]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
2009-01-07 Pierre Muller <muller@ics.u-strasbg.fr>
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
f7f9143b
JB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
d2e4a39e 82static struct type *desc_data_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
d2e4a39e 129static struct symtab *symtab_for_sym (struct symbol *);
14f9c5c9 130
4c4b4cd2 131static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 132 struct type *);
14f9c5c9 133
d2e4a39e 134static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 135 struct symbol *, struct block *);
14f9c5c9 136
d2e4a39e 137static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 138
4c4b4cd2
PH
139static char *ada_op_name (enum exp_opcode);
140
141static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 142
d2e4a39e 143static int numeric_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int integer_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int scalar_type_p (struct type *);
14f9c5c9 148
d2e4a39e 149static int discrete_type_p (struct type *);
14f9c5c9 150
aeb5907d
JB
151static enum ada_renaming_category parse_old_style_renaming (struct type *,
152 const char **,
153 int *,
154 const char **);
155
156static struct symbol *find_old_style_renaming_symbol (const char *,
157 struct block *);
158
4c4b4cd2 159static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 160 int, int, int *);
4c4b4cd2 161
d2e4a39e 162static struct value *evaluate_subexp (struct type *, struct expression *,
4c4b4cd2 163 int *, enum noside);
14f9c5c9 164
d2e4a39e 165static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 166
d2e4a39e 167static int is_dynamic_field (struct type *, int);
14f9c5c9 168
10a2c479 169static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 170 const gdb_byte *,
4c4b4cd2
PH
171 CORE_ADDR, struct value *);
172
173static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 174
d2e4a39e 175static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 176 struct objfile *);
14f9c5c9 177
d2e4a39e 178static struct type *to_static_fixed_type (struct type *);
f192137b 179static struct type *static_unwrap_type (struct type *type);
14f9c5c9 180
d2e4a39e 181static struct value *unwrap_value (struct value *);
14f9c5c9 182
d2e4a39e 183static struct type *packed_array_type (struct type *, long *);
14f9c5c9 184
d2e4a39e 185static struct type *decode_packed_array_type (struct type *);
14f9c5c9 186
d2e4a39e 187static struct value *decode_packed_array (struct value *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
52ce6436
PH
192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
d2e4a39e 205static int wild_match (const char *, int, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static struct value *ada_coerce_to_simple_array (struct value *);
237
238static int ada_is_direct_array_type (struct type *);
239
72d5681a
PH
240static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
714e53ab
PH
242
243static void check_size (const struct type *);
52ce6436
PH
244
245static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
4c4b4cd2
PH
275\f
276
76a01679 277
4c4b4cd2 278/* Maximum-sized dynamic type. */
14f9c5c9
AS
279static unsigned int varsize_limit;
280
4c4b4cd2
PH
281/* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283static char *ada_completer_word_break_characters =
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
301static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
305static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
309/* Space for allocating results of ada_lookup_symbol_list. */
310static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
41d27058
JB
314/* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318static const char *
319ada_unqualified_name (const char *decoded_name)
320{
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329}
330
331/* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334static char *
335add_angle_brackets (const char *str)
336{
337 static char *result = NULL;
338
339 xfree (result);
340 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
341
342 sprintf (result, "<%s>", str);
343 return result;
344}
96d887e8 345
4c4b4cd2
PH
346static char *
347ada_get_gdb_completer_word_break_characters (void)
348{
349 return ada_completer_word_break_characters;
350}
351
e79af960
JB
352/* Print an array element index using the Ada syntax. */
353
354static void
355ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 356 const struct value_print_options *options)
e79af960 357{
79a45b7d 358 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
359 fprintf_filtered (stream, " => ");
360}
361
4c4b4cd2
PH
362/* Read the string located at ADDR from the inferior and store the
363 result into BUF. */
364
365static void
14f9c5c9
AS
366extract_string (CORE_ADDR addr, char *buf)
367{
d2e4a39e 368 int char_index = 0;
14f9c5c9 369
4c4b4cd2
PH
370 /* Loop, reading one byte at a time, until we reach the '\000'
371 end-of-string marker. */
d2e4a39e
AS
372 do
373 {
374 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 375 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
376 char_index++;
377 }
378 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
379}
380
f27cf670 381/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 382 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 383 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 384
f27cf670
AS
385void *
386grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 387{
d2e4a39e
AS
388 if (*size < min_size)
389 {
390 *size *= 2;
391 if (*size < min_size)
4c4b4cd2 392 *size = min_size;
f27cf670 393 vect = xrealloc (vect, *size * element_size);
d2e4a39e 394 }
f27cf670 395 return vect;
14f9c5c9
AS
396}
397
398/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 399 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
400
401static int
ebf56fd3 402field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
403{
404 int len = strlen (target);
d2e4a39e 405 return
4c4b4cd2
PH
406 (strncmp (field_name, target, len) == 0
407 && (field_name[len] == '\0'
408 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
409 && strcmp (field_name + strlen (field_name) - 6,
410 "___XVN") != 0)));
14f9c5c9
AS
411}
412
413
4c4b4cd2
PH
414/* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
415 FIELD_NAME, and return its index. This function also handles fields
416 whose name have ___ suffixes because the compiler sometimes alters
417 their name by adding such a suffix to represent fields with certain
418 constraints. If the field could not be found, return a negative
419 number if MAYBE_MISSING is set. Otherwise raise an error. */
420
421int
422ada_get_field_index (const struct type *type, const char *field_name,
423 int maybe_missing)
424{
425 int fieldno;
426 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
427 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
428 return fieldno;
429
430 if (!maybe_missing)
323e0a4a 431 error (_("Unable to find field %s in struct %s. Aborting"),
4c4b4cd2
PH
432 field_name, TYPE_NAME (type));
433
434 return -1;
435}
436
437/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
438
439int
d2e4a39e 440ada_name_prefix_len (const char *name)
14f9c5c9
AS
441{
442 if (name == NULL)
443 return 0;
d2e4a39e 444 else
14f9c5c9 445 {
d2e4a39e 446 const char *p = strstr (name, "___");
14f9c5c9 447 if (p == NULL)
4c4b4cd2 448 return strlen (name);
14f9c5c9 449 else
4c4b4cd2 450 return p - name;
14f9c5c9
AS
451 }
452}
453
4c4b4cd2
PH
454/* Return non-zero if SUFFIX is a suffix of STR.
455 Return zero if STR is null. */
456
14f9c5c9 457static int
d2e4a39e 458is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
459{
460 int len1, len2;
461 if (str == NULL)
462 return 0;
463 len1 = strlen (str);
464 len2 = strlen (suffix);
4c4b4cd2 465 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
466}
467
4c4b4cd2
PH
468/* The contents of value VAL, treated as a value of type TYPE. The
469 result is an lval in memory if VAL is. */
14f9c5c9 470
d2e4a39e 471static struct value *
4c4b4cd2 472coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 473{
61ee279c 474 type = ada_check_typedef (type);
df407dfe 475 if (value_type (val) == type)
4c4b4cd2 476 return val;
d2e4a39e 477 else
14f9c5c9 478 {
4c4b4cd2
PH
479 struct value *result;
480
481 /* Make sure that the object size is not unreasonable before
482 trying to allocate some memory for it. */
714e53ab 483 check_size (type);
4c4b4cd2
PH
484
485 result = allocate_value (type);
74bcbdf3 486 set_value_component_location (result, val);
9bbda503
AC
487 set_value_bitsize (result, value_bitsize (val));
488 set_value_bitpos (result, value_bitpos (val));
74bcbdf3 489 VALUE_ADDRESS (result) += value_offset (val);
d69fe07e 490 if (value_lazy (val)
df407dfe 491 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 492 set_value_lazy (result, 1);
d2e4a39e 493 else
0fd88904 494 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 495 TYPE_LENGTH (type));
14f9c5c9
AS
496 return result;
497 }
498}
499
fc1a4b47
AC
500static const gdb_byte *
501cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
502{
503 if (valaddr == NULL)
504 return NULL;
505 else
506 return valaddr + offset;
507}
508
509static CORE_ADDR
ebf56fd3 510cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
511{
512 if (address == 0)
513 return 0;
d2e4a39e 514 else
14f9c5c9
AS
515 return address + offset;
516}
517
4c4b4cd2
PH
518/* Issue a warning (as for the definition of warning in utils.c, but
519 with exactly one argument rather than ...), unless the limit on the
520 number of warnings has passed during the evaluation of the current
521 expression. */
a2249542 522
77109804
AC
523/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
524 provided by "complaint". */
525static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
526
14f9c5c9 527static void
a2249542 528lim_warning (const char *format, ...)
14f9c5c9 529{
a2249542
MK
530 va_list args;
531 va_start (args, format);
532
4c4b4cd2
PH
533 warnings_issued += 1;
534 if (warnings_issued <= warning_limit)
a2249542
MK
535 vwarning (format, args);
536
537 va_end (args);
4c4b4cd2
PH
538}
539
714e53ab
PH
540/* Issue an error if the size of an object of type T is unreasonable,
541 i.e. if it would be a bad idea to allocate a value of this type in
542 GDB. */
543
544static void
545check_size (const struct type *type)
546{
547 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 548 error (_("object size is larger than varsize-limit"));
714e53ab
PH
549}
550
551
c3e5cd34
PH
552/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
553 gdbtypes.h, but some of the necessary definitions in that file
554 seem to have gone missing. */
555
556/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 557static LONGEST
c3e5cd34 558max_of_size (int size)
4c4b4cd2 559{
76a01679
JB
560 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
561 return top_bit | (top_bit - 1);
4c4b4cd2
PH
562}
563
c3e5cd34 564/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 565static LONGEST
c3e5cd34 566min_of_size (int size)
4c4b4cd2 567{
c3e5cd34 568 return -max_of_size (size) - 1;
4c4b4cd2
PH
569}
570
c3e5cd34 571/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 572static ULONGEST
c3e5cd34 573umax_of_size (int size)
4c4b4cd2 574{
76a01679
JB
575 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
576 return top_bit | (top_bit - 1);
4c4b4cd2
PH
577}
578
c3e5cd34
PH
579/* Maximum value of integral type T, as a signed quantity. */
580static LONGEST
581max_of_type (struct type *t)
4c4b4cd2 582{
c3e5cd34
PH
583 if (TYPE_UNSIGNED (t))
584 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
585 else
586 return max_of_size (TYPE_LENGTH (t));
587}
588
589/* Minimum value of integral type T, as a signed quantity. */
590static LONGEST
591min_of_type (struct type *t)
592{
593 if (TYPE_UNSIGNED (t))
594 return 0;
595 else
596 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
597}
598
599/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 600static LONGEST
4c4b4cd2
PH
601discrete_type_high_bound (struct type *type)
602{
76a01679 603 switch (TYPE_CODE (type))
4c4b4cd2
PH
604 {
605 case TYPE_CODE_RANGE:
690cc4eb 606 return TYPE_HIGH_BOUND (type);
4c4b4cd2 607 case TYPE_CODE_ENUM:
690cc4eb
PH
608 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
609 case TYPE_CODE_BOOL:
610 return 1;
611 case TYPE_CODE_CHAR:
76a01679 612 case TYPE_CODE_INT:
690cc4eb 613 return max_of_type (type);
4c4b4cd2 614 default:
323e0a4a 615 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
616 }
617}
618
619/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 620static LONGEST
4c4b4cd2
PH
621discrete_type_low_bound (struct type *type)
622{
76a01679 623 switch (TYPE_CODE (type))
4c4b4cd2
PH
624 {
625 case TYPE_CODE_RANGE:
690cc4eb 626 return TYPE_LOW_BOUND (type);
4c4b4cd2 627 case TYPE_CODE_ENUM:
690cc4eb
PH
628 return TYPE_FIELD_BITPOS (type, 0);
629 case TYPE_CODE_BOOL:
630 return 0;
631 case TYPE_CODE_CHAR:
76a01679 632 case TYPE_CODE_INT:
690cc4eb 633 return min_of_type (type);
4c4b4cd2 634 default:
323e0a4a 635 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
636 }
637}
638
639/* The identity on non-range types. For range types, the underlying
76a01679 640 non-range scalar type. */
4c4b4cd2
PH
641
642static struct type *
643base_type (struct type *type)
644{
645 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
646 {
76a01679
JB
647 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
648 return type;
4c4b4cd2
PH
649 type = TYPE_TARGET_TYPE (type);
650 }
651 return type;
14f9c5c9 652}
4c4b4cd2 653\f
76a01679 654
4c4b4cd2 655 /* Language Selection */
14f9c5c9
AS
656
657/* If the main program is in Ada, return language_ada, otherwise return LANG
658 (the main program is in Ada iif the adainit symbol is found).
659
4c4b4cd2 660 MAIN_PST is not used. */
d2e4a39e 661
14f9c5c9 662enum language
d2e4a39e 663ada_update_initial_language (enum language lang,
4c4b4cd2 664 struct partial_symtab *main_pst)
14f9c5c9 665{
d2e4a39e 666 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
667 (struct objfile *) NULL) != NULL)
668 return language_ada;
14f9c5c9
AS
669
670 return lang;
671}
96d887e8
PH
672
673/* If the main procedure is written in Ada, then return its name.
