]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
* symtab.h (enum free_code): Delete free_contents, unused.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60#ifndef ADA_RETAIN_DOTS
61#define ADA_RETAIN_DOTS 0
62#endif
63
64/* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
4c4b4cd2 72static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 73
14f9c5c9
AS
74static void modify_general_field (char *, LONGEST, int, int);
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
d2e4a39e 86static struct type *desc_data_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
4c4b4cd2 108static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 109
d2e4a39e 110static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 111 CORE_ADDR *);
14f9c5c9 112
d2e4a39e 113static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 114 CORE_ADDR *);
14f9c5c9 115
4c4b4cd2 116static void ada_add_block_symbols (struct obstack *,
76a01679 117 struct block *, const char *,
4c4b4cd2 118 domain_enum, struct objfile *,
76a01679 119 struct symtab *, int);
14f9c5c9 120
4c4b4cd2 121static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 122
76a01679
JB
123static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
14f9c5c9 125
4c4b4cd2
PH
126static int num_defns_collected (struct obstack *);
127
128static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 129
d2e4a39e 130static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
131 *, const char *, int,
132 domain_enum, int);
14f9c5c9 133
d2e4a39e 134static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 135
4c4b4cd2 136static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 137 struct type *);
14f9c5c9 138
d2e4a39e 139static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 140 struct symbol *, struct block *);
14f9c5c9 141
d2e4a39e 142static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 143
4c4b4cd2
PH
144static char *ada_op_name (enum exp_opcode);
145
146static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 147
d2e4a39e 148static int numeric_type_p (struct type *);
14f9c5c9 149
d2e4a39e 150static int integer_type_p (struct type *);
14f9c5c9 151
d2e4a39e 152static int scalar_type_p (struct type *);
14f9c5c9 153
d2e4a39e 154static int discrete_type_p (struct type *);
14f9c5c9 155
aeb5907d
JB
156static enum ada_renaming_category parse_old_style_renaming (struct type *,
157 const char **,
158 int *,
159 const char **);
160
161static struct symbol *find_old_style_renaming_symbol (const char *,
162 struct block *);
163
4c4b4cd2 164static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 165 int, int, int *);
4c4b4cd2 166
d2e4a39e 167static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 168 int *, enum noside);
14f9c5c9 169
d2e4a39e 170static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 171
d2e4a39e 172static int is_dynamic_field (struct type *, int);
14f9c5c9 173
10a2c479 174static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 175 const gdb_byte *,
4c4b4cd2
PH
176 CORE_ADDR, struct value *);
177
178static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 179
d2e4a39e 180static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 181 struct objfile *);
14f9c5c9 182
d2e4a39e 183static struct type *to_static_fixed_type (struct type *);
f192137b 184static struct type *static_unwrap_type (struct type *type);
14f9c5c9 185
d2e4a39e 186static struct value *unwrap_value (struct value *);
14f9c5c9 187
d2e4a39e 188static struct type *packed_array_type (struct type *, long *);
14f9c5c9 189
d2e4a39e 190static struct type *decode_packed_array_type (struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *decode_packed_array (struct value *);
14f9c5c9 193
d2e4a39e 194static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 195 struct value **);
14f9c5c9 196
52ce6436
PH
197static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
198
4c4b4cd2
PH
199static struct value *coerce_unspec_val_to_type (struct value *,
200 struct type *);
14f9c5c9 201
d2e4a39e 202static struct value *get_var_value (char *, char *);
14f9c5c9 203
d2e4a39e 204static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 205
d2e4a39e 206static int equiv_types (struct type *, struct type *);
14f9c5c9 207
d2e4a39e 208static int is_name_suffix (const char *);
14f9c5c9 209
d2e4a39e 210static int wild_match (const char *, int, const char *);
14f9c5c9 211
d2e4a39e 212static struct value *ada_coerce_ref (struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static LONGEST pos_atr (struct value *);
215
d2e4a39e 216static struct value *value_pos_atr (struct value *);
14f9c5c9 217
d2e4a39e 218static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 219
4c4b4cd2
PH
220static struct symbol *standard_lookup (const char *, const struct block *,
221 domain_enum);
14f9c5c9 222
4c4b4cd2
PH
223static struct value *ada_search_struct_field (char *, struct value *, int,
224 struct type *);
225
226static struct value *ada_value_primitive_field (struct value *, int, int,
227 struct type *);
228
76a01679 229static int find_struct_field (char *, struct type *, int,
52ce6436 230 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
231
232static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
233 struct value *);
234
235static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 236
4c4b4cd2
PH
237static int ada_resolve_function (struct ada_symbol_info *, int,
238 struct value **, int, const char *,
239 struct type *);
240
241static struct value *ada_coerce_to_simple_array (struct value *);
242
243static int ada_is_direct_array_type (struct type *);
244
72d5681a
PH
245static void ada_language_arch_info (struct gdbarch *,
246 struct language_arch_info *);
714e53ab
PH
247
248static void check_size (const struct type *);
52ce6436
PH
249
250static struct value *ada_index_struct_field (int, struct value *, int,
251 struct type *);
252
253static struct value *assign_aggregate (struct value *, struct value *,
254 struct expression *, int *, enum noside);
255
256static void aggregate_assign_from_choices (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *,
259 int, LONGEST, LONGEST);
260
261static void aggregate_assign_positional (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int *, int,
264 LONGEST, LONGEST);
265
266
267static void aggregate_assign_others (struct value *, struct value *,
268 struct expression *,
269 int *, LONGEST *, int, LONGEST, LONGEST);
270
271
272static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
273
274
275static struct value *ada_evaluate_subexp (struct type *, struct expression *,
276 int *, enum noside);
277
278static void ada_forward_operator_length (struct expression *, int, int *,
279 int *);
4c4b4cd2
PH
280\f
281
76a01679 282
4c4b4cd2 283/* Maximum-sized dynamic type. */
14f9c5c9
AS
284static unsigned int varsize_limit;
285
4c4b4cd2
PH
286/* FIXME: brobecker/2003-09-17: No longer a const because it is
287 returned by a function that does not return a const char *. */
288static char *ada_completer_word_break_characters =
289#ifdef VMS
290 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
291#else
14f9c5c9 292 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 293#endif
14f9c5c9 294
4c4b4cd2 295/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 296static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 297 = "__gnat_ada_main_program_name";
14f9c5c9 298
4c4b4cd2
PH
299/* Limit on the number of warnings to raise per expression evaluation. */
300static int warning_limit = 2;
301
302/* Number of warning messages issued; reset to 0 by cleanups after
303 expression evaluation. */
304static int warnings_issued = 0;
305
306static const char *known_runtime_file_name_patterns[] = {
307 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
308};
309
310static const char *known_auxiliary_function_name_patterns[] = {
311 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
312};
313
314/* Space for allocating results of ada_lookup_symbol_list. */
315static struct obstack symbol_list_obstack;
316
317 /* Utilities */
318
41d27058
JB
319/* Given DECODED_NAME a string holding a symbol name in its
320 decoded form (ie using the Ada dotted notation), returns
321 its unqualified name. */
322
323static const char *
324ada_unqualified_name (const char *decoded_name)
325{
326 const char *result = strrchr (decoded_name, '.');
327
328 if (result != NULL)
329 result++; /* Skip the dot... */
330 else
331 result = decoded_name;
332
333 return result;
334}
335
336/* Return a string starting with '<', followed by STR, and '>'.
337 The result is good until the next call. */
338
339static char *
340add_angle_brackets (const char *str)
341{
342 static char *result = NULL;
343
344 xfree (result);
345 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
346
347 sprintf (result, "<%s>", str);
348 return result;
349}
96d887e8 350
4c4b4cd2
PH
351static char *
352ada_get_gdb_completer_word_break_characters (void)
353{
354 return ada_completer_word_break_characters;
355}
356
e79af960
JB
357/* Print an array element index using the Ada syntax. */
358
359static void
360ada_print_array_index (struct value *index_value, struct ui_file *stream,
361 int format, enum val_prettyprint pretty)
362{
363 LA_VALUE_PRINT (index_value, stream, format, pretty);
364 fprintf_filtered (stream, " => ");
365}
366
4c4b4cd2
PH
367/* Read the string located at ADDR from the inferior and store the
368 result into BUF. */
369
370static void
14f9c5c9
AS
371extract_string (CORE_ADDR addr, char *buf)
372{
d2e4a39e 373 int char_index = 0;
14f9c5c9 374
4c4b4cd2
PH
375 /* Loop, reading one byte at a time, until we reach the '\000'
376 end-of-string marker. */
d2e4a39e
AS
377 do
378 {
379 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 380 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
381 char_index++;
382 }
383 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
384}
385
f27cf670 386/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 387 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 388 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 389
f27cf670
AS
390void *
391grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 392{
d2e4a39e
AS
393 if (*size < min_size)
394 {
395 *size *= 2;
396 if (*size < min_size)
4c4b4cd2 397 *size = min_size;
f27cf670 398 vect = xrealloc (vect, *size * element_size);
d2e4a39e 399 }
f27cf670 400 return vect;
14f9c5c9
AS
401}
402
403/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 404 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
405
406static int
ebf56fd3 407field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
408{
409 int len = strlen (target);
d2e4a39e 410 return
4c4b4cd2
PH
411 (strncmp (field_name, target, len) == 0
412 && (field_name[len] == '\0'
413 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
414 && strcmp (field_name + strlen (field_name) - 6,
415 "___XVN") != 0)));
14f9c5c9
AS
416}
417
418
4c4b4cd2
PH
419/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
420 FIELD_NAME, and return its index. This function also handles fields
421 whose name have ___ suffixes because the compiler sometimes alters
422 their name by adding such a suffix to represent fields with certain
423 constraints. If the field could not be found, return a negative
424 number if MAYBE_MISSING is set. Otherwise raise an error. */
425
426int
427ada_get_field_index (const struct type *type, const char *field_name,
428 int maybe_missing)
429{
430 int fieldno;
431 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
432 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
433 return fieldno;
434
435 if (!maybe_missing)
323e0a4a 436 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
437 field_name, TYPE_NAME (type));
438
439 return -1;
440}
441
442/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
443
444int
d2e4a39e 445ada_name_prefix_len (const char *name)
14f9c5c9
AS
446{
447 if (name == NULL)
448 return 0;
d2e4a39e 449 else
14f9c5c9 450 {
d2e4a39e 451 const char *p = strstr (name, "___");
14f9c5c9 452 if (p == NULL)
4c4b4cd2 453 return strlen (name);
14f9c5c9 454 else
4c4b4cd2 455 return p - name;
14f9c5c9
AS
456 }
457}
458
4c4b4cd2
PH
459/* Return non-zero if SUFFIX is a suffix of STR.
460 Return zero if STR is null. */
461
14f9c5c9 462static int
d2e4a39e 463is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
464{
465 int len1, len2;
466 if (str == NULL)
467 return 0;
468 len1 = strlen (str);
469 len2 = strlen (suffix);
4c4b4cd2 470 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
471}
472
473/* Create a value of type TYPE whose contents come from VALADDR, if it
4c4b4cd2
PH
474 is non-null, and whose memory address (in the inferior) is
475 ADDRESS. */
476
d2e4a39e 477struct value *
10a2c479 478value_from_contents_and_address (struct type *type,
fc1a4b47 479 const gdb_byte *valaddr,
4c4b4cd2 480 CORE_ADDR address)
14f9c5c9 481{
d2e4a39e
AS
482 struct value *v = allocate_value (type);
483 if (valaddr == NULL)
dfa52d88 484 set_value_lazy (v, 1);
14f9c5c9 485 else
990a07ab 486 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
14f9c5c9
AS
487 VALUE_ADDRESS (v) = address;
488 if (address != 0)
489 VALUE_LVAL (v) = lval_memory;
490 return v;
491}
492
4c4b4cd2
PH
493/* The contents of value VAL, treated as a value of type TYPE. The
494 result is an lval in memory if VAL is. */
14f9c5c9 495
d2e4a39e 496static struct value *
4c4b4cd2 497coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 498{
61ee279c 499 type = ada_check_typedef (type);
df407dfe 500 if (value_type (val) == type)
4c4b4cd2 501 return val;
d2e4a39e 502 else
14f9c5c9 503 {
4c4b4cd2
PH
504 struct value *result;
505
506 /* Make sure that the object size is not unreasonable before
507 trying to allocate some memory for it. */
714e53ab 508 check_size (type);
4c4b4cd2
PH
509
510 result = allocate_value (type);
511 VALUE_LVAL (result) = VALUE_LVAL (val);
9bbda503
AC
512 set_value_bitsize (result, value_bitsize (val));
513 set_value_bitpos (result, value_bitpos (val));
df407dfe 514 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
d69fe07e 515 if (value_lazy (val)
df407dfe 516 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 517 set_value_lazy (result, 1);
d2e4a39e 518 else
0fd88904 519 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 520 TYPE_LENGTH (type));
14f9c5c9
AS
521 return result;
522 }
523}
524
fc1a4b47
AC
525static const gdb_byte *
526cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
527{
528 if (valaddr == NULL)
529 return NULL;
530 else
531 return valaddr + offset;
532}
533
534static CORE_ADDR
ebf56fd3 535cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
536{
537 if (address == 0)
538 return 0;
d2e4a39e 539 else
14f9c5c9
AS
540 return address + offset;
541}
542
4c4b4cd2
PH
543/* Issue a warning (as for the definition of warning in utils.c, but
544 with exactly one argument rather than ...), unless the limit on the
545 number of warnings has passed during the evaluation of the current
546 expression. */
a2249542 547
77109804
AC
548/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
549 provided by "complaint". */
550static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
551
14f9c5c9 552static void
a2249542 553lim_warning (const char *format, ...)
14f9c5c9 554{
a2249542
MK
555 va_list args;
556 va_start (args, format);
557
4c4b4cd2
PH
558 warnings_issued += 1;
559 if (warnings_issued <= warning_limit)
a2249542
MK
560 vwarning (format, args);
561
562 va_end (args);
4c4b4cd2
PH
563}
564
714e53ab
PH
565/* Issue an error if the size of an object of type T is unreasonable,
566 i.e. if it would be a bad idea to allocate a value of this type in
567 GDB. */
568
569static void
570check_size (const struct type *type)
571{
572 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 573 error (_("object size is larger than varsize-limit"));
714e53ab
PH
574}
575
576
c3e5cd34
PH
577/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
578 gdbtypes.h, but some of the necessary definitions in that file
579 seem to have gone missing. */
580
581/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 582static LONGEST
c3e5cd34 583max_of_size (int size)
4c4b4cd2 584{
76a01679
JB
585 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
586 return top_bit | (top_bit - 1);
4c4b4cd2
PH
587}
588
c3e5cd34 589/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 590static LONGEST
c3e5cd34 591min_of_size (int size)
4c4b4cd2 592{
c3e5cd34 593 return -max_of_size (size) - 1;
4c4b4cd2
PH
594}
595
c3e5cd34 596/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 597static ULONGEST
c3e5cd34 598umax_of_size (int size)
4c4b4cd2 599{
76a01679
JB
600 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
601 return top_bit | (top_bit - 1);
4c4b4cd2
PH
602}
603
c3e5cd34
PH
604/* Maximum value of integral type T, as a signed quantity. */
605static LONGEST
606max_of_type (struct type *t)
4c4b4cd2 607{
c3e5cd34
PH
608 if (TYPE_UNSIGNED (t))
609 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
610 else
611 return max_of_size (TYPE_LENGTH (t));
612}
613
614/* Minimum value of integral type T, as a signed quantity. */
615static LONGEST
616min_of_type (struct type *t)
617{
618 if (TYPE_UNSIGNED (t))
619 return 0;
620 else
621 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
622}
623
624/* The largest value in the domain of TYPE, a discrete type, as an integer. */
625static struct value *
626discrete_type_high_bound (struct type *type)
627{
76a01679 628 switch (TYPE_CODE (type))
4c4b4cd2
PH
629 {
630 case TYPE_CODE_RANGE:
631 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 632 TYPE_HIGH_BOUND (type));
4c4b4cd2 633 case TYPE_CODE_ENUM:
76a01679
JB
634 return
635 value_from_longest (type,
636 TYPE_FIELD_BITPOS (type,
637 TYPE_NFIELDS (type) - 1));
638 case TYPE_CODE_INT:
c3e5cd34 639 return value_from_longest (type, max_of_type (type));
4c4b4cd2 640 default:
323e0a4a 641 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
642 }
643}
644
645/* The largest value in the domain of TYPE, a discrete type, as an integer. */
646static struct value *
647discrete_type_low_bound (struct type *type)
648{
76a01679 649 switch (TYPE_CODE (type))
4c4b4cd2
PH
650 {
651 case TYPE_CODE_RANGE:
652 return value_from_longest (TYPE_TARGET_TYPE (type),
76a01679 653 TYPE_LOW_BOUND (type));
4c4b4cd2 654 case TYPE_CODE_ENUM:
76a01679
JB
655 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
656 case TYPE_CODE_INT:
c3e5cd34 657 return value_from_longest (type, min_of_type (type));
4c4b4cd2 658 default:
323e0a4a 659 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
660 }
661}
662
663/* The identity on non-range types. For range types, the underlying
76a01679 664 non-range scalar type. */
4c4b4cd2
PH
665
666static struct type *
667base_type (struct type *type)
668{
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
76a01679
JB
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
4c4b4cd2
PH
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
14f9c5c9 676}
4c4b4cd2 677\f
76a01679 678
4c4b4cd2 679 /* Language Selection */
14f9c5c9
AS
680
681/* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
4c4b4cd2 684 MAIN_PST is not used. */
d2e4a39e 685
14f9c5c9 686enum language
d2e4a39e 687ada_update_initial_language (enum language lang,
4c4b4cd2 688 struct partial_symtab *main_pst)
14f9c5c9 689{
d2e4a39e 690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
14f9c5c9
AS
693
694 return lang;
695}
96d887e8
PH
696
697/* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701char *
702ada_main_name (void)
703{
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
6c038f32 707
96d887e8
PH
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
323e0a4a 719 error (_("Invalid address for Ada main program name."));
96d887e8
PH
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727}
14f9c5c9 728\f
4c4b4cd2 729 /* Symbols */
d2e4a39e 730
4c4b4cd2
PH
731/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
14f9c5c9 733
d2e4a39e
AS
734const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
14f9c5c9
AS
757};
758
4c4b4cd2
PH
759/* Return non-zero if STR should be suppressed in info listings. */
760
14f9c5c9 761static int
d2e4a39e 762is_suppressed_name (const char *str)
14f9c5c9 763{
4c4b4cd2 764 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
d2e4a39e
AS
770 const char *p;
771 const char *suffix = strstr (str, "___");
14f9c5c9 772 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 773 return 1;
14f9c5c9 774 if (suffix == NULL)
4c4b4cd2 775 suffix = str + strlen (str);
d2e4a39e 776 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
14f9c5c9
AS
791 return 0;
792 }
793}
794
4c4b4cd2
PH
795/* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
14f9c5c9 798char *
4c4b4cd2 799ada_encode (const char *decoded)
14f9c5c9 800{
4c4b4cd2
PH
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
d2e4a39e 803 const char *p;
14f9c5c9 804 int k;
d2e4a39e 805
4c4b4cd2 806 if (decoded == NULL)
14f9c5c9
AS
807 return NULL;
808
4c4b4cd2
PH
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
14f9c5c9
AS
811
812 k = 0;
4c4b4cd2 813 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 814 {
4c4b4cd2
PH
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
14f9c5c9 820 else if (*p == '"')
4c4b4cd2
PH
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
1265e4aa
JB
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
828 ;
829 if (mapping->encoded == NULL)
323e0a4a 830 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
d2e4a39e 835 else
4c4b4cd2
PH
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
14f9c5c9
AS
840 }
841
4c4b4cd2
PH
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
14f9c5c9
AS
844}
845
846/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
d2e4a39e
AS
850char *
851ada_fold_name (const char *name)
14f9c5c9 852{
d2e4a39e 853 static char *fold_buffer = NULL;
14f9c5c9
AS
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
d2e4a39e 857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
858
859 if (name[0] == '\'')
860 {
d2e4a39e
AS
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
4c4b4cd2 868 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
869 }
870
871 return fold_buffer;
872}
873
529cad9c
PH
874/* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876static int
877is_lower_alphanum (const char c)
878{
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880}
881
29480c32
JB
882/* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891static void
892ada_remove_trailing_digits (const char *encoded, int *len)
893{
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908}
909
910/* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913static void
914ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915{
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930}
931
932/* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
14f9c5c9 935
4c4b4cd2 936 The resulting string is valid until the next call of ada_decode.
29480c32 937 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
938 is returned. */
939
940const char *
941ada_decode (const char *encoded)
14f9c5c9
AS
942{
943 int i, j;
944 int len0;
d2e4a39e 945 const char *p;
4c4b4cd2 946 char *decoded;
14f9c5c9 947 int at_start_name;
4c4b4cd2
PH
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
d2e4a39e 950
29480c32
JB
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
4c4b4cd2
PH
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
14f9c5c9 956
29480c32
JB
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
4c4b4cd2 960 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
961 goto Suppress;
962
4c4b4cd2 963 len0 = strlen (encoded);
4c4b4cd2 964
29480c32
JB
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 967
4c4b4cd2
PH
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
974 {
975 if (p[3] == 'X')
4c4b4cd2 976 len0 = p - encoded;
14f9c5c9 977 else
4c4b4cd2 978 goto Suppress;
14f9c5c9 979 }
4c4b4cd2 980
29480c32
JB
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
4c4b4cd2 985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 986 len0 -= 3;
76a01679 987
29480c32
JB
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
4c4b4cd2 991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
992 len0 -= 1;
993
4c4b4cd2 994 /* Make decoded big enough for possible expansion by operator name. */
29480c32 995
4c4b4cd2
PH
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
14f9c5c9 998
29480c32
JB
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
4c4b4cd2 1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1002 {
4c4b4cd2
PH
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
d2e4a39e 1011 }
14f9c5c9 1012
29480c32
JB
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
4c4b4cd2
PH
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
14f9c5c9
AS
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
29480c32 1022 /* Is this a symbol function? */
4c4b4cd2
PH
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
14f9c5c9
AS
1043 at_start_name = 0;
1044
529cad9c
PH
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
4c4b4cd2
PH
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
529cad9c 1050
29480c32
JB
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
529cad9c
PH
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
4c4b4cd2
PH
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
29480c32
JB
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
4c4b4cd2
PH
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
29480c32 1140 /* Replace '__' by '.'. */
4c4b4cd2
PH
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
14f9c5c9 1146 else
4c4b4cd2 1147 {
29480c32
JB
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
4c4b4cd2
PH
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
14f9c5c9 1154 }
4c4b4cd2 1155 decoded[j] = '\000';
14f9c5c9 1156
29480c32
JB
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
4c4b4cd2
PH
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1162 goto Suppress;
1163
4c4b4cd2
PH
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
14f9c5c9
AS
1168
1169Suppress:
4c4b4cd2
PH
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
14f9c5c9 1174 else
4c4b4cd2
PH
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178}
1179
1180/* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185static struct htab *decoded_names_store;
1186
1187/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
76a01679 1196*/
4c4b4cd2 1197
76a01679
JB
1198char *
1199ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1200{
76a01679 1201 char **resultp =
4c4b4cd2
PH
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->bfd_section != NULL)
76a01679
JB
1207 {
1208 bfd *obfd = gsymbol->bfd_section->owner;
1209 if (obfd != NULL)
1210 {
1211 struct objfile *objf;
1212 ALL_OBJFILES (objf)
1213 {
1214 if (obfd == objf->obfd)
1215 {
1216 *resultp = obsavestring (decoded, strlen (decoded),
1217 &objf->objfile_obstack);
1218 break;
1219 }
1220 }
1221 }
1222 }
4c4b4cd2 1223 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1224 case, we put the result on the heap. Since we only decode
1225 when needed, we hope this usually does not cause a
1226 significant memory leak (FIXME). */
4c4b4cd2 1227 if (*resultp == NULL)
76a01679
JB
1228 {
1229 char **slot = (char **) htab_find_slot (decoded_names_store,
1230 decoded, INSERT);
1231 if (*slot == NULL)
1232 *slot = xstrdup (decoded);
1233 *resultp = *slot;
1234 }
4c4b4cd2 1235 }
14f9c5c9 1236
4c4b4cd2
PH
1237 return *resultp;
1238}
76a01679
JB
1239
1240char *
1241ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1242{
1243 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1244}
1245
1246/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1247 suffixes that encode debugging information or leading _ada_ on
1248 SYM_NAME (see is_name_suffix commentary for the debugging
1249 information that is ignored). If WILD, then NAME need only match a
1250 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1251 either argument is NULL. */
14f9c5c9
AS
1252
1253int
d2e4a39e 1254ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1255{
1256 if (sym_name == NULL || name == NULL)
1257 return 0;
1258 else if (wild)
1259 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1260 else
1261 {
1262 int len_name = strlen (name);
4c4b4cd2
PH
1263 return (strncmp (sym_name, name, len_name) == 0
1264 && is_name_suffix (sym_name + len_name))
1265 || (strncmp (sym_name, "_ada_", 5) == 0
1266 && strncmp (sym_name + 5, name, len_name) == 0
1267 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1268 }
14f9c5c9
AS
1269}
1270
4c4b4cd2
PH
1271/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1272 suppressed in info listings. */
14f9c5c9
AS
1273
1274int
ebf56fd3 1275ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1276{
176620f1 1277 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1278 return 1;
d2e4a39e 1279 else
4c4b4cd2 1280 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1281}
14f9c5c9 1282\f
d2e4a39e 1283
4c4b4cd2 1284 /* Arrays */
14f9c5c9 1285
4c4b4cd2 1286/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1287
d2e4a39e
AS
1288static char *bound_name[] = {
1289 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1290 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1291};
1292
1293/* Maximum number of array dimensions we are prepared to handle. */
1294
4c4b4cd2 1295#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1296
4c4b4cd2 1297/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1298
1299static void
ebf56fd3 1300modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1301{
4c4b4cd2 1302 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1303}
1304
1305
4c4b4cd2
PH
1306/* The desc_* routines return primitive portions of array descriptors
1307 (fat pointers). */
14f9c5c9
AS
1308
1309/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1310 level of indirection, if needed. */
1311
d2e4a39e
AS
1312static struct type *
1313desc_base_type (struct type *type)
14f9c5c9
AS
1314{
1315 if (type == NULL)
1316 return NULL;
61ee279c 1317 type = ada_check_typedef (type);
1265e4aa
JB
1318 if (type != NULL
1319 && (TYPE_CODE (type) == TYPE_CODE_PTR
1320 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1321 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1322 else
1323 return type;
1324}
1325
4c4b4cd2
PH
1326/* True iff TYPE indicates a "thin" array pointer type. */
1327
14f9c5c9 1328static int
d2e4a39e 1329is_thin_pntr (struct type *type)
14f9c5c9 1330{
d2e4a39e 1331 return
14f9c5c9
AS
1332 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1333 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1334}
1335
4c4b4cd2
PH
1336/* The descriptor type for thin pointer type TYPE. */
1337
d2e4a39e
AS
1338static struct type *
1339thin_descriptor_type (struct type *type)
14f9c5c9 1340{
d2e4a39e 1341 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1342 if (base_type == NULL)
1343 return NULL;
1344 if (is_suffix (ada_type_name (base_type), "___XVE"))
1345 return base_type;
d2e4a39e 1346 else
14f9c5c9 1347 {
d2e4a39e 1348 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1349 if (alt_type == NULL)
4c4b4cd2 1350 return base_type;
14f9c5c9 1351 else
4c4b4cd2 1352 return alt_type;
14f9c5c9
AS
1353 }
1354}
1355
4c4b4cd2
PH
1356/* A pointer to the array data for thin-pointer value VAL. */
1357
d2e4a39e
AS
1358static struct value *
1359thin_data_pntr (struct value *val)
14f9c5c9 1360{
df407dfe 1361 struct type *type = value_type (val);
14f9c5c9 1362 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1363 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1364 value_copy (val));
d2e4a39e 1365 else
14f9c5c9 1366 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1367 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1368}
1369
4c4b4cd2
PH
1370/* True iff TYPE indicates a "thick" array pointer type. */
1371
14f9c5c9 1372static int
d2e4a39e 1373is_thick_pntr (struct type *type)
14f9c5c9
AS
1374{
1375 type = desc_base_type (type);
1376 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1377 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1378}
1379
4c4b4cd2
PH
1380/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1381 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1382
d2e4a39e
AS
1383static struct type *
1384desc_bounds_type (struct type *type)
14f9c5c9 1385{
d2e4a39e 1386 struct type *r;
14f9c5c9
AS
1387
1388 type = desc_base_type (type);
1389
1390 if (type == NULL)
1391 return NULL;
1392 else if (is_thin_pntr (type))
1393 {
1394 type = thin_descriptor_type (type);
1395 if (type == NULL)
4c4b4cd2 1396 return NULL;
14f9c5c9
AS
1397 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1398 if (r != NULL)
61ee279c 1399 return ada_check_typedef (r);
14f9c5c9
AS
1400 }
1401 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1402 {
1403 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1404 if (r != NULL)
61ee279c 1405 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1406 }
1407 return NULL;
1408}
1409
1410/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1411 one, a pointer to its bounds data. Otherwise NULL. */
1412
d2e4a39e
AS
1413static struct value *
1414desc_bounds (struct value *arr)
14f9c5c9 1415{
df407dfe 1416 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1417 if (is_thin_pntr (type))
14f9c5c9 1418 {
d2e4a39e 1419 struct type *bounds_type =
4c4b4cd2 1420 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1421 LONGEST addr;
1422
4cdfadb1 1423 if (bounds_type == NULL)
323e0a4a 1424 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1425
1426 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1427 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1428 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1429 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1430 addr = value_as_long (arr);
d2e4a39e 1431 else
df407dfe 1432 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1433
d2e4a39e 1434 return
4c4b4cd2
PH
1435 value_from_longest (lookup_pointer_type (bounds_type),
1436 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1437 }
1438
1439 else if (is_thick_pntr (type))
d2e4a39e 1440 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1441 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1442 else
1443 return NULL;
1444}
1445
4c4b4cd2
PH
1446/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1447 position of the field containing the address of the bounds data. */
1448
14f9c5c9 1449static int
d2e4a39e 1450fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1451{
1452 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1453}
1454
1455/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1456 size of the field containing the address of the bounds data. */
1457
14f9c5c9 1458static int
d2e4a39e 1459fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1460{
1461 type = desc_base_type (type);
1462
d2e4a39e 1463 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1464 return TYPE_FIELD_BITSIZE (type, 1);
1465 else
61ee279c 1466 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1467}
1468
4c4b4cd2 1469/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1470 pointer to one, the type of its array data (a
4c4b4cd2
PH
1471 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1472 ada_type_of_array to get an array type with bounds data. */
1473
d2e4a39e
AS
1474static struct type *
1475desc_data_type (struct type *type)
14f9c5c9
AS
1476{
1477 type = desc_base_type (type);
1478
4c4b4cd2 1479 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1480 if (is_thin_pntr (type))
d2e4a39e
AS
1481 return lookup_pointer_type
1482 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1483 else if (is_thick_pntr (type))
1484 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1485 else
1486 return NULL;
1487}
1488
1489/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1490 its array data. */
4c4b4cd2 1491
d2e4a39e
AS
1492static struct value *
1493desc_data (struct value *arr)
14f9c5c9 1494{
df407dfe 1495 struct type *type = value_type (arr);
14f9c5c9
AS
1496 if (is_thin_pntr (type))
1497 return thin_data_pntr (arr);
1498 else if (is_thick_pntr (type))
d2e4a39e 1499 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1500 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1501 else
1502 return NULL;
1503}
1504
1505
1506/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1507 position of the field containing the address of the data. */
1508
14f9c5c9 1509static int
d2e4a39e 1510fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1511{
1512 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1513}
1514
1515/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1516 size of the field containing the address of the data. */
1517
14f9c5c9 1518static int
d2e4a39e 1519fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1520{
1521 type = desc_base_type (type);
1522
1523 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1525 else
14f9c5c9
AS
1526 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1527}
1528
4c4b4cd2 1529/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1530 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
d2e4a39e
AS
1533static struct value *
1534desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1535{
d2e4a39e 1536 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1537 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1538}
1539
1540/* If BOUNDS is an array-bounds structure type, return the bit position
1541 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1542 bound, if WHICH is 1. The first bound is I=1. */
1543
14f9c5c9 1544static int
d2e4a39e 1545desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1546{
d2e4a39e 1547 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1548}
1549
1550/* If BOUNDS is an array-bounds structure type, return the bit field size
1551 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1552 bound, if WHICH is 1. The first bound is I=1. */
1553
76a01679 1554static int
d2e4a39e 1555desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1556{
1557 type = desc_base_type (type);
1558
d2e4a39e
AS
1559 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1560 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1561 else
1562 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1563}
1564
1565/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1566 Ith bound (numbering from 1). Otherwise, NULL. */
1567
d2e4a39e
AS
1568static struct type *
1569desc_index_type (struct type *type, int i)
14f9c5c9
AS
1570{
1571 type = desc_base_type (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1574 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1575 else
14f9c5c9
AS
1576 return NULL;
1577}
1578
4c4b4cd2
PH
1579/* The number of index positions in the array-bounds type TYPE.
1580 Return 0 if TYPE is NULL. */
1581
14f9c5c9 1582static int
d2e4a39e 1583desc_arity (struct type *type)
14f9c5c9
AS
1584{
1585 type = desc_base_type (type);
1586
1587 if (type != NULL)
1588 return TYPE_NFIELDS (type) / 2;
1589 return 0;
1590}
1591
4c4b4cd2
PH
1592/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1593 an array descriptor type (representing an unconstrained array
1594 type). */
1595
76a01679
JB
1596static int
1597ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1598{
1599 if (type == NULL)
1600 return 0;
61ee279c 1601 type = ada_check_typedef (type);
4c4b4cd2 1602 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1603 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1604}
1605
52ce6436
PH
1606/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1607 * to one. */
1608
1609int
1610ada_is_array_type (struct type *type)
1611{
1612 while (type != NULL
1613 && (TYPE_CODE (type) == TYPE_CODE_PTR
1614 || TYPE_CODE (type) == TYPE_CODE_REF))
1615 type = TYPE_TARGET_TYPE (type);
1616 return ada_is_direct_array_type (type);
1617}
1618
4c4b4cd2 1619/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1620
14f9c5c9 1621int
4c4b4cd2 1622ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1623{
1624 if (type == NULL)
1625 return 0;
61ee279c 1626 type = ada_check_typedef (type);
14f9c5c9 1627 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1628 || (TYPE_CODE (type) == TYPE_CODE_PTR
1629 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1630}
1631
4c4b4cd2
PH
1632/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1633
14f9c5c9 1634int
4c4b4cd2 1635ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1636{
d2e4a39e 1637 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1638
1639 if (type == NULL)
1640 return 0;
61ee279c 1641 type = ada_check_typedef (type);
d2e4a39e 1642 return
14f9c5c9
AS
1643 data_type != NULL
1644 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1645 && TYPE_TARGET_TYPE (data_type) != NULL
1646 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1647 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1648 && desc_arity (desc_bounds_type (type)) > 0;
1649}
1650
1651/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1652 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1653 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1654 is still needed. */
1655
14f9c5c9 1656int
ebf56fd3 1657ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1658{
d2e4a39e 1659 return
14f9c5c9
AS
1660 type != NULL
1661 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1663 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1664 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1665}
1666
1667
4c4b4cd2 1668/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1669 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1670 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1671 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1672 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1673 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1674 a descriptor. */
d2e4a39e
AS
1675struct type *
1676ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1677{
df407dfe
AC
1678 if (ada_is_packed_array_type (value_type (arr)))
1679 return decode_packed_array_type (value_type (arr));
14f9c5c9 1680
df407dfe
AC
1681 if (!ada_is_array_descriptor_type (value_type (arr)))
1682 return value_type (arr);
d2e4a39e
AS
1683
1684 if (!bounds)
1685 return
df407dfe 1686 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1687 else
1688 {
d2e4a39e 1689 struct type *elt_type;
14f9c5c9 1690 int arity;
d2e4a39e 1691 struct value *descriptor;
df407dfe 1692 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1693
df407dfe
AC
1694 elt_type = ada_array_element_type (value_type (arr), -1);
1695 arity = ada_array_arity (value_type (arr));
14f9c5c9 1696
d2e4a39e 1697 if (elt_type == NULL || arity == 0)
df407dfe 1698 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1699
1700 descriptor = desc_bounds (arr);
d2e4a39e 1701 if (value_as_long (descriptor) == 0)
4c4b4cd2 1702 return NULL;
d2e4a39e 1703 while (arity > 0)
4c4b4cd2
PH
1704 {
1705 struct type *range_type = alloc_type (objf);
1706 struct type *array_type = alloc_type (objf);
1707 struct value *low = desc_one_bound (descriptor, arity, 0);
1708 struct value *high = desc_one_bound (descriptor, arity, 1);
1709 arity -= 1;
1710
df407dfe 1711 create_range_type (range_type, value_type (low),
529cad9c
PH
1712 longest_to_int (value_as_long (low)),
1713 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1714 elt_type = create_array_type (array_type, elt_type, range_type);
1715 }
14f9c5c9
AS
1716
1717 return lookup_pointer_type (elt_type);
1718 }
1719}
1720
1721/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1722 Otherwise, returns either a standard GDB array with bounds set
1723 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1724 GDB array. Returns NULL if ARR is a null fat pointer. */
1725
d2e4a39e
AS
1726struct value *
1727ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1728{
df407dfe 1729 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1730 {
d2e4a39e 1731 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1732 if (arrType == NULL)
4c4b4cd2 1733 return NULL;
14f9c5c9
AS
1734 return value_cast (arrType, value_copy (desc_data (arr)));
1735 }
df407dfe 1736 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1737 return decode_packed_array (arr);
1738 else
1739 return arr;
1740}
1741
1742/* If ARR does not represent an array, returns ARR unchanged.
