 fields. */
14f9c5c9
AS
5951
5952int
ebf56fd3 5953ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5954{
d2e4a39e 5955 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5956
14f9c5c9 5957 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5958 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5959 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5960 == TYPE_CODE_UNION)));
14f9c5c9
AS
5961}
5962
5963/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5964 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5965 returns the type of the controlling discriminant for the variant.
5966 May return NULL if the type could not be found. */
14f9c5c9 5967
d2e4a39e 5968struct type *
ebf56fd3 5969ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5970{
d2e4a39e 5971 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5972
7c964f07 5973 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5974}
5975
4c4b4cd2 5976/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5977 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5978 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5979
5980int
ebf56fd3 5981ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5982{
d2e4a39e 5983 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5984
14f9c5c9
AS
5985 return (name != NULL && name[0] == 'O');
5986}
5987
5988/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5989 returns the name of the discriminant controlling the variant.
5990 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5991
d2e4a39e 5992char *
ebf56fd3 5993ada_variant_discrim_name (struct type *type0)
14f9c5c9 5994{
d2e4a39e 5995 static char *result = NULL;
14f9c5c9 5996 static size_t result_len = 0;
d2e4a39e
AS
5997 struct type *type;
5998 const char *name;
5999 const char *discrim_end;
6000 const char *discrim_start;
14f9c5c9
AS
6001
6002 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6003 type = TYPE_TARGET_TYPE (type0);
6004 else
6005 type = type0;
6006
6007 name = ada_type_name (type);
6008
6009 if (name == NULL || name[0] == '\000')
6010 return "";
6011
6012 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6013 discrim_end -= 1)
6014 {
4c4b4cd2
PH
6015 if (strncmp (discrim_end, "___XVN", 6) == 0)
6016 break;
14f9c5c9
AS
6017 }
6018 if (discrim_end == name)
6019 return "";
6020
d2e4a39e 6021 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6022 discrim_start -= 1)
6023 {
d2e4a39e 6024 if (discrim_start == name + 1)
4c4b4cd2 6025 return "";
76a01679 6026 if ((discrim_start > name + 3
4c4b4cd2
PH
6027 && strncmp (discrim_start - 3, "___", 3) == 0)
6028 || discrim_start[-1] == '.')
6029 break;
14f9c5c9
AS
6030 }
6031
6032 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6033 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6034 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6035 return result;
6036}
6037
4c4b4cd2
PH
6038/* Scan STR for a subtype-encoded number, beginning at position K.
6039 Put the position of the character just past the number scanned in
6040 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6041 Return 1 if there was a valid number at the given position, and 0
6042 otherwise. A "subtype-encoded" number consists of the absolute value
6043 in decimal, followed by the letter 'm' to indicate a negative number.
6044 Assumes 0m does not occur. */
14f9c5c9
AS
6045
6046int
d2e4a39e 6047ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6048{
6049 ULONGEST RU;
6050
d2e4a39e 6051 if (!isdigit (str[k]))
14f9c5c9
AS
6052 return 0;
6053
4c4b4cd2 6054 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6055 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6056 LONGEST. */
14f9c5c9
AS
6057 RU = 0;
6058 while (isdigit (str[k]))
6059 {
d2e4a39e 6060 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6061 k += 1;
6062 }
6063
d2e4a39e 6064 if (str[k] == 'm')
14f9c5c9
AS
6065 {
6066 if (R != NULL)
4c4b4cd2 6067 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6068 k += 1;
6069 }
6070 else if (R != NULL)
6071 *R = (LONGEST) RU;
6072
4c4b4cd2 6073 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6074 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6075 number representable as a LONGEST (although either would probably work
6076 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6077 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6078
6079 if (new_k != NULL)
6080 *new_k = k;
6081 return 1;
6082}
6083
4c4b4cd2
PH
6084/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6085 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6086 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6087
d2e4a39e 6088int
ebf56fd3 6089ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6090{
d2e4a39e 6091 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6092 int p;
6093
6094 p = 0;
6095 while (1)
6096 {
d2e4a39e 6097 switch (name[p])
4c4b4cd2
PH
6098 {
6099 case '\0':
6100 return 0;
6101 case 'S':
6102 {
6103 LONGEST W;
5b4ee69b 6104
4c4b4cd2
PH
6105 if (!ada_scan_number (name, p + 1, &W, &p))
6106 return 0;
6107 if (val == W)
6108 return 1;
6109 break;
6110 }
6111 case 'R':
6112 {
6113 LONGEST L, U;
5b4ee69b 6114
4c4b4cd2
PH
6115 if (!ada_scan_number (name, p + 1, &L, &p)
6116 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6117 return 0;
6118 if (val >= L && val <= U)
6119 return 1;
6120 break;
6121 }
6122 case 'O':
6123 return 1;
6124 default:
6125 return 0;
6126 }
6127 }
6128}
6129
0963b4bd 6130/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6131
6132/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6133 ARG_TYPE, extract and return the value of one of its (non-static)
6134 fields. FIELDNO says which field. Differs from value_primitive_field
6135 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6136
4c4b4cd2 6137static struct value *
d2e4a39e 6138ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6139 struct type *arg_type)
14f9c5c9 6140{
14f9c5c9
AS
6141 struct type *type;
6142
61ee279c 6143 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6144 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6145
4c4b4cd2 6146 /* Handle packed fields. */
14f9c5c9
AS
6147
6148 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6149 {
6150 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6151 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6152
0fd88904 6153 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6154 offset + bit_pos / 8,
6155 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6156 }
6157 else
6158 return value_primitive_field (arg1, offset, fieldno, arg_type);
6159}
6160
52ce6436
PH
6161/* Find field with name NAME in object of type TYPE. If found,
6162 set the following for each argument that is non-null:
6163 - *FIELD_TYPE_P to the field's type;
6164 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6165 an object of that type;
6166 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6167 - *BIT_SIZE_P to its size in bits if the field is packed, and
6168 0 otherwise;
6169 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6170 fields up to but not including the desired field, or by the total
6171 number of fields if not found. A NULL value of NAME never
6172 matches; the function just counts visible fields in this case.
6173
0963b4bd 6174 Returns 1 if found, 0 otherwise. */
52ce6436 6175
4c4b4cd2 6176static int
76a01679
JB
6177find_struct_field (char *name, struct type *type, int offset,
6178 struct type **field_type_p,
52ce6436
PH
6179 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6180 int *index_p)
4c4b4cd2
PH
6181{
6182 int i;
6183
61ee279c 6184 type = ada_check_typedef (type);
76a01679 6185
52ce6436
PH
6186 if (field_type_p != NULL)
6187 *field_type_p = NULL;
6188 if (byte_offset_p != NULL)
d5d6fca5 6189 *byte_offset_p = 0;
52ce6436
PH
6190 if (bit_offset_p != NULL)
6191 *bit_offset_p = 0;
6192 if (bit_size_p != NULL)
6193 *bit_size_p = 0;
6194
6195 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6196 {
6197 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6198 int fld_offset = offset + bit_pos / 8;
6199 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6200
4c4b4cd2
PH
6201 if (t_field_name == NULL)
6202 continue;
6203
52ce6436 6204 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6205 {
6206 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6207
52ce6436
PH
6208 if (field_type_p != NULL)
6209 *field_type_p = TYPE_FIELD_TYPE (type, i);
6210 if (byte_offset_p != NULL)
6211 *byte_offset_p = fld_offset;
6212 if (bit_offset_p != NULL)
6213 *bit_offset_p = bit_pos % 8;
6214 if (bit_size_p != NULL)
6215 *bit_size_p = bit_size;
76a01679
JB
6216 return 1;
6217 }
4c4b4cd2
PH
6218 else if (ada_is_wrapper_field (type, i))
6219 {
52ce6436
PH
6220 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6221 field_type_p, byte_offset_p, bit_offset_p,
6222 bit_size_p, index_p))
76a01679
JB
6223 return 1;
6224 }
4c4b4cd2
PH
6225 else if (ada_is_variant_part (type, i))
6226 {
52ce6436
PH
6227 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6228 fixed type?? */
4c4b4cd2 6229 int j;
52ce6436
PH
6230 struct type *field_type
6231 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6232
52ce6436 6233 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6234 {
76a01679
JB
6235 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6236 fld_offset
6237 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6238 field_type_p, byte_offset_p,
52ce6436 6239 bit_offset_p, bit_size_p, index_p))
76a01679 6240 return 1;
4c4b4cd2
PH
6241 }
6242 }
52ce6436
PH
6243 else if (index_p != NULL)
6244 *index_p += 1;
4c4b4cd2
PH
6245 }
6246 return 0;
6247}
6248
0963b4bd 6249/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6250
52ce6436
PH
6251static int
6252num_visible_fields (struct type *type)
6253{
6254 int n;
5b4ee69b 6255
52ce6436
PH
6256 n = 0;
6257 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6258 return n;
6259}
14f9c5c9 6260
4c4b4cd2 6261/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6262 and search in it assuming it has (class) type TYPE.
6263 If found, return value, else return NULL.
6264
4c4b4cd2 6265 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6266
4c4b4cd2 6267static struct value *
d2e4a39e 6268ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6269 struct type *type)
14f9c5c9
AS
6270{
6271 int i;
14f9c5c9 6272
5b4ee69b 6273 type = ada_check_typedef (type);
52ce6436 6274 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6275 {
6276 char *t_field_name = TYPE_FIELD_NAME (type, i);
6277
6278 if (t_field_name == NULL)
4c4b4cd2 6279 continue;
14f9c5c9
AS
6280
6281 else if (field_name_match (t_field_name, name))
4c4b4cd2 6282 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6283
6284 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6285 {
0963b4bd 6286 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6287 ada_search_struct_field (name, arg,
6288 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6289 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6290
4c4b4cd2
PH
6291 if (v != NULL)
6292 return v;
6293 }
14f9c5c9
AS
6294
6295 else if (ada_is_variant_part (type, i))
4c4b4cd2 6296 {
0963b4bd 6297 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6298 int j;
5b4ee69b
MS
6299 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6300 i));
4c4b4cd2
PH
6301 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6302
52ce6436 6303 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6304 {
0963b4bd
MS
6305 struct value *v = ada_search_struct_field /* Force line
6306 break. */
06d5cf63
JB
6307 (name, arg,
6308 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6309 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6310
4c4b4cd2
PH
6311 if (v != NULL)
6312 return v;
6313 }
6314 }
14f9c5c9
AS
6315 }
6316 return NULL;
6317}
d2e4a39e 6318
52ce6436
PH
6319static struct value *ada_index_struct_field_1 (int *, struct value *,
6320 int, struct type *);
6321
6322
6323/* Return field #INDEX in ARG, where the index is that returned by
6324 * find_struct_field through its INDEX_P argument. Adjust the address
6325 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6326 * If found, return value, else return NULL. */
52ce6436
PH
6327
6328static struct value *
6329ada_index_struct_field (int index, struct value *arg, int offset,
6330 struct type *type)
6331{
6332 return ada_index_struct_field_1 (&index, arg, offset, type);
6333}
6334
6335
6336/* Auxiliary function for ada_index_struct_field. Like
6337 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6338 * *INDEX_P. */
52ce6436
PH
6339
6340static struct value *
6341ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6342 struct type *type)
6343{
6344 int i;
6345 type = ada_check_typedef (type);
6346
6347 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6348 {
6349 if (TYPE_FIELD_NAME (type, i) == NULL)
6350 continue;
6351 else if (ada_is_wrapper_field (type, i))
6352 {
0963b4bd 6353 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6354 ada_index_struct_field_1 (index_p, arg,
6355 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6356 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6357
52ce6436
PH
6358 if (v != NULL)
6359 return v;
6360 }
6361
6362 else if (ada_is_variant_part (type, i))
6363 {
6364 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6365 find_struct_field. */
52ce6436
PH
6366 error (_("Cannot assign this kind of variant record"));
6367 }
6368 else if (*index_p == 0)
6369 return ada_value_primitive_field (arg, offset, i, type);
6370 else
6371 *index_p -= 1;
6372 }
6373 return NULL;
6374}
6375
4c4b4cd2
PH
6376/* Given ARG, a value of type (pointer or reference to a)*
6377 structure/union, extract the component named NAME from the ultimate
6378 target structure/union and return it as a value with its
f5938064 6379 appropriate type.
14f9c5c9 6380
4c4b4cd2
PH
6381 The routine searches for NAME among all members of the structure itself
6382 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6383 (e.g., '_parent').
6384
03ee6b2e
PH
6385 If NO_ERR, then simply return NULL in case of error, rather than
6386 calling error. */
14f9c5c9 6387
d2e4a39e 6388struct value *
03ee6b2e 6389ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6390{
4c4b4cd2 6391 struct type *t, *t1;
d2e4a39e 6392 struct value *v;
14f9c5c9 6393
4c4b4cd2 6394 v = NULL;
df407dfe 6395 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6396 if (TYPE_CODE (t) == TYPE_CODE_REF)
6397 {
6398 t1 = TYPE_TARGET_TYPE (t);
6399 if (t1 == NULL)
03ee6b2e 6400 goto BadValue;
61ee279c 6401 t1 = ada_check_typedef (t1);
4c4b4cd2 6402 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6403 {
994b9211 6404 arg = coerce_ref (arg);
76a01679
JB
6405 t = t1;
6406 }
4c4b4cd2 6407 }
14f9c5c9 6408
4c4b4cd2
PH
6409 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6410 {
6411 t1 = TYPE_TARGET_TYPE (t);
6412 if (t1 == NULL)
03ee6b2e 6413 goto BadValue;
61ee279c 6414 t1 = ada_check_typedef (t1);
4c4b4cd2 6415 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6416 {
6417 arg = value_ind (arg);
6418 t = t1;
6419 }
4c4b4cd2 6420 else
76a01679 6421 break;
4c4b4cd2 6422 }
14f9c5c9 6423
4c4b4cd2 6424 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6425 goto BadValue;
14f9c5c9 6426
4c4b4cd2
PH
6427 if (t1 == t)
6428 v = ada_search_struct_field (name, arg, 0, t);
6429 else
6430 {
6431 int bit_offset, bit_size, byte_offset;
6432 struct type *field_type;
6433 CORE_ADDR address;
6434
76a01679
JB
6435 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6436 address = value_as_address (arg);
4c4b4cd2 6437 else
0fd88904 6438 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6439
1ed6ede0 6440 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6441 if (find_struct_field (name, t1, 0,
6442 &field_type, &byte_offset, &bit_offset,
52ce6436 6443 &bit_size, NULL))
76a01679
JB
6444 {
6445 if (bit_size != 0)
6446 {
714e53ab
PH
6447 if (TYPE_CODE (t) == TYPE_CODE_REF)
6448 arg = ada_coerce_ref (arg);
6449 else
6450 arg = ada_value_ind (arg);
76a01679
JB
6451 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6452 bit_offset, bit_size,
6453 field_type);
6454 }
6455 else
f5938064 6456 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6457 }
6458 }
6459
03ee6b2e
PH
6460 if (v != NULL || no_err)
6461 return v;
6462 else
323e0a4a 6463 error (_("There is no member named %s."), name);
14f9c5c9 6464
03ee6b2e
PH
6465 BadValue:
6466 if (no_err)
6467 return NULL;
6468 else
0963b4bd
MS
6469 error (_("Attempt to extract a component of "
6470 "a value that is not a record."));
14f9c5c9
AS
6471}
6472
6473/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6474 If DISPP is non-null, add its byte displacement from the beginning of a
6475 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6476 work for packed fields).
6477
6478 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6479 followed by "___".
14f9c5c9 6480
0963b4bd 6481 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6482 be a (pointer or reference)+ to a struct or union, and the
6483 ultimate target type will be searched.
14f9c5c9
AS
6484
6485 Looks recursively into variant clauses and parent types.
6486
4c4b4cd2
PH
6487 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6488 TYPE is not a type of the right kind. */
14f9c5c9 6489
4c4b4cd2 6490static struct type *
76a01679
JB
6491ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6492 int noerr, int *dispp)
14f9c5c9
AS
6493{
6494 int i;
6495
6496 if (name == NULL)
6497 goto BadName;
6498
76a01679 6499 if (refok && type != NULL)
4c4b4cd2
PH
6500 while (1)
6501 {
61ee279c 6502 type = ada_check_typedef (type);
76a01679
JB
6503 if (TYPE_CODE (type) != TYPE_CODE_PTR
6504 && TYPE_CODE (type) != TYPE_CODE_REF)
6505 break;
6506 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6507 }
14f9c5c9 6508
76a01679 6509 if (type == NULL
1265e4aa
JB
6510 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6511 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6512 {
4c4b4cd2 6513 if (noerr)
76a01679 6514 return NULL;
4c4b4cd2 6515 else
76a01679
JB
6516 {
6517 target_terminal_ours ();
6518 gdb_flush (gdb_stdout);
323e0a4a
AC
6519 if (type == NULL)
6520 error (_("Type (null) is not a structure or union type"));
6521 else
6522 {
6523 /* XXX: type_sprint */
6524 fprintf_unfiltered (gdb_stderr, _("Type "));
6525 type_print (type, "", gdb_stderr, -1);
6526 error (_(" is not a structure or union type"));
6527 }
76a01679 6528 }
14f9c5c9
AS
6529 }
6530
6531 type = to_static_fixed_type (type);
6532
6533 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6534 {
6535 char *t_field_name = TYPE_FIELD_NAME (type, i);
6536 struct type *t;
6537 int disp;
d2e4a39e 6538
14f9c5c9 6539 if (t_field_name == NULL)
4c4b4cd2 6540 continue;
14f9c5c9
AS
6541
6542 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6543 {
6544 if (dispp != NULL)
6545 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6546 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6547 }
14f9c5c9
AS
6548
6549 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6550 {
6551 disp = 0;
6552 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6553 0, 1, &disp);
6554 if (t != NULL)
6555 {
6556 if (dispp != NULL)
6557 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6558 return t;
6559 }
6560 }
14f9c5c9
AS
6561
6562 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6563 {
6564 int j;
5b4ee69b
MS
6565 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6566 i));
4c4b4cd2
PH
6567
6568 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6569 {
b1f33ddd
JB
6570 /* FIXME pnh 2008/01/26: We check for a field that is
6571 NOT wrapped in a struct, since the compiler sometimes
6572 generates these for unchecked variant types. Revisit
0963b4bd 6573 if the compiler changes this practice. */
b1f33ddd 6574 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6575 disp = 0;
b1f33ddd
JB
6576 if (v_field_name != NULL
6577 && field_name_match (v_field_name, name))
6578 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6579 else
0963b4bd
MS
6580 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6581 j),
b1f33ddd
JB
6582 name, 0, 1, &disp);
6583
4c4b4cd2
PH
6584 if (t != NULL)
6585 {
6586 if (dispp != NULL)
6587 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6588 return t;
6589 }
6590 }
6591 }
14f9c5c9
AS
6592
6593 }
6594
6595BadName:
d2e4a39e 6596 if (!noerr)
14f9c5c9
AS
6597 {
6598 target_terminal_ours ();
6599 gdb_flush (gdb_stdout);
323e0a4a
AC
6600 if (name == NULL)
6601 {
6602 /* XXX: type_sprint */
6603 fprintf_unfiltered (gdb_stderr, _("Type "));
6604 type_print (type, "", gdb_stderr, -1);
6605 error (_(" has no component named <null>"));
6606 }
6607 else
6608 {
6609 /* XXX: type_sprint */
6610 fprintf_unfiltered (gdb_stderr, _("Type "));
6611 type_print (type, "", gdb_stderr, -1);
6612 error (_(" has no component named %s"), name);
6613 }
14f9c5c9
AS
6614 }
6615
6616 return NULL;
6617}
6618
b1f33ddd
JB
6619/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6620 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6621 represents an unchecked union (that is, the variant part of a
0963b4bd 6622 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6623
6624static int
6625is_unchecked_variant (struct type *var_type, struct type *outer_type)
6626{
6627 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6628
b1f33ddd
JB
6629 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6630 == NULL);
6631}
6632
6633
14f9c5c9
AS
6634/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6635 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6636 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6637 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6638
d2e4a39e 6639int
ebf56fd3 6640ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6641 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6642{
6643 int others_clause;
6644 int i;
d2e4a39e 6645 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6646 struct value *outer;
6647 struct value *discrim;
14f9c5c9
AS
6648 LONGEST discrim_val;
6649
0c281816
JB
6650 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6651 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6652 if (discrim == NULL)
14f9c5c9 6653 return -1;
0c281816 6654 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6655
6656 others_clause = -1;
6657 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6658 {
6659 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6660 others_clause = i;
14f9c5c9 6661 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6662 return i;
14f9c5c9
AS
6663 }
6664
6665 return others_clause;
6666}
d2e4a39e 6667\f
14f9c5c9
AS
6668
6669
4c4b4cd2 6670 /* Dynamic-Sized Records */
14f9c5c9
AS
6671
6672/* Strategy: The type ostensibly attached to a value with dynamic size
6673 (i.e., a size that is not statically recorded in the debugging
6674 data) does not accurately reflect the size or layout of the value.
6675 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6676 conventional types that are constructed on the fly. */
14f9c5c9
AS
6677
6678/* There is a subtle and tricky problem here. In general, we cannot
6679 determine the size of dynamic records without its data. However,
6680 the 'struct value' data structure, which GDB uses to represent
6681 quantities in the inferior process (the target), requires the size
6682 of the type at the time of its allocation in order to reserve space
6683 for GDB's internal copy of the data. That's why the
6684 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6685 rather than struct value*s.
14f9c5c9
AS
6686
6687 However, GDB's internal history variables ($1, $2, etc.) are
6688 struct value*s containing internal copies of the data that are not, in
6689 general, the same as the data at their corresponding addresses in
6690 the target. Fortunately, the types we give to these values are all
6691 conventional, fixed-size types (as per the strategy described
6692 above), so that we don't usually have to perform the
6693 'to_fixed_xxx_type' conversions to look at their values.
6694 Unfortunately, there is one exception: if one of the internal
6695 history variables is an array whose elements are unconstrained
6696 records, then we will need to create distinct fixed types for each
6697 element selected. */
6698
6699/* The upshot of all of this is that many routines take a (type, host
6700 address, target address) triple as arguments to represent a value.