674 The result is good until the next call. Return NULL if the main
675 procedure doesn't appear to be in Ada. */
676
677char *
678ada_main_name (void)
679{
680 struct minimal_symbol *msym;
681 CORE_ADDR main_program_name_addr;
682 static char main_program_name[1024];
6c038f32 683
96d887e8
PH
684 /* For Ada, the name of the main procedure is stored in a specific
685 string constant, generated by the binder. Look for that symbol,
686 extract its address, and then read that string. If we didn't find
687 that string, then most probably the main procedure is not written
688 in Ada. */
689 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
690
691 if (msym != NULL)
692 {
693 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
694 if (main_program_name_addr == 0)
323e0a4a 695 error (_("Invalid address for Ada main program name."));
96d887e8
PH
696
697 extract_string (main_program_name_addr, main_program_name);
698 return main_program_name;
699 }
700
701 /* The main procedure doesn't seem to be in Ada. */
702 return NULL;
703}
14f9c5c9 704\f
4c4b4cd2 705 /* Symbols */
d2e4a39e 706
4c4b4cd2
PH
707/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
708 of NULLs. */
14f9c5c9 709
d2e4a39e
AS
710const struct ada_opname_map ada_opname_table[] = {
711 {"Oadd", "\"+\"", BINOP_ADD},
712 {"Osubtract", "\"-\"", BINOP_SUB},
713 {"Omultiply", "\"*\"", BINOP_MUL},
714 {"Odivide", "\"/\"", BINOP_DIV},
715 {"Omod", "\"mod\"", BINOP_MOD},
716 {"Orem", "\"rem\"", BINOP_REM},
717 {"Oexpon", "\"**\"", BINOP_EXP},
718 {"Olt", "\"<\"", BINOP_LESS},
719 {"Ole", "\"<=\"", BINOP_LEQ},
720 {"Ogt", "\">\"", BINOP_GTR},
721 {"Oge", "\">=\"", BINOP_GEQ},
722 {"Oeq", "\"=\"", BINOP_EQUAL},
723 {"One", "\"/=\"", BINOP_NOTEQUAL},
724 {"Oand", "\"and\"", BINOP_BITWISE_AND},
725 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
726 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
727 {"Oconcat", "\"&\"", BINOP_CONCAT},
728 {"Oabs", "\"abs\"", UNOP_ABS},
729 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
730 {"Oadd", "\"+\"", UNOP_PLUS},
731 {"Osubtract", "\"-\"", UNOP_NEG},
732 {NULL, NULL}
14f9c5c9
AS
733};
734
4c4b4cd2
PH
735/* Return non-zero if STR should be suppressed in info listings. */
736
14f9c5c9 737static int
d2e4a39e 738is_suppressed_name (const char *str)
14f9c5c9 739{
4c4b4cd2 740 if (strncmp (str, "_ada_", 5) == 0)
14f9c5c9
AS
741 str += 5;
742 if (str[0] == '_' || str[0] == '\000')
743 return 1;
744 else
745 {
d2e4a39e
AS
746 const char *p;
747 const char *suffix = strstr (str, "___");
14f9c5c9 748 if (suffix != NULL && suffix[3] != 'X')
4c4b4cd2 749 return 1;
14f9c5c9 750 if (suffix == NULL)
4c4b4cd2 751 suffix = str + strlen (str);
d2e4a39e 752 for (p = suffix - 1; p != str; p -= 1)
4c4b4cd2
PH
753 if (isupper (*p))
754 {
755 int i;
756 if (p[0] == 'X' && p[-1] != '_')
757 goto OK;
758 if (*p != 'O')
759 return 1;
760 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
761 if (strncmp (ada_opname_table[i].encoded, p,
762 strlen (ada_opname_table[i].encoded)) == 0)
763 goto OK;
764 return 1;
765 OK:;
766 }
14f9c5c9
AS
767 return 0;
768 }
769}
770
4c4b4cd2
PH
771/* The "encoded" form of DECODED, according to GNAT conventions.
772 The result is valid until the next call to ada_encode. */
773
14f9c5c9 774char *
4c4b4cd2 775ada_encode (const char *decoded)
14f9c5c9 776{
4c4b4cd2
PH
777 static char *encoding_buffer = NULL;
778 static size_t encoding_buffer_size = 0;
d2e4a39e 779 const char *p;
14f9c5c9 780 int k;
d2e4a39e 781
4c4b4cd2 782 if (decoded == NULL)
14f9c5c9
AS
783 return NULL;
784
4c4b4cd2
PH
785 GROW_VECT (encoding_buffer, encoding_buffer_size,
786 2 * strlen (decoded) + 10);
14f9c5c9
AS
787
788 k = 0;
4c4b4cd2 789 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 790 {
cdc7bb92 791 if (*p == '.')
4c4b4cd2
PH
792 {
793 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
794 k += 2;
795 }
14f9c5c9 796 else if (*p == '"')
4c4b4cd2
PH
797 {
798 const struct ada_opname_map *mapping;
799
800 for (mapping = ada_opname_table;
1265e4aa
JB
801 mapping->encoded != NULL
802 && strncmp (mapping->decoded, p,
803 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
804 ;
805 if (mapping->encoded == NULL)
323e0a4a 806 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
807 strcpy (encoding_buffer + k, mapping->encoded);
808 k += strlen (mapping->encoded);
809 break;
810 }
d2e4a39e 811 else
4c4b4cd2
PH
812 {
813 encoding_buffer[k] = *p;
814 k += 1;
815 }
14f9c5c9
AS
816 }
817
4c4b4cd2
PH
818 encoding_buffer[k] = '\0';
819 return encoding_buffer;
14f9c5c9
AS
820}
821
822/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
823 quotes, unfolded, but with the quotes stripped away. Result good
824 to next call. */
825
d2e4a39e
AS
826char *
827ada_fold_name (const char *name)
14f9c5c9 828{
d2e4a39e 829 static char *fold_buffer = NULL;
14f9c5c9
AS
830 static size_t fold_buffer_size = 0;
831
832 int len = strlen (name);
d2e4a39e 833 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
834
835 if (name[0] == '\'')
836 {
d2e4a39e
AS
837 strncpy (fold_buffer, name + 1, len - 2);
838 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
839 }
840 else
841 {
842 int i;
843 for (i = 0; i <= len; i += 1)
4c4b4cd2 844 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
845 }
846
847 return fold_buffer;
848}
849
529cad9c
PH
850/* Return nonzero if C is either a digit or a lowercase alphabet character. */
851
852static int
853is_lower_alphanum (const char c)
854{
855 return (isdigit (c) || (isalpha (c) && islower (c)));
856}
857
29480c32
JB
858/* Remove either of these suffixes:
859 . .{DIGIT}+
860 . ${DIGIT}+
861 . ___{DIGIT}+
862 . __{DIGIT}+.
863 These are suffixes introduced by the compiler for entities such as
864 nested subprogram for instance, in order to avoid name clashes.
865 They do not serve any purpose for the debugger. */
866
867static void
868ada_remove_trailing_digits (const char *encoded, int *len)
869{
870 if (*len > 1 && isdigit (encoded[*len - 1]))
871 {
872 int i = *len - 2;
873 while (i > 0 && isdigit (encoded[i]))
874 i--;
875 if (i >= 0 && encoded[i] == '.')
876 *len = i;
877 else if (i >= 0 && encoded[i] == '$')
878 *len = i;
879 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
880 *len = i - 2;
881 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
882 *len = i - 1;
883 }
884}
885
886/* Remove the suffix introduced by the compiler for protected object
887 subprograms. */
888
889static void
890ada_remove_po_subprogram_suffix (const char *encoded, int *len)
891{
892 /* Remove trailing N. */
893
894 /* Protected entry subprograms are broken into two
895 separate subprograms: The first one is unprotected, and has
896 a 'N' suffix; the second is the protected version, and has
897 the 'P' suffix. The second calls the first one after handling
898 the protection. Since the P subprograms are internally generated,
899 we leave these names undecoded, giving the user a clue that this
900 entity is internal. */
901
902 if (*len > 1
903 && encoded[*len - 1] == 'N'
904 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
905 *len = *len - 1;
906}
907
908/* If ENCODED follows the GNAT entity encoding conventions, then return
909 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
910 replaced by ENCODED.
14f9c5c9 911
4c4b4cd2 912 The resulting string is valid until the next call of ada_decode.
29480c32 913 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
914 is returned. */
915
916const char *
917ada_decode (const char *encoded)
14f9c5c9
AS
918{
919 int i, j;
920 int len0;
d2e4a39e 921 const char *p;
4c4b4cd2 922 char *decoded;
14f9c5c9 923 int at_start_name;
4c4b4cd2
PH
924 static char *decoding_buffer = NULL;
925 static size_t decoding_buffer_size = 0;
d2e4a39e 926
29480c32
JB
927 /* The name of the Ada main procedure starts with "_ada_".
928 This prefix is not part of the decoded name, so skip this part
929 if we see this prefix. */
4c4b4cd2
PH
930 if (strncmp (encoded, "_ada_", 5) == 0)
931 encoded += 5;
14f9c5c9 932
29480c32
JB
933 /* If the name starts with '_', then it is not a properly encoded
934 name, so do not attempt to decode it. Similarly, if the name
935 starts with '<', the name should not be decoded. */
4c4b4cd2 936 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
937 goto Suppress;
938
4c4b4cd2 939 len0 = strlen (encoded);
4c4b4cd2 940
29480c32
JB
941 ada_remove_trailing_digits (encoded, &len0);
942 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 943
4c4b4cd2
PH
944 /* Remove the ___X.* suffix if present. Do not forget to verify that
945 the suffix is located before the current "end" of ENCODED. We want
946 to avoid re-matching parts of ENCODED that have previously been
947 marked as discarded (by decrementing LEN0). */
948 p = strstr (encoded, "___");
949 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
950 {
951 if (p[3] == 'X')
4c4b4cd2 952 len0 = p - encoded;
14f9c5c9 953 else
4c4b4cd2 954 goto Suppress;
14f9c5c9 955 }
4c4b4cd2 956
29480c32
JB
957 /* Remove any trailing TKB suffix. It tells us that this symbol
958 is for the body of a task, but that information does not actually
959 appear in the decoded name. */
960
4c4b4cd2 961 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 962 len0 -= 3;
76a01679 963
29480c32
JB
964 /* Remove trailing "B" suffixes. */
965 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
966
4c4b4cd2 967 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
968 len0 -= 1;
969
4c4b4cd2 970 /* Make decoded big enough for possible expansion by operator name. */
29480c32 971
4c4b4cd2
PH
972 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
973 decoded = decoding_buffer;
14f9c5c9 974
29480c32
JB
975 /* Remove trailing __{digit}+ or trailing ${digit}+. */
976
4c4b4cd2 977 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 978 {
4c4b4cd2
PH
979 i = len0 - 2;
980 while ((i >= 0 && isdigit (encoded[i]))
981 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
982 i -= 1;
983 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
984 len0 = i - 1;
985 else if (encoded[i] == '$')
986 len0 = i;
d2e4a39e 987 }
14f9c5c9 988
29480c32
JB
989 /* The first few characters that are not alphabetic are not part
990 of any encoding we use, so we can copy them over verbatim. */
991
4c4b4cd2
PH
992 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
993 decoded[j] = encoded[i];
14f9c5c9
AS
994
995 at_start_name = 1;
996 while (i < len0)
997 {
29480c32 998 /* Is this a symbol function? */
4c4b4cd2
PH
999 if (at_start_name && encoded[i] == 'O')
1000 {
1001 int k;
1002 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1003 {
1004 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1005 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1006 op_len - 1) == 0)
1007 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1008 {
1009 strcpy (decoded + j, ada_opname_table[k].decoded);
1010 at_start_name = 0;
1011 i += op_len;
1012 j += strlen (ada_opname_table[k].decoded);
1013 break;
1014 }
1015 }
1016 if (ada_opname_table[k].encoded != NULL)
1017 continue;
1018 }
14f9c5c9
AS
1019 at_start_name = 0;
1020
529cad9c
PH
1021 /* Replace "TK__" with "__", which will eventually be translated
1022 into "." (just below). */
1023
4c4b4cd2
PH
1024 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1025 i += 2;
529cad9c 1026
29480c32
JB
1027 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1028 be translated into "." (just below). These are internal names
1029 generated for anonymous blocks inside which our symbol is nested. */
1030
1031 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1032 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1033 && isdigit (encoded [i+4]))
1034 {
1035 int k = i + 5;
1036
1037 while (k < len0 && isdigit (encoded[k]))
1038 k++; /* Skip any extra digit. */
1039
1040 /* Double-check that the "__B_{DIGITS}+" sequence we found
1041 is indeed followed by "__". */
1042 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1043 i = k;
1044 }
1045
529cad9c
PH
1046 /* Remove _E{DIGITS}+[sb] */
1047
1048 /* Just as for protected object subprograms, there are 2 categories
1049 of subprograms created by the compiler for each entry. The first
1050 one implements the actual entry code, and has a suffix following
1051 the convention above; the second one implements the barrier and
1052 uses the same convention as above, except that the 'E' is replaced
1053 by a 'B'.
1054
1055 Just as above, we do not decode the name of barrier functions
1056 to give the user a clue that the code he is debugging has been
1057 internally generated. */
1058
1059 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1060 && isdigit (encoded[i+2]))
1061 {
1062 int k = i + 3;
1063
1064 while (k < len0 && isdigit (encoded[k]))
1065 k++;
1066
1067 if (k < len0
1068 && (encoded[k] == 'b' || encoded[k] == 's'))
1069 {
1070 k++;
1071 /* Just as an extra precaution, make sure that if this
1072 suffix is followed by anything else, it is a '_'.
1073 Otherwise, we matched this sequence by accident. */
1074 if (k == len0
1075 || (k < len0 && encoded[k] == '_'))
1076 i = k;
1077 }
1078 }
1079
1080 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1081 the GNAT front-end in protected object subprograms. */
1082
1083 if (i < len0 + 3
1084 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1085 {
1086 /* Backtrack a bit up until we reach either the begining of
1087 the encoded name, or "__". Make sure that we only find
1088 digits or lowercase characters. */
1089 const char *ptr = encoded + i - 1;
1090
1091 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1092 ptr--;
1093 if (ptr < encoded
1094 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1095 i++;
1096 }
1097
4c4b4cd2
PH
1098 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1099 {
29480c32
JB
1100 /* This is a X[bn]* sequence not separated from the previous
1101 part of the name with a non-alpha-numeric character (in other
1102 words, immediately following an alpha-numeric character), then
1103 verify that it is placed at the end of the encoded name. If
1104 not, then the encoding is not valid and we should abort the
1105 decoding. Otherwise, just skip it, it is used in body-nested
1106 package names. */
4c4b4cd2
PH
1107 do
1108 i += 1;
1109 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1110 if (i < len0)
1111 goto Suppress;
1112 }
cdc7bb92 1113 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1114 {
29480c32 1115 /* Replace '__' by '.'. */
4c4b4cd2
PH
1116 decoded[j] = '.';
1117 at_start_name = 1;
1118 i += 2;
1119 j += 1;
1120 }
14f9c5c9 1121 else
4c4b4cd2 1122 {
29480c32
JB
1123 /* It's a character part of the decoded name, so just copy it
1124 over. */
4c4b4cd2
PH
1125 decoded[j] = encoded[i];
1126 i += 1;
1127 j += 1;
1128 }
14f9c5c9 1129 }
4c4b4cd2 1130 decoded[j] = '\000';
14f9c5c9 1131
29480c32
JB
1132 /* Decoded names should never contain any uppercase character.