1743 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1744 be ARR itself if it already is in the proper form). */
1745
1746static struct value *
d2e4a39e 1747ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1748{
df407dfe 1749 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1750 {
d2e4a39e 1751 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1752 if (arrVal == NULL)
323e0a4a 1753 error (_("Bounds unavailable for null array pointer."));
529cad9c 1754 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1755 return value_ind (arrVal);
1756 }
df407dfe 1757 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1758 return decode_packed_array (arr);
d2e4a39e 1759 else
14f9c5c9
AS
1760 return arr;
1761}
1762
1763/* If TYPE represents a GNAT array type, return it translated to an
1764 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1765 packing). For other types, is the identity. */
1766
d2e4a39e
AS
1767struct type *
1768ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1769{
d2e4a39e
AS
1770 struct value *mark = value_mark ();
1771 struct value *dummy = value_from_longest (builtin_type_long, 0);
1772 struct type *result;
04624583 1773 deprecated_set_value_type (dummy, type);
14f9c5c9 1774 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1775 value_free_to_mark (mark);
14f9c5c9
AS
1776 return result;
1777}
1778
4c4b4cd2
PH
1779/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1780
14f9c5c9 1781int
d2e4a39e 1782ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1783{
1784 if (type == NULL)
1785 return 0;
4c4b4cd2 1786 type = desc_base_type (type);
61ee279c 1787 type = ada_check_typedef (type);
d2e4a39e 1788 return
14f9c5c9
AS
1789 ada_type_name (type) != NULL
1790 && strstr (ada_type_name (type), "___XP") != NULL;
1791}
1792
1793/* Given that TYPE is a standard GDB array type with all bounds filled
1794 in, and that the element size of its ultimate scalar constituents
1795 (that is, either its elements, or, if it is an array of arrays, its
1796 elements' elements, etc.) is *ELT_BITS, return an identical type,
1797 but with the bit sizes of its elements (and those of any
1798 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1799 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1800 in bits. */
1801
d2e4a39e
AS
1802static struct type *
1803packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1804{
d2e4a39e
AS
1805 struct type *new_elt_type;
1806 struct type *new_type;
14f9c5c9
AS
1807 LONGEST low_bound, high_bound;
1808
61ee279c 1809 type = ada_check_typedef (type);
14f9c5c9
AS
1810 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1811 return type;
1812
1813 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1814 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1815 elt_bits);
14f9c5c9
AS
1816 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1817 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1818 TYPE_NAME (new_type) = ada_type_name (type);
1819
d2e4a39e 1820 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2 1821 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1822 low_bound = high_bound = 0;
1823 if (high_bound < low_bound)
1824 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1825 else
14f9c5c9
AS
1826 {
1827 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1828 TYPE_LENGTH (new_type) =
4c4b4cd2 1829 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1830 }
1831
4c4b4cd2 1832 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
1833 return new_type;
1834}
1835
4c4b4cd2
PH
1836/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1837
d2e4a39e
AS
1838static struct type *
1839decode_packed_array_type (struct type *type)
1840{
4c4b4cd2 1841 struct symbol *sym;
d2e4a39e 1842 struct block **blocks;
727e3d2e
JB
1843 char *raw_name = ada_type_name (ada_check_typedef (type));
1844 char *name;
1845 char *tail;
d2e4a39e 1846 struct type *shadow_type;
14f9c5c9
AS
1847 long bits;
1848 int i, n;
1849
727e3d2e
JB
1850 if (!raw_name)
1851 raw_name = ada_type_name (desc_base_type (type));
1852
1853 if (!raw_name)
1854 return NULL;
1855
1856 name = (char *) alloca (strlen (raw_name) + 1);
1857 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1858 type = desc_base_type (type);
1859
14f9c5c9
AS
1860 memcpy (name, raw_name, tail - raw_name);
1861 name[tail - raw_name] = '\000';
1862
4c4b4cd2
PH
1863 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1864 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1865 {
323e0a4a 1866 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1867 return NULL;
1868 }
4c4b4cd2 1869 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1870
1871 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1872 {
323e0a4a 1873 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1874 return NULL;
1875 }
d2e4a39e 1876
14f9c5c9
AS
1877 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1878 {
4c4b4cd2 1879 lim_warning
323e0a4a 1880 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1881 return NULL;
1882 }
d2e4a39e 1883
14f9c5c9
AS
1884 return packed_array_type (shadow_type, &bits);
1885}
1886
4c4b4cd2 1887/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1888 returns a simple array that denotes that array. Its type is a
1889 standard GDB array type except that the BITSIZEs of the array
1890 target types are set to the number of bits in each element, and the
4c4b4cd2 1891 type length is set appropriately. */
14f9c5c9 1892
d2e4a39e
AS
1893static struct value *
1894decode_packed_array (struct value *arr)
14f9c5c9 1895{
4c4b4cd2 1896 struct type *type;
14f9c5c9 1897
4c4b4cd2 1898 arr = ada_coerce_ref (arr);
df407dfe 1899 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1900 arr = ada_value_ind (arr);
1901
df407dfe 1902 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1903 if (type == NULL)
1904 {
323e0a4a 1905 error (_("can't unpack array"));
14f9c5c9
AS
1906 return NULL;
1907 }
61ee279c 1908
32c9a795
MD
1909 if (gdbarch_bits_big_endian (current_gdbarch)
1910 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1911 {
1912 /* This is a (right-justified) modular type representing a packed
1913 array with no wrapper. In order to interpret the value through
1914 the (left-justified) packed array type we just built, we must
1915 first left-justify it. */
1916 int bit_size, bit_pos;
1917 ULONGEST mod;
1918
df407dfe 1919 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1920 bit_size = 0;
1921 while (mod > 0)
1922 {
1923 bit_size += 1;
1924 mod >>= 1;
1925 }
df407dfe 1926 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1927 arr = ada_value_primitive_packed_val (arr, NULL,
1928 bit_pos / HOST_CHAR_BIT,
1929 bit_pos % HOST_CHAR_BIT,
1930 bit_size,
1931 type);
1932 }
1933
4c4b4cd2 1934 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1935}
1936
1937
1938/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1939 given in IND. ARR must be a simple array. */
14f9c5c9 1940
d2e4a39e
AS
1941static struct value *
1942value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1943{
1944 int i;
1945 int bits, elt_off, bit_off;
1946 long elt_total_bit_offset;
d2e4a39e
AS
1947 struct type *elt_type;
1948 struct value *v;
14f9c5c9
AS
1949
1950 bits = 0;
1951 elt_total_bit_offset = 0;
df407dfe 1952 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1953 for (i = 0; i < arity; i += 1)
14f9c5c9 1954 {
d2e4a39e 1955 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1956 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1957 error
323e0a4a 1958 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1959 else
4c4b4cd2
PH
1960 {
1961 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1962 LONGEST lowerbound, upperbound;
1963 LONGEST idx;
1964
1965 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1966 {
323e0a4a 1967 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1968 lowerbound = upperbound = 0;
1969 }
1970
1971 idx = value_as_long (value_pos_atr (ind[i]));
1972 if (idx < lowerbound || idx > upperbound)
323e0a4a 1973 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1974 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1975 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1976 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1977 }
14f9c5c9
AS
1978 }
1979 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1980 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1981
1982 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1983 bits, elt_type);
14f9c5c9
AS
1984 return v;
1985}
1986
4c4b4cd2 1987/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1988
1989static int
d2e4a39e 1990has_negatives (struct type *type)
14f9c5c9 1991{
d2e4a39e
AS
1992 switch (TYPE_CODE (type))
1993 {
1994 default:
1995 return 0;
1996 case TYPE_CODE_INT:
1997 return !TYPE_UNSIGNED (type);
1998 case TYPE_CODE_RANGE:
1999 return TYPE_LOW_BOUND (type) < 0;
2000 }
14f9c5c9 2001}
d2e4a39e 2002
14f9c5c9
AS
2003
2004/* Create a new value of type TYPE from the contents of OBJ starting
2005 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2006 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2007 assigning through the result will set the field fetched from.
2008 VALADDR is ignored unless OBJ is NULL, in which case,
2009 VALADDR+OFFSET must address the start of storage containing the
2010 packed value. The value returned in this case is never an lval.
2011 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2012
d2e4a39e 2013struct value *
fc1a4b47 2014ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2015 long offset, int bit_offset, int bit_size,
4c4b4cd2 2016 struct type *type)
14f9c5c9 2017{
d2e4a39e 2018 struct value *v;
4c4b4cd2
PH
2019 int src, /* Index into the source area */
2020 targ, /* Index into the target area */
2021 srcBitsLeft, /* Number of source bits left to move */
2022 nsrc, ntarg, /* Number of source and target bytes */
2023 unusedLS, /* Number of bits in next significant
2024 byte of source that are unused */
2025 accumSize; /* Number of meaningful bits in accum */
2026 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2027 unsigned char *unpacked;
4c4b4cd2 2028 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2029 unsigned char sign;
2030 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2031 /* Transmit bytes from least to most significant; delta is the direction
2032 the indices move. */
32c9a795 2033 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 2034
61ee279c 2035 type = ada_check_typedef (type);
14f9c5c9
AS
2036
2037 if (obj == NULL)
2038 {
2039 v = allocate_value (type);
d2e4a39e 2040 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2041 }
d69fe07e 2042 else if (value_lazy (obj))
14f9c5c9
AS
2043 {
2044 v = value_at (type,
df407dfe 2045 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2046 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2047 read_memory (VALUE_ADDRESS (v), bytes, len);
2048 }
d2e4a39e 2049 else
14f9c5c9
AS
2050 {
2051 v = allocate_value (type);
0fd88904 2052 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2053 }
d2e4a39e
AS
2054
2055 if (obj != NULL)
14f9c5c9
AS
2056 {
2057 VALUE_LVAL (v) = VALUE_LVAL (obj);
2058 if (VALUE_LVAL (obj) == lval_internalvar)
4c4b4cd2 2059 VALUE_LVAL (v) = lval_internalvar_component;
df407dfe 2060 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
9bbda503
AC
2061 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2062 set_value_bitsize (v, bit_size);
df407dfe 2063 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2064 {
2065 VALUE_ADDRESS (v) += 1;
9bbda503 2066 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2067 }
14f9c5c9
AS
2068 }
2069 else
9bbda503 2070 set_value_bitsize (v, bit_size);
0fd88904 2071 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2072
2073 srcBitsLeft = bit_size;
2074 nsrc = len;
2075 ntarg = TYPE_LENGTH (type);
2076 sign = 0;
2077 if (bit_size == 0)
2078 {
2079 memset (unpacked, 0, TYPE_LENGTH (type));
2080 return v;
2081 }
32c9a795 2082 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2083 {
d2e4a39e 2084 src = len - 1;
1265e4aa
JB
2085 if (has_negatives (type)
2086 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2087 sign = ~0;
d2e4a39e
AS
2088
2089 unusedLS =
4c4b4cd2
PH
2090 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2091 % HOST_CHAR_BIT;
14f9c5c9
AS
2092
2093 switch (TYPE_CODE (type))
4c4b4cd2
PH
2094 {
2095 case TYPE_CODE_ARRAY:
2096 case TYPE_CODE_UNION:
2097 case TYPE_CODE_STRUCT:
2098 /* Non-scalar values must be aligned at a byte boundary... */
2099 accumSize =
2100 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2101 /* ... And are placed at the beginning (most-significant) bytes
2102 of the target. */
529cad9c 2103 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2104 break;
2105 default:
2106 accumSize = 0;
2107 targ = TYPE_LENGTH (type) - 1;
2108 break;
2109 }
14f9c5c9 2110 }
d2e4a39e 2111 else
14f9c5c9
AS
2112 {
2113 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2114
2115 src = targ = 0;
2116 unusedLS = bit_offset;
2117 accumSize = 0;
2118
d2e4a39e 2119 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2120 sign = ~0;
14f9c5c9 2121 }
d2e4a39e 2122
14f9c5c9
AS
2123 accum = 0;
2124 while (nsrc > 0)
2125 {
2126 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2127 part of the value. */
d2e4a39e 2128 unsigned int unusedMSMask =
4c4b4cd2
PH
2129 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2130 1;
2131 /* Sign-extend bits for this byte. */
14f9c5c9 2132 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2133 accum |=
4c4b4cd2 2134 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2135 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2136 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2137 {
2138 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2139 accumSize -= HOST_CHAR_BIT;
2140 accum >>= HOST_CHAR_BIT;
2141 ntarg -= 1;
2142 targ += delta;
2143 }
14f9c5c9
AS
2144 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2145 unusedLS = 0;
2146 nsrc -= 1;
2147 src += delta;
2148 }
2149 while (ntarg > 0)
2150 {
2151 accum |= sign << accumSize;
2152 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2153 accumSize -= HOST_CHAR_BIT;
2154 accum >>= HOST_CHAR_BIT;
2155 ntarg -= 1;
2156 targ += delta;
2157 }
2158
2159 return v;
2160}
d2e4a39e 2161
14f9c5c9
AS
2162/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2163 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2164 not overlap. */
14f9c5c9 2165static void
fc1a4b47 2166move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2167 int src_offset, int n)
14f9c5c9
AS
2168{
2169 unsigned int accum, mask;
2170 int accum_bits, chunk_size;
2171
2172 target += targ_offset / HOST_CHAR_BIT;
2173 targ_offset %= HOST_CHAR_BIT;
2174 source += src_offset / HOST_CHAR_BIT;
2175 src_offset %= HOST_CHAR_BIT;
32c9a795 2176 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2177 {
2178 accum = (unsigned char) *source;
2179 source += 1;
2180 accum_bits = HOST_CHAR_BIT - src_offset;
2181
d2e4a39e 2182 while (n > 0)
4c4b4cd2
PH
2183 {
2184 int unused_right;
2185 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2186 accum_bits += HOST_CHAR_BIT;
2187 source += 1;
2188 chunk_size = HOST_CHAR_BIT - targ_offset;
2189 if (chunk_size > n)
2190 chunk_size = n;
2191 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2192 mask = ((1 << chunk_size) - 1) << unused_right;
2193 *target =
2194 (*target & ~mask)
2195 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2196 n -= chunk_size;
2197 accum_bits -= chunk_size;
2198 target += 1;
2199 targ_offset = 0;
2200 }
14f9c5c9
AS
2201 }
2202 else
2203 {
2204 accum = (unsigned char) *source >> src_offset;
2205 source += 1;
2206 accum_bits = HOST_CHAR_BIT - src_offset;
2207
d2e4a39e 2208 while (n > 0)
4c4b4cd2
PH
2209 {
2210 accum = accum + ((unsigned char) *source << accum_bits);
2211 accum_bits += HOST_CHAR_BIT;
2212 source += 1;
2213 chunk_size = HOST_CHAR_BIT - targ_offset;
2214 if (chunk_size > n)
2215 chunk_size = n;
2216 mask = ((1 << chunk_size) - 1) << targ_offset;
2217 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2218 n -= chunk_size;
2219 accum_bits -= chunk_size;
2220 accum >>= chunk_size;
2221 target += 1;
2222 targ_offset = 0;
2223 }
14f9c5c9
AS
2224 }
2225}
2226
14f9c5c9
AS
2227/* Store the contents of FROMVAL into the location of TOVAL.
2228 Return a new value with the location of TOVAL and contents of
2229 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2230 floating-point or non-scalar types. */
14f9c5c9 2231
d2e4a39e
AS
2232static struct value *
2233ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2234{
df407dfe
AC
2235 struct type *type = value_type (toval);
2236 int bits = value_bitsize (toval);
14f9c5c9 2237
52ce6436
PH
2238 toval = ada_coerce_ref (toval);
2239 fromval = ada_coerce_ref (fromval);
2240
2241 if (ada_is_direct_array_type (value_type (toval)))
2242 toval = ada_coerce_to_simple_array (toval);
2243 if (ada_is_direct_array_type (value_type (fromval)))
2244 fromval = ada_coerce_to_simple_array (fromval);
2245
88e3b34b 2246 if (!deprecated_value_modifiable (toval))
323e0a4a 2247 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2248
d2e4a39e 2249 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2250 && bits > 0
d2e4a39e 2251 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2252 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2253 {
df407dfe
AC
2254 int len = (value_bitpos (toval)
2255 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
d2e4a39e
AS
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
52ce6436 2258 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2261 fromval = value_cast (type, fromval);
14f9c5c9 2262
52ce6436 2263 read_memory (to_addr, buffer, len);
32c9a795 2264 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2265 move_bits (buffer, value_bitpos (toval),
0fd88904 2266 value_contents (fromval),
df407dfe 2267 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
4c4b4cd2 2268 bits, bits);
14f9c5c9 2269 else
0fd88904 2270 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2271 0, bits);
52ce6436
PH
2272 write_memory (to_addr, buffer, len);
2273 if (deprecated_memory_changed_hook)
2274 deprecated_memory_changed_hook (to_addr, len);
2275
14f9c5c9 2276 val = value_copy (toval);
0fd88904 2277 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2278 TYPE_LENGTH (type));
04624583 2279 deprecated_set_value_type (val, type);
d2e4a39e 2280
14f9c5c9
AS
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285}
2286
2287
52ce6436
PH
2288/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293static void
2294value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296{
2297 LONGEST offset_in_container =
2298 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2299 - VALUE_ADDRESS (container) - value_offset (container));
2300 int bit_offset_in_container =
2301 value_bitpos (component) - value_bitpos (container);
2302 int bits;
2303
2304 val = value_cast (value_type (component), val);
2305
2306 if (value_bitsize (component) == 0)
2307 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2308 else
2309 bits = value_bitsize (component);
2310
32c9a795 2311 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2312 move_bits (value_contents_writeable (container) + offset_in_container,
2313 value_bitpos (container) + bit_offset_in_container,
2314 value_contents (val),
2315 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2316 bits);
2317 else
2318 move_bits (value_contents_writeable (container) + offset_in_container,
2319 value_bitpos (container) + bit_offset_in_container,
2320 value_contents (val), 0, bits);
2321}
2322
4c4b4cd2
PH
2323/* The value of the element of array ARR at the ARITY indices given in IND.
2324 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2325 thereto. */
2326
d2e4a39e
AS
2327struct value *
2328ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2329{
2330 int k;
d2e4a39e
AS
2331 struct value *elt;
2332 struct type *elt_type;
14f9c5c9
AS
2333
2334 elt = ada_coerce_to_simple_array (arr);
2335
df407dfe 2336 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2337 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2338 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2339 return value_subscript_packed (elt, arity, ind);
2340
2341 for (k = 0; k < arity; k += 1)
2342 {
2343 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2344 error (_("too many subscripts (%d expected)"), k);
14f9c5c9
AS
2345 elt = value_subscript (elt, value_pos_atr (ind[k]));
2346 }
2347 return elt;
2348}
2349
2350/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2351 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2352 IND. Does not read the entire array into memory. */
14f9c5c9 2353
d2e4a39e
AS
2354struct value *
2355ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2356 struct value **ind)
14f9c5c9
AS
2357{
2358 int k;
2359
2360 for (k = 0; k < arity; k += 1)
2361 {
2362 LONGEST lwb, upb;
d2e4a39e 2363 struct value *idx;
14f9c5c9
AS
2364
2365 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2366 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2367 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2368 value_copy (arr));
14f9c5c9 2369 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
4c4b4cd2
PH
2370 idx = value_pos_atr (ind[k]);
2371 if (lwb != 0)
2372 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
14f9c5c9
AS
2373 arr = value_add (arr, idx);
2374 type = TYPE_TARGET_TYPE (type);
2375 }
2376
2377 return value_ind (arr);
2378}
2379
0b5d8877
PH
2380/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2381 actual type of ARRAY_PTR is ignored), returns a reference to
2382 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2383 bound of this array is LOW, as per Ada rules. */
2384static struct value *
6c038f32 2385ada_value_slice_ptr (struct value *array_ptr, struct type *type,
0b5d8877
PH
2386 int low, int high)
2387{
6c038f32 2388 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2389 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2390 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2391 struct type *index_type =
2392 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2393 low, high);
6c038f32 2394 struct type *slice_type =
0b5d8877
PH
2395 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2396 return value_from_pointer (lookup_reference_type (slice_type), base);
2397}
2398
2399
2400static struct value *
2401ada_value_slice (struct value *array, int low, int high)
2402{
df407dfe 2403 struct type *type = value_type (array);
6c038f32 2404 struct type *index_type =
0b5d8877 2405 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2406 struct type *slice_type =
0b5d8877 2407 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2408 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2409}
2410
14f9c5c9
AS
2411/* If type is a record type in the form of a standard GNAT array
2412 descriptor, returns the number of dimensions for type. If arr is a
2413 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2414 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2415
2416int
d2e4a39e 2417ada_array_arity (struct type *type)
14f9c5c9
AS
2418{
2419 int arity;
2420
2421 if (type == NULL)
2422 return 0;
2423
2424 type = desc_base_type (type);
2425
2426 arity = 0;
d2e4a39e 2427 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2428 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2429 else
2430 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2431 {
4c4b4cd2 2432 arity += 1;
61ee279c 2433 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2434 }
d2e4a39e 2435
14f9c5c9
AS
2436 return arity;
2437}
2438
2439/* If TYPE is a record type in the form of a standard GNAT array
2440 descriptor or a simple array type, returns the element type for
2441 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2442 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2443
d2e4a39e
AS
2444struct type *
2445ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2446{
2447 type = desc_base_type (type);
2448
d2e4a39e 2449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2450 {
2451 int k;
d2e4a39e 2452 struct type *p_array_type;
14f9c5c9
AS
2453
2454 p_array_type = desc_data_type (type);
2455
2456 k = ada_array_arity (type);
2457 if (k == 0)
4c4b4cd2 2458 return NULL;
d2e4a39e 2459
4c4b4cd2 2460 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2461 if (nindices >= 0 && k > nindices)
4c4b4cd2 2462 k = nindices;
14f9c5c9 2463 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2464 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2465 {
61ee279c 2466 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2467 k -= 1;
2468 }
14f9c5c9
AS
2469 return p_array_type;
2470 }
2471 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2472 {
2473 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2474 {
2475 type = TYPE_TARGET_TYPE (type);
2476 nindices -= 1;
2477 }
14f9c5c9
AS
2478 return type;
2479 }
2480
2481 return NULL;
2482}
2483
4c4b4cd2
PH
2484/* The type of nth index in arrays of given type (n numbering from 1).
2485 Does not examine memory. */
14f9c5c9 2486
d2e4a39e
AS
2487struct type *
2488ada_index_type (struct type *type, int n)
14f9c5c9 2489{
4c4b4cd2
PH
2490 struct type *result_type;
2491
14f9c5c9
AS
2492 type = desc_base_type (type);
2493
2494 if (n > ada_array_arity (type))
2495 return NULL;
2496
4c4b4cd2 2497 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2498 {
2499 int i;
2500
2501 for (i = 1; i < n; i += 1)
4c4b4cd2
PH
2502 type = TYPE_TARGET_TYPE (type);
2503 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2504 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2505 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2506 perhaps stabsread.c would make more sense. */
2507 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2508 result_type = builtin_type_int;
14f9c5c9 2509
4c4b4cd2 2510 return result_type;
14f9c5c9 2511 }
d2e4a39e 2512 else
14f9c5c9
AS
2513 return desc_index_type (desc_bounds_type (type), n);
2514}
2515
2516/* Given that arr is an array type, returns the lower bound of the
2517 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2518 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2519 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2520 bounds type. It works for other arrays with bounds supplied by
2521 run-time quantities other than discriminants. */
14f9c5c9 2522
abb68b3e 2523static LONGEST
d2e4a39e 2524ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2525 struct type ** typep)
14f9c5c9 2526{
d2e4a39e
AS
2527 struct type *type;
2528 struct type *index_type_desc;
14f9c5c9
AS
2529
2530 if (ada_is_packed_array_type (arr_type))
2531 arr_type = decode_packed_array_type (arr_type);
2532
4c4b4cd2 2533 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2534 {
2535 if (typep != NULL)
4c4b4cd2 2536 *typep = builtin_type_int;
d2e4a39e 2537 return (LONGEST) - which;
14f9c5c9
AS
2538 }
2539
2540 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2541 type = TYPE_TARGET_TYPE (arr_type);
2542 else
2543 type = arr_type;
2544
2545 index_type_desc = ada_find_parallel_type (type, "___XA");
d2e4a39e 2546 if (index_type_desc == NULL)
14f9c5c9 2547 {
d2e4a39e 2548 struct type *index_type;
14f9c5c9 2549
d2e4a39e 2550 while (n > 1)
4c4b4cd2
PH
2551 {
2552 type = TYPE_TARGET_TYPE (type);
2553 n -= 1;
2554 }
14f9c5c9 2555
abb68b3e 2556 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2557 if (typep != NULL)
4c4b4cd2 2558 *typep = index_type;
abb68b3e
JB
2559
2560 /* The index type is either a range type or an enumerated type.
2561 For the range type, we have some macros that allow us to
2562 extract the value of the low and high bounds. But they
2563 do now work for enumerated types. The expressions used
2564 below work for both range and enum types. */
d2e4a39e 2565 return
4c4b4cd2 2566 (LONGEST) (which == 0
abb68b3e
JB
2567 ? TYPE_FIELD_BITPOS (index_type, 0)
2568 : TYPE_FIELD_BITPOS (index_type,
2569 TYPE_NFIELDS (index_type) - 1));
14f9c5c9 2570 }
d2e4a39e 2571 else
14f9c5c9 2572 {
d2e4a39e 2573 struct type *index_type =
4c4b4cd2
PH
2574 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2575 NULL, TYPE_OBJFILE (arr_type));
abb68b3e 2576
14f9c5c9 2577 if (typep != NULL)
abb68b3e
JB
2578 *typep = index_type;
2579
d2e4a39e 2580 return
4c4b4cd2
PH
2581 (LONGEST) (which == 0
2582 ? TYPE_LOW_BOUND (index_type)
2583 : TYPE_HIGH_BOUND (index_type));
14f9c5c9
AS
2584 }
2585}
2586
2587/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2588 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2589 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2590 supplied by run-time quantities other than discriminants. */
14f9c5c9 2591
d2e4a39e 2592struct value *
4dc81987 2593ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2594{
df407dfe 2595 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2596
2597 if (ada_is_packed_array_type (arr_type))
2598 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2599 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2600 {
d2e4a39e 2601 struct type *type;
14f9c5c9
AS
2602 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2603 return value_from_longest (type, v);
2604 }
2605 else
2606 return desc_one_bound (desc_bounds (arr), n, which);
2607}
2608
2609/* Given that arr is an array value, returns the length of the
2610 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2611 supplied by run-time quantities other than discriminants.
2612 Does not work for arrays indexed by enumeration types with representation
2613 clauses at the moment. */
14f9c5c9 2614
d2e4a39e
AS
2615struct value *
2616ada_array_length (struct value *arr, int n)
14f9c5c9 2617{
df407dfe 2618 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2619
2620 if (ada_is_packed_array_type (arr_type))
2621 return ada_array_length (decode_packed_array (arr), n);
2622
4c4b4cd2 2623 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2624 {
d2e4a39e 2625 struct type *type;
14f9c5c9 2626 LONGEST v =
4c4b4cd2
PH
2627 ada_array_bound_from_type (arr_type, n, 1, &type) -
2628 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2629 return value_from_longest (type, v);
2630 }
2631 else
d2e4a39e 2632 return
72d5681a 2633 value_from_longest (builtin_type_int,
4c4b4cd2
PH
2634 value_as_long (desc_one_bound (desc_bounds (arr),
2635 n, 1))
2636 - value_as_long (desc_one_bound (desc_bounds (arr),
2637 n, 0)) + 1);
2638}
2639
2640/* An empty array whose type is that of ARR_TYPE (an array type),
2641 with bounds LOW to LOW-1. */
2642
2643static struct value *
2644empty_array (struct type *arr_type, int low)
2645{
6c038f32 2646 struct type *index_type =
0b5d8877
PH
2647 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2648 low, low - 1);
2649 struct type *elt_type = ada_array_element_type (arr_type, 1);
2650 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2651}
14f9c5c9 2652\f
d2e4a39e 2653
4c4b4cd2 2654 /* Name resolution */
14f9c5c9 2655
4c4b4cd2
PH
2656/* The "decoded" name for the user-definable Ada operator corresponding
2657 to OP. */
14f9c5c9 2658
d2e4a39e 2659static const char *
4c4b4cd2 2660ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2661{
2662 int i;
2663
4c4b4cd2 2664 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2665 {
2666 if (ada_opname_table[i].op == op)
4c4b4cd2 2667 return ada_opname_table[i].decoded;
14f9c5c9 2668 }
323e0a4a 2669 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2670}
2671
2672
4c4b4cd2
PH
2673/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2674 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2675 undefined namespace) and converts operators that are
2676 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2677 non-null, it provides a preferred result type [at the moment, only
2678 type void has any effect---causing procedures to be preferred over
2679 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2680 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2681
4c4b4cd2
PH
2682static void
2683resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2684{
2685 int pc;
2686 pc = 0;
4c4b4cd2 2687 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2688}
2689
4c4b4cd2
PH
2690/* Resolve the operator of the subexpression beginning at
2691 position *POS of *EXPP. "Resolving" consists of replacing
2692 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2693 with their resolutions, replacing built-in operators with
2694 function calls to user-defined operators, where appropriate, and,
2695 when DEPROCEDURE_P is non-zero, converting function-valued variables
2696 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2697 are as in ada_resolve, above. */
14f9c5c9 2698
d2e4a39e 2699static struct value *
4c4b4cd2 2700resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2701 struct type *context_type)
14f9c5c9
AS
2702{
2703 int pc = *pos;
2704 int i;
4c4b4cd2 2705 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2706 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2707 struct value **argvec; /* Vector of operand types (alloca'ed). */
2708 int nargs; /* Number of operands. */
52ce6436 2709 int oplen;
14f9c5c9
AS
2710
2711 argvec = NULL;
2712 nargs = 0;
2713 exp = *expp;
2714
52ce6436
PH
2715 /* Pass one: resolve operands, saving their types and updating *pos,
2716 if needed. */
14f9c5c9
AS
2717 switch (op)
2718 {
4c4b4cd2
PH
2719 case OP_FUNCALL:
2720 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2721 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2722 *pos += 7;
4c4b4cd2
PH
2723 else
2724 {
2725 *pos += 3;
2726 resolve_subexp (expp, pos, 0, NULL);
2727 }
2728 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2729 break;
2730
14f9c5c9 2731 case UNOP_ADDR:
4c4b4cd2
PH
2732 *pos += 1;
2733 resolve_subexp (expp, pos, 0, NULL);
2734 break;
2735
52ce6436
PH
2736 case UNOP_QUAL:
2737 *pos += 3;
2738 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2739 break;
2740
52ce6436 2741 case OP_ATR_MODULUS:
4c4b4cd2
PH
2742 case OP_ATR_SIZE:
2743 case OP_ATR_TAG:
4c4b4cd2
PH
2744 case OP_ATR_FIRST:
2745 case OP_ATR_LAST:
2746 case OP_ATR_LENGTH:
2747 case OP_ATR_POS:
2748 case OP_ATR_VAL:
4c4b4cd2
PH
2749 case OP_ATR_MIN:
2750 case OP_ATR_MAX:
52ce6436
PH
2751 case TERNOP_IN_RANGE:
2752 case BINOP_IN_BOUNDS:
2753 case UNOP_IN_RANGE:
2754 case OP_AGGREGATE:
2755 case OP_OTHERS:
2756 case OP_CHOICES:
2757 case OP_POSITIONAL:
2758 case OP_DISCRETE_RANGE:
2759 case OP_NAME:
2760 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2761 *pos += oplen;
14f9c5c9
AS
2762 break;
2763
2764 case BINOP_ASSIGN:
2765 {
4c4b4cd2
PH
2766 struct value *arg1;
2767
2768 *pos += 1;
2769 arg1 = resolve_subexp (expp, pos, 0, NULL);
2770 if (arg1 == NULL)
2771 resolve_subexp (expp, pos, 1, NULL);
2772 else
df407dfe 2773 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2774 break;
14f9c5c9
AS
2775 }
2776
4c4b4cd2 2777 case UNOP_CAST:
4c4b4cd2
PH
2778 *pos += 3;
2779 nargs = 1;
2780 break;
14f9c5c9 2781
4c4b4cd2
PH
2782 case BINOP_ADD:
2783 case BINOP_SUB:
2784 case BINOP_MUL:
2785 case BINOP_DIV:
2786 case BINOP_REM:
2787 case BINOP_MOD:
2788 case BINOP_EXP:
2789 case BINOP_CONCAT:
2790 case BINOP_LOGICAL_AND:
2791 case BINOP_LOGICAL_OR:
2792 case BINOP_BITWISE_AND:
2793 case BINOP_BITWISE_IOR:
2794 case BINOP_BITWISE_XOR:
14f9c5c9 2795
4c4b4cd2
PH
2796 case BINOP_EQUAL:
2797 case BINOP_NOTEQUAL:
2798 case BINOP_LESS:
2799 case BINOP_GTR:
2800 case BINOP_LEQ:
2801 case BINOP_GEQ:
14f9c5c9 2802
4c4b4cd2
PH
2803 case BINOP_REPEAT:
2804 case BINOP_SUBSCRIPT:
2805 case BINOP_COMMA:
40c8aaa9
JB
2806 *pos += 1;
2807 nargs = 2;
2808 break;
14f9c5c9 2809
4c4b4cd2
PH
2810 case UNOP_NEG:
2811 case UNOP_PLUS:
2812 case UNOP_LOGICAL_NOT:
2813 case UNOP_ABS:
2814 case UNOP_IND:
2815 *pos += 1;
2816 nargs = 1;
2817 break;
14f9c5c9 2818
4c4b4cd2
PH
2819 case OP_LONG:
2820 case OP_DOUBLE:
2821 case OP_VAR_VALUE:
2822 *pos += 4;
2823 break;
14f9c5c9 2824
4c4b4cd2
PH
2825 case OP_TYPE:
2826 case OP_BOOL:
2827 case OP_LAST:
4c4b4cd2
PH
2828 case OP_INTERNALVAR:
2829 *pos += 3;
2830 break;
14f9c5c9 2831
4c4b4cd2
PH
2832 case UNOP_MEMVAL:
2833 *pos += 3;
2834 nargs = 1;
2835 break;
2836
67f3407f
DJ
2837 case OP_REGISTER:
2838 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2839 break;
2840
4c4b4cd2
PH
2841 case STRUCTOP_STRUCT:
2842 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2843 nargs = 1;
2844 break;
2845
4c4b4cd2 2846 case TERNOP_SLICE:
4c4b4cd2
PH
2847 *pos += 1;
2848 nargs = 3;
2849 break;
2850
52ce6436 2851 case OP_STRING:
14f9c5c9 2852 break;
4c4b4cd2
PH
2853
2854 default:
323e0a4a 2855 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2856 }
2857
76a01679 2858 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2859 for (i = 0; i < nargs; i += 1)
2860 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2861 argvec[i] = NULL;
2862 exp = *expp;
2863
2864 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2865 switch (op)
2866 {
2867 default:
2868 break;
2869
14f9c5c9 2870 case OP_VAR_VALUE:
4c4b4cd2 2871 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2872 {
2873 struct ada_symbol_info *candidates;
2874 int n_candidates;
2875
2876 n_candidates =
2877 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2878 (exp->elts[pc + 2].symbol),
2879 exp->elts[pc + 1].block, VAR_DOMAIN,
2880 &candidates);
2881
2882 if (n_candidates > 1)
2883 {
2884 /* Types tend to get re-introduced locally, so if there
2885 are any local symbols that are not types, first filter
2886 out all types. */
2887 int j;
2888 for (j = 0; j < n_candidates; j += 1)
2889 switch (SYMBOL_CLASS (candidates[j].sym))
2890 {
2891 case LOC_REGISTER:
2892 case LOC_ARG:
2893 case LOC_REF_ARG:
2894 case LOC_REGPARM:
2895 case LOC_REGPARM_ADDR:
2896 case LOC_LOCAL:
2897 case LOC_LOCAL_ARG:
2898 case LOC_BASEREG:
2899 case LOC_BASEREG_ARG:
2900 case LOC_COMPUTED:
2901 case LOC_COMPUTED_ARG:
2902 goto FoundNonType;
2903 default:
2904 break;
2905 }
2906 FoundNonType:
2907 if (j < n_candidates)
2908 {
2909 j = 0;
2910 while (j < n_candidates)
2911 {
2912 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2913 {
2914 candidates[j] = candidates[n_candidates - 1];
2915 n_candidates -= 1;
2916 }
2917 else
2918 j += 1;
2919 }
2920 }
2921 }
2922
2923 if (n_candidates == 0)
323e0a4a 2924 error (_("No definition found for %s"),
76a01679
JB
2925 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2926 else if (n_candidates == 1)
2927 i = 0;
2928 else if (deprocedure_p
2929 && !is_nonfunction (candidates, n_candidates))
2930 {
06d5cf63
JB
2931 i = ada_resolve_function
2932 (candidates, n_candidates, NULL, 0,
2933 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2934 context_type);
76a01679 2935 if (i < 0)
323e0a4a 2936 error (_("Could not find a match for %s"),
76a01679
JB
2937 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2938 }
2939 else
2940 {
323e0a4a 2941 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2942 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2943 user_select_syms (candidates, n_candidates, 1);
2944 i = 0;
2945 }
2946
2947 exp->elts[pc + 1].block = candidates[i].block;
2948 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2949 if (innermost_block == NULL
2950 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2951 innermost_block = candidates[i].block;
2952 }
2953
2954 if (deprocedure_p
2955 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2956 == TYPE_CODE_FUNC))
2957 {
2958 replace_operator_with_call (expp, pc, 0, 0,
2959 exp->elts[pc + 2].symbol,
2960 exp->elts[pc + 1].block);
2961 exp = *expp;
2962 }
14f9c5c9
AS
2963 break;
2964
2965 case OP_FUNCALL:
2966 {
4c4b4cd2 2967 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2968 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2969 {
2970 struct ada_symbol_info *candidates;
2971 int n_candidates;
2972
2973 n_candidates =
76a01679
JB
2974 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2975 (exp->elts[pc + 5].symbol),
2976 exp->elts[pc + 4].block, VAR_DOMAIN,
2977 &candidates);
4c4b4cd2
PH
2978 if (n_candidates == 1)
2979 i = 0;
2980 else
2981 {
06d5cf63
JB
2982 i = ada_resolve_function
2983 (candidates, n_candidates,
2984 argvec, nargs,
2985 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2986 context_type);
4c4b4cd2 2987 if (i < 0)
323e0a4a 2988 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2989 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2990 }
2991
2992 exp->elts[pc + 4].block = candidates[i].block;
2993 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2994 if (innermost_block == NULL
2995 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2996 innermost_block = candidates[i].block;
2997 }
14f9c5c9
AS
2998 }
2999 break;
3000 case BINOP_ADD:
3001 case BINOP_SUB:
3002 case BINOP_MUL:
3003 case BINOP_DIV:
3004 case BINOP_REM:
3005 case BINOP_MOD:
3006 case BINOP_CONCAT:
3007 case BINOP_BITWISE_AND:
3008 case BINOP_BITWISE_IOR:
3009 case BINOP_BITWISE_XOR:
3010 case BINOP_EQUAL:
3011 case BINOP_NOTEQUAL:
3012 case BINOP_LESS:
3013 case BINOP_GTR:
3014 case BINOP_LEQ:
3015 case BINOP_GEQ:
3016 case BINOP_EXP:
3017 case UNOP_NEG:
3018 case UNOP_PLUS:
3019 case UNOP_LOGICAL_NOT:
3020 case UNOP_ABS:
3021 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3022 {
3023 struct ada_symbol_info *candidates;
3024 int n_candidates;
3025
3026 n_candidates =
3027 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3028 (struct block *) NULL, VAR_DOMAIN,
3029 &candidates);
3030 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3031 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3032 if (i < 0)
3033 break;
3034
76a01679
JB
3035 replace_operator_with_call (expp, pc, nargs, 1,
3036 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3037 exp = *expp;
3038 }
14f9c5c9 3039 break;
4c4b4cd2
PH
3040
3041 case OP_TYPE:
b3dbf008 3042 case OP_REGISTER:
4c4b4cd2 3043 return NULL;
14f9c5c9
AS
3044 }
3045
3046 *pos = pc;
3047 return evaluate_subexp_type (exp, pos);
3048}
3049
3050/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3051 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3052 a non-pointer. A type of 'void' (which is never a valid expression type)
3053 by convention matches anything. */
14f9c5c9 3054/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3055 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3056
3057static int
4dc81987 3058ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3059{
61ee279c
PH
3060 ftype = ada_check_typedef (ftype);
3061 atype = ada_check_typedef (atype);
14f9c5c9
AS
3062
3063 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3064 ftype = TYPE_TARGET_TYPE (ftype);
3065 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3066 atype = TYPE_TARGET_TYPE (atype);
3067
d2e4a39e 3068 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3069 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3070 return 1;
3071
d2e4a39e 3072 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3073 {
3074 default:
3075 return 1;
3076 case TYPE_CODE_PTR:
3077 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3078 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3079 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3080 else
1265e4aa
JB
3081 return (may_deref
3082 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3083 case TYPE_CODE_INT:
3084 case TYPE_CODE_ENUM:
3085 case TYPE_CODE_RANGE:
3086 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3087 {
3088 case TYPE_CODE_INT:
3089 case TYPE_CODE_ENUM:
3090 case TYPE_CODE_RANGE:
3091 return 1;
3092 default:
3093 return 0;
3094 }
14f9c5c9
AS
3095
3096 case TYPE_CODE_ARRAY:
d2e4a39e 3097 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3098 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3099
3100 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3101 if (ada_is_array_descriptor_type (ftype))
3102 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3103 || ada_is_array_descriptor_type (atype));
14f9c5c9 3104 else
4c4b4cd2
PH
3105 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3106 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3107
3108 case TYPE_CODE_UNION:
3109 case TYPE_CODE_FLT:
3110 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3111 }
3112}
3113
3114/* Return non-zero if the formals of FUNC "sufficiently match" the
3115 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3116 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3117 argument function. */
14f9c5c9
AS
3118
3119static int
d2e4a39e 3120ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3121{
3122 int i;
d2e4a39e 3123 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3124
1265e4aa
JB
3125 if (SYMBOL_CLASS (func) == LOC_CONST
3126 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3127 return (n_actuals == 0);
3128 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3129 return 0;
3130
3131 if (TYPE_NFIELDS (func_type) != n_actuals)
3132 return 0;
3133
3134 for (i = 0; i < n_actuals; i += 1)
3135 {
4c4b4cd2 3136 if (actuals[i] == NULL)
76a01679
JB
3137 return 0;
3138 else
3139 {
61ee279c 3140 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3141 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3142
76a01679
JB
3143 if (!ada_type_match (ftype, atype, 1))
3144 return 0;
3145 }
14f9c5c9
AS
3146 }
3147 return 1;
3148}
3149
3150/* False iff function type FUNC_TYPE definitely does not produce a value
3151 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3152 FUNC_TYPE is not a valid function type with a non-null return type
3153 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3154
3155static int
d2e4a39e 3156return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3157{
d2e4a39e 3158 struct type *return_type;
14f9c5c9
AS
3159
3160 if (func_type == NULL)
3161 return 1;
3162
4c4b4cd2
PH
3163 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3164 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3165 else
3166 return_type = base_type (func_type);
14f9c5c9
AS
3167 if (return_type == NULL)
3168 return 1;
3169
4c4b4cd2 3170 context_type = base_type (context_type);
14f9c5c9
AS
3171
3172 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3173 return context_type == NULL || return_type == context_type;
3174 else if (context_type == NULL)
3175 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3176 else
3177 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3178}
3179
3180
4c4b4cd2 3181/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3182 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3183 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3184 that returns that type, then eliminate matches that don't. If
3185 CONTEXT_TYPE is void and there is at least one match that does not
3186 return void, eliminate all matches that do.