6701 The host address, if non-null, is supposed to contain an internal
6702 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6703 target at the target address. */
14f9c5c9
AS
6704
6705/* Assuming that VAL0 represents a pointer value, the result of
6706 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6707 dynamic-sized types. */
14f9c5c9 6708
d2e4a39e
AS
6709struct value *
6710ada_value_ind (struct value *val0)
14f9c5c9 6711{
d2e4a39e 6712 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6713
4c4b4cd2 6714 return ada_to_fixed_value (val);
14f9c5c9
AS
6715}
6716
6717/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6718 qualifiers on VAL0. */
6719
d2e4a39e
AS
6720static struct value *
6721ada_coerce_ref (struct value *val0)
6722{
df407dfe 6723 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6724 {
6725 struct value *val = val0;
5b4ee69b 6726
994b9211 6727 val = coerce_ref (val);
d2e4a39e 6728 val = unwrap_value (val);
4c4b4cd2 6729 return ada_to_fixed_value (val);
d2e4a39e
AS
6730 }
6731 else
14f9c5c9
AS
6732 return val0;
6733}
6734
6735/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6736 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6737
6738static unsigned int
ebf56fd3 6739align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6740{
6741 return (off + alignment - 1) & ~(alignment - 1);
6742}
6743
4c4b4cd2 6744/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6745
6746static unsigned int
ebf56fd3 6747field_alignment (struct type *type, int f)
14f9c5c9 6748{
d2e4a39e 6749 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6750 int len;
14f9c5c9
AS
6751 int align_offset;
6752
64a1bf19
JB
6753 /* The field name should never be null, unless the debugging information
6754 is somehow malformed. In this case, we assume the field does not
6755 require any alignment. */
6756 if (name == NULL)
6757 return 1;
6758
6759 len = strlen (name);
6760
4c4b4cd2
PH
6761 if (!isdigit (name[len - 1]))
6762 return 1;
14f9c5c9 6763
d2e4a39e 6764 if (isdigit (name[len - 2]))
14f9c5c9
AS
6765 align_offset = len - 2;
6766 else
6767 align_offset = len - 1;
6768
4c4b4cd2 6769 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6770 return TARGET_CHAR_BIT;
6771
4c4b4cd2
PH
6772 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6773}
6774
6775/* Find a symbol named NAME. Ignores ambiguity. */
6776
6777struct symbol *
6778ada_find_any_symbol (const char *name)
6779{
6780 struct symbol *sym;
6781
6782 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6783 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6784 return sym;
6785
6786 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6787 return sym;
14f9c5c9
AS
6788}
6789
dddfab26
UW
6790/* Find a type named NAME. Ignores ambiguity. This routine will look
6791 solely for types defined by debug info, it will not search the GDB
6792 primitive types. */
4c4b4cd2 6793
d2e4a39e 6794struct type *
ebf56fd3 6795ada_find_any_type (const char *name)
14f9c5c9 6796{
4c4b4cd2 6797 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6798
14f9c5c9 6799 if (sym != NULL)
dddfab26 6800 return SYMBOL_TYPE (sym);
14f9c5c9 6801
dddfab26 6802 return NULL;
14f9c5c9
AS
6803}
6804
aeb5907d
JB
6805/* Given NAME and an associated BLOCK, search all symbols for
6806 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6807 associated to NAME. Return this symbol if found, return
6808 NULL otherwise. */
6809
6810struct symbol *
6811ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6812{
6813 struct symbol *sym;
6814
6815 sym = find_old_style_renaming_symbol (name, block);
6816
6817 if (sym != NULL)
6818 return sym;
6819
0963b4bd 6820 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6821 sym = ada_find_any_symbol (name);
6822 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6823 return sym;
6824 else
6825 return NULL;
6826}
6827
6828static struct symbol *
6829find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6830{
7f0df278 6831 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6832 char *rename;
6833
6834 if (function_sym != NULL)
6835 {
6836 /* If the symbol is defined inside a function, NAME is not fully
6837 qualified. This means we need to prepend the function name
6838 as well as adding the ``___XR'' suffix to build the name of
6839 the associated renaming symbol. */
6840 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6841 /* Function names sometimes contain suffixes used
6842 for instance to qualify nested subprograms. When building
6843 the XR type name, we need to make sure that this suffix is
6844 not included. So do not include any suffix in the function
6845 name length below. */
69fadcdf 6846 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6847 const int rename_len = function_name_len + 2 /* "__" */
6848 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6849
529cad9c 6850 /* Strip the suffix if necessary. */
69fadcdf
JB
6851 ada_remove_trailing_digits (function_name, &function_name_len);
6852 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6853 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6854
4c4b4cd2
PH
6855 /* Library-level functions are a special case, as GNAT adds
6856 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6857 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6858 have this prefix, so we need to skip this prefix if present. */
6859 if (function_name_len > 5 /* "_ada_" */
6860 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6861 {
6862 function_name += 5;
6863 function_name_len -= 5;
6864 }
4c4b4cd2
PH
6865
6866 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6867 strncpy (rename, function_name, function_name_len);
6868 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6869 "__%s___XR", name);
4c4b4cd2
PH
6870 }
6871 else
6872 {
6873 const int rename_len = strlen (name) + 6;
5b4ee69b 6874
4c4b4cd2 6875 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6876 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6877 }
6878
6879 return ada_find_any_symbol (rename);
6880}
6881
14f9c5c9 6882/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6883 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6884 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6885 otherwise return 0. */
6886
14f9c5c9 6887int
d2e4a39e 6888ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6889{
6890 if (type1 == NULL)
6891 return 1;
6892 else if (type0 == NULL)
6893 return 0;
6894 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6895 return 1;
6896 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6897 return 0;
4c4b4cd2
PH
6898 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6899 return 1;
ad82864c 6900 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6901 return 1;
4c4b4cd2
PH
6902 else if (ada_is_array_descriptor_type (type0)
6903 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6904 return 1;
aeb5907d
JB
6905 else
6906 {
6907 const char *type0_name = type_name_no_tag (type0);
6908 const char *type1_name = type_name_no_tag (type1);
6909
6910 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6911 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6912 return 1;
6913 }
14f9c5c9
AS
6914 return 0;
6915}
6916
6917/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6918 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6919
d2e4a39e
AS
6920char *
6921ada_type_name (struct type *type)
14f9c5c9 6922{
d2e4a39e 6923 if (type == NULL)
14f9c5c9
AS
6924 return NULL;
6925 else if (TYPE_NAME (type) != NULL)
6926 return TYPE_NAME (type);
6927 else
6928 return TYPE_TAG_NAME (type);
6929}
6930
b4ba55a1
JB
6931/* Search the list of "descriptive" types associated to TYPE for a type
6932 whose name is NAME. */
6933
6934static struct type *
6935find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6936{
6937 struct type *result;
6938
6939 /* If there no descriptive-type info, then there is no parallel type
6940 to be found. */
6941 if (!HAVE_GNAT_AUX_INFO (type))
6942 return NULL;
6943
6944 result = TYPE_DESCRIPTIVE_TYPE (type);
6945 while (result != NULL)
6946 {
6947 char *result_name = ada_type_name (result);
6948
6949 if (result_name == NULL)
6950 {
6951 warning (_("unexpected null name on descriptive type"));
6952 return NULL;
6953 }
6954
6955 /* If the names match, stop. */
6956 if (strcmp (result_name, name) == 0)
6957 break;
6958
6959 /* Otherwise, look at the next item on the list, if any. */
6960 if (HAVE_GNAT_AUX_INFO (result))
6961 result = TYPE_DESCRIPTIVE_TYPE (result);
6962 else
6963 result = NULL;
6964 }
6965
6966 /* If we didn't find a match, see whether this is a packed array. With
6967 older compilers, the descriptive type information is either absent or
6968 irrelevant when it comes to packed arrays so the above lookup fails.
6969 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6970 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6971 return ada_find_any_type (name);
6972
6973 return result;
6974}
6975
6976/* Find a parallel type to TYPE with the specified NAME, using the
6977 descriptive type taken from the debugging information, if available,
6978 and otherwise using the (slower) name-based method. */
6979
6980static struct type *
6981ada_find_parallel_type_with_name (struct type *type, const char *name)
6982{
6983 struct type *result = NULL;
6984
6985 if (HAVE_GNAT_AUX_INFO (type))
6986 result = find_parallel_type_by_descriptive_type (type, name);
6987 else
6988 result = ada_find_any_type (name);
6989
6990 return result;
6991}
6992
6993/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6994 SUFFIX to the name of TYPE. */
14f9c5c9 6995
d2e4a39e 6996struct type *
ebf56fd3 6997ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6998{
b4ba55a1 6999 char *name, *typename = ada_type_name (type);
14f9c5c9 7000 int len;
d2e4a39e 7001
14f9c5c9
AS
7002 if (typename == NULL)
7003 return NULL;
7004
7005 len = strlen (typename);
7006
b4ba55a1 7007 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7008
7009 strcpy (name, typename);
7010 strcpy (name + len, suffix);
7011
b4ba55a1 7012 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7013}
7014
14f9c5c9 7015/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7016 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7017
d2e4a39e
AS
7018static struct type *
7019dynamic_template_type (struct type *type)
14f9c5c9 7020{
61ee279c 7021 type = ada_check_typedef (type);
14f9c5c9
AS
7022
7023 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7024 || ada_type_name (type) == NULL)
14f9c5c9 7025 return NULL;
d2e4a39e 7026 else
14f9c5c9
AS
7027 {
7028 int len = strlen (ada_type_name (type));
5b4ee69b 7029
4c4b4cd2
PH
7030 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7031 return type;
14f9c5c9 7032 else
4c4b4cd2 7033 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7034 }
7035}
7036
7037/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7038 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7039
d2e4a39e
AS
7040static int
7041is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7042{
7043 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7044
d2e4a39e 7045 return name != NULL
14f9c5c9
AS
7046 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7047 && strstr (name, "___XVL") != NULL;
7048}
7049
4c4b4cd2
PH
7050/* The index of the variant field of TYPE, or -1 if TYPE does not
7051 represent a variant record type. */
14f9c5c9 7052
d2e4a39e 7053static int
4c4b4cd2 7054variant_field_index (struct type *type)
14f9c5c9
AS
7055{
7056 int f;
7057
4c4b4cd2
PH
7058 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7059 return -1;
7060
7061 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7062 {
7063 if (ada_is_variant_part (type, f))
7064 return f;
7065 }
7066 return -1;
14f9c5c9
AS
7067}
7068
4c4b4cd2
PH
7069/* A record type with no fields. */
7070
d2e4a39e 7071static struct type *
e9bb382b 7072empty_record (struct type *template)
14f9c5c9 7073{
e9bb382b 7074 struct type *type = alloc_type_copy (template);
5b4ee69b 7075
14f9c5c9
AS
7076 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7077 TYPE_NFIELDS (type) = 0;
7078 TYPE_FIELDS (type) = NULL;
b1f33ddd 7079 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7080 TYPE_NAME (type) = "<empty>";
7081 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7082 TYPE_LENGTH (type) = 0;
7083 return type;
7084}
7085
7086/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7087 the value of type TYPE at VALADDR or ADDRESS (see comments at
7088 the beginning of this section) VAL according to GNAT conventions.
7089 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7090 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7091 an outer-level type (i.e., as opposed to a branch of a variant.) A
7092 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7093 of the variant.
14f9c5c9 7094
4c4b4cd2
PH
7095 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7096 length are not statically known are discarded. As a consequence,
7097 VALADDR, ADDRESS and DVAL0 are ignored.
7098
7099 NOTE: Limitations: For now, we assume that dynamic fields and
7100 variants occupy whole numbers of bytes. However, they need not be
7101 byte-aligned. */
7102
7103struct type *
10a2c479 7104ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7105 const gdb_byte *valaddr,
4c4b4cd2
PH
7106 CORE_ADDR address, struct value *dval0,
7107 int keep_dynamic_fields)
14f9c5c9 7108{
d2e4a39e
AS
7109 struct value *mark = value_mark ();
7110 struct value *dval;
7111 struct type *rtype;
14f9c5c9 7112 int nfields, bit_len;
4c4b4cd2 7113 int variant_field;
14f9c5c9 7114 long off;
d94e4f4f 7115 int fld_bit_len;
14f9c5c9
AS
7116 int f;
7117
4c4b4cd2
PH
7118 /* Compute the number of fields in this record type that are going
7119 to be processed: unless keep_dynamic_fields, this includes only
7120 fields whose position and length are static will be processed. */
7121 if (keep_dynamic_fields)
7122 nfields = TYPE_NFIELDS (type);
7123 else
7124 {
7125 nfields = 0;
76a01679 7126 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7127 && !ada_is_variant_part (type, nfields)
7128 && !is_dynamic_field (type, nfields))
7129 nfields++;
7130 }
7131
e9bb382b 7132 rtype = alloc_type_copy (type);
14f9c5c9
AS
7133 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7134 INIT_CPLUS_SPECIFIC (rtype);
7135 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7136 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7137 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7138 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7139 TYPE_NAME (rtype) = ada_type_name (type);
7140 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7141 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7142
d2e4a39e
AS
7143 off = 0;
7144 bit_len = 0;
4c4b4cd2
PH
7145 variant_field = -1;
7146
14f9c5c9
AS
7147 for (f = 0; f < nfields; f += 1)
7148 {
6c038f32
PH
7149 off = align_value (off, field_alignment (type, f))
7150 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7151 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7152 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7153
d2e4a39e 7154 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7155 {
7156 variant_field = f;
d94e4f4f 7157 fld_bit_len = 0;
4c4b4cd2 7158 }
14f9c5c9 7159 else if (is_dynamic_field (type, f))
4c4b4cd2 7160 {
284614f0
JB
7161 const gdb_byte *field_valaddr = valaddr;
7162 CORE_ADDR field_address = address;
7163 struct type *field_type =
7164 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7165
4c4b4cd2 7166 if (dval0 == NULL)
b5304971
JG
7167 {
7168 /* rtype's length is computed based on the run-time
7169 value of discriminants. If the discriminants are not
7170 initialized, the type size may be completely bogus and
0963b4bd 7171 GDB may fail to allocate a value for it. So check the
b5304971
JG
7172 size first before creating the value. */
7173 check_size (rtype);
7174 dval = value_from_contents_and_address (rtype, valaddr, address);
7175 }
4c4b4cd2
PH
7176 else
7177 dval = dval0;
7178
284614f0
JB
7179 /* If the type referenced by this field is an aligner type, we need
7180 to unwrap that aligner type, because its size might not be set.
7181 Keeping the aligner type would cause us to compute the wrong
7182 size for this field, impacting the offset of the all the fields
7183 that follow this one. */
7184 if (ada_is_aligner_type (field_type))
7185 {
7186 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7187
7188 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7189 field_address = cond_offset_target (field_address, field_offset);
7190 field_type = ada_aligned_type (field_type);
7191 }
7192
7193 field_valaddr = cond_offset_host (field_valaddr,
7194 off / TARGET_CHAR_BIT);
7195 field_address = cond_offset_target (field_address,
7196 off / TARGET_CHAR_BIT);
7197
7198 /* Get the fixed type of the field. Note that, in this case,
7199 we do not want to get the real type out of the tag: if
7200 the current field is the parent part of a tagged record,
7201 we will get the tag of the object. Clearly wrong: the real
7202 type of the parent is not the real type of the child. We
7203 would end up in an infinite loop. */
7204 field_type = ada_get_base_type (field_type);
7205 field_type = ada_to_fixed_type (field_type, field_valaddr,
7206 field_address, dval, 0);
27f2a97b
JB
7207 /* If the field size is already larger than the maximum
7208 object size, then the record itself will necessarily
7209 be larger than the maximum object size. We need to make
7210 this check now, because the size might be so ridiculously
7211 large (due to an uninitialized variable in the inferior)
7212 that it would cause an overflow when adding it to the
7213 record size. */
7214 check_size (field_type);
284614f0
JB
7215
7216 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7217 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7218 /* The multiplication can potentially overflow. But because
7219 the field length has been size-checked just above, and
7220 assuming that the maximum size is a reasonable value,
7221 an overflow should not happen in practice. So rather than
7222 adding overflow recovery code to this already complex code,
7223 we just assume that it's not going to happen. */
d94e4f4f 7224 fld_bit_len =
4c4b4cd2
PH
7225 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7226 }
14f9c5c9 7227 else
4c4b4cd2 7228 {
9f0dec2d
JB
7229 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7230
720d1a40
JB
7231 /* If our field is a typedef type (most likely a typedef of
7232 a fat pointer, encoding an array access), then we need to
7233 look at its target type to determine its characteristics.
7234 In particular, we would miscompute the field size if we took
7235 the size of the typedef (zero), instead of the size of
7236 the target type. */
7237 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7238 field_type = ada_typedef_target_type (field_type);
7239
9f0dec2d 7240 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7241 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7242 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7243 fld_bit_len =
4c4b4cd2
PH
7244 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7245 else
d94e4f4f 7246 fld_bit_len =
9f0dec2d 7247 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7248 }
14f9c5c9 7249 if (off + fld_bit_len > bit_len)
4c4b4cd2 7250 bit_len = off + fld_bit_len;
d94e4f4f 7251 off += fld_bit_len;
4c4b4cd2
PH
7252 TYPE_LENGTH (rtype) =
7253 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7254 }
4c4b4cd2
PH
7255
7256 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7257 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7258 the record. This can happen in the presence of representation
7259 clauses. */
7260 if (variant_field >= 0)
7261 {
7262 struct type *branch_type;
7263
7264 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7265
7266 if (dval0 == NULL)
7267 dval = value_from_contents_and_address (rtype, valaddr, address);
7268 else
7269 dval = dval0;
7270
7271 branch_type =
7272 to_fixed_variant_branch_type
7273 (TYPE_FIELD_TYPE (type, variant_field),
7274 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7275 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7276 if (branch_type == NULL)
7277 {
7278 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7279 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7280 TYPE_NFIELDS (rtype) -= 1;
7281 }
7282 else
7283 {
7284 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7285 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7286 fld_bit_len =
7287 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7288 TARGET_CHAR_BIT;
7289 if (off + fld_bit_len > bit_len)
7290 bit_len = off + fld_bit_len;
7291 TYPE_LENGTH (rtype) =
7292 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7293 }
7294 }
7295
714e53ab
PH
7296 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7297 should contain the alignment of that record, which should be a strictly
7298 positive value. If null or negative, then something is wrong, most
7299 probably in the debug info. In that case, we don't round up the size
0963b4bd 7300 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7301 the current RTYPE length might be good enough for our purposes. */
7302 if (TYPE_LENGTH (type) <= 0)
7303 {
323e0a4a
AC
7304 if (TYPE_NAME (rtype))
7305 warning (_("Invalid type size for `%s' detected: %d."),
7306 TYPE_NAME (rtype), TYPE_LENGTH (type));
7307 else
7308 warning (_("Invalid type size for <unnamed> detected: %d."),
7309 TYPE_LENGTH (type));
714e53ab
PH
7310 }
7311 else
7312 {
7313 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7314 TYPE_LENGTH (type));
7315 }
14f9c5c9
AS
7316
7317 value_free_to_mark (mark);
d2e4a39e 7318 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7319 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7320 return rtype;
7321}
7322
4c4b4cd2
PH
7323/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7324 of 1. */
14f9c5c9 7325
d2e4a39e 7326static struct type *
fc1a4b47 7327template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7328 CORE_ADDR address, struct value *dval0)
7329{
7330 return ada_template_to_fixed_record_type_1 (type, valaddr,
7331 address, dval0, 1);
7332}
7333
7334/* An ordinary record type in which ___XVL-convention fields and
7335 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7336 static approximations, containing all possible fields. Uses
7337 no runtime values. Useless for use in values, but that's OK,
7338 since the results are used only for type determinations. Works on both
7339 structs and unions. Representation note: to save space, we memorize
7340 the result of this function in the TYPE_TARGET_TYPE of the
7341 template type. */
7342
7343static struct type *
7344template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7345{
7346 struct type *type;
7347 int nfields;
7348 int f;
7349
4c4b4cd2
PH
7350 if (TYPE_TARGET_TYPE (type0) != NULL)
7351 return TYPE_TARGET_TYPE (type0);
7352
7353 nfields = TYPE_NFIELDS (type0);
7354 type = type0;
14f9c5c9
AS
7355
7356 for (f = 0; f < nfields; f += 1)
7357 {
61ee279c 7358 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7359 struct type *new_type;
14f9c5c9 7360
4c4b4cd2
PH
7361 if (is_dynamic_field (type0, f))
7362 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7363 else
f192137b 7364 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7365 if (type == type0 && new_type != field_type)
7366 {
e9bb382b 7367 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7368 TYPE_CODE (type) = TYPE_CODE (type0);
7369 INIT_CPLUS_SPECIFIC (type);
7370 TYPE_NFIELDS (type) = nfields;
7371 TYPE_FIELDS (type) = (struct field *)
7372 TYPE_ALLOC (type, nfields * sizeof (struct field));
7373 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7374 sizeof (struct field) * nfields);
7375 TYPE_NAME (type) = ada_type_name (type0);
7376 TYPE_TAG_NAME (type) = NULL;
876cecd0 7377 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7378 TYPE_LENGTH (type) = 0;
7379 }
7380 TYPE_FIELD_TYPE (type, f) = new_type;
7381 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7382 }
14f9c5c9
AS
7383 return type;
7384}
7385
4c4b4cd2 7386/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7387 whose address in memory is ADDRESS, returns a revision of TYPE,
7388 which should be a non-dynamic-sized record, in which the variant
7389 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7390 for discriminant values in DVAL0, which can be NULL if the record
7391 contains the necessary discriminant values. */
7392
d2e4a39e 7393static struct type *
fc1a4b47 7394to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7395 CORE_ADDR address, struct value *dval0)
14f9c5c9 7396{
d2e4a39e 7397 struct value *mark = value_mark ();
4c4b4cd2 7398 struct value *dval;
d2e4a39e 7399 struct type *rtype;
14f9c5c9
AS
7400 struct type *branch_type;
7401 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7402 int variant_field = variant_field_index (type);
14f9c5c9 7403
4c4b4cd2 7404 if (variant_field == -1)
14f9c5c9
AS
7405 return type;
7406
4c4b4cd2
PH
7407 if (dval0 == NULL)
7408 dval = value_from_contents_and_address (type, valaddr, address);
7409 else
7410 dval = dval0;
7411
e9bb382b 7412 rtype = alloc_type_copy (type);
14f9c5c9 7413 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7414 INIT_CPLUS_SPECIFIC (rtype);
7415 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7416 TYPE_FIELDS (rtype) =
7417 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7418 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7419 sizeof (struct field) * nfields);
14f9c5c9
AS
7420 TYPE_NAME (rtype) = ada_type_name (type);
7421 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7422 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7423 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7424
4c4b4cd2
PH
7425 branch_type = to_fixed_variant_branch_type
7426 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7427 cond_offset_host (valaddr,
4c4b4cd2
PH
7428 TYPE_FIELD_BITPOS (type, variant_field)
7429 / TARGET_CHAR_BIT),
d2e4a39e 7430 cond_offset_target (address,
4c4b4cd2
PH
7431 TYPE_FIELD_BITPOS (type, variant_field)
7432 / TARGET_CHAR_BIT), dval);
d2e4a39e 7433 if (branch_type == NULL)
14f9c5c9 7434 {
4c4b4cd2 7435 int f;
5b4ee69b 7436
4c4b4cd2
PH
7437 for (f = variant_field + 1; f < nfields; f += 1)
7438 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7439 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7440 }
7441 else
7442 {
4c4b4cd2
PH
7443 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7444 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7445 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7446 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7447 }
4c4b4cd2 7448 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7449
4c4b4cd2 7450 value_free_to_mark (mark);
14f9c5c9
AS
7451 return rtype;
7452}
7453
7454/* An ordinary record type (with fixed-length fields) that describes
7455 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7456 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7457 should be in DVAL, a record value; it may be NULL if the object
7458 at ADDR itself contains any necessary discriminant values.
7459 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7460 values from the record are needed. Except in the case that DVAL,
7461 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7462 unchecked) is replaced by a particular branch of the variant.
7463
7464 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7465 is questionable and may be removed. It can arise during the
7466 processing of an unconstrained-array-of-record type where all the
7467 variant branches have exactly the same size. This is because in
7468 such cases, the compiler does not bother to use the XVS convention
7469 when encoding the record. I am currently dubious of this
7470 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7471
d2e4a39e 7472static struct type *
fc1a4b47 7473to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7474 CORE_ADDR address, struct value *dval)
14f9c5c9 7475{
d2e4a39e 7476 struct type *templ_type;
14f9c5c9 7477
876cecd0 7478 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7479 return type0;
7480
d2e4a39e 7481 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7482
7483 if (templ_type != NULL)
7484 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7485 else if (variant_field_index (type0) >= 0)
7486 {
7487 if (dval == NULL && valaddr == NULL && address == 0)
7488 return type0;
7489 return to_record_with_fixed_variant_part (type0, valaddr, address,
7490 dval);
7491 }
14f9c5c9
AS
7492 else
7493 {
876cecd0 7494 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7495 return type0;
7496 }
7497
7498}
7499
7500/* An ordinary record type (with fixed-length fields) that describes
7501 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7502 union type. Any necessary discriminants' values should be in DVAL,
7503 a record value. That is, this routine selects the appropriate
7504 branch of the union at ADDR according to the discriminant value
b1f33ddd 7505 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7506 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7507
d2e4a39e 7508static struct type *
fc1a4b47 7509to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7510 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7511{
7512 int which;
d2e4a39e
AS
7513 struct type *templ_type;
7514 struct type *var_type;
14f9c5c9
AS
7515
7516 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7517 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7518 else
14f9c5c9
AS
7519 var_type = var_type0;
7520
7521 templ_type = ada_find_parallel_type (var_type, "___XVU");
7522
7523 if (templ_type != NULL)
7524 var_type = templ_type;
7525
b1f33ddd
JB
7526 if (is_unchecked_variant (var_type, value_type (dval)))
7527 return var_type0;
d2e4a39e
AS
7528 which =
7529 ada_which_variant_applies (var_type,
0fd88904 7530 value_type (dval), value_contents (dval));
14f9c5c9
AS
7531
7532 if (which < 0)
e9bb382b 7533 return empty_record (var_type);
14f9c5c9 7534 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7535 return to_fixed_record_type
d2e4a39e
AS
7536 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7537 valaddr, address, dval);
4c4b4cd2 7538 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7539 return
7540 to_fixed_record_type
7541 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7542 else
7543 return TYPE_FIELD_TYPE (var_type, which);
7544}
7545
7546/* Assuming that TYPE0 is an array type describing the type of a value
7547 at ADDR, and that DVAL describes a record containing any
7548 discriminants used in TYPE0, returns a type for the value that
7549 contains no dynamic components (that is, no components whose sizes
7550 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7551 true, gives an error message if the resulting type's size is over
4c4b4cd2 7552 varsize_limit. */
14f9c5c9 7553
d2e4a39e
AS
7554static struct type *
7555to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7556 int ignore_too_big)
14f9c5c9 7557{
d2e4a39e
AS
7558 struct type *index_type_desc;
7559 struct type *result;
ad82864c 7560 int constrained_packed_array_p;
14f9c5c9 7561
b0dd7688 7562 type0 = ada_check_typedef (type0);
284614f0 7563 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7564 return type0;
14f9c5c9 7565
ad82864c
JB
7566 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7567 if (constrained_packed_array_p)
7568 type0 = decode_constrained_packed_array_type (type0);
284614f0 7569
14f9c5c9 7570 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7571 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7572 if (index_type_desc == NULL)
7573 {
61ee279c 7574 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7575
14f9c5c9 7576 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7577 depend on the contents of the array in properly constructed
7578 debugging data. */
529cad9c
PH
7579 /* Create a fixed version of the array element type.