1133 Double-check this, and abort the decoding if we find one. */
1134
4c4b4cd2
PH
1135 for (i = 0; decoded[i] != '\0'; i += 1)
1136 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1137 goto Suppress;
1138
4c4b4cd2
PH
1139 if (strcmp (decoded, encoded) == 0)
1140 return encoded;
1141 else
1142 return decoded;
14f9c5c9
AS
1143
1144Suppress:
4c4b4cd2
PH
1145 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1146 decoded = decoding_buffer;
1147 if (encoded[0] == '<')
1148 strcpy (decoded, encoded);
14f9c5c9 1149 else
4c4b4cd2
PH
1150 sprintf (decoded, "<%s>", encoded);
1151 return decoded;
1152
1153}
1154
1155/* Table for keeping permanent unique copies of decoded names. Once
1156 allocated, names in this table are never released. While this is a
1157 storage leak, it should not be significant unless there are massive
1158 changes in the set of decoded names in successive versions of a
1159 symbol table loaded during a single session. */
1160static struct htab *decoded_names_store;
1161
1162/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1163 in the language-specific part of GSYMBOL, if it has not been
1164 previously computed. Tries to save the decoded name in the same
1165 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1166 in any case, the decoded symbol has a lifetime at least that of
1167 GSYMBOL).
1168 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1169 const, but nevertheless modified to a semantically equivalent form
1170 when a decoded name is cached in it.
76a01679 1171*/
4c4b4cd2 1172
76a01679
JB
1173char *
1174ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1175{
76a01679 1176 char **resultp =
4c4b4cd2
PH
1177 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1178 if (*resultp == NULL)
1179 {
1180 const char *decoded = ada_decode (gsymbol->name);
714835d5 1181 if (gsymbol->obj_section != NULL)
76a01679 1182 {
714835d5
UW
1183 struct objfile *objf = gsymbol->obj_section->objfile;
1184 *resultp = obsavestring (decoded, strlen (decoded),
1185 &objf->objfile_obstack);
76a01679 1186 }
4c4b4cd2 1187 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1188 case, we put the result on the heap. Since we only decode
1189 when needed, we hope this usually does not cause a
1190 significant memory leak (FIXME). */
4c4b4cd2 1191 if (*resultp == NULL)
76a01679
JB
1192 {
1193 char **slot = (char **) htab_find_slot (decoded_names_store,
1194 decoded, INSERT);
1195 if (*slot == NULL)
1196 *slot = xstrdup (decoded);
1197 *resultp = *slot;
1198 }
4c4b4cd2 1199 }
14f9c5c9 1200
4c4b4cd2
PH
1201 return *resultp;
1202}
76a01679
JB
1203
1204char *
1205ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1206{
1207 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1208}
1209
1210/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1211 suffixes that encode debugging information or leading _ada_ on
1212 SYM_NAME (see is_name_suffix commentary for the debugging
1213 information that is ignored). If WILD, then NAME need only match a
1214 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1215 either argument is NULL. */
14f9c5c9
AS
1216
1217int
d2e4a39e 1218ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1219{
1220 if (sym_name == NULL || name == NULL)
1221 return 0;
1222 else if (wild)
1223 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1224 else
1225 {
1226 int len_name = strlen (name);
4c4b4cd2
PH
1227 return (strncmp (sym_name, name, len_name) == 0
1228 && is_name_suffix (sym_name + len_name))
1229 || (strncmp (sym_name, "_ada_", 5) == 0
1230 && strncmp (sym_name + 5, name, len_name) == 0
1231 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1232 }
14f9c5c9
AS
1233}
1234
4c4b4cd2
PH
1235/* True (non-zero) iff, in Ada mode, the symbol SYM should be
1236 suppressed in info listings. */
14f9c5c9
AS
1237
1238int
ebf56fd3 1239ada_suppress_symbol_printing (struct symbol *sym)
14f9c5c9 1240{
176620f1 1241 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
14f9c5c9 1242 return 1;
d2e4a39e 1243 else
4c4b4cd2 1244 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
14f9c5c9 1245}
14f9c5c9 1246\f
d2e4a39e 1247
4c4b4cd2 1248 /* Arrays */
14f9c5c9 1249
4c4b4cd2 1250/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1251
d2e4a39e
AS
1252static char *bound_name[] = {
1253 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1254 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1255};
1256
1257/* Maximum number of array dimensions we are prepared to handle. */
1258
4c4b4cd2 1259#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1260
4c4b4cd2 1261/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1262
1263static void
ebf56fd3 1264modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1265{
4c4b4cd2 1266 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1267}
1268
1269
4c4b4cd2
PH
1270/* The desc_* routines return primitive portions of array descriptors
1271 (fat pointers). */
14f9c5c9
AS
1272
1273/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1274 level of indirection, if needed. */
1275
d2e4a39e
AS
1276static struct type *
1277desc_base_type (struct type *type)
14f9c5c9
AS
1278{
1279 if (type == NULL)
1280 return NULL;
61ee279c 1281 type = ada_check_typedef (type);
1265e4aa
JB
1282 if (type != NULL
1283 && (TYPE_CODE (type) == TYPE_CODE_PTR
1284 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1285 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1286 else
1287 return type;
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thin" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thin_pntr (struct type *type)
14f9c5c9 1294{
d2e4a39e 1295 return
14f9c5c9
AS
1296 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1297 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1298}
1299
4c4b4cd2
PH
1300/* The descriptor type for thin pointer type TYPE. */
1301
d2e4a39e
AS
1302static struct type *
1303thin_descriptor_type (struct type *type)
14f9c5c9 1304{
d2e4a39e 1305 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1306 if (base_type == NULL)
1307 return NULL;
1308 if (is_suffix (ada_type_name (base_type), "___XVE"))
1309 return base_type;
d2e4a39e 1310 else
14f9c5c9 1311 {
d2e4a39e 1312 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1313 if (alt_type == NULL)
4c4b4cd2 1314 return base_type;
14f9c5c9 1315 else
4c4b4cd2 1316 return alt_type;
14f9c5c9
AS
1317 }
1318}
1319
4c4b4cd2
PH
1320/* A pointer to the array data for thin-pointer value VAL. */
1321
d2e4a39e
AS
1322static struct value *
1323thin_data_pntr (struct value *val)
14f9c5c9 1324{
df407dfe 1325 struct type *type = value_type (val);
14f9c5c9 1326 if (TYPE_CODE (type) == TYPE_CODE_PTR)
d2e4a39e 1327 return value_cast (desc_data_type (thin_descriptor_type (type)),
4c4b4cd2 1328 value_copy (val));
d2e4a39e 1329 else
14f9c5c9 1330 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
df407dfe 1331 VALUE_ADDRESS (val) + value_offset (val));
14f9c5c9
AS
1332}
1333
4c4b4cd2
PH
1334/* True iff TYPE indicates a "thick" array pointer type. */
1335
14f9c5c9 1336static int
d2e4a39e 1337is_thick_pntr (struct type *type)
14f9c5c9
AS
1338{
1339 type = desc_base_type (type);
1340 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1341 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1342}
1343
4c4b4cd2
PH
1344/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1345 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1346
d2e4a39e
AS
1347static struct type *
1348desc_bounds_type (struct type *type)
14f9c5c9 1349{
d2e4a39e 1350 struct type *r;
14f9c5c9
AS
1351
1352 type = desc_base_type (type);
1353
1354 if (type == NULL)
1355 return NULL;
1356 else if (is_thin_pntr (type))
1357 {
1358 type = thin_descriptor_type (type);
1359 if (type == NULL)
4c4b4cd2 1360 return NULL;
14f9c5c9
AS
1361 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1362 if (r != NULL)
61ee279c 1363 return ada_check_typedef (r);
14f9c5c9
AS
1364 }
1365 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1366 {
1367 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1368 if (r != NULL)
61ee279c 1369 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1370 }
1371 return NULL;
1372}
1373
1374/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1375 one, a pointer to its bounds data. Otherwise NULL. */
1376
d2e4a39e
AS
1377static struct value *
1378desc_bounds (struct value *arr)
14f9c5c9 1379{
df407dfe 1380 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1381 if (is_thin_pntr (type))
14f9c5c9 1382 {
d2e4a39e 1383 struct type *bounds_type =
4c4b4cd2 1384 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1385 LONGEST addr;
1386
4cdfadb1 1387 if (bounds_type == NULL)
323e0a4a 1388 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1389
1390 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1391 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1392 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1393 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1394 addr = value_as_long (arr);
d2e4a39e 1395 else
df407dfe 1396 addr = VALUE_ADDRESS (arr) + value_offset (arr);
14f9c5c9 1397
d2e4a39e 1398 return
4c4b4cd2
PH
1399 value_from_longest (lookup_pointer_type (bounds_type),
1400 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1401 }
1402
1403 else if (is_thick_pntr (type))
d2e4a39e 1404 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1405 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1406 else
1407 return NULL;
1408}
1409
4c4b4cd2
PH
1410/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1411 position of the field containing the address of the bounds data. */
1412
14f9c5c9 1413static int
d2e4a39e 1414fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1415{
1416 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1417}
1418
1419/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1420 size of the field containing the address of the bounds data. */
1421
14f9c5c9 1422static int
d2e4a39e 1423fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1424{
1425 type = desc_base_type (type);
1426
d2e4a39e 1427 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1428 return TYPE_FIELD_BITSIZE (type, 1);
1429 else
61ee279c 1430 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1431}
1432
4c4b4cd2 1433/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
14f9c5c9 1434 pointer to one, the type of its array data (a
4c4b4cd2
PH
1435 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1436 ada_type_of_array to get an array type with bounds data. */
1437
d2e4a39e
AS
1438static struct type *
1439desc_data_type (struct type *type)
14f9c5c9
AS
1440{
1441 type = desc_base_type (type);
1442
4c4b4cd2 1443 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1444 if (is_thin_pntr (type))
d2e4a39e
AS
1445 return lookup_pointer_type
1446 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
14f9c5c9
AS
1447 else if (is_thick_pntr (type))
1448 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1449 else
1450 return NULL;
1451}
1452
1453/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1454 its array data. */
4c4b4cd2 1455
d2e4a39e
AS
1456static struct value *
1457desc_data (struct value *arr)
14f9c5c9 1458{
df407dfe 1459 struct type *type = value_type (arr);
14f9c5c9
AS
1460 if (is_thin_pntr (type))
1461 return thin_data_pntr (arr);
1462 else if (is_thick_pntr (type))
d2e4a39e 1463 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1464 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1465 else
1466 return NULL;
1467}
1468
1469
1470/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1471 position of the field containing the address of the data. */
1472
14f9c5c9 1473static int
d2e4a39e 1474fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1475{
1476 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1477}
1478
1479/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1480 size of the field containing the address of the data. */
1481
14f9c5c9 1482static int
d2e4a39e 1483fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1484{
1485 type = desc_base_type (type);
1486
1487 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1488 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1489 else
14f9c5c9
AS
1490 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1491}
1492
4c4b4cd2 1493/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1494 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1495 bound, if WHICH is 1. The first bound is I=1. */
1496
d2e4a39e
AS
1497static struct value *
1498desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1499{
d2e4a39e 1500 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1501 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1502}
1503
1504/* If BOUNDS is an array-bounds structure type, return the bit position
1505 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1506 bound, if WHICH is 1. The first bound is I=1. */
1507
14f9c5c9 1508static int
d2e4a39e 1509desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1510{
d2e4a39e 1511 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1512}
1513
1514/* If BOUNDS is an array-bounds structure type, return the bit field size
1515 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1516 bound, if WHICH is 1. The first bound is I=1. */
1517
76a01679 1518static int
d2e4a39e 1519desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1520{
1521 type = desc_base_type (type);
1522
d2e4a39e
AS
1523 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1524 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1525 else
1526 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1527}
1528
1529/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1530 Ith bound (numbering from 1). Otherwise, NULL. */
1531
d2e4a39e
AS
1532static struct type *
1533desc_index_type (struct type *type, int i)
14f9c5c9
AS
1534{
1535 type = desc_base_type (type);
1536
1537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1538 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1539 else
14f9c5c9
AS
1540 return NULL;
1541}
1542
4c4b4cd2
PH
1543/* The number of index positions in the array-bounds type TYPE.