3187
14f9c5c9
AS
3188 Asks the user if there is more than one match remaining. Returns -1
3189 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3190 solely for messages. May re-arrange and modify SYMS in
3191 the process; the index returned is for the modified vector. */
14f9c5c9 3192
4c4b4cd2
PH
3193static int
3194ada_resolve_function (struct ada_symbol_info syms[],
3195 int nsyms, struct value **args, int nargs,
3196 const char *name, struct type *context_type)
14f9c5c9
AS
3197{
3198 int k;
4c4b4cd2 3199 int m; /* Number of hits */
d2e4a39e
AS
3200 struct type *fallback;
3201 struct type *return_type;
14f9c5c9
AS
3202
3203 return_type = context_type;
3204 if (context_type == NULL)
3205 fallback = builtin_type_void;
3206 else
3207 fallback = NULL;
3208
d2e4a39e 3209 m = 0;
14f9c5c9
AS
3210 while (1)
3211 {
3212 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3213 {
61ee279c 3214 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3215
3216 if (ada_args_match (syms[k].sym, args, nargs)
3217 && return_match (type, return_type))
3218 {
3219 syms[m] = syms[k];
3220 m += 1;
3221 }
3222 }
14f9c5c9 3223 if (m > 0 || return_type == fallback)
4c4b4cd2 3224 break;
14f9c5c9 3225 else
4c4b4cd2 3226 return_type = fallback;
14f9c5c9
AS
3227 }
3228
3229 if (m == 0)
3230 return -1;
3231 else if (m > 1)
3232 {
323e0a4a 3233 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3234 user_select_syms (syms, m, 1);
14f9c5c9
AS
3235 return 0;
3236 }
3237 return 0;
3238}
3239
4c4b4cd2
PH
3240/* Returns true (non-zero) iff decoded name N0 should appear before N1
3241 in a listing of choices during disambiguation (see sort_choices, below).
3242 The idea is that overloadings of a subprogram name from the
3243 same package should sort in their source order. We settle for ordering
3244 such symbols by their trailing number (__N or $N). */
3245
14f9c5c9 3246static int
4c4b4cd2 3247encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3248{
3249 if (N1 == NULL)
3250 return 0;
3251 else if (N0 == NULL)
3252 return 1;
3253 else
3254 {
3255 int k0, k1;
d2e4a39e 3256 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3257 ;
d2e4a39e 3258 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3259 ;
d2e4a39e 3260 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3261 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3262 {
3263 int n0, n1;
3264 n0 = k0;
3265 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3266 n0 -= 1;
3267 n1 = k1;
3268 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3269 n1 -= 1;
3270 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3271 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3272 }
14f9c5c9
AS
3273 return (strcmp (N0, N1) < 0);
3274 }
3275}
d2e4a39e 3276
4c4b4cd2
PH
3277/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3278 encoded names. */
3279
d2e4a39e 3280static void
4c4b4cd2 3281sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3282{
4c4b4cd2 3283 int i;
d2e4a39e 3284 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3285 {
4c4b4cd2 3286 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3287 int j;
3288
d2e4a39e 3289 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3290 {
3291 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3292 SYMBOL_LINKAGE_NAME (sym.sym)))
3293 break;
3294 syms[j + 1] = syms[j];
3295 }
d2e4a39e 3296 syms[j + 1] = sym;
14f9c5c9
AS
3297 }
3298}
3299
4c4b4cd2
PH
3300/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3301 by asking the user (if necessary), returning the number selected,
3302 and setting the first elements of SYMS items. Error if no symbols
3303 selected. */
14f9c5c9
AS
3304
3305/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3306 to be re-integrated one of these days. */
14f9c5c9
AS
3307
3308int
4c4b4cd2 3309user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3310{
3311 int i;
d2e4a39e 3312 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3313 int n_chosen;
3314 int first_choice = (max_results == 1) ? 1 : 2;
3315
3316 if (max_results < 1)
323e0a4a 3317 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3318 if (nsyms <= 1)
3319 return nsyms;
3320
323e0a4a 3321 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3322 if (max_results > 1)
323e0a4a 3323 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3324
4c4b4cd2 3325 sort_choices (syms, nsyms);
14f9c5c9
AS
3326
3327 for (i = 0; i < nsyms; i += 1)
3328 {
4c4b4cd2
PH
3329 if (syms[i].sym == NULL)
3330 continue;
3331
3332 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3333 {
76a01679
JB
3334 struct symtab_and_line sal =
3335 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3336 if (sal.symtab == NULL)
3337 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3338 i + first_choice,
3339 SYMBOL_PRINT_NAME (syms[i].sym),
3340 sal.line);
3341 else
3342 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3345 continue;
3346 }
d2e4a39e 3347 else
4c4b4cd2
PH
3348 {
3349 int is_enumeral =
3350 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3351 && SYMBOL_TYPE (syms[i].sym) != NULL
3352 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3353 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3354
3355 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3356 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3357 i + first_choice,
3358 SYMBOL_PRINT_NAME (syms[i].sym),
3359 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3360 else if (is_enumeral
3361 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3362 {
a3f17187 3363 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3364 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3365 gdb_stdout, -1, 0);
323e0a4a 3366 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3367 SYMBOL_PRINT_NAME (syms[i].sym));
3368 }
3369 else if (symtab != NULL)
3370 printf_unfiltered (is_enumeral
323e0a4a
AC
3371 ? _("[%d] %s in %s (enumeral)\n")
3372 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3373 i + first_choice,
3374 SYMBOL_PRINT_NAME (syms[i].sym),
3375 symtab->filename);
3376 else
3377 printf_unfiltered (is_enumeral
323e0a4a
AC
3378 ? _("[%d] %s (enumeral)\n")
3379 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3380 i + first_choice,
3381 SYMBOL_PRINT_NAME (syms[i].sym));
3382 }
14f9c5c9 3383 }
d2e4a39e 3384
14f9c5c9 3385 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3386 "overload-choice");
14f9c5c9
AS
3387
3388 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3389 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3390
3391 return n_chosen;
3392}
3393
3394/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3395 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3396 order in CHOICES[0 .. N-1], and return N.
3397
3398 The user types choices as a sequence of numbers on one line
3399 separated by blanks, encoding them as follows:
3400
4c4b4cd2 3401 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3402 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3403 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3404
4c4b4cd2 3405 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3406
3407 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3408 prompts (for use with the -f switch). */
14f9c5c9
AS
3409
3410int
d2e4a39e 3411get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3412 int is_all_choice, char *annotation_suffix)
14f9c5c9 3413{
d2e4a39e
AS
3414 char *args;
3415 const char *prompt;
14f9c5c9
AS
3416 int n_chosen;
3417 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3418
14f9c5c9
AS
3419 prompt = getenv ("PS2");
3420 if (prompt == NULL)
3421 prompt = ">";
3422
a3f17187 3423 printf_unfiltered (("%s "), prompt);
14f9c5c9
AS
3424 gdb_flush (gdb_stdout);
3425
3426 args = command_line_input ((char *) NULL, 0, annotation_suffix);
d2e4a39e 3427
14f9c5c9 3428 if (args == NULL)
323e0a4a 3429 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3430
3431 n_chosen = 0;
76a01679 3432
4c4b4cd2
PH
3433 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3434 order, as given in args. Choices are validated. */
14f9c5c9
AS
3435 while (1)
3436 {
d2e4a39e 3437 char *args2;
14f9c5c9
AS
3438 int choice, j;
3439
3440 while (isspace (*args))
4c4b4cd2 3441 args += 1;
14f9c5c9 3442 if (*args == '\0' && n_chosen == 0)
323e0a4a 3443 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3444 else if (*args == '\0')
4c4b4cd2 3445 break;
14f9c5c9
AS
3446
3447 choice = strtol (args, &args2, 10);
d2e4a39e 3448 if (args == args2 || choice < 0
4c4b4cd2 3449 || choice > n_choices + first_choice - 1)
323e0a4a 3450 error (_("Argument must be choice number"));
14f9c5c9
AS
3451 args = args2;
3452
d2e4a39e 3453 if (choice == 0)
323e0a4a 3454 error (_("cancelled"));
14f9c5c9
AS
3455
3456 if (choice < first_choice)
4c4b4cd2
PH
3457 {
3458 n_chosen = n_choices;
3459 for (j = 0; j < n_choices; j += 1)
3460 choices[j] = j;
3461 break;
3462 }
14f9c5c9
AS
3463 choice -= first_choice;
3464
d2e4a39e 3465 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3466 {
3467 }
14f9c5c9
AS
3468
3469 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3470 {
3471 int k;
3472 for (k = n_chosen - 1; k > j; k -= 1)
3473 choices[k + 1] = choices[k];
3474 choices[j + 1] = choice;
3475 n_chosen += 1;
3476 }
14f9c5c9
AS
3477 }
3478
3479 if (n_chosen > max_results)
323e0a4a 3480 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3481
14f9c5c9
AS
3482 return n_chosen;
3483}
3484
4c4b4cd2
PH
3485/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3486 on the function identified by SYM and BLOCK, and taking NARGS
3487 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3488
3489static void
d2e4a39e 3490replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3491 int oplen, struct symbol *sym,
3492 struct block *block)
14f9c5c9
AS
3493{
3494 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3495 symbol, -oplen for operator being replaced). */
d2e4a39e 3496 struct expression *newexp = (struct expression *)
14f9c5c9 3497 xmalloc (sizeof (struct expression)
4c4b4cd2 3498 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3499 struct expression *exp = *expp;
14f9c5c9
AS
3500
3501 newexp->nelts = exp->nelts + 7 - oplen;
3502 newexp->language_defn = exp->language_defn;
3503 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3504 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3505 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3506
3507 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3508 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3509
3510 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3511 newexp->elts[pc + 4].block = block;
3512 newexp->elts[pc + 5].symbol = sym;
3513
3514 *expp = newexp;
aacb1f0a 3515 xfree (exp);
d2e4a39e 3516}
14f9c5c9
AS
3517
3518/* Type-class predicates */
3519
4c4b4cd2
PH
3520/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3521 or FLOAT). */
14f9c5c9
AS
3522
3523static int
d2e4a39e 3524numeric_type_p (struct type *type)
14f9c5c9
AS
3525{
3526 if (type == NULL)
3527 return 0;
d2e4a39e
AS
3528 else
3529 {
3530 switch (TYPE_CODE (type))
4c4b4cd2
PH
3531 {
3532 case TYPE_CODE_INT:
3533 case TYPE_CODE_FLT:
3534 return 1;
3535 case TYPE_CODE_RANGE:
3536 return (type == TYPE_TARGET_TYPE (type)
3537 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3538 default:
3539 return 0;
3540 }
d2e4a39e 3541 }
14f9c5c9
AS
3542}
3543
4c4b4cd2 3544/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3545
3546static int
d2e4a39e 3547integer_type_p (struct type *type)
14f9c5c9
AS
3548{
3549 if (type == NULL)
3550 return 0;
d2e4a39e
AS
3551 else
3552 {
3553 switch (TYPE_CODE (type))
4c4b4cd2
PH
3554 {
3555 case TYPE_CODE_INT:
3556 return 1;
3557 case TYPE_CODE_RANGE:
3558 return (type == TYPE_TARGET_TYPE (type)
3559 || integer_type_p (TYPE_TARGET_TYPE (type)));
3560 default:
3561 return 0;
3562 }
d2e4a39e 3563 }
14f9c5c9
AS
3564}
3565
4c4b4cd2 3566/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3567
3568static int
d2e4a39e 3569scalar_type_p (struct type *type)
14f9c5c9
AS
3570{
3571 if (type == NULL)
3572 return 0;
d2e4a39e
AS
3573 else
3574 {
3575 switch (TYPE_CODE (type))
4c4b4cd2
PH
3576 {
3577 case TYPE_CODE_INT:
3578 case TYPE_CODE_RANGE:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_FLT:
3581 return 1;
3582 default:
3583 return 0;
3584 }
d2e4a39e 3585 }
14f9c5c9
AS
3586}
3587
4c4b4cd2 3588/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3589
3590static int
d2e4a39e 3591discrete_type_p (struct type *type)
14f9c5c9
AS
3592{
3593 if (type == NULL)
3594 return 0;
d2e4a39e
AS
3595 else
3596 {
3597 switch (TYPE_CODE (type))
4c4b4cd2
PH
3598 {
3599 case TYPE_CODE_INT:
3600 case TYPE_CODE_RANGE:
3601 case TYPE_CODE_ENUM:
3602 return 1;
3603 default:
3604 return 0;
3605 }
d2e4a39e 3606 }
14f9c5c9
AS
3607}
3608
4c4b4cd2
PH
3609/* Returns non-zero if OP with operands in the vector ARGS could be
3610 a user-defined function. Errs on the side of pre-defined operators
3611 (i.e., result 0). */
14f9c5c9
AS
3612
3613static int
d2e4a39e 3614possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3615{
76a01679 3616 struct type *type0 =
df407dfe 3617 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3618 struct type *type1 =
df407dfe 3619 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3620
4c4b4cd2
PH
3621 if (type0 == NULL)
3622 return 0;
3623
14f9c5c9
AS
3624 switch (op)
3625 {
3626 default:
3627 return 0;
3628
3629 case BINOP_ADD:
3630 case BINOP_SUB:
3631 case BINOP_MUL:
3632 case BINOP_DIV:
d2e4a39e 3633 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3634
3635 case BINOP_REM:
3636 case BINOP_MOD:
3637 case BINOP_BITWISE_AND:
3638 case BINOP_BITWISE_IOR:
3639 case BINOP_BITWISE_XOR:
d2e4a39e 3640 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3641
3642 case BINOP_EQUAL:
3643 case BINOP_NOTEQUAL:
3644 case BINOP_LESS:
3645 case BINOP_GTR:
3646 case BINOP_LEQ:
3647 case BINOP_GEQ:
d2e4a39e 3648 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3649
3650 case BINOP_CONCAT:
ee90b9ab 3651 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3652
3653 case BINOP_EXP:
d2e4a39e 3654 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3655
3656 case UNOP_NEG:
3657 case UNOP_PLUS:
3658 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3659 case UNOP_ABS:
3660 return (!numeric_type_p (type0));
14f9c5c9
AS
3661
3662 }
3663}
3664\f
4c4b4cd2 3665 /* Renaming */
14f9c5c9 3666
aeb5907d
JB
3667/* NOTES:
3668
3669 1. In the following, we assume that a renaming type's name may
3670 have an ___XD suffix. It would be nice if this went away at some
3671 point.
3672 2. We handle both the (old) purely type-based representation of
3673 renamings and the (new) variable-based encoding. At some point,
3674 it is devoutly to be hoped that the former goes away
3675 (FIXME: hilfinger-2007-07-09).
3676 3. Subprogram renamings are not implemented, although the XRS
3677 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3678
3679/* If SYM encodes a renaming,
3680
3681 <renaming> renames <renamed entity>,
3682
3683 sets *LEN to the length of the renamed entity's name,
3684 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3685 the string describing the subcomponent selected from the renamed
3686 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3687 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3688 are undefined). Otherwise, returns a value indicating the category
3689 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3690 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3691 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3692 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3693 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3694 may be NULL, in which case they are not assigned.
3695
3696 [Currently, however, GCC does not generate subprogram renamings.] */
3697
3698enum ada_renaming_category
3699ada_parse_renaming (struct symbol *sym,
3700 const char **renamed_entity, int *len,
3701 const char **renaming_expr)
3702{
3703 enum ada_renaming_category kind;
3704 const char *info;
3705 const char *suffix;
3706
3707 if (sym == NULL)
3708 return ADA_NOT_RENAMING;
3709 switch (SYMBOL_CLASS (sym))
14f9c5c9 3710 {
aeb5907d
JB
3711 default:
3712 return ADA_NOT_RENAMING;
3713 case LOC_TYPEDEF:
3714 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3715 renamed_entity, len, renaming_expr);
3716 case LOC_LOCAL:
3717 case LOC_STATIC:
3718 case LOC_COMPUTED:
3719 case LOC_OPTIMIZED_OUT:
3720 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3721 if (info == NULL)
3722 return ADA_NOT_RENAMING;
3723 switch (info[5])
3724 {
3725 case '_':
3726 kind = ADA_OBJECT_RENAMING;
3727 info += 6;
3728 break;
3729 case 'E':
3730 kind = ADA_EXCEPTION_RENAMING;
3731 info += 7;
3732 break;
3733 case 'P':
3734 kind = ADA_PACKAGE_RENAMING;
3735 info += 7;
3736 break;
3737 case 'S':
3738 kind = ADA_SUBPROGRAM_RENAMING;
3739 info += 7;
3740 break;
3741 default:
3742 return ADA_NOT_RENAMING;
3743 }
14f9c5c9 3744 }
4c4b4cd2 3745
aeb5907d
JB
3746 if (renamed_entity != NULL)
3747 *renamed_entity = info;
3748 suffix = strstr (info, "___XE");
3749 if (suffix == NULL || suffix == info)
3750 return ADA_NOT_RENAMING;
3751 if (len != NULL)
3752 *len = strlen (info) - strlen (suffix);
3753 suffix += 5;
3754 if (renaming_expr != NULL)
3755 *renaming_expr = suffix;
3756 return kind;
3757}
3758
3759/* Assuming TYPE encodes a renaming according to the old encoding in
3760 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3761 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3762 ADA_NOT_RENAMING otherwise. */
3763static enum ada_renaming_category
3764parse_old_style_renaming (struct type *type,
3765 const char **renamed_entity, int *len,
3766 const char **renaming_expr)
3767{
3768 enum ada_renaming_category kind;
3769 const char *name;
3770 const char *info;
3771 const char *suffix;
14f9c5c9 3772
aeb5907d
JB
3773 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3774 || TYPE_NFIELDS (type) != 1)
3775 return ADA_NOT_RENAMING;
14f9c5c9 3776
aeb5907d
JB
3777 name = type_name_no_tag (type);
3778 if (name == NULL)
3779 return ADA_NOT_RENAMING;
3780
3781 name = strstr (name, "___XR");
3782 if (name == NULL)
3783 return ADA_NOT_RENAMING;
3784 switch (name[5])
3785 {
3786 case '\0':
3787 case '_':
3788 kind = ADA_OBJECT_RENAMING;
3789 break;
3790 case 'E':
3791 kind = ADA_EXCEPTION_RENAMING;
3792 break;
3793 case 'P':
3794 kind = ADA_PACKAGE_RENAMING;
3795 break;
3796 case 'S':
3797 kind = ADA_SUBPROGRAM_RENAMING;
3798 break;
3799 default:
3800 return ADA_NOT_RENAMING;
3801 }
14f9c5c9 3802
aeb5907d
JB
3803 info = TYPE_FIELD_NAME (type, 0);
3804 if (info == NULL)
3805 return ADA_NOT_RENAMING;
3806 if (renamed_entity != NULL)
3807 *renamed_entity = info;
3808 suffix = strstr (info, "___XE");
3809 if (renaming_expr != NULL)
3810 *renaming_expr = suffix + 5;
3811 if (suffix == NULL || suffix == info)
3812 return ADA_NOT_RENAMING;
3813 if (len != NULL)
3814 *len = suffix - info;
3815 return kind;
3816}
52ce6436 3817
14f9c5c9 3818\f
d2e4a39e 3819
4c4b4cd2 3820 /* Evaluation: Function Calls */
14f9c5c9 3821
4c4b4cd2
PH
3822/* Return an lvalue containing the value VAL. This is the identity on
3823 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3824 on the stack, using and updating *SP as the stack pointer, and
3825 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3826
d2e4a39e 3827static struct value *
4c4b4cd2 3828ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3829{
c3e5cd34
PH
3830 if (! VALUE_LVAL (val))
3831 {
df407dfe 3832 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3833
3834 /* The following is taken from the structure-return code in
3835 call_function_by_hand. FIXME: Therefore, some refactoring seems
3836 indicated. */
4d1e7dd1 3837 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3838 {
3839 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3840 reserving sufficient space. */
3841 *sp -= len;
3842 if (gdbarch_frame_align_p (current_gdbarch))
3843 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3844 VALUE_ADDRESS (val) = *sp;
3845 }
3846 else
3847 {
3848 /* Stack grows upward. Align the frame, allocate space, and
3849 then again, re-align the frame. */
3850 if (gdbarch_frame_align_p (current_gdbarch))
3851 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3852 VALUE_ADDRESS (val) = *sp;
3853 *sp += len;
3854 if (gdbarch_frame_align_p (current_gdbarch))
3855 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3856 }
a84a8a0d 3857 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3858
990a07ab 3859 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3860 }
14f9c5c9
AS
3861
3862 return val;
3863}
3864
3865/* Return the value ACTUAL, converted to be an appropriate value for a
3866 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3867 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3868 values not residing in memory, updating it as needed. */
14f9c5c9 3869
a93c0eb6
JB
3870struct value *
3871ada_convert_actual (struct value *actual, struct type *formal_type0,
3872 CORE_ADDR *sp)
14f9c5c9 3873{
df407dfe 3874 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3875 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3876 struct type *formal_target =
3877 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3878 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3879 struct type *actual_target =
3880 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3881 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3882
4c4b4cd2 3883 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3884 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3885 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3886 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3887 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3888 {
a84a8a0d 3889 struct value *result;
14f9c5c9 3890 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3891 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3892 result = desc_data (actual);
14f9c5c9 3893 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3894 {
3895 if (VALUE_LVAL (actual) != lval_memory)
3896 {
3897 struct value *val;
df407dfe 3898 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3899 val = allocate_value (actual_type);
990a07ab 3900 memcpy ((char *) value_contents_raw (val),
0fd88904 3901 (char *) value_contents (actual),
4c4b4cd2
PH
3902 TYPE_LENGTH (actual_type));
3903 actual = ensure_lval (val, sp);
3904 }
a84a8a0d 3905 result = value_addr (actual);
4c4b4cd2 3906 }
a84a8a0d
JB
3907 else
3908 return actual;
3909 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3910 }
3911 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3912 return ada_value_ind (actual);
3913
3914 return actual;
3915}
3916
3917
4c4b4cd2
PH
3918/* Push a descriptor of type TYPE for array value ARR on the stack at
3919 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3920 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3921 to-descriptor type rather than a descriptor type), a struct value *
3922 representing a pointer to this descriptor. */
14f9c5c9 3923
d2e4a39e
AS
3924static struct value *
3925make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3926{
d2e4a39e
AS
3927 struct type *bounds_type = desc_bounds_type (type);
3928 struct type *desc_type = desc_base_type (type);
3929 struct value *descriptor = allocate_value (desc_type);
3930 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3931 int i;
d2e4a39e 3932
df407dfe 3933 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3934 {
0fd88904 3935 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3936 value_as_long (ada_array_bound (arr, i, 0)),
3937 desc_bound_bitpos (bounds_type, i, 0),
3938 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3939 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3940 value_as_long (ada_array_bound (arr, i, 1)),
3941 desc_bound_bitpos (bounds_type, i, 1),
3942 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3943 }
d2e4a39e 3944
4c4b4cd2 3945 bounds = ensure_lval (bounds, sp);
d2e4a39e 3946
0fd88904 3947 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3948 VALUE_ADDRESS (ensure_lval (arr, sp)),
3949 fat_pntr_data_bitpos (desc_type),
3950 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3951
0fd88904 3952 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3953 VALUE_ADDRESS (bounds),
3954 fat_pntr_bounds_bitpos (desc_type),
3955 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3956
4c4b4cd2 3957 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3958
3959 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3960 return value_addr (descriptor);
3961 else
3962 return descriptor;
3963}
14f9c5c9 3964\f
963a6417
PH
3965/* Dummy definitions for an experimental caching module that is not
3966 * used in the public sources. */
96d887e8 3967
96d887e8
PH
3968static int
3969lookup_cached_symbol (const char *name, domain_enum namespace,
76a01679
JB
3970 struct symbol **sym, struct block **block,
3971 struct symtab **symtab)
96d887e8
PH
3972{
3973 return 0;
3974}
3975
3976static void
3977cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
76a01679 3978 struct block *block, struct symtab *symtab)
96d887e8
PH
3979{
3980}
4c4b4cd2
PH
3981\f
3982 /* Symbol Lookup */
3983
3984/* Return the result of a standard (literal, C-like) lookup of NAME in
3985 given DOMAIN, visible from lexical block BLOCK. */
3986
3987static struct symbol *
3988standard_lookup (const char *name, const struct block *block,
3989 domain_enum domain)
3990{
3991 struct symbol *sym;
3992 struct symtab *symtab;
3993
3994 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3995 return sym;
76a01679
JB
3996 sym =
3997 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
4c4b4cd2
PH
3998 cache_symbol (name, domain, sym, block_found, symtab);
3999 return sym;
4000}
4001
4002
4003/* Non-zero iff there is at least one non-function/non-enumeral symbol
4004 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4005 since they contend in overloading in the same way. */
4006static int
4007is_nonfunction (struct ada_symbol_info syms[], int n)
4008{
4009 int i;
4010
4011 for (i = 0; i < n; i += 1)
4012 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4013 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4014 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4015 return 1;
4016
4017 return 0;
4018}
4019
4020/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4021 struct types. Otherwise, they may not. */
14f9c5c9
AS
4022
4023static int
d2e4a39e 4024equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4025{
d2e4a39e 4026 if (type0 == type1)
14f9c5c9 4027 return 1;
d2e4a39e 4028 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4029 || TYPE_CODE (type0) != TYPE_CODE (type1))
4030 return 0;
d2e4a39e 4031 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4032 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4033 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4034 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4035 return 1;
d2e4a39e 4036
14f9c5c9
AS
4037 return 0;
4038}
4039
4040/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4041 no more defined than that of SYM1. */
14f9c5c9
AS
4042
4043static int
d2e4a39e 4044lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4045{
4046 if (sym0 == sym1)
4047 return 1;
176620f1 4048 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4049 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4050 return 0;
4051
d2e4a39e 4052 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4053 {
4054 case LOC_UNDEF:
4055 return 1;
4056 case LOC_TYPEDEF:
4057 {
4c4b4cd2
PH
4058 struct type *type0 = SYMBOL_TYPE (sym0);
4059 struct type *type1 = SYMBOL_TYPE (sym1);
4060 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4061 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4062 int len0 = strlen (name0);
4063 return
4064 TYPE_CODE (type0) == TYPE_CODE (type1)
4065 && (equiv_types (type0, type1)
4066 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4067 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4068 }
4069 case LOC_CONST:
4070 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4071 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4072 default:
4073 return 0;
14f9c5c9
AS
4074 }
4075}
4076
4c4b4cd2
PH
4077/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4078 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4079
4080static void
76a01679
JB
4081add_defn_to_vec (struct obstack *obstackp,
4082 struct symbol *sym,
4083 struct block *block, struct symtab *symtab)
14f9c5c9
AS
4084{
4085 int i;
4086 size_t tmp;
4c4b4cd2 4087 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4088
529cad9c
PH
4089 /* Do not try to complete stub types, as the debugger is probably
4090 already scanning all symbols matching a certain name at the
4091 time when this function is called. Trying to replace the stub
4092 type by its associated full type will cause us to restart a scan
4093 which may lead to an infinite recursion. Instead, the client
4094 collecting the matching symbols will end up collecting several
4095 matches, with at least one of them complete. It can then filter
4096 out the stub ones if needed. */
4097
4c4b4cd2
PH
4098 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4099 {
4100 if (lesseq_defined_than (sym, prevDefns[i].sym))
4101 return;
4102 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4103 {
4104 prevDefns[i].sym = sym;
4105 prevDefns[i].block = block;
76a01679 4106 prevDefns[i].symtab = symtab;
4c4b4cd2 4107 return;
76a01679 4108 }
4c4b4cd2
PH
4109 }
4110
4111 {
4112 struct ada_symbol_info info;
4113
4114 info.sym = sym;
4115 info.block = block;
4116 info.symtab = symtab;
4117 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4118 }
4119}
4120
4121/* Number of ada_symbol_info structures currently collected in
4122 current vector in *OBSTACKP. */
4123
76a01679
JB
4124static int
4125num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4126{
4127 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4128}
4129
4130/* Vector of ada_symbol_info structures currently collected in current
4131 vector in *OBSTACKP. If FINISH, close off the vector and return
4132 its final address. */
4133
76a01679 4134static struct ada_symbol_info *
4c4b4cd2
PH
4135defns_collected (struct obstack *obstackp, int finish)
4136{
4137 if (finish)
4138 return obstack_finish (obstackp);
4139 else
4140 return (struct ada_symbol_info *) obstack_base (obstackp);
4141}
4142
96d887e8
PH
4143/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4144 Check the global symbols if GLOBAL, the static symbols if not.
4145 Do wild-card match if WILD. */
4c4b4cd2 4146
96d887e8
PH
4147static struct partial_symbol *
4148ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4149 int global, domain_enum namespace, int wild)
4c4b4cd2 4150{
96d887e8
PH
4151 struct partial_symbol **start;
4152 int name_len = strlen (name);
4153 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4154 int i;
4c4b4cd2 4155
96d887e8 4156 if (length == 0)
4c4b4cd2 4157 {
96d887e8 4158 return (NULL);
4c4b4cd2
PH
4159 }
4160
96d887e8
PH
4161 start = (global ?
4162 pst->objfile->global_psymbols.list + pst->globals_offset :
4163 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4164
96d887e8 4165 if (wild)
4c4b4cd2 4166 {
96d887e8
PH
4167 for (i = 0; i < length; i += 1)
4168 {
4169 struct partial_symbol *psym = start[i];
4c4b4cd2 4170
1265e4aa
JB
4171 if (SYMBOL_DOMAIN (psym) == namespace
4172 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4173 return psym;
4174 }
4175 return NULL;
4c4b4cd2 4176 }
96d887e8
PH
4177 else
4178 {
4179 if (global)
4180 {
4181 int U;
4182 i = 0;
4183 U = length - 1;
4184 while (U - i > 4)
4185 {
4186 int M = (U + i) >> 1;
4187 struct partial_symbol *psym = start[M];
4188 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4189 i = M + 1;
4190 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4191 U = M - 1;
4192 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4193 i = M + 1;
4194 else
4195 U = M;
4196 }
4197 }
4198 else
4199 i = 0;
4c4b4cd2 4200
96d887e8
PH
4201 while (i < length)
4202 {
4203 struct partial_symbol *psym = start[i];
4c4b4cd2 4204
96d887e8
PH
4205 if (SYMBOL_DOMAIN (psym) == namespace)
4206 {
4207 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4208
96d887e8
PH
4209 if (cmp < 0)
4210 {
4211 if (global)
4212 break;
4213 }
4214 else if (cmp == 0
4215 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4216 + name_len))
96d887e8
PH
4217 return psym;
4218 }
4219 i += 1;
4220 }
4c4b4cd2 4221
96d887e8
PH
4222 if (global)
4223 {
4224 int U;
4225 i = 0;
4226 U = length - 1;
4227 while (U - i > 4)
4228 {
4229 int M = (U + i) >> 1;
4230 struct partial_symbol *psym = start[M];
4231 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4232 i = M + 1;
4233 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4234 U = M - 1;
4235 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4236 i = M + 1;
4237 else
4238 U = M;
4239 }
4240 }
4241 else
4242 i = 0;
4c4b4cd2 4243
96d887e8
PH
4244 while (i < length)
4245 {
4246 struct partial_symbol *psym = start[i];
4c4b4cd2 4247
96d887e8
PH
4248 if (SYMBOL_DOMAIN (psym) == namespace)
4249 {
4250 int cmp;
4c4b4cd2 4251
96d887e8
PH
4252 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4253 if (cmp == 0)
4254 {
4255 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4256 if (cmp == 0)
4257 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4258 name_len);
96d887e8 4259 }
4c4b4cd2 4260
96d887e8
PH
4261 if (cmp < 0)
4262 {
4263 if (global)
4264 break;
4265 }
4266 else if (cmp == 0
4267 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4268 + name_len + 5))
96d887e8
PH
4269 return psym;
4270 }
4271 i += 1;
4272 }
4273 }
4274 return NULL;
4c4b4cd2
PH
4275}
4276
96d887e8 4277/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4278
96d887e8
PH
4279static struct symtab *
4280symtab_for_sym (struct symbol *sym)
4c4b4cd2 4281{
96d887e8
PH
4282 struct symtab *s;
4283 struct objfile *objfile;
4284 struct block *b;
4285 struct symbol *tmp_sym;
4286 struct dict_iterator iter;
4287 int j;
4c4b4cd2 4288
11309657 4289 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4290 {
4291 switch (SYMBOL_CLASS (sym))
4292 {
4293 case LOC_CONST:
4294 case LOC_STATIC:
4295 case LOC_TYPEDEF:
4296 case LOC_REGISTER:
4297 case LOC_LABEL:
4298 case LOC_BLOCK:
4299 case LOC_CONST_BYTES:
76a01679
JB
4300 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4301 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4302 return s;
4303 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4304 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4305 return s;
96d887e8
PH
4306 break;
4307 default:
4308 break;
4309 }
4310 switch (SYMBOL_CLASS (sym))
4311 {
4312 case LOC_REGISTER:
4313 case LOC_ARG:
4314 case LOC_REF_ARG:
4315 case LOC_REGPARM:
4316 case LOC_REGPARM_ADDR:
4317 case LOC_LOCAL:
4318 case LOC_TYPEDEF:
4319 case LOC_LOCAL_ARG:
4320 case LOC_BASEREG:
4321 case LOC_BASEREG_ARG:
4322 case LOC_COMPUTED:
4323 case LOC_COMPUTED_ARG:
76a01679
JB
4324 for (j = FIRST_LOCAL_BLOCK;
4325 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4326 {
4327 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4328 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4329 return s;
4330 }
4331 break;
96d887e8
PH
4332 default:
4333 break;
4334 }
4335 }
4336 return NULL;
4c4b4cd2
PH
4337}
4338
96d887e8
PH
4339/* Return a minimal symbol matching NAME according to Ada decoding
4340 rules. Returns NULL if there is no such minimal symbol. Names
4341 prefixed with "standard__" are handled specially: "standard__" is
4342 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4343
96d887e8
PH
4344struct minimal_symbol *
4345ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4346{
4c4b4cd2 4347 struct objfile *objfile;
96d887e8
PH
4348 struct minimal_symbol *msymbol;
4349 int wild_match;
4c4b4cd2 4350
96d887e8 4351 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4352 {
96d887e8 4353 name += sizeof ("standard__") - 1;
4c4b4cd2 4354 wild_match = 0;
4c4b4cd2
PH
4355 }
4356 else
96d887e8 4357 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4358
96d887e8
PH
4359 ALL_MSYMBOLS (objfile, msymbol)
4360 {
4361 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4362 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4363 return msymbol;
4364 }
4c4b4cd2 4365
96d887e8
PH
4366 return NULL;
4367}
4c4b4cd2 4368
96d887e8
PH
4369/* For all subprograms that statically enclose the subprogram of the
4370 selected frame, add symbols matching identifier NAME in DOMAIN
4371 and their blocks to the list of data in OBSTACKP, as for
4372 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4373 wildcard prefix. */
4c4b4cd2 4374
96d887e8
PH
4375static void
4376add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4377 const char *name, domain_enum namespace,
96d887e8
PH
4378 int wild_match)
4379{
96d887e8 4380}
14f9c5c9 4381
96d887e8
PH
4382/* True if TYPE is definitely an artificial type supplied to a symbol
4383 for which no debugging information was given in the symbol file. */
14f9c5c9 4384
96d887e8
PH
4385static int
4386is_nondebugging_type (struct type *type)
4387{
4388 char *name = ada_type_name (type);
4389 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4390}
4c4b4cd2 4391
96d887e8
PH
4392/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4393 duplicate other symbols in the list (The only case I know of where
4394 this happens is when object files containing stabs-in-ecoff are
4395 linked with files containing ordinary ecoff debugging symbols (or no
4396 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4397 Returns the number of items in the modified list. */
4c4b4cd2 4398
96d887e8
PH
4399static int
4400remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4401{
4402 int i, j;
4c4b4cd2 4403
96d887e8
PH
4404 i = 0;
4405 while (i < nsyms)
4406 {
4407 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4408 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4409 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4410 {
4411 for (j = 0; j < nsyms; j += 1)
4412 {
4413 if (i != j
4414 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4415 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4416 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4417 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4418 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4419 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4c4b4cd2 4420 {
96d887e8
PH
4421 int k;
4422 for (k = i + 1; k < nsyms; k += 1)
76a01679 4423 syms[k - 1] = syms[k];
96d887e8
PH
4424 nsyms -= 1;
4425 goto NextSymbol;
4c4b4cd2 4426 }
4c4b4cd2 4427 }
4c4b4cd2 4428 }
96d887e8
PH
4429 i += 1;
4430 NextSymbol:
4431 ;
14f9c5c9 4432 }
96d887e8 4433 return nsyms;
14f9c5c9
AS
4434}
4435
96d887e8
PH
4436/* Given a type that corresponds to a renaming entity, use the type name
4437 to extract the scope (package name or function name, fully qualified,
4438 and following the GNAT encoding convention) where this renaming has been
4439 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4440
96d887e8
PH
4441static char *
4442xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4443{
96d887e8
PH
4444 /* The renaming types adhere to the following convention:
4445 <scope>__<rename>___<XR extension>.
4446 So, to extract the scope, we search for the "___XR" extension,
4447 and then backtrack until we find the first "__". */
76a01679 4448
96d887e8
PH
4449 const char *name = type_name_no_tag (renaming_type);
4450 char *suffix = strstr (name, "___XR");
4451 char *last;
4452 int scope_len;
4453 char *scope;
14f9c5c9 4454
96d887e8
PH
4455 /* Now, backtrack a bit until we find the first "__". Start looking
4456 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4457
96d887e8
PH
4458 for (last = suffix - 3; last > name; last--)
4459 if (last[0] == '_' && last[1] == '_')
4460 break;
76a01679 4461
96d887e8 4462 /* Make a copy of scope and return it. */
14f9c5c9 4463
96d887e8
PH
4464 scope_len = last - name;
4465 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4466
96d887e8
PH
4467 strncpy (scope, name, scope_len);
4468 scope[scope_len] = '\0';
4c4b4cd2 4469
96d887e8 4470 return scope;
4c4b4cd2
PH
4471}
4472
96d887e8 4473/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4474
96d887e8
PH
4475static int
4476is_package_name (const char *name)
4c4b4cd2 4477{
96d887e8
PH
4478 /* Here, We take advantage of the fact that no symbols are generated
4479 for packages, while symbols are generated for each function.