7580 We're not providing the address of an element here,
e1d5a0d2 7581 and thus the actual object value cannot be inspected to do
529cad9c
PH
7582 the conversion. This should not be a problem, since arrays of
7583 unconstrained objects are not allowed. In particular, all
7584 the elements of an array of a tagged type should all be of
7585 the same type specified in the debugging info. No need to
7586 consult the object tag. */
1ed6ede0 7587 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7588
284614f0
JB
7589 /* Make sure we always create a new array type when dealing with
7590 packed array types, since we're going to fix-up the array
7591 type length and element bitsize a little further down. */
ad82864c 7592 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7593 result = type0;
14f9c5c9 7594 else
e9bb382b 7595 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7596 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7597 }
7598 else
7599 {
7600 int i;
7601 struct type *elt_type0;
7602
7603 elt_type0 = type0;
7604 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7605 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7606
7607 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7608 depend on the contents of the array in properly constructed
7609 debugging data. */
529cad9c
PH
7610 /* Create a fixed version of the array element type.
7611 We're not providing the address of an element here,
e1d5a0d2 7612 and thus the actual object value cannot be inspected to do
529cad9c
PH
7613 the conversion. This should not be a problem, since arrays of
7614 unconstrained objects are not allowed. In particular, all
7615 the elements of an array of a tagged type should all be of
7616 the same type specified in the debugging info. No need to
7617 consult the object tag. */
1ed6ede0
JB
7618 result =
7619 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7620
7621 elt_type0 = type0;
14f9c5c9 7622 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7623 {
7624 struct type *range_type =
28c85d6c 7625 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7626
e9bb382b 7627 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7628 result, range_type);
1ce677a4 7629 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7630 }
d2e4a39e 7631 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7632 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7633 }
7634
ad82864c 7635 if (constrained_packed_array_p)
284614f0
JB
7636 {
7637 /* So far, the resulting type has been created as if the original
7638 type was a regular (non-packed) array type. As a result, the
7639 bitsize of the array elements needs to be set again, and the array
7640 length needs to be recomputed based on that bitsize. */
7641 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7642 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7643
7644 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7645 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7646 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7647 TYPE_LENGTH (result)++;
7648 }
7649
876cecd0 7650 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7651 return result;
d2e4a39e 7652}
14f9c5c9
AS
7653
7654
7655/* A standard type (containing no dynamically sized components)
7656 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7657 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7658 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7659 ADDRESS or in VALADDR contains these discriminants.
7660
1ed6ede0
JB
7661 If CHECK_TAG is not null, in the case of tagged types, this function
7662 attempts to locate the object's tag and use it to compute the actual
7663 type. However, when ADDRESS is null, we cannot use it to determine the
7664 location of the tag, and therefore compute the tagged type's actual type.
7665 So we return the tagged type without consulting the tag. */
529cad9c 7666
f192137b
JB
7667static struct type *
7668ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7669 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7670{
61ee279c 7671 type = ada_check_typedef (type);
d2e4a39e
AS
7672 switch (TYPE_CODE (type))
7673 {
7674 default:
14f9c5c9 7675 return type;
d2e4a39e 7676 case TYPE_CODE_STRUCT:
4c4b4cd2 7677 {
76a01679 7678 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7679 struct type *fixed_record_type =
7680 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7681
529cad9c
PH
7682 /* If STATIC_TYPE is a tagged type and we know the object's address,
7683 then we can determine its tag, and compute the object's actual
0963b4bd 7684 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7685 type (the parent part of the record may have dynamic fields
7686 and the way the location of _tag is expressed may depend on
7687 them). */
529cad9c 7688
1ed6ede0 7689 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7690 {
7691 struct type *real_type =
1ed6ede0
JB
7692 type_from_tag (value_tag_from_contents_and_address
7693 (fixed_record_type,
7694 valaddr,
7695 address));
5b4ee69b 7696
76a01679 7697 if (real_type != NULL)
1ed6ede0 7698 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7699 }
4af88198
JB
7700
7701 /* Check to see if there is a parallel ___XVZ variable.
7702 If there is, then it provides the actual size of our type. */
7703 else if (ada_type_name (fixed_record_type) != NULL)
7704 {
7705 char *name = ada_type_name (fixed_record_type);
7706 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7707 int xvz_found = 0;
7708 LONGEST size;
7709
88c15c34 7710 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7711 size = get_int_var_value (xvz_name, &xvz_found);
7712 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7713 {
7714 fixed_record_type = copy_type (fixed_record_type);
7715 TYPE_LENGTH (fixed_record_type) = size;
7716
7717 /* The FIXED_RECORD_TYPE may have be a stub. We have
7718 observed this when the debugging info is STABS, and
7719 apparently it is something that is hard to fix.
7720
7721 In practice, we don't need the actual type definition
7722 at all, because the presence of the XVZ variable allows us
7723 to assume that there must be a XVS type as well, which we
7724 should be able to use later, when we need the actual type
7725 definition.
7726
7727 In the meantime, pretend that the "fixed" type we are
7728 returning is NOT a stub, because this can cause trouble
7729 when using this type to create new types targeting it.
7730 Indeed, the associated creation routines often check
7731 whether the target type is a stub and will try to replace
0963b4bd 7732 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7733 might cause the new type to have the wrong size too.
7734 Consider the case of an array, for instance, where the size
7735 of the array is computed from the number of elements in
7736 our array multiplied by the size of its element. */
7737 TYPE_STUB (fixed_record_type) = 0;
7738 }
7739 }
1ed6ede0 7740 return fixed_record_type;
4c4b4cd2 7741 }
d2e4a39e 7742 case TYPE_CODE_ARRAY:
4c4b4cd2 7743 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7744 case TYPE_CODE_UNION:
7745 if (dval == NULL)
4c4b4cd2 7746 return type;
d2e4a39e 7747 else
4c4b4cd2 7748 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7749 }
14f9c5c9
AS
7750}
7751
f192137b
JB
7752/* The same as ada_to_fixed_type_1, except that it preserves the type
7753 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7754
7755 The typedef layer needs be preserved in order to differentiate between
7756 arrays and array pointers when both types are implemented using the same
7757 fat pointer. In the array pointer case, the pointer is encoded as
7758 a typedef of the pointer type. For instance, considering:
7759
7760 type String_Access is access String;
7761 S1 : String_Access := null;
7762
7763 To the debugger, S1 is defined as a typedef of type String. But
7764 to the user, it is a pointer. So if the user tries to print S1,
7765 we should not dereference the array, but print the array address
7766 instead.
7767
7768 If we didn't preserve the typedef layer, we would lose the fact that
7769 the type is to be presented as a pointer (needs de-reference before
7770 being printed). And we would also use the source-level type name. */
f192137b
JB
7771
7772struct type *
7773ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7774 CORE_ADDR address, struct value *dval, int check_tag)
7775
7776{
7777 struct type *fixed_type =
7778 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7779
96dbd2c1
JB
7780 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7781 then preserve the typedef layer.
7782
7783 Implementation note: We can only check the main-type portion of
7784 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7785 from TYPE now returns a type that has the same instance flags
7786 as TYPE. For instance, if TYPE is a "typedef const", and its
7787 target type is a "struct", then the typedef elimination will return
7788 a "const" version of the target type. See check_typedef for more
7789 details about how the typedef layer elimination is done.
7790
7791 brobecker/2010-11-19: It seems to me that the only case where it is
7792 useful to preserve the typedef layer is when dealing with fat pointers.
7793 Perhaps, we could add a check for that and preserve the typedef layer
7794 only in that situation. But this seems unecessary so far, probably
7795 because we call check_typedef/ada_check_typedef pretty much everywhere.
7796 */
f192137b 7797 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7798 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7799 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7800 return type;
7801
7802 return fixed_type;
7803}
7804
14f9c5c9 7805/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7806 TYPE0, but based on no runtime data. */
14f9c5c9 7807
d2e4a39e
AS
7808static struct type *
7809to_static_fixed_type (struct type *type0)
14f9c5c9 7810{
d2e4a39e 7811 struct type *type;
14f9c5c9
AS
7812
7813 if (type0 == NULL)
7814 return NULL;
7815
876cecd0 7816 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7817 return type0;
7818
61ee279c 7819 type0 = ada_check_typedef (type0);
d2e4a39e 7820
14f9c5c9
AS
7821 switch (TYPE_CODE (type0))
7822 {
7823 default:
7824 return type0;
7825 case TYPE_CODE_STRUCT:
7826 type = dynamic_template_type (type0);
d2e4a39e 7827 if (type != NULL)
4c4b4cd2
PH
7828 return template_to_static_fixed_type (type);
7829 else
7830 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7831 case TYPE_CODE_UNION:
7832 type = ada_find_parallel_type (type0, "___XVU");
7833 if (type != NULL)
4c4b4cd2
PH
7834 return template_to_static_fixed_type (type);
7835 else
7836 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7837 }
7838}
7839
4c4b4cd2
PH
7840/* A static approximation of TYPE with all type wrappers removed. */
7841
d2e4a39e
AS
7842static struct type *
7843static_unwrap_type (struct type *type)
14f9c5c9
AS
7844{
7845 if (ada_is_aligner_type (type))
7846 {
61ee279c 7847 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7848 if (ada_type_name (type1) == NULL)
4c4b4cd2 7849 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7850
7851 return static_unwrap_type (type1);
7852 }
d2e4a39e 7853 else
14f9c5c9 7854 {
d2e4a39e 7855 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7856
d2e4a39e 7857 if (raw_real_type == type)
4c4b4cd2 7858 return type;
14f9c5c9 7859 else
4c4b4cd2 7860 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7861 }
7862}
7863
7864/* In some cases, incomplete and private types require
4c4b4cd2 7865 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7866 type Foo;
7867 type FooP is access Foo;
7868 V: FooP;
7869 type Foo is array ...;
4c4b4cd2 7870 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7871 cross-references to such types, we instead substitute for FooP a
7872 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7873 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7874
7875/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7876 exists, otherwise TYPE. */
7877
d2e4a39e 7878struct type *
61ee279c 7879ada_check_typedef (struct type *type)
14f9c5c9 7880{
727e3d2e
JB
7881 if (type == NULL)
7882 return NULL;
7883
720d1a40
JB
7884 /* If our type is a typedef type of a fat pointer, then we're done.
7885 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7886 what allows us to distinguish between fat pointers that represent
7887 array types, and fat pointers that represent array access types
7888 (in both cases, the compiler implements them as fat pointers). */
7889 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7890 && is_thick_pntr (ada_typedef_target_type (type)))
7891 return type;
7892
14f9c5c9
AS
7893 CHECK_TYPEDEF (type);
7894 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7895 || !TYPE_STUB (type)
14f9c5c9
AS
7896 || TYPE_TAG_NAME (type) == NULL)
7897 return type;
d2e4a39e 7898 else
14f9c5c9 7899 {
d2e4a39e
AS
7900 char *name = TYPE_TAG_NAME (type);
7901 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7902
05e522ef
JB
7903 if (type1 == NULL)
7904 return type;
7905
7906 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7907 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7908 types, only for the typedef-to-array types). If that's the case,
7909 strip the typedef layer. */
7910 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7911 type1 = ada_check_typedef (type1);
7912
7913 return type1;
14f9c5c9
AS
7914 }
7915}
7916
7917/* A value representing the data at VALADDR/ADDRESS as described by
7918 type TYPE0, but with a standard (static-sized) type that correctly
7919 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7920 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7921 creation of struct values]. */
14f9c5c9 7922
4c4b4cd2
PH
7923static struct value *
7924ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7925 struct value *val0)
14f9c5c9 7926{
1ed6ede0 7927 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7928
14f9c5c9
AS
7929 if (type == type0 && val0 != NULL)
7930 return val0;
d2e4a39e 7931 else
4c4b4cd2
PH
7932 return value_from_contents_and_address (type, 0, address);
7933}
7934
7935/* A value representing VAL, but with a standard (static-sized) type
7936 that correctly describes it. Does not necessarily create a new
7937 value. */
7938
0c3acc09 7939struct value *
4c4b4cd2
PH
7940ada_to_fixed_value (struct value *val)
7941{
df407dfe 7942 return ada_to_fixed_value_create (value_type (val),
42ae5230 7943 value_address (val),
4c4b4cd2 7944 val);
14f9c5c9 7945}
d2e4a39e 7946\f
14f9c5c9 7947
14f9c5c9
AS
7948/* Attributes */
7949
4c4b4cd2
PH
7950/* Table mapping attribute numbers to names.
7951 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7952
d2e4a39e 7953static const char *attribute_names[] = {
14f9c5c9
AS
7954 "<?>",
7955
d2e4a39e 7956 "first",
14f9c5c9
AS
7957 "last",
7958 "length",
7959 "image",
14f9c5c9
AS
7960 "max",
7961 "min",
4c4b4cd2
PH
7962 "modulus",
7963 "pos",
7964 "size",
7965 "tag",
14f9c5c9 7966 "val",
14f9c5c9
AS
7967 0
7968};
7969
d2e4a39e 7970const char *
4c4b4cd2 7971ada_attribute_name (enum exp_opcode n)
14f9c5c9 7972{
4c4b4cd2
PH
7973 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7974 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7975 else
7976 return attribute_names[0];
7977}
7978
4c4b4cd2 7979/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7980
4c4b4cd2
PH
7981static LONGEST
7982pos_atr (struct value *arg)
14f9c5c9 7983{
24209737
PH
7984 struct value *val = coerce_ref (arg);
7985 struct type *type = value_type (val);
14f9c5c9 7986
d2e4a39e 7987 if (!discrete_type_p (type))
323e0a4a 7988 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7989
7990 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7991 {
7992 int i;
24209737 7993 LONGEST v = value_as_long (val);
14f9c5c9 7994
d2e4a39e 7995 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7996 {
7997 if (v == TYPE_FIELD_BITPOS (type, i))
7998 return i;
7999 }
323e0a4a 8000 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8001 }
8002 else
24209737 8003 return value_as_long (val);
4c4b4cd2
PH
8004}
8005
8006static struct value *
3cb382c9 8007value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8008{
3cb382c9 8009 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8010}
8011
4c4b4cd2 8012/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8013
d2e4a39e
AS
8014static struct value *
8015value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8016{
d2e4a39e 8017 if (!discrete_type_p (type))
323e0a4a 8018 error (_("'VAL only defined on discrete types"));
df407dfe 8019 if (!integer_type_p (value_type (arg)))
323e0a4a 8020 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8021
8022 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8023 {
8024 long pos = value_as_long (arg);
5b4ee69b 8025
14f9c5c9 8026 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8027 error (_("argument to 'VAL out of range"));
d2e4a39e 8028 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8029 }
8030 else
8031 return value_from_longest (type, value_as_long (arg));
8032}
14f9c5c9 8033\f
d2e4a39e 8034
4c4b4cd2 8035 /* Evaluation */
14f9c5c9 8036
4c4b4cd2
PH
8037/* True if TYPE appears to be an Ada character type.
8038 [At the moment, this is true only for Character and Wide_Character;
8039 It is a heuristic test that could stand improvement]. */
14f9c5c9 8040
d2e4a39e
AS
8041int
8042ada_is_character_type (struct type *type)
14f9c5c9 8043{
7b9f71f2
JB
8044 const char *name;
8045
8046 /* If the type code says it's a character, then assume it really is,
8047 and don't check any further. */
8048 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8049 return 1;
8050
8051 /* Otherwise, assume it's a character type iff it is a discrete type
8052 with a known character type name. */
8053 name = ada_type_name (type);
8054 return (name != NULL
8055 && (TYPE_CODE (type) == TYPE_CODE_INT
8056 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8057 && (strcmp (name, "character") == 0
8058 || strcmp (name, "wide_character") == 0
5a517ebd 8059 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8060 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8061}
8062
4c4b4cd2 8063/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8064
8065int
ebf56fd3 8066ada_is_string_type (struct type *type)
14f9c5c9 8067{
61ee279c 8068 type = ada_check_typedef (type);
d2e4a39e 8069 if (type != NULL
14f9c5c9 8070 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8071 && (ada_is_simple_array_type (type)
8072 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8073 && ada_array_arity (type) == 1)
8074 {
8075 struct type *elttype = ada_array_element_type (type, 1);
8076
8077 return ada_is_character_type (elttype);
8078 }
d2e4a39e 8079 else
14f9c5c9
AS
8080 return 0;
8081}
8082
5bf03f13
JB
8083/* The compiler sometimes provides a parallel XVS type for a given
8084 PAD type. Normally, it is safe to follow the PAD type directly,
8085 but older versions of the compiler have a bug that causes the offset
8086 of its "F" field to be wrong. Following that field in that case
8087 would lead to incorrect results, but this can be worked around
8088 by ignoring the PAD type and using the associated XVS type instead.
8089
8090 Set to True if the debugger should trust the contents of PAD types.
8091 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8092static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8093
8094/* True if TYPE is a struct type introduced by the compiler to force the
8095 alignment of a value. Such types have a single field with a
4c4b4cd2 8096 distinctive name. */
14f9c5c9
AS
8097
8098int
ebf56fd3 8099ada_is_aligner_type (struct type *type)
14f9c5c9 8100{
61ee279c 8101 type = ada_check_typedef (type);
714e53ab 8102
5bf03f13 8103 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8104 return 0;
8105
14f9c5c9 8106 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8107 && TYPE_NFIELDS (type) == 1
8108 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8109}
8110
8111/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8112 the parallel type. */
14f9c5c9 8113
d2e4a39e
AS
8114struct type *
8115ada_get_base_type (struct type *raw_type)
14f9c5c9 8116{
d2e4a39e
AS
8117 struct type *real_type_namer;
8118 struct type *raw_real_type;
14f9c5c9
AS
8119
8120 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8121 return raw_type;
8122
284614f0
JB
8123 if (ada_is_aligner_type (raw_type))
8124 /* The encoding specifies that we should always use the aligner type.
8125 So, even if this aligner type has an associated XVS type, we should
8126 simply ignore it.
8127
8128 According to the compiler gurus, an XVS type parallel to an aligner
8129 type may exist because of a stabs limitation. In stabs, aligner
8130 types are empty because the field has a variable-sized type, and
8131 thus cannot actually be used as an aligner type. As a result,
8132 we need the associated parallel XVS type to decode the type.
8133 Since the policy in the compiler is to not change the internal
8134 representation based on the debugging info format, we sometimes
8135 end up having a redundant XVS type parallel to the aligner type. */
8136 return raw_type;
8137
14f9c5c9 8138 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8139 if (real_type_namer == NULL
14f9c5c9
AS
8140 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8141 || TYPE_NFIELDS (real_type_namer) != 1)
8142 return raw_type;
8143
f80d3ff2
JB
8144 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8145 {
8146 /* This is an older encoding form where the base type needs to be
8147 looked up by name. We prefer the newer enconding because it is
8148 more efficient. */
8149 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8150 if (raw_real_type == NULL)
8151 return raw_type;
8152 else
8153 return raw_real_type;
8154 }
8155
8156 /* The field in our XVS type is a reference to the base type. */
8157 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8158}
14f9c5c9 8159
4c4b4cd2 8160/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8161
d2e4a39e
AS
8162struct type *
8163ada_aligned_type (struct type *type)
14f9c5c9
AS
8164{
8165 if (ada_is_aligner_type (type))
8166 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8167 else
8168 return ada_get_base_type (type);
8169}
8170
8171
8172/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8173 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8174
fc1a4b47
AC
8175const gdb_byte *
8176ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8177{
d2e4a39e 8178 if (ada_is_aligner_type (type))
14f9c5c9 8179 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8180 valaddr +
8181 TYPE_FIELD_BITPOS (type,
8182 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8183 else
8184 return valaddr;
8185}
8186
4c4b4cd2
PH
8187
8188
14f9c5c9 8189/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8190 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8191const char *
8192ada_enum_name (const char *name)
14f9c5c9 8193{
4c4b4cd2
PH
8194 static char *result;
8195 static size_t result_len = 0;
d2e4a39e 8196 char *tmp;
14f9c5c9 8197
4c4b4cd2
PH
8198 /* First, unqualify the enumeration name:
8199 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8200 all the preceeding characters, the unqualified name starts
8201 right after that dot.