1544 Return 0 if TYPE is NULL. */
1545
14f9c5c9 1546static int
d2e4a39e 1547desc_arity (struct type *type)
14f9c5c9
AS
1548{
1549 type = desc_base_type (type);
1550
1551 if (type != NULL)
1552 return TYPE_NFIELDS (type) / 2;
1553 return 0;
1554}
1555
4c4b4cd2
PH
1556/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1557 an array descriptor type (representing an unconstrained array
1558 type). */
1559
76a01679
JB
1560static int
1561ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1562{
1563 if (type == NULL)
1564 return 0;
61ee279c 1565 type = ada_check_typedef (type);
4c4b4cd2 1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1567 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1568}
1569
52ce6436
PH
1570/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1571 * to one. */
1572
1573int
1574ada_is_array_type (struct type *type)
1575{
1576 while (type != NULL
1577 && (TYPE_CODE (type) == TYPE_CODE_PTR
1578 || TYPE_CODE (type) == TYPE_CODE_REF))
1579 type = TYPE_TARGET_TYPE (type);
1580 return ada_is_direct_array_type (type);
1581}
1582
4c4b4cd2 1583/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1584
14f9c5c9 1585int
4c4b4cd2 1586ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1587{
1588 if (type == NULL)
1589 return 0;
61ee279c 1590 type = ada_check_typedef (type);
14f9c5c9 1591 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1592 || (TYPE_CODE (type) == TYPE_CODE_PTR
1593 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1594}
1595
4c4b4cd2
PH
1596/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1597
14f9c5c9 1598int
4c4b4cd2 1599ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1600{
d2e4a39e 1601 struct type *data_type = desc_data_type (type);
14f9c5c9
AS
1602
1603 if (type == NULL)
1604 return 0;
61ee279c 1605 type = ada_check_typedef (type);
d2e4a39e 1606 return
14f9c5c9
AS
1607 data_type != NULL
1608 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
4c4b4cd2
PH
1609 && TYPE_TARGET_TYPE (data_type) != NULL
1610 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1265e4aa 1611 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
1612 && desc_arity (desc_bounds_type (type)) > 0;
1613}
1614
1615/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1616 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1617 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1618 is still needed. */
1619
14f9c5c9 1620int
ebf56fd3 1621ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1622{
d2e4a39e 1623 return
14f9c5c9
AS
1624 type != NULL
1625 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1626 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1627 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1628 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1629}
1630
1631
4c4b4cd2 1632/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1633 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1634 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1635 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1636 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1637 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1638 a descriptor. */
d2e4a39e
AS
1639struct type *
1640ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1641{
df407dfe
AC
1642 if (ada_is_packed_array_type (value_type (arr)))
1643 return decode_packed_array_type (value_type (arr));
14f9c5c9 1644
df407dfe
AC
1645 if (!ada_is_array_descriptor_type (value_type (arr)))
1646 return value_type (arr);
d2e4a39e
AS
1647
1648 if (!bounds)
1649 return
df407dfe 1650 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
14f9c5c9
AS
1651 else
1652 {
d2e4a39e 1653 struct type *elt_type;
14f9c5c9 1654 int arity;
d2e4a39e 1655 struct value *descriptor;
df407dfe 1656 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1657
df407dfe
AC
1658 elt_type = ada_array_element_type (value_type (arr), -1);
1659 arity = ada_array_arity (value_type (arr));
14f9c5c9 1660
d2e4a39e 1661 if (elt_type == NULL || arity == 0)
df407dfe 1662 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1663
1664 descriptor = desc_bounds (arr);
d2e4a39e 1665 if (value_as_long (descriptor) == 0)
4c4b4cd2 1666 return NULL;
d2e4a39e 1667 while (arity > 0)
4c4b4cd2
PH
1668 {
1669 struct type *range_type = alloc_type (objf);
1670 struct type *array_type = alloc_type (objf);
1671 struct value *low = desc_one_bound (descriptor, arity, 0);
1672 struct value *high = desc_one_bound (descriptor, arity, 1);
1673 arity -= 1;
1674
df407dfe 1675 create_range_type (range_type, value_type (low),
529cad9c
PH
1676 longest_to_int (value_as_long (low)),
1677 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1678 elt_type = create_array_type (array_type, elt_type, range_type);
1679 }
14f9c5c9
AS
1680
1681 return lookup_pointer_type (elt_type);
1682 }
1683}
1684
1685/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1686 Otherwise, returns either a standard GDB array with bounds set
1687 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1688 GDB array. Returns NULL if ARR is a null fat pointer. */
1689
d2e4a39e
AS
1690struct value *
1691ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1692{
df407dfe 1693 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1694 {
d2e4a39e 1695 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1696 if (arrType == NULL)
4c4b4cd2 1697 return NULL;
14f9c5c9
AS
1698 return value_cast (arrType, value_copy (desc_data (arr)));
1699 }
df407dfe 1700 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1701 return decode_packed_array (arr);
1702 else
1703 return arr;
1704}
1705
1706/* If ARR does not represent an array, returns ARR unchanged.
1707 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1708 be ARR itself if it already is in the proper form). */
1709
1710static struct value *
d2e4a39e 1711ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1712{
df407dfe 1713 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1714 {
d2e4a39e 1715 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1716 if (arrVal == NULL)
323e0a4a 1717 error (_("Bounds unavailable for null array pointer."));
529cad9c 1718 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1719 return value_ind (arrVal);
1720 }
df407dfe 1721 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1722 return decode_packed_array (arr);
d2e4a39e 1723 else
14f9c5c9
AS
1724 return arr;
1725}
1726
1727/* If TYPE represents a GNAT array type, return it translated to an
1728 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1729 packing). For other types, is the identity. */
1730
d2e4a39e
AS
1731struct type *
1732ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1733{
d2e4a39e 1734 struct value *mark = value_mark ();
6d84d3d8 1735 struct value *dummy = value_from_longest (builtin_type_int32, 0);
d2e4a39e 1736 struct type *result;
04624583 1737 deprecated_set_value_type (dummy, type);
14f9c5c9 1738 result = ada_type_of_array (dummy, 0);
4c4b4cd2 1739 value_free_to_mark (mark);
14f9c5c9
AS
1740 return result;
1741}
1742
4c4b4cd2
PH
1743/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1744
14f9c5c9 1745int
d2e4a39e 1746ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1747{
1748 if (type == NULL)
1749 return 0;
4c4b4cd2 1750 type = desc_base_type (type);
61ee279c 1751 type = ada_check_typedef (type);
d2e4a39e 1752 return
14f9c5c9
AS
1753 ada_type_name (type) != NULL
1754 && strstr (ada_type_name (type), "___XP") != NULL;
1755}
1756
1757/* Given that TYPE is a standard GDB array type with all bounds filled
1758 in, and that the element size of its ultimate scalar constituents
1759 (that is, either its elements, or, if it is an array of arrays, its
1760 elements' elements, etc.) is *ELT_BITS, return an identical type,
1761 but with the bit sizes of its elements (and those of any
1762 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1763 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1764 in bits. */
1765
d2e4a39e
AS
1766static struct type *
1767packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1768{
d2e4a39e
AS
1769 struct type *new_elt_type;
1770 struct type *new_type;
14f9c5c9
AS
1771 LONGEST low_bound, high_bound;
1772
61ee279c 1773 type = ada_check_typedef (type);
14f9c5c9
AS
1774 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1775 return type;
1776
1777 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1778 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1779 elt_bits);
262452ec 1780 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1781 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1782 TYPE_NAME (new_type) = ada_type_name (type);
1783
262452ec 1784 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1785 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1786 low_bound = high_bound = 0;
1787 if (high_bound < low_bound)
1788 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1789 else
14f9c5c9
AS
1790 {
1791 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1792 TYPE_LENGTH (new_type) =
4c4b4cd2 1793 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1794 }
1795
876cecd0 1796 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1797 return new_type;
1798}
1799
4c4b4cd2
PH
1800/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1801
d2e4a39e
AS
1802static struct type *
1803decode_packed_array_type (struct type *type)
1804{
4c4b4cd2 1805 struct symbol *sym;
d2e4a39e 1806 struct block **blocks;
727e3d2e
JB
1807 char *raw_name = ada_type_name (ada_check_typedef (type));
1808 char *name;
1809 char *tail;
d2e4a39e 1810 struct type *shadow_type;
14f9c5c9
AS
1811 long bits;
1812 int i, n;
1813
727e3d2e
JB
1814 if (!raw_name)
1815 raw_name = ada_type_name (desc_base_type (type));
1816
1817 if (!raw_name)
1818 return NULL;
1819
1820 name = (char *) alloca (strlen (raw_name) + 1);
1821 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1822 type = desc_base_type (type);
1823
14f9c5c9
AS
1824 memcpy (name, raw_name, tail - raw_name);
1825 name[tail - raw_name] = '\000';
1826
4c4b4cd2
PH
1827 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1828 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1829 {
323e0a4a 1830 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1831 return NULL;
1832 }
4c4b4cd2 1833 shadow_type = SYMBOL_TYPE (sym);
14f9c5c9
AS
1834
1835 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1836 {
323e0a4a 1837 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1838 return NULL;
1839 }
d2e4a39e 1840
14f9c5c9
AS
1841 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1842 {
4c4b4cd2 1843 lim_warning
323e0a4a 1844 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1845 return NULL;
1846 }
d2e4a39e 1847
14f9c5c9
AS
1848 return packed_array_type (shadow_type, &bits);
1849}
1850
4c4b4cd2 1851/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1852 returns a simple array that denotes that array. Its type is a
1853 standard GDB array type except that the BITSIZEs of the array
1854 target types are set to the number of bits in each element, and the
4c4b4cd2 1855 type length is set appropriately. */
14f9c5c9 1856
d2e4a39e
AS
1857static struct value *
1858decode_packed_array (struct value *arr)
14f9c5c9 1859{
4c4b4cd2 1860 struct type *type;
14f9c5c9 1861
4c4b4cd2 1862 arr = ada_coerce_ref (arr);
df407dfe 1863 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
4c4b4cd2
PH
1864 arr = ada_value_ind (arr);
1865
df407dfe 1866 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1867 if (type == NULL)
1868 {
323e0a4a 1869 error (_("can't unpack array"));
14f9c5c9
AS
1870 return NULL;
1871 }
61ee279c 1872
32c9a795
MD
1873 if (gdbarch_bits_big_endian (current_gdbarch)
1874 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1875 {
1876 /* This is a (right-justified) modular type representing a packed
1877 array with no wrapper. In order to interpret the value through
1878 the (left-justified) packed array type we just built, we must
1879 first left-justify it. */
1880 int bit_size, bit_pos;
1881 ULONGEST mod;
1882
df407dfe 1883 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1884 bit_size = 0;
1885 while (mod > 0)
1886 {
1887 bit_size += 1;
1888 mod >>= 1;
1889 }
df407dfe 1890 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1891 arr = ada_value_primitive_packed_val (arr, NULL,
1892 bit_pos / HOST_CHAR_BIT,
1893 bit_pos % HOST_CHAR_BIT,
1894 bit_size,
1895 type);
1896 }
1897
4c4b4cd2 1898 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1899}
1900
1901
1902/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1903 given in IND. ARR must be a simple array. */
14f9c5c9 1904
d2e4a39e
AS
1905static struct value *
1906value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1907{
1908 int i;
1909 int bits, elt_off, bit_off;
1910 long elt_total_bit_offset;
d2e4a39e
AS
1911 struct type *elt_type;
1912 struct value *v;
14f9c5c9
AS
1913
1914 bits = 0;
1915 elt_total_bit_offset = 0;
df407dfe 1916 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1917 for (i = 0; i < arity; i += 1)
14f9c5c9 1918 {
d2e4a39e 1919 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1920 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1921 error
323e0a4a 1922 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1923 else
4c4b4cd2
PH
1924 {
1925 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1926 LONGEST lowerbound, upperbound;
1927 LONGEST idx;
1928
1929 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1930 {
323e0a4a 1931 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1932 lowerbound = upperbound = 0;
1933 }
1934
3cb382c9 1935 idx = pos_atr (ind[i]);
4c4b4cd2 1936 if (idx < lowerbound || idx > upperbound)
323e0a4a 1937 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1938 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1939 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1940 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1941 }
14f9c5c9
AS
1942 }
1943 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1944 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1945
1946 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1947 bits, elt_type);
14f9c5c9
AS
1948 return v;
1949}
1950
4c4b4cd2 1951/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1952
1953static int
d2e4a39e 1954has_negatives (struct type *type)
14f9c5c9 1955{
d2e4a39e
AS
1956 switch (TYPE_CODE (type))
1957 {
1958 default:
1959 return 0;
1960 case TYPE_CODE_INT:
1961 return !TYPE_UNSIGNED (type);
1962 case TYPE_CODE_RANGE:
1963 return TYPE_LOW_BOUND (type) < 0;
1964 }
14f9c5c9 1965}
d2e4a39e 1966
14f9c5c9
AS
1967
1968/* Create a new value of type TYPE from the contents of OBJ starting
1969 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1970 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1971 assigning through the result will set the field fetched from.
1972 VALADDR is ignored unless OBJ is NULL, in which case,
1973 VALADDR+OFFSET must address the start of storage containing the
1974 packed value. The value returned in this case is never an lval.