4480 So the condition for NAME represent a package becomes equivalent
4481 to NAME not existing in our list of symbols. There is only one
4482 small complication with library-level functions (see below). */
4c4b4cd2 4483
96d887e8 4484 char *fun_name;
76a01679 4485
96d887e8
PH
4486 /* If it is a function that has not been defined at library level,
4487 then we should be able to look it up in the symbols. */
4488 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4489 return 0;
14f9c5c9 4490
96d887e8
PH
4491 /* Library-level function names start with "_ada_". See if function
4492 "_ada_" followed by NAME can be found. */
14f9c5c9 4493
96d887e8 4494 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4495 functions names cannot contain "__" in them. */
96d887e8
PH
4496 if (strstr (name, "__") != NULL)
4497 return 0;
4c4b4cd2 4498
b435e160 4499 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4500
96d887e8
PH
4501 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4502}
14f9c5c9 4503
96d887e8 4504/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4505 not visible from FUNCTION_NAME. */
14f9c5c9 4506
96d887e8 4507static int
aeb5907d 4508old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4509{
aeb5907d
JB
4510 char *scope;
4511
4512 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4513 return 0;
4514
4515 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4516
96d887e8 4517 make_cleanup (xfree, scope);
14f9c5c9 4518
96d887e8
PH
4519 /* If the rename has been defined in a package, then it is visible. */
4520 if (is_package_name (scope))
aeb5907d 4521 return 0;
14f9c5c9 4522
96d887e8
PH
4523 /* Check that the rename is in the current function scope by checking
4524 that its name starts with SCOPE. */
76a01679 4525
96d887e8
PH
4526 /* If the function name starts with "_ada_", it means that it is
4527 a library-level function. Strip this prefix before doing the
4528 comparison, as the encoding for the renaming does not contain
4529 this prefix. */
4530 if (strncmp (function_name, "_ada_", 5) == 0)
4531 function_name += 5;
f26caa11 4532
aeb5907d 4533 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4534}
4535
aeb5907d
JB
4536/* Remove entries from SYMS that corresponds to a renaming entity that
4537 is not visible from the function associated with CURRENT_BLOCK or
4538 that is superfluous due to the presence of more specific renaming
4539 information. Places surviving symbols in the initial entries of
4540 SYMS and returns the number of surviving symbols.
96d887e8
PH
4541
4542 Rationale:
aeb5907d
JB
4543 First, in cases where an object renaming is implemented as a
4544 reference variable, GNAT may produce both the actual reference
4545 variable and the renaming encoding. In this case, we discard the
4546 latter.
4547
4548 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4549 entity. Unfortunately, STABS currently does not support the definition
4550 of types that are local to a given lexical block, so all renamings types
4551 are emitted at library level. As a consequence, if an application
4552 contains two renaming entities using the same name, and a user tries to
4553 print the value of one of these entities, the result of the ada symbol
4554 lookup will also contain the wrong renaming type.
f26caa11 4555
96d887e8
PH
4556 This function partially covers for this limitation by attempting to
4557 remove from the SYMS list renaming symbols that should be visible
4558 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4559 method with the current information available. The implementation
4560 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4561
4562 - When the user tries to print a rename in a function while there
4563 is another rename entity defined in a package: Normally, the
4564 rename in the function has precedence over the rename in the
4565 package, so the latter should be removed from the list. This is
4566 currently not the case.
4567
4568 - This function will incorrectly remove valid renames if
4569 the CURRENT_BLOCK corresponds to a function which symbol name
4570 has been changed by an "Export" pragma. As a consequence,
4571 the user will be unable to print such rename entities. */
4c4b4cd2 4572
14f9c5c9 4573static int
aeb5907d
JB
4574remove_irrelevant_renamings (struct ada_symbol_info *syms,
4575 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4576{
4577 struct symbol *current_function;
4578 char *current_function_name;
4579 int i;
aeb5907d
JB
4580 int is_new_style_renaming;
4581
4582 /* If there is both a renaming foo___XR... encoded as a variable and
4583 a simple variable foo in the same block, discard the latter.
4584 First, zero out such symbols, then compress. */
4585 is_new_style_renaming = 0;
4586 for (i = 0; i < nsyms; i += 1)
4587 {
4588 struct symbol *sym = syms[i].sym;
4589 struct block *block = syms[i].block;
4590 const char *name;
4591 const char *suffix;
4592
4593 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4594 continue;
4595 name = SYMBOL_LINKAGE_NAME (sym);
4596 suffix = strstr (name, "___XR");
4597
4598 if (suffix != NULL)
4599 {
4600 int name_len = suffix - name;
4601 int j;
4602 is_new_style_renaming = 1;
4603 for (j = 0; j < nsyms; j += 1)
4604 if (i != j && syms[j].sym != NULL
4605 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4606 name_len) == 0
4607 && block == syms[j].block)
4608 syms[j].sym = NULL;
4609 }
4610 }
4611 if (is_new_style_renaming)
4612 {
4613 int j, k;
4614
4615 for (j = k = 0; j < nsyms; j += 1)
4616 if (syms[j].sym != NULL)
4617 {
4618 syms[k] = syms[j];
4619 k += 1;
4620 }
4621 return k;
4622 }
4c4b4cd2
PH
4623
4624 /* Extract the function name associated to CURRENT_BLOCK.
4625 Abort if unable to do so. */
76a01679 4626
4c4b4cd2
PH
4627 if (current_block == NULL)
4628 return nsyms;
76a01679 4629
4c4b4cd2
PH
4630 current_function = block_function (current_block);
4631 if (current_function == NULL)
4632 return nsyms;
4633
4634 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4635 if (current_function_name == NULL)
4636 return nsyms;
4637
4638 /* Check each of the symbols, and remove it from the list if it is
4639 a type corresponding to a renaming that is out of the scope of
4640 the current block. */
4641
4642 i = 0;
4643 while (i < nsyms)
4644 {
aeb5907d
JB
4645 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4646 == ADA_OBJECT_RENAMING
4647 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4648 {
4649 int j;
aeb5907d 4650 for (j = i + 1; j < nsyms; j += 1)
76a01679 4651 syms[j - 1] = syms[j];
4c4b4cd2
PH
4652 nsyms -= 1;
4653 }
4654 else
4655 i += 1;
4656 }
4657
4658 return nsyms;
4659}
4660
4661/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4662 scope and in global scopes, returning the number of matches. Sets
4663 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4664 indicating the symbols found and the blocks and symbol tables (if
4665 any) in which they were found. This vector are transient---good only to
4666 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4667 symbol match within the nest of blocks whose innermost member is BLOCK0,
4668 is the one match returned (no other matches in that or
4669 enclosing blocks is returned). If there are any matches in or
4670 surrounding BLOCK0, then these alone are returned. Otherwise, the
4671 search extends to global and file-scope (static) symbol tables.
4672 Names prefixed with "standard__" are handled specially: "standard__"
4673 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4674
4675int
4c4b4cd2 4676ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4677 domain_enum namespace,
4678 struct ada_symbol_info **results)
14f9c5c9
AS
4679{
4680 struct symbol *sym;
4681 struct symtab *s;
4682 struct partial_symtab *ps;
4683 struct blockvector *bv;
4684 struct objfile *objfile;
14f9c5c9 4685 struct block *block;
4c4b4cd2 4686 const char *name;
14f9c5c9 4687 struct minimal_symbol *msymbol;
4c4b4cd2 4688 int wild_match;
14f9c5c9 4689 int cacheIfUnique;
4c4b4cd2
PH
4690 int block_depth;
4691 int ndefns;
14f9c5c9 4692
4c4b4cd2
PH
4693 obstack_free (&symbol_list_obstack, NULL);
4694 obstack_init (&symbol_list_obstack);
14f9c5c9 4695
14f9c5c9
AS
4696 cacheIfUnique = 0;
4697
4698 /* Search specified block and its superiors. */
4699
4c4b4cd2
PH
4700 wild_match = (strstr (name0, "__") == NULL);
4701 name = name0;
76a01679
JB
4702 block = (struct block *) block0; /* FIXME: No cast ought to be
4703 needed, but adding const will
4704 have a cascade effect. */
4c4b4cd2
PH
4705 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4706 {
4707 wild_match = 0;
4708 block = NULL;
4709 name = name0 + sizeof ("standard__") - 1;
4710 }
4711
4712 block_depth = 0;
14f9c5c9
AS
4713 while (block != NULL)
4714 {
4c4b4cd2 4715 block_depth += 1;
76a01679
JB
4716 ada_add_block_symbols (&symbol_list_obstack, block, name,
4717 namespace, NULL, NULL, wild_match);
14f9c5c9 4718
4c4b4cd2
PH
4719 /* If we found a non-function match, assume that's the one. */
4720 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
76a01679 4721 num_defns_collected (&symbol_list_obstack)))
4c4b4cd2 4722 goto done;
14f9c5c9
AS
4723
4724 block = BLOCK_SUPERBLOCK (block);
4725 }
4726
4c4b4cd2
PH
4727 /* If no luck so far, try to find NAME as a local symbol in some lexically
4728 enclosing subprogram. */
4729 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4730 add_symbols_from_enclosing_procs (&symbol_list_obstack,
76a01679 4731 name, namespace, wild_match);
4c4b4cd2
PH
4732
4733 /* If we found ANY matches among non-global symbols, we're done. */
14f9c5c9 4734
4c4b4cd2 4735 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4736 goto done;
d2e4a39e 4737
14f9c5c9 4738 cacheIfUnique = 1;
4c4b4cd2
PH
4739 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4740 {
4741 if (sym != NULL)
4742 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4743 goto done;
4744 }
14f9c5c9
AS
4745
4746 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4c4b4cd2 4747 tables, and psymtab's. */
14f9c5c9 4748
11309657 4749 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e
AS
4750 {
4751 QUIT;
d2e4a39e
AS
4752 bv = BLOCKVECTOR (s);
4753 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
76a01679
JB
4754 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4755 objfile, s, wild_match);
d2e4a39e 4756 }
14f9c5c9 4757
4c4b4cd2 4758 if (namespace == VAR_DOMAIN)
14f9c5c9
AS
4759 {
4760 ALL_MSYMBOLS (objfile, msymbol)
d2e4a39e 4761 {
4c4b4cd2
PH
4762 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4763 {
4764 switch (MSYMBOL_TYPE (msymbol))
4765 {
4766 case mst_solib_trampoline:
4767 break;
4768 default:
4769 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4770 if (s != NULL)
4771 {
4772 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4773 QUIT;
4774 bv = BLOCKVECTOR (s);
4775 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4776 ada_add_block_symbols (&symbol_list_obstack, block,
4777 SYMBOL_LINKAGE_NAME (msymbol),
4778 namespace, objfile, s, wild_match);
76a01679 4779
4c4b4cd2
PH
4780 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4781 {
4782 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4783 ada_add_block_symbols (&symbol_list_obstack, block,
4784 SYMBOL_LINKAGE_NAME (msymbol),
4785 namespace, objfile, s,
4786 wild_match);
4787 }
4788 }
4789 }
4790 }
d2e4a39e 4791 }
14f9c5c9 4792 }
d2e4a39e 4793
14f9c5c9 4794 ALL_PSYMTABS (objfile, ps)
d2e4a39e
AS
4795 {
4796 QUIT;
4797 if (!ps->readin
4c4b4cd2 4798 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
d2e4a39e 4799 {
4c4b4cd2
PH
4800 s = PSYMTAB_TO_SYMTAB (ps);
4801 if (!s->primary)
4802 continue;
4803 bv = BLOCKVECTOR (s);
4804 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4805 ada_add_block_symbols (&symbol_list_obstack, block, name,
76a01679 4806 namespace, objfile, s, wild_match);
d2e4a39e
AS
4807 }
4808 }
4809
4c4b4cd2 4810 /* Now add symbols from all per-file blocks if we've gotten no hits
14f9c5c9 4811 (Not strictly correct, but perhaps better than an error).
4c4b4cd2 4812 Do the symtabs first, then check the psymtabs. */
d2e4a39e 4813
4c4b4cd2 4814 if (num_defns_collected (&symbol_list_obstack) == 0)
14f9c5c9
AS
4815 {
4816
11309657 4817 ALL_PRIMARY_SYMTABS (objfile, s)
d2e4a39e 4818 {
4c4b4cd2 4819 QUIT;
4c4b4cd2
PH
4820 bv = BLOCKVECTOR (s);
4821 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4822 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4823 objfile, s, wild_match);
d2e4a39e
AS
4824 }
4825
14f9c5c9 4826 ALL_PSYMTABS (objfile, ps)
d2e4a39e 4827 {
4c4b4cd2
PH
4828 QUIT;
4829 if (!ps->readin
4830 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4831 {
4832 s = PSYMTAB_TO_SYMTAB (ps);
4833 bv = BLOCKVECTOR (s);
4834 if (!s->primary)
4835 continue;
4836 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
76a01679
JB
4837 ada_add_block_symbols (&symbol_list_obstack, block, name,
4838 namespace, objfile, s, wild_match);
4c4b4cd2 4839 }
d2e4a39e
AS
4840 }
4841 }
14f9c5c9 4842
4c4b4cd2
PH
4843done:
4844 ndefns = num_defns_collected (&symbol_list_obstack);
4845 *results = defns_collected (&symbol_list_obstack, 1);
4846
4847 ndefns = remove_extra_symbols (*results, ndefns);
4848
d2e4a39e 4849 if (ndefns == 0)
4c4b4cd2 4850 cache_symbol (name0, namespace, NULL, NULL, NULL);
14f9c5c9 4851
4c4b4cd2 4852 if (ndefns == 1 && cacheIfUnique)
76a01679
JB
4853 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4854 (*results)[0].symtab);
14f9c5c9 4855
aeb5907d 4856 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4857
14f9c5c9
AS
4858 return ndefns;
4859}
4860
d2e4a39e 4861struct symbol *
aeb5907d
JB
4862ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4863 domain_enum namespace,
4864 struct block **block_found, struct symtab **symtab)
14f9c5c9 4865{
4c4b4cd2 4866 struct ada_symbol_info *candidates;
14f9c5c9
AS
4867 int n_candidates;
4868
aeb5907d 4869 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4870
4871 if (n_candidates == 0)
4872 return NULL;
4c4b4cd2 4873
aeb5907d
JB
4874 if (block_found != NULL)
4875 *block_found = candidates[0].block;
4c4b4cd2 4876
76a01679 4877 if (symtab != NULL)
4c4b4cd2
PH
4878 {
4879 *symtab = candidates[0].symtab;
76a01679
JB
4880 if (*symtab == NULL && candidates[0].block != NULL)
4881 {
4882 struct objfile *objfile;
4883 struct symtab *s;
4884 struct block *b;
4885 struct blockvector *bv;
4886
4887 /* Search the list of symtabs for one which contains the
4888 address of the start of this block. */
11309657 4889 ALL_PRIMARY_SYMTABS (objfile, s)
76a01679
JB
4890 {
4891 bv = BLOCKVECTOR (s);
4892 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4893 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4894 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4895 {
4896 *symtab = s;
4897 return fixup_symbol_section (candidates[0].sym, objfile);
4898 }
76a01679 4899 }
529cad9c
PH
4900 /* FIXME: brobecker/2004-11-12: I think that we should never
4901 reach this point. I don't see a reason why we would not
4902 find a symtab for a given block, so I suggest raising an
4903 internal_error exception here. Otherwise, we end up
4904 returning a symbol but no symtab, which certain parts of
4905 the code that rely (indirectly) on this function do not
4906 expect, eventually causing a SEGV. */
4907 return fixup_symbol_section (candidates[0].sym, NULL);
76a01679
JB
4908 }
4909 }
4c4b4cd2 4910 return candidates[0].sym;
aeb5907d
JB
4911}
4912
4913/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4914 scope and in global scopes, or NULL if none. NAME is folded and
4915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4916 choosing the first symbol if there are multiple choices.
4917 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4918 table in which the symbol was found (in both cases, these
4919 assignments occur only if the pointers are non-null). */
4920struct symbol *
4921ada_lookup_symbol (const char *name, const struct block *block0,
4922 domain_enum namespace, int *is_a_field_of_this,
4923 struct symtab **symtab)
4924{
4925 if (is_a_field_of_this != NULL)
4926 *is_a_field_of_this = 0;
4927
4928 return
4929 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4930 block0, namespace, NULL, symtab);
4c4b4cd2 4931}
14f9c5c9 4932
4c4b4cd2
PH
4933static struct symbol *
4934ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4935 const char *linkage_name,
4936 const struct block *block,
4937 const domain_enum domain, struct symtab **symtab)
4c4b4cd2
PH
4938{
4939 if (linkage_name == NULL)
4940 linkage_name = name;
76a01679
JB
4941 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4942 NULL, symtab);
14f9c5c9
AS
4943}
4944
4945
4c4b4cd2
PH
4946/* True iff STR is a possible encoded suffix of a normal Ada name
4947 that is to be ignored for matching purposes. Suffixes of parallel
4948 names (e.g., XVE) are not included here. Currently, the possible suffixes
4949 are given by either of the regular expression:
4950
babe1480
JB
4951 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4952 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4953 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4954 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4955
4956 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4957 match is performed. This sequence is used to differentiate homonyms,
4958 is an optional part of a valid name suffix. */
4c4b4cd2 4959
14f9c5c9 4960static int
d2e4a39e 4961is_name_suffix (const char *str)
14f9c5c9
AS
4962{
4963 int k;
4c4b4cd2
PH
4964 const char *matching;
4965 const int len = strlen (str);
4966
babe1480
JB
4967 /* Skip optional leading __[0-9]+. */
4968
4c4b4cd2
PH
4969 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4970 {
babe1480
JB
4971 str += 3;
4972 while (isdigit (str[0]))
4973 str += 1;
4c4b4cd2 4974 }
babe1480
JB
4975
4976 /* [.$][0-9]+ */
4c4b4cd2 4977
babe1480 4978 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4979 {
babe1480 4980 matching = str + 1;
4c4b4cd2
PH
4981 while (isdigit (matching[0]))
4982 matching += 1;
4983 if (matching[0] == '\0')
4984 return 1;
4985 }
4986
4987 /* ___[0-9]+ */
babe1480 4988
4c4b4cd2
PH
4989 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4990 {
4991 matching = str + 3;
4992 while (isdigit (matching[0]))
4993 matching += 1;
4994 if (matching[0] == '\0')
4995 return 1;
4996 }
4997
529cad9c
PH
4998#if 0
4999 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5000 with a N at the end. Unfortunately, the compiler uses the same
5001 convention for other internal types it creates. So treating
5002 all entity names that end with an "N" as a name suffix causes
5003 some regressions. For instance, consider the case of an enumerated
5004 type. To support the 'Image attribute, it creates an array whose
5005 name ends with N.
5006 Having a single character like this as a suffix carrying some
5007 information is a bit risky. Perhaps we should change the encoding
5008 to be something like "_N" instead. In the meantime, do not do
5009 the following check. */
5010 /* Protected Object Subprograms */
5011 if (len == 1 && str [0] == 'N')
5012 return 1;
5013#endif
5014
5015 /* _E[0-9]+[bs]$ */
5016 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5017 {
5018 matching = str + 3;
5019 while (isdigit (matching[0]))
5020 matching += 1;
5021 if ((matching[0] == 'b' || matching[0] == 's')
5022 && matching [1] == '\0')
5023 return 1;
5024 }
5025
4c4b4cd2
PH
5026 /* ??? We should not modify STR directly, as we are doing below. This
5027 is fine in this case, but may become problematic later if we find
5028 that this alternative did not work, and want to try matching
5029 another one from the begining of STR. Since we modified it, we
5030 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5031 if (str[0] == 'X')
5032 {
5033 str += 1;
d2e4a39e 5034 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5035 {
5036 if (str[0] != 'n' && str[0] != 'b')
5037 return 0;
5038 str += 1;
5039 }
14f9c5c9 5040 }
babe1480 5041
14f9c5c9
AS
5042 if (str[0] == '\000')
5043 return 1;
babe1480 5044
d2e4a39e 5045 if (str[0] == '_')
14f9c5c9
AS
5046 {
5047 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5048 return 0;
d2e4a39e 5049 if (str[2] == '_')
4c4b4cd2 5050 {
61ee279c
PH
5051 if (strcmp (str + 3, "JM") == 0)
5052 return 1;
5053 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5054 the LJM suffix in favor of the JM one. But we will
5055 still accept LJM as a valid suffix for a reasonable
5056 amount of time, just to allow ourselves to debug programs
5057 compiled using an older version of GNAT. */
4c4b4cd2
PH
5058 if (strcmp (str + 3, "LJM") == 0)
5059 return 1;
5060 if (str[3] != 'X')
5061 return 0;
1265e4aa
JB
5062 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5063 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5064 return 1;
5065 if (str[4] == 'R' && str[5] != 'T')
5066 return 1;
5067 return 0;
5068 }
5069 if (!isdigit (str[2]))
5070 return 0;
5071 for (k = 3; str[k] != '\0'; k += 1)
5072 if (!isdigit (str[k]) && str[k] != '_')
5073 return 0;
14f9c5c9
AS
5074 return 1;
5075 }
4c4b4cd2 5076 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5077 {
4c4b4cd2
PH
5078 for (k = 2; str[k] != '\0'; k += 1)
5079 if (!isdigit (str[k]) && str[k] != '_')
5080 return 0;
14f9c5c9
AS
5081 return 1;
5082 }
5083 return 0;
5084}
d2e4a39e 5085
4c4b4cd2
PH
5086/* Return nonzero if the given string starts with a dot ('.')
5087 followed by zero or more digits.
5088
5089 Note: brobecker/2003-11-10: A forward declaration has not been
5090 added at the begining of this file yet, because this function
5091 is only used to work around a problem found during wild matching
5092 when trying to match minimal symbol names against symbol names
5093 obtained from dwarf-2 data. This function is therefore currently
5094 only used in wild_match() and is likely to be deleted when the
5095 problem in dwarf-2 is fixed. */
5096
5097static int
5098is_dot_digits_suffix (const char *str)
5099{
5100 if (str[0] != '.')
5101 return 0;
5102
5103 str++;
5104 while (isdigit (str[0]))
5105 str++;
5106 return (str[0] == '\0');
5107}
5108
aeb5907d
JB
5109/* Return non-zero if the string starting at NAME and ending before
5110 NAME_END contains no capital letters. */
529cad9c
PH
5111
5112static int
5113is_valid_name_for_wild_match (const char *name0)
5114{
5115 const char *decoded_name = ada_decode (name0);
5116 int i;
5117
5118 for (i=0; decoded_name[i] != '\0'; i++)
5119 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5120 return 0;
5121
5122 return 1;
5123}
5124
4c4b4cd2
PH
5125/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5126 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5127 informational suffixes of NAME (i.e., for which is_name_suffix is
5128 true). */
5129
14f9c5c9 5130static int
4c4b4cd2 5131wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9
AS
5132{
5133 int name_len;
4c4b4cd2 5134 char *name;
aeb5907d 5135 char *name_start;
4c4b4cd2
PH
5136 char *patn;
5137
5138 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5139 stored in the symbol table for nested function names is sometimes
5140 different from the name of the associated entity stored in
5141 the dwarf-2 data: This is the case for nested subprograms, where
5142 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5143 while the symbol name from the dwarf-2 data does not.
5144
5145 Although the DWARF-2 standard documents that entity names stored
5146 in the dwarf-2 data should be identical to the name as seen in
5147 the source code, GNAT takes a different approach as we already use
5148 a special encoding mechanism to convey the information so that
5149 a C debugger can still use the information generated to debug
5150 Ada programs. A corollary is that the symbol names in the dwarf-2
5151 data should match the names found in the symbol table. I therefore
5152 consider this issue as a compiler defect.
76a01679 5153
4c4b4cd2
PH
5154 Until the compiler is properly fixed, we work-around the problem
5155 by ignoring such suffixes during the match. We do so by making
5156 a copy of PATN0 and NAME0, and then by stripping such a suffix
5157 if present. We then perform the match on the resulting strings. */
5158 {
5159 char *dot;
5160 name_len = strlen (name0);
5161
aeb5907d 5162 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
4c4b4cd2
PH
5163 strcpy (name, name0);
5164 dot = strrchr (name, '.');
5165 if (dot != NULL && is_dot_digits_suffix (dot))
5166 *dot = '\0';
5167
5168 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5169 strncpy (patn, patn0, patn_len);
5170 patn[patn_len] = '\0';
5171 dot = strrchr (patn, '.');
5172 if (dot != NULL && is_dot_digits_suffix (dot))
5173 {
5174 *dot = '\0';
5175 patn_len = dot - patn;
5176 }
5177 }
5178
5179 /* Now perform the wild match. */
14f9c5c9
AS
5180
5181 name_len = strlen (name);
4c4b4cd2
PH
5182 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5183 && strncmp (patn, name + 5, patn_len) == 0
d2e4a39e 5184 && is_name_suffix (name + patn_len + 5))
14f9c5c9
AS
5185 return 1;
5186
d2e4a39e 5187 while (name_len >= patn_len)
14f9c5c9 5188 {
4c4b4cd2
PH
5189 if (strncmp (patn, name, patn_len) == 0
5190 && is_name_suffix (name + patn_len))
aeb5907d 5191 return (name == name_start || is_valid_name_for_wild_match (name0));
4c4b4cd2
PH
5192 do
5193 {
5194 name += 1;
5195 name_len -= 1;
5196 }
d2e4a39e 5197 while (name_len > 0
4c4b4cd2 5198 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
14f9c5c9 5199 if (name_len <= 0)
4c4b4cd2 5200 return 0;
14f9c5c9 5201 if (name[0] == '_')
4c4b4cd2
PH
5202 {
5203 if (!islower (name[2]))
5204 return 0;
5205 name += 2;
5206 name_len -= 2;
5207 }
14f9c5c9 5208 else
4c4b4cd2
PH
5209 {
5210 if (!islower (name[1]))
5211 return 0;
5212 name += 1;
5213 name_len -= 1;
5214 }
96d887e8
PH
5215 }
5216
5217 return 0;
5218}
5219
5220
5221/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5222 vector *defn_symbols, updating the list of symbols in OBSTACKP
5223 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5224 OBJFILE is the section containing BLOCK.
5225 SYMTAB is recorded with each symbol added. */
5226
5227static void
5228ada_add_block_symbols (struct obstack *obstackp,
76a01679 5229 struct block *block, const char *name,
96d887e8
PH
5230 domain_enum domain, struct objfile *objfile,
5231 struct symtab *symtab, int wild)
5232{
5233 struct dict_iterator iter;
5234 int name_len = strlen (name);
5235 /* A matching argument symbol, if any. */
5236 struct symbol *arg_sym;
5237 /* Set true when we find a matching non-argument symbol. */
5238 int found_sym;
5239 struct symbol *sym;
5240
5241 arg_sym = NULL;
5242 found_sym = 0;
5243 if (wild)
5244 {
5245 struct symbol *sym;
5246 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5247 {
1265e4aa
JB
5248 if (SYMBOL_DOMAIN (sym) == domain
5249 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679
JB
5250 {
5251 switch (SYMBOL_CLASS (sym))
5252 {
5253 case LOC_ARG:
5254 case LOC_LOCAL_ARG:
5255 case LOC_REF_ARG:
5256 case LOC_REGPARM:
5257 case LOC_REGPARM_ADDR:
5258 case LOC_BASEREG_ARG:
5259 case LOC_COMPUTED_ARG:
5260 arg_sym = sym;
5261 break;
5262 case LOC_UNRESOLVED:
5263 continue;
5264 default:
5265 found_sym = 1;
5266 add_defn_to_vec (obstackp,
5267 fixup_symbol_section (sym, objfile),
5268 block, symtab);
5269 break;
5270 }
5271 }
5272 }
96d887e8
PH
5273 }
5274 else
5275 {
5276 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679
JB
5277 {
5278 if (SYMBOL_DOMAIN (sym) == domain)
5279 {
5280 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5281 if (cmp == 0
5282 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5283 {
5284 switch (SYMBOL_CLASS (sym))
5285 {
5286 case LOC_ARG:
5287 case LOC_LOCAL_ARG:
5288 case LOC_REF_ARG:
5289 case LOC_REGPARM:
5290 case LOC_REGPARM_ADDR:
5291 case LOC_BASEREG_ARG:
5292 case LOC_COMPUTED_ARG:
5293 arg_sym = sym;
5294 break;
5295 case LOC_UNRESOLVED:
5296 break;
5297 default:
5298 found_sym = 1;
5299 add_defn_to_vec (obstackp,
5300 fixup_symbol_section (sym, objfile),
5301 block, symtab);
5302 break;
5303 }
5304 }
5305 }
5306 }
96d887e8
PH
5307 }
5308
5309 if (!found_sym && arg_sym != NULL)
5310 {
76a01679
JB
5311 add_defn_to_vec (obstackp,
5312 fixup_symbol_section (arg_sym, objfile),
5313 block, symtab);
96d887e8
PH
5314 }
5315
5316 if (!wild)
5317 {
5318 arg_sym = NULL;
5319 found_sym = 0;
5320
5321 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679
JB
5322 {
5323 if (SYMBOL_DOMAIN (sym) == domain)
5324 {
5325 int cmp;
5326
5327 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5328 if (cmp == 0)
5329 {
5330 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5331 if (cmp == 0)
5332 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5333 name_len);
5334 }
5335
5336 if (cmp == 0
5337 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5338 {
5339 switch (SYMBOL_CLASS (sym))
5340 {
5341 case LOC_ARG:
5342 case LOC_LOCAL_ARG:
5343 case LOC_REF_ARG:
5344 case LOC_REGPARM:
5345 case LOC_REGPARM_ADDR:
5346 case LOC_BASEREG_ARG:
5347 case LOC_COMPUTED_ARG:
5348 arg_sym = sym;
5349 break;
5350 case LOC_UNRESOLVED:
5351 break;
5352 default:
5353 found_sym = 1;
5354 add_defn_to_vec (obstackp,
5355 fixup_symbol_section (sym, objfile),
5356 block, symtab);
5357 break;
5358 }
5359 }
5360 }
76a01679 5361 }
96d887e8
PH
5362
5363 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5364 They aren't parameters, right? */
5365 if (!found_sym && arg_sym != NULL)
5366 {
5367 add_defn_to_vec (obstackp,
76a01679
JB
5368 fixup_symbol_section (arg_sym, objfile),
5369 block, symtab);
96d887e8
PH
5370 }
5371 }
5372}
5373\f
41d27058
JB
5374
5375 /* Symbol Completion */
5376
5377/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5378 name in a form that's appropriate for the completion. The result
5379 does not need to be deallocated, but is only good until the next call.
5380
5381 TEXT_LEN is equal to the length of TEXT.
5382 Perform a wild match if WILD_MATCH is set.
5383 ENCODED should be set if TEXT represents the start of a symbol name
5384 in its encoded form. */
5385
5386static const char *
5387symbol_completion_match (const char *sym_name,
5388 const char *text, int text_len,
5389 int wild_match, int encoded)
5390{
5391 char *result;
5392 const int verbatim_match = (text[0] == '<');
5393 int match = 0;
5394
5395 if (verbatim_match)
5396 {
5397 /* Strip the leading angle bracket. */
5398 text = text + 1;
5399 text_len--;
5400 }
5401
5402 /* First, test against the fully qualified name of the symbol. */
5403
5404 if (strncmp (sym_name, text, text_len) == 0)
5405 match = 1;
5406
5407 if (match && !encoded)
5408 {
5409 /* One needed check before declaring a positive match is to verify
5410 that iff we are doing a verbatim match, the decoded version
5411 of the symbol name starts with '<'. Otherwise, this symbol name
5412 is not a suitable completion. */
5413 const char *sym_name_copy = sym_name;
5414 int has_angle_bracket;
5415
5416 sym_name = ada_decode (sym_name);
5417 has_angle_bracket = (sym_name[0] == '<');
5418 match = (has_angle_bracket == verbatim_match);
5419 sym_name = sym_name_copy;
5420 }
5421
5422 if (match && !verbatim_match)
5423 {
5424 /* When doing non-verbatim match, another check that needs to
5425 be done is to verify that the potentially matching symbol name
5426 does not include capital letters, because the ada-mode would
5427 not be able to understand these symbol names without the
5428 angle bracket notation. */
5429 const char *tmp;
5430
5431 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5432 if (*tmp != '\0')
5433 match = 0;
5434 }
5435
5436 /* Second: Try wild matching... */
5437
5438 if (!match && wild_match)
5439 {
5440 /* Since we are doing wild matching, this means that TEXT
5441 may represent an unqualified symbol name. We therefore must
5442 also compare TEXT against the unqualified name of the symbol. */
5443 sym_name = ada_unqualified_name (ada_decode (sym_name));
5444
5445 if (strncmp (sym_name, text, text_len) == 0)
5446 match = 1;
5447 }
5448
5449 /* Finally: If we found a mach, prepare the result to return. */
5450
5451 if (!match)
5452 return NULL;
5453
5454 if (verbatim_match)
5455 sym_name = add_angle_brackets (sym_name);
5456
5457 if (!encoded)
5458 sym_name = ada_decode (sym_name);
5459
5460 return sym_name;
5461}
5462
2ba95b9b
JB
5463typedef char *char_ptr;
5464DEF_VEC_P (char_ptr);
5465
41d27058
JB
5466/* A companion function to ada_make_symbol_completion_list().
5467 Check if SYM_NAME represents a symbol which name would be suitable
5468 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5469 it is appended at the end of the given string vector SV.
5470
5471 ORIG_TEXT is the string original string from the user command
5472 that needs to be completed. WORD is the entire command on which
5473 completion should be performed. These two parameters are used to
5474 determine which part of the symbol name should be added to the
5475 completion vector.
5476 if WILD_MATCH is set, then wild matching is performed.
5477 ENCODED should be set if TEXT represents a symbol name in its
5478 encoded formed (in which case the completion should also be
5479 encoded). */
5480
5481static void
d6565258 5482symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5483 const char *sym_name,
5484 const char *text, int text_len,
5485 const char *orig_text, const char *word,
5486 int wild_match, int encoded)
5487{
5488 const char *match = symbol_completion_match (sym_name, text, text_len,
5489 wild_match, encoded);
5490 char *completion;
5491
5492 if (match == NULL)
5493 return;
5494
5495 /* We found a match, so add the appropriate completion to the given
5496 string vector. */
5497
5498 if (word == orig_text)
5499 {
5500 completion = xmalloc (strlen (match) + 5);
5501 strcpy (completion, match);
5502 }
5503 else if (word > orig_text)
5504 {
5505 /* Return some portion of sym_name. */
5506 completion = xmalloc (strlen (match) + 5);
5507 strcpy (completion, match + (word - orig_text));
5508 }
5509 else
5510 {
5511 /* Return some of ORIG_TEXT plus sym_name. */
5512 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5513 strncpy (completion, word, orig_text - word);
5514 completion[orig_text - word] = '\0';
5515 strcat (completion, match);
5516 }
5517
d6565258 5518 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5519}
5520
5521/* Return a list of possible symbol names completing TEXT0. The list
5522 is NULL terminated. WORD is the entire command on which completion
5523 is made. */
5524
5525static char **
5526ada_make_symbol_completion_list (char *text0, char *word)
5527{
5528 char *text;
5529 int text_len;
5530 int wild_match;
5531 int encoded;
2ba95b9b 5532 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5533 struct symbol *sym;
5534 struct symtab *s;
5535 struct partial_symtab *ps;
5536 struct minimal_symbol *msymbol;
5537 struct objfile *objfile;
5538 struct block *b, *surrounding_static_block = 0;
5539 int i;
5540 struct dict_iterator iter;
5541
5542 if (text0[0] == '<')
5543 {
5544 text = xstrdup (text0);
5545 make_cleanup (xfree, text);
5546 text_len = strlen (text);
5547 wild_match = 0;
5548 encoded = 1;
5549 }
5550 else
5551 {
5552 text = xstrdup (ada_encode (text0));
5553 make_cleanup (xfree, text);
5554 text_len = strlen (text);
5555 for (i = 0; i < text_len; i++)
5556 text[i] = tolower (text[i]);
5557
5558 encoded = (strstr (text0, "__") != NULL);
5559 /* If the name contains a ".", then the user is entering a fully
5560 qualified entity name, and the match must not be done in wild
5561 mode. Similarly, if the user wants to complete what looks like
5562 an encoded name, the match must not be done in wild mode. */
5563 wild_match = (strchr (text0, '.') == NULL && !encoded);
5564 }
5565
5566 /* First, look at the partial symtab symbols. */
5567 ALL_PSYMTABS (objfile, ps)
5568 {
5569 struct partial_symbol **psym;
5570
5571 /* If the psymtab's been read in we'll get it when we search
5572 through the blockvector. */
5573 if (ps->readin)
5574 continue;
5575
5576 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5577 psym < (objfile->global_psymbols.list + ps->globals_offset
5578 + ps->n_global_syms); psym++)
5579 {
5580 QUIT;
d6565258 5581 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5582 text, text_len, text0, word,
5583 wild_match, encoded);
5584 }
5585
5586 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5587 psym < (objfile->static_psymbols.list + ps->statics_offset
5588 + ps->n_static_syms); psym++)
5589 {
5590 QUIT;
d6565258 5591 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5592 text, text_len, text0, word,
5593 wild_match, encoded);
5594 }
5595 }
5596
5597 /* At this point scan through the misc symbol vectors and add each
5598 symbol you find to the list. Eventually we want to ignore
5599 anything that isn't a text symbol (everything else will be
5600 handled by the psymtab code above). */
5601
5602 ALL_MSYMBOLS (objfile, msymbol)
5603 {
5604 QUIT;
d6565258 5605 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5606 text, text_len, text0, word, wild_match, encoded);
5607 }
5608
5609 /* Search upwards from currently selected frame (so that we can
5610 complete on local vars. */
5611
5612 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5613 {
5614 if (!BLOCK_SUPERBLOCK (b))
5615 surrounding_static_block = b; /* For elmin of dups */
5616
5617 ALL_BLOCK_SYMBOLS (b, iter, sym)
5618 {
d6565258 5619 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5620 text, text_len, text0, word,
5621 wild_match, encoded);
5622 }
5623 }
5624
5625 /* Go through the symtabs and check the externs and statics for
5626 symbols which match. */
5627
5628 ALL_SYMTABS (objfile, s)
5629 {
5630 QUIT;
5631 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5632 ALL_BLOCK_SYMBOLS (b, iter, sym)
5633 {
d6565258 5634 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5635 text, text_len, text0, word,
5636 wild_match, encoded);
5637 }
5638 }
5639
5640 ALL_SYMTABS (objfile, s)
5641 {
5642 QUIT;
5643 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5644 /* Don't do this block twice. */
5645 if (b == surrounding_static_block)
5646 continue;
5647 ALL_BLOCK_SYMBOLS (b, iter, sym)
5648 {
d6565258 5649 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5650 text, text_len, text0, word,
5651 wild_match, encoded);
5652 }
5653 }
5654
5655 /* Append the closing NULL entry. */
2ba95b9b 5656 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5657
2ba95b9b
JB
5658 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5659 return the copy. It's unfortunate that we have to make a copy
5660 of an array that we're about to destroy, but there is nothing much
5661 we can do about it. Fortunately, it's typically not a very large
5662 array. */
5663 {
5664 const size_t completions_size =
5665 VEC_length (char_ptr, completions) * sizeof (char *);
5666 char **result = malloc (completions_size);
5667
5668 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5669
5670 VEC_free (char_ptr, completions);
5671 return result;
5672 }
41d27058
JB
5673}
5674
963a6417 5675 /* Field Access */
96d887e8 5676
73fb9985
JB
5677/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5678 for tagged types. */
5679
5680static int
5681ada_is_dispatch_table_ptr_type (struct type *type)
5682{
5683 char *name;
5684
5685 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5686 return 0;
5687
5688 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5689 if (name == NULL)
5690 return 0;
5691
5692 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5693}
5694
963a6417
PH
5695/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5696 to be invisible to users. */
96d887e8 5697
963a6417
PH
5698int
5699ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5700{
963a6417
PH
5701 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5702 return 1;
73fb9985
JB
5703
5704 /* Check the name of that field. */
5705 {
5706 const char *name = TYPE_FIELD_NAME (type, field_num);
5707
5708 /* Anonymous field names should not be printed.