4c4b4cd2 8202 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8203 translates dots into "__". Search forward for double underscores,
8204 but stop searching when we hit an overloading suffix, which is
8205 of the form "__" followed by digits. */
4c4b4cd2 8206
c3e5cd34
PH
8207 tmp = strrchr (name, '.');
8208 if (tmp != NULL)
4c4b4cd2
PH
8209 name = tmp + 1;
8210 else
14f9c5c9 8211 {
4c4b4cd2
PH
8212 while ((tmp = strstr (name, "__")) != NULL)
8213 {
8214 if (isdigit (tmp[2]))
8215 break;
8216 else
8217 name = tmp + 2;
8218 }
14f9c5c9
AS
8219 }
8220
8221 if (name[0] == 'Q')
8222 {
14f9c5c9 8223 int v;
5b4ee69b 8224
14f9c5c9 8225 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8226 {
8227 if (sscanf (name + 2, "%x", &v) != 1)
8228 return name;
8229 }
14f9c5c9 8230 else
4c4b4cd2 8231 return name;
14f9c5c9 8232
4c4b4cd2 8233 GROW_VECT (result, result_len, 16);
14f9c5c9 8234 if (isascii (v) && isprint (v))
88c15c34 8235 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8236 else if (name[1] == 'U')
88c15c34 8237 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8238 else
88c15c34 8239 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8240
8241 return result;
8242 }
d2e4a39e 8243 else
4c4b4cd2 8244 {
c3e5cd34
PH
8245 tmp = strstr (name, "__");
8246 if (tmp == NULL)
8247 tmp = strstr (name, "$");
8248 if (tmp != NULL)
4c4b4cd2
PH
8249 {
8250 GROW_VECT (result, result_len, tmp - name + 1);
8251 strncpy (result, name, tmp - name);
8252 result[tmp - name] = '\0';
8253 return result;
8254 }
8255
8256 return name;
8257 }
14f9c5c9
AS
8258}
8259
14f9c5c9
AS
8260/* Evaluate the subexpression of EXP starting at *POS as for
8261 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8262 expression. */
14f9c5c9 8263
d2e4a39e
AS
8264static struct value *
8265evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8266{
4b27a620 8267 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8268}
8269
8270/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8271 value it wraps. */
14f9c5c9 8272
d2e4a39e
AS
8273static struct value *
8274unwrap_value (struct value *val)
14f9c5c9 8275{
df407dfe 8276 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8277
14f9c5c9
AS
8278 if (ada_is_aligner_type (type))
8279 {
de4d072f 8280 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8281 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8282
14f9c5c9 8283 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8284 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8285
8286 return unwrap_value (v);
8287 }
d2e4a39e 8288 else
14f9c5c9 8289 {
d2e4a39e 8290 struct type *raw_real_type =
61ee279c 8291 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8292
5bf03f13
JB
8293 /* If there is no parallel XVS or XVE type, then the value is
8294 already unwrapped. Return it without further modification. */
8295 if ((type == raw_real_type)
8296 && ada_find_parallel_type (type, "___XVE") == NULL)
8297 return val;
14f9c5c9 8298
d2e4a39e 8299 return
4c4b4cd2
PH
8300 coerce_unspec_val_to_type
8301 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8302 value_address (val),
1ed6ede0 8303 NULL, 1));
14f9c5c9
AS
8304 }
8305}
d2e4a39e
AS
8306
8307static struct value *
8308cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8309{
8310 LONGEST val;
8311
df407dfe 8312 if (type == value_type (arg))
14f9c5c9 8313 return arg;
df407dfe 8314 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8315 val = ada_float_to_fixed (type,
df407dfe 8316 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8317 value_as_long (arg)));
d2e4a39e 8318 else
14f9c5c9 8319 {
a53b7a21 8320 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8321
14f9c5c9
AS
8322 val = ada_float_to_fixed (type, argd);
8323 }
8324
8325 return value_from_longest (type, val);
8326}
8327
d2e4a39e 8328static struct value *
a53b7a21 8329cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8330{
df407dfe 8331 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8332 value_as_long (arg));
5b4ee69b 8333
a53b7a21 8334 return value_from_double (type, val);
14f9c5c9
AS
8335}
8336
4c4b4cd2
PH
8337/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8338 return the converted value. */
8339
d2e4a39e
AS
8340static struct value *
8341coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8342{
df407dfe 8343 struct type *type2 = value_type (val);
5b4ee69b 8344
14f9c5c9
AS
8345 if (type == type2)
8346 return val;
8347
61ee279c
PH
8348 type2 = ada_check_typedef (type2);
8349 type = ada_check_typedef (type);
14f9c5c9 8350
d2e4a39e
AS
8351 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8352 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8353 {
8354 val = ada_value_ind (val);
df407dfe 8355 type2 = value_type (val);
14f9c5c9
AS
8356 }
8357
d2e4a39e 8358 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8359 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8360 {
8361 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8362 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8363 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8364 error (_("Incompatible types in assignment"));
04624583 8365 deprecated_set_value_type (val, type);
14f9c5c9 8366 }
d2e4a39e 8367 return val;
14f9c5c9
AS
8368}
8369
4c4b4cd2
PH
8370static struct value *
8371ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8372{
8373 struct value *val;
8374 struct type *type1, *type2;
8375 LONGEST v, v1, v2;
8376
994b9211
AC
8377 arg1 = coerce_ref (arg1);
8378 arg2 = coerce_ref (arg2);
df407dfe
AC
8379 type1 = base_type (ada_check_typedef (value_type (arg1)));
8380 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8381
76a01679
JB
8382 if (TYPE_CODE (type1) != TYPE_CODE_INT
8383 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8384 return value_binop (arg1, arg2, op);
8385
76a01679 8386 switch (op)
4c4b4cd2
PH
8387 {
8388 case BINOP_MOD:
8389 case BINOP_DIV:
8390 case BINOP_REM:
8391 break;
8392 default:
8393 return value_binop (arg1, arg2, op);
8394 }
8395
8396 v2 = value_as_long (arg2);
8397 if (v2 == 0)
323e0a4a 8398 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8399
8400 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8401 return value_binop (arg1, arg2, op);
8402
8403 v1 = value_as_long (arg1);
8404 switch (op)
8405 {
8406 case BINOP_DIV:
8407 v = v1 / v2;
76a01679
JB
8408 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8409 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8410 break;
8411 case BINOP_REM:
8412 v = v1 % v2;
76a01679
JB
8413 if (v * v1 < 0)
8414 v -= v2;
4c4b4cd2
PH
8415 break;
8416 default:
8417 /* Should not reach this point. */
8418 v = 0;
8419 }
8420
8421 val = allocate_value (type1);
990a07ab 8422 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8423 TYPE_LENGTH (value_type (val)),
8424 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8425 return val;
8426}
8427
8428static int
8429ada_value_equal (struct value *arg1, struct value *arg2)
8430{
df407dfe
AC
8431 if (ada_is_direct_array_type (value_type (arg1))
8432 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8433 {
f58b38bf
JB
8434 /* Automatically dereference any array reference before
8435 we attempt to perform the comparison. */
8436 arg1 = ada_coerce_ref (arg1);
8437 arg2 = ada_coerce_ref (arg2);
8438
4c4b4cd2
PH
8439 arg1 = ada_coerce_to_simple_array (arg1);
8440 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8441 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8442 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8443 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8444 /* FIXME: The following works only for types whose
76a01679
JB
8445 representations use all bits (no padding or undefined bits)
8446 and do not have user-defined equality. */
8447 return
df407dfe 8448 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8449 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8450 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8451 }
8452 return value_equal (arg1, arg2);
8453}
8454
52ce6436
PH
8455/* Total number of component associations in the aggregate starting at
8456 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8457 OP_AGGREGATE. */
52ce6436
PH
8458
8459static int
8460num_component_specs (struct expression *exp, int pc)
8461{
8462 int n, m, i;
5b4ee69b 8463
52ce6436
PH
8464 m = exp->elts[pc + 1].longconst;
8465 pc += 3;
8466 n = 0;
8467 for (i = 0; i < m; i += 1)
8468 {
8469 switch (exp->elts[pc].opcode)
8470 {
8471 default:
8472 n += 1;
8473 break;
8474 case OP_CHOICES:
8475 n += exp->elts[pc + 1].longconst;
8476 break;
8477 }
8478 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8479 }
8480 return n;
8481}
8482
8483/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8484 component of LHS (a simple array or a record), updating *POS past
8485 the expression, assuming that LHS is contained in CONTAINER. Does
8486 not modify the inferior's memory, nor does it modify LHS (unless
8487 LHS == CONTAINER). */
8488
8489static void
8490assign_component (struct value *container, struct value *lhs, LONGEST index,
8491 struct expression *exp, int *pos)
8492{
8493 struct value *mark = value_mark ();
8494 struct value *elt;
5b4ee69b 8495
52ce6436
PH
8496 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8497 {
22601c15
UW
8498 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8499 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8500
52ce6436
PH
8501 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8502 }
8503 else
8504 {
8505 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8506 elt = ada_to_fixed_value (unwrap_value (elt));
8507 }
8508
8509 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8510 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8511 else
8512 value_assign_to_component (container, elt,
8513 ada_evaluate_subexp (NULL, exp, pos,
8514 EVAL_NORMAL));
8515
8516 value_free_to_mark (mark);
8517}
8518
8519/* Assuming that LHS represents an lvalue having a record or array
8520 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8521 of that aggregate's value to LHS, advancing *POS past the
8522 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8523 lvalue containing LHS (possibly LHS itself). Does not modify
8524 the inferior's memory, nor does it modify the contents of
0963b4bd 8525 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8526
8527static struct value *
8528assign_aggregate (struct value *container,
8529 struct value *lhs, struct expression *exp,
8530 int *pos, enum noside noside)
8531{
8532 struct type *lhs_type;
8533 int n = exp->elts[*pos+1].longconst;
8534 LONGEST low_index, high_index;
8535 int num_specs;
8536 LONGEST *indices;
8537 int max_indices, num_indices;
8538 int is_array_aggregate;
8539 int i;
52ce6436
PH
8540
8541 *pos += 3;
8542 if (noside != EVAL_NORMAL)
8543 {
8544 int i;
5b4ee69b 8545
52ce6436
PH
8546 for (i = 0; i < n; i += 1)
8547 ada_evaluate_subexp (NULL, exp, pos, noside);
8548 return container;
8549 }
8550
8551 container = ada_coerce_ref (container);
8552 if (ada_is_direct_array_type (value_type (container)))
8553 container = ada_coerce_to_simple_array (container);
8554 lhs = ada_coerce_ref (lhs);
8555 if (!deprecated_value_modifiable (lhs))
8556 error (_("Left operand of assignment is not a modifiable lvalue."));
8557
8558 lhs_type = value_type (lhs);
8559 if (ada_is_direct_array_type (lhs_type))
8560 {
8561 lhs = ada_coerce_to_simple_array (lhs);
8562 lhs_type = value_type (lhs);
8563 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8564 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8565 is_array_aggregate = 1;
8566 }
8567 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8568 {
8569 low_index = 0;
8570 high_index = num_visible_fields (lhs_type) - 1;
8571 is_array_aggregate = 0;
8572 }
8573 else
8574 error (_("Left-hand side must be array or record."));
8575
8576 num_specs = num_component_specs (exp, *pos - 3);
8577 max_indices = 4 * num_specs + 4;
8578 indices = alloca (max_indices * sizeof (indices[0]));
8579 indices[0] = indices[1] = low_index - 1;
8580 indices[2] = indices[3] = high_index + 1;
8581 num_indices = 4;
8582
8583 for (i = 0; i < n; i += 1)
8584 {
8585 switch (exp->elts[*pos].opcode)
8586 {
8587 case OP_CHOICES:
8588 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8589 &num_indices, max_indices,
8590 low_index, high_index);
8591 break;
8592 case OP_POSITIONAL:
8593 aggregate_assign_positional (container, lhs, exp, pos, indices,
8594 &num_indices, max_indices,
8595 low_index, high_index);
8596 break;
8597 case OP_OTHERS:
8598 if (i != n-1)
8599 error (_("Misplaced 'others' clause"));
8600 aggregate_assign_others (container, lhs, exp, pos, indices,
8601 num_indices, low_index, high_index);
8602 break;
8603 default:
8604 error (_("Internal error: bad aggregate clause"));
8605 }
8606 }
8607
8608 return container;
8609}
8610
8611/* Assign into the component of LHS indexed by the OP_POSITIONAL
8612 construct at *POS, updating *POS past the construct, given that
8613 the positions are relative to lower bound LOW, where HIGH is the
8614 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8615 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8616 assign_aggregate. */
52ce6436
PH
8617static void
8618aggregate_assign_positional (struct value *container,
8619 struct value *lhs, struct expression *exp,
8620 int *pos, LONGEST *indices, int *num_indices,
8621 int max_indices, LONGEST low, LONGEST high)
8622{
8623 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8624
8625 if (ind - 1 == high)
e1d5a0d2 8626 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8627 if (ind <= high)
8628 {
8629 add_component_interval (ind, ind, indices, num_indices, max_indices);
8630 *pos += 3;
8631 assign_component (container, lhs, ind, exp, pos);
8632 }
8633 else
8634 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8635}
8636
8637/* Assign into the components of LHS indexed by the OP_CHOICES
8638 construct at *POS, updating *POS past the construct, given that
8639 the allowable indices are LOW..HIGH. Record the indices assigned
8640 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8641 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8642static void
8643aggregate_assign_from_choices (struct value *container,
8644 struct value *lhs, struct expression *exp,
8645 int *pos, LONGEST *indices, int *num_indices,
8646 int max_indices, LONGEST low, LONGEST high)
8647{
8648 int j;
8649 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8650 int choice_pos, expr_pc;
8651 int is_array = ada_is_direct_array_type (value_type (lhs));
8652
8653 choice_pos = *pos += 3;
8654
8655 for (j = 0; j < n_choices; j += 1)
8656 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8657 expr_pc = *pos;
8658 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8659
8660 for (j = 0; j < n_choices; j += 1)
8661 {
8662 LONGEST lower, upper;
8663 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8664
52ce6436
PH
8665 if (op == OP_DISCRETE_RANGE)
8666 {
8667 choice_pos += 1;
8668 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8669 EVAL_NORMAL));
8670 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8671 EVAL_NORMAL));
8672 }
8673 else if (is_array)
8674 {
8675 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8676 EVAL_NORMAL));
8677 upper = lower;
8678 }
8679 else
8680 {
8681 int ind;
8682 char *name;
5b4ee69b 8683
52ce6436
PH
8684 switch (op)
8685 {
8686 case OP_NAME:
8687 name = &exp->elts[choice_pos + 2].string;
8688 break;
8689 case OP_VAR_VALUE:
8690 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8691 break;
8692 default:
8693 error (_("Invalid record component association."));
8694 }
8695 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8696 ind = 0;
8697 if (! find_struct_field (name, value_type (lhs), 0,
8698 NULL, NULL, NULL, NULL, &ind))
8699 error (_("Unknown component name: %s."), name);
8700 lower = upper = ind;
8701 }
8702
8703 if (lower <= upper && (lower < low || upper > high))
8704 error (_("Index in component association out of bounds."));
8705
8706 add_component_interval (lower, upper, indices, num_indices,
8707 max_indices);
8708 while (lower <= upper)
8709 {
8710 int pos1;
5b4ee69b 8711
52ce6436
PH
8712 pos1 = expr_pc;
8713 assign_component (container, lhs, lower, exp, &pos1);
8714 lower += 1;
8715 }
8716 }
8717}
8718
8719/* Assign the value of the expression in the OP_OTHERS construct in
8720 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8721 have not been previously assigned. The index intervals already assigned
8722 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8723 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8724static void
8725aggregate_assign_others (struct value *container,
8726 struct value *lhs, struct expression *exp,
8727 int *pos, LONGEST *indices, int num_indices,
8728 LONGEST low, LONGEST high)
8729{
8730 int i;
5ce64950 8731 int expr_pc = *pos + 1;
52ce6436
PH
8732
8733 for (i = 0; i < num_indices - 2; i += 2)
8734 {
8735 LONGEST ind;
5b4ee69b 8736
52ce6436
PH
8737 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8738 {
5ce64950 8739 int localpos;
5b4ee69b 8740
5ce64950
MS
8741 localpos = expr_pc;
8742 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8743 }
8744 }
8745 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8746}
8747
8748/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8749 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8750 modifying *SIZE as needed. It is an error if *SIZE exceeds
8751 MAX_SIZE. The resulting intervals do not overlap. */
8752static void
8753add_component_interval (LONGEST low, LONGEST high,
8754 LONGEST* indices, int *size, int max_size)
8755{
8756 int i, j;
5b4ee69b 8757
52ce6436
PH
8758 for (i = 0; i < *size; i += 2) {
8759 if (high >= indices[i] && low <= indices[i + 1])
8760 {
8761 int kh;
5b4ee69b 8762
52ce6436
PH
8763 for (kh = i + 2; kh < *size; kh += 2)
8764 if (high < indices[kh])
8765 break;
8766 if (low < indices[i])
8767 indices[i] = low;
8768 indices[i + 1] = indices[kh - 1];
8769 if (high > indices[i + 1])
8770 indices[i + 1] = high;
8771 memcpy (indices + i + 2, indices + kh, *size - kh);
8772 *size -= kh - i - 2;
8773 return;
8774 }
8775 else if (high < indices[i])
8776 break;
8777 }
8778
8779 if (*size == max_size)
8780 error (_("Internal error: miscounted aggregate components."));
8781 *size += 2;
8782 for (j = *size-1; j >= i+2; j -= 1)
8783 indices[j] = indices[j - 2];
8784 indices[i] = low;
8785 indices[i + 1] = high;
8786}
8787
6e48bd2c
JB
8788/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8789 is different. */
8790
8791static struct value *
8792ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8793{
8794 if (type == ada_check_typedef (value_type (arg2)))
8795 return arg2;
8796
8797 if (ada_is_fixed_point_type (type))
8798 return (cast_to_fixed (type, arg2));
8799
8800 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8801 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8802
8803 return value_cast (type, arg2);
8804}
8805
284614f0
JB
8806/* Evaluating Ada expressions, and printing their result.
8807 ------------------------------------------------------
8808
21649b50
JB
8809 1. Introduction:
8810 ----------------
8811
284614f0
JB
8812 We usually evaluate an Ada expression in order to print its value.
8813 We also evaluate an expression in order to print its type, which
8814 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8815 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8816 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8817 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8818 similar.
8819
8820 Evaluating expressions is a little more complicated for Ada entities
8821 than it is for entities in languages such as C. The main reason for
8822 this is that Ada provides types whose definition might be dynamic.
8823 One example of such types is variant records. Or another example
8824 would be an array whose bounds can only be known at run time.
8825
8826 The following description is a general guide as to what should be
8827 done (and what should NOT be done) in order to evaluate an expression
8828 involving such types, and when. This does not cover how the semantic
8829 information is encoded by GNAT as this is covered separatly. For the
8830 document used as the reference for the GNAT encoding, see exp_dbug.ads
8831 in the GNAT sources.
8832
8833 Ideally, we should embed each part of this description next to its
8834 associated code. Unfortunately, the amount of code is so vast right
8835 now that it's hard to see whether the code handling a particular
8836 situation might be duplicated or not. One day, when the code is
8837 cleaned up, this guide might become redundant with the comments
8838 inserted in the code, and we might want to remove it.
8839
21649b50
JB
8840 2. ``Fixing'' an Entity, the Simple Case:
8841 -----------------------------------------
8842
284614f0
JB
8843 When evaluating Ada expressions, the tricky issue is that they may
8844 reference entities whose type contents and size are not statically
8845 known. Consider for instance a variant record:
8846
8847 type Rec (Empty : Boolean := True) is record
8848 case Empty is
8849 when True => null;
8850 when False => Value : Integer;
8851 end case;
8852 end record;
8853 Yes : Rec := (Empty => False, Value => 1);
8854 No : Rec := (empty => True);
8855
8856 The size and contents of that record depends on the value of the
8857 descriminant (Rec.Empty). At this point, neither the debugging
8858 information nor the associated type structure in GDB are able to
8859 express such dynamic types. So what the debugger does is to create
8860 "fixed" versions of the type that applies to the specific object.
8861 We also informally refer to this opperation as "fixing" an object,
8862 which means creating its associated fixed type.
8863
8864 Example: when printing the value of variable "Yes" above, its fixed
8865 type would look like this:
8866
8867 type Rec is record
8868 Empty : Boolean;
8869 Value : Integer;
8870 end record;
8871
8872 On the other hand, if we printed the value of "No", its fixed type
8873 would become:
8874
8875 type Rec is record
8876 Empty : Boolean;
8877 end record;
8878
8879 Things become a little more complicated when trying to fix an entity
8880 with a dynamic type that directly contains another dynamic type,
8881 such as an array of variant records, for instance. There are
8882 two possible cases: Arrays, and records.
8883
21649b50
JB
8884 3. ``Fixing'' Arrays:
8885 ---------------------
8886
8887 The type structure in GDB describes an array in terms of its bounds,
8888 and the type of its elements. By design, all elements in the array
8889 have the same type and we cannot represent an array of variant elements
8890 using the current type structure in GDB. When fixing an array,
8891 we cannot fix the array element, as we would potentially need one
8892 fixed type per element of the array. As a result, the best we can do
8893 when fixing an array is to produce an array whose bounds and size
8894 are correct (allowing us to read it from memory), but without having
8895 touched its element type. Fixing each element will be done later,
8896 when (if) necessary.
8897
8898 Arrays are a little simpler to handle than records, because the same
8899 amount of memory is allocated for each element of the array, even if
1b536f04 8900 the amount of space actually used by each element differs from element
21649b50 8901 to element. Consider for instance the following array of type Rec:
284614f0
JB
8902
8903 type Rec_Array is array (1 .. 2) of Rec;
8904
1b536f04
JB
8905 The actual amount of memory occupied by each element might be different
8906 from element to element, depending on the value of their discriminant.
21649b50 8907 But the amount of space reserved for each element in the array remains
1b536f04 8908 fixed regardless. So we simply need to compute that size using
21649b50
JB
8909 the debugging information available, from which we can then determine
8910 the array size (we multiply the number of elements of the array by
8911 the size of each element).
8912
8913 The simplest case is when we have an array of a constrained element
8914 type. For instance, consider the following type declarations:
8915
8916 type Bounded_String (Max_Size : Integer) is
8917 Length : Integer;
8918 Buffer : String (1 .. Max_Size);
8919 end record;
8920 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8921
8922 In this case, the compiler describes the array as an array of
8923 variable-size elements (identified by its XVS suffix) for which
8924 the size can be read in the parallel XVZ variable.
8925
8926 In the case of an array of an unconstrained element type, the compiler
8927 wraps the array element inside a private PAD type. This type should not
8928 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8929 that we also use the adjective "aligner" in our code to designate
8930 these wrapper types.
8931
1b536f04 8932 In some cases, the size allocated for each element is statically
21649b50
JB
8933 known. In that case, the PAD type already has the correct size,
8934 and the array element should remain unfixed.
8935
8936 But there are cases when this size is not statically known.
8937 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8938
8939 type Dynamic is array (1 .. Five) of Integer;
8940 type Wrapper (Has_Length : Boolean := False) is record
8941 Data : Dynamic;
8942 case Has_Length is
8943 when True => Length : Integer;
8944 when False => null;
8945 end case;
8946 end record;
8947 type Wrapper_Array is array (1 .. 2) of Wrapper;
8948
8949 Hello : Wrapper_Array := (others => (Has_Length => True,
8950 Data => (others => 17),
8951 Length => 1));
8952
8953
8954 The debugging info would describe variable Hello as being an
8955 array of a PAD type. The size of that PAD type is not statically
8956 known, but can be determined using a parallel XVZ variable.
8957 In that case, a copy of the PAD type with the correct size should
8958 be used for the fixed array.
8959
21649b50
JB
8960 3. ``Fixing'' record type objects:
8961 ----------------------------------
8962
8963 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8964 record types. In this case, in order to compute the associated
8965 fixed type, we need to determine the size and offset of each of
8966 its components. This, in turn, requires us to compute the fixed
8967 type of each of these components.
8968
8969 Consider for instance the example:
8970
8971 type Bounded_String (Max_Size : Natural) is record
8972 Str : String (1 .. Max_Size);
8973 Length : Natural;
8974 end record;
8975 My_String : Bounded_String (Max_Size => 10);
8976
8977 In that case, the position of field "Length" depends on the size
8978 of field Str, which itself depends on the value of the Max_Size
21649b50 8979 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8980 we need to fix the type of field Str. Therefore, fixing a variant
8981 record requires us to fix each of its components.
8982
8983 However, if a component does not have a dynamic size, the component
8984 should not be fixed. In particular, fields that use a PAD type
8985 should not fixed. Here is an example where this might happen
8986 (assuming type Rec above):
8987
8988 type Container (Big : Boolean) is record
8989 First : Rec;
8990 After : Integer;
8991 case Big is
8992 when True => Another : Integer;
8993 when False => null;
8994 end case;
8995 end record;
8996 My_Container : Container := (Big => False,
8997 First => (Empty => True),
8998 After => 42);
8999
9000 In that example, the compiler creates a PAD type for component First,
9001 whose size is constant, and then positions the component After just
9002 right after it. The offset of component After is therefore constant
9003 in this case.
9004
9005 The debugger computes the position of each field based on an algorithm
9006 that uses, among other things, the actual position and size of the field
21649b50
JB
9007 preceding it. Let's now imagine that the user is trying to print
9008 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9009 end up computing the offset of field After based on the size of the
9010 fixed version of field First. And since in our example First has
9011 only one actual field, the size of the fixed type is actually smaller
9012 than the amount of space allocated to that field, and thus we would
9013 compute the wrong offset of field After.
9014
21649b50
JB
9015 To make things more complicated, we need to watch out for dynamic
9016 components of variant records (identified by the ___XVL suffix in
9017 the component name). Even if the target type is a PAD type, the size
9018 of that type might not be statically known. So the PAD type needs
9019 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9020 we might end up with the wrong size for our component. This can be
9021 observed with the following type declarations:
284614f0
JB
9022
9023 type Octal is new Integer range 0 .. 7;
9024 type Octal_Array is array (Positive range <>) of Octal;
9025 pragma Pack (Octal_Array);
9026
9027 type Octal_Buffer (Size : Positive) is record
9028 Buffer : Octal_Array (1 .. Size);
9029 Length : Integer;
9030 end record;
9031
9032 In that case, Buffer is a PAD type whose size is unset and needs
9033 to be computed by fixing the unwrapped type.
9034
21649b50
JB
9035 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9036 ----------------------------------------------------------
9037
9038 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9039 thus far, be actually fixed?
9040
9041 The answer is: Only when referencing that element. For instance
9042 when selecting one component of a record, this specific component
9043 should be fixed at that point in time. Or when printing the value
9044 of a record, each component should be fixed before its value gets
9045 printed. Similarly for arrays, the element of the array should be
9046 fixed when printing each element of the array, or when extracting
9047 one element out of that array. On the other hand, fixing should
9048 not be performed on the elements when taking a slice of an array!
9049
9050 Note that one of the side-effects of miscomputing the offset and
9051 size of each field is that we end up also miscomputing the size
9052 of the containing type. This can have adverse results when computing
9053 the value of an entity. GDB fetches the value of an entity based
9054 on the size of its type, and thus a wrong size causes GDB to fetch
9055 the wrong amount of memory. In the case where the computed size is
9056 too small, GDB fetches too little data to print the value of our
9057 entiry. Results in this case as unpredicatble, as we usually read
9058 past the buffer containing the data =:-o. */
9059
9060/* Implement the evaluate_exp routine in the exp_descriptor structure
9061 for the Ada language. */
9062
52ce6436 9063static struct value *
ebf56fd3 9064ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9065 int *pos, enum noside noside)
14f9c5c9
AS
9066{
9067 enum exp_opcode op;
b5385fc0 9068 int tem;
14f9c5c9
AS
9069 int pc;
9070 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9071 struct type *type;
52ce6436 9072 int nargs, oplen;
d2e4a39e 9073 struct value **argvec;
14f9c5c9 9074
d2e4a39e
AS
9075 pc = *pos;
9076 *pos += 1;
14f9c5c9
AS
9077 op = exp->elts[pc].opcode;
9078
d2e4a39e 9079 switch (op)
14f9c5c9
AS
9080 {
9081 default:
9082 *pos -= 1;
6e48bd2c
JB
9083 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9084 arg1 = unwrap_value (arg1);
9085
9086 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9087 then we need to perform the conversion manually, because
9088 evaluate_subexp_standard doesn't do it. This conversion is
9089 necessary in Ada because the different kinds of float/fixed
9090 types in Ada have different representations.
9091
9092 Similarly, we need to perform the conversion from OP_LONG
9093 ourselves. */
9094 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9095 arg1 = ada_value_cast (expect_type, arg1, noside);
9096
9097 return arg1;
4c4b4cd2
PH
9098
9099 case OP_STRING:
9100 {
76a01679 9101 struct value *result;
5b4ee69b 9102
76a01679
JB
9103 *pos -= 1;
9104 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9105 /* The result type will have code OP_STRING, bashed there from
9106 OP_ARRAY. Bash it back. */
df407dfe
AC
9107 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9108 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9109 return result;
4c4b4cd2 9110 }
14f9c5c9
AS
9111
9112 case UNOP_CAST:
9113 (*pos) += 2;
9114 type = exp->elts[pc + 1].type;
9115 arg1 = evaluate_subexp (type, exp, pos, noside);
9116 if (noside == EVAL_SKIP)
4c4b4cd2 9117 goto nosideret;
6e48bd2c 9118 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9119 return arg1;
9120
4c4b4cd2
PH
9121 case UNOP_QUAL:
9122 (*pos) += 2;
9123 type = exp->elts[pc + 1].type;
9124 return ada_evaluate_subexp (type, exp, pos, noside);
9125
14f9c5c9
AS
9126 case BINOP_ASSIGN:
9127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9128 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9129 {
9130 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9131 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9132 return arg1;
9133 return ada_value_assign (arg1, arg1);
9134 }
003f3813
JB
9135 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9136 except if the lhs of our assignment is a convenience variable.