1975 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1976
d2e4a39e 1977struct value *
fc1a4b47 1978ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1979 long offset, int bit_offset, int bit_size,
4c4b4cd2 1980 struct type *type)
14f9c5c9 1981{
d2e4a39e 1982 struct value *v;
4c4b4cd2
PH
1983 int src, /* Index into the source area */
1984 targ, /* Index into the target area */
1985 srcBitsLeft, /* Number of source bits left to move */
1986 nsrc, ntarg, /* Number of source and target bytes */
1987 unusedLS, /* Number of bits in next significant
1988 byte of source that are unused */
1989 accumSize; /* Number of meaningful bits in accum */
1990 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1991 unsigned char *unpacked;
4c4b4cd2 1992 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1993 unsigned char sign;
1994 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1995 /* Transmit bytes from least to most significant; delta is the direction
1996 the indices move. */
32c9a795 1997 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1998
61ee279c 1999 type = ada_check_typedef (type);
14f9c5c9
AS
2000
2001 if (obj == NULL)
2002 {
2003 v = allocate_value (type);
d2e4a39e 2004 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2005 }
9214ee5f 2006 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2007 {
2008 v = value_at (type,
df407dfe 2009 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
d2e4a39e 2010 bytes = (unsigned char *) alloca (len);
14f9c5c9
AS
2011 read_memory (VALUE_ADDRESS (v), bytes, len);
2012 }
d2e4a39e 2013 else
14f9c5c9
AS
2014 {
2015 v = allocate_value (type);
0fd88904 2016 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2017 }
d2e4a39e
AS
2018
2019 if (obj != NULL)
14f9c5c9 2020 {
74bcbdf3
PA
2021 set_value_component_location (v, obj);
2022 VALUE_ADDRESS (v) += value_offset (obj) + offset;
9bbda503
AC
2023 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2024 set_value_bitsize (v, bit_size);
df407dfe 2025 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2
PH
2026 {
2027 VALUE_ADDRESS (v) += 1;
9bbda503 2028 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2029 }
14f9c5c9
AS
2030 }
2031 else
9bbda503 2032 set_value_bitsize (v, bit_size);
0fd88904 2033 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2034
2035 srcBitsLeft = bit_size;
2036 nsrc = len;
2037 ntarg = TYPE_LENGTH (type);
2038 sign = 0;
2039 if (bit_size == 0)
2040 {
2041 memset (unpacked, 0, TYPE_LENGTH (type));
2042 return v;
2043 }
32c9a795 2044 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2045 {
d2e4a39e 2046 src = len - 1;
1265e4aa
JB
2047 if (has_negatives (type)
2048 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2049 sign = ~0;
d2e4a39e
AS
2050
2051 unusedLS =
4c4b4cd2
PH
2052 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2053 % HOST_CHAR_BIT;
14f9c5c9
AS
2054
2055 switch (TYPE_CODE (type))
4c4b4cd2
PH
2056 {
2057 case TYPE_CODE_ARRAY:
2058 case TYPE_CODE_UNION:
2059 case TYPE_CODE_STRUCT:
2060 /* Non-scalar values must be aligned at a byte boundary... */
2061 accumSize =
2062 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2063 /* ... And are placed at the beginning (most-significant) bytes
2064 of the target. */
529cad9c 2065 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
4c4b4cd2
PH
2066 break;
2067 default:
2068 accumSize = 0;
2069 targ = TYPE_LENGTH (type) - 1;
2070 break;
2071 }
14f9c5c9 2072 }
d2e4a39e 2073 else
14f9c5c9
AS
2074 {
2075 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2076
2077 src = targ = 0;
2078 unusedLS = bit_offset;
2079 accumSize = 0;
2080
d2e4a39e 2081 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2082 sign = ~0;
14f9c5c9 2083 }
d2e4a39e 2084
14f9c5c9
AS
2085 accum = 0;
2086 while (nsrc > 0)
2087 {
2088 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2089 part of the value. */
d2e4a39e 2090 unsigned int unusedMSMask =
4c4b4cd2
PH
2091 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2092 1;
2093 /* Sign-extend bits for this byte. */
14f9c5c9 2094 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2095 accum |=
4c4b4cd2 2096 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2097 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2098 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2099 {
2100 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2101 accumSize -= HOST_CHAR_BIT;
2102 accum >>= HOST_CHAR_BIT;
2103 ntarg -= 1;
2104 targ += delta;
2105 }
14f9c5c9
AS
2106 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2107 unusedLS = 0;
2108 nsrc -= 1;
2109 src += delta;
2110 }
2111 while (ntarg > 0)
2112 {
2113 accum |= sign << accumSize;
2114 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2115 accumSize -= HOST_CHAR_BIT;
2116 accum >>= HOST_CHAR_BIT;
2117 ntarg -= 1;
2118 targ += delta;
2119 }
2120
2121 return v;
2122}
d2e4a39e 2123
14f9c5c9
AS
2124/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2125 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2126 not overlap. */
14f9c5c9 2127static void
fc1a4b47 2128move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2129 int src_offset, int n)
14f9c5c9
AS
2130{
2131 unsigned int accum, mask;
2132 int accum_bits, chunk_size;
2133
2134 target += targ_offset / HOST_CHAR_BIT;
2135 targ_offset %= HOST_CHAR_BIT;
2136 source += src_offset / HOST_CHAR_BIT;
2137 src_offset %= HOST_CHAR_BIT;
32c9a795 2138 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2139 {
2140 accum = (unsigned char) *source;
2141 source += 1;
2142 accum_bits = HOST_CHAR_BIT - src_offset;
2143
d2e4a39e 2144 while (n > 0)
4c4b4cd2
PH
2145 {
2146 int unused_right;
2147 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2148 accum_bits += HOST_CHAR_BIT;
2149 source += 1;
2150 chunk_size = HOST_CHAR_BIT - targ_offset;
2151 if (chunk_size > n)
2152 chunk_size = n;
2153 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2154 mask = ((1 << chunk_size) - 1) << unused_right;
2155 *target =
2156 (*target & ~mask)
2157 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2158 n -= chunk_size;
2159 accum_bits -= chunk_size;
2160 target += 1;
2161 targ_offset = 0;
2162 }
14f9c5c9
AS
2163 }
2164 else
2165 {
2166 accum = (unsigned char) *source >> src_offset;
2167 source += 1;
2168 accum_bits = HOST_CHAR_BIT - src_offset;
2169
d2e4a39e 2170 while (n > 0)
4c4b4cd2
PH
2171 {
2172 accum = accum + ((unsigned char) *source << accum_bits);
2173 accum_bits += HOST_CHAR_BIT;
2174 source += 1;
2175 chunk_size = HOST_CHAR_BIT - targ_offset;
2176 if (chunk_size > n)
2177 chunk_size = n;
2178 mask = ((1 << chunk_size) - 1) << targ_offset;
2179 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2180 n -= chunk_size;
2181 accum_bits -= chunk_size;
2182 accum >>= chunk_size;
2183 target += 1;
2184 targ_offset = 0;
2185 }
14f9c5c9
AS
2186 }
2187}
2188
14f9c5c9
AS
2189/* Store the contents of FROMVAL into the location of TOVAL.
2190 Return a new value with the location of TOVAL and contents of
2191 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2192 floating-point or non-scalar types. */
14f9c5c9 2193
d2e4a39e
AS
2194static struct value *
2195ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2196{
df407dfe
AC
2197 struct type *type = value_type (toval);
2198 int bits = value_bitsize (toval);
14f9c5c9 2199
52ce6436
PH
2200 toval = ada_coerce_ref (toval);
2201 fromval = ada_coerce_ref (fromval);
2202
2203 if (ada_is_direct_array_type (value_type (toval)))
2204 toval = ada_coerce_to_simple_array (toval);
2205 if (ada_is_direct_array_type (value_type (fromval)))
2206 fromval = ada_coerce_to_simple_array (fromval);
2207
88e3b34b 2208 if (!deprecated_value_modifiable (toval))
323e0a4a 2209 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2210
d2e4a39e 2211 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2212 && bits > 0
d2e4a39e 2213 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2214 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2215 {
df407dfe
AC
2216 int len = (value_bitpos (toval)
2217 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2218 int from_size;
d2e4a39e
AS
2219 char *buffer = (char *) alloca (len);
2220 struct value *val;
52ce6436 2221 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
14f9c5c9
AS
2222
2223 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2224 fromval = value_cast (type, fromval);
14f9c5c9 2225
52ce6436 2226 read_memory (to_addr, buffer, len);
aced2898
PH
2227 from_size = value_bitsize (fromval);
2228 if (from_size == 0)
2229 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2230 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2231 move_bits (buffer, value_bitpos (toval),
aced2898 2232 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2233 else
0fd88904 2234 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2235 0, bits);
52ce6436
PH
2236 write_memory (to_addr, buffer, len);
2237 if (deprecated_memory_changed_hook)
2238 deprecated_memory_changed_hook (to_addr, len);
2239
14f9c5c9 2240 val = value_copy (toval);
0fd88904 2241 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2242 TYPE_LENGTH (type));
04624583 2243 deprecated_set_value_type (val, type);
d2e4a39e 2244
14f9c5c9
AS
2245 return val;
2246 }
2247
2248 return value_assign (toval, fromval);
2249}
2250
2251
52ce6436
PH
2252/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2253 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2254 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2255 * COMPONENT, and not the inferior's memory. The current contents
2256 * of COMPONENT are ignored. */
2257static void
2258value_assign_to_component (struct value *container, struct value *component,
2259 struct value *val)
2260{
2261 LONGEST offset_in_container =
2262 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2263 - VALUE_ADDRESS (container) - value_offset (container));
2264 int bit_offset_in_container =
2265 value_bitpos (component) - value_bitpos (container);
2266 int bits;
2267
2268 val = value_cast (value_type (component), val);
2269
2270 if (value_bitsize (component) == 0)
2271 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2272 else
2273 bits = value_bitsize (component);
2274
32c9a795 2275 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2276 move_bits (value_contents_writeable (container) + offset_in_container,
2277 value_bitpos (container) + bit_offset_in_container,
2278 value_contents (val),
2279 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2280 bits);
2281 else
2282 move_bits (value_contents_writeable (container) + offset_in_container,
2283 value_bitpos (container) + bit_offset_in_container,
2284 value_contents (val), 0, bits);
2285}
2286
4c4b4cd2
PH
2287/* The value of the element of array ARR at the ARITY indices given in IND.
2288 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2289 thereto. */
2290
d2e4a39e
AS
2291struct value *
2292ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2293{
2294 int k;
d2e4a39e
AS
2295 struct value *elt;
2296 struct type *elt_type;
14f9c5c9
AS
2297
2298 elt = ada_coerce_to_simple_array (arr);
2299
df407dfe 2300 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2301 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2302 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2303 return value_subscript_packed (elt, arity, ind);
2304
2305 for (k = 0; k < arity; k += 1)
2306 {
2307 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2308 error (_("too many subscripts (%d expected)"), k);
3cb382c9 2309 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
14f9c5c9
AS
2310 }
2311 return elt;
2312}
2313
2314/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2315 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2316 IND. Does not read the entire array into memory. */
14f9c5c9 2317
d2e4a39e
AS
2318struct value *
2319ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2320 struct value **ind)
14f9c5c9
AS
2321{
2322 int k;
2323
2324 for (k = 0; k < arity; k += 1)
2325 {
2326 LONGEST lwb, upb;
d2e4a39e 2327 struct value *idx;
14f9c5c9
AS
2328
2329 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2330 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2331 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2332 value_copy (arr));
14f9c5c9 2333 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
3cb382c9 2334 idx = value_pos_atr (builtin_type_int32, ind[k]);
4c4b4cd2 2335 if (lwb != 0)
89eef114
UW
2336 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2337 BINOP_SUB);
2338
2339 arr = value_ptradd (arr, idx);
14f9c5c9
AS
2340 type = TYPE_TARGET_TYPE (type);
2341 }
2342
2343 return value_ind (arr);
2344}
2345
0b5d8877 2346/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2347 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2348 elements starting at index LOW. The lower bound of this array is LOW, as
2349 per Ada rules. */
0b5d8877 2350static struct value *
f5938064
JG
2351ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2352 int low, int high)
0b5d8877 2353{
6c038f32 2354 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2355 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2356 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2357 struct type *index_type =
2358 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2359 low, high);
6c038f32 2360 struct type *slice_type =
0b5d8877 2361 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2362 return value_at_lazy (slice_type, base);
0b5d8877
PH
2363}
2364
2365
2366static struct value *
2367ada_value_slice (struct value *array, int low, int high)
2368{
df407dfe 2369 struct type *type = value_type (array);
6c038f32 2370 struct type *index_type =
0b5d8877 2371 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2372 struct type *slice_type =
0b5d8877 2373 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2374 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2375}
2376
14f9c5c9
AS
2377/* If type is a record type in the form of a standard GNAT array
2378 descriptor, returns the number of dimensions for type. If arr is a
2379 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2380 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2381
2382int
d2e4a39e 2383ada_array_arity (struct type *type)
14f9c5c9
AS
2384{
2385 int arity;
2386
2387 if (type == NULL)
2388 return 0;
2389
2390 type = desc_base_type (type);
2391
2392 arity = 0;
d2e4a39e 2393 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2394 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2395 else
2396 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2397 {
4c4b4cd2 2398 arity += 1;
61ee279c 2399 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2400 }
d2e4a39e 2401
14f9c5c9
AS
2402 return arity;
2403}
2404
2405/* If TYPE is a record type in the form of a standard GNAT array
2406 descriptor or a simple array type, returns the element type for
2407 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2408 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2409
d2e4a39e
AS
2410struct type *
2411ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2412{
2413 type = desc_base_type (type);
2414
d2e4a39e 2415 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2416 {
2417 int k;
d2e4a39e 2418 struct type *p_array_type;
14f9c5c9
AS
2419
2420 p_array_type = desc_data_type (type);
2421
2422 k = ada_array_arity (type);
2423 if (k == 0)
4c4b4cd2 2424 return NULL;
d2e4a39e 2425
4c4b4cd2 2426 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2427 if (nindices >= 0 && k > nindices)
4c4b4cd2 2428 k = nindices;
14f9c5c9 2429 p_array_type = TYPE_TARGET_TYPE (p_array_type);
d2e4a39e 2430 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2431 {
61ee279c 2432 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2433 k -= 1;
2434 }
14f9c5c9
AS
2435 return p_array_type;
2436 }
2437 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2438 {
2439 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2440 {
2441 type = TYPE_TARGET_TYPE (type);
2442 nindices -= 1;
2443 }
14f9c5c9
AS
2444 return type;
2445 }
2446
2447 return NULL;
2448}
2449
4c4b4cd2
PH
2450/* The type of nth index in arrays of given type (n numbering from 1).
2451 Does not examine memory. */
14f9c5c9 2452
d2e4a39e
AS
2453struct type *
2454ada_index_type (struct type *type, int n)
14f9c5c9 2455{
4c4b4cd2
PH
2456 struct type *result_type;
2457
14f9c5c9
AS
2458 type = desc_base_type (type);
2459
2460 if (n > ada_array_arity (type))
2461 return NULL;
2462
4c4b4cd2 2463 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2464 {
2465 int i;
2466
2467 for (i = 1; i < n; i += 1)
4c4b4cd2 2468 type = TYPE_TARGET_TYPE (type);
262452ec 2469 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2470 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2471 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679
JB
2472 perhaps stabsread.c would make more sense. */
2473 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
6d84d3d8 2474 result_type = builtin_type_int32;
14f9c5c9 2475
4c4b4cd2 2476 return result_type;
14f9c5c9 2477 }
d2e4a39e 2478 else
14f9c5c9
AS
2479 return desc_index_type (desc_bounds_type (type), n);
2480}
2481
2482/* Given that arr is an array type, returns the lower bound of the
2483 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2
PH
2484 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2485 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2486 bounds type. It works for other arrays with bounds supplied by
2487 run-time quantities other than discriminants. */
14f9c5c9 2488
abb68b3e 2489static LONGEST
d2e4a39e 2490ada_array_bound_from_type (struct type * arr_type, int n, int which,
4c4b4cd2 2491 struct type ** typep)
14f9c5c9 2492{
262452ec
JK
2493 struct type *type, *index_type_desc, *index_type;
2494 LONGEST retval;
2495
2496 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2497
2498 if (ada_is_packed_array_type (arr_type))
2499 arr_type = decode_packed_array_type (arr_type);
2500
4c4b4cd2 2501 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
14f9c5c9
AS
2502 {
2503 if (typep != NULL)
6d84d3d8 2504 *typep = builtin_type_int32;
d2e4a39e 2505 return (LONGEST) - which;
14f9c5c9
AS
2506 }
2507
2508 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2509 type = TYPE_TARGET_TYPE (arr_type);
2510 else
2511 type = arr_type;
2512
2513 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2514 if (index_type_desc != NULL)
2515 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2516 NULL, TYPE_OBJFILE (arr_type));
2517 else
14f9c5c9 2518 {
d2e4a39e 2519 while (n > 1)
4c4b4cd2
PH
2520 {
2521 type = TYPE_TARGET_TYPE (type);
2522 n -= 1;
2523 }
14f9c5c9 2524
abb68b3e 2525 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2526 }
262452ec
JK
2527
2528 switch (TYPE_CODE (index_type))
14f9c5c9 2529 {
262452ec
JK
2530 case TYPE_CODE_RANGE:
2531 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2532 : TYPE_HIGH_BOUND (index_type);
2533 break;
2534 case TYPE_CODE_ENUM:
2535 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2536 : TYPE_FIELD_BITPOS (index_type,
2537 TYPE_NFIELDS (index_type) - 1);
2538 break;
2539 default:
2540 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2541 }
abb68b3e 2542
262452ec
JK
2543 if (typep != NULL)
2544 *typep = index_type;
abb68b3e 2545
262452ec 2546 return retval;
14f9c5c9
AS
2547}
2548
2549/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2550 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2551 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2552 supplied by run-time quantities other than discriminants. */
14f9c5c9 2553
d2e4a39e 2554struct value *
4dc81987 2555ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2556{
df407dfe 2557 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2558
2559 if (ada_is_packed_array_type (arr_type))
2560 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2561 else if (ada_is_simple_array_type (arr_type))
14f9c5c9 2562 {
d2e4a39e 2563 struct type *type;
14f9c5c9
AS
2564 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2565 return value_from_longest (type, v);
2566 }
2567 else
2568 return desc_one_bound (desc_bounds (arr), n, which);
2569}
2570
2571/* Given that arr is an array value, returns the length of the
2572 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2573 supplied by run-time quantities other than discriminants.