5709 brobecker/2007-02-20: I don't think this can actually happen
5710 but we don't want to print the value of annonymous fields anyway. */
5711 if (name == NULL)
5712 return 1;
5713
5714 /* A field named "_parent" is internally generated by GNAT for
5715 tagged types, and should not be printed either. */
5716 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5717 return 1;
5718 }
5719
5720 /* If this is the dispatch table of a tagged type, then ignore. */
5721 if (ada_is_tagged_type (type, 1)
5722 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5723 return 1;
5724
5725 /* Not a special field, so it should not be ignored. */
5726 return 0;
963a6417 5727}
96d887e8 5728
963a6417
PH
5729/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5730 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5731
963a6417
PH
5732int
5733ada_is_tagged_type (struct type *type, int refok)
5734{
5735 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5736}
96d887e8 5737
963a6417 5738/* True iff TYPE represents the type of X'Tag */
96d887e8 5739
963a6417
PH
5740int
5741ada_is_tag_type (struct type *type)
5742{
5743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5744 return 0;
5745 else
96d887e8 5746 {
963a6417
PH
5747 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5748 return (name != NULL
5749 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5750 }
96d887e8
PH
5751}
5752
963a6417 5753/* The type of the tag on VAL. */
76a01679 5754
963a6417
PH
5755struct type *
5756ada_tag_type (struct value *val)
96d887e8 5757{
df407dfe 5758 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5759}
96d887e8 5760
963a6417 5761/* The value of the tag on VAL. */
96d887e8 5762
963a6417
PH
5763struct value *
5764ada_value_tag (struct value *val)
5765{
03ee6b2e 5766 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5767}
5768
963a6417
PH
5769/* The value of the tag on the object of type TYPE whose contents are
5770 saved at VALADDR, if it is non-null, or is at memory address
5771 ADDRESS. */
96d887e8 5772
963a6417 5773static struct value *
10a2c479 5774value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5775 const gdb_byte *valaddr,
963a6417 5776 CORE_ADDR address)
96d887e8 5777{
963a6417
PH
5778 int tag_byte_offset, dummy1, dummy2;
5779 struct type *tag_type;
5780 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5781 NULL, NULL, NULL))
96d887e8 5782 {
fc1a4b47 5783 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5784 ? NULL
5785 : valaddr + tag_byte_offset);
963a6417 5786 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5787
963a6417 5788 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5789 }
963a6417
PH
5790 return NULL;
5791}
96d887e8 5792
963a6417
PH
5793static struct type *
5794type_from_tag (struct value *tag)
5795{
5796 const char *type_name = ada_tag_name (tag);
5797 if (type_name != NULL)
5798 return ada_find_any_type (ada_encode (type_name));
5799 return NULL;
5800}
96d887e8 5801
963a6417
PH
5802struct tag_args
5803{
5804 struct value *tag;
5805 char *name;
5806};
4c4b4cd2 5807
529cad9c
PH
5808
5809static int ada_tag_name_1 (void *);
5810static int ada_tag_name_2 (struct tag_args *);
5811
4c4b4cd2
PH
5812/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5813 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5814 The value stored in ARGS->name is valid until the next call to
5815 ada_tag_name_1. */
5816
5817static int
5818ada_tag_name_1 (void *args0)
5819{
5820 struct tag_args *args = (struct tag_args *) args0;
5821 static char name[1024];
76a01679 5822 char *p;
4c4b4cd2
PH
5823 struct value *val;
5824 args->name = NULL;
03ee6b2e 5825 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5826 if (val == NULL)
5827 return ada_tag_name_2 (args);
03ee6b2e 5828 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5829 if (val == NULL)
5830 return 0;
5831 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5832 for (p = name; *p != '\0'; p += 1)
5833 if (isalpha (*p))
5834 *p = tolower (*p);
5835 args->name = name;
5836 return 0;
5837}
5838
5839/* Utility function for ada_tag_name_1 that tries the second
5840 representation for the dispatch table (in which there is no
5841 explicit 'tsd' field in the referent of the tag pointer, and instead
5842 the tsd pointer is stored just before the dispatch table. */
5843
5844static int
5845ada_tag_name_2 (struct tag_args *args)
5846{
5847 struct type *info_type;
5848 static char name[1024];
5849 char *p;
5850 struct value *val, *valp;
5851
5852 args->name = NULL;
5853 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5854 if (info_type == NULL)
5855 return 0;
5856 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5857 valp = value_cast (info_type, args->tag);
5858 if (valp == NULL)
5859 return 0;
5860 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
4c4b4cd2
PH
5861 if (val == NULL)
5862 return 0;
03ee6b2e 5863 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5864 if (val == NULL)
5865 return 0;
5866 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5867 for (p = name; *p != '\0'; p += 1)
5868 if (isalpha (*p))
5869 *p = tolower (*p);
5870 args->name = name;
5871 return 0;
5872}
5873
5874/* The type name of the dynamic type denoted by the 'tag value TAG, as
5875 * a C string. */
5876
5877const char *
5878ada_tag_name (struct value *tag)
5879{
5880 struct tag_args args;
df407dfe 5881 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5882 return NULL;
76a01679 5883 args.tag = tag;
4c4b4cd2
PH
5884 args.name = NULL;
5885 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5886 return args.name;
5887}
5888
5889/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5890
d2e4a39e 5891struct type *
ebf56fd3 5892ada_parent_type (struct type *type)
14f9c5c9
AS
5893{
5894 int i;
5895
61ee279c 5896 type = ada_check_typedef (type);
14f9c5c9
AS
5897
5898 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5899 return NULL;
5900
5901 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5902 if (ada_is_parent_field (type, i))
61ee279c 5903 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
14f9c5c9
AS
5904
5905 return NULL;
5906}
5907
4c4b4cd2
PH
5908/* True iff field number FIELD_NUM of structure type TYPE contains the
5909 parent-type (inherited) fields of a derived type. Assumes TYPE is
5910 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5911
5912int
ebf56fd3 5913ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5914{
61ee279c 5915 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5916 return (name != NULL
5917 && (strncmp (name, "PARENT", 6) == 0
5918 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5919}
5920
4c4b4cd2 5921/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5922 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5923 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5924 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5925 structures. */
14f9c5c9
AS
5926
5927int
ebf56fd3 5928ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5929{
d2e4a39e
AS
5930 const char *name = TYPE_FIELD_NAME (type, field_num);
5931 return (name != NULL
4c4b4cd2
PH
5932 && (strncmp (name, "PARENT", 6) == 0
5933 || strcmp (name, "REP") == 0
5934 || strncmp (name, "_parent", 7) == 0
5935 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5936}
5937
4c4b4cd2
PH
5938/* True iff field number FIELD_NUM of structure or union type TYPE
5939 is a variant wrapper. Assumes TYPE is a structure type with at least
5940 FIELD_NUM+1 fields. */
14f9c5c9
AS
5941
5942int
ebf56fd3 5943ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5944{
d2e4a39e 5945 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5946 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5947 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5948 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5949 == TYPE_CODE_UNION)));
14f9c5c9
AS
5950}
5951
5952/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5953 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5954 returns the type of the controlling discriminant for the variant. */
5955
d2e4a39e 5956struct type *
ebf56fd3 5957ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5958{
d2e4a39e 5959 char *name = ada_variant_discrim_name (var_type);
76a01679 5960 struct type *type =
4c4b4cd2 5961 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5962 if (type == NULL)
5963 return builtin_type_int;
5964 else
5965 return type;
5966}
5967
4c4b4cd2 5968/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5969 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5970 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5971
5972int
ebf56fd3 5973ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5974{
d2e4a39e 5975 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5976 return (name != NULL && name[0] == 'O');
5977}
5978
5979/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5980 returns the name of the discriminant controlling the variant.
5981 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5982
d2e4a39e 5983char *
ebf56fd3 5984ada_variant_discrim_name (struct type *type0)
14f9c5c9 5985{
d2e4a39e 5986 static char *result = NULL;
14f9c5c9 5987 static size_t result_len = 0;
d2e4a39e
AS
5988 struct type *type;
5989 const char *name;
5990 const char *discrim_end;
5991 const char *discrim_start;
14f9c5c9
AS
5992
5993 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5994 type = TYPE_TARGET_TYPE (type0);
5995 else
5996 type = type0;
5997
5998 name = ada_type_name (type);
5999
6000 if (name == NULL || name[0] == '\000')
6001 return "";
6002
6003 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6004 discrim_end -= 1)
6005 {
4c4b4cd2
PH
6006 if (strncmp (discrim_end, "___XVN", 6) == 0)
6007 break;
14f9c5c9
AS
6008 }
6009 if (discrim_end == name)
6010 return "";
6011
d2e4a39e 6012 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6013 discrim_start -= 1)
6014 {
d2e4a39e 6015 if (discrim_start == name + 1)
4c4b4cd2 6016 return "";
76a01679 6017 if ((discrim_start > name + 3
4c4b4cd2
PH
6018 && strncmp (discrim_start - 3, "___", 3) == 0)
6019 || discrim_start[-1] == '.')
6020 break;
14f9c5c9
AS
6021 }
6022
6023 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6024 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6025 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6026 return result;
6027}
6028
4c4b4cd2
PH
6029/* Scan STR for a subtype-encoded number, beginning at position K.
6030 Put the position of the character just past the number scanned in
6031 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6032 Return 1 if there was a valid number at the given position, and 0
6033 otherwise. A "subtype-encoded" number consists of the absolute value
6034 in decimal, followed by the letter 'm' to indicate a negative number.
6035 Assumes 0m does not occur. */
14f9c5c9
AS
6036
6037int
d2e4a39e 6038ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6039{
6040 ULONGEST RU;
6041
d2e4a39e 6042 if (!isdigit (str[k]))
14f9c5c9
AS
6043 return 0;
6044
4c4b4cd2 6045 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6046 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6047 LONGEST. */
14f9c5c9
AS
6048 RU = 0;
6049 while (isdigit (str[k]))
6050 {
d2e4a39e 6051 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6052 k += 1;
6053 }
6054
d2e4a39e 6055 if (str[k] == 'm')
14f9c5c9
AS
6056 {
6057 if (R != NULL)
4c4b4cd2 6058 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6059 k += 1;
6060 }
6061 else if (R != NULL)
6062 *R = (LONGEST) RU;
6063
4c4b4cd2 6064 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6065 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6066 number representable as a LONGEST (although either would probably work
6067 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6068 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6069
6070 if (new_k != NULL)
6071 *new_k = k;
6072 return 1;
6073}
6074
4c4b4cd2
PH
6075/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6076 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6077 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6078
d2e4a39e 6079int
ebf56fd3 6080ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6081{
d2e4a39e 6082 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6083 int p;
6084
6085 p = 0;
6086 while (1)
6087 {
d2e4a39e 6088 switch (name[p])
4c4b4cd2
PH
6089 {
6090 case '\0':
6091 return 0;
6092 case 'S':
6093 {
6094 LONGEST W;
6095 if (!ada_scan_number (name, p + 1, &W, &p))
6096 return 0;
6097 if (val == W)
6098 return 1;
6099 break;
6100 }
6101 case 'R':
6102 {
6103 LONGEST L, U;
6104 if (!ada_scan_number (name, p + 1, &L, &p)
6105 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6106 return 0;
6107 if (val >= L && val <= U)
6108 return 1;
6109 break;
6110 }
6111 case 'O':
6112 return 1;
6113 default:
6114 return 0;
6115 }
6116 }
6117}
6118
6119/* FIXME: Lots of redundancy below. Try to consolidate. */
6120
6121/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6122 ARG_TYPE, extract and return the value of one of its (non-static)
6123 fields. FIELDNO says which field. Differs from value_primitive_field
6124 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6125
4c4b4cd2 6126static struct value *
d2e4a39e 6127ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6128 struct type *arg_type)
14f9c5c9 6129{
14f9c5c9
AS
6130 struct type *type;
6131
61ee279c 6132 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6133 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6134
4c4b4cd2 6135 /* Handle packed fields. */
14f9c5c9
AS
6136
6137 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6138 {
6139 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6140 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6141
0fd88904 6142 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6143 offset + bit_pos / 8,
6144 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6145 }
6146 else
6147 return value_primitive_field (arg1, offset, fieldno, arg_type);
6148}
6149
52ce6436
PH
6150/* Find field with name NAME in object of type TYPE. If found,
6151 set the following for each argument that is non-null:
6152 - *FIELD_TYPE_P to the field's type;
6153 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6154 an object of that type;
6155 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6156 - *BIT_SIZE_P to its size in bits if the field is packed, and
6157 0 otherwise;
6158 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6159 fields up to but not including the desired field, or by the total
6160 number of fields if not found. A NULL value of NAME never
6161 matches; the function just counts visible fields in this case.
6162
6163 Returns 1 if found, 0 otherwise. */
6164
4c4b4cd2 6165static int
76a01679
JB
6166find_struct_field (char *name, struct type *type, int offset,
6167 struct type **field_type_p,
52ce6436
PH
6168 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6169 int *index_p)
4c4b4cd2
PH
6170{
6171 int i;
6172
61ee279c 6173 type = ada_check_typedef (type);
76a01679 6174
52ce6436
PH
6175 if (field_type_p != NULL)
6176 *field_type_p = NULL;
6177 if (byte_offset_p != NULL)
d5d6fca5 6178 *byte_offset_p = 0;
52ce6436
PH
6179 if (bit_offset_p != NULL)
6180 *bit_offset_p = 0;
6181 if (bit_size_p != NULL)
6182 *bit_size_p = 0;
6183
6184 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6185 {
6186 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6187 int fld_offset = offset + bit_pos / 8;
6188 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6189
4c4b4cd2
PH
6190 if (t_field_name == NULL)
6191 continue;
6192
52ce6436 6193 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6194 {
6195 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6196 if (field_type_p != NULL)
6197 *field_type_p = TYPE_FIELD_TYPE (type, i);
6198 if (byte_offset_p != NULL)
6199 *byte_offset_p = fld_offset;
6200 if (bit_offset_p != NULL)
6201 *bit_offset_p = bit_pos % 8;
6202 if (bit_size_p != NULL)
6203 *bit_size_p = bit_size;
76a01679
JB
6204 return 1;
6205 }
4c4b4cd2
PH
6206 else if (ada_is_wrapper_field (type, i))
6207 {
52ce6436
PH
6208 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6209 field_type_p, byte_offset_p, bit_offset_p,
6210 bit_size_p, index_p))
76a01679
JB
6211 return 1;
6212 }
4c4b4cd2
PH
6213 else if (ada_is_variant_part (type, i))
6214 {
52ce6436
PH
6215 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6216 fixed type?? */
4c4b4cd2 6217 int j;
52ce6436
PH
6218 struct type *field_type
6219 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6220
52ce6436 6221 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6222 {
76a01679
JB
6223 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6224 fld_offset
6225 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6226 field_type_p, byte_offset_p,
52ce6436 6227 bit_offset_p, bit_size_p, index_p))
76a01679 6228 return 1;
4c4b4cd2
PH
6229 }
6230 }
52ce6436
PH
6231 else if (index_p != NULL)
6232 *index_p += 1;
4c4b4cd2
PH
6233 }
6234 return 0;
6235}
6236
52ce6436 6237/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6238
52ce6436
PH
6239static int
6240num_visible_fields (struct type *type)
6241{
6242 int n;
6243 n = 0;
6244 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6245 return n;
6246}
14f9c5c9 6247
4c4b4cd2 6248/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6249 and search in it assuming it has (class) type TYPE.
6250 If found, return value, else return NULL.
6251
4c4b4cd2 6252 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6253
4c4b4cd2 6254static struct value *
d2e4a39e 6255ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6256 struct type *type)
14f9c5c9
AS
6257{
6258 int i;
61ee279c 6259 type = ada_check_typedef (type);
14f9c5c9 6260
52ce6436 6261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6262 {
6263 char *t_field_name = TYPE_FIELD_NAME (type, i);
6264
6265 if (t_field_name == NULL)
4c4b4cd2 6266 continue;
14f9c5c9
AS
6267
6268 else if (field_name_match (t_field_name, name))
4c4b4cd2 6269 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6270
6271 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6272 {
06d5cf63
JB
6273 struct value *v = /* Do not let indent join lines here. */
6274 ada_search_struct_field (name, arg,
6275 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6276 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6277 if (v != NULL)
6278 return v;
6279 }
14f9c5c9
AS
6280
6281 else if (ada_is_variant_part (type, i))
4c4b4cd2 6282 {
52ce6436 6283 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6284 int j;
61ee279c 6285 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6286 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6287
52ce6436 6288 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6289 {
06d5cf63
JB
6290 struct value *v = ada_search_struct_field /* Force line break. */
6291 (name, arg,
6292 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6293 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6294 if (v != NULL)
6295 return v;
6296 }
6297 }
14f9c5c9
AS
6298 }
6299 return NULL;
6300}
d2e4a39e 6301
52ce6436
PH
6302static struct value *ada_index_struct_field_1 (int *, struct value *,
6303 int, struct type *);
6304
6305
6306/* Return field #INDEX in ARG, where the index is that returned by
6307 * find_struct_field through its INDEX_P argument. Adjust the address
6308 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6309 * If found, return value, else return NULL. */
6310
6311static struct value *
6312ada_index_struct_field (int index, struct value *arg, int offset,
6313 struct type *type)
6314{
6315 return ada_index_struct_field_1 (&index, arg, offset, type);
6316}
6317
6318
6319/* Auxiliary function for ada_index_struct_field. Like
6320 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6321 * *INDEX_P. */
6322
6323static struct value *
6324ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6325 struct type *type)
6326{
6327 int i;
6328 type = ada_check_typedef (type);
6329
6330 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6331 {
6332 if (TYPE_FIELD_NAME (type, i) == NULL)
6333 continue;
6334 else if (ada_is_wrapper_field (type, i))
6335 {
6336 struct value *v = /* Do not let indent join lines here. */
6337 ada_index_struct_field_1 (index_p, arg,
6338 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6339 TYPE_FIELD_TYPE (type, i));
6340 if (v != NULL)
6341 return v;
6342 }
6343
6344 else if (ada_is_variant_part (type, i))
6345 {
6346 /* PNH: Do we ever get here? See ada_search_struct_field,
6347 find_struct_field. */
6348 error (_("Cannot assign this kind of variant record"));
6349 }
6350 else if (*index_p == 0)
6351 return ada_value_primitive_field (arg, offset, i, type);
6352 else
6353 *index_p -= 1;
6354 }
6355 return NULL;
6356}
6357
4c4b4cd2
PH
6358/* Given ARG, a value of type (pointer or reference to a)*
6359 structure/union, extract the component named NAME from the ultimate
6360 target structure/union and return it as a value with its
6361 appropriate type. If ARG is a pointer or reference and the field
6362 is not packed, returns a reference to the field, otherwise the
6363 value of the field (an lvalue if ARG is an lvalue).
14f9c5c9 6364
4c4b4cd2
PH
6365 The routine searches for NAME among all members of the structure itself
6366 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6367 (e.g., '_parent').
6368
03ee6b2e
PH
6369 If NO_ERR, then simply return NULL in case of error, rather than
6370 calling error. */
14f9c5c9 6371
d2e4a39e 6372struct value *
03ee6b2e 6373ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6374{
4c4b4cd2 6375 struct type *t, *t1;
d2e4a39e 6376 struct value *v;
14f9c5c9 6377
4c4b4cd2 6378 v = NULL;
df407dfe 6379 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6380 if (TYPE_CODE (t) == TYPE_CODE_REF)
6381 {
6382 t1 = TYPE_TARGET_TYPE (t);
6383 if (t1 == NULL)
03ee6b2e 6384 goto BadValue;
61ee279c 6385 t1 = ada_check_typedef (t1);
4c4b4cd2 6386 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6387 {
994b9211 6388 arg = coerce_ref (arg);
76a01679
JB
6389 t = t1;
6390 }
4c4b4cd2 6391 }
14f9c5c9 6392
4c4b4cd2
PH
6393 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6394 {
6395 t1 = TYPE_TARGET_TYPE (t);
6396 if (t1 == NULL)
03ee6b2e 6397 goto BadValue;
61ee279c 6398 t1 = ada_check_typedef (t1);
4c4b4cd2 6399 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6400 {
6401 arg = value_ind (arg);
6402 t = t1;
6403 }
4c4b4cd2 6404 else
76a01679 6405 break;
4c4b4cd2 6406 }
14f9c5c9 6407
4c4b4cd2 6408 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6409 goto BadValue;
14f9c5c9 6410
4c4b4cd2
PH
6411 if (t1 == t)
6412 v = ada_search_struct_field (name, arg, 0, t);
6413 else
6414 {
6415 int bit_offset, bit_size, byte_offset;
6416 struct type *field_type;
6417 CORE_ADDR address;
6418
76a01679
JB
6419 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6420 address = value_as_address (arg);
4c4b4cd2 6421 else
0fd88904 6422 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6423
1ed6ede0 6424 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6425 if (find_struct_field (name, t1, 0,
6426 &field_type, &byte_offset, &bit_offset,
52ce6436 6427 &bit_size, NULL))
76a01679
JB
6428 {
6429 if (bit_size != 0)
6430 {
714e53ab
PH
6431 if (TYPE_CODE (t) == TYPE_CODE_REF)
6432 arg = ada_coerce_ref (arg);
6433 else
6434 arg = ada_value_ind (arg);
76a01679
JB
6435 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6436 bit_offset, bit_size,
6437 field_type);
6438 }
6439 else
6440 v = value_from_pointer (lookup_reference_type (field_type),
6441 address + byte_offset);
6442 }
6443 }
6444
03ee6b2e
PH
6445 if (v != NULL || no_err)
6446 return v;
6447 else
323e0a4a 6448 error (_("There is no member named %s."), name);
14f9c5c9 6449
03ee6b2e
PH
6450 BadValue:
6451 if (no_err)
6452 return NULL;
6453 else
6454 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6455}
6456
6457/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6458 If DISPP is non-null, add its byte displacement from the beginning of a
6459 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6460 work for packed fields).
6461
6462 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6463 followed by "___".
14f9c5c9 6464
4c4b4cd2
PH
6465 TYPE can be either a struct or union. If REFOK, TYPE may also
6466 be a (pointer or reference)+ to a struct or union, and the
6467 ultimate target type will be searched.
14f9c5c9
AS
6468
6469 Looks recursively into variant clauses and parent types.
6470
4c4b4cd2
PH
6471 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6472 TYPE is not a type of the right kind. */
14f9c5c9 6473
4c4b4cd2 6474static struct type *
76a01679
JB
6475ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6476 int noerr, int *dispp)
14f9c5c9
AS
6477{
6478 int i;
6479
6480 if (name == NULL)
6481 goto BadName;
6482
76a01679 6483 if (refok && type != NULL)
4c4b4cd2
PH
6484 while (1)
6485 {
61ee279c 6486 type = ada_check_typedef (type);
76a01679
JB
6487 if (TYPE_CODE (type) != TYPE_CODE_PTR
6488 && TYPE_CODE (type) != TYPE_CODE_REF)
6489 break;
6490 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6491 }
14f9c5c9 6492
76a01679 6493 if (type == NULL
1265e4aa
JB
6494 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6495 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6496 {
4c4b4cd2 6497 if (noerr)
76a01679 6498 return NULL;
4c4b4cd2 6499 else
76a01679
JB
6500 {
6501 target_terminal_ours ();
6502 gdb_flush (gdb_stdout);
323e0a4a
AC
6503 if (type == NULL)
6504 error (_("Type (null) is not a structure or union type"));
6505 else
6506 {
6507 /* XXX: type_sprint */
6508 fprintf_unfiltered (gdb_stderr, _("Type "));
6509 type_print (type, "", gdb_stderr, -1);
6510 error (_(" is not a structure or union type"));
6511 }
76a01679 6512 }
14f9c5c9
AS
6513 }
6514
6515 type = to_static_fixed_type (type);
6516
6517 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6518 {
6519 char *t_field_name = TYPE_FIELD_NAME (type, i);
6520 struct type *t;
6521 int disp;
d2e4a39e 6522
14f9c5c9 6523 if (t_field_name == NULL)
4c4b4cd2 6524 continue;
14f9c5c9
AS
6525
6526 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6527 {
6528 if (dispp != NULL)
6529 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6530 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6531 }
14f9c5c9
AS
6532
6533 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6534 {
6535 disp = 0;
6536 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6537 0, 1, &disp);
6538 if (t != NULL)
6539 {
6540 if (dispp != NULL)
6541 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6542 return t;
6543 }
6544 }
14f9c5c9
AS
6545
6546 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6547 {
6548 int j;
61ee279c 6549 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6550
6551 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6552 {
6553 disp = 0;
6554 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6555 name, 0, 1, &disp);
6556 if (t != NULL)
6557 {
6558 if (dispp != NULL)
6559 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6560 return t;
6561 }
6562 }
6563 }
14f9c5c9
AS
6564
6565 }
6566
6567BadName:
d2e4a39e 6568 if (!noerr)
14f9c5c9
AS
6569 {
6570 target_terminal_ours ();
6571 gdb_flush (gdb_stdout);
323e0a4a
AC
6572 if (name == NULL)
6573 {
6574 /* XXX: type_sprint */
6575 fprintf_unfiltered (gdb_stderr, _("Type "));
6576 type_print (type, "", gdb_stderr, -1);
6577 error (_(" has no component named <null>"));
6578 }
6579 else
6580 {
6581 /* XXX: type_sprint */
6582 fprintf_unfiltered (gdb_stderr, _("Type "));
6583 type_print (type, "", gdb_stderr, -1);
6584 error (_(" has no component named %s"), name);
6585 }
14f9c5c9
AS
6586 }
6587
6588 return NULL;
6589}
6590
6591/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6592 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6593 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6594 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6595
d2e4a39e 6596int
ebf56fd3 6597ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6598 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6599{
6600 int others_clause;
6601 int i;
d2e4a39e 6602 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6603 struct value *outer;
6604 struct value *discrim;
14f9c5c9
AS
6605 LONGEST discrim_val;
6606
0c281816
JB
6607 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6608 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6609 if (discrim == NULL)
14f9c5c9 6610 return -1;
0c281816 6611 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6612
6613 others_clause = -1;
6614 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6615 {
6616 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6617 others_clause = i;
14f9c5c9 6618 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6619 return i;
14f9c5c9
AS
6620 }
6621
6622 return others_clause;
6623}
d2e4a39e 6624\f
14f9c5c9
AS
6625
6626
4c4b4cd2 6627 /* Dynamic-Sized Records */
14f9c5c9
AS
6628
6629/* Strategy: The type ostensibly attached to a value with dynamic size
6630 (i.e., a size that is not statically recorded in the debugging
6631 data) does not accurately reflect the size or layout of the value.
6632 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6633 conventional types that are constructed on the fly. */
14f9c5c9
AS
6634
6635/* There is a subtle and tricky problem here. In general, we cannot
6636 determine the size of dynamic records without its data. However,
6637 the 'struct value' data structure, which GDB uses to represent
6638 quantities in the inferior process (the target), requires the size
6639 of the type at the time of its allocation in order to reserve space
6640 for GDB's internal copy of the data. That's why the
6641 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6642 rather than struct value*s.
14f9c5c9
AS
6643
6644 However, GDB's internal history variables ($1, $2, etc.) are
6645 struct value*s containing internal copies of the data that are not, in
6646 general, the same as the data at their corresponding addresses in
6647 the target. Fortunately, the types we give to these values are all
6648 conventional, fixed-size types (as per the strategy described
6649 above), so that we don't usually have to perform the
6650 'to_fixed_xxx_type' conversions to look at their values.
6651 Unfortunately, there is one exception: if one of the internal
6652 history variables is an array whose elements are unconstrained
6653 records, then we will need to create distinct fixed types for each
6654 element selected. */
6655
6656/* The upshot of all of this is that many routines take a (type, host
6657 address, target address) triple as arguments to represent a value.
6658 The host address, if non-null, is supposed to contain an internal
6659 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6660 target at the target address. */
14f9c5c9
AS
6661
6662/* Assuming that VAL0 represents a pointer value, the result of
6663 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6664 dynamic-sized types. */
14f9c5c9 6665
d2e4a39e
AS
6666struct value *
6667ada_value_ind (struct value *val0)
14f9c5c9 6668{
d2e4a39e 6669 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6670 return ada_to_fixed_value (val);
14f9c5c9
AS
6671}
6672
6673/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6674 qualifiers on VAL0. */
6675
d2e4a39e
AS
6676static struct value *
6677ada_coerce_ref (struct value *val0)
6678{
df407dfe 6679 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6680 {
6681 struct value *val = val0;
994b9211 6682 val = coerce_ref (val);
d2e4a39e 6683 val = unwrap_value (val);
4c4b4cd2 6684 return ada_to_fixed_value (val);
d2e4a39e
AS
6685 }
6686 else
14f9c5c9
AS
6687 return val0;
6688}
6689
6690/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6691 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6692
6693static unsigned int
ebf56fd3 6694align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6695{
6696 return (off + alignment - 1) & ~(alignment - 1);
6697}
6698
4c4b4cd2 6699/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6700
6701static unsigned int
ebf56fd3 6702field_alignment (struct type *type, int f)
14f9c5c9 6703{
d2e4a39e 6704 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6705 int len;
14f9c5c9
AS
6706 int align_offset;
6707
64a1bf19
JB
6708 /* The field name should never be null, unless the debugging information
6709 is somehow malformed. In this case, we assume the field does not
6710 require any alignment. */
6711 if (name == NULL)
6712 return 1;
6713
6714 len = strlen (name);
6715
4c4b4cd2
PH
6716 if (!isdigit (name[len - 1]))
6717 return 1;
14f9c5c9 6718
d2e4a39e 6719 if (isdigit (name[len - 2]))
14f9c5c9
AS
6720 align_offset = len - 2;
6721 else
6722 align_offset = len - 1;
6723
4c4b4cd2 6724 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6725 return TARGET_CHAR_BIT;
6726
4c4b4cd2
PH
6727 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6728}
6729
6730/* Find a symbol named NAME. Ignores ambiguity. */
6731
6732struct symbol *
6733ada_find_any_symbol (const char *name)
6734{
6735 struct symbol *sym;
6736
6737 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6738 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6739 return sym;
6740
6741 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6742 return sym;
14f9c5c9
AS
6743}
6744
6745/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6746
d2e4a39e 6747struct type *
ebf56fd3 6748ada_find_any_type (const char *name)
14f9c5c9 6749{
4c4b4cd2 6750 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6751
14f9c5c9
AS
6752 if (sym != NULL)
6753 return SYMBOL_TYPE (sym);
6754
6755 return NULL;
6756}
6757
aeb5907d
JB
6758/* Given NAME and an associated BLOCK, search all symbols for
6759 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6760 associated to NAME. Return this symbol if found, return
6761 NULL otherwise. */
6762
6763struct symbol *
6764ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6765{
6766 struct symbol *sym;
6767
6768 sym = find_old_style_renaming_symbol (name, block);
6769
6770 if (sym != NULL)
6771 return sym;
6772
6773 /* Not right yet. FIXME pnh 7/20/2007. */
6774 sym = ada_find_any_symbol (name);
6775 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6776 return sym;
6777 else
6778 return NULL;
6779}
6780
6781static struct symbol *
6782find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2
PH
6783{
6784 const struct symbol *function_sym = block_function (block);
6785 char *rename;
6786
6787 if (function_sym != NULL)
6788 {
6789 /* If the symbol is defined inside a function, NAME is not fully
6790 qualified. This means we need to prepend the function name
6791 as well as adding the ``___XR'' suffix to build the name of
6792 the associated renaming symbol. */
6793 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6794 /* Function names sometimes contain suffixes used
6795 for instance to qualify nested subprograms. When building
6796 the XR type name, we need to make sure that this suffix is
6797 not included. So do not include any suffix in the function
6798 name length below. */
6799 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6800 const int rename_len = function_name_len + 2 /* "__" */
6801 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6802
529cad9c
PH
6803 /* Strip the suffix if necessary. */
6804 function_name[function_name_len] = '\0';
6805
4c4b4cd2
PH
6806 /* Library-level functions are a special case, as GNAT adds
6807 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6808 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6809 have this prefix, so we need to skip this prefix if present. */
6810 if (function_name_len > 5 /* "_ada_" */
6811 && strstr (function_name, "_ada_") == function_name)
6812 function_name = function_name + 5;
6813
6814 rename = (char *) alloca (rename_len * sizeof (char));
6815 sprintf (rename, "%s__%s___XR", function_name, name);
6816 }
6817 else
6818 {
6819 const int rename_len = strlen (name) + 6;
6820 rename = (char *) alloca (rename_len * sizeof (char));
6821 sprintf (rename, "%s___XR", name);
6822 }
6823
6824 return ada_find_any_symbol (rename);
6825}
6826
14f9c5c9 6827/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6828 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6829 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6830 otherwise return 0. */
6831
14f9c5c9 6832int
d2e4a39e 6833ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6834{
6835 if (type1 == NULL)
6836 return 1;
6837 else if (type0 == NULL)
6838 return 0;
6839 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6840 return 1;
6841 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6842 return 0;
4c4b4cd2
PH
6843 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6844 return 1;
14f9c5c9
AS
6845 else if (ada_is_packed_array_type (type0))
6846 return 1;
4c4b4cd2
PH
6847 else if (ada_is_array_descriptor_type (type0)
6848 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6849 return 1;
aeb5907d
JB
6850 else
6851 {
6852 const char *type0_name = type_name_no_tag (type0);
6853 const char *type1_name = type_name_no_tag (type1);
6854
6855 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6856 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6857 return 1;
6858 }
14f9c5c9
AS
6859 return 0;
6860}
6861
6862/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6863 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6864
d2e4a39e
AS
6865char *
6866ada_type_name (struct type *type)
14f9c5c9 6867{
d2e4a39e 6868 if (type == NULL)
14f9c5c9
AS
6869 return NULL;
6870 else if (TYPE_NAME (type) != NULL)
6871 return TYPE_NAME (type);
6872 else
6873 return TYPE_TAG_NAME (type);
6874}
6875
6876/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6877 SUFFIX to the name of TYPE. */
14f9c5c9 6878
d2e4a39e 6879struct type *
ebf56fd3 6880ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6881{
d2e4a39e 6882 static char *name;
14f9c5c9 6883 static size_t name_len = 0;
14f9c5c9 6884 int len;
d2e4a39e
AS
6885 char *typename = ada_type_name (type);
6886
14f9c5c9
AS
6887 if (typename == NULL)
6888 return NULL;
6889
6890 len = strlen (typename);
6891
d2e4a39e 6892 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6893
6894 strcpy (name, typename);
6895 strcpy (name + len, suffix);
6896
6897 return ada_find_any_type (name);
6898}
6899
6900
6901/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6902 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6903
d2e4a39e
AS
6904static struct type *
6905dynamic_template_type (struct type *type)
14f9c5c9 6906{
61ee279c 6907 type = ada_check_typedef (type);
14f9c5c9
AS
6908
6909 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6910 || ada_type_name (type) == NULL)
14f9c5c9 6911 return NULL;
d2e4a39e 6912 else
14f9c5c9
AS
6913 {
6914 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6915 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6916 return type;
14f9c5c9 6917 else
4c4b4cd2 6918 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6919 }
6920}
6921
6922/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6923 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6924
d2e4a39e
AS
6925static int
6926is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6927{
6928 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6929 return name != NULL
14f9c5c9
AS
6930 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6931 && strstr (name, "___XVL") != NULL;
6932}
6933
4c4b4cd2
PH
6934/* The index of the variant field of TYPE, or -1 if TYPE does not
6935 represent a variant record type. */
14f9c5c9 6936
d2e4a39e 6937static int
4c4b4cd2 6938variant_field_index (struct type *type)
14f9c5c9
AS
6939{
6940 int f;
6941
4c4b4cd2
PH
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return -1;
6944
6945 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6946 {
6947 if (ada_is_variant_part (type, f))
6948 return f;
6949 }
6950 return -1;
14f9c5c9
AS
6951}
6952
4c4b4cd2
PH
6953/* A record type with no fields. */
6954
d2e4a39e
AS
6955static struct type *
6956empty_record (struct objfile *objfile)
14f9c5c9 6957{
d2e4a39e 6958 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6960 TYPE_NFIELDS (type) = 0;
6961 TYPE_FIELDS (type) = NULL;
6962 TYPE_NAME (type) = "<empty>";
6963 TYPE_TAG_NAME (type) = NULL;
6964 TYPE_FLAGS (type) = 0;
6965 TYPE_LENGTH (type) = 0;
6966 return type;
6967}
6968
6969/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6970 the value of type TYPE at VALADDR or ADDRESS (see comments at
6971 the beginning of this section) VAL according to GNAT conventions.
6972 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6973 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6974 an outer-level type (i.e., as opposed to a branch of a variant.) A
6975 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6976 of the variant.