9137 In the case of assigning to a convenience variable, the lhs
9138 should be exactly the result of the evaluation of the rhs. */
9139 type = value_type (arg1);
9140 if (VALUE_LVAL (arg1) == lval_internalvar)
9141 type = NULL;
9142 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9143 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9144 return arg1;
df407dfe
AC
9145 if (ada_is_fixed_point_type (value_type (arg1)))
9146 arg2 = cast_to_fixed (value_type (arg1), arg2);
9147 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9148 error
323e0a4a 9149 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9150 else
df407dfe 9151 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9152 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9153
9154 case BINOP_ADD:
9155 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9156 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9157 if (noside == EVAL_SKIP)
4c4b4cd2 9158 goto nosideret;
2ac8a782
JB
9159 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9160 return (value_from_longest
9161 (value_type (arg1),
9162 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9163 if ((ada_is_fixed_point_type (value_type (arg1))
9164 || ada_is_fixed_point_type (value_type (arg2)))
9165 && value_type (arg1) != value_type (arg2))
323e0a4a 9166 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9167 /* Do the addition, and cast the result to the type of the first
9168 argument. We cannot cast the result to a reference type, so if
9169 ARG1 is a reference type, find its underlying type. */
9170 type = value_type (arg1);
9171 while (TYPE_CODE (type) == TYPE_CODE_REF)
9172 type = TYPE_TARGET_TYPE (type);
f44316fa 9173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9174 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9175
9176 case BINOP_SUB:
9177 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9178 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9179 if (noside == EVAL_SKIP)
4c4b4cd2 9180 goto nosideret;
2ac8a782
JB
9181 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9182 return (value_from_longest
9183 (value_type (arg1),
9184 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9185 if ((ada_is_fixed_point_type (value_type (arg1))
9186 || ada_is_fixed_point_type (value_type (arg2)))
9187 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9188 error (_("Operands of fixed-point subtraction "
9189 "must have the same type"));
b7789565
JB
9190 /* Do the substraction, and cast the result to the type of the first
9191 argument. We cannot cast the result to a reference type, so if
9192 ARG1 is a reference type, find its underlying type. */
9193 type = value_type (arg1);
9194 while (TYPE_CODE (type) == TYPE_CODE_REF)
9195 type = TYPE_TARGET_TYPE (type);
f44316fa 9196 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9197 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9198
9199 case BINOP_MUL:
9200 case BINOP_DIV:
e1578042
JB
9201 case BINOP_REM:
9202 case BINOP_MOD:
14f9c5c9
AS
9203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9205 if (noside == EVAL_SKIP)
4c4b4cd2 9206 goto nosideret;
e1578042 9207 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9208 {
9209 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9210 return value_zero (value_type (arg1), not_lval);
9211 }
14f9c5c9 9212 else
4c4b4cd2 9213 {
a53b7a21 9214 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9215 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9216 arg1 = cast_from_fixed (type, arg1);
df407dfe 9217 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9218 arg2 = cast_from_fixed (type, arg2);
f44316fa 9219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9220 return ada_value_binop (arg1, arg2, op);
9221 }
9222
4c4b4cd2
PH
9223 case BINOP_EQUAL:
9224 case BINOP_NOTEQUAL:
14f9c5c9 9225 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9226 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9227 if (noside == EVAL_SKIP)
76a01679 9228 goto nosideret;
4c4b4cd2 9229 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9230 tem = 0;
4c4b4cd2 9231 else
f44316fa
UW
9232 {
9233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9234 tem = ada_value_equal (arg1, arg2);
9235 }
4c4b4cd2 9236 if (op == BINOP_NOTEQUAL)
76a01679 9237 tem = !tem;
fbb06eb1
UW
9238 type = language_bool_type (exp->language_defn, exp->gdbarch);
9239 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9240
9241 case UNOP_NEG:
9242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 if (noside == EVAL_SKIP)
9244 goto nosideret;
df407dfe
AC
9245 else if (ada_is_fixed_point_type (value_type (arg1)))
9246 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9247 else
f44316fa
UW
9248 {
9249 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9250 return value_neg (arg1);
9251 }
4c4b4cd2 9252
2330c6c6
JB
9253 case BINOP_LOGICAL_AND:
9254 case BINOP_LOGICAL_OR:
9255 case UNOP_LOGICAL_NOT:
000d5124
JB
9256 {
9257 struct value *val;
9258
9259 *pos -= 1;
9260 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9261 type = language_bool_type (exp->language_defn, exp->gdbarch);
9262 return value_cast (type, val);
000d5124 9263 }
2330c6c6
JB
9264
9265 case BINOP_BITWISE_AND:
9266 case BINOP_BITWISE_IOR:
9267 case BINOP_BITWISE_XOR:
000d5124
JB
9268 {
9269 struct value *val;
9270
9271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9272 *pos = pc;
9273 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9274
9275 return value_cast (value_type (arg1), val);
9276 }
2330c6c6 9277
14f9c5c9
AS
9278 case OP_VAR_VALUE:
9279 *pos -= 1;
6799def4 9280
14f9c5c9 9281 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9282 {
9283 *pos += 4;
9284 goto nosideret;
9285 }
9286 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9287 /* Only encountered when an unresolved symbol occurs in a
9288 context other than a function call, in which case, it is
52ce6436 9289 invalid. */
323e0a4a 9290 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9291 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9292 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9293 {
0c1f74cf 9294 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9295 /* Check to see if this is a tagged type. We also need to handle
9296 the case where the type is a reference to a tagged type, but
9297 we have to be careful to exclude pointers to tagged types.
9298 The latter should be shown as usual (as a pointer), whereas
9299 a reference should mostly be transparent to the user. */
9300 if (ada_is_tagged_type (type, 0)
9301 || (TYPE_CODE(type) == TYPE_CODE_REF
9302 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9303 {
9304 /* Tagged types are a little special in the fact that the real
9305 type is dynamic and can only be determined by inspecting the
9306 object's tag. This means that we need to get the object's
9307 value first (EVAL_NORMAL) and then extract the actual object
9308 type from its tag.
9309
9310 Note that we cannot skip the final step where we extract
9311 the object type from its tag, because the EVAL_NORMAL phase
9312 results in dynamic components being resolved into fixed ones.
9313 This can cause problems when trying to print the type
9314 description of tagged types whose parent has a dynamic size:
9315 We use the type name of the "_parent" component in order
9316 to print the name of the ancestor type in the type description.
9317 If that component had a dynamic size, the resolution into
9318 a fixed type would result in the loss of that type name,
9319 thus preventing us from printing the name of the ancestor
9320 type in the type description. */
b79819ba
JB
9321 struct type *actual_type;
9322
0c1f74cf 9323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9324 actual_type = type_from_tag (ada_value_tag (arg1));
9325 if (actual_type == NULL)
9326 /* If, for some reason, we were unable to determine
9327 the actual type from the tag, then use the static
9328 approximation that we just computed as a fallback.
9329 This can happen if the debugging information is
9330 incomplete, for instance. */
9331 actual_type = type;
9332
9333 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9334 }
9335
4c4b4cd2
PH
9336 *pos += 4;
9337 return value_zero
9338 (to_static_fixed_type
9339 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9340 not_lval);
9341 }
d2e4a39e 9342 else
4c4b4cd2 9343 {
284614f0
JB
9344 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9345 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9346 return ada_to_fixed_value (arg1);
9347 }
9348
9349 case OP_FUNCALL:
9350 (*pos) += 2;
9351
9352 /* Allocate arg vector, including space for the function to be
9353 called in argvec[0] and a terminating NULL. */
9354 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9355 argvec =
9356 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9357
9358 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9359 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9360 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9361 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9362 else
9363 {
9364 for (tem = 0; tem <= nargs; tem += 1)
9365 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9366 argvec[tem] = 0;
9367
9368 if (noside == EVAL_SKIP)
9369 goto nosideret;
9370 }
9371
ad82864c
JB
9372 if (ada_is_constrained_packed_array_type
9373 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9374 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9375 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9376 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9377 /* This is a packed array that has already been fixed, and
9378 therefore already coerced to a simple array. Nothing further
9379 to do. */
9380 ;
df407dfe
AC
9381 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9382 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9383 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9384 argvec[0] = value_addr (argvec[0]);
9385
df407dfe 9386 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9387
9388 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9389 them. So, if this is an array typedef (encoding use for array
9390 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9391 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9392 type = ada_typedef_target_type (type);
9393
4c4b4cd2
PH
9394 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9395 {
61ee279c 9396 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9397 {
9398 case TYPE_CODE_FUNC:
61ee279c 9399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9400 break;
9401 case TYPE_CODE_ARRAY:
9402 break;
9403 case TYPE_CODE_STRUCT:
9404 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9405 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9406 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9407 break;
9408 default:
323e0a4a 9409 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9410 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9411 break;
9412 }
9413 }
9414
9415 switch (TYPE_CODE (type))
9416 {
9417 case TYPE_CODE_FUNC:
9418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9419 return allocate_value (TYPE_TARGET_TYPE (type));
9420 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9421 case TYPE_CODE_STRUCT:
9422 {
9423 int arity;
9424
4c4b4cd2
PH
9425 arity = ada_array_arity (type);
9426 type = ada_array_element_type (type, nargs);
9427 if (type == NULL)
323e0a4a 9428 error (_("cannot subscript or call a record"));
4c4b4cd2 9429 if (arity != nargs)
323e0a4a 9430 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9431 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9432 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9433 return
9434 unwrap_value (ada_value_subscript
9435 (argvec[0], nargs, argvec + 1));
9436 }
9437 case TYPE_CODE_ARRAY:
9438 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9439 {
9440 type = ada_array_element_type (type, nargs);
9441 if (type == NULL)
323e0a4a 9442 error (_("element type of array unknown"));
4c4b4cd2 9443 else
0a07e705 9444 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9445 }
9446 return
9447 unwrap_value (ada_value_subscript
9448 (ada_coerce_to_simple_array (argvec[0]),
9449 nargs, argvec + 1));
9450 case TYPE_CODE_PTR: /* Pointer to array */
9451 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9452 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9453 {
9454 type = ada_array_element_type (type, nargs);
9455 if (type == NULL)
323e0a4a 9456 error (_("element type of array unknown"));
4c4b4cd2 9457 else
0a07e705 9458 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9459 }
9460 return
9461 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9462 nargs, argvec + 1));
9463
9464 default:
e1d5a0d2
PH
9465 error (_("Attempt to index or call something other than an "
9466 "array or function"));
4c4b4cd2
PH
9467 }
9468
9469 case TERNOP_SLICE:
9470 {
9471 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9472 struct value *low_bound_val =
9473 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9474 struct value *high_bound_val =
9475 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9476 LONGEST low_bound;
9477 LONGEST high_bound;
5b4ee69b 9478
994b9211
AC
9479 low_bound_val = coerce_ref (low_bound_val);
9480 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9481 low_bound = pos_atr (low_bound_val);
9482 high_bound = pos_atr (high_bound_val);
963a6417 9483
4c4b4cd2
PH
9484 if (noside == EVAL_SKIP)
9485 goto nosideret;
9486
4c4b4cd2
PH
9487 /* If this is a reference to an aligner type, then remove all
9488 the aligners. */
df407dfe
AC
9489 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9490 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9491 TYPE_TARGET_TYPE (value_type (array)) =
9492 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9493
ad82864c 9494 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9495 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9496
9497 /* If this is a reference to an array or an array lvalue,
9498 convert to a pointer. */
df407dfe
AC
9499 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9500 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9501 && VALUE_LVAL (array) == lval_memory))
9502 array = value_addr (array);
9503
1265e4aa 9504 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9505 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9506 (value_type (array))))
0b5d8877 9507 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9508
9509 array = ada_coerce_to_simple_array_ptr (array);
9510
714e53ab
PH
9511 /* If we have more than one level of pointer indirection,
9512 dereference the value until we get only one level. */
df407dfe
AC
9513 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9514 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9515 == TYPE_CODE_PTR))
9516 array = value_ind (array);
9517
9518 /* Make sure we really do have an array type before going further,
9519 to avoid a SEGV when trying to get the index type or the target
9520 type later down the road if the debug info generated by
9521 the compiler is incorrect or incomplete. */
df407dfe 9522 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9523 error (_("cannot take slice of non-array"));
714e53ab 9524
828292f2
JB
9525 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9526 == TYPE_CODE_PTR)
4c4b4cd2 9527 {
828292f2
JB
9528 struct type *type0 = ada_check_typedef (value_type (array));
9529
0b5d8877 9530 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9531 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9532 else
9533 {
9534 struct type *arr_type0 =
828292f2 9535 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9536
f5938064
JG
9537 return ada_value_slice_from_ptr (array, arr_type0,
9538 longest_to_int (low_bound),
9539 longest_to_int (high_bound));
4c4b4cd2
PH
9540 }
9541 }
9542 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9543 return array;
9544 else if (high_bound < low_bound)
df407dfe 9545 return empty_array (value_type (array), low_bound);
4c4b4cd2 9546 else
529cad9c
PH
9547 return ada_value_slice (array, longest_to_int (low_bound),
9548 longest_to_int (high_bound));
4c4b4cd2 9549 }
14f9c5c9 9550
4c4b4cd2
PH
9551 case UNOP_IN_RANGE:
9552 (*pos) += 2;
9553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9554 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9555
14f9c5c9 9556 if (noside == EVAL_SKIP)
4c4b4cd2 9557 goto nosideret;
14f9c5c9 9558
4c4b4cd2
PH
9559 switch (TYPE_CODE (type))
9560 {
9561 default:
e1d5a0d2
PH
9562 lim_warning (_("Membership test incompletely implemented; "
9563 "always returns true"));
fbb06eb1
UW
9564 type = language_bool_type (exp->language_defn, exp->gdbarch);
9565 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9566
9567 case TYPE_CODE_RANGE:
030b4912
UW
9568 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9569 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9571 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9572 type = language_bool_type (exp->language_defn, exp->gdbarch);
9573 return
9574 value_from_longest (type,
4c4b4cd2
PH
9575 (value_less (arg1, arg3)
9576 || value_equal (arg1, arg3))
9577 && (value_less (arg2, arg1)
9578 || value_equal (arg2, arg1)));
9579 }
9580
9581 case BINOP_IN_BOUNDS:
14f9c5c9 9582 (*pos) += 2;
4c4b4cd2
PH
9583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9584 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9585
4c4b4cd2
PH
9586 if (noside == EVAL_SKIP)
9587 goto nosideret;
14f9c5c9 9588
4c4b4cd2 9589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9590 {
9591 type = language_bool_type (exp->language_defn, exp->gdbarch);
9592 return value_zero (type, not_lval);
9593 }
14f9c5c9 9594
4c4b4cd2 9595 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9596
1eea4ebd
UW
9597 type = ada_index_type (value_type (arg2), tem, "range");
9598 if (!type)
9599 type = value_type (arg1);
14f9c5c9 9600
1eea4ebd
UW
9601 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9602 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9603
f44316fa
UW
9604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9605 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9606 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9607 return
fbb06eb1 9608 value_from_longest (type,
4c4b4cd2
PH
9609 (value_less (arg1, arg3)
9610 || value_equal (arg1, arg3))
9611 && (value_less (arg2, arg1)
9612 || value_equal (arg2, arg1)));
9613
9614 case TERNOP_IN_RANGE:
9615 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9616 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9617 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9618
9619 if (noside == EVAL_SKIP)
9620 goto nosideret;
9621
f44316fa
UW
9622 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9623 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9624 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9625 return
fbb06eb1 9626 value_from_longest (type,
4c4b4cd2
PH
9627 (value_less (arg1, arg3)
9628 || value_equal (arg1, arg3))
9629 && (value_less (arg2, arg1)
9630 || value_equal (arg2, arg1)));
9631
9632 case OP_ATR_FIRST:
9633 case OP_ATR_LAST:
9634 case OP_ATR_LENGTH:
9635 {
76a01679 9636 struct type *type_arg;
5b4ee69b 9637
76a01679
JB
9638 if (exp->elts[*pos].opcode == OP_TYPE)
9639 {
9640 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9641 arg1 = NULL;
5bc23cb3 9642 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9643 }
9644 else
9645 {
9646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 type_arg = NULL;
9648 }
9649
9650 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9651 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9652 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9653 *pos += 4;
9654
9655 if (noside == EVAL_SKIP)
9656 goto nosideret;
9657
9658 if (type_arg == NULL)
9659 {
9660 arg1 = ada_coerce_ref (arg1);
9661
ad82864c 9662 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9663 arg1 = ada_coerce_to_simple_array (arg1);
9664
1eea4ebd
UW
9665 type = ada_index_type (value_type (arg1), tem,
9666 ada_attribute_name (op));
9667 if (type == NULL)
9668 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9669
9670 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9671 return allocate_value (type);
76a01679
JB
9672
9673 switch (op)
9674 {
9675 default: /* Should never happen. */
323e0a4a 9676 error (_("unexpected attribute encountered"));
76a01679 9677 case OP_ATR_FIRST:
1eea4ebd
UW
9678 return value_from_longest
9679 (type, ada_array_bound (arg1, tem, 0));
76a01679 9680 case OP_ATR_LAST:
1eea4ebd
UW
9681 return value_from_longest
9682 (type, ada_array_bound (arg1, tem, 1));
76a01679 9683 case OP_ATR_LENGTH:
1eea4ebd
UW
9684 return value_from_longest
9685 (type, ada_array_length (arg1, tem));
76a01679
JB
9686 }
9687 }
9688 else if (discrete_type_p (type_arg))
9689 {
9690 struct type *range_type;
9691 char *name = ada_type_name (type_arg);
5b4ee69b 9692
76a01679
JB
9693 range_type = NULL;
9694 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9695 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9696 if (range_type == NULL)
9697 range_type = type_arg;
9698 switch (op)
9699 {
9700 default:
323e0a4a 9701 error (_("unexpected attribute encountered"));
76a01679 9702 case OP_ATR_FIRST:
690cc4eb 9703 return value_from_longest
43bbcdc2 9704 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9705 case OP_ATR_LAST:
690cc4eb 9706 return value_from_longest
43bbcdc2 9707 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9708 case OP_ATR_LENGTH:
323e0a4a 9709 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9710 }
9711 }
9712 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9713 error (_("unimplemented type attribute"));
76a01679
JB
9714 else
9715 {
9716 LONGEST low, high;
9717
ad82864c
JB
9718 if (ada_is_constrained_packed_array_type (type_arg))
9719 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9720
1eea4ebd 9721 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9722 if (type == NULL)
1eea4ebd
UW
9723 type = builtin_type (exp->gdbarch)->builtin_int;
9724
76a01679
JB
9725 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9726 return allocate_value (type);
9727
9728 switch (op)
9729 {
9730 default:
323e0a4a 9731 error (_("unexpected attribute encountered"));
76a01679 9732 case OP_ATR_FIRST:
1eea4ebd 9733 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9734 return value_from_longest (type, low);
9735 case OP_ATR_LAST:
1eea4ebd 9736 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9737 return value_from_longest (type, high);
9738 case OP_ATR_LENGTH:
1eea4ebd
UW
9739 low = ada_array_bound_from_type (type_arg, tem, 0);
9740 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9741 return value_from_longest (type, high - low + 1);
9742 }
9743 }
14f9c5c9
AS
9744 }
9745
4c4b4cd2
PH
9746 case OP_ATR_TAG:
9747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9748 if (noside == EVAL_SKIP)
76a01679 9749 goto nosideret;
4c4b4cd2
PH
9750
9751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9752 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9753
9754 return ada_value_tag (arg1);
9755
9756 case OP_ATR_MIN:
9757 case OP_ATR_MAX:
9758 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9759 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9760 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9761 if (noside == EVAL_SKIP)
76a01679 9762 goto nosideret;
d2e4a39e 9763 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9764 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9765 else
f44316fa
UW
9766 {
9767 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9768 return value_binop (arg1, arg2,
9769 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9770 }
14f9c5c9 9771
4c4b4cd2
PH
9772 case OP_ATR_MODULUS:
9773 {
31dedfee 9774 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9775
5b4ee69b 9776 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9777 if (noside == EVAL_SKIP)
9778 goto nosideret;
4c4b4cd2 9779
76a01679 9780 if (!ada_is_modular_type (type_arg))
323e0a4a 9781 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9782
76a01679
JB
9783 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9784 ada_modulus (type_arg));
4c4b4cd2
PH
9785 }
9786
9787
9788 case OP_ATR_POS:
9789 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9791 if (noside == EVAL_SKIP)
76a01679 9792 goto nosideret;
3cb382c9
UW
9793 type = builtin_type (exp->gdbarch)->builtin_int;
9794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9795 return value_zero (type, not_lval);
14f9c5c9 9796 else
3cb382c9 9797 return value_pos_atr (type, arg1);
14f9c5c9 9798
4c4b4cd2
PH
9799 case OP_ATR_SIZE:
9800 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9801 type = value_type (arg1);
9802
9803 /* If the argument is a reference, then dereference its type, since
9804 the user is really asking for the size of the actual object,
9805 not the size of the pointer. */
9806 if (TYPE_CODE (type) == TYPE_CODE_REF)
9807 type = TYPE_TARGET_TYPE (type);
9808
4c4b4cd2 9809 if (noside == EVAL_SKIP)
76a01679 9810 goto nosideret;
4c4b4cd2 9811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9812 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9813 else
22601c15 9814 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9815 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9816
9817 case OP_ATR_VAL:
9818 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9819 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9820 type = exp->elts[pc + 2].type;
14f9c5c9 9821 if (noside == EVAL_SKIP)
76a01679 9822 goto nosideret;
4c4b4cd2 9823 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9824 return value_zero (type, not_lval);
4c4b4cd2 9825 else
76a01679 9826 return value_val_atr (type, arg1);
4c4b4cd2
PH
9827
9828 case BINOP_EXP:
9829 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9830 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9831 if (noside == EVAL_SKIP)
9832 goto nosideret;
9833 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9834 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9835 else
f44316fa
UW
9836 {
9837 /* For integer exponentiation operations,
9838 only promote the first argument. */
9839 if (is_integral_type (value_type (arg2)))
9840 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9841 else
9842 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9843
9844 return value_binop (arg1, arg2, op);
9845 }
4c4b4cd2
PH
9846
9847 case UNOP_PLUS:
9848 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9849 if (noside == EVAL_SKIP)
9850 goto nosideret;
9851 else
9852 return arg1;
9853
9854 case UNOP_ABS:
9855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9856 if (noside == EVAL_SKIP)
9857 goto nosideret;
f44316fa 9858 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9859 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9860 return value_neg (arg1);
14f9c5c9 9861 else
4c4b4cd2 9862 return arg1;
14f9c5c9
AS
9863
9864 case UNOP_IND:
6b0d7253 9865 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9866 if (noside == EVAL_SKIP)
4c4b4cd2 9867 goto nosideret;
df407dfe 9868 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9869 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9870 {
9871 if (ada_is_array_descriptor_type (type))
9872 /* GDB allows dereferencing GNAT array descriptors. */
9873 {
9874 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9875
4c4b4cd2 9876 if (arrType == NULL)
323e0a4a 9877 error (_("Attempt to dereference null array pointer."));
00a4c844 9878 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9879 }
9880 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9881 || TYPE_CODE (type) == TYPE_CODE_REF
9882 /* In C you can dereference an array to get the 1st elt. */
9883 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9884 {
9885 type = to_static_fixed_type
9886 (ada_aligned_type
9887 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9888 check_size (type);
9889 return value_zero (type, lval_memory);
9890 }
4c4b4cd2 9891 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9892 {
9893 /* GDB allows dereferencing an int. */
9894 if (expect_type == NULL)
9895 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9896 lval_memory);
9897 else
9898 {
9899 expect_type =
9900 to_static_fixed_type (ada_aligned_type (expect_type));
9901 return value_zero (expect_type, lval_memory);
9902 }
9903 }
4c4b4cd2 9904 else
323e0a4a 9905 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9906 }
0963b4bd 9907 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9908 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9909
96967637
JB
9910 if (TYPE_CODE (type) == TYPE_CODE_INT)
9911 /* GDB allows dereferencing an int. If we were given
9912 the expect_type, then use that as the target type.