2574 Does not work for arrays indexed by enumeration types with representation
2575 clauses at the moment. */
14f9c5c9 2576
d2e4a39e
AS
2577struct value *
2578ada_array_length (struct value *arr, int n)
14f9c5c9 2579{
df407dfe 2580 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2581
2582 if (ada_is_packed_array_type (arr_type))
2583 return ada_array_length (decode_packed_array (arr), n);
2584
4c4b4cd2 2585 if (ada_is_simple_array_type (arr_type))
14f9c5c9 2586 {
d2e4a39e 2587 struct type *type;
14f9c5c9 2588 LONGEST v =
4c4b4cd2
PH
2589 ada_array_bound_from_type (arr_type, n, 1, &type) -
2590 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
14f9c5c9
AS
2591 return value_from_longest (type, v);
2592 }
2593 else
d2e4a39e 2594 return
030b4912 2595 value_from_longest (builtin_type_int32,
4c4b4cd2
PH
2596 value_as_long (desc_one_bound (desc_bounds (arr),
2597 n, 1))
2598 - value_as_long (desc_one_bound (desc_bounds (arr),
2599 n, 0)) + 1);
2600}
2601
2602/* An empty array whose type is that of ARR_TYPE (an array type),
2603 with bounds LOW to LOW-1. */
2604
2605static struct value *
2606empty_array (struct type *arr_type, int low)
2607{
6c038f32 2608 struct type *index_type =
0b5d8877
PH
2609 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2610 low, low - 1);
2611 struct type *elt_type = ada_array_element_type (arr_type, 1);
2612 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2613}
14f9c5c9 2614\f
d2e4a39e 2615
4c4b4cd2 2616 /* Name resolution */
14f9c5c9 2617
4c4b4cd2
PH
2618/* The "decoded" name for the user-definable Ada operator corresponding
2619 to OP. */
14f9c5c9 2620
d2e4a39e 2621static const char *
4c4b4cd2 2622ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2623{
2624 int i;
2625
4c4b4cd2 2626 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2627 {
2628 if (ada_opname_table[i].op == op)
4c4b4cd2 2629 return ada_opname_table[i].decoded;
14f9c5c9 2630 }
323e0a4a 2631 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2632}
2633
2634
4c4b4cd2
PH
2635/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2636 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2637 undefined namespace) and converts operators that are
2638 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2639 non-null, it provides a preferred result type [at the moment, only
2640 type void has any effect---causing procedures to be preferred over
2641 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2642 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2643
4c4b4cd2
PH
2644static void
2645resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2646{
2647 int pc;
2648 pc = 0;
4c4b4cd2 2649 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2650}
2651
4c4b4cd2
PH
2652/* Resolve the operator of the subexpression beginning at
2653 position *POS of *EXPP. "Resolving" consists of replacing
2654 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2655 with their resolutions, replacing built-in operators with
2656 function calls to user-defined operators, where appropriate, and,
2657 when DEPROCEDURE_P is non-zero, converting function-valued variables
2658 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2659 are as in ada_resolve, above. */
14f9c5c9 2660
d2e4a39e 2661static struct value *
4c4b4cd2 2662resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2663 struct type *context_type)
14f9c5c9
AS
2664{
2665 int pc = *pos;
2666 int i;
4c4b4cd2 2667 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2668 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2669 struct value **argvec; /* Vector of operand types (alloca'ed). */
2670 int nargs; /* Number of operands. */
52ce6436 2671 int oplen;
14f9c5c9
AS
2672
2673 argvec = NULL;
2674 nargs = 0;
2675 exp = *expp;
2676
52ce6436
PH
2677 /* Pass one: resolve operands, saving their types and updating *pos,
2678 if needed. */
14f9c5c9
AS
2679 switch (op)
2680 {
4c4b4cd2
PH
2681 case OP_FUNCALL:
2682 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2683 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2684 *pos += 7;
4c4b4cd2
PH
2685 else
2686 {
2687 *pos += 3;
2688 resolve_subexp (expp, pos, 0, NULL);
2689 }
2690 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2691 break;
2692
14f9c5c9 2693 case UNOP_ADDR:
4c4b4cd2
PH
2694 *pos += 1;
2695 resolve_subexp (expp, pos, 0, NULL);
2696 break;
2697
52ce6436
PH
2698 case UNOP_QUAL:
2699 *pos += 3;
2700 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
4c4b4cd2
PH
2701 break;
2702
52ce6436 2703 case OP_ATR_MODULUS:
4c4b4cd2
PH
2704 case OP_ATR_SIZE:
2705 case OP_ATR_TAG:
4c4b4cd2
PH
2706 case OP_ATR_FIRST:
2707 case OP_ATR_LAST:
2708 case OP_ATR_LENGTH:
2709 case OP_ATR_POS:
2710 case OP_ATR_VAL:
4c4b4cd2
PH
2711 case OP_ATR_MIN:
2712 case OP_ATR_MAX:
52ce6436
PH
2713 case TERNOP_IN_RANGE:
2714 case BINOP_IN_BOUNDS:
2715 case UNOP_IN_RANGE:
2716 case OP_AGGREGATE:
2717 case OP_OTHERS:
2718 case OP_CHOICES:
2719 case OP_POSITIONAL:
2720 case OP_DISCRETE_RANGE:
2721 case OP_NAME:
2722 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2723 *pos += oplen;
14f9c5c9
AS
2724 break;
2725
2726 case BINOP_ASSIGN:
2727 {
4c4b4cd2
PH
2728 struct value *arg1;
2729
2730 *pos += 1;
2731 arg1 = resolve_subexp (expp, pos, 0, NULL);
2732 if (arg1 == NULL)
2733 resolve_subexp (expp, pos, 1, NULL);
2734 else
df407dfe 2735 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2736 break;
14f9c5c9
AS
2737 }
2738
4c4b4cd2 2739 case UNOP_CAST:
4c4b4cd2
PH
2740 *pos += 3;
2741 nargs = 1;
2742 break;
14f9c5c9 2743
4c4b4cd2
PH
2744 case BINOP_ADD:
2745 case BINOP_SUB:
2746 case BINOP_MUL:
2747 case BINOP_DIV:
2748 case BINOP_REM:
2749 case BINOP_MOD:
2750 case BINOP_EXP:
2751 case BINOP_CONCAT:
2752 case BINOP_LOGICAL_AND:
2753 case BINOP_LOGICAL_OR:
2754 case BINOP_BITWISE_AND:
2755 case BINOP_BITWISE_IOR:
2756 case BINOP_BITWISE_XOR:
14f9c5c9 2757
4c4b4cd2
PH
2758 case BINOP_EQUAL:
2759 case BINOP_NOTEQUAL:
2760 case BINOP_LESS:
2761 case BINOP_GTR:
2762 case BINOP_LEQ:
2763 case BINOP_GEQ:
14f9c5c9 2764
4c4b4cd2
PH
2765 case BINOP_REPEAT:
2766 case BINOP_SUBSCRIPT:
2767 case BINOP_COMMA:
40c8aaa9
JB
2768 *pos += 1;
2769 nargs = 2;
2770 break;
14f9c5c9 2771
4c4b4cd2
PH
2772 case UNOP_NEG:
2773 case UNOP_PLUS:
2774 case UNOP_LOGICAL_NOT:
2775 case UNOP_ABS:
2776 case UNOP_IND:
2777 *pos += 1;
2778 nargs = 1;
2779 break;
14f9c5c9 2780
4c4b4cd2
PH
2781 case OP_LONG:
2782 case OP_DOUBLE:
2783 case OP_VAR_VALUE:
2784 *pos += 4;
2785 break;
14f9c5c9 2786
4c4b4cd2
PH
2787 case OP_TYPE:
2788 case OP_BOOL:
2789 case OP_LAST:
4c4b4cd2
PH
2790 case OP_INTERNALVAR:
2791 *pos += 3;
2792 break;
14f9c5c9 2793
4c4b4cd2
PH
2794 case UNOP_MEMVAL:
2795 *pos += 3;
2796 nargs = 1;
2797 break;
2798
67f3407f
DJ
2799 case OP_REGISTER:
2800 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2801 break;
2802
4c4b4cd2
PH
2803 case STRUCTOP_STRUCT:
2804 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2805 nargs = 1;
2806 break;
2807
4c4b4cd2 2808 case TERNOP_SLICE:
4c4b4cd2
PH
2809 *pos += 1;
2810 nargs = 3;
2811 break;
2812
52ce6436 2813 case OP_STRING:
14f9c5c9 2814 break;
4c4b4cd2
PH
2815
2816 default:
323e0a4a 2817 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2818 }
2819
76a01679 2820 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2821 for (i = 0; i < nargs; i += 1)
2822 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2823 argvec[i] = NULL;
2824 exp = *expp;
2825
2826 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2827 switch (op)
2828 {
2829 default:
2830 break;
2831
14f9c5c9 2832 case OP_VAR_VALUE:
4c4b4cd2 2833 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2834 {
2835 struct ada_symbol_info *candidates;
2836 int n_candidates;
2837
2838 n_candidates =
2839 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2840 (exp->elts[pc + 2].symbol),
2841 exp->elts[pc + 1].block, VAR_DOMAIN,
2842 &candidates);
2843
2844 if (n_candidates > 1)
2845 {
2846 /* Types tend to get re-introduced locally, so if there
2847 are any local symbols that are not types, first filter
2848 out all types. */
2849 int j;
2850 for (j = 0; j < n_candidates; j += 1)
2851 switch (SYMBOL_CLASS (candidates[j].sym))
2852 {
2853 case LOC_REGISTER:
2854 case LOC_ARG:
2855 case LOC_REF_ARG:
76a01679
JB
2856 case LOC_REGPARM_ADDR:
2857 case LOC_LOCAL:
76a01679 2858 case LOC_COMPUTED:
76a01679
JB
2859 goto FoundNonType;
2860 default:
2861 break;
2862 }
2863 FoundNonType:
2864 if (j < n_candidates)
2865 {
2866 j = 0;
2867 while (j < n_candidates)
2868 {
2869 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2870 {
2871 candidates[j] = candidates[n_candidates - 1];
2872 n_candidates -= 1;
2873 }
2874 else
2875 j += 1;
2876 }
2877 }
2878 }
2879
2880 if (n_candidates == 0)
323e0a4a 2881 error (_("No definition found for %s"),
76a01679
JB
2882 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2883 else if (n_candidates == 1)
2884 i = 0;
2885 else if (deprocedure_p
2886 && !is_nonfunction (candidates, n_candidates))
2887 {
06d5cf63
JB
2888 i = ada_resolve_function
2889 (candidates, n_candidates, NULL, 0,
2890 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2891 context_type);
76a01679 2892 if (i < 0)
323e0a4a 2893 error (_("Could not find a match for %s"),
76a01679
JB
2894 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2895 }
2896 else
2897 {
323e0a4a 2898 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2899 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2900 user_select_syms (candidates, n_candidates, 1);
2901 i = 0;
2902 }
2903
2904 exp->elts[pc + 1].block = candidates[i].block;
2905 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2906 if (innermost_block == NULL
2907 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2908 innermost_block = candidates[i].block;
2909 }
2910
2911 if (deprocedure_p
2912 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2913 == TYPE_CODE_FUNC))
2914 {
2915 replace_operator_with_call (expp, pc, 0, 0,
2916 exp->elts[pc + 2].symbol,
2917 exp->elts[pc + 1].block);
2918 exp = *expp;
2919 }
14f9c5c9
AS
2920 break;
2921
2922 case OP_FUNCALL:
2923 {
4c4b4cd2 2924 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2925 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2926 {
2927 struct ada_symbol_info *candidates;
2928 int n_candidates;
2929
2930 n_candidates =
76a01679
JB
2931 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2932 (exp->elts[pc + 5].symbol),
2933 exp->elts[pc + 4].block, VAR_DOMAIN,
2934 &candidates);
4c4b4cd2
PH
2935 if (n_candidates == 1)
2936 i = 0;
2937 else
2938 {
06d5cf63
JB
2939 i = ada_resolve_function
2940 (candidates, n_candidates,
2941 argvec, nargs,
2942 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2943 context_type);
4c4b4cd2 2944 if (i < 0)
323e0a4a 2945 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2946 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2947 }
2948
2949 exp->elts[pc + 4].block = candidates[i].block;
2950 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2951 if (innermost_block == NULL
2952 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2953 innermost_block = candidates[i].block;
2954 }
14f9c5c9
AS
2955 }
2956 break;
2957 case BINOP_ADD:
2958 case BINOP_SUB:
2959 case BINOP_MUL:
2960 case BINOP_DIV:
2961 case BINOP_REM:
2962 case BINOP_MOD:
2963 case BINOP_CONCAT:
2964 case BINOP_BITWISE_AND:
2965 case BINOP_BITWISE_IOR:
2966 case BINOP_BITWISE_XOR:
2967 case BINOP_EQUAL:
2968 case BINOP_NOTEQUAL:
2969 case BINOP_LESS:
2970 case BINOP_GTR:
2971 case BINOP_LEQ:
2972 case BINOP_GEQ:
2973 case BINOP_EXP:
2974 case UNOP_NEG:
2975 case UNOP_PLUS:
2976 case UNOP_LOGICAL_NOT:
2977 case UNOP_ABS:
2978 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2979 {
2980 struct ada_symbol_info *candidates;
2981 int n_candidates;
2982
2983 n_candidates =
2984 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2985 (struct block *) NULL, VAR_DOMAIN,
2986 &candidates);
2987 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2988 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2989 if (i < 0)
2990 break;
2991
76a01679
JB
2992 replace_operator_with_call (expp, pc, nargs, 1,
2993 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2994 exp = *expp;