14f9c5c9 6977
4c4b4cd2
PH
6978 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6979 length are not statically known are discarded. As a consequence,
6980 VALADDR, ADDRESS and DVAL0 are ignored.
6981
6982 NOTE: Limitations: For now, we assume that dynamic fields and
6983 variants occupy whole numbers of bytes. However, they need not be
6984 byte-aligned. */
6985
6986struct type *
10a2c479 6987ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6988 const gdb_byte *valaddr,
4c4b4cd2
PH
6989 CORE_ADDR address, struct value *dval0,
6990 int keep_dynamic_fields)
14f9c5c9 6991{
d2e4a39e
AS
6992 struct value *mark = value_mark ();
6993 struct value *dval;
6994 struct type *rtype;
14f9c5c9 6995 int nfields, bit_len;
4c4b4cd2 6996 int variant_field;
14f9c5c9 6997 long off;
4c4b4cd2 6998 int fld_bit_len, bit_incr;
14f9c5c9
AS
6999 int f;
7000
4c4b4cd2
PH
7001 /* Compute the number of fields in this record type that are going
7002 to be processed: unless keep_dynamic_fields, this includes only
7003 fields whose position and length are static will be processed. */
7004 if (keep_dynamic_fields)
7005 nfields = TYPE_NFIELDS (type);
7006 else
7007 {
7008 nfields = 0;
76a01679 7009 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7010 && !ada_is_variant_part (type, nfields)
7011 && !is_dynamic_field (type, nfields))
7012 nfields++;
7013 }
7014
14f9c5c9
AS
7015 rtype = alloc_type (TYPE_OBJFILE (type));
7016 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7017 INIT_CPLUS_SPECIFIC (rtype);
7018 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7019 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7020 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7021 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7022 TYPE_NAME (rtype) = ada_type_name (type);
7023 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 7024 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 7025
d2e4a39e
AS
7026 off = 0;
7027 bit_len = 0;
4c4b4cd2
PH
7028 variant_field = -1;
7029
14f9c5c9
AS
7030 for (f = 0; f < nfields; f += 1)
7031 {
6c038f32
PH
7032 off = align_value (off, field_alignment (type, f))
7033 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7034 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7035 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7036
d2e4a39e 7037 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7038 {
7039 variant_field = f;
7040 fld_bit_len = bit_incr = 0;
7041 }
14f9c5c9 7042 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
7043 {
7044 if (dval0 == NULL)
7045 dval = value_from_contents_and_address (rtype, valaddr, address);
7046 else
7047 dval = dval0;
7048
1ed6ede0
JB
7049 /* Get the fixed type of the field. Note that, in this case, we
7050 do not want to get the real type out of the tag: if the current
7051 field is the parent part of a tagged record, we will get the
7052 tag of the object. Clearly wrong: the real type of the parent
7053 is not the real type of the child. We would end up in an infinite
7054 loop. */
4c4b4cd2
PH
7055 TYPE_FIELD_TYPE (rtype, f) =
7056 ada_to_fixed_type
7057 (ada_get_base_type
7058 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
7059 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 7060 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
7061 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7062 bit_incr = fld_bit_len =
7063 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7064 }
14f9c5c9 7065 else
4c4b4cd2
PH
7066 {
7067 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7068 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7069 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7070 bit_incr = fld_bit_len =
7071 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7072 else
7073 bit_incr = fld_bit_len =
7074 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7075 }
14f9c5c9 7076 if (off + fld_bit_len > bit_len)
4c4b4cd2 7077 bit_len = off + fld_bit_len;
14f9c5c9 7078 off += bit_incr;
4c4b4cd2
PH
7079 TYPE_LENGTH (rtype) =
7080 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7081 }
4c4b4cd2
PH
7082
7083 /* We handle the variant part, if any, at the end because of certain
7084 odd cases in which it is re-ordered so as NOT the last field of
7085 the record. This can happen in the presence of representation
7086 clauses. */
7087 if (variant_field >= 0)
7088 {
7089 struct type *branch_type;
7090
7091 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7092
7093 if (dval0 == NULL)
7094 dval = value_from_contents_and_address (rtype, valaddr, address);
7095 else
7096 dval = dval0;
7097
7098 branch_type =
7099 to_fixed_variant_branch_type
7100 (TYPE_FIELD_TYPE (type, variant_field),
7101 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7102 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7103 if (branch_type == NULL)
7104 {
7105 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7106 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7107 TYPE_NFIELDS (rtype) -= 1;
7108 }
7109 else
7110 {
7111 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7112 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7113 fld_bit_len =
7114 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7115 TARGET_CHAR_BIT;
7116 if (off + fld_bit_len > bit_len)
7117 bit_len = off + fld_bit_len;
7118 TYPE_LENGTH (rtype) =
7119 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7120 }
7121 }
7122
714e53ab
PH
7123 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7124 should contain the alignment of that record, which should be a strictly
7125 positive value. If null or negative, then something is wrong, most
7126 probably in the debug info. In that case, we don't round up the size
7127 of the resulting type. If this record is not part of another structure,
7128 the current RTYPE length might be good enough for our purposes. */
7129 if (TYPE_LENGTH (type) <= 0)
7130 {
323e0a4a
AC
7131 if (TYPE_NAME (rtype))
7132 warning (_("Invalid type size for `%s' detected: %d."),
7133 TYPE_NAME (rtype), TYPE_LENGTH (type));
7134 else
7135 warning (_("Invalid type size for <unnamed> detected: %d."),
7136 TYPE_LENGTH (type));
714e53ab
PH
7137 }
7138 else
7139 {
7140 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7141 TYPE_LENGTH (type));
7142 }
14f9c5c9
AS
7143
7144 value_free_to_mark (mark);
d2e4a39e 7145 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7146 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7147 return rtype;
7148}
7149
4c4b4cd2
PH
7150/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7151 of 1. */
14f9c5c9 7152
d2e4a39e 7153static struct type *
fc1a4b47 7154template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7155 CORE_ADDR address, struct value *dval0)
7156{
7157 return ada_template_to_fixed_record_type_1 (type, valaddr,
7158 address, dval0, 1);
7159}
7160
7161/* An ordinary record type in which ___XVL-convention fields and
7162 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7163 static approximations, containing all possible fields. Uses
7164 no runtime values. Useless for use in values, but that's OK,
7165 since the results are used only for type determinations. Works on both
7166 structs and unions. Representation note: to save space, we memorize
7167 the result of this function in the TYPE_TARGET_TYPE of the
7168 template type. */
7169
7170static struct type *
7171template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7172{
7173 struct type *type;
7174 int nfields;
7175 int f;
7176
4c4b4cd2
PH
7177 if (TYPE_TARGET_TYPE (type0) != NULL)
7178 return TYPE_TARGET_TYPE (type0);
7179
7180 nfields = TYPE_NFIELDS (type0);
7181 type = type0;
14f9c5c9
AS
7182
7183 for (f = 0; f < nfields; f += 1)
7184 {
61ee279c 7185 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7186 struct type *new_type;
14f9c5c9 7187
4c4b4cd2
PH
7188 if (is_dynamic_field (type0, f))
7189 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7190 else
f192137b 7191 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7192 if (type == type0 && new_type != field_type)
7193 {
7194 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7195 TYPE_CODE (type) = TYPE_CODE (type0);
7196 INIT_CPLUS_SPECIFIC (type);
7197 TYPE_NFIELDS (type) = nfields;
7198 TYPE_FIELDS (type) = (struct field *)
7199 TYPE_ALLOC (type, nfields * sizeof (struct field));
7200 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7201 sizeof (struct field) * nfields);
7202 TYPE_NAME (type) = ada_type_name (type0);
7203 TYPE_TAG_NAME (type) = NULL;
7204 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
7205 TYPE_LENGTH (type) = 0;
7206 }
7207 TYPE_FIELD_TYPE (type, f) = new_type;
7208 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7209 }
14f9c5c9
AS
7210 return type;
7211}
7212
4c4b4cd2
PH
7213/* Given an object of type TYPE whose contents are at VALADDR and
7214 whose address in memory is ADDRESS, returns a revision of TYPE --
7215 a non-dynamic-sized record with a variant part -- in which
7216 the variant part is replaced with the appropriate branch. Looks
7217 for discriminant values in DVAL0, which can be NULL if the record
7218 contains the necessary discriminant values. */
7219
d2e4a39e 7220static struct type *
fc1a4b47 7221to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7222 CORE_ADDR address, struct value *dval0)
14f9c5c9 7223{
d2e4a39e 7224 struct value *mark = value_mark ();
4c4b4cd2 7225 struct value *dval;
d2e4a39e 7226 struct type *rtype;
14f9c5c9
AS
7227 struct type *branch_type;
7228 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7229 int variant_field = variant_field_index (type);
14f9c5c9 7230
4c4b4cd2 7231 if (variant_field == -1)
14f9c5c9
AS
7232 return type;
7233
4c4b4cd2
PH
7234 if (dval0 == NULL)
7235 dval = value_from_contents_and_address (type, valaddr, address);
7236 else
7237 dval = dval0;
7238
14f9c5c9
AS
7239 rtype = alloc_type (TYPE_OBJFILE (type));
7240 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7241 INIT_CPLUS_SPECIFIC (rtype);
7242 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7243 TYPE_FIELDS (rtype) =
7244 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7245 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7246 sizeof (struct field) * nfields);
14f9c5c9
AS
7247 TYPE_NAME (rtype) = ada_type_name (type);
7248 TYPE_TAG_NAME (rtype) = NULL;
4c4b4cd2 7249 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
7250 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7251
4c4b4cd2
PH
7252 branch_type = to_fixed_variant_branch_type
7253 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7254 cond_offset_host (valaddr,
4c4b4cd2
PH
7255 TYPE_FIELD_BITPOS (type, variant_field)
7256 / TARGET_CHAR_BIT),
d2e4a39e 7257 cond_offset_target (address,
4c4b4cd2
PH
7258 TYPE_FIELD_BITPOS (type, variant_field)
7259 / TARGET_CHAR_BIT), dval);
d2e4a39e 7260 if (branch_type == NULL)
14f9c5c9 7261 {
4c4b4cd2
PH
7262 int f;
7263 for (f = variant_field + 1; f < nfields; f += 1)
7264 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7265 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7266 }
7267 else
7268 {
4c4b4cd2
PH
7269 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7270 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7271 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7272 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7273 }
4c4b4cd2 7274 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7275
4c4b4cd2 7276 value_free_to_mark (mark);
14f9c5c9
AS
7277 return rtype;
7278}
7279
7280/* An ordinary record type (with fixed-length fields) that describes
7281 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7282 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7283 should be in DVAL, a record value; it may be NULL if the object
7284 at ADDR itself contains any necessary discriminant values.
7285 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7286 values from the record are needed. Except in the case that DVAL,
7287 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7288 unchecked) is replaced by a particular branch of the variant.
7289
7290 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7291 is questionable and may be removed. It can arise during the
7292 processing of an unconstrained-array-of-record type where all the
7293 variant branches have exactly the same size. This is because in
7294 such cases, the compiler does not bother to use the XVS convention
7295 when encoding the record. I am currently dubious of this
7296 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7297
d2e4a39e 7298static struct type *
fc1a4b47 7299to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7300 CORE_ADDR address, struct value *dval)
14f9c5c9 7301{
d2e4a39e 7302 struct type *templ_type;
14f9c5c9 7303
4c4b4cd2
PH
7304 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7305 return type0;
7306
d2e4a39e 7307 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7308
7309 if (templ_type != NULL)
7310 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7311 else if (variant_field_index (type0) >= 0)
7312 {
7313 if (dval == NULL && valaddr == NULL && address == 0)
7314 return type0;
7315 return to_record_with_fixed_variant_part (type0, valaddr, address,
7316 dval);
7317 }
14f9c5c9
AS
7318 else
7319 {
4c4b4cd2 7320 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9
AS
7321 return type0;
7322 }
7323
7324}
7325
7326/* An ordinary record type (with fixed-length fields) that describes
7327 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7328 union type. Any necessary discriminants' values should be in DVAL,
7329 a record value. That is, this routine selects the appropriate
7330 branch of the union at ADDR according to the discriminant value
4c4b4cd2 7331 indicated in the union's type name. */
14f9c5c9 7332
d2e4a39e 7333static struct type *
fc1a4b47 7334to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7335 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7336{
7337 int which;
d2e4a39e
AS
7338 struct type *templ_type;
7339 struct type *var_type;
14f9c5c9
AS
7340
7341 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7342 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7343 else
14f9c5c9
AS
7344 var_type = var_type0;
7345
7346 templ_type = ada_find_parallel_type (var_type, "___XVU");
7347
7348 if (templ_type != NULL)
7349 var_type = templ_type;
7350
d2e4a39e
AS
7351 which =
7352 ada_which_variant_applies (var_type,
0fd88904 7353 value_type (dval), value_contents (dval));
14f9c5c9
AS
7354
7355 if (which < 0)
7356 return empty_record (TYPE_OBJFILE (var_type));
7357 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7358 return to_fixed_record_type
d2e4a39e
AS
7359 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7360 valaddr, address, dval);
4c4b4cd2 7361 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7362 return
7363 to_fixed_record_type
7364 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7365 else
7366 return TYPE_FIELD_TYPE (var_type, which);
7367}
7368
7369/* Assuming that TYPE0 is an array type describing the type of a value
7370 at ADDR, and that DVAL describes a record containing any
7371 discriminants used in TYPE0, returns a type for the value that
7372 contains no dynamic components (that is, no components whose sizes
7373 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7374 true, gives an error message if the resulting type's size is over
4c4b4cd2 7375 varsize_limit. */
14f9c5c9 7376
d2e4a39e
AS
7377static struct type *
7378to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7379 int ignore_too_big)
14f9c5c9 7380{
d2e4a39e
AS
7381 struct type *index_type_desc;
7382 struct type *result;
14f9c5c9 7383
4c4b4cd2
PH
7384 if (ada_is_packed_array_type (type0) /* revisit? */
7385 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
7386 return type0;
14f9c5c9
AS
7387
7388 index_type_desc = ada_find_parallel_type (type0, "___XA");
7389 if (index_type_desc == NULL)
7390 {
61ee279c 7391 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7392 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7393 depend on the contents of the array in properly constructed
7394 debugging data. */
529cad9c
PH
7395 /* Create a fixed version of the array element type.
7396 We're not providing the address of an element here,
e1d5a0d2 7397 and thus the actual object value cannot be inspected to do
529cad9c
PH
7398 the conversion. This should not be a problem, since arrays of
7399 unconstrained objects are not allowed. In particular, all
7400 the elements of an array of a tagged type should all be of
7401 the same type specified in the debugging info. No need to
7402 consult the object tag. */
1ed6ede0 7403 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7404
7405 if (elt_type0 == elt_type)
4c4b4cd2 7406 result = type0;
14f9c5c9 7407 else
4c4b4cd2
PH
7408 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7409 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7410 }
7411 else
7412 {
7413 int i;
7414 struct type *elt_type0;
7415
7416 elt_type0 = type0;
7417 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7418 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7419
7420 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7421 depend on the contents of the array in properly constructed
7422 debugging data. */
529cad9c
PH
7423 /* Create a fixed version of the array element type.
7424 We're not providing the address of an element here,
e1d5a0d2 7425 and thus the actual object value cannot be inspected to do
529cad9c
PH
7426 the conversion. This should not be a problem, since arrays of
7427 unconstrained objects are not allowed. In particular, all
7428 the elements of an array of a tagged type should all be of
7429 the same type specified in the debugging info. No need to
7430 consult the object tag. */
1ed6ede0
JB
7431 result =
7432 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7433 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7434 {
7435 struct type *range_type =
7436 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7437 dval, TYPE_OBJFILE (type0));
7438 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7439 result, range_type);
7440 }
d2e4a39e 7441 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7442 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7443 }
7444
4c4b4cd2 7445 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
14f9c5c9 7446 return result;
d2e4a39e 7447}
14f9c5c9
AS
7448
7449
7450/* A standard type (containing no dynamically sized components)
7451 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7452 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7453 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7454 ADDRESS or in VALADDR contains these discriminants.
7455
1ed6ede0
JB
7456 If CHECK_TAG is not null, in the case of tagged types, this function
7457 attempts to locate the object's tag and use it to compute the actual
7458 type. However, when ADDRESS is null, we cannot use it to determine the
7459 location of the tag, and therefore compute the tagged type's actual type.
7460 So we return the tagged type without consulting the tag. */
529cad9c 7461
f192137b
JB
7462static struct type *
7463ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7464 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7465{
61ee279c 7466 type = ada_check_typedef (type);
d2e4a39e
AS
7467 switch (TYPE_CODE (type))
7468 {
7469 default:
14f9c5c9 7470 return type;
d2e4a39e 7471 case TYPE_CODE_STRUCT:
4c4b4cd2 7472 {
76a01679 7473 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7474 struct type *fixed_record_type =
7475 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7476 /* If STATIC_TYPE is a tagged type and we know the object's address,
7477 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7478 type from there. Note that we have to use the fixed record
7479 type (the parent part of the record may have dynamic fields
7480 and the way the location of _tag is expressed may depend on
7481 them). */
529cad9c 7482
1ed6ede0 7483 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7484 {
7485 struct type *real_type =
1ed6ede0
JB
7486 type_from_tag (value_tag_from_contents_and_address
7487 (fixed_record_type,
7488 valaddr,
7489 address));
76a01679 7490 if (real_type != NULL)
1ed6ede0 7491 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7492 }
1ed6ede0 7493 return fixed_record_type;
4c4b4cd2 7494 }
d2e4a39e 7495 case TYPE_CODE_ARRAY:
4c4b4cd2 7496 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7497 case TYPE_CODE_UNION:
7498 if (dval == NULL)
4c4b4cd2 7499 return type;
d2e4a39e 7500 else
4c4b4cd2 7501 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7502 }
14f9c5c9
AS
7503}
7504
f192137b
JB
7505/* The same as ada_to_fixed_type_1, except that it preserves the type
7506 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7507 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7508
7509struct type *
7510ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7511 CORE_ADDR address, struct value *dval, int check_tag)
7512
7513{
7514 struct type *fixed_type =
7515 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7516
7517 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7518 && TYPE_TARGET_TYPE (type) == fixed_type)
7519 return type;
7520
7521 return fixed_type;
7522}
7523
14f9c5c9 7524/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7525 TYPE0, but based on no runtime data. */
14f9c5c9 7526
d2e4a39e
AS
7527static struct type *
7528to_static_fixed_type (struct type *type0)
14f9c5c9 7529{
d2e4a39e 7530 struct type *type;
14f9c5c9
AS
7531
7532 if (type0 == NULL)
7533 return NULL;
7534
4c4b4cd2
PH
7535 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
7536 return type0;
7537
61ee279c 7538 type0 = ada_check_typedef (type0);
d2e4a39e 7539
14f9c5c9
AS
7540 switch (TYPE_CODE (type0))
7541 {
7542 default:
7543 return type0;
7544 case TYPE_CODE_STRUCT:
7545 type = dynamic_template_type (type0);
d2e4a39e 7546 if (type != NULL)
4c4b4cd2
PH
7547 return template_to_static_fixed_type (type);
7548 else
7549 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7550 case TYPE_CODE_UNION:
7551 type = ada_find_parallel_type (type0, "___XVU");
7552 if (type != NULL)
4c4b4cd2
PH
7553 return template_to_static_fixed_type (type);
7554 else
7555 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7556 }
7557}
7558
4c4b4cd2
PH
7559/* A static approximation of TYPE with all type wrappers removed. */
7560
d2e4a39e
AS
7561static struct type *
7562static_unwrap_type (struct type *type)
14f9c5c9
AS
7563{
7564 if (ada_is_aligner_type (type))
7565 {
61ee279c 7566 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7567 if (ada_type_name (type1) == NULL)
4c4b4cd2 7568 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7569
7570 return static_unwrap_type (type1);
7571 }
d2e4a39e 7572 else
14f9c5c9 7573 {
d2e4a39e
AS
7574 struct type *raw_real_type = ada_get_base_type (type);
7575 if (raw_real_type == type)
4c4b4cd2 7576 return type;
14f9c5c9 7577 else
4c4b4cd2 7578 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7579 }
7580}
7581
7582/* In some cases, incomplete and private types require
4c4b4cd2 7583 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7584 type Foo;
7585 type FooP is access Foo;
7586 V: FooP;
7587 type Foo is array ...;
4c4b4cd2 7588 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7589 cross-references to such types, we instead substitute for FooP a
7590 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7591 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7592
7593/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7594 exists, otherwise TYPE. */
7595
d2e4a39e 7596struct type *
61ee279c 7597ada_check_typedef (struct type *type)
14f9c5c9 7598{
727e3d2e
JB
7599 if (type == NULL)
7600 return NULL;
7601
14f9c5c9
AS
7602 CHECK_TYPEDEF (type);
7603 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7604 || !TYPE_STUB (type)
14f9c5c9
AS
7605 || TYPE_TAG_NAME (type) == NULL)
7606 return type;
d2e4a39e 7607 else
14f9c5c9 7608 {
d2e4a39e
AS
7609 char *name = TYPE_TAG_NAME (type);
7610 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7611 return (type1 == NULL) ? type : type1;
7612 }
7613}
7614
7615/* A value representing the data at VALADDR/ADDRESS as described by
7616 type TYPE0, but with a standard (static-sized) type that correctly
7617 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7618 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7619 creation of struct values]. */
14f9c5c9 7620
4c4b4cd2
PH
7621static struct value *
7622ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7623 struct value *val0)
14f9c5c9 7624{
1ed6ede0 7625 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7626 if (type == type0 && val0 != NULL)
7627 return val0;
d2e4a39e 7628 else
4c4b4cd2
PH
7629 return value_from_contents_and_address (type, 0, address);
7630}
7631
7632/* A value representing VAL, but with a standard (static-sized) type
7633 that correctly describes it. Does not necessarily create a new
7634 value. */
7635
7636static struct value *
7637ada_to_fixed_value (struct value *val)
7638{
df407dfe
AC
7639 return ada_to_fixed_value_create (value_type (val),
7640 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7641 val);
14f9c5c9
AS
7642}
7643
4c4b4cd2 7644/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7645 chosen to approximate the real type of VAL as well as possible, but
7646 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7647 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7648
d2e4a39e
AS
7649struct value *
7650ada_to_static_fixed_value (struct value *val)
14f9c5c9 7651{
d2e4a39e 7652 struct type *type =
df407dfe
AC
7653 to_static_fixed_type (static_unwrap_type (value_type (val)));
7654 if (type == value_type (val))
14f9c5c9
AS
7655 return val;
7656 else
4c4b4cd2 7657 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7658}
d2e4a39e 7659\f
14f9c5c9 7660
14f9c5c9
AS
7661/* Attributes */
7662
4c4b4cd2
PH
7663/* Table mapping attribute numbers to names.
7664 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7665
d2e4a39e 7666static const char *attribute_names[] = {
14f9c5c9
AS
7667 "<?>",
7668
d2e4a39e 7669 "first",
14f9c5c9
AS
7670 "last",
7671 "length",
7672 "image",
14f9c5c9
AS
7673 "max",
7674 "min",
4c4b4cd2
PH
7675 "modulus",
7676 "pos",
7677 "size",
7678 "tag",
14f9c5c9 7679 "val",
14f9c5c9
AS
7680 0
7681};
7682
d2e4a39e 7683const char *
4c4b4cd2 7684ada_attribute_name (enum exp_opcode n)
14f9c5c9 7685{
4c4b4cd2
PH
7686 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7687 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7688 else
7689 return attribute_names[0];
7690}
7691
4c4b4cd2 7692/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7693
4c4b4cd2
PH
7694static LONGEST
7695pos_atr (struct value *arg)
14f9c5c9 7696{
df407dfe 7697 struct type *type = value_type (arg);
14f9c5c9 7698
d2e4a39e 7699 if (!discrete_type_p (type))
323e0a4a 7700 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7701
7702 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7703 {
7704 int i;
7705 LONGEST v = value_as_long (arg);
7706
d2e4a39e 7707 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7708 {
7709 if (v == TYPE_FIELD_BITPOS (type, i))
7710 return i;
7711 }
323e0a4a 7712 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7713 }
7714 else
4c4b4cd2
PH
7715 return value_as_long (arg);
7716}
7717
7718static struct value *
7719value_pos_atr (struct value *arg)
7720{
72d5681a 7721 return value_from_longest (builtin_type_int, pos_atr (arg));
14f9c5c9
AS
7722}
7723
4c4b4cd2 7724/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7725
d2e4a39e
AS
7726static struct value *
7727value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7728{
d2e4a39e 7729 if (!discrete_type_p (type))
323e0a4a 7730 error (_("'VAL only defined on discrete types"));
df407dfe 7731 if (!integer_type_p (value_type (arg)))
323e0a4a 7732 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7733
7734 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7735 {
7736 long pos = value_as_long (arg);
7737 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7738 error (_("argument to 'VAL out of range"));
d2e4a39e 7739 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7740 }
7741 else
7742 return value_from_longest (type, value_as_long (arg));
7743}
14f9c5c9 7744\f
d2e4a39e 7745
4c4b4cd2 7746 /* Evaluation */
14f9c5c9 7747
4c4b4cd2
PH
7748/* True if TYPE appears to be an Ada character type.
7749 [At the moment, this is true only for Character and Wide_Character;
7750 It is a heuristic test that could stand improvement]. */
14f9c5c9 7751
d2e4a39e
AS
7752int
7753ada_is_character_type (struct type *type)
14f9c5c9 7754{
7b9f71f2
JB
7755 const char *name;
7756
7757 /* If the type code says it's a character, then assume it really is,
7758 and don't check any further. */
7759 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7760 return 1;
7761
7762 /* Otherwise, assume it's a character type iff it is a discrete type
7763 with a known character type name. */
7764 name = ada_type_name (type);
7765 return (name != NULL
7766 && (TYPE_CODE (type) == TYPE_CODE_INT
7767 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7768 && (strcmp (name, "character") == 0
7769 || strcmp (name, "wide_character") == 0
5a517ebd 7770 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7771 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7772}
7773
4c4b4cd2 7774/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7775
7776int
ebf56fd3 7777ada_is_string_type (struct type *type)
14f9c5c9 7778{
61ee279c 7779 type = ada_check_typedef (type);
d2e4a39e 7780 if (type != NULL
14f9c5c9 7781 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7782 && (ada_is_simple_array_type (type)
7783 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7784 && ada_array_arity (type) == 1)
7785 {
7786 struct type *elttype = ada_array_element_type (type, 1);
7787
7788 return ada_is_character_type (elttype);
7789 }
d2e4a39e 7790 else
14f9c5c9
AS
7791 return 0;
7792}
7793
7794
7795/* True if TYPE is a struct type introduced by the compiler to force the
7796 alignment of a value. Such types have a single field with a
4c4b4cd2 7797 distinctive name. */
14f9c5c9
AS
7798
7799int
ebf56fd3 7800ada_is_aligner_type (struct type *type)
14f9c5c9 7801{
61ee279c 7802 type = ada_check_typedef (type);
714e53ab
PH
7803
7804 /* If we can find a parallel XVS type, then the XVS type should
7805 be used instead of this type. And hence, this is not an aligner
7806 type. */
7807 if (ada_find_parallel_type (type, "___XVS") != NULL)
7808 return 0;
7809
14f9c5c9 7810 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7811 && TYPE_NFIELDS (type) == 1
7812 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7813}
7814
7815/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7816 the parallel type. */
14f9c5c9 7817
d2e4a39e
AS
7818struct type *
7819ada_get_base_type (struct type *raw_type)
14f9c5c9 7820{
d2e4a39e
AS
7821 struct type *real_type_namer;
7822 struct type *raw_real_type;
14f9c5c9
AS
7823
7824 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7825 return raw_type;
7826
7827 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7828 if (real_type_namer == NULL
14f9c5c9
AS
7829 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7830 || TYPE_NFIELDS (real_type_namer) != 1)
7831 return raw_type;
7832
7833 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7834 if (raw_real_type == NULL)
14f9c5c9
AS
7835 return raw_type;
7836 else
7837 return raw_real_type;
d2e4a39e 7838}
14f9c5c9 7839
4c4b4cd2 7840/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7841
d2e4a39e
AS
7842struct type *
7843ada_aligned_type (struct type *type)
14f9c5c9
AS
7844{
7845 if (ada_is_aligner_type (type))
7846 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7847 else
7848 return ada_get_base_type (type);
7849}
7850
7851
7852/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7853 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7854
fc1a4b47
AC
7855const gdb_byte *
7856ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7857{
d2e4a39e 7858 if (ada_is_aligner_type (type))
14f9c5c9 7859 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7860 valaddr +
7861 TYPE_FIELD_BITPOS (type,
7862 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7863 else
7864 return valaddr;
7865}
7866
4c4b4cd2
PH
7867
7868
14f9c5c9 7869/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7870 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7871const char *
7872ada_enum_name (const char *name)
14f9c5c9 7873{
4c4b4cd2
PH
7874 static char *result;
7875 static size_t result_len = 0;
d2e4a39e 7876 char *tmp;
14f9c5c9 7877
4c4b4cd2
PH
7878 /* First, unqualify the enumeration name:
7879 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7880 all the preceeding characters, the unqualified name starts
7881 right after that dot.
4c4b4cd2 7882 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7883 translates dots into "__". Search forward for double underscores,
7884 but stop searching when we hit an overloading suffix, which is
7885 of the form "__" followed by digits. */
4c4b4cd2 7886
c3e5cd34
PH
7887 tmp = strrchr (name, '.');
7888 if (tmp != NULL)
4c4b4cd2
PH
7889 name = tmp + 1;
7890 else
14f9c5c9 7891 {
4c4b4cd2
PH
7892 while ((tmp = strstr (name, "__")) != NULL)
7893 {
7894 if (isdigit (tmp[2]))
7895 break;
7896 else
7897 name = tmp + 2;
7898 }
14f9c5c9
AS
7899 }
7900
7901 if (name[0] == 'Q')
7902 {
14f9c5c9
AS
7903 int v;
7904 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7905 {
7906 if (sscanf (name + 2, "%x", &v) != 1)
7907 return name;
7908 }
14f9c5c9 7909 else
4c4b4cd2 7910 return name;
14f9c5c9 7911
4c4b4cd2 7912 GROW_VECT (result, result_len, 16);
14f9c5c9 7913 if (isascii (v) && isprint (v))
4c4b4cd2 7914 sprintf (result, "'%c'", v);
14f9c5c9 7915 else if (name[1] == 'U')
4c4b4cd2 7916 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7917 else
4c4b4cd2 7918 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7919
7920 return result;
7921 }
d2e4a39e 7922 else
4c4b4cd2 7923 {
c3e5cd34
PH
7924 tmp = strstr (name, "__");
7925 if (tmp == NULL)
7926 tmp = strstr (name, "$");
7927 if (tmp != NULL)
4c4b4cd2
PH
7928 {
7929 GROW_VECT (result, result_len, tmp - name + 1);
7930 strncpy (result, name, tmp - name);
7931 result[tmp - name] = '\0';
7932 return result;
7933 }
7934
7935 return name;
7936 }
14f9c5c9
AS
7937}
7938
d2e4a39e 7939static struct value *
ebf56fd3 7940evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7941 enum noside noside)
14f9c5c9 7942{
76a01679 7943 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7944 (expect_type, exp, pos, noside);
14f9c5c9
AS
7945}
7946
7947/* Evaluate the subexpression of EXP starting at *POS as for
7948 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7949 expression. */
14f9c5c9 7950
d2e4a39e
AS
7951static struct value *
7952evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7953{
4c4b4cd2 7954 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7955 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7956}
7957
7958/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7959 value it wraps. */
14f9c5c9 7960
d2e4a39e
AS
7961static struct value *
7962unwrap_value (struct value *val)
14f9c5c9 7963{
df407dfe 7964 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7965 if (ada_is_aligner_type (type))
7966 {
d2e4a39e 7967 struct value *v = value_struct_elt (&val, NULL, "F",
4c4b4cd2 7968 NULL, "internal structure");
df407dfe 7969 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7970 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7971 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7972
7973 return unwrap_value (v);
7974 }
d2e4a39e 7975 else
14f9c5c9 7976 {
d2e4a39e 7977 struct type *raw_real_type =
61ee279c 7978 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7979
14f9c5c9 7980 if (type == raw_real_type)
4c4b4cd2 7981 return val;
14f9c5c9 7982
d2e4a39e 7983 return
4c4b4cd2
PH
7984 coerce_unspec_val_to_type
7985 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7986 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7987 NULL, 1));
14f9c5c9
AS
7988 }
7989}
d2e4a39e
AS
7990
7991static struct value *
7992cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7993{
7994 LONGEST val;
7995
df407dfe 7996 if (type == value_type (arg))
14f9c5c9 7997 return arg;
df407dfe 7998 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7999 val = ada_float_to_fixed (type,
df407dfe 8000 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8001 value_as_long (arg)));
d2e4a39e 8002 else
14f9c5c9 8003 {
d2e4a39e 8004 DOUBLEST argd =
4c4b4cd2 8005 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
14f9c5c9
AS
8006 val = ada_float_to_fixed (type, argd);
8007 }
8008
8009 return value_from_longest (type, val);
8010}
8011
d2e4a39e
AS
8012static struct value *
8013cast_from_fixed_to_double (struct value *arg)
14f9c5c9 8014{
df407dfe 8015 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8016 value_as_long (arg));
14f9c5c9
AS
8017 return value_from_double (builtin_type_double, val);
8018}
8019
4c4b4cd2
PH
8020/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8021 return the converted value. */
8022
d2e4a39e
AS
8023static struct value *
8024coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8025{
df407dfe 8026 struct type *type2 = value_type (val);
14f9c5c9
AS
8027 if (type == type2)
8028 return val;
8029
61ee279c
PH
8030 type2 = ada_check_typedef (type2);
8031 type = ada_check_typedef (type);
14f9c5c9 8032
d2e4a39e
AS
8033 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8034 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8035 {
8036 val = ada_value_ind (val);
df407dfe 8037 type2 = value_type (val);
14f9c5c9
AS
8038 }
8039
d2e4a39e 8040 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8041 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8042 {
8043 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8044 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8045 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8046 error (_("Incompatible types in assignment"));
04624583 8047 deprecated_set_value_type (val, type);
14f9c5c9 8048 }
d2e4a39e 8049 return val;
14f9c5c9
AS
8050}
8051
4c4b4cd2
PH
8052static struct value *
8053ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8054{
8055 struct value *val;
8056 struct type *type1, *type2;
8057 LONGEST v, v1, v2;
8058
994b9211
AC
8059 arg1 = coerce_ref (arg1);
8060 arg2 = coerce_ref (arg2);
df407dfe
AC
8061 type1 = base_type (ada_check_typedef (value_type (arg1)));
8062 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8063
76a01679
JB
8064 if (TYPE_CODE (type1) != TYPE_CODE_INT
8065 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8066 return value_binop (arg1, arg2, op);
8067
76a01679 8068 switch (op)
4c4b4cd2
PH
8069 {
8070 case BINOP_MOD:
8071 case BINOP_DIV:
8072 case BINOP_REM:
8073 break;
8074 default:
8075 return value_binop (arg1, arg2, op);
8076 }
8077
8078 v2 = value_as_long (arg2);
8079 if (v2 == 0)
323e0a4a 8080 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8081
8082 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8083 return value_binop (arg1, arg2, op);
8084
8085 v1 = value_as_long (arg1);
8086 switch (op)
8087 {
8088 case BINOP_DIV:
8089 v = v1 / v2;
76a01679
JB
8090 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8091 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8092 break;
8093 case BINOP_REM:
8094 v = v1 % v2;
76a01679
JB
8095 if (v * v1 < 0)
8096 v -= v2;
4c4b4cd2
PH
8097 break;
8098 default:
8099 /* Should not reach this point. */
8100 v = 0;
8101 }
8102
8103 val = allocate_value (type1);
990a07ab 8104 store_unsigned_integer (value_contents_raw (val),
df407dfe 8105 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
8106 return val;
8107}
8108
8109static int
8110ada_value_equal (struct value *arg1, struct value *arg2)
8111{
df407dfe
AC
8112 if (ada_is_direct_array_type (value_type (arg1))
8113 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8114 {
f58b38bf
JB
8115 /* Automatically dereference any array reference before
8116 we attempt to perform the comparison. */
8117 arg1 = ada_coerce_ref (arg1);
8118 arg2 = ada_coerce_ref (arg2);
8119
4c4b4cd2
PH
8120 arg1 = ada_coerce_to_simple_array (arg1);
8121 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8122 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8123 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8124 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8125 /* FIXME: The following works only for types whose
76a01679
JB
8126 representations use all bits (no padding or undefined bits)
8127 and do not have user-defined equality. */
8128 return
df407dfe 8129 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8130 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8131 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8132 }
8133 return value_equal (arg1, arg2);
8134}
8135
52ce6436
PH
8136/* Total number of component associations in the aggregate starting at
8137 index PC in EXP. Assumes that index PC is the start of an
8138 OP_AGGREGATE. */
8139
8140static int
8141num_component_specs (struct expression *exp, int pc)
8142{
8143 int n, m, i;
8144 m = exp->elts[pc + 1].longconst;
8145 pc += 3;
8146 n = 0;
8147 for (i = 0; i < m; i += 1)
8148 {
8149 switch (exp->elts[pc].opcode)
8150 {
8151 default:
8152 n += 1;
8153 break;
8154 case OP_CHOICES:
8155 n += exp->elts[pc + 1].longconst;
8156 break;
8157 }
8158 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8159 }
8160 return n;
8161}
8162
8163/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8164 component of LHS (a simple array or a record), updating *POS past
8165 the expression, assuming that LHS is contained in CONTAINER. Does
8166 not modify the inferior's memory, nor does it modify LHS (unless
8167 LHS == CONTAINER). */
8168
8169static void
8170assign_component (struct value *container, struct value *lhs, LONGEST index,
8171 struct expression *exp, int *pos)
8172{
8173 struct value *mark = value_mark ();
8174 struct value *elt;
8175 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8176 {
8177 struct value *index_val = value_from_longest (builtin_type_int, index);
8178 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8179 }
8180 else
8181 {
8182 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8183 elt = ada_to_fixed_value (unwrap_value (elt));
8184 }
8185
8186 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8187 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8188 else
8189 value_assign_to_component (container, elt,
8190 ada_evaluate_subexp (NULL, exp, pos,
8191 EVAL_NORMAL));
8192
8193 value_free_to_mark (mark);
8194}
8195
8196/* Assuming that LHS represents an lvalue having a record or array
8197 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8198 of that aggregate's value to LHS, advancing *POS past the
8199 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8200 lvalue containing LHS (possibly LHS itself). Does not modify
8201 the inferior's memory, nor does it modify the contents of
8202 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8203
8204static struct value *
8205assign_aggregate (struct value *container,
8206 struct value *lhs, struct expression *exp,
8207 int *pos, enum noside noside)
8208{
8209 struct type *lhs_type;
8210 int n = exp->elts[*pos+1].longconst;
8211 LONGEST low_index, high_index;
8212 int num_specs;
8213 LONGEST *indices;
8214 int max_indices, num_indices;
8215 int is_array_aggregate;
8216 int i;
8217 struct value *mark = value_mark ();
8218
8219 *pos += 3;
8220 if (noside != EVAL_NORMAL)
8221 {
8222 int i;
8223 for (i = 0; i < n; i += 1)
8224 ada_evaluate_subexp (NULL, exp, pos, noside);
8225 return container;
8226 }
8227
8228 container = ada_coerce_ref (container);
8229 if (ada_is_direct_array_type (value_type (container)))
8230 container = ada_coerce_to_simple_array (container);
8231 lhs = ada_coerce_ref (lhs);
8232 if (!deprecated_value_modifiable (lhs))
8233 error (_("Left operand of assignment is not a modifiable lvalue."));
8234
8235 lhs_type = value_type (lhs);
8236 if (ada_is_direct_array_type (lhs_type))
8237 {
8238 lhs = ada_coerce_to_simple_array (lhs);
8239 lhs_type = value_type (lhs);
8240 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8241 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8242 is_array_aggregate = 1;
8243 }
8244 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8245 {
8246 low_index = 0;
8247 high_index = num_visible_fields (lhs_type) - 1;
8248 is_array_aggregate = 0;
8249 }
8250 else
8251 error (_("Left-hand side must be array or record."));
8252
8253 num_specs = num_component_specs (exp, *pos - 3);
8254 max_indices = 4 * num_specs + 4;
8255 indices = alloca (max_indices * sizeof (indices[0]));
8256 indices[0] = indices[1] = low_index - 1;
8257 indices[2] = indices[3] = high_index + 1;
8258 num_indices = 4;
8259
8260 for (i = 0; i < n; i += 1)
8261 {
8262 switch (exp->elts[*pos].opcode)
8263 {
8264 case OP_CHOICES:
8265 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8266 &num_indices, max_indices,
8267 low_index, high_index);
8268 break;
8269 case OP_POSITIONAL:
8270 aggregate_assign_positional (container, lhs, exp, pos, indices,
8271 &num_indices, max_indices,
8272 low_index, high_index);
8273 break;
8274 case OP_OTHERS:
8275 if (i != n-1)
8276 error (_("Misplaced 'others' clause"));
8277 aggregate_assign_others (container, lhs, exp, pos, indices,
8278 num_indices, low_index, high_index);
8279 break;
8280 default:
8281 error (_("Internal error: bad aggregate clause"));
8282 }
8283 }
8284
8285 return container;
8286}
8287
8288/* Assign into the component of LHS indexed by the OP_POSITIONAL
8289 construct at *POS, updating *POS past the construct, given that
8290 the positions are relative to lower bound LOW, where HIGH is the
8291 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8292 updating *NUM_INDICES as needed. CONTAINER is as for
8293 assign_aggregate. */
8294static void
8295aggregate_assign_positional (struct value *container,
8296 struct value *lhs, struct expression *exp,
8297 int *pos, LONGEST *indices, int *num_indices,
8298 int max_indices, LONGEST low, LONGEST high)
8299{
8300 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8301
8302 if (ind - 1 == high)
e1d5a0d2 8303 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8304 if (ind <= high)
8305 {
8306 add_component_interval (ind, ind, indices, num_indices, max_indices);
8307 *pos += 3;
8308 assign_component (container, lhs, ind, exp, pos);
8309 }
8310 else
8311 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8312}
8313
8314/* Assign into the components of LHS indexed by the OP_CHOICES
8315 construct at *POS, updating *POS past the construct, given that
8316 the allowable indices are LOW..HIGH. Record the indices assigned
8317 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8318 needed. CONTAINER is as for assign_aggregate. */
8319static void
8320aggregate_assign_from_choices (struct value *container,
8321 struct value *lhs, struct expression *exp,
8322 int *pos, LONGEST *indices, int *num_indices,
8323 int max_indices, LONGEST low, LONGEST high)
8324{
8325 int j;
8326 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8327 int choice_pos, expr_pc;
8328 int is_array = ada_is_direct_array_type (value_type (lhs));
8329
8330 choice_pos = *pos += 3;
8331
8332 for (j = 0; j < n_choices; j += 1)
8333 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8334 expr_pc = *pos;
8335 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8336
8337 for (j = 0; j < n_choices; j += 1)
8338 {
8339 LONGEST lower, upper;
8340 enum exp_opcode op = exp->elts[choice_pos].opcode;
8341 if (op == OP_DISCRETE_RANGE)
8342 {
8343 choice_pos += 1;
8344 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8345 EVAL_NORMAL));
8346 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8347 EVAL_NORMAL));
8348 }
8349 else if (is_array)
8350 {
8351 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8352 EVAL_NORMAL));
8353 upper = lower;
8354 }
8355 else
8356 {
8357 int ind;
8358 char *name;
8359 switch (op)
8360 {
8361 case OP_NAME:
8362 name = &exp->elts[choice_pos + 2].string;
8363 break;
8364 case OP_VAR_VALUE:
8365 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8366 break;
8367 default:
8368 error (_("Invalid record component association."));
8369 }
8370 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8371 ind = 0;
8372 if (! find_struct_field (name, value_type (lhs), 0,
8373 NULL, NULL, NULL, NULL, &ind))
8374 error (_("Unknown component name: %s."), name);
8375 lower = upper = ind;
8376 }
8377
8378 if (lower <= upper && (lower < low || upper > high))
8379 error (_("Index in component association out of bounds."));
8380
8381 add_component_interval (lower, upper, indices, num_indices,
8382 max_indices);
8383 while (lower <= upper)
8384 {
8385 int pos1;
8386 pos1 = expr_pc;
8387 assign_component (container, lhs, lower, exp, &pos1);
8388 lower += 1;
8389 }
8390 }
8391}
8392
8393/* Assign the value of the expression in the OP_OTHERS construct in
8394 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8395 have not been previously assigned. The index intervals already assigned
8396 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8397 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8398static void
8399aggregate_assign_others (struct value *container,
8400 struct value *lhs, struct expression *exp,
8401 int *pos, LONGEST *indices, int num_indices,
8402 LONGEST low, LONGEST high)
8403{
8404 int i;
8405 int expr_pc = *pos+1;
8406
8407 for (i = 0; i < num_indices - 2; i += 2)
8408 {
8409 LONGEST ind;
8410 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8411 {
8412 int pos;
8413 pos = expr_pc;
8414 assign_component (container, lhs, ind, exp, &pos);
8415 }
8416 }
8417 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8418}
8419
8420/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8421 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8422 modifying *SIZE as needed. It is an error if *SIZE exceeds
8423 MAX_SIZE. The resulting intervals do not overlap. */
8424static void
8425add_component_interval (LONGEST low, LONGEST high,
8426 LONGEST* indices, int *size, int max_size)
8427{
8428 int i, j;
8429 for (i = 0; i < *size; i += 2) {
8430 if (high >= indices[i] && low <= indices[i + 1])
8431 {
8432 int kh;
8433 for (kh = i + 2; kh < *size; kh += 2)
8434 if (high < indices[kh])
8435 break;
8436 if (low < indices[i])
8437 indices[i] = low;
8438 indices[i + 1] = indices[kh - 1];
8439 if (high > indices[i + 1])
8440 indices[i + 1] = high;
8441 memcpy (indices + i + 2, indices + kh, *size - kh);
8442 *size -= kh - i - 2;
8443 return;
8444 }
8445 else if (high < indices[i])
8446 break;
8447 }
8448
8449 if (*size == max_size)
8450 error (_("Internal error: miscounted aggregate components."));
8451 *size += 2;
8452 for (j = *size-1; j >= i+2; j -= 1)
8453 indices[j] = indices[j - 2];
8454 indices[i] = low;
8455 indices[i + 1] = high;
8456}
8457
6e48bd2c
JB
8458/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8459 is different. */
8460
8461static struct value *
8462ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8463{
8464 if (type == ada_check_typedef (value_type (arg2)))
8465 return arg2;
8466
8467 if (ada_is_fixed_point_type (type))
8468 return (cast_to_fixed (type, arg2));
8469
8470 if (ada_is_fixed_point_type (value_type (arg2)))
8471 return value_cast (type, cast_from_fixed_to_double (arg2));
8472
8473 return value_cast (type, arg2);
8474}
8475
52ce6436 8476static struct value *
ebf56fd3 8477ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8478 int *pos, enum noside noside)
14f9c5c9
AS
8479{
8480 enum exp_opcode op;
14f9c5c9
AS
8481 int tem, tem2, tem3;
8482 int pc;
8483 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8484 struct type *type;
52ce6436 8485 int nargs, oplen;
d2e4a39e 8486 struct value **argvec;
14f9c5c9 8487
d2e4a39e
AS
8488 pc = *pos;
8489 *pos += 1;
14f9c5c9
AS
8490 op = exp->elts[pc].opcode;
8491
d2e4a39e 8492 switch (op)
14f9c5c9
AS
8493 {
8494 default:
8495 *pos -= 1;
6e48bd2c
JB
8496 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8497 arg1 = unwrap_value (arg1);
8498
8499 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8500 then we need to perform the conversion manually, because
8501 evaluate_subexp_standard doesn't do it. This conversion is
8502 necessary in Ada because the different kinds of float/fixed
8503 types in Ada have different representations.