9913 Otherwise, assume that the target type is an int. */
9914 {
9915 if (expect_type != NULL)
9916 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9917 arg1));
9918 else
9919 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9920 (CORE_ADDR) value_as_address (arg1));
9921 }
6b0d7253 9922
4c4b4cd2
PH
9923 if (ada_is_array_descriptor_type (type))
9924 /* GDB allows dereferencing GNAT array descriptors. */
9925 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9926 else
4c4b4cd2 9927 return ada_value_ind (arg1);
14f9c5c9
AS
9928
9929 case STRUCTOP_STRUCT:
9930 tem = longest_to_int (exp->elts[pc + 1].longconst);
9931 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9932 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9933 if (noside == EVAL_SKIP)
4c4b4cd2 9934 goto nosideret;
14f9c5c9 9935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9936 {
df407dfe 9937 struct type *type1 = value_type (arg1);
5b4ee69b 9938
76a01679
JB
9939 if (ada_is_tagged_type (type1, 1))
9940 {
9941 type = ada_lookup_struct_elt_type (type1,
9942 &exp->elts[pc + 2].string,
9943 1, 1, NULL);
9944 if (type == NULL)
9945 /* In this case, we assume that the field COULD exist
9946 in some extension of the type. Return an object of
9947 "type" void, which will match any formal
0963b4bd 9948 (see ada_type_match). */
30b15541
UW
9949 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9950 lval_memory);
76a01679
JB
9951 }
9952 else
9953 type =
9954 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9955 0, NULL);
9956
9957 return value_zero (ada_aligned_type (type), lval_memory);
9958 }
14f9c5c9 9959 else
284614f0
JB
9960 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9961 arg1 = unwrap_value (arg1);
9962 return ada_to_fixed_value (arg1);
9963
14f9c5c9 9964 case OP_TYPE:
4c4b4cd2
PH
9965 /* The value is not supposed to be used. This is here to make it
9966 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9967 (*pos) += 2;
9968 if (noside == EVAL_SKIP)
4c4b4cd2 9969 goto nosideret;
14f9c5c9 9970 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9971 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9972 else
323e0a4a 9973 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9974
9975 case OP_AGGREGATE:
9976 case OP_CHOICES:
9977 case OP_OTHERS:
9978 case OP_DISCRETE_RANGE:
9979 case OP_POSITIONAL:
9980 case OP_NAME:
9981 if (noside == EVAL_NORMAL)
9982 switch (op)
9983 {
9984 case OP_NAME:
9985 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9986 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9987 case OP_AGGREGATE:
9988 error (_("Aggregates only allowed on the right of an assignment"));
9989 default:
0963b4bd
MS
9990 internal_error (__FILE__, __LINE__,
9991 _("aggregate apparently mangled"));
52ce6436
PH
9992 }
9993
9994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9995 *pos += oplen - 1;
9996 for (tem = 0; tem < nargs; tem += 1)
9997 ada_evaluate_subexp (NULL, exp, pos, noside);
9998 goto nosideret;
14f9c5c9
AS
9999 }
10000
10001nosideret:
22601c15 10002 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10003}
14f9c5c9 10004\f
d2e4a39e 10005
4c4b4cd2 10006 /* Fixed point */
14f9c5c9
AS
10007
10008/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10009 type name that encodes the 'small and 'delta information.
4c4b4cd2 10010 Otherwise, return NULL. */
14f9c5c9 10011
d2e4a39e 10012static const char *
ebf56fd3 10013fixed_type_info (struct type *type)
14f9c5c9 10014{
d2e4a39e 10015 const char *name = ada_type_name (type);
14f9c5c9
AS
10016 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10017
d2e4a39e
AS
10018 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10019 {
14f9c5c9 10020 const char *tail = strstr (name, "___XF_");
5b4ee69b 10021
14f9c5c9 10022 if (tail == NULL)
4c4b4cd2 10023 return NULL;
d2e4a39e 10024 else
4c4b4cd2 10025 return tail + 5;
14f9c5c9
AS
10026 }
10027 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10028 return fixed_type_info (TYPE_TARGET_TYPE (type));
10029 else
10030 return NULL;
10031}
10032
4c4b4cd2 10033/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10034
10035int
ebf56fd3 10036ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10037{
10038 return fixed_type_info (type) != NULL;
10039}
10040
4c4b4cd2
PH
10041/* Return non-zero iff TYPE represents a System.Address type. */
10042
10043int
10044ada_is_system_address_type (struct type *type)
10045{
10046 return (TYPE_NAME (type)
10047 && strcmp (TYPE_NAME (type), "system__address") == 0);
10048}
10049
14f9c5c9
AS
10050/* Assuming that TYPE is the representation of an Ada fixed-point
10051 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10052 delta cannot be determined. */
14f9c5c9
AS
10053
10054DOUBLEST
ebf56fd3 10055ada_delta (struct type *type)
14f9c5c9
AS
10056{
10057 const char *encoding = fixed_type_info (type);
facc390f 10058 DOUBLEST num, den;
14f9c5c9 10059
facc390f
JB
10060 /* Strictly speaking, num and den are encoded as integer. However,
10061 they may not fit into a long, and they will have to be converted
10062 to DOUBLEST anyway. So scan them as DOUBLEST. */
10063 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10064 &num, &den) < 2)
14f9c5c9 10065 return -1.0;
d2e4a39e 10066 else
facc390f 10067 return num / den;
14f9c5c9
AS
10068}
10069
10070/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10071 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10072
10073static DOUBLEST
ebf56fd3 10074scaling_factor (struct type *type)
14f9c5c9
AS
10075{
10076 const char *encoding = fixed_type_info (type);
facc390f 10077 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10078 int n;
d2e4a39e 10079
facc390f
JB
10080 /* Strictly speaking, num's and den's are encoded as integer. However,
10081 they may not fit into a long, and they will have to be converted
10082 to DOUBLEST anyway. So scan them as DOUBLEST. */
10083 n = sscanf (encoding,
10084 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10085 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10086 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10087
10088 if (n < 2)
10089 return 1.0;
10090 else if (n == 4)
facc390f 10091 return num1 / den1;
d2e4a39e 10092 else
facc390f 10093 return num0 / den0;
14f9c5c9
AS
10094}
10095
10096
10097/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10098 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10099
10100DOUBLEST
ebf56fd3 10101ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10102{
d2e4a39e 10103 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10104}
10105
4c4b4cd2
PH
10106/* The representation of a fixed-point value of type TYPE
10107 corresponding to the value X. */
14f9c5c9
AS
10108
10109LONGEST
ebf56fd3 10110ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10111{
10112 return (LONGEST) (x / scaling_factor (type) + 0.5);
10113}
10114
14f9c5c9 10115\f
d2e4a39e 10116
4c4b4cd2 10117 /* Range types */
14f9c5c9
AS
10118
10119/* Scan STR beginning at position K for a discriminant name, and
10120 return the value of that discriminant field of DVAL in *PX. If
10121 PNEW_K is not null, put the position of the character beyond the
10122 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10123 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10124
10125static int
07d8f827 10126scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10127 int *pnew_k)
14f9c5c9
AS
10128{
10129 static char *bound_buffer = NULL;
10130 static size_t bound_buffer_len = 0;
10131 char *bound;
10132 char *pend;
d2e4a39e 10133 struct value *bound_val;
14f9c5c9
AS
10134
10135 if (dval == NULL || str == NULL || str[k] == '\0')
10136 return 0;
10137
d2e4a39e 10138 pend = strstr (str + k, "__");
14f9c5c9
AS
10139 if (pend == NULL)
10140 {
d2e4a39e 10141 bound = str + k;
14f9c5c9
AS
10142 k += strlen (bound);
10143 }
d2e4a39e 10144 else
14f9c5c9 10145 {
d2e4a39e 10146 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10147 bound = bound_buffer;
d2e4a39e
AS
10148 strncpy (bound_buffer, str + k, pend - (str + k));
10149 bound[pend - (str + k)] = '\0';
10150 k = pend - str;
14f9c5c9 10151 }
d2e4a39e 10152
df407dfe 10153 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10154 if (bound_val == NULL)
10155 return 0;
10156
10157 *px = value_as_long (bound_val);
10158 if (pnew_k != NULL)
10159 *pnew_k = k;
10160 return 1;
10161}
10162
10163/* Value of variable named NAME in the current environment. If
10164 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10165 otherwise causes an error with message ERR_MSG. */
10166
d2e4a39e
AS
10167static struct value *
10168get_var_value (char *name, char *err_msg)
14f9c5c9 10169{
4c4b4cd2 10170 struct ada_symbol_info *syms;
14f9c5c9
AS
10171 int nsyms;
10172
4c4b4cd2
PH
10173 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10174 &syms);
14f9c5c9
AS
10175
10176 if (nsyms != 1)
10177 {
10178 if (err_msg == NULL)
4c4b4cd2 10179 return 0;
14f9c5c9 10180 else
8a3fe4f8 10181 error (("%s"), err_msg);
14f9c5c9
AS
10182 }
10183
4c4b4cd2 10184 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10185}
d2e4a39e 10186
14f9c5c9 10187/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10188 no such variable found, returns 0, and sets *FLAG to 0. If
10189 successful, sets *FLAG to 1. */
10190
14f9c5c9 10191LONGEST
4c4b4cd2 10192get_int_var_value (char *name, int *flag)
14f9c5c9 10193{
4c4b4cd2 10194 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10195
14f9c5c9
AS
10196 if (var_val == 0)
10197 {
10198 if (flag != NULL)
4c4b4cd2 10199 *flag = 0;
14f9c5c9
AS
10200 return 0;
10201 }
10202 else
10203 {
10204 if (flag != NULL)
4c4b4cd2 10205 *flag = 1;
14f9c5c9
AS
10206 return value_as_long (var_val);
10207 }
10208}
d2e4a39e 10209
14f9c5c9
AS
10210
10211/* Return a range type whose base type is that of the range type named
10212 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10213 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10214 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10215 corresponding range type from debug information; fall back to using it
10216 if symbol lookup fails. If a new type must be created, allocate it
10217 like ORIG_TYPE was. The bounds information, in general, is encoded
10218 in NAME, the base type given in the named range type. */
14f9c5c9 10219
d2e4a39e 10220static struct type *
28c85d6c 10221to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10222{
28c85d6c 10223 char *name;
14f9c5c9 10224 struct type *base_type;
d2e4a39e 10225 char *subtype_info;
14f9c5c9 10226
28c85d6c
JB
10227 gdb_assert (raw_type != NULL);
10228 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10229
1ce677a4 10230 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10231 base_type = TYPE_TARGET_TYPE (raw_type);
10232 else
10233 base_type = raw_type;
10234
28c85d6c 10235 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10236 subtype_info = strstr (name, "___XD");
10237 if (subtype_info == NULL)
690cc4eb 10238 {
43bbcdc2
PH
10239 LONGEST L = ada_discrete_type_low_bound (raw_type);
10240 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10241
690cc4eb
PH
10242 if (L < INT_MIN || U > INT_MAX)
10243 return raw_type;
10244 else
28c85d6c 10245 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10246 ada_discrete_type_low_bound (raw_type),
10247 ada_discrete_type_high_bound (raw_type));
690cc4eb 10248 }
14f9c5c9
AS
10249 else
10250 {
10251 static char *name_buf = NULL;
10252 static size_t name_len = 0;
10253 int prefix_len = subtype_info - name;
10254 LONGEST L, U;
10255 struct type *type;
10256 char *bounds_str;
10257 int n;
10258
10259 GROW_VECT (name_buf, name_len, prefix_len + 5);
10260 strncpy (name_buf, name, prefix_len);
10261 name_buf[prefix_len] = '\0';
10262
10263 subtype_info += 5;
10264 bounds_str = strchr (subtype_info, '_');
10265 n = 1;
10266
d2e4a39e 10267 if (*subtype_info == 'L')
4c4b4cd2
PH
10268 {
10269 if (!ada_scan_number (bounds_str, n, &L, &n)
10270 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10271 return raw_type;
10272 if (bounds_str[n] == '_')
10273 n += 2;
0963b4bd 10274 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10275 n += 1;
10276 subtype_info += 1;
10277 }
d2e4a39e 10278 else
4c4b4cd2
PH
10279 {
10280 int ok;
5b4ee69b 10281
4c4b4cd2
PH
10282 strcpy (name_buf + prefix_len, "___L");
10283 L = get_int_var_value (name_buf, &ok);
10284 if (!ok)
10285 {
323e0a4a 10286 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10287 L = 1;
10288 }
10289 }
14f9c5c9 10290
d2e4a39e 10291 if (*subtype_info == 'U')
4c4b4cd2
PH
10292 {
10293 if (!ada_scan_number (bounds_str, n, &U, &n)
10294 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10295 return raw_type;
10296 }
d2e4a39e 10297 else
4c4b4cd2
PH
10298 {
10299 int ok;
5b4ee69b 10300
4c4b4cd2
PH
10301 strcpy (name_buf + prefix_len, "___U");
10302 U = get_int_var_value (name_buf, &ok);
10303 if (!ok)
10304 {
323e0a4a 10305 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10306 U = L;
10307 }
10308 }
14f9c5c9 10309
28c85d6c 10310 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10311 TYPE_NAME (type) = name;
14f9c5c9
AS
10312 return type;
10313 }
10314}
10315
4c4b4cd2
PH
10316/* True iff NAME is the name of a range type. */
10317
14f9c5c9 10318int
d2e4a39e 10319ada_is_range_type_name (const char *name)
14f9c5c9
AS
10320{
10321 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10322}
14f9c5c9 10323\f
d2e4a39e 10324
4c4b4cd2
PH
10325 /* Modular types */
10326
10327/* True iff TYPE is an Ada modular type. */
14f9c5c9 10328
14f9c5c9 10329int
d2e4a39e 10330ada_is_modular_type (struct type *type)
14f9c5c9 10331{
4c4b4cd2 10332 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10333
10334 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10335 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10336 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10337}
10338
0056e4d5
JB
10339/* Try to determine the lower and upper bounds of the given modular type
10340 using the type name only. Return non-zero and set L and U as the lower
10341 and upper bounds (respectively) if successful. */
10342
10343int
10344ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10345{
10346 char *name = ada_type_name (type);
10347 char *suffix;
10348 int k;
10349 LONGEST U;
10350
10351 if (name == NULL)
10352 return 0;
10353
10354 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10355 we are looking for static bounds, which means an __XDLU suffix.
10356 Moreover, we know that the lower bound of modular types is always
10357 zero, so the actual suffix should start with "__XDLU_0__", and
10358 then be followed by the upper bound value. */
10359 suffix = strstr (name, "__XDLU_0__");
10360 if (suffix == NULL)
10361 return 0;
10362 k = 10;
10363 if (!ada_scan_number (suffix, k, &U, NULL))
10364 return 0;
10365
10366 *modulus = (ULONGEST) U + 1;
10367 return 1;
10368}
10369
4c4b4cd2
PH
10370/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10371
61ee279c 10372ULONGEST
0056e4d5 10373ada_modulus (struct type *type)
14f9c5c9 10374{
43bbcdc2 10375 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10376}
d2e4a39e 10377\f
f7f9143b
JB
10378
10379/* Ada exception catchpoint support:
10380 ---------------------------------
10381
10382 We support 3 kinds of exception catchpoints:
10383 . catchpoints on Ada exceptions
10384 . catchpoints on unhandled Ada exceptions
10385 . catchpoints on failed assertions
10386
10387 Exceptions raised during failed assertions, or unhandled exceptions
10388 could perfectly be caught with the general catchpoint on Ada exceptions.
10389 However, we can easily differentiate these two special cases, and having
10390 the option to distinguish these two cases from the rest can be useful
10391 to zero-in on certain situations.
10392
10393 Exception catchpoints are a specialized form of breakpoint,
10394 since they rely on inserting breakpoints inside known routines
10395 of the GNAT runtime. The implementation therefore uses a standard
10396 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10397 of breakpoint_ops.
10398
0259addd
JB
10399 Support in the runtime for exception catchpoints have been changed
10400 a few times already, and these changes affect the implementation
10401 of these catchpoints. In order to be able to support several
10402 variants of the runtime, we use a sniffer that will determine
28010a5d 10403 the runtime variant used by the program being debugged. */
f7f9143b
JB
10404
10405/* The different types of catchpoints that we introduced for catching
10406 Ada exceptions. */
10407
10408enum exception_catchpoint_kind
10409{
10410 ex_catch_exception,
10411 ex_catch_exception_unhandled,
10412 ex_catch_assert
10413};
10414
3d0b0fa3
JB
10415/* Ada's standard exceptions. */
10416
10417static char *standard_exc[] = {
10418 "constraint_error",
10419 "program_error",
10420 "storage_error",
10421 "tasking_error"
10422};
10423
0259addd
JB
10424typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10425
10426/* A structure that describes how to support exception catchpoints
10427 for a given executable. */
10428
10429struct exception_support_info
10430{
10431 /* The name of the symbol to break on in order to insert
10432 a catchpoint on exceptions. */
10433 const char *catch_exception_sym;
10434
10435 /* The name of the symbol to break on in order to insert
10436 a catchpoint on unhandled exceptions. */
10437 const char *catch_exception_unhandled_sym;
10438
10439 /* The name of the symbol to break on in order to insert
10440 a catchpoint on failed assertions. */
10441 const char *catch_assert_sym;
10442
10443 /* Assuming that the inferior just triggered an unhandled exception
10444 catchpoint, this function is responsible for returning the address
10445 in inferior memory where the name of that exception is stored.
10446 Return zero if the address could not be computed. */
10447 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10448};
10449
10450static CORE_ADDR ada_unhandled_exception_name_addr (void);
10451static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10452
10453/* The following exception support info structure describes how to
10454 implement exception catchpoints with the latest version of the
10455 Ada runtime (as of 2007-03-06). */
10456
10457static const struct exception_support_info default_exception_support_info =
10458{
10459 "__gnat_debug_raise_exception", /* catch_exception_sym */
10460 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10461 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10462 ada_unhandled_exception_name_addr
10463};
10464
10465/* The following exception support info structure describes how to
10466 implement exception catchpoints with a slightly older version
10467 of the Ada runtime. */
10468
10469static const struct exception_support_info exception_support_info_fallback =
10470{
10471 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10472 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10473 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10474 ada_unhandled_exception_name_addr_from_raise
10475};
10476
10477/* For each executable, we sniff which exception info structure to use
10478 and cache it in the following global variable. */
10479
10480static const struct exception_support_info *exception_info = NULL;
10481
10482/* Inspect the Ada runtime and determine which exception info structure
10483 should be used to provide support for exception catchpoints.
10484
10485 This function will always set exception_info, or raise an error. */
10486
10487static void
10488ada_exception_support_info_sniffer (void)
10489{
10490 struct symbol *sym;
10491
10492 /* If the exception info is already known, then no need to recompute it. */
10493 if (exception_info != NULL)
10494 return;
10495
10496 /* Check the latest (default) exception support info. */
10497 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10498 NULL, VAR_DOMAIN);
10499 if (sym != NULL)
10500 {
10501 exception_info = &default_exception_support_info;
10502 return;
10503 }
10504
10505 /* Try our fallback exception suport info. */
10506 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10507 NULL, VAR_DOMAIN);
10508 if (sym != NULL)
10509 {
10510 exception_info = &exception_support_info_fallback;
10511 return;
10512 }
10513
10514 /* Sometimes, it is normal for us to not be able to find the routine
10515 we are looking for. This happens when the program is linked with
10516 the shared version of the GNAT runtime, and the program has not been
10517 started yet. Inform the user of these two possible causes if
10518 applicable. */
10519
ccefe4c4 10520 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10521 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10522
10523 /* If the symbol does not exist, then check that the program is
10524 already started, to make sure that shared libraries have been
10525 loaded. If it is not started, this may mean that the symbol is
10526 in a shared library. */
10527
10528 if (ptid_get_pid (inferior_ptid) == 0)
10529 error (_("Unable to insert catchpoint. Try to start the program first."));
10530
10531 /* At this point, we know that we are debugging an Ada program and
10532 that the inferior has been started, but we still are not able to
0963b4bd 10533 find the run-time symbols. That can mean that we are in
0259addd
JB
10534 configurable run time mode, or that a-except as been optimized
10535 out by the linker... In any case, at this point it is not worth
10536 supporting this feature. */
10537
10538 error (_("Cannot insert catchpoints in this configuration."));
10539}
10540
10541/* An observer of "executable_changed" events.
10542 Its role is to clear certain cached values that need to be recomputed
10543 each time a new executable is loaded by GDB. */
10544
10545static void
781b42b0 10546ada_executable_changed_observer (void)
0259addd
JB
10547{
10548 /* If the executable changed, then it is possible that the Ada runtime
10549 is different. So we need to invalidate the exception support info
10550 cache. */
10551 exception_info = NULL;
10552}
10553
f7f9143b
JB
10554/* True iff FRAME is very likely to be that of a function that is
10555 part of the runtime system. This is all very heuristic, but is
10556 intended to be used as advice as to what frames are uninteresting
10557 to most users. */
10558
10559static int
10560is_known_support_routine (struct frame_info *frame)
10561{
4ed6b5be 10562 struct symtab_and_line sal;
f7f9143b 10563 char *func_name;
692465f1 10564 enum language func_lang;
f7f9143b 10565 int i;
f7f9143b 10566
4ed6b5be
JB
10567 /* If this code does not have any debugging information (no symtab),
10568 This cannot be any user code. */
f7f9143b 10569
4ed6b5be 10570 find_frame_sal (frame, &sal);
f7f9143b
JB
10571 if (sal.symtab == NULL)
10572 return 1;
10573
4ed6b5be
JB
10574 /* If there is a symtab, but the associated source file cannot be
10575 located, then assume this is not user code: Selecting a frame
10576 for which we cannot display the code would not be very helpful
10577 for the user. This should also take care of case such as VxWorks
10578 where the kernel has some debugging info provided for a few units. */
f7f9143b 10579
9bbc9174 10580 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10581 return 1;
10582
4ed6b5be
JB
10583 /* Check the unit filename againt the Ada runtime file naming.
10584 We also check the name of the objfile against the name of some
10585 known system libraries that sometimes come with debugging info
10586 too. */
10587
f7f9143b
JB
10588 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10589 {
10590 re_comp (known_runtime_file_name_patterns[i]);
10591 if (re_exec (sal.symtab->filename))
10592 return 1;
4ed6b5be
JB
10593 if (sal.symtab->objfile != NULL
10594 && re_exec (sal.symtab->objfile->name))
10595 return 1;
f7f9143b
JB
10596 }
10597
4ed6b5be 10598 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10599
e9e07ba6 10600 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10601 if (func_name == NULL)
10602 return 1;
10603
10604 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10605 {
10606 re_comp (known_auxiliary_function_name_patterns[i]);
10607 if (re_exec (func_name))
10608 return 1;
10609 }
10610
10611 return 0;
10612}
10613
10614/* Find the first frame that contains debugging information and that is not
10615 part of the Ada run-time, starting from FI and moving upward. */
10616
0ef643c8 10617void
f7f9143b
JB
10618ada_find_printable_frame (struct frame_info *fi)
10619{
10620 for (; fi != NULL; fi = get_prev_frame (fi))
10621 {
10622 if (!is_known_support_routine (fi))
10623 {
10624 select_frame (fi);
10625 break;
10626 }
10627 }
10628
10629}
10630
10631/* Assuming that the inferior just triggered an unhandled exception
10632 catchpoint, return the address in inferior memory where the name
10633 of the exception is stored.
10634
10635 Return zero if the address could not be computed. */
10636
10637static CORE_ADDR
10638ada_unhandled_exception_name_addr (void)
0259addd
JB
10639{
10640 return parse_and_eval_address ("e.full_name");
10641}
10642
10643/* Same as ada_unhandled_exception_name_addr, except that this function
10644 should be used when the inferior uses an older version of the runtime,
10645 where the exception name needs to be extracted from a specific frame
10646 several frames up in the callstack. */
10647
10648static CORE_ADDR
10649ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10650{
10651 int frame_level;
10652 struct frame_info *fi;
10653
10654 /* To determine the name of this exception, we need to select
10655 the frame corresponding to RAISE_SYM_NAME. This frame is
10656 at least 3 levels up, so we simply skip the first 3 frames
10657 without checking the name of their associated function. */
10658 fi = get_current_frame ();
10659 for (frame_level = 0; frame_level < 3; frame_level += 1)
10660 if (fi != NULL)
10661 fi = get_prev_frame (fi);
10662
10663 while (fi != NULL)
10664 {
692465f1
JB
10665 char *func_name;
10666 enum language func_lang;
10667
e9e07ba6 10668 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10669 if (func_name != NULL
0259addd 10670 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10671 break; /* We found the frame we were looking for... */
10672 fi = get_prev_frame (fi);
10673 }
10674
10675 if (fi == NULL)
10676 return 0;
10677
10678 select_frame (fi);
10679 return parse_and_eval_address ("id.full_name");
10680}
10681
10682/* Assuming the inferior just triggered an Ada exception catchpoint
10683 (of any type), return the address in inferior memory where the name
10684 of the exception is stored, if applicable.