2995 }
14f9c5c9 2996 break;
4c4b4cd2
PH
2997
2998 case OP_TYPE:
b3dbf008 2999 case OP_REGISTER:
4c4b4cd2 3000 return NULL;
14f9c5c9
AS
3001 }
3002
3003 *pos = pc;
3004 return evaluate_subexp_type (exp, pos);
3005}
3006
3007/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
3008 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3009 a non-pointer. A type of 'void' (which is never a valid expression type)
3010 by convention matches anything. */
14f9c5c9 3011/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 3012 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
3013
3014static int
4dc81987 3015ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3016{
61ee279c
PH
3017 ftype = ada_check_typedef (ftype);
3018 atype = ada_check_typedef (atype);
14f9c5c9
AS
3019
3020 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3021 ftype = TYPE_TARGET_TYPE (ftype);
3022 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3023 atype = TYPE_TARGET_TYPE (atype);
3024
d2e4a39e 3025 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
3026 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3027 return 1;
3028
d2e4a39e 3029 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3030 {
3031 default:
3032 return 1;
3033 case TYPE_CODE_PTR:
3034 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3035 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3036 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3037 else
1265e4aa
JB
3038 return (may_deref
3039 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3040 case TYPE_CODE_INT:
3041 case TYPE_CODE_ENUM:
3042 case TYPE_CODE_RANGE:
3043 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3044 {
3045 case TYPE_CODE_INT:
3046 case TYPE_CODE_ENUM:
3047 case TYPE_CODE_RANGE:
3048 return 1;
3049 default:
3050 return 0;
3051 }
14f9c5c9
AS
3052
3053 case TYPE_CODE_ARRAY:
d2e4a39e 3054 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3055 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3056
3057 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3058 if (ada_is_array_descriptor_type (ftype))
3059 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3060 || ada_is_array_descriptor_type (atype));
14f9c5c9 3061 else
4c4b4cd2
PH
3062 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3063 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3064
3065 case TYPE_CODE_UNION:
3066 case TYPE_CODE_FLT:
3067 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3068 }
3069}
3070
3071/* Return non-zero if the formals of FUNC "sufficiently match" the
3072 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3073 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3074 argument function. */
14f9c5c9
AS
3075
3076static int
d2e4a39e 3077ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3078{
3079 int i;
d2e4a39e 3080 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3081
1265e4aa
JB
3082 if (SYMBOL_CLASS (func) == LOC_CONST
3083 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3084 return (n_actuals == 0);
3085 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3086 return 0;
3087
3088 if (TYPE_NFIELDS (func_type) != n_actuals)
3089 return 0;
3090
3091 for (i = 0; i < n_actuals; i += 1)
3092 {
4c4b4cd2 3093 if (actuals[i] == NULL)
76a01679
JB
3094 return 0;
3095 else
3096 {
61ee279c 3097 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3098 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3099
76a01679
JB
3100 if (!ada_type_match (ftype, atype, 1))
3101 return 0;
3102 }
14f9c5c9
AS
3103 }
3104 return 1;
3105}
3106
3107/* False iff function type FUNC_TYPE definitely does not produce a value
3108 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3109 FUNC_TYPE is not a valid function type with a non-null return type
3110 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3111
3112static int
d2e4a39e 3113return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3114{
d2e4a39e 3115 struct type *return_type;
14f9c5c9
AS
3116
3117 if (func_type == NULL)
3118 return 1;
3119
4c4b4cd2
PH
3120 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3121 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3122 else
3123 return_type = base_type (func_type);
14f9c5c9
AS
3124 if (return_type == NULL)
3125 return 1;
3126
4c4b4cd2 3127 context_type = base_type (context_type);
14f9c5c9
AS
3128
3129 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3130 return context_type == NULL || return_type == context_type;
3131 else if (context_type == NULL)
3132 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3133 else
3134 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3135}
3136
3137
4c4b4cd2 3138/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3139 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3140 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3141 that returns that type, then eliminate matches that don't. If
3142 CONTEXT_TYPE is void and there is at least one match that does not
3143 return void, eliminate all matches that do.
3144
14f9c5c9
AS
3145 Asks the user if there is more than one match remaining. Returns -1
3146 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3147 solely for messages. May re-arrange and modify SYMS in
3148 the process; the index returned is for the modified vector. */
14f9c5c9 3149
4c4b4cd2
PH
3150static int
3151ada_resolve_function (struct ada_symbol_info syms[],
3152 int nsyms, struct value **args, int nargs,
3153 const char *name, struct type *context_type)
14f9c5c9
AS
3154{
3155 int k;
4c4b4cd2 3156 int m; /* Number of hits */
d2e4a39e
AS
3157 struct type *fallback;
3158 struct type *return_type;
14f9c5c9
AS
3159
3160 return_type = context_type;
3161 if (context_type == NULL)
3162 fallback = builtin_type_void;
3163 else
3164 fallback = NULL;
3165
d2e4a39e 3166 m = 0;
14f9c5c9
AS
3167 while (1)
3168 {
3169 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3170 {
61ee279c 3171 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3172
3173 if (ada_args_match (syms[k].sym, args, nargs)
3174 && return_match (type, return_type))
3175 {
3176 syms[m] = syms[k];
3177 m += 1;
3178 }
3179 }
14f9c5c9 3180 if (m > 0 || return_type == fallback)
4c4b4cd2 3181 break;
14f9c5c9 3182 else
4c4b4cd2 3183 return_type = fallback;
14f9c5c9
AS
3184 }
3185
3186 if (m == 0)
3187 return -1;
3188 else if (m > 1)
3189 {
323e0a4a 3190 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3191 user_select_syms (syms, m, 1);
14f9c5c9
AS
3192 return 0;
3193 }
3194 return 0;
3195}
3196
4c4b4cd2
PH
3197/* Returns true (non-zero) iff decoded name N0 should appear before N1
3198 in a listing of choices during disambiguation (see sort_choices, below).
3199 The idea is that overloadings of a subprogram name from the
3200 same package should sort in their source order. We settle for ordering
3201 such symbols by their trailing number (__N or $N). */
3202
14f9c5c9 3203static int
4c4b4cd2 3204encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3205{
3206 if (N1 == NULL)
3207 return 0;
3208 else if (N0 == NULL)
3209 return 1;
3210 else
3211 {
3212 int k0, k1;
d2e4a39e 3213 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3214 ;
d2e4a39e 3215 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3216 ;
d2e4a39e 3217 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3218 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3219 {
3220 int n0, n1;
3221 n0 = k0;
3222 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3223 n0 -= 1;
3224 n1 = k1;
3225 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3226 n1 -= 1;
3227 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3228 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3229 }
14f9c5c9
AS
3230 return (strcmp (N0, N1) < 0);
3231 }
3232}
d2e4a39e 3233
4c4b4cd2
PH
3234/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3235 encoded names. */
3236
d2e4a39e 3237static void
4c4b4cd2 3238sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3239{
4c4b4cd2 3240 int i;
d2e4a39e 3241 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3242 {
4c4b4cd2 3243 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3244 int j;
3245
d2e4a39e 3246 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3247 {
3248 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3249 SYMBOL_LINKAGE_NAME (sym.sym)))
3250 break;
3251 syms[j + 1] = syms[j];
3252 }
d2e4a39e 3253 syms[j + 1] = sym;
14f9c5c9
AS
3254 }
3255}
3256
4c4b4cd2
PH
3257/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3258 by asking the user (if necessary), returning the number selected,
3259 and setting the first elements of SYMS items. Error if no symbols
3260 selected. */
14f9c5c9
AS
3261
3262/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3263 to be re-integrated one of these days. */
14f9c5c9
AS
3264
3265int
4c4b4cd2 3266user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3267{
3268 int i;
d2e4a39e 3269 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3270 int n_chosen;
3271 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3272 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3273
3274 if (max_results < 1)
323e0a4a 3275 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3276 if (nsyms <= 1)
3277 return nsyms;
3278
717d2f5a
JB
3279 if (select_mode == multiple_symbols_cancel)
3280 error (_("\
3281canceled because the command is ambiguous\n\
3282See set/show multiple-symbol."));
3283
3284 /* If select_mode is "all", then return all possible symbols.
3285 Only do that if more than one symbol can be selected, of course.
3286 Otherwise, display the menu as usual. */
3287 if (select_mode == multiple_symbols_all && max_results > 1)
3288 return nsyms;
3289
323e0a4a 3290 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3291 if (max_results > 1)
323e0a4a 3292 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3293
4c4b4cd2 3294 sort_choices (syms, nsyms);
14f9c5c9
AS
3295
3296 for (i = 0; i < nsyms; i += 1)
3297 {
4c4b4cd2
PH
3298 if (syms[i].sym == NULL)
3299 continue;
3300
3301 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3302 {
76a01679
JB
3303 struct symtab_and_line sal =
3304 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3305 if (sal.symtab == NULL)
3306 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3307 i + first_choice,
3308 SYMBOL_PRINT_NAME (syms[i].sym),
3309 sal.line);
3310 else
3311 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym),
3313 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3314 continue;
3315 }
d2e4a39e 3316 else
4c4b4cd2
PH
3317 {
3318 int is_enumeral =
3319 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3320 && SYMBOL_TYPE (syms[i].sym) != NULL
3321 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3322 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3323
3324 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3325 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3329 else if (is_enumeral
3330 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3331 {
a3f17187 3332 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3333 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3334 gdb_stdout, -1, 0);
323e0a4a 3335 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3336 SYMBOL_PRINT_NAME (syms[i].sym));
3337 }
3338 else if (symtab != NULL)
3339 printf_unfiltered (is_enumeral
323e0a4a
AC
3340 ? _("[%d] %s in %s (enumeral)\n")
3341 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3342 i + first_choice,
3343 SYMBOL_PRINT_NAME (syms[i].sym),
3344 symtab->filename);
3345 else
3346 printf_unfiltered (is_enumeral
323e0a4a
AC
3347 ? _("[%d] %s (enumeral)\n")
3348 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3349 i + first_choice,
3350 SYMBOL_PRINT_NAME (syms[i].sym));
3351 }
14f9c5c9 3352 }
d2e4a39e 3353
14f9c5c9 3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3355 "overload-choice");
14f9c5c9
AS
3356
3357 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3358 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3359
3360 return n_chosen;
3361}
3362
3363/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3364 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3365 order in CHOICES[0 .. N-1], and return N.