8504
8505 Similarly, we need to perform the conversion from OP_LONG
8506 ourselves. */
8507 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8508 arg1 = ada_value_cast (expect_type, arg1, noside);
8509
8510 return arg1;
4c4b4cd2
PH
8511
8512 case OP_STRING:
8513 {
76a01679
JB
8514 struct value *result;
8515 *pos -= 1;
8516 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8517 /* The result type will have code OP_STRING, bashed there from
8518 OP_ARRAY. Bash it back. */
df407dfe
AC
8519 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8520 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8521 return result;
4c4b4cd2 8522 }
14f9c5c9
AS
8523
8524 case UNOP_CAST:
8525 (*pos) += 2;
8526 type = exp->elts[pc + 1].type;
8527 arg1 = evaluate_subexp (type, exp, pos, noside);
8528 if (noside == EVAL_SKIP)
4c4b4cd2 8529 goto nosideret;
6e48bd2c 8530 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8531 return arg1;
8532
4c4b4cd2
PH
8533 case UNOP_QUAL:
8534 (*pos) += 2;
8535 type = exp->elts[pc + 1].type;
8536 return ada_evaluate_subexp (type, exp, pos, noside);
8537
14f9c5c9
AS
8538 case BINOP_ASSIGN:
8539 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8540 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8541 {
8542 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8543 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8544 return arg1;
8545 return ada_value_assign (arg1, arg1);
8546 }
df407dfe 8547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8548 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8549 return arg1;
df407dfe
AC
8550 if (ada_is_fixed_point_type (value_type (arg1)))
8551 arg2 = cast_to_fixed (value_type (arg1), arg2);
8552 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8553 error
323e0a4a 8554 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8555 else
df407dfe 8556 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8557 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8558
8559 case BINOP_ADD:
8560 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8561 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8562 if (noside == EVAL_SKIP)
4c4b4cd2 8563 goto nosideret;
df407dfe
AC
8564 if ((ada_is_fixed_point_type (value_type (arg1))
8565 || ada_is_fixed_point_type (value_type (arg2)))
8566 && value_type (arg1) != value_type (arg2))
323e0a4a 8567 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8568 /* Do the addition, and cast the result to the type of the first
8569 argument. We cannot cast the result to a reference type, so if
8570 ARG1 is a reference type, find its underlying type. */
8571 type = value_type (arg1);
8572 while (TYPE_CODE (type) == TYPE_CODE_REF)
8573 type = TYPE_TARGET_TYPE (type);
8574 return value_cast (type, value_add (arg1, arg2));
14f9c5c9
AS
8575
8576 case BINOP_SUB:
8577 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8578 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8579 if (noside == EVAL_SKIP)
4c4b4cd2 8580 goto nosideret;
df407dfe
AC
8581 if ((ada_is_fixed_point_type (value_type (arg1))
8582 || ada_is_fixed_point_type (value_type (arg2)))
8583 && value_type (arg1) != value_type (arg2))
323e0a4a 8584 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8585 /* Do the substraction, and cast the result to the type of the first
8586 argument. We cannot cast the result to a reference type, so if
8587 ARG1 is a reference type, find its underlying type. */
8588 type = value_type (arg1);
8589 while (TYPE_CODE (type) == TYPE_CODE_REF)
8590 type = TYPE_TARGET_TYPE (type);
8591 return value_cast (type, value_sub (arg1, arg2));
14f9c5c9
AS
8592
8593 case BINOP_MUL:
8594 case BINOP_DIV:
8595 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8596 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8597 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8598 goto nosideret;
8599 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8600 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8601 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8602 else
4c4b4cd2 8603 {
df407dfe 8604 if (ada_is_fixed_point_type (value_type (arg1)))
4c4b4cd2 8605 arg1 = cast_from_fixed_to_double (arg1);
df407dfe 8606 if (ada_is_fixed_point_type (value_type (arg2)))
4c4b4cd2
PH
8607 arg2 = cast_from_fixed_to_double (arg2);
8608 return ada_value_binop (arg1, arg2, op);
8609 }
8610
8611 case BINOP_REM:
8612 case BINOP_MOD:
8613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8614 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8615 if (noside == EVAL_SKIP)
76a01679 8616 goto nosideret;
4c4b4cd2 8617 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8618 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8619 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8620 else
76a01679 8621 return ada_value_binop (arg1, arg2, op);
14f9c5c9 8622
4c4b4cd2
PH
8623 case BINOP_EQUAL:
8624 case BINOP_NOTEQUAL:
14f9c5c9 8625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8626 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8627 if (noside == EVAL_SKIP)
76a01679 8628 goto nosideret;
4c4b4cd2 8629 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8630 tem = 0;
4c4b4cd2 8631 else
76a01679 8632 tem = ada_value_equal (arg1, arg2);
4c4b4cd2 8633 if (op == BINOP_NOTEQUAL)
76a01679 8634 tem = !tem;
4c4b4cd2
PH
8635 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8636
8637 case UNOP_NEG:
8638 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8639 if (noside == EVAL_SKIP)
8640 goto nosideret;
df407dfe
AC
8641 else if (ada_is_fixed_point_type (value_type (arg1)))
8642 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8643 else
4c4b4cd2
PH
8644 return value_neg (arg1);
8645
2330c6c6
JB
8646 case BINOP_LOGICAL_AND:
8647 case BINOP_LOGICAL_OR:
8648 case UNOP_LOGICAL_NOT:
000d5124
JB
8649 {
8650 struct value *val;
8651
8652 *pos -= 1;
8653 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8654 return value_cast (LA_BOOL_TYPE, val);
8655 }
2330c6c6
JB
8656
8657 case BINOP_BITWISE_AND:
8658 case BINOP_BITWISE_IOR:
8659 case BINOP_BITWISE_XOR:
000d5124
JB
8660 {
8661 struct value *val;
8662
8663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8664 *pos = pc;
8665 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8666
8667 return value_cast (value_type (arg1), val);
8668 }
2330c6c6 8669
14f9c5c9
AS
8670 case OP_VAR_VALUE:
8671 *pos -= 1;
6799def4
JB
8672
8673 /* Tagged types are a little special in the fact that the real type
8674 is dynamic and can only be determined by inspecting the object
8675 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8676 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8677 if (noside == EVAL_AVOID_SIDE_EFFECTS
8678 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8679 noside = EVAL_NORMAL;
8680
14f9c5c9 8681 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8682 {
8683 *pos += 4;
8684 goto nosideret;
8685 }
8686 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8687 /* Only encountered when an unresolved symbol occurs in a
8688 context other than a function call, in which case, it is
52ce6436 8689 invalid. */
323e0a4a 8690 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8691 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8692 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
8693 {
8694 *pos += 4;
8695 return value_zero
8696 (to_static_fixed_type
8697 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8698 not_lval);
8699 }
d2e4a39e 8700 else
4c4b4cd2
PH
8701 {
8702 arg1 =
8703 unwrap_value (evaluate_subexp_standard
8704 (expect_type, exp, pos, noside));
8705 return ada_to_fixed_value (arg1);
8706 }
8707
8708 case OP_FUNCALL:
8709 (*pos) += 2;
8710
8711 /* Allocate arg vector, including space for the function to be
8712 called in argvec[0] and a terminating NULL. */
8713 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8714 argvec =
8715 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8716
8717 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8718 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8719 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8720 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8721 else
8722 {
8723 for (tem = 0; tem <= nargs; tem += 1)
8724 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8725 argvec[tem] = 0;
8726
8727 if (noside == EVAL_SKIP)
8728 goto nosideret;
8729 }
8730
df407dfe 8731 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8732 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8733 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8734 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8735 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8736 argvec[0] = value_addr (argvec[0]);
8737
df407dfe 8738 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8739 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8740 {
61ee279c 8741 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8742 {
8743 case TYPE_CODE_FUNC:
61ee279c 8744 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8745 break;
8746 case TYPE_CODE_ARRAY:
8747 break;
8748 case TYPE_CODE_STRUCT:
8749 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8750 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8751 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8752 break;
8753 default:
323e0a4a 8754 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8755 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8756 break;
8757 }
8758 }
8759
8760 switch (TYPE_CODE (type))
8761 {
8762 case TYPE_CODE_FUNC:
8763 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8764 return allocate_value (TYPE_TARGET_TYPE (type));
8765 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8766 case TYPE_CODE_STRUCT:
8767 {
8768 int arity;
8769
4c4b4cd2
PH
8770 arity = ada_array_arity (type);
8771 type = ada_array_element_type (type, nargs);
8772 if (type == NULL)
323e0a4a 8773 error (_("cannot subscript or call a record"));
4c4b4cd2 8774 if (arity != nargs)
323e0a4a 8775 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8776 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8777 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8778 return
8779 unwrap_value (ada_value_subscript
8780 (argvec[0], nargs, argvec + 1));
8781 }
8782 case TYPE_CODE_ARRAY:
8783 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8784 {
8785 type = ada_array_element_type (type, nargs);
8786 if (type == NULL)
323e0a4a 8787 error (_("element type of array unknown"));
4c4b4cd2 8788 else
0a07e705 8789 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8790 }
8791 return
8792 unwrap_value (ada_value_subscript
8793 (ada_coerce_to_simple_array (argvec[0]),
8794 nargs, argvec + 1));
8795 case TYPE_CODE_PTR: /* Pointer to array */
8796 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8798 {
8799 type = ada_array_element_type (type, nargs);
8800 if (type == NULL)
323e0a4a 8801 error (_("element type of array unknown"));
4c4b4cd2 8802 else
0a07e705 8803 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8804 }
8805 return
8806 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8807 nargs, argvec + 1));
8808
8809 default:
e1d5a0d2
PH
8810 error (_("Attempt to index or call something other than an "
8811 "array or function"));
4c4b4cd2
PH
8812 }
8813
8814 case TERNOP_SLICE:
8815 {
8816 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8817 struct value *low_bound_val =
8818 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8819 struct value *high_bound_val =
8820 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8821 LONGEST low_bound;
8822 LONGEST high_bound;
994b9211
AC
8823 low_bound_val = coerce_ref (low_bound_val);
8824 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8825 low_bound = pos_atr (low_bound_val);
8826 high_bound = pos_atr (high_bound_val);
963a6417 8827
4c4b4cd2
PH
8828 if (noside == EVAL_SKIP)
8829 goto nosideret;
8830
4c4b4cd2
PH
8831 /* If this is a reference to an aligner type, then remove all
8832 the aligners. */
df407dfe
AC
8833 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8834 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8835 TYPE_TARGET_TYPE (value_type (array)) =
8836 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8837
df407dfe 8838 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8839 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8840
8841 /* If this is a reference to an array or an array lvalue,
8842 convert to a pointer. */
df407dfe
AC
8843 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8844 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8845 && VALUE_LVAL (array) == lval_memory))
8846 array = value_addr (array);
8847
1265e4aa 8848 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8849 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8850 (value_type (array))))
0b5d8877 8851 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8852
8853 array = ada_coerce_to_simple_array_ptr (array);
8854
714e53ab
PH
8855 /* If we have more than one level of pointer indirection,
8856 dereference the value until we get only one level. */
df407dfe
AC
8857 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8858 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8859 == TYPE_CODE_PTR))
8860 array = value_ind (array);
8861
8862 /* Make sure we really do have an array type before going further,
8863 to avoid a SEGV when trying to get the index type or the target
8864 type later down the road if the debug info generated by
8865 the compiler is incorrect or incomplete. */
df407dfe 8866 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8867 error (_("cannot take slice of non-array"));
714e53ab 8868
df407dfe 8869 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8870 {
0b5d8877 8871 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8872 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8873 low_bound);
8874 else
8875 {
8876 struct type *arr_type0 =
df407dfe 8877 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8878 NULL, 1);
0b5d8877 8879 return ada_value_slice_ptr (array, arr_type0,
529cad9c
PH
8880 longest_to_int (low_bound),
8881 longest_to_int (high_bound));
4c4b4cd2
PH
8882 }
8883 }
8884 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8885 return array;
8886 else if (high_bound < low_bound)
df407dfe 8887 return empty_array (value_type (array), low_bound);
4c4b4cd2 8888 else
529cad9c
PH
8889 return ada_value_slice (array, longest_to_int (low_bound),
8890 longest_to_int (high_bound));
4c4b4cd2 8891 }
14f9c5c9 8892
4c4b4cd2
PH
8893 case UNOP_IN_RANGE:
8894 (*pos) += 2;
8895 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8896 type = exp->elts[pc + 1].type;
14f9c5c9 8897
14f9c5c9 8898 if (noside == EVAL_SKIP)
4c4b4cd2 8899 goto nosideret;
14f9c5c9 8900
4c4b4cd2
PH
8901 switch (TYPE_CODE (type))
8902 {
8903 default:
e1d5a0d2
PH
8904 lim_warning (_("Membership test incompletely implemented; "
8905 "always returns true"));
4c4b4cd2
PH
8906 return value_from_longest (builtin_type_int, (LONGEST) 1);
8907
8908 case TYPE_CODE_RANGE:
76a01679 8909 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
4c4b4cd2
PH
8910 arg3 = value_from_longest (builtin_type_int,
8911 TYPE_HIGH_BOUND (type));
8912 return
8913 value_from_longest (builtin_type_int,
8914 (value_less (arg1, arg3)
8915 || value_equal (arg1, arg3))
8916 && (value_less (arg2, arg1)
8917 || value_equal (arg2, arg1)));
8918 }
8919
8920 case BINOP_IN_BOUNDS:
14f9c5c9 8921 (*pos) += 2;
4c4b4cd2
PH
8922 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8923 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8924
4c4b4cd2
PH
8925 if (noside == EVAL_SKIP)
8926 goto nosideret;
14f9c5c9 8927
4c4b4cd2
PH
8928 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8929 return value_zero (builtin_type_int, not_lval);
14f9c5c9 8930
4c4b4cd2 8931 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8932
df407dfe 8933 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8934 error (_("invalid dimension number to 'range"));
14f9c5c9 8935
4c4b4cd2
PH
8936 arg3 = ada_array_bound (arg2, tem, 1);
8937 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8938
4c4b4cd2
PH
8939 return
8940 value_from_longest (builtin_type_int,
8941 (value_less (arg1, arg3)
8942 || value_equal (arg1, arg3))
8943 && (value_less (arg2, arg1)
8944 || value_equal (arg2, arg1)));
8945
8946 case TERNOP_IN_RANGE:
8947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8948 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8949 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8950
8951 if (noside == EVAL_SKIP)
8952 goto nosideret;
8953
8954 return
8955 value_from_longest (builtin_type_int,
8956 (value_less (arg1, arg3)
8957 || value_equal (arg1, arg3))
8958 && (value_less (arg2, arg1)
8959 || value_equal (arg2, arg1)));
8960
8961 case OP_ATR_FIRST:
8962 case OP_ATR_LAST:
8963 case OP_ATR_LENGTH:
8964 {
76a01679
JB
8965 struct type *type_arg;
8966 if (exp->elts[*pos].opcode == OP_TYPE)
8967 {
8968 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8969 arg1 = NULL;
8970 type_arg = exp->elts[pc + 2].type;
8971 }
8972 else
8973 {
8974 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8975 type_arg = NULL;
8976 }
8977
8978 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8979 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8980 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8981 *pos += 4;
8982
8983 if (noside == EVAL_SKIP)
8984 goto nosideret;
8985
8986 if (type_arg == NULL)
8987 {
8988 arg1 = ada_coerce_ref (arg1);
8989
df407dfe 8990 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8991 arg1 = ada_coerce_to_simple_array (arg1);
8992
df407dfe 8993 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8994 error (_("invalid dimension number to '%s"),
76a01679
JB
8995 ada_attribute_name (op));
8996
8997 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8998 {
df407dfe 8999 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
9000 if (type == NULL)
9001 error
323e0a4a 9002 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9003 return allocate_value (type);
9004 }
9005
9006 switch (op)
9007 {
9008 default: /* Should never happen. */
323e0a4a 9009 error (_("unexpected attribute encountered"));
76a01679
JB
9010 case OP_ATR_FIRST:
9011 return ada_array_bound (arg1, tem, 0);
9012 case OP_ATR_LAST:
9013 return ada_array_bound (arg1, tem, 1);
9014 case OP_ATR_LENGTH:
9015 return ada_array_length (arg1, tem);
9016 }
9017 }
9018 else if (discrete_type_p (type_arg))
9019 {
9020 struct type *range_type;
9021 char *name = ada_type_name (type_arg);
9022 range_type = NULL;
9023 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9024 range_type =
9025 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9026 if (range_type == NULL)
9027 range_type = type_arg;
9028 switch (op)
9029 {
9030 default:
323e0a4a 9031 error (_("unexpected attribute encountered"));
76a01679
JB
9032 case OP_ATR_FIRST:
9033 return discrete_type_low_bound (range_type);
9034 case OP_ATR_LAST:
9035 return discrete_type_high_bound (range_type);
9036 case OP_ATR_LENGTH:
323e0a4a 9037 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9038 }
9039 }
9040 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9041 error (_("unimplemented type attribute"));
76a01679
JB
9042 else
9043 {
9044 LONGEST low, high;
9045
9046 if (ada_is_packed_array_type (type_arg))
9047 type_arg = decode_packed_array_type (type_arg);
9048
9049 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 9050 error (_("invalid dimension number to '%s"),
76a01679
JB
9051 ada_attribute_name (op));
9052
9053 type = ada_index_type (type_arg, tem);
9054 if (type == NULL)
9055 error
323e0a4a 9056 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9058 return allocate_value (type);
9059
9060 switch (op)
9061 {
9062 default:
323e0a4a 9063 error (_("unexpected attribute encountered"));
76a01679
JB
9064 case OP_ATR_FIRST:
9065 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9066 return value_from_longest (type, low);
9067 case OP_ATR_LAST:
9068 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9069 return value_from_longest (type, high);
9070 case OP_ATR_LENGTH:
9071 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9072 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9073 return value_from_longest (type, high - low + 1);
9074 }
9075 }
14f9c5c9
AS
9076 }
9077
4c4b4cd2
PH
9078 case OP_ATR_TAG:
9079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9080 if (noside == EVAL_SKIP)
76a01679 9081 goto nosideret;
4c4b4cd2
PH
9082
9083 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9084 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9085
9086 return ada_value_tag (arg1);
9087
9088 case OP_ATR_MIN:
9089 case OP_ATR_MAX:
9090 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9092 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9093 if (noside == EVAL_SKIP)
76a01679 9094 goto nosideret;
d2e4a39e 9095 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9096 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9097 else
76a01679
JB
9098 return value_binop (arg1, arg2,
9099 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
14f9c5c9 9100
4c4b4cd2
PH
9101 case OP_ATR_MODULUS:
9102 {
76a01679
JB
9103 struct type *type_arg = exp->elts[pc + 2].type;
9104 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9105
76a01679
JB
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
4c4b4cd2 9108
76a01679 9109 if (!ada_is_modular_type (type_arg))
323e0a4a 9110 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9111
76a01679
JB
9112 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9113 ada_modulus (type_arg));
4c4b4cd2
PH
9114 }
9115
9116
9117 case OP_ATR_POS:
9118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9120 if (noside == EVAL_SKIP)
76a01679 9121 goto nosideret;
4c4b4cd2 9122 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 9123 return value_zero (builtin_type_int, not_lval);
14f9c5c9 9124 else
76a01679 9125 return value_pos_atr (arg1);
14f9c5c9 9126
4c4b4cd2
PH
9127 case OP_ATR_SIZE:
9128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9129 if (noside == EVAL_SKIP)
76a01679 9130 goto nosideret;
4c4b4cd2 9131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
72d5681a 9132 return value_zero (builtin_type_int, not_lval);
4c4b4cd2 9133 else
72d5681a 9134 return value_from_longest (builtin_type_int,
76a01679 9135 TARGET_CHAR_BIT
df407dfe 9136 * TYPE_LENGTH (value_type (arg1)));
4c4b4cd2
PH
9137
9138 case OP_ATR_VAL:
9139 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9141 type = exp->elts[pc + 2].type;
14f9c5c9 9142 if (noside == EVAL_SKIP)
76a01679 9143 goto nosideret;
4c4b4cd2 9144 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9145 return value_zero (type, not_lval);
4c4b4cd2 9146 else
76a01679 9147 return value_val_atr (type, arg1);
4c4b4cd2
PH
9148
9149 case BINOP_EXP:
9150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9152 if (noside == EVAL_SKIP)
9153 goto nosideret;
9154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9155 return value_zero (value_type (arg1), not_lval);
4c4b4cd2
PH
9156 else
9157 return value_binop (arg1, arg2, op);
9158
9159 case UNOP_PLUS:
9160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9161 if (noside == EVAL_SKIP)
9162 goto nosideret;
9163 else
9164 return arg1;
9165
9166 case UNOP_ABS:
9167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9168 if (noside == EVAL_SKIP)
9169 goto nosideret;
df407dfe 9170 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9171 return value_neg (arg1);
14f9c5c9 9172 else
4c4b4cd2 9173 return arg1;
14f9c5c9
AS
9174
9175 case UNOP_IND:
9176 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
61ee279c 9177 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
14f9c5c9
AS
9178 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9179 if (noside == EVAL_SKIP)
4c4b4cd2 9180 goto nosideret;
df407dfe 9181 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9182 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9183 {
9184 if (ada_is_array_descriptor_type (type))
9185 /* GDB allows dereferencing GNAT array descriptors. */
9186 {
9187 struct type *arrType = ada_type_of_array (arg1, 0);
9188 if (arrType == NULL)
323e0a4a 9189 error (_("Attempt to dereference null array pointer."));
00a4c844 9190 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9191 }
9192 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9193 || TYPE_CODE (type) == TYPE_CODE_REF
9194 /* In C you can dereference an array to get the 1st elt. */
9195 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9196 {
9197 type = to_static_fixed_type
9198 (ada_aligned_type
9199 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9200 check_size (type);
9201 return value_zero (type, lval_memory);
9202 }
4c4b4cd2
PH
9203 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9204 /* GDB allows dereferencing an int. */
9205 return value_zero (builtin_type_int, lval_memory);
9206 else
323e0a4a 9207 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9208 }
76a01679 9209 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9210 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9211
4c4b4cd2
PH
9212 if (ada_is_array_descriptor_type (type))
9213 /* GDB allows dereferencing GNAT array descriptors. */
9214 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9215 else
4c4b4cd2 9216 return ada_value_ind (arg1);
14f9c5c9
AS
9217
9218 case STRUCTOP_STRUCT:
9219 tem = longest_to_int (exp->elts[pc + 1].longconst);
9220 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9221 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9222 if (noside == EVAL_SKIP)
4c4b4cd2 9223 goto nosideret;
14f9c5c9 9224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9225 {
df407dfe 9226 struct type *type1 = value_type (arg1);
76a01679
JB
9227 if (ada_is_tagged_type (type1, 1))
9228 {
9229 type = ada_lookup_struct_elt_type (type1,
9230 &exp->elts[pc + 2].string,
9231 1, 1, NULL);
9232 if (type == NULL)
9233 /* In this case, we assume that the field COULD exist
9234 in some extension of the type. Return an object of
9235 "type" void, which will match any formal
9236 (see ada_type_match). */
9237 return value_zero (builtin_type_void, lval_memory);
9238 }
9239 else
9240 type =
9241 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9242 0, NULL);
9243
9244 return value_zero (ada_aligned_type (type), lval_memory);
9245 }
14f9c5c9 9246 else
76a01679
JB
9247 return
9248 ada_to_fixed_value (unwrap_value
9249 (ada_value_struct_elt
03ee6b2e 9250 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9251 case OP_TYPE:
4c4b4cd2
PH
9252 /* The value is not supposed to be used. This is here to make it
9253 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9254 (*pos) += 2;
9255 if (noside == EVAL_SKIP)
4c4b4cd2 9256 goto nosideret;
14f9c5c9 9257 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9258 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9259 else
323e0a4a 9260 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9261
9262 case OP_AGGREGATE:
9263 case OP_CHOICES:
9264 case OP_OTHERS:
9265 case OP_DISCRETE_RANGE:
9266 case OP_POSITIONAL:
9267 case OP_NAME:
9268 if (noside == EVAL_NORMAL)
9269 switch (op)
9270 {
9271 case OP_NAME:
9272 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9273 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9274 case OP_AGGREGATE:
9275 error (_("Aggregates only allowed on the right of an assignment"));
9276 default:
e1d5a0d2 9277 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9278 }
9279
9280 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9281 *pos += oplen - 1;
9282 for (tem = 0; tem < nargs; tem += 1)
9283 ada_evaluate_subexp (NULL, exp, pos, noside);
9284 goto nosideret;
14f9c5c9
AS
9285 }
9286
9287nosideret:
9288 return value_from_longest (builtin_type_long, (LONGEST) 1);
9289}
14f9c5c9 9290\f
d2e4a39e 9291
4c4b4cd2 9292 /* Fixed point */
14f9c5c9
AS
9293
9294/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9295 type name that encodes the 'small and 'delta information.
4c4b4cd2 9296 Otherwise, return NULL. */
14f9c5c9 9297
d2e4a39e 9298static const char *
ebf56fd3 9299fixed_type_info (struct type *type)
14f9c5c9 9300{
d2e4a39e 9301 const char *name = ada_type_name (type);
14f9c5c9
AS
9302 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9303
d2e4a39e
AS
9304 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9305 {
14f9c5c9
AS
9306 const char *tail = strstr (name, "___XF_");
9307 if (tail == NULL)
4c4b4cd2 9308 return NULL;
d2e4a39e 9309 else
4c4b4cd2 9310 return tail + 5;
14f9c5c9
AS
9311 }
9312 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9313 return fixed_type_info (TYPE_TARGET_TYPE (type));
9314 else
9315 return NULL;
9316}
9317
4c4b4cd2 9318/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9319
9320int
ebf56fd3 9321ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9322{
9323 return fixed_type_info (type) != NULL;
9324}
9325
4c4b4cd2
PH
9326/* Return non-zero iff TYPE represents a System.Address type. */
9327
9328int
9329ada_is_system_address_type (struct type *type)
9330{
9331 return (TYPE_NAME (type)
9332 && strcmp (TYPE_NAME (type), "system__address") == 0);
9333}
9334
14f9c5c9
AS
9335/* Assuming that TYPE is the representation of an Ada fixed-point
9336 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9337 delta cannot be determined. */
14f9c5c9
AS
9338
9339DOUBLEST
ebf56fd3 9340ada_delta (struct type *type)
14f9c5c9
AS
9341{
9342 const char *encoding = fixed_type_info (type);
9343 long num, den;
9344
9345 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9346 return -1.0;
d2e4a39e 9347 else
14f9c5c9
AS
9348 return (DOUBLEST) num / (DOUBLEST) den;
9349}
9350
9351/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9352 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9353
9354static DOUBLEST
ebf56fd3 9355scaling_factor (struct type *type)
14f9c5c9
AS
9356{
9357 const char *encoding = fixed_type_info (type);
9358 unsigned long num0, den0, num1, den1;
9359 int n;
d2e4a39e 9360
14f9c5c9
AS
9361 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9362
9363 if (n < 2)
9364 return 1.0;
9365 else if (n == 4)
9366 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9367 else
14f9c5c9
AS
9368 return (DOUBLEST) num0 / (DOUBLEST) den0;
9369}
9370
9371
9372/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9373 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9374
9375DOUBLEST
ebf56fd3 9376ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9377{
d2e4a39e 9378 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9379}
9380
4c4b4cd2
PH
9381/* The representation of a fixed-point value of type TYPE
9382 corresponding to the value X. */
14f9c5c9
AS
9383
9384LONGEST
ebf56fd3 9385ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9386{
9387 return (LONGEST) (x / scaling_factor (type) + 0.5);
9388}
9389
9390
4c4b4cd2 9391 /* VAX floating formats */
14f9c5c9
AS
9392
9393/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9394 types. */
9395
14f9c5c9 9396int
d2e4a39e 9397ada_is_vax_floating_type (struct type *type)
14f9c5c9 9398{
d2e4a39e 9399 int name_len =
14f9c5c9 9400 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9401 return
14f9c5c9 9402 name_len > 6
d2e4a39e 9403 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9404 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9405 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9406}
9407
9408/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9409 ada_is_vax_floating_point. */
9410
14f9c5c9 9411int
d2e4a39e 9412ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9413{
d2e4a39e 9414 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9415}
9416
4c4b4cd2 9417/* A value representing the special debugging function that outputs
14f9c5c9 9418 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9419 ada_is_vax_floating_type (TYPE). */
9420
d2e4a39e
AS
9421struct value *
9422ada_vax_float_print_function (struct type *type)
9423{
9424 switch (ada_vax_float_type_suffix (type))
9425 {
9426 case 'F':
9427 return get_var_value ("DEBUG_STRING_F", 0);
9428 case 'D':
9429 return get_var_value ("DEBUG_STRING_D", 0);
9430 case 'G':
9431 return get_var_value ("DEBUG_STRING_G", 0);
9432 default:
323e0a4a 9433 error (_("invalid VAX floating-point type"));
d2e4a39e 9434 }
14f9c5c9 9435}
14f9c5c9 9436\f
d2e4a39e 9437
4c4b4cd2 9438 /* Range types */
14f9c5c9
AS
9439
9440/* Scan STR beginning at position K for a discriminant name, and
9441 return the value of that discriminant field of DVAL in *PX. If
9442 PNEW_K is not null, put the position of the character beyond the
9443 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9444 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9445
9446static int
07d8f827 9447scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9448 int *pnew_k)
14f9c5c9
AS
9449{
9450 static char *bound_buffer = NULL;
9451 static size_t bound_buffer_len = 0;
9452 char *bound;
9453 char *pend;
d2e4a39e 9454 struct value *bound_val;
14f9c5c9
AS
9455
9456 if (dval == NULL || str == NULL || str[k] == '\0')
9457 return 0;
9458
d2e4a39e 9459 pend = strstr (str + k, "__");
14f9c5c9
AS
9460 if (pend == NULL)
9461 {
d2e4a39e 9462 bound = str + k;
14f9c5c9
AS
9463 k += strlen (bound);
9464 }
d2e4a39e 9465 else
14f9c5c9 9466 {
d2e4a39e 9467 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9468 bound = bound_buffer;
d2e4a39e
AS
9469 strncpy (bound_buffer, str + k, pend - (str + k));
9470 bound[pend - (str + k)] = '\0';
9471 k = pend - str;
14f9c5c9 9472 }
d2e4a39e 9473
df407dfe 9474 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9475 if (bound_val == NULL)
9476 return 0;
9477
9478 *px = value_as_long (bound_val);
9479 if (pnew_k != NULL)
9480 *pnew_k = k;
9481 return 1;
9482}
9483
9484/* Value of variable named NAME in the current environment. If
9485 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9486 otherwise causes an error with message ERR_MSG. */
9487
d2e4a39e
AS
9488static struct value *
9489get_var_value (char *name, char *err_msg)
14f9c5c9 9490{
4c4b4cd2 9491 struct ada_symbol_info *syms;
14f9c5c9
AS
9492 int nsyms;
9493
4c4b4cd2
PH
9494 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9495 &syms);
14f9c5c9
AS
9496
9497 if (nsyms != 1)
9498 {
9499 if (err_msg == NULL)
4c4b4cd2 9500 return 0;
14f9c5c9 9501 else
8a3fe4f8 9502 error (("%s"), err_msg);
14f9c5c9
AS
9503 }
9504
4c4b4cd2 9505 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9506}
d2e4a39e 9507
14f9c5c9 9508/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9509 no such variable found, returns 0, and sets *FLAG to 0. If
9510 successful, sets *FLAG to 1. */
9511
14f9c5c9 9512LONGEST
4c4b4cd2 9513get_int_var_value (char *name, int *flag)
14f9c5c9 9514{
4c4b4cd2 9515 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9516
14f9c5c9
AS
9517 if (var_val == 0)
9518 {
9519 if (flag != NULL)
4c4b4cd2 9520 *flag = 0;
14f9c5c9
AS
9521 return 0;
9522 }
9523 else
9524 {
9525 if (flag != NULL)
4c4b4cd2 9526 *flag = 1;
14f9c5c9
AS
9527 return value_as_long (var_val);
9528 }
9529}
d2e4a39e 9530
14f9c5c9
AS
9531
9532/* Return a range type whose base type is that of the range type named
9533 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9534 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9535 Extract discriminant values, if needed, from DVAL. If a new type
9536 must be created, allocate in OBJFILE's space. The bounds
9537 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9538 the named range type. */
14f9c5c9 9539
d2e4a39e 9540static struct type *
ebf56fd3 9541to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9542{
9543 struct type *raw_type = ada_find_any_type (name);
9544 struct type *base_type;
d2e4a39e 9545 char *subtype_info;
14f9c5c9
AS
9546
9547 if (raw_type == NULL)
9548 base_type = builtin_type_int;
9549 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9550 base_type = TYPE_TARGET_TYPE (raw_type);
9551 else
9552 base_type = raw_type;
9553
9554 subtype_info = strstr (name, "___XD");
9555 if (subtype_info == NULL)
9556 return raw_type;
9557 else
9558 {
9559 static char *name_buf = NULL;
9560 static size_t name_len = 0;
9561 int prefix_len = subtype_info - name;
9562 LONGEST L, U;
9563 struct type *type;
9564 char *bounds_str;
9565 int n;
9566
9567 GROW_VECT (name_buf, name_len, prefix_len + 5);
9568 strncpy (name_buf, name, prefix_len);
9569 name_buf[prefix_len] = '\0';
9570
9571 subtype_info += 5;
9572 bounds_str = strchr (subtype_info, '_');
9573 n = 1;
9574
d2e4a39e 9575 if (*subtype_info == 'L')
4c4b4cd2
PH
9576 {
9577 if (!ada_scan_number (bounds_str, n, &L, &n)
9578 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9579 return raw_type;
9580 if (bounds_str[n] == '_')
9581 n += 2;
9582 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9583 n += 1;
9584 subtype_info += 1;
9585 }
d2e4a39e 9586 else
4c4b4cd2
PH
9587 {
9588 int ok;
9589 strcpy (name_buf + prefix_len, "___L");
9590 L = get_int_var_value (name_buf, &ok);
9591 if (!ok)
9592 {
323e0a4a 9593 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9594 L = 1;
9595 }
9596 }
14f9c5c9 9597
d2e4a39e 9598 if (*subtype_info == 'U')
4c4b4cd2
PH
9599 {
9600 if (!ada_scan_number (bounds_str, n, &U, &n)
9601 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9602 return raw_type;
9603 }
d2e4a39e 9604 else
4c4b4cd2
PH
9605 {
9606 int ok;
9607 strcpy (name_buf + prefix_len, "___U");
9608 U = get_int_var_value (name_buf, &ok);
9609 if (!ok)
9610 {
323e0a4a 9611 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9612 U = L;
9613 }
9614 }
14f9c5c9 9615
d2e4a39e 9616 if (objfile == NULL)
4c4b4cd2 9617 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9618 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9619 TYPE_NAME (type) = name;
14f9c5c9
AS
9620 return type;
9621 }
9622}
9623
4c4b4cd2
PH
9624/* True iff NAME is the name of a range type. */
9625
14f9c5c9 9626int
d2e4a39e 9627ada_is_range_type_name (const char *name)
14f9c5c9
AS
9628{
9629 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9630}
14f9c5c9 9631\f
d2e4a39e 9632
4c4b4cd2
PH
9633 /* Modular types */
9634
9635/* True iff TYPE is an Ada modular type. */
14f9c5c9 9636
14f9c5c9 9637int
d2e4a39e 9638ada_is_modular_type (struct type *type)
14f9c5c9 9639{
4c4b4cd2 9640 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9641
9642 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
4c4b4cd2
PH
9643 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
9644 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9645}
9646
4c4b4cd2
PH
9647/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9648
61ee279c 9649ULONGEST
d2e4a39e 9650ada_modulus (struct type * type)
14f9c5c9 9651{
61ee279c 9652 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9653}
d2e4a39e 9654\f
f7f9143b
JB
9655
9656/* Ada exception catchpoint support:
9657 ---------------------------------
9658
9659 We support 3 kinds of exception catchpoints:
9660 . catchpoints on Ada exceptions
9661 . catchpoints on unhandled Ada exceptions
9662 . catchpoints on failed assertions
9663
9664 Exceptions raised during failed assertions, or unhandled exceptions
9665 could perfectly be caught with the general catchpoint on Ada exceptions.
9666 However, we can easily differentiate these two special cases, and having
9667 the option to distinguish these two cases from the rest can be useful
9668 to zero-in on certain situations.
9669
9670 Exception catchpoints are a specialized form of breakpoint,
9671 since they rely on inserting breakpoints inside known routines
9672 of the GNAT runtime. The implementation therefore uses a standard
9673 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9674 of breakpoint_ops.
9675
0259addd
JB
9676 Support in the runtime for exception catchpoints have been changed
9677 a few times already, and these changes affect the implementation
9678 of these catchpoints. In order to be able to support several
9679 variants of the runtime, we use a sniffer that will determine
9680 the runtime variant used by the program being debugged.