10685
10686 Return zero if the address could not be computed, or if not relevant. */
10687
10688static CORE_ADDR
10689ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10690 struct breakpoint *b)
10691{
10692 switch (ex)
10693 {
10694 case ex_catch_exception:
10695 return (parse_and_eval_address ("e.full_name"));
10696 break;
10697
10698 case ex_catch_exception_unhandled:
0259addd 10699 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10700 break;
10701
10702 case ex_catch_assert:
10703 return 0; /* Exception name is not relevant in this case. */
10704 break;
10705
10706 default:
10707 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10708 break;
10709 }
10710
10711 return 0; /* Should never be reached. */
10712}
10713
10714/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10715 any error that ada_exception_name_addr_1 might cause to be thrown.
10716 When an error is intercepted, a warning with the error message is printed,
10717 and zero is returned. */
10718
10719static CORE_ADDR
10720ada_exception_name_addr (enum exception_catchpoint_kind ex,
10721 struct breakpoint *b)
10722{
10723 struct gdb_exception e;
10724 CORE_ADDR result = 0;
10725
10726 TRY_CATCH (e, RETURN_MASK_ERROR)
10727 {
10728 result = ada_exception_name_addr_1 (ex, b);
10729 }
10730
10731 if (e.reason < 0)
10732 {
10733 warning (_("failed to get exception name: %s"), e.message);
10734 return 0;
10735 }
10736
10737 return result;
10738}
10739
28010a5d
PA
10740static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10741 char *, char **,
10742 struct breakpoint_ops **);
10743static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10744
10745/* Ada catchpoints.
10746
10747 In the case of catchpoints on Ada exceptions, the catchpoint will
10748 stop the target on every exception the program throws. When a user
10749 specifies the name of a specific exception, we translate this
10750 request into a condition expression (in text form), and then parse
10751 it into an expression stored in each of the catchpoint's locations.
10752 We then use this condition to check whether the exception that was
10753 raised is the one the user is interested in. If not, then the
10754 target is resumed again. We store the name of the requested
10755 exception, in order to be able to re-set the condition expression
10756 when symbols change. */
10757
10758/* An instance of this type is used to represent an Ada catchpoint
10759 breakpoint location. It includes a "struct bp_location" as a kind
10760 of base class; users downcast to "struct bp_location *" when
10761 needed. */
10762
10763struct ada_catchpoint_location
10764{
10765 /* The base class. */
10766 struct bp_location base;
10767
10768 /* The condition that checks whether the exception that was raised
10769 is the specific exception the user specified on catchpoint
10770 creation. */
10771 struct expression *excep_cond_expr;
10772};
10773
10774/* Implement the DTOR method in the bp_location_ops structure for all
10775 Ada exception catchpoint kinds. */
10776
10777static void
10778ada_catchpoint_location_dtor (struct bp_location *bl)
10779{
10780 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
10781
10782 xfree (al->excep_cond_expr);
10783}
10784
10785/* The vtable to be used in Ada catchpoint locations. */
10786
10787static const struct bp_location_ops ada_catchpoint_location_ops =
10788{
10789 ada_catchpoint_location_dtor
10790};
10791
10792/* An instance of this type is used to represent an Ada catchpoint.
10793 It includes a "struct breakpoint" as a kind of base class; users
10794 downcast to "struct breakpoint *" when needed. */
10795
10796struct ada_catchpoint
10797{
10798 /* The base class. */
10799 struct breakpoint base;
10800
10801 /* The name of the specific exception the user specified. */
10802 char *excep_string;
10803};
10804
10805/* Parse the exception condition string in the context of each of the
10806 catchpoint's locations, and store them for later evaluation. */
10807
10808static void
10809create_excep_cond_exprs (struct ada_catchpoint *c)
10810{
10811 struct cleanup *old_chain;
10812 struct bp_location *bl;
10813 char *cond_string;
10814
10815 /* Nothing to do if there's no specific exception to catch. */
10816 if (c->excep_string == NULL)
10817 return;
10818
10819 /* Same if there are no locations... */
10820 if (c->base.loc == NULL)
10821 return;
10822
10823 /* Compute the condition expression in text form, from the specific
10824 expection we want to catch. */
10825 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
10826 old_chain = make_cleanup (xfree, cond_string);
10827
10828 /* Iterate over all the catchpoint's locations, and parse an
10829 expression for each. */
10830 for (bl = c->base.loc; bl != NULL; bl = bl->next)
10831 {
10832 struct ada_catchpoint_location *ada_loc
10833 = (struct ada_catchpoint_location *) bl;
10834 struct expression *exp = NULL;
10835
10836 if (!bl->shlib_disabled)
10837 {
10838 volatile struct gdb_exception e;
10839 char *s;
10840
10841 s = cond_string;
10842 TRY_CATCH (e, RETURN_MASK_ERROR)
10843 {
10844 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
10845 }
10846 if (e.reason < 0)
10847 warning (_("failed to reevaluate internal exception condition "
10848 "for catchpoint %d: %s"),
10849 c->base.number, e.message);
10850 }
10851
10852 ada_loc->excep_cond_expr = exp;
10853 }
10854
10855 do_cleanups (old_chain);
10856}
10857
10858/* Implement the DTOR method in the breakpoint_ops structure for all
10859 exception catchpoint kinds. */
10860
10861static void
10862dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10863{
10864 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
10865
10866 xfree (c->excep_string);
10867}
10868
10869/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
10870 structure for all exception catchpoint kinds. */
10871
10872static struct bp_location *
10873allocate_location_exception (enum exception_catchpoint_kind ex,
10874 struct breakpoint *self)
10875{
10876 struct ada_catchpoint_location *loc;
10877
10878 loc = XNEW (struct ada_catchpoint_location);
10879 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
10880 loc->excep_cond_expr = NULL;
10881 return &loc->base;
10882}
10883
10884/* Implement the RE_SET method in the breakpoint_ops structure for all
10885 exception catchpoint kinds. */
10886
10887static void
10888re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10889{
10890 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
10891
10892 /* Call the base class's method. This updates the catchpoint's
10893 locations. */
10894 breakpoint_re_set_default (b);
10895
10896 /* Reparse the exception conditional expressions. One for each
10897 location. */
10898 create_excep_cond_exprs (c);
10899}
10900
10901/* Returns true if we should stop for this breakpoint hit. If the
10902 user specified a specific exception, we only want to cause a stop
10903 if the program thrown that exception. */
10904
10905static int
10906should_stop_exception (const struct bp_location *bl)
10907{
10908 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
10909 const struct ada_catchpoint_location *ada_loc
10910 = (const struct ada_catchpoint_location *) bl;
10911 volatile struct gdb_exception ex;
10912 int stop;
10913
10914 /* With no specific exception, should always stop. */
10915 if (c->excep_string == NULL)
10916 return 1;
10917
10918 if (ada_loc->excep_cond_expr == NULL)
10919 {
10920 /* We will have a NULL expression if back when we were creating
10921 the expressions, this location's had failed to parse. */
10922 return 1;
10923 }
10924
10925 stop = 1;
10926 TRY_CATCH (ex, RETURN_MASK_ALL)
10927 {
10928 struct value *mark;
10929
10930 mark = value_mark ();
10931 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
10932 value_free_to_mark (mark);
10933 }
10934 if (ex.reason < 0)
10935 exception_fprintf (gdb_stderr, ex,
10936 _("Error in testing exception condition:\n"));
10937 return stop;
10938}
10939
10940/* Implement the CHECK_STATUS method in the breakpoint_ops structure
10941 for all exception catchpoint kinds. */
10942
10943static void
10944check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
10945{
10946 bs->stop = should_stop_exception (bs->bp_location_at);
10947}
10948
f7f9143b
JB
10949/* Implement the PRINT_IT method in the breakpoint_ops structure
10950 for all exception catchpoint kinds. */
10951
10952static enum print_stop_action
10953print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10954{
956a9fb9 10955 annotate_catchpoint (b->number);
f7f9143b 10956
956a9fb9 10957 if (ui_out_is_mi_like_p (uiout))
f7f9143b 10958 {
956a9fb9
JB
10959 ui_out_field_string (uiout, "reason",
10960 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10961 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
10962 }
10963
956a9fb9
JB
10964 ui_out_text (uiout, "\nCatchpoint ");
10965 ui_out_field_int (uiout, "bkptno", b->number);
10966 ui_out_text (uiout, ", ");
f7f9143b 10967
f7f9143b
JB
10968 switch (ex)
10969 {
10970 case ex_catch_exception:
f7f9143b 10971 case ex_catch_exception_unhandled:
956a9fb9
JB
10972 {
10973 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10974 char exception_name[256];
10975
10976 if (addr != 0)
10977 {
10978 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10979 exception_name [sizeof (exception_name) - 1] = '\0';
10980 }
10981 else
10982 {
10983 /* For some reason, we were unable to read the exception
10984 name. This could happen if the Runtime was compiled
10985 without debugging info, for instance. In that case,
10986 just replace the exception name by the generic string
10987 "exception" - it will read as "an exception" in the
10988 notification we are about to print. */
967cff16 10989 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
10990 }
10991 /* In the case of unhandled exception breakpoints, we print
10992 the exception name as "unhandled EXCEPTION_NAME", to make
10993 it clearer to the user which kind of catchpoint just got
10994 hit. We used ui_out_text to make sure that this extra
10995 info does not pollute the exception name in the MI case. */
10996 if (ex == ex_catch_exception_unhandled)
10997 ui_out_text (uiout, "unhandled ");
10998 ui_out_field_string (uiout, "exception-name", exception_name);
10999 }
11000 break;
f7f9143b 11001 case ex_catch_assert:
956a9fb9
JB
11002 /* In this case, the name of the exception is not really
11003 important. Just print "failed assertion" to make it clearer
11004 that his program just hit an assertion-failure catchpoint.
11005 We used ui_out_text because this info does not belong in
11006 the MI output. */
11007 ui_out_text (uiout, "failed assertion");
11008 break;
f7f9143b 11009 }
956a9fb9
JB
11010 ui_out_text (uiout, " at ");
11011 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11012
11013 return PRINT_SRC_AND_LOC;
11014}
11015
11016/* Implement the PRINT_ONE method in the breakpoint_ops structure
11017 for all exception catchpoint kinds. */
11018
11019static void
11020print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11021 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11022{
28010a5d 11023 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11024 struct value_print_options opts;
11025
11026 get_user_print_options (&opts);
11027 if (opts.addressprint)
f7f9143b
JB
11028 {
11029 annotate_field (4);
5af949e3 11030 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11031 }
11032
11033 annotate_field (5);
a6d9a66e 11034 *last_loc = b->loc;
f7f9143b
JB
11035 switch (ex)
11036 {
11037 case ex_catch_exception:
28010a5d 11038 if (c->excep_string != NULL)
f7f9143b 11039 {
28010a5d
PA
11040 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11041
f7f9143b
JB
11042 ui_out_field_string (uiout, "what", msg);
11043 xfree (msg);
11044 }
11045 else
11046 ui_out_field_string (uiout, "what", "all Ada exceptions");
11047
11048 break;
11049
11050 case ex_catch_exception_unhandled:
11051 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11052 break;
11053
11054 case ex_catch_assert:
11055 ui_out_field_string (uiout, "what", "failed Ada assertions");
11056 break;
11057
11058 default:
11059 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11060 break;
11061 }
11062}
11063
11064/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11065 for all exception catchpoint kinds. */
11066
11067static void
11068print_mention_exception (enum exception_catchpoint_kind ex,
11069 struct breakpoint *b)
11070{
28010a5d
PA
11071 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11072
f7f9143b
JB
11073 switch (ex)
11074 {
11075 case ex_catch_exception:
28010a5d 11076 if (c->excep_string != NULL)
f7f9143b 11077 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
28010a5d 11078 b->number, c->excep_string);
f7f9143b
JB
11079 else
11080 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
11081
11082 break;
11083
11084 case ex_catch_exception_unhandled:
11085 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
11086 b->number);
11087 break;
11088
11089 case ex_catch_assert:
11090 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
11091 break;
11092
11093 default:
11094 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11095 break;
11096 }
11097}
11098
6149aea9
PA
11099/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11100 for all exception catchpoint kinds. */
11101
11102static void
11103print_recreate_exception (enum exception_catchpoint_kind ex,
11104 struct breakpoint *b, struct ui_file *fp)
11105{
28010a5d
PA
11106 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11107
6149aea9
PA
11108 switch (ex)
11109 {
11110 case ex_catch_exception:
11111 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11112 if (c->excep_string != NULL)
11113 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11114 break;
11115
11116 case ex_catch_exception_unhandled:
78076abc 11117 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11118 break;
11119
11120 case ex_catch_assert:
11121 fprintf_filtered (fp, "catch assert");
11122 break;
11123
11124 default:
11125 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11126 }
11127}
11128
f7f9143b
JB
11129/* Virtual table for "catch exception" breakpoints. */
11130
28010a5d
PA
11131static void
11132dtor_catch_exception (struct breakpoint *b)
11133{
11134 dtor_exception (ex_catch_exception, b);
11135}
11136
11137static struct bp_location *
11138allocate_location_catch_exception (struct breakpoint *self)
11139{
11140 return allocate_location_exception (ex_catch_exception, self);
11141}
11142
11143static void
11144re_set_catch_exception (struct breakpoint *b)
11145{
11146 re_set_exception (ex_catch_exception, b);
11147}
11148
11149static void
11150check_status_catch_exception (bpstat bs)
11151{
11152 check_status_exception (ex_catch_exception, bs);
11153}
11154
f7f9143b
JB
11155static enum print_stop_action
11156print_it_catch_exception (struct breakpoint *b)
11157{
11158 return print_it_exception (ex_catch_exception, b);
11159}
11160
11161static void
a6d9a66e 11162print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11163{
a6d9a66e 11164 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11165}
11166
11167static void
11168print_mention_catch_exception (struct breakpoint *b)
11169{
11170 print_mention_exception (ex_catch_exception, b);
11171}
11172
6149aea9
PA
11173static void
11174print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11175{
11176 print_recreate_exception (ex_catch_exception, b, fp);
11177}
11178
f7f9143b
JB
11179static struct breakpoint_ops catch_exception_breakpoint_ops =
11180{
28010a5d
PA
11181 dtor_catch_exception,
11182 allocate_location_catch_exception,
11183 re_set_catch_exception,
ce78b96d
JB
11184 NULL, /* insert */
11185 NULL, /* remove */
11186 NULL, /* breakpoint_hit */
28010a5d 11187 check_status_catch_exception,
e09342b5 11188 NULL, /* resources_needed */
9c06b0b4 11189 NULL, /* works_in_software_mode */
f7f9143b
JB
11190 print_it_catch_exception,
11191 print_one_catch_exception,
f1310107 11192 NULL, /* print_one_detail */
6149aea9
PA
11193 print_mention_catch_exception,
11194 print_recreate_catch_exception
f7f9143b
JB
11195};
11196
11197/* Virtual table for "catch exception unhandled" breakpoints. */
11198
28010a5d
PA
11199static void
11200dtor_catch_exception_unhandled (struct breakpoint *b)
11201{
11202 dtor_exception (ex_catch_exception_unhandled, b);
11203}
11204
11205static struct bp_location *
11206allocate_location_catch_exception_unhandled (struct breakpoint *self)
11207{
11208 return allocate_location_exception (ex_catch_exception_unhandled, self);
11209}
11210
11211static void
11212re_set_catch_exception_unhandled (struct breakpoint *b)
11213{
11214 re_set_exception (ex_catch_exception_unhandled, b);
11215}
11216
11217static void
11218check_status_catch_exception_unhandled (bpstat bs)
11219{
11220 check_status_exception (ex_catch_exception_unhandled, bs);
11221}
11222
f7f9143b
JB
11223static enum print_stop_action
11224print_it_catch_exception_unhandled (struct breakpoint *b)
11225{
11226 return print_it_exception (ex_catch_exception_unhandled, b);
11227}
11228
11229static void
a6d9a66e
UW
11230print_one_catch_exception_unhandled (struct breakpoint *b,
11231 struct bp_location **last_loc)
f7f9143b 11232{
a6d9a66e 11233 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11234}
11235
11236static void
11237print_mention_catch_exception_unhandled (struct breakpoint *b)
11238{
11239 print_mention_exception (ex_catch_exception_unhandled, b);
11240}
11241
6149aea9
PA
11242static void
11243print_recreate_catch_exception_unhandled (struct breakpoint *b,
11244 struct ui_file *fp)
11245{
11246 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11247}
11248
f7f9143b 11249static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
28010a5d
PA
11250 dtor_catch_exception_unhandled,
11251 allocate_location_catch_exception_unhandled,
11252 re_set_catch_exception_unhandled,
ce78b96d
JB
11253 NULL, /* insert */
11254 NULL, /* remove */
11255 NULL, /* breakpoint_hit */
28010a5d 11256 check_status_catch_exception_unhandled,
e09342b5 11257 NULL, /* resources_needed */
9c06b0b4 11258 NULL, /* works_in_software_mode */
f7f9143b
JB
11259 print_it_catch_exception_unhandled,
11260 print_one_catch_exception_unhandled,
f1310107 11261 NULL, /* print_one_detail */
6149aea9
PA
11262 print_mention_catch_exception_unhandled,
11263 print_recreate_catch_exception_unhandled
f7f9143b
JB
11264};
11265
11266/* Virtual table for "catch assert" breakpoints. */
11267
28010a5d
PA
11268static void
11269dtor_catch_assert (struct breakpoint *b)
11270{
11271 dtor_exception (ex_catch_assert, b);
11272}
11273
11274static struct bp_location *
11275allocate_location_catch_assert (struct breakpoint *self)
11276{
11277 return allocate_location_exception (ex_catch_assert, self);
11278}
11279
11280static void
11281re_set_catch_assert (struct breakpoint *b)
11282{
11283 return re_set_exception (ex_catch_assert, b);
11284}
11285
11286static void
11287check_status_catch_assert (bpstat bs)
11288{
11289 check_status_exception (ex_catch_assert, bs);
11290}
11291
f7f9143b
JB
11292static enum print_stop_action
11293print_it_catch_assert (struct breakpoint *b)
11294{
11295 return print_it_exception (ex_catch_assert, b);
11296}
11297
11298static void
a6d9a66e 11299print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11300{
a6d9a66e 11301 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11302}
11303
11304static void
11305print_mention_catch_assert (struct breakpoint *b)
11306{
11307 print_mention_exception (ex_catch_assert, b);
11308}
11309
6149aea9
PA
11310static void
11311print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11312{
11313 print_recreate_exception (ex_catch_assert, b, fp);
11314}
11315
f7f9143b 11316static struct breakpoint_ops catch_assert_breakpoint_ops = {
28010a5d
PA
11317 dtor_catch_assert,
11318 allocate_location_catch_assert,
11319 re_set_catch_assert,
ce78b96d
JB
11320 NULL, /* insert */
11321 NULL, /* remove */
11322 NULL, /* breakpoint_hit */
28010a5d 11323 check_status_catch_assert,
e09342b5 11324 NULL, /* resources_needed */
9c06b0b4 11325 NULL, /* works_in_software_mode */
f7f9143b
JB
11326 print_it_catch_assert,
11327 print_one_catch_assert,
f1310107 11328 NULL, /* print_one_detail */
6149aea9
PA
11329 print_mention_catch_assert,
11330 print_recreate_catch_assert
f7f9143b
JB
11331};
11332
f7f9143b
JB
11333/* Return a newly allocated copy of the first space-separated token
11334 in ARGSP, and then adjust ARGSP to point immediately after that
11335 token.
11336
11337 Return NULL if ARGPS does not contain any more tokens. */
11338
11339static char *
11340ada_get_next_arg (char **argsp)
11341{
11342 char *args = *argsp;
11343 char *end;
11344 char *result;
11345
11346 /* Skip any leading white space. */
11347
11348 while (isspace (*args))
11349 args++;
11350
11351 if (args[0] == '\0')
11352 return NULL; /* No more arguments. */
11353
11354 /* Find the end of the current argument. */
11355
11356 end = args;
11357 while (*end != '\0' && !isspace (*end))
11358 end++;
11359
11360 /* Adjust ARGSP to point to the start of the next argument. */
11361
11362 *argsp = end;
11363
11364 /* Make a copy of the current argument and return it. */
11365
11366 result = xmalloc (end - args + 1);
11367 strncpy (result, args, end - args);
11368 result[end - args] = '\0';
11369
11370 return result;
11371}
11372
11373/* Split the arguments specified in a "catch exception" command.
11374 Set EX to the appropriate catchpoint type.
28010a5d 11375 Set EXCEP_STRING to the name of the specific exception if
f7f9143b
JB
11376 specified by the user. */
11377
11378static void
11379catch_ada_exception_command_split (char *args,
11380 enum exception_catchpoint_kind *ex,
28010a5d 11381 char **excep_string)
f7f9143b
JB
11382{
11383 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11384 char *exception_name;
11385
11386 exception_name = ada_get_next_arg (&args);
11387 make_cleanup (xfree, exception_name);
11388
11389 /* Check that we do not have any more arguments. Anything else
11390 is unexpected. */
11391
11392 while (isspace (*args))
11393 args++;
11394
11395 if (args[0] != '\0')
11396 error (_("Junk at end of expression"));
11397
11398 discard_cleanups (old_chain);
11399
11400 if (exception_name == NULL)
11401 {
11402 /* Catch all exceptions. */
11403 *ex = ex_catch_exception;
28010a5d 11404 *excep_string = NULL;
f7f9143b
JB
11405 }
11406 else if (strcmp (exception_name, "unhandled") == 0)
11407 {
11408 /* Catch unhandled exceptions. */
11409 *ex = ex_catch_exception_unhandled;
28010a5d 11410 *excep_string = NULL;
f7f9143b
JB
11411 }
11412 else
11413 {
11414 /* Catch a specific exception. */
11415 *ex = ex_catch_exception;
28010a5d 11416 *excep_string = exception_name;
f7f9143b
JB
11417 }
11418}
11419
11420/* Return the name of the symbol on which we should break in order to
11421 implement a catchpoint of the EX kind. */
11422
11423static const char *
11424ada_exception_sym_name (enum exception_catchpoint_kind ex)
11425{
0259addd
JB
11426 gdb_assert (exception_info != NULL);
11427
f7f9143b
JB
11428 switch (ex)
11429 {
11430 case ex_catch_exception:
0259addd 11431 return (exception_info->catch_exception_sym);
f7f9143b
JB
11432 break;
11433 case ex_catch_exception_unhandled:
0259addd 11434 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11435 break;
11436 case ex_catch_assert:
0259addd 11437 return (exception_info->catch_assert_sym);
f7f9143b
JB
11438 break;
11439 default:
11440 internal_error (__FILE__, __LINE__,
11441 _("unexpected catchpoint kind (%d)"), ex);
11442 }
11443}
11444
11445/* Return the breakpoint ops "virtual table" used for catchpoints
11446 of the EX kind. */
11447
11448static struct breakpoint_ops *
4b9eee8c 11449ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11450{
11451 switch (ex)
11452 {
11453 case ex_catch_exception:
11454 return (&catch_exception_breakpoint_ops);
11455 break;
11456 case ex_catch_exception_unhandled:
11457 return (&catch_exception_unhandled_breakpoint_ops);
11458 break;
11459 case ex_catch_assert:
11460 return (&catch_assert_breakpoint_ops);
11461 break;
11462 default:
11463 internal_error (__FILE__, __LINE__,
11464 _("unexpected catchpoint kind (%d)"), ex);
11465 }
11466}
11467
11468/* Return the condition that will be used to match the current exception
11469 being raised with the exception that the user wants to catch. This
11470 assumes that this condition is used when the inferior just triggered
11471 an exception catchpoint.
11472
11473 The string returned is a newly allocated string that needs to be
11474 deallocated later. */
11475
11476static char *
28010a5d 11477ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11478{
3d0b0fa3
JB
11479 int i;
11480
0963b4bd 11481 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11482 runtime units that have been compiled without debugging info; if
28010a5d 11483 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11484 exception (e.g. "constraint_error") then, during the evaluation
11485 of the condition expression, the symbol lookup on this name would
0963b4bd 11486 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11487 may then be set only on user-defined exceptions which have the
11488 same not-fully-qualified name (e.g. my_package.constraint_error).
11489
11490 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11491 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11492 exception constraint_error" is rewritten into "catch exception
11493 standard.constraint_error".
11494
11495 If an exception named contraint_error is defined in another package of
11496 the inferior program, then the only way to specify this exception as a
11497 breakpoint condition is to use its fully-qualified named:
11498 e.g. my_package.constraint_error. */
11499
11500 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11501 {
28010a5d 11502 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11503 {
11504 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11505 excep_string);
3d0b0fa3
JB
11506 }
11507 }
28010a5d 11508 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11509}
11510
11511/* Return the symtab_and_line that should be used to insert an exception
11512 catchpoint of the TYPE kind.
11513
28010a5d
PA
11514 EXCEP_STRING should contain the name of a specific exception that
11515 the catchpoint should catch, or NULL otherwise.
f7f9143b 11516
28010a5d
PA
11517 ADDR_STRING returns the name of the function where the real
11518 breakpoint that implements the catchpoints is set, depending on the
11519 type of catchpoint we need to create. */
f7f9143b
JB
11520
11521static struct symtab_and_line
28010a5d
PA
11522ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11523 char **addr_string, struct breakpoint_ops **ops)
f7f9143b
JB
11524{
11525 const char *sym_name;
11526 struct symbol *sym;
11527 struct symtab_and_line sal;
11528
0259addd
JB
11529 /* First, find out which exception support info to use. */
11530 ada_exception_support_info_sniffer ();
11531
11532 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11533 the Ada exceptions requested by the user. */
11534
11535 sym_name = ada_exception_sym_name (ex);
11536 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11537
11538 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11539 that should be compiled with debugging information. As a result, we
11540 expect to find that symbol in the symtabs. If we don't find it, then
11541 the target most likely does not support Ada exceptions, or we cannot
11542 insert exception breakpoints yet, because the GNAT runtime hasn't been
11543 loaded yet. */
11544
11545 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11546 in such a way that no debugging information is produced for the symbol
11547 we are looking for. In this case, we could search the minimal symbols
11548 as a fall-back mechanism. This would still be operating in degraded
11549 mode, however, as we would still be missing the debugging information
11550 that is needed in order to extract the name of the exception being
11551 raised (this name is printed in the catchpoint message, and is also
11552 used when trying to catch a specific exception). We do not handle
11553 this case for now. */
11554
11555 if (sym == NULL)
0259addd 11556 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11557
11558 /* Make sure that the symbol we found corresponds to a function. */
11559 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11560 error (_("Symbol \"%s\" is not a function (class = %d)"),
11561 sym_name, SYMBOL_CLASS (sym));
11562
11563 sal = find_function_start_sal (sym, 1);
11564
11565 /* Set ADDR_STRING. */
11566
11567 *addr_string = xstrdup (sym_name);
11568
f7f9143b 11569 /* Set OPS. */
4b9eee8c 11570 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11571
11572 return sal;
11573}
11574
11575/* Parse the arguments (ARGS) of the "catch exception" command.
11576
f7f9143b
JB
11577 If the user asked the catchpoint to catch only a specific
11578 exception, then save the exception name in ADDR_STRING.
11579
11580 See ada_exception_sal for a description of all the remaining
11581 function arguments of this function. */
11582
9ac4176b 11583static struct symtab_and_line
f7f9143b 11584ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11585 char **excep_string,
f7f9143b
JB
11586 struct breakpoint_ops **ops)
11587{
11588 enum exception_catchpoint_kind ex;
11589
28010a5d
PA
11590 catch_ada_exception_command_split (args, &ex, excep_string);
11591 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11592}
11593
11594/* Create an Ada exception catchpoint. */
11595
11596static void
11597create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11598 struct symtab_and_line sal,
11599 char *addr_string,
11600 char *excep_string,
11601 struct breakpoint_ops *ops,
11602 int tempflag,
11603 int from_tty)
11604{
11605 struct ada_catchpoint *c;
11606
11607 c = XNEW (struct ada_catchpoint);
11608 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11609 ops, tempflag, from_tty);
11610 c->excep_string = excep_string;
11611 create_excep_cond_exprs (c);
11612 install_breakpoint (&c->base);
f7f9143b
JB
11613}
11614
9ac4176b
PA
11615/* Implement the "catch exception" command. */
11616
11617static void
11618catch_ada_exception_command (char *arg, int from_tty,
11619 struct cmd_list_element *command)
11620{
11621 struct gdbarch *gdbarch = get_current_arch ();
11622 int tempflag;
11623 struct symtab_and_line sal;
11624 char *addr_string = NULL;
28010a5d 11625 char *excep_string = NULL;
9ac4176b
PA
11626 struct breakpoint_ops *ops = NULL;
11627
11628 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11629
11630 if (!arg)
11631 arg = "";
28010a5d
PA
11632 sal = ada_decode_exception_location (arg, &addr_string, &excep_string, &ops);
11633 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11634 excep_string, ops, tempflag, from_tty);
9ac4176b
PA
11635}
11636
11637static struct symtab_and_line
f7f9143b
JB
11638ada_decode_assert_location (char *args, char **addr_string,
11639 struct breakpoint_ops **ops)
11640{
11641 /* Check that no argument where provided at the end of the command. */
11642
11643 if (args != NULL)
11644 {
11645 while (isspace (*args))
11646 args++;
11647 if (*args != '\0')
11648 error (_("Junk at end of arguments."));
11649 }
11650
28010a5d 11651 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11652}
11653
9ac4176b
PA
11654/* Implement the "catch assert" command. */
11655
11656static void
11657catch_assert_command (char *arg, int from_tty,
11658 struct cmd_list_element *command)
11659{
11660 struct gdbarch *gdbarch = get_current_arch ();
11661 int tempflag;
11662 struct symtab_and_line sal;
11663 char *addr_string = NULL;
11664 struct breakpoint_ops *ops = NULL;
11665
11666 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11667
11668 if (!arg)
11669 arg = "";
11670 sal = ada_decode_assert_location (arg, &addr_string, &ops);
28010a5d
PA
11671 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11672 NULL, ops, tempflag, from_tty);
9ac4176b 11673}
4c4b4cd2
PH
11674 /* Operators */
11675/* Information about operators given special treatment in functions
11676 below. */
11677/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11678
11679#define ADA_OPERATORS \
11680 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11681 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11682 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11683 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11684 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11685 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11686 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11687 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11688 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11689 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11690 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11691 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11692 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11693 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11694 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11695 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11696 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11697 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11698 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11699
11700static void
554794dc
SDJ
11701ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11702 int *argsp)
4c4b4cd2
PH
11703{
11704 switch (exp->elts[pc - 1].opcode)
11705 {
76a01679 11706 default:
4c4b4cd2
PH
11707 operator_length_standard (exp, pc, oplenp, argsp);
11708 break;
11709
11710#define OP_DEFN(op, len, args, binop) \
11711 case op: *oplenp = len; *argsp = args; break;
11712 ADA_OPERATORS;
11713#undef OP_DEFN
52ce6436
PH
11714
11715 case OP_AGGREGATE:
11716 *oplenp = 3;
11717 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11718 break;
11719
11720 case OP_CHOICES:
11721 *oplenp = 3;
11722 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11723 break;
4c4b4cd2
PH
11724 }
11725}
11726
c0201579
JK
11727/* Implementation of the exp_descriptor method operator_check. */
11728
11729static int
11730ada_operator_check (struct expression *exp, int pos,
11731 int (*objfile_func) (struct objfile *objfile, void *data),
11732 void *data)
11733{
11734 const union exp_element *const elts = exp->elts;
11735 struct type *type = NULL;
11736
11737 switch (elts[pos].opcode)
11738 {
11739 case UNOP_IN_RANGE:
11740 case UNOP_QUAL:
11741 type = elts[pos + 1].type;
11742 break;
11743
11744 default:
11745 return operator_check_standard (exp, pos, objfile_func, data);
11746 }
11747
11748 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11749
11750 if (type && TYPE_OBJFILE (type)
11751 && (*objfile_func) (TYPE_OBJFILE (type), data))
11752 return 1;
11753
11754 return 0;
11755}
11756
4c4b4cd2
PH
11757static char *
11758ada_op_name (enum exp_opcode opcode)
11759{
11760 switch (opcode)
11761 {
76a01679 11762 default:
4c4b4cd2 11763 return op_name_standard (opcode);
52ce6436 11764
4c4b4cd2
PH
11765#define OP_DEFN(op, len, args, binop) case op: return #op;
11766 ADA_OPERATORS;
11767#undef OP_DEFN
52ce6436
PH
11768
11769 case OP_AGGREGATE:
11770 return "OP_AGGREGATE";
11771 case OP_CHOICES:
11772 return "OP_CHOICES";
11773 case OP_NAME:
11774 return "OP_NAME";
4c4b4cd2
PH
11775 }
11776}
11777
11778/* As for operator_length, but assumes PC is pointing at the first
11779 element of the operator, and gives meaningful results only for the
52ce6436 11780 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11781
11782static void
76a01679
JB
11783ada_forward_operator_length (struct expression *exp, int pc,
11784 int *oplenp, int *argsp)
4c4b4cd2 11785{
76a01679 11786 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11787 {
11788 default:
11789 *oplenp = *argsp = 0;
11790 break;
52ce6436 11791
4c4b4cd2
PH
11792#define OP_DEFN(op, len, args, binop) \
11793 case op: *oplenp = len; *argsp = args; break;
11794 ADA_OPERATORS;
11795#undef OP_DEFN
52ce6436
PH
11796
11797 case OP_AGGREGATE:
11798 *oplenp = 3;
11799 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11800 break;
11801
11802 case OP_CHOICES:
11803 *oplenp = 3;
11804 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11805 break;
11806
11807 case OP_STRING:
11808 case OP_NAME:
11809 {
11810 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11811
52ce6436
PH
11812 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11813 *argsp = 0;
11814 break;
11815 }
4c4b4cd2
PH
11816 }
11817}
11818
11819static int
11820ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11821{
11822 enum exp_opcode op = exp->elts[elt].opcode;
11823 int oplen, nargs;
11824 int pc = elt;
11825 int i;
76a01679 11826
4c4b4cd2
PH
11827 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11828
76a01679 11829 switch (op)
4c4b4cd2 11830 {
76a01679 11831 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11832 case OP_ATR_FIRST:
11833 case OP_ATR_LAST:
11834 case OP_ATR_LENGTH:
11835 case OP_ATR_IMAGE:
11836 case OP_ATR_MAX:
11837 case OP_ATR_MIN:
11838 case OP_ATR_MODULUS:
11839 case OP_ATR_POS:
11840 case OP_ATR_SIZE:
11841 case OP_ATR_TAG:
11842 case OP_ATR_VAL:
11843 break;
11844
11845 case UNOP_IN_RANGE:
11846 case UNOP_QUAL:
323e0a4a
AC
11847 /* XXX: gdb_sprint_host_address, type_sprint */
11848 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11849 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11850 fprintf_filtered (stream, " (");
11851 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11852 fprintf_filtered (stream, ")");
11853 break;
11854 case BINOP_IN_BOUNDS:
52ce6436
PH
11855 fprintf_filtered (stream, " (%d)",
11856 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11857 break;
11858 case TERNOP_IN_RANGE:
11859 break;
11860
52ce6436
PH
11861 case OP_AGGREGATE:
11862 case OP_OTHERS:
11863 case OP_DISCRETE_RANGE:
11864 case OP_POSITIONAL:
11865 case OP_CHOICES:
11866 break;
11867
11868 case OP_NAME:
11869 case OP_STRING:
11870 {
11871 char *name = &exp->elts[elt + 2].string;
11872 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11873
52ce6436
PH
11874 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11875 break;
11876 }
11877
4c4b4cd2
PH
11878 default:
11879 return dump_subexp_body_standard (exp, stream, elt);
11880 }
11881
11882 elt += oplen;
11883 for (i = 0; i < nargs; i += 1)
11884 elt = dump_subexp (exp, stream, elt);
11885
11886 return elt;
11887}
11888
11889/* The Ada extension of print_subexp (q.v.). */
11890
76a01679
JB
11891static void
11892ada_print_subexp (struct expression *exp, int *pos,
11893 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11894{
52ce6436 11895 int oplen, nargs, i;
4c4b4cd2
PH
11896 int pc = *pos;
11897 enum exp_opcode op = exp->elts[pc].opcode;
11898
11899 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11900
52ce6436 11901 *pos += oplen;
4c4b4cd2
PH
11902 switch (op)
11903 {
11904 default:
52ce6436 11905 *pos -= oplen;
4c4b4cd2
PH
11906 print_subexp_standard (exp, pos, stream, prec);
11907 return;
11908
11909 case OP_VAR_VALUE:
4c4b4cd2
PH
11910 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11911 return;
11912
11913 case BINOP_IN_BOUNDS:
323e0a4a 11914 /* XXX: sprint_subexp */
4c4b4cd2 11915 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11916 fputs_filtered (" in ", stream);
4c4b4cd2 11917 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11918 fputs_filtered ("'range", stream);
4c4b4cd2 11919 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11920 fprintf_filtered (stream, "(%ld)",
11921 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11922 return;
11923
11924 case TERNOP_IN_RANGE:
4c4b4cd2 11925 if (prec >= PREC_EQUAL)
76a01679 11926 fputs_filtered ("(", stream);
323e0a4a 11927 /* XXX: sprint_subexp */
4c4b4cd2 11928 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11929 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11930 print_subexp (exp, pos, stream, PREC_EQUAL);
11931 fputs_filtered (" .. ", stream);
11932 print_subexp (exp, pos, stream, PREC_EQUAL);
11933 if (prec >= PREC_EQUAL)
76a01679
JB
11934 fputs_filtered (")", stream);
11935 return;
4c4b4cd2
PH
11936
11937 case OP_ATR_FIRST:
11938 case OP_ATR_LAST:
11939 case OP_ATR_LENGTH:
11940 case OP_ATR_IMAGE:
11941 case OP_ATR_MAX:
11942 case OP_ATR_MIN:
11943 case OP_ATR_MODULUS:
11944 case OP_ATR_POS:
11945 case OP_ATR_SIZE:
11946 case OP_ATR_TAG:
11947 case OP_ATR_VAL:
4c4b4cd2 11948 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11949 {
11950 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11951 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11952 *pos += 3;
11953 }
4c4b4cd2 11954 else
76a01679 11955 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11956 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11957 if (nargs > 1)
76a01679
JB
11958 {
11959 int tem;
5b4ee69b 11960
76a01679
JB
11961 for (tem = 1; tem < nargs; tem += 1)
11962 {
11963 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11964 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11965 }
11966 fputs_filtered (")", stream);
11967 }
4c4b4cd2 11968 return;
14f9c5c9 11969
4c4b4cd2 11970 case UNOP_QUAL:
4c4b4cd2
PH
11971 type_print (exp->elts[pc + 1].type, "", stream, 0);
11972 fputs_filtered ("'(", stream);
11973 print_subexp (exp, pos, stream, PREC_PREFIX);
11974 fputs_filtered (")", stream);
11975 return;
14f9c5c9 11976
4c4b4cd2 11977 case UNOP_IN_RANGE:
323e0a4a 11978 /* XXX: sprint_subexp */
4c4b4cd2 11979 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11980 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11981 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11982 return;
52ce6436
PH
11983
11984 case OP_DISCRETE_RANGE:
11985 print_subexp (exp, pos, stream, PREC_SUFFIX);
11986 fputs_filtered ("..", stream);
11987 print_subexp (exp, pos, stream, PREC_SUFFIX);
11988 return;
11989
11990 case OP_OTHERS:
11991 fputs_filtered ("others => ", stream);
11992 print_subexp (exp, pos, stream, PREC_SUFFIX);
11993 return;
11994
11995 case OP_CHOICES:
11996 for (i = 0; i < nargs-1; i += 1)
11997 {
11998 if (i > 0)
11999 fputs_filtered ("|", stream);
12000 print_subexp (exp, pos, stream, PREC_SUFFIX);
12001 }
12002 fputs_filtered (" => ", stream);
12003 print_subexp (exp, pos, stream, PREC_SUFFIX);
12004 return;
12005
12006 case OP_POSITIONAL:
12007 print_subexp (exp, pos, stream, PREC_SUFFIX);
12008 return;
12009
12010 case OP_AGGREGATE:
12011 fputs_filtered ("(", stream);
12012 for (i = 0; i < nargs; i += 1)
12013 {
12014 if (i > 0)
12015 fputs_filtered (", ", stream);
12016 print_subexp (exp, pos, stream, PREC_SUFFIX);
12017 }
12018 fputs_filtered (")", stream);
12019 return;
4c4b4cd2
PH
12020 }
12021}
14f9c5c9
AS
12022
12023/* Table mapping opcodes into strings for printing operators
12024 and precedences of the operators. */
12025
d2e4a39e
AS
12026static const struct op_print ada_op_print_tab[] = {
12027 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12028 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12029 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12030 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12031 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12032 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12033 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12034 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12035 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12036 {">=", BINOP_GEQ, PREC_ORDER, 0},
12037 {">", BINOP_GTR, PREC_ORDER, 0},
12038 {"<", BINOP_LESS, PREC_ORDER, 0},
12039 {">>", BINOP_RSH, PREC_SHIFT, 0},
12040 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12041 {"+", BINOP_ADD, PREC_ADD, 0},
12042 {"-", BINOP_SUB, PREC_ADD, 0},
12043 {"&", BINOP_CONCAT, PREC_ADD, 0},
12044 {"*", BINOP_MUL, PREC_MUL, 0},
12045 {"/", BINOP_DIV, PREC_MUL, 0},
12046 {"rem", BINOP_REM, PREC_MUL, 0},
12047 {"mod", BINOP_MOD, PREC_MUL, 0},
12048 {"**", BINOP_EXP, PREC_REPEAT, 0},
12049 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12050 {"-", UNOP_NEG, PREC_PREFIX, 0},
12051 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12052 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12053 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12054 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12055 {".all", UNOP_IND, PREC_SUFFIX, 1},
12056 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12057 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12058 {NULL, 0, 0, 0}
14f9c5c9
AS
12059};
12060\f
72d5681a
PH
12061enum ada_primitive_types {
12062 ada_primitive_type_int,
12063 ada_primitive_type_long,
12064 ada_primitive_type_short,
12065 ada_primitive_type_char,
12066 ada_primitive_type_float,
12067 ada_primitive_type_double,
12068 ada_primitive_type_void,
12069 ada_primitive_type_long_long,
12070 ada_primitive_type_long_double,
12071 ada_primitive_type_natural,
12072 ada_primitive_type_positive,
12073 ada_primitive_type_system_address,
12074 nr_ada_primitive_types
12075};
6c038f32
PH
12076
12077static void
d4a9a881 12078ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12079 struct language_arch_info *lai)
12080{
d4a9a881 12081 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12082
72d5681a 12083 lai->primitive_type_vector
d4a9a881 12084 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12085 struct type *);
e9bb382b
UW
12086
12087 lai->primitive_type_vector [ada_primitive_type_int]
12088 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12089 0, "integer");
12090 lai->primitive_type_vector [ada_primitive_type_long]
12091 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12092 0, "long_integer");
12093 lai->primitive_type_vector [ada_primitive_type_short]
12094 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12095 0, "short_integer");
12096 lai->string_char_type
12097 = lai->primitive_type_vector [ada_primitive_type_char]
12098 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12099 lai->primitive_type_vector [ada_primitive_type_float]
12100 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12101 "float", NULL);
12102 lai->primitive_type_vector [ada_primitive_type_double]
12103 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12104 "long_float", NULL);
12105 lai->primitive_type_vector [ada_primitive_type_long_long]
12106 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12107 0, "long_long_integer");
12108 lai->primitive_type_vector [ada_primitive_type_long_double]
12109 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12110 "long_long_float", NULL);
12111 lai->primitive_type_vector [ada_primitive_type_natural]
12112 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12113 0, "natural");
12114 lai->primitive_type_vector [ada_primitive_type_positive]
12115 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12116 0, "positive");
12117 lai->primitive_type_vector [ada_primitive_type_void]
12118 = builtin->builtin_void;
12119
12120 lai->primitive_type_vector [ada_primitive_type_system_address]
12121 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12122 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12123 = "system__address";
fbb06eb1 12124
47e729a8 12125 lai->bool_type_symbol = NULL;
fbb06eb1 12126 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12127}
6c038f32
PH
12128\f
12129 /* Language vector */
12130
12131/* Not really used, but needed in the ada_language_defn. */
12132
12133static void
6c7a06a3 12134emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12135{
6c7a06a3 12136 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12137}
12138
12139static int
12140parse (void)
12141{
12142 warnings_issued = 0;
12143 return ada_parse ();
12144}
12145
12146static const struct exp_descriptor ada_exp_descriptor = {
12147 ada_print_subexp,
12148 ada_operator_length,
c0201579 12149 ada_operator_check,
6c038f32
PH
12150 ada_op_name,
12151 ada_dump_subexp_body,
12152 ada_evaluate_subexp
12153};
12154
12155const struct language_defn ada_language_defn = {
12156 "ada", /* Language name */
12157 language_ada,
6c038f32
PH
12158 range_check_off,
12159 type_check_off,
12160 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12161 that's not quite what this means. */
6c038f32 12162 array_row_major,
9a044a89 12163 macro_expansion_no,
6c038f32
PH
12164 &ada_exp_descriptor,
12165 parse,
12166 ada_error,
12167 resolve,
12168 ada_printchar, /* Print a character constant */
12169 ada_printstr, /* Function to print string constant */
12170 emit_char, /* Function to print single char (not used) */
6c038f32 12171 ada_print_type, /* Print a type using appropriate syntax */
be942545 12172 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12173 ada_val_print, /* Print a value using appropriate syntax */
12174 ada_value_print, /* Print a top-level value */
12175 NULL, /* Language specific skip_trampoline */
2b2d9e11 12176 NULL, /* name_of_this */
6c038f32
PH
12177 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12178 basic_lookup_transparent_type, /* lookup_transparent_type */
12179 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12180 NULL, /* Language specific
12181 class_name_from_physname */
6c038f32
PH
12182 ada_op_print_tab, /* expression operators for printing */
12183 0, /* c-style arrays */
12184 1, /* String lower bound */
6c038f32 12185 ada_get_gdb_completer_word_break_characters,
41d27058 12186 ada_make_symbol_completion_list,
72d5681a 12187 ada_language_arch_info,
e79af960 12188 ada_print_array_index,
41f1b697 12189 default_pass_by_reference,
ae6a3a4c 12190 c_get_string,
6c038f32
PH
12191 LANG_MAGIC
12192};
12193
2c0b251b
PA
12194/* Provide a prototype to silence -Wmissing-prototypes. */
12195extern initialize_file_ftype _initialize_ada_language;
12196
5bf03f13
JB
12197/* Command-list for the "set/show ada" prefix command. */
12198static struct cmd_list_element *set_ada_list;
12199static struct cmd_list_element *show_ada_list;
12200
12201/* Implement the "set ada" prefix command. */
12202
12203static void
12204set_ada_command (char *arg, int from_tty)
12205{
12206 printf_unfiltered (_(\
12207"\"set ada\" must be followed by the name of a setting.\n"));
12208 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12209}
12210
12211/* Implement the "show ada" prefix command. */
12212
12213static void
12214show_ada_command (char *args, int from_tty)
12215{
12216 cmd_show_list (show_ada_list, from_tty, "");
12217}
12218
d2e4a39e 12219void
6c038f32 12220_initialize_ada_language (void)
14f9c5c9 12221{
6c038f32
PH
12222 add_language (&ada_language_defn);
12223
5bf03f13
JB
12224 add_prefix_cmd ("ada", no_class, set_ada_command,
12225 _("Prefix command for changing Ada-specfic settings"),
12226 &set_ada_list, "set ada ", 0, &setlist);
12227
12228 add_prefix_cmd ("ada", no_class, show_ada_command,
12229 _("Generic command for showing Ada-specific settings."),
12230 &show_ada_list, "show ada ", 0, &showlist);
12231
12232 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12233 &trust_pad_over_xvs, _("\
12234Enable or disable an optimization trusting PAD types over XVS types"), _("\
12235Show whether an optimization trusting PAD types over XVS types is activated"),
12236 _("\
12237This is related to the encoding used by the GNAT compiler. The debugger\n\
12238should normally trust the contents of PAD types, but certain older versions\n\
12239of GNAT have a bug that sometimes causes the information in the PAD type\n\
12240to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12241work around this bug. It is always safe to turn this option \"off\", but\n\
12242this incurs a slight performance penalty, so it is recommended to NOT change\n\
12243this option to \"off\" unless necessary."),
12244 NULL, NULL, &set_ada_list, &show_ada_list);
12245
9ac4176b
PA
12246 add_catch_command ("exception", _("\
12247Catch Ada exceptions, when raised.\n\
12248With an argument, catch only exceptions with the given name."),
12249 catch_ada_exception_command,
12250 NULL,
12251 CATCH_PERMANENT,
12252 CATCH_TEMPORARY);
12253 add_catch_command ("assert", _("\
12254Catch failed Ada assertions, when raised.\n\
12255With an argument, catch only exceptions with the given name."),
12256 catch_assert_command,
12257 NULL,
12258 CATCH_PERMANENT,
12259 CATCH_TEMPORARY);
12260
6c038f32 12261 varsize_limit = 65536;
6c038f32
PH
12262
12263 obstack_init (&symbol_list_obstack);
12264
12265 decoded_names_store = htab_create_alloc
12266 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12267 NULL, xcalloc, xfree);
6b69afc4
JB
12268
12269 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
12270
12271 /* Setup per-inferior data. */
12272 observer_attach_inferior_exit (ada_inferior_exit);
12273 ada_inferior_data
12274 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12275}