9681
f7f9143b
JB
9682 At this time, we do not support the use of conditions on Ada exception
9683 catchpoints. The COND and COND_STRING fields are therefore set
9684 to NULL (most of the time, see below).
9685
9686 Conditions where EXP_STRING, COND, and COND_STRING are used:
9687
9688 When a user specifies the name of a specific exception in the case
9689 of catchpoints on Ada exceptions, we store the name of that exception
9690 in the EXP_STRING. We then translate this request into an actual
9691 condition stored in COND_STRING, and then parse it into an expression
9692 stored in COND. */
9693
9694/* The different types of catchpoints that we introduced for catching
9695 Ada exceptions. */
9696
9697enum exception_catchpoint_kind
9698{
9699 ex_catch_exception,
9700 ex_catch_exception_unhandled,
9701 ex_catch_assert
9702};
9703
0259addd
JB
9704typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9705
9706/* A structure that describes how to support exception catchpoints
9707 for a given executable. */
9708
9709struct exception_support_info
9710{
9711 /* The name of the symbol to break on in order to insert
9712 a catchpoint on exceptions. */
9713 const char *catch_exception_sym;
9714
9715 /* The name of the symbol to break on in order to insert
9716 a catchpoint on unhandled exceptions. */
9717 const char *catch_exception_unhandled_sym;
9718
9719 /* The name of the symbol to break on in order to insert
9720 a catchpoint on failed assertions. */
9721 const char *catch_assert_sym;
9722
9723 /* Assuming that the inferior just triggered an unhandled exception
9724 catchpoint, this function is responsible for returning the address
9725 in inferior memory where the name of that exception is stored.
9726 Return zero if the address could not be computed. */
9727 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9728};
9729
9730static CORE_ADDR ada_unhandled_exception_name_addr (void);
9731static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9732
9733/* The following exception support info structure describes how to
9734 implement exception catchpoints with the latest version of the
9735 Ada runtime (as of 2007-03-06). */
9736
9737static const struct exception_support_info default_exception_support_info =
9738{
9739 "__gnat_debug_raise_exception", /* catch_exception_sym */
9740 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9741 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9742 ada_unhandled_exception_name_addr
9743};
9744
9745/* The following exception support info structure describes how to
9746 implement exception catchpoints with a slightly older version
9747 of the Ada runtime. */
9748
9749static const struct exception_support_info exception_support_info_fallback =
9750{
9751 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9752 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9753 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9754 ada_unhandled_exception_name_addr_from_raise
9755};
9756
9757/* For each executable, we sniff which exception info structure to use
9758 and cache it in the following global variable. */
9759
9760static const struct exception_support_info *exception_info = NULL;
9761
9762/* Inspect the Ada runtime and determine which exception info structure
9763 should be used to provide support for exception catchpoints.
9764
9765 This function will always set exception_info, or raise an error. */
9766
9767static void
9768ada_exception_support_info_sniffer (void)
9769{
9770 struct symbol *sym;
9771
9772 /* If the exception info is already known, then no need to recompute it. */
9773 if (exception_info != NULL)
9774 return;
9775
9776 /* Check the latest (default) exception support info. */
9777 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9778 NULL, VAR_DOMAIN);
9779 if (sym != NULL)
9780 {
9781 exception_info = &default_exception_support_info;
9782 return;
9783 }
9784
9785 /* Try our fallback exception suport info. */
9786 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9787 NULL, VAR_DOMAIN);
9788 if (sym != NULL)
9789 {
9790 exception_info = &exception_support_info_fallback;
9791 return;
9792 }
9793
9794 /* Sometimes, it is normal for us to not be able to find the routine
9795 we are looking for. This happens when the program is linked with
9796 the shared version of the GNAT runtime, and the program has not been
9797 started yet. Inform the user of these two possible causes if
9798 applicable. */
9799
9800 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9801 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9802
9803 /* If the symbol does not exist, then check that the program is
9804 already started, to make sure that shared libraries have been
9805 loaded. If it is not started, this may mean that the symbol is
9806 in a shared library. */
9807
9808 if (ptid_get_pid (inferior_ptid) == 0)
9809 error (_("Unable to insert catchpoint. Try to start the program first."));
9810
9811 /* At this point, we know that we are debugging an Ada program and
9812 that the inferior has been started, but we still are not able to
9813 find the run-time symbols. That can mean that we are in
9814 configurable run time mode, or that a-except as been optimized
9815 out by the linker... In any case, at this point it is not worth
9816 supporting this feature. */
9817
9818 error (_("Cannot insert catchpoints in this configuration."));
9819}
9820
9821/* An observer of "executable_changed" events.
9822 Its role is to clear certain cached values that need to be recomputed
9823 each time a new executable is loaded by GDB. */
9824
9825static void
9826ada_executable_changed_observer (void *unused)
9827{
9828 /* If the executable changed, then it is possible that the Ada runtime
9829 is different. So we need to invalidate the exception support info
9830 cache. */
9831 exception_info = NULL;
9832}
9833
f7f9143b
JB
9834/* Return the name of the function at PC, NULL if could not find it.
9835 This function only checks the debugging information, not the symbol
9836 table. */
9837
9838static char *
9839function_name_from_pc (CORE_ADDR pc)
9840{
9841 char *func_name;
9842
9843 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9844 return NULL;
9845
9846 return func_name;
9847}
9848
9849/* True iff FRAME is very likely to be that of a function that is
9850 part of the runtime system. This is all very heuristic, but is
9851 intended to be used as advice as to what frames are uninteresting
9852 to most users. */
9853
9854static int
9855is_known_support_routine (struct frame_info *frame)
9856{
4ed6b5be 9857 struct symtab_and_line sal;
f7f9143b
JB
9858 char *func_name;
9859 int i;
f7f9143b 9860
4ed6b5be
JB
9861 /* If this code does not have any debugging information (no symtab),
9862 This cannot be any user code. */
f7f9143b 9863
4ed6b5be 9864 find_frame_sal (frame, &sal);
f7f9143b
JB
9865 if (sal.symtab == NULL)
9866 return 1;
9867
4ed6b5be
JB
9868 /* If there is a symtab, but the associated source file cannot be
9869 located, then assume this is not user code: Selecting a frame
9870 for which we cannot display the code would not be very helpful
9871 for the user. This should also take care of case such as VxWorks
9872 where the kernel has some debugging info provided for a few units. */
f7f9143b 9873
9bbc9174 9874 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9875 return 1;
9876
4ed6b5be
JB
9877 /* Check the unit filename againt the Ada runtime file naming.
9878 We also check the name of the objfile against the name of some
9879 known system libraries that sometimes come with debugging info
9880 too. */
9881
f7f9143b
JB
9882 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9883 {
9884 re_comp (known_runtime_file_name_patterns[i]);
9885 if (re_exec (sal.symtab->filename))
9886 return 1;
4ed6b5be
JB
9887 if (sal.symtab->objfile != NULL
9888 && re_exec (sal.symtab->objfile->name))
9889 return 1;
f7f9143b
JB
9890 }
9891
4ed6b5be 9892 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9893
4ed6b5be 9894 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9895 if (func_name == NULL)
9896 return 1;
9897
9898 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9899 {
9900 re_comp (known_auxiliary_function_name_patterns[i]);
9901 if (re_exec (func_name))
9902 return 1;
9903 }
9904
9905 return 0;
9906}
9907
9908/* Find the first frame that contains debugging information and that is not
9909 part of the Ada run-time, starting from FI and moving upward. */
9910
9911static void
9912ada_find_printable_frame (struct frame_info *fi)
9913{
9914 for (; fi != NULL; fi = get_prev_frame (fi))
9915 {
9916 if (!is_known_support_routine (fi))
9917 {
9918 select_frame (fi);
9919 break;
9920 }
9921 }
9922
9923}
9924
9925/* Assuming that the inferior just triggered an unhandled exception
9926 catchpoint, return the address in inferior memory where the name
9927 of the exception is stored.
9928
9929 Return zero if the address could not be computed. */
9930
9931static CORE_ADDR
9932ada_unhandled_exception_name_addr (void)
0259addd
JB
9933{
9934 return parse_and_eval_address ("e.full_name");
9935}
9936
9937/* Same as ada_unhandled_exception_name_addr, except that this function
9938 should be used when the inferior uses an older version of the runtime,
9939 where the exception name needs to be extracted from a specific frame
9940 several frames up in the callstack. */
9941
9942static CORE_ADDR
9943ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9944{
9945 int frame_level;
9946 struct frame_info *fi;
9947
9948 /* To determine the name of this exception, we need to select
9949 the frame corresponding to RAISE_SYM_NAME. This frame is
9950 at least 3 levels up, so we simply skip the first 3 frames
9951 without checking the name of their associated function. */
9952 fi = get_current_frame ();
9953 for (frame_level = 0; frame_level < 3; frame_level += 1)
9954 if (fi != NULL)
9955 fi = get_prev_frame (fi);
9956
9957 while (fi != NULL)
9958 {
9959 const char *func_name =
9960 function_name_from_pc (get_frame_address_in_block (fi));
9961 if (func_name != NULL
0259addd 9962 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9963 break; /* We found the frame we were looking for... */
9964 fi = get_prev_frame (fi);
9965 }
9966
9967 if (fi == NULL)
9968 return 0;
9969
9970 select_frame (fi);
9971 return parse_and_eval_address ("id.full_name");
9972}
9973
9974/* Assuming the inferior just triggered an Ada exception catchpoint
9975 (of any type), return the address in inferior memory where the name
9976 of the exception is stored, if applicable.
9977
9978 Return zero if the address could not be computed, or if not relevant. */
9979
9980static CORE_ADDR
9981ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9982 struct breakpoint *b)
9983{
9984 switch (ex)
9985 {
9986 case ex_catch_exception:
9987 return (parse_and_eval_address ("e.full_name"));
9988 break;
9989
9990 case ex_catch_exception_unhandled:
0259addd 9991 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9992 break;
9993
9994 case ex_catch_assert:
9995 return 0; /* Exception name is not relevant in this case. */
9996 break;
9997
9998 default:
9999 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10000 break;
10001 }
10002
10003 return 0; /* Should never be reached. */
10004}
10005
10006/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10007 any error that ada_exception_name_addr_1 might cause to be thrown.
10008 When an error is intercepted, a warning with the error message is printed,
10009 and zero is returned. */
10010
10011static CORE_ADDR
10012ada_exception_name_addr (enum exception_catchpoint_kind ex,
10013 struct breakpoint *b)
10014{
10015 struct gdb_exception e;
10016 CORE_ADDR result = 0;
10017
10018 TRY_CATCH (e, RETURN_MASK_ERROR)
10019 {
10020 result = ada_exception_name_addr_1 (ex, b);
10021 }
10022
10023 if (e.reason < 0)
10024 {
10025 warning (_("failed to get exception name: %s"), e.message);
10026 return 0;
10027 }
10028
10029 return result;
10030}
10031
10032/* Implement the PRINT_IT method in the breakpoint_ops structure
10033 for all exception catchpoint kinds. */
10034
10035static enum print_stop_action
10036print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10037{
10038 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10039 char exception_name[256];
10040
10041 if (addr != 0)
10042 {
10043 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10044 exception_name [sizeof (exception_name) - 1] = '\0';
10045 }
10046
10047 ada_find_printable_frame (get_current_frame ());
10048
10049 annotate_catchpoint (b->number);
10050 switch (ex)
10051 {
10052 case ex_catch_exception:
10053 if (addr != 0)
10054 printf_filtered (_("\nCatchpoint %d, %s at "),
10055 b->number, exception_name);
10056 else
10057 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10058 break;
10059 case ex_catch_exception_unhandled:
10060 if (addr != 0)
10061 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10062 b->number, exception_name);
10063 else
10064 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10065 b->number);
10066 break;
10067 case ex_catch_assert:
10068 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10069 b->number);
10070 break;
10071 }
10072
10073 return PRINT_SRC_AND_LOC;
10074}
10075
10076/* Implement the PRINT_ONE method in the breakpoint_ops structure
10077 for all exception catchpoint kinds. */
10078
10079static void
10080print_one_exception (enum exception_catchpoint_kind ex,
10081 struct breakpoint *b, CORE_ADDR *last_addr)
10082{
10083 if (addressprint)
10084 {
10085 annotate_field (4);
10086 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10087 }
10088
10089 annotate_field (5);
10090 *last_addr = b->loc->address;
10091 switch (ex)
10092 {
10093 case ex_catch_exception:
10094 if (b->exp_string != NULL)
10095 {
10096 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10097
10098 ui_out_field_string (uiout, "what", msg);
10099 xfree (msg);
10100 }
10101 else
10102 ui_out_field_string (uiout, "what", "all Ada exceptions");
10103
10104 break;
10105
10106 case ex_catch_exception_unhandled:
10107 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10108 break;
10109
10110 case ex_catch_assert:
10111 ui_out_field_string (uiout, "what", "failed Ada assertions");
10112 break;
10113
10114 default:
10115 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10116 break;
10117 }
10118}
10119
10120/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10121 for all exception catchpoint kinds. */
10122
10123static void
10124print_mention_exception (enum exception_catchpoint_kind ex,
10125 struct breakpoint *b)
10126{
10127 switch (ex)
10128 {
10129 case ex_catch_exception:
10130 if (b->exp_string != NULL)
10131 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10132 b->number, b->exp_string);
10133 else
10134 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10135
10136 break;
10137
10138 case ex_catch_exception_unhandled:
10139 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10140 b->number);
10141 break;
10142
10143 case ex_catch_assert:
10144 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10145 break;
10146
10147 default:
10148 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10149 break;
10150 }
10151}
10152
10153/* Virtual table for "catch exception" breakpoints. */
10154
10155static enum print_stop_action
10156print_it_catch_exception (struct breakpoint *b)
10157{
10158 return print_it_exception (ex_catch_exception, b);
10159}
10160
10161static void
10162print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10163{
10164 print_one_exception (ex_catch_exception, b, last_addr);
10165}
10166
10167static void
10168print_mention_catch_exception (struct breakpoint *b)
10169{
10170 print_mention_exception (ex_catch_exception, b);
10171}
10172
10173static struct breakpoint_ops catch_exception_breakpoint_ops =
10174{
10175 print_it_catch_exception,
10176 print_one_catch_exception,
10177 print_mention_catch_exception
10178};
10179
10180/* Virtual table for "catch exception unhandled" breakpoints. */
10181
10182static enum print_stop_action
10183print_it_catch_exception_unhandled (struct breakpoint *b)
10184{
10185 return print_it_exception (ex_catch_exception_unhandled, b);
10186}
10187
10188static void
10189print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10190{
10191 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10192}
10193
10194static void
10195print_mention_catch_exception_unhandled (struct breakpoint *b)
10196{
10197 print_mention_exception (ex_catch_exception_unhandled, b);
10198}
10199
10200static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10201 print_it_catch_exception_unhandled,
10202 print_one_catch_exception_unhandled,
10203 print_mention_catch_exception_unhandled
10204};
10205
10206/* Virtual table for "catch assert" breakpoints. */
10207
10208static enum print_stop_action
10209print_it_catch_assert (struct breakpoint *b)
10210{
10211 return print_it_exception (ex_catch_assert, b);
10212}
10213
10214static void
10215print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10216{
10217 print_one_exception (ex_catch_assert, b, last_addr);
10218}
10219
10220static void
10221print_mention_catch_assert (struct breakpoint *b)
10222{
10223 print_mention_exception (ex_catch_assert, b);
10224}
10225
10226static struct breakpoint_ops catch_assert_breakpoint_ops = {
10227 print_it_catch_assert,
10228 print_one_catch_assert,
10229 print_mention_catch_assert
10230};
10231
10232/* Return non-zero if B is an Ada exception catchpoint. */
10233
10234int
10235ada_exception_catchpoint_p (struct breakpoint *b)
10236{
10237 return (b->ops == &catch_exception_breakpoint_ops
10238 || b->ops == &catch_exception_unhandled_breakpoint_ops
10239 || b->ops == &catch_assert_breakpoint_ops);
10240}
10241
f7f9143b
JB
10242/* Return a newly allocated copy of the first space-separated token
10243 in ARGSP, and then adjust ARGSP to point immediately after that
10244 token.
10245
10246 Return NULL if ARGPS does not contain any more tokens. */
10247
10248static char *
10249ada_get_next_arg (char **argsp)
10250{
10251 char *args = *argsp;
10252 char *end;
10253 char *result;
10254
10255 /* Skip any leading white space. */
10256
10257 while (isspace (*args))
10258 args++;
10259
10260 if (args[0] == '\0')
10261 return NULL; /* No more arguments. */
10262
10263 /* Find the end of the current argument. */
10264
10265 end = args;
10266 while (*end != '\0' && !isspace (*end))
10267 end++;
10268
10269 /* Adjust ARGSP to point to the start of the next argument. */
10270
10271 *argsp = end;
10272
10273 /* Make a copy of the current argument and return it. */
10274
10275 result = xmalloc (end - args + 1);
10276 strncpy (result, args, end - args);
10277 result[end - args] = '\0';
10278
10279 return result;
10280}
10281
10282/* Split the arguments specified in a "catch exception" command.
10283 Set EX to the appropriate catchpoint type.
10284 Set EXP_STRING to the name of the specific exception if
10285 specified by the user. */
10286
10287static void
10288catch_ada_exception_command_split (char *args,
10289 enum exception_catchpoint_kind *ex,
10290 char **exp_string)
10291{
10292 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10293 char *exception_name;
10294
10295 exception_name = ada_get_next_arg (&args);
10296 make_cleanup (xfree, exception_name);
10297
10298 /* Check that we do not have any more arguments. Anything else
10299 is unexpected. */
10300
10301 while (isspace (*args))
10302 args++;
10303
10304 if (args[0] != '\0')
10305 error (_("Junk at end of expression"));
10306
10307 discard_cleanups (old_chain);
10308
10309 if (exception_name == NULL)
10310 {
10311 /* Catch all exceptions. */
10312 *ex = ex_catch_exception;
10313 *exp_string = NULL;
10314 }
10315 else if (strcmp (exception_name, "unhandled") == 0)
10316 {
10317 /* Catch unhandled exceptions. */
10318 *ex = ex_catch_exception_unhandled;
10319 *exp_string = NULL;
10320 }
10321 else
10322 {
10323 /* Catch a specific exception. */
10324 *ex = ex_catch_exception;
10325 *exp_string = exception_name;
10326 }
10327}
10328
10329/* Return the name of the symbol on which we should break in order to
10330 implement a catchpoint of the EX kind. */
10331
10332static const char *
10333ada_exception_sym_name (enum exception_catchpoint_kind ex)
10334{
0259addd
JB
10335 gdb_assert (exception_info != NULL);
10336
f7f9143b
JB
10337 switch (ex)
10338 {
10339 case ex_catch_exception:
0259addd 10340 return (exception_info->catch_exception_sym);
f7f9143b
JB
10341 break;
10342 case ex_catch_exception_unhandled:
0259addd 10343 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10344 break;
10345 case ex_catch_assert:
0259addd 10346 return (exception_info->catch_assert_sym);
f7f9143b
JB
10347 break;
10348 default:
10349 internal_error (__FILE__, __LINE__,
10350 _("unexpected catchpoint kind (%d)"), ex);
10351 }
10352}
10353
10354/* Return the breakpoint ops "virtual table" used for catchpoints
10355 of the EX kind. */
10356
10357static struct breakpoint_ops *
4b9eee8c 10358ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10359{
10360 switch (ex)
10361 {
10362 case ex_catch_exception:
10363 return (&catch_exception_breakpoint_ops);
10364 break;
10365 case ex_catch_exception_unhandled:
10366 return (&catch_exception_unhandled_breakpoint_ops);
10367 break;
10368 case ex_catch_assert:
10369 return (&catch_assert_breakpoint_ops);
10370 break;
10371 default:
10372 internal_error (__FILE__, __LINE__,
10373 _("unexpected catchpoint kind (%d)"), ex);
10374 }
10375}
10376
10377/* Return the condition that will be used to match the current exception
10378 being raised with the exception that the user wants to catch. This
10379 assumes that this condition is used when the inferior just triggered
10380 an exception catchpoint.
10381
10382 The string returned is a newly allocated string that needs to be
10383 deallocated later. */
10384
10385static char *
10386ada_exception_catchpoint_cond_string (const char *exp_string)
10387{
10388 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10389}
10390
10391/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10392
10393static struct expression *
10394ada_parse_catchpoint_condition (char *cond_string,
10395 struct symtab_and_line sal)
10396{
10397 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10398}
10399
10400/* Return the symtab_and_line that should be used to insert an exception
10401 catchpoint of the TYPE kind.
10402
10403 EX_STRING should contain the name of a specific exception
10404 that the catchpoint should catch, or NULL otherwise.
10405
10406 The idea behind all the remaining parameters is that their names match
10407 the name of certain fields in the breakpoint structure that are used to
10408 handle exception catchpoints. This function returns the value to which
10409 these fields should be set, depending on the type of catchpoint we need
10410 to create.
10411
10412 If COND and COND_STRING are both non-NULL, any value they might
10413 hold will be free'ed, and then replaced by newly allocated ones.
10414 These parameters are left untouched otherwise. */
10415
10416static struct symtab_and_line
10417ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10418 char **addr_string, char **cond_string,
10419 struct expression **cond, struct breakpoint_ops **ops)
10420{
10421 const char *sym_name;
10422 struct symbol *sym;
10423 struct symtab_and_line sal;
10424
0259addd
JB
10425 /* First, find out which exception support info to use. */
10426 ada_exception_support_info_sniffer ();
10427
10428 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10429 the Ada exceptions requested by the user. */
10430
10431 sym_name = ada_exception_sym_name (ex);
10432 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10433
10434 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10435 that should be compiled with debugging information. As a result, we
10436 expect to find that symbol in the symtabs. If we don't find it, then
10437 the target most likely does not support Ada exceptions, or we cannot
10438 insert exception breakpoints yet, because the GNAT runtime hasn't been
10439 loaded yet. */
10440
10441 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10442 in such a way that no debugging information is produced for the symbol
10443 we are looking for. In this case, we could search the minimal symbols
10444 as a fall-back mechanism. This would still be operating in degraded
10445 mode, however, as we would still be missing the debugging information
10446 that is needed in order to extract the name of the exception being
10447 raised (this name is printed in the catchpoint message, and is also
10448 used when trying to catch a specific exception). We do not handle
10449 this case for now. */
10450
10451 if (sym == NULL)
0259addd 10452 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10453
10454 /* Make sure that the symbol we found corresponds to a function. */
10455 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10456 error (_("Symbol \"%s\" is not a function (class = %d)"),
10457 sym_name, SYMBOL_CLASS (sym));
10458
10459 sal = find_function_start_sal (sym, 1);
10460
10461 /* Set ADDR_STRING. */
10462
10463 *addr_string = xstrdup (sym_name);
10464
10465 /* Set the COND and COND_STRING (if not NULL). */
10466
10467 if (cond_string != NULL && cond != NULL)
10468 {
10469 if (*cond_string != NULL)
10470 {
10471 xfree (*cond_string);
10472 *cond_string = NULL;
10473 }
10474 if (*cond != NULL)
10475 {
10476 xfree (*cond);
10477 *cond = NULL;
10478 }
10479 if (exp_string != NULL)
10480 {
10481 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10482 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10483 }
10484 }
10485
10486 /* Set OPS. */
4b9eee8c 10487 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10488
10489 return sal;
10490}
10491
10492/* Parse the arguments (ARGS) of the "catch exception" command.
10493
10494 Set TYPE to the appropriate exception catchpoint type.
10495 If the user asked the catchpoint to catch only a specific
10496 exception, then save the exception name in ADDR_STRING.
10497
10498 See ada_exception_sal for a description of all the remaining
10499 function arguments of this function. */
10500
10501struct symtab_and_line
10502ada_decode_exception_location (char *args, char **addr_string,
10503 char **exp_string, char **cond_string,
10504 struct expression **cond,
10505 struct breakpoint_ops **ops)
10506{
10507 enum exception_catchpoint_kind ex;
10508
10509 catch_ada_exception_command_split (args, &ex, exp_string);
10510 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10511 cond, ops);
10512}
10513
10514struct symtab_and_line
10515ada_decode_assert_location (char *args, char **addr_string,
10516 struct breakpoint_ops **ops)
10517{
10518 /* Check that no argument where provided at the end of the command. */
10519
10520 if (args != NULL)
10521 {
10522 while (isspace (*args))
10523 args++;
10524 if (*args != '\0')
10525 error (_("Junk at end of arguments."));
10526 }
10527
10528 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10529 ops);
10530}
10531
4c4b4cd2
PH
10532 /* Operators */
10533/* Information about operators given special treatment in functions
10534 below. */
10535/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10536
10537#define ADA_OPERATORS \
10538 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10539 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10540 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10541 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10542 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10543 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10544 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10545 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10546 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10547 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10548 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10549 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10550 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10551 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10552 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10553 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10554 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10555 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10556 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10557
10558static void
10559ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10560{
10561 switch (exp->elts[pc - 1].opcode)
10562 {
76a01679 10563 default:
4c4b4cd2
PH
10564 operator_length_standard (exp, pc, oplenp, argsp);
10565 break;
10566
10567#define OP_DEFN(op, len, args, binop) \
10568 case op: *oplenp = len; *argsp = args; break;
10569 ADA_OPERATORS;
10570#undef OP_DEFN
52ce6436
PH
10571
10572 case OP_AGGREGATE:
10573 *oplenp = 3;
10574 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10575 break;
10576
10577 case OP_CHOICES:
10578 *oplenp = 3;
10579 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10580 break;
4c4b4cd2
PH
10581 }
10582}
10583
10584static char *
10585ada_op_name (enum exp_opcode opcode)
10586{
10587 switch (opcode)
10588 {
76a01679 10589 default:
4c4b4cd2 10590 return op_name_standard (opcode);
52ce6436 10591
4c4b4cd2
PH
10592#define OP_DEFN(op, len, args, binop) case op: return #op;
10593 ADA_OPERATORS;
10594#undef OP_DEFN
52ce6436
PH
10595
10596 case OP_AGGREGATE:
10597 return "OP_AGGREGATE";
10598 case OP_CHOICES:
10599 return "OP_CHOICES";
10600 case OP_NAME:
10601 return "OP_NAME";
4c4b4cd2
PH
10602 }
10603}
10604
10605/* As for operator_length, but assumes PC is pointing at the first
10606 element of the operator, and gives meaningful results only for the
52ce6436 10607 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10608
10609static void
76a01679
JB
10610ada_forward_operator_length (struct expression *exp, int pc,
10611 int *oplenp, int *argsp)
4c4b4cd2 10612{
76a01679 10613 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10614 {
10615 default:
10616 *oplenp = *argsp = 0;
10617 break;
52ce6436 10618
4c4b4cd2
PH
10619#define OP_DEFN(op, len, args, binop) \
10620 case op: *oplenp = len; *argsp = args; break;
10621 ADA_OPERATORS;
10622#undef OP_DEFN
52ce6436
PH
10623
10624 case OP_AGGREGATE:
10625 *oplenp = 3;
10626 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10627 break;
10628
10629 case OP_CHOICES:
10630 *oplenp = 3;
10631 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10632 break;
10633
10634 case OP_STRING:
10635 case OP_NAME:
10636 {
10637 int len = longest_to_int (exp->elts[pc + 1].longconst);
10638 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10639 *argsp = 0;
10640 break;
10641 }
4c4b4cd2
PH
10642 }
10643}
10644
10645static int
10646ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10647{
10648 enum exp_opcode op = exp->elts[elt].opcode;
10649 int oplen, nargs;
10650 int pc = elt;
10651 int i;
76a01679 10652
4c4b4cd2
PH
10653 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10654
76a01679 10655 switch (op)
4c4b4cd2 10656 {
76a01679 10657 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10658 case OP_ATR_FIRST:
10659 case OP_ATR_LAST:
10660 case OP_ATR_LENGTH:
10661 case OP_ATR_IMAGE:
10662 case OP_ATR_MAX:
10663 case OP_ATR_MIN:
10664 case OP_ATR_MODULUS:
10665 case OP_ATR_POS:
10666 case OP_ATR_SIZE:
10667 case OP_ATR_TAG:
10668 case OP_ATR_VAL:
10669 break;
10670
10671 case UNOP_IN_RANGE:
10672 case UNOP_QUAL:
323e0a4a
AC
10673 /* XXX: gdb_sprint_host_address, type_sprint */
10674 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10675 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10676 fprintf_filtered (stream, " (");
10677 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10678 fprintf_filtered (stream, ")");
10679 break;
10680 case BINOP_IN_BOUNDS:
52ce6436
PH
10681 fprintf_filtered (stream, " (%d)",
10682 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10683 break;
10684 case TERNOP_IN_RANGE:
10685 break;
10686
52ce6436
PH
10687 case OP_AGGREGATE:
10688 case OP_OTHERS:
10689 case OP_DISCRETE_RANGE:
10690 case OP_POSITIONAL:
10691 case OP_CHOICES:
10692 break;
10693
10694 case OP_NAME:
10695 case OP_STRING:
10696 {
10697 char *name = &exp->elts[elt + 2].string;
10698 int len = longest_to_int (exp->elts[elt + 1].longconst);
10699 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10700 break;
10701 }
10702
4c4b4cd2
PH
10703 default:
10704 return dump_subexp_body_standard (exp, stream, elt);
10705 }
10706
10707 elt += oplen;
10708 for (i = 0; i < nargs; i += 1)
10709 elt = dump_subexp (exp, stream, elt);
10710
10711 return elt;
10712}
10713
10714/* The Ada extension of print_subexp (q.v.). */
10715
76a01679
JB
10716static void
10717ada_print_subexp (struct expression *exp, int *pos,
10718 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10719{
52ce6436 10720 int oplen, nargs, i;
4c4b4cd2
PH
10721 int pc = *pos;
10722 enum exp_opcode op = exp->elts[pc].opcode;
10723
10724 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10725
52ce6436 10726 *pos += oplen;
4c4b4cd2
PH
10727 switch (op)
10728 {
10729 default:
52ce6436 10730 *pos -= oplen;
4c4b4cd2
PH
10731 print_subexp_standard (exp, pos, stream, prec);
10732 return;
10733
10734 case OP_VAR_VALUE:
4c4b4cd2
PH
10735 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10736 return;
10737
10738 case BINOP_IN_BOUNDS:
323e0a4a 10739 /* XXX: sprint_subexp */
4c4b4cd2 10740 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10741 fputs_filtered (" in ", stream);
4c4b4cd2 10742 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10743 fputs_filtered ("'range", stream);
4c4b4cd2 10744 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10745 fprintf_filtered (stream, "(%ld)",
10746 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10747 return;
10748
10749 case TERNOP_IN_RANGE:
4c4b4cd2 10750 if (prec >= PREC_EQUAL)
76a01679 10751 fputs_filtered ("(", stream);
323e0a4a 10752 /* XXX: sprint_subexp */
4c4b4cd2 10753 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10754 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10755 print_subexp (exp, pos, stream, PREC_EQUAL);
10756 fputs_filtered (" .. ", stream);
10757 print_subexp (exp, pos, stream, PREC_EQUAL);
10758 if (prec >= PREC_EQUAL)
76a01679
JB
10759 fputs_filtered (")", stream);
10760 return;
4c4b4cd2
PH
10761
10762 case OP_ATR_FIRST:
10763 case OP_ATR_LAST:
10764 case OP_ATR_LENGTH:
10765 case OP_ATR_IMAGE:
10766 case OP_ATR_MAX:
10767 case OP_ATR_MIN:
10768 case OP_ATR_MODULUS:
10769 case OP_ATR_POS:
10770 case OP_ATR_SIZE:
10771 case OP_ATR_TAG:
10772 case OP_ATR_VAL:
4c4b4cd2 10773 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10774 {
10775 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10776 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10777 *pos += 3;
10778 }
4c4b4cd2 10779 else
76a01679 10780 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10781 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10782 if (nargs > 1)
76a01679
JB
10783 {
10784 int tem;
10785 for (tem = 1; tem < nargs; tem += 1)
10786 {
10787 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10788 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10789 }
10790 fputs_filtered (")", stream);
10791 }
4c4b4cd2 10792 return;
14f9c5c9 10793
4c4b4cd2 10794 case UNOP_QUAL:
4c4b4cd2
PH
10795 type_print (exp->elts[pc + 1].type, "", stream, 0);
10796 fputs_filtered ("'(", stream);
10797 print_subexp (exp, pos, stream, PREC_PREFIX);
10798 fputs_filtered (")", stream);
10799 return;
14f9c5c9 10800
4c4b4cd2 10801 case UNOP_IN_RANGE:
323e0a4a 10802 /* XXX: sprint_subexp */
4c4b4cd2 10803 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10804 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10805 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10806 return;
52ce6436
PH
10807
10808 case OP_DISCRETE_RANGE:
10809 print_subexp (exp, pos, stream, PREC_SUFFIX);
10810 fputs_filtered ("..", stream);
10811 print_subexp (exp, pos, stream, PREC_SUFFIX);
10812 return;
10813
10814 case OP_OTHERS:
10815 fputs_filtered ("others => ", stream);
10816 print_subexp (exp, pos, stream, PREC_SUFFIX);
10817 return;
10818
10819 case OP_CHOICES:
10820 for (i = 0; i < nargs-1; i += 1)
10821 {
10822 if (i > 0)
10823 fputs_filtered ("|", stream);
10824 print_subexp (exp, pos, stream, PREC_SUFFIX);
10825 }
10826 fputs_filtered (" => ", stream);
10827 print_subexp (exp, pos, stream, PREC_SUFFIX);
10828 return;
10829
10830 case OP_POSITIONAL:
10831 print_subexp (exp, pos, stream, PREC_SUFFIX);
10832 return;
10833
10834 case OP_AGGREGATE:
10835 fputs_filtered ("(", stream);
10836 for (i = 0; i < nargs; i += 1)
10837 {
10838 if (i > 0)
10839 fputs_filtered (", ", stream);
10840 print_subexp (exp, pos, stream, PREC_SUFFIX);
10841 }
10842 fputs_filtered (")", stream);
10843 return;
4c4b4cd2
PH
10844 }
10845}
14f9c5c9
AS
10846
10847/* Table mapping opcodes into strings for printing operators
10848 and precedences of the operators. */
10849
d2e4a39e
AS
10850static const struct op_print ada_op_print_tab[] = {
10851 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10852 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10853 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10854 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10855 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10856 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10857 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10858 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10859 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10860 {">=", BINOP_GEQ, PREC_ORDER, 0},
10861 {">", BINOP_GTR, PREC_ORDER, 0},
10862 {"<", BINOP_LESS, PREC_ORDER, 0},
10863 {">>", BINOP_RSH, PREC_SHIFT, 0},
10864 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10865 {"+", BINOP_ADD, PREC_ADD, 0},
10866 {"-", BINOP_SUB, PREC_ADD, 0},
10867 {"&", BINOP_CONCAT, PREC_ADD, 0},
10868 {"*", BINOP_MUL, PREC_MUL, 0},
10869 {"/", BINOP_DIV, PREC_MUL, 0},
10870 {"rem", BINOP_REM, PREC_MUL, 0},
10871 {"mod", BINOP_MOD, PREC_MUL, 0},
10872 {"**", BINOP_EXP, PREC_REPEAT, 0},
10873 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10874 {"-", UNOP_NEG, PREC_PREFIX, 0},
10875 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10876 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10877 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10878 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10879 {".all", UNOP_IND, PREC_SUFFIX, 1},
10880 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10881 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10882 {NULL, 0, 0, 0}
14f9c5c9
AS
10883};
10884\f
72d5681a
PH
10885enum ada_primitive_types {
10886 ada_primitive_type_int,
10887 ada_primitive_type_long,
10888 ada_primitive_type_short,
10889 ada_primitive_type_char,
10890 ada_primitive_type_float,
10891 ada_primitive_type_double,
10892 ada_primitive_type_void,
10893 ada_primitive_type_long_long,
10894 ada_primitive_type_long_double,
10895 ada_primitive_type_natural,
10896 ada_primitive_type_positive,
10897 ada_primitive_type_system_address,
10898 nr_ada_primitive_types
10899};
6c038f32
PH
10900
10901static void
d4a9a881 10902ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10903 struct language_arch_info *lai)
10904{
d4a9a881 10905 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10906 lai->primitive_type_vector
d4a9a881 10907 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10908 struct type *);
10909 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10910 init_type (TYPE_CODE_INT,
d4a9a881 10911 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10912 0, "integer", (struct objfile *) NULL);
72d5681a 10913 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10914 init_type (TYPE_CODE_INT,
d4a9a881 10915 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10916 0, "long_integer", (struct objfile *) NULL);
72d5681a 10917 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10918 init_type (TYPE_CODE_INT,
d4a9a881 10919 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10920 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10921 lai->string_char_type =
10922 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10923 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10924 0, "character", (struct objfile *) NULL);
72d5681a 10925 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10926 init_type (TYPE_CODE_FLT,
d4a9a881 10927 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10928 0, "float", (struct objfile *) NULL);
72d5681a 10929 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10930 init_type (TYPE_CODE_FLT,
d4a9a881 10931 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10932 0, "long_float", (struct objfile *) NULL);
72d5681a 10933 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10934 init_type (TYPE_CODE_INT,
d4a9a881 10935 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10936 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10937 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10938 init_type (TYPE_CODE_FLT,
d4a9a881 10939 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10940 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10941 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10942 init_type (TYPE_CODE_INT,
d4a9a881 10943 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10944 0, "natural", (struct objfile *) NULL);
72d5681a 10945 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10946 init_type (TYPE_CODE_INT,
d4a9a881 10947 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10948 0, "positive", (struct objfile *) NULL);
72d5681a 10949 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10950
72d5681a 10951 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10952 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10953 (struct objfile *) NULL));
72d5681a
PH
10954 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10955 = "system__address";
6c038f32 10956}
6c038f32
PH
10957\f
10958 /* Language vector */
10959
10960/* Not really used, but needed in the ada_language_defn. */
10961
10962static void
10963emit_char (int c, struct ui_file *stream, int quoter)
10964{
10965 ada_emit_char (c, stream, quoter, 1);
10966}
10967
10968static int
10969parse (void)
10970{
10971 warnings_issued = 0;
10972 return ada_parse ();
10973}
10974
10975static const struct exp_descriptor ada_exp_descriptor = {
10976 ada_print_subexp,
10977 ada_operator_length,
10978 ada_op_name,
10979 ada_dump_subexp_body,
10980 ada_evaluate_subexp
10981};
10982
10983const struct language_defn ada_language_defn = {
10984 "ada", /* Language name */
10985 language_ada,
6c038f32
PH
10986 range_check_off,
10987 type_check_off,
10988 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10989 that's not quite what this means. */
6c038f32
PH
10990 array_row_major,
10991 &ada_exp_descriptor,
10992 parse,
10993 ada_error,
10994 resolve,
10995 ada_printchar, /* Print a character constant */
10996 ada_printstr, /* Function to print string constant */
10997 emit_char, /* Function to print single char (not used) */
6c038f32
PH
10998 ada_print_type, /* Print a type using appropriate syntax */
10999 ada_val_print, /* Print a value using appropriate syntax */
11000 ada_value_print, /* Print a top-level value */
11001 NULL, /* Language specific skip_trampoline */
11002 NULL, /* value_of_this */
11003 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11004 basic_lookup_transparent_type, /* lookup_transparent_type */
11005 ada_la_decode, /* Language specific symbol demangler */
11006 NULL, /* Language specific class_name_from_physname */
11007 ada_op_print_tab, /* expression operators for printing */
11008 0, /* c-style arrays */
11009 1, /* String lower bound */
6c038f32 11010 ada_get_gdb_completer_word_break_characters,
41d27058 11011 ada_make_symbol_completion_list,
72d5681a 11012 ada_language_arch_info,
e79af960 11013 ada_print_array_index,
41f1b697 11014 default_pass_by_reference,
6c038f32
PH
11015 LANG_MAGIC
11016};
11017
d2e4a39e 11018void
6c038f32 11019_initialize_ada_language (void)
14f9c5c9 11020{
6c038f32
PH
11021 add_language (&ada_language_defn);
11022
11023 varsize_limit = 65536;
6c038f32
PH
11024
11025 obstack_init (&symbol_list_obstack);
11026
11027 decoded_names_store = htab_create_alloc
11028 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11029 NULL, xcalloc, xfree);
6b69afc4
JB
11030
11031 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11032}