3366
3367 The user types choices as a sequence of numbers on one line
3368 separated by blanks, encoding them as follows:
3369
4c4b4cd2 3370 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3371 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3372 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3373
4c4b4cd2 3374 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3375
3376 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3377 prompts (for use with the -f switch). */
14f9c5c9
AS
3378
3379int
d2e4a39e 3380get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3381 int is_all_choice, char *annotation_suffix)
14f9c5c9 3382{
d2e4a39e 3383 char *args;
0bcd0149 3384 char *prompt;
14f9c5c9
AS
3385 int n_chosen;
3386 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3387
14f9c5c9
AS
3388 prompt = getenv ("PS2");
3389 if (prompt == NULL)
0bcd0149 3390 prompt = "> ";
14f9c5c9 3391
0bcd0149 3392 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3393
14f9c5c9 3394 if (args == NULL)
323e0a4a 3395 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3396
3397 n_chosen = 0;
76a01679 3398
4c4b4cd2
PH
3399 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3400 order, as given in args. Choices are validated. */
14f9c5c9
AS
3401 while (1)
3402 {
d2e4a39e 3403 char *args2;
14f9c5c9
AS
3404 int choice, j;
3405
3406 while (isspace (*args))
4c4b4cd2 3407 args += 1;
14f9c5c9 3408 if (*args == '\0' && n_chosen == 0)
323e0a4a 3409 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3410 else if (*args == '\0')
4c4b4cd2 3411 break;
14f9c5c9
AS
3412
3413 choice = strtol (args, &args2, 10);
d2e4a39e 3414 if (args == args2 || choice < 0
4c4b4cd2 3415 || choice > n_choices + first_choice - 1)
323e0a4a 3416 error (_("Argument must be choice number"));
14f9c5c9
AS
3417 args = args2;
3418
d2e4a39e 3419 if (choice == 0)
323e0a4a 3420 error (_("cancelled"));
14f9c5c9
AS
3421
3422 if (choice < first_choice)
4c4b4cd2
PH
3423 {
3424 n_chosen = n_choices;
3425 for (j = 0; j < n_choices; j += 1)
3426 choices[j] = j;
3427 break;
3428 }
14f9c5c9
AS
3429 choice -= first_choice;
3430
d2e4a39e 3431 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3432 {
3433 }
14f9c5c9
AS
3434
3435 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3436 {
3437 int k;
3438 for (k = n_chosen - 1; k > j; k -= 1)
3439 choices[k + 1] = choices[k];
3440 choices[j + 1] = choice;
3441 n_chosen += 1;
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (n_chosen > max_results)
323e0a4a 3446 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3447
14f9c5c9
AS
3448 return n_chosen;
3449}
3450
4c4b4cd2
PH
3451/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3452 on the function identified by SYM and BLOCK, and taking NARGS
3453 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3454
3455static void
d2e4a39e 3456replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3457 int oplen, struct symbol *sym,
3458 struct block *block)
14f9c5c9
AS
3459{
3460 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3461 symbol, -oplen for operator being replaced). */
d2e4a39e 3462 struct expression *newexp = (struct expression *)
14f9c5c9 3463 xmalloc (sizeof (struct expression)
4c4b4cd2 3464 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3465 struct expression *exp = *expp;
14f9c5c9
AS
3466
3467 newexp->nelts = exp->nelts + 7 - oplen;
3468 newexp->language_defn = exp->language_defn;
3469 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3470 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3471 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3472
3473 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3474 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3475
3476 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3477 newexp->elts[pc + 4].block = block;
3478 newexp->elts[pc + 5].symbol = sym;
3479
3480 *expp = newexp;
aacb1f0a 3481 xfree (exp);
d2e4a39e 3482}
14f9c5c9
AS
3483
3484/* Type-class predicates */
3485
4c4b4cd2
PH
3486/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3487 or FLOAT). */
14f9c5c9
AS
3488
3489static int
d2e4a39e 3490numeric_type_p (struct type *type)
14f9c5c9
AS
3491{
3492 if (type == NULL)
3493 return 0;
d2e4a39e
AS
3494 else
3495 {
3496 switch (TYPE_CODE (type))
4c4b4cd2
PH
3497 {
3498 case TYPE_CODE_INT:
3499 case TYPE_CODE_FLT:
3500 return 1;
3501 case TYPE_CODE_RANGE:
3502 return (type == TYPE_TARGET_TYPE (type)
3503 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3504 default:
3505 return 0;
3506 }
d2e4a39e 3507 }
14f9c5c9
AS
3508}
3509
4c4b4cd2 3510/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3511
3512static int
d2e4a39e 3513integer_type_p (struct type *type)
14f9c5c9
AS
3514{
3515 if (type == NULL)
3516 return 0;
d2e4a39e
AS
3517 else
3518 {
3519 switch (TYPE_CODE (type))
4c4b4cd2
PH
3520 {
3521 case TYPE_CODE_INT:
3522 return 1;
3523 case TYPE_CODE_RANGE:
3524 return (type == TYPE_TARGET_TYPE (type)
3525 || integer_type_p (TYPE_TARGET_TYPE (type)));
3526 default:
3527 return 0;
3528 }
d2e4a39e 3529 }
14f9c5c9
AS
3530}
3531
4c4b4cd2 3532/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3533
3534static int
d2e4a39e 3535scalar_type_p (struct type *type)
14f9c5c9
AS
3536{
3537 if (type == NULL)
3538 return 0;
d2e4a39e
AS
3539 else
3540 {
3541 switch (TYPE_CODE (type))
4c4b4cd2
PH
3542 {
3543 case TYPE_CODE_INT:
3544 case TYPE_CODE_RANGE:
3545 case TYPE_CODE_ENUM:
3546 case TYPE_CODE_FLT:
3547 return 1;
3548 default:
3549 return 0;
3550 }
d2e4a39e 3551 }
14f9c5c9
AS
3552}
3553
4c4b4cd2 3554/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3555
3556static int
d2e4a39e 3557discrete_type_p (struct type *type)
14f9c5c9
AS
3558{
3559 if (type == NULL)
3560 return 0;
d2e4a39e
AS
3561 else
3562 {
3563 switch (TYPE_CODE (type))
4c4b4cd2
PH
3564 {
3565 case TYPE_CODE_INT:
3566 case TYPE_CODE_RANGE:
3567 case TYPE_CODE_ENUM:
3568 return 1;
3569 default:
3570 return 0;
3571 }
d2e4a39e 3572 }
14f9c5c9
AS
3573}
3574
4c4b4cd2
PH
3575/* Returns non-zero if OP with operands in the vector ARGS could be
3576 a user-defined function. Errs on the side of pre-defined operators
3577 (i.e., result 0). */
14f9c5c9
AS
3578
3579static int
d2e4a39e 3580possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3581{
76a01679 3582 struct type *type0 =
df407dfe 3583 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3584 struct type *type1 =
df407dfe 3585 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3586
4c4b4cd2
PH
3587 if (type0 == NULL)
3588 return 0;
3589
14f9c5c9
AS
3590 switch (op)
3591 {
3592 default:
3593 return 0;
3594
3595 case BINOP_ADD:
3596 case BINOP_SUB:
3597 case BINOP_MUL:
3598 case BINOP_DIV:
d2e4a39e 3599 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3600
3601 case BINOP_REM:
3602 case BINOP_MOD:
3603 case BINOP_BITWISE_AND:
3604 case BINOP_BITWISE_IOR:
3605 case BINOP_BITWISE_XOR:
d2e4a39e 3606 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3607
3608 case BINOP_EQUAL:
3609 case BINOP_NOTEQUAL:
3610 case BINOP_LESS:
3611 case BINOP_GTR:
3612 case BINOP_LEQ:
3613 case BINOP_GEQ:
d2e4a39e 3614 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3615
3616 case BINOP_CONCAT:
ee90b9ab 3617 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3618
3619 case BINOP_EXP:
d2e4a39e 3620 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3621
3622 case UNOP_NEG:
3623 case UNOP_PLUS:
3624 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3625 case UNOP_ABS:
3626 return (!numeric_type_p (type0));
14f9c5c9
AS
3627
3628 }
3629}
3630\f
4c4b4cd2 3631 /* Renaming */
14f9c5c9 3632
aeb5907d
JB
3633/* NOTES:
3634
3635 1. In the following, we assume that a renaming type's name may
3636 have an ___XD suffix. It would be nice if this went away at some
3637 point.
3638 2. We handle both the (old) purely type-based representation of
3639 renamings and the (new) variable-based encoding. At some point,
3640 it is devoutly to be hoped that the former goes away
3641 (FIXME: hilfinger-2007-07-09).
3642 3. Subprogram renamings are not implemented, although the XRS
3643 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3644
3645/* If SYM encodes a renaming,
3646
3647 <renaming> renames <renamed entity>,
3648
3649 sets *LEN to the length of the renamed entity's name,
3650 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3651 the string describing the subcomponent selected from the renamed
3652 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3653 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3654 are undefined). Otherwise, returns a value indicating the category
3655 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3656 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3657 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3658 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3659 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3660 may be NULL, in which case they are not assigned.
3661
3662 [Currently, however, GCC does not generate subprogram renamings.] */
3663
3664enum ada_renaming_category
3665ada_parse_renaming (struct symbol *sym,
3666 const char **renamed_entity, int *len,
3667 const char **renaming_expr)
3668{
3669 enum ada_renaming_category kind;
3670 const char *info;
3671 const char *suffix;
3672
3673 if (sym == NULL)
3674 return ADA_NOT_RENAMING;
3675 switch (SYMBOL_CLASS (sym))
14f9c5c9 3676 {
aeb5907d
JB
3677 default:
3678 return ADA_NOT_RENAMING;
3679 case LOC_TYPEDEF:
3680 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3681 renamed_entity, len, renaming_expr);
3682 case LOC_LOCAL:
3683 case LOC_STATIC:
3684 case LOC_COMPUTED:
3685 case LOC_OPTIMIZED_OUT:
3686 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3687 if (info == NULL)
3688 return ADA_NOT_RENAMING;
3689 switch (info[5])
3690 {
3691 case '_':
3692 kind = ADA_OBJECT_RENAMING;
3693 info += 6;
3694 break;
3695 case 'E':
3696 kind = ADA_EXCEPTION_RENAMING;
3697 info += 7;
3698 break;
3699 case 'P':
3700 kind = ADA_PACKAGE_RENAMING;
3701 info += 7;
3702 break;
3703 case 'S':
3704 kind = ADA_SUBPROGRAM_RENAMING;
3705 info += 7;
3706 break;
3707 default:
3708 return ADA_NOT_RENAMING;
3709 }
14f9c5c9 3710 }
4c4b4cd2 3711
aeb5907d
JB
3712 if (renamed_entity != NULL)
3713 *renamed_entity = info;
3714 suffix = strstr (info, "___XE");
3715 if (suffix == NULL || suffix == info)
3716 return ADA_NOT_RENAMING;
3717 if (len != NULL)
3718 *len = strlen (info) - strlen (suffix);
3719 suffix += 5;
3720 if (renaming_expr != NULL)
3721 *renaming_expr = suffix;
3722 return kind;
3723}
3724
3725/* Assuming TYPE encodes a renaming according to the old encoding in
3726 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3727 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3728 ADA_NOT_RENAMING otherwise. */
3729static enum ada_renaming_category
3730parse_old_style_renaming (struct type *type,
3731 const char **renamed_entity, int *len,
3732 const char **renaming_expr)
3733{
3734 enum ada_renaming_category kind;
3735 const char *name;
3736 const char *info;
3737 const char *suffix;
14f9c5c9 3738
aeb5907d
JB
3739 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3740 || TYPE_NFIELDS (type) != 1)
3741 return ADA_NOT_RENAMING;
14f9c5c9 3742
aeb5907d
JB
3743 name = type_name_no_tag (type);
3744 if (name == NULL)
3745 return ADA_NOT_RENAMING;
3746
3747 name = strstr (name, "___XR");
3748 if (name == NULL)
3749 return ADA_NOT_RENAMING;
3750 switch (name[5])
3751 {
3752 case '\0':
3753 case '_':
3754 kind = ADA_OBJECT_RENAMING;
3755 break;
3756 case 'E':
3757 kind = ADA_EXCEPTION_RENAMING;
3758 break;
3759 case 'P':
3760 kind = ADA_PACKAGE_RENAMING;
3761 break;
3762 case 'S':
3763 kind = ADA_SUBPROGRAM_RENAMING;
3764 break;
3765 default:
3766 return ADA_NOT_RENAMING;
3767 }
14f9c5c9 3768
aeb5907d
JB
3769 info = TYPE_FIELD_NAME (type, 0);
3770 if (info == NULL)
3771 return ADA_NOT_RENAMING;
3772 if (renamed_entity != NULL)
3773 *renamed_entity = info;
3774 suffix = strstr (info, "___XE");
3775 if (renaming_expr != NULL)
3776 *renaming_expr = suffix + 5;
3777 if (suffix == NULL || suffix == info)
3778 return ADA_NOT_RENAMING;
3779 if (len != NULL)
3780 *len = suffix - info;
3781 return kind;
3782}
52ce6436 3783
14f9c5c9 3784\f
d2e4a39e 3785
4c4b4cd2 3786 /* Evaluation: Function Calls */
14f9c5c9 3787
4c4b4cd2
PH
3788/* Return an lvalue containing the value VAL. This is the identity on
3789 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3790 on the stack, using and updating *SP as the stack pointer, and
3791 returning an lvalue whose VALUE_ADDRESS points to the copy. */
14f9c5c9 3792
d2e4a39e 3793static struct value *
4c4b4cd2 3794ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3795{
c3e5cd34
PH
3796 if (! VALUE_LVAL (val))
3797 {
df407dfe 3798 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3799
3800 /* The following is taken from the structure-return code in
3801 call_function_by_hand. FIXME: Therefore, some refactoring seems
3802 indicated. */
4d1e7dd1 3803 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34
PH
3804 {
3805 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3806 reserving sufficient space. */
3807 *sp -= len;
3808 if (gdbarch_frame_align_p (current_gdbarch))
3809 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3810 VALUE_ADDRESS (val) = *sp;
3811 }
3812 else
3813 {
3814 /* Stack grows upward. Align the frame, allocate space, and
3815 then again, re-align the frame. */
3816 if (gdbarch_frame_align_p (current_gdbarch))
3817 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3818 VALUE_ADDRESS (val) = *sp;
3819 *sp += len;
3820 if (gdbarch_frame_align_p (current_gdbarch))
3821 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3822 }
a84a8a0d 3823 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3824
990a07ab 3825 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
c3e5cd34 3826 }
14f9c5c9
AS
3827
3828 return val;
3829}
3830
3831/* Return the value ACTUAL, converted to be an appropriate value for a
3832 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3833 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3834 values not residing in memory, updating it as needed. */
14f9c5c9 3835
a93c0eb6
JB
3836struct value *
3837ada_convert_actual (struct value *actual, struct type *formal_type0,
3838 CORE_ADDR *sp)
14f9c5c9 3839{
df407dfe 3840 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3841 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3842 struct type *formal_target =
3843 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3844 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3845 struct type *actual_target =
3846 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3847 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3848
4c4b4cd2 3849 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3850 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3851 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3852 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3853 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3854 {
a84a8a0d 3855 struct value *result;
14f9c5c9 3856 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3857 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3858 result = desc_data (actual);
14f9c5c9 3859 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3860 {
3861 if (VALUE_LVAL (actual) != lval_memory)
3862 {
3863 struct value *val;
df407dfe 3864 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3865 val = allocate_value (actual_type);
990a07ab 3866 memcpy ((char *) value_contents_raw (val),
0fd88904 3867 (char *) value_contents (actual),
4c4b4cd2
PH
3868 TYPE_LENGTH (actual_type));
3869 actual = ensure_lval (val, sp);
3870 }
a84a8a0d 3871 result = value_addr (actual);
4c4b4cd2 3872 }
a84a8a0d
JB
3873 else
3874 return actual;
3875 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3876 }
3877 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3878 return ada_value_ind (actual);
3879
3880 return actual;
3881}
3882
3883
4c4b4cd2
PH
3884/* Push a descriptor of type TYPE for array value ARR on the stack at
3885 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3886 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3887 to-descriptor type rather than a descriptor type), a struct value *
3888 representing a pointer to this descriptor. */
14f9c5c9 3889
d2e4a39e
AS
3890static struct value *
3891make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3892{
d2e4a39e
AS
3893 struct type *bounds_type = desc_bounds_type (type);
3894 struct type *desc_type = desc_base_type (type);
3895 struct value *descriptor = allocate_value (desc_type);
3896 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3897 int i;
d2e4a39e 3898
df407dfe 3899 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3900 {
0fd88904 3901 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3902 value_as_long (ada_array_bound (arr, i, 0)),
3903 desc_bound_bitpos (bounds_type, i, 0),
3904 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3905 modify_general_field (value_contents_writeable (bounds),
4c4b4cd2
PH
3906 value_as_long (ada_array_bound (arr, i, 1)),
3907 desc_bound_bitpos (bounds_type, i, 1),
3908 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3909 }
d2e4a39e 3910
4c4b4cd2 3911 bounds = ensure_lval (bounds, sp);
d2e4a39e 3912
0fd88904 3913 modify_general_field (value_contents_writeable (descriptor),
76a01679
JB
3914 VALUE_ADDRESS (ensure_lval (arr, sp)),
3915 fat_pntr_data_bitpos (desc_type),
3916 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3917
0fd88904 3918 modify_general_field (value_contents_writeable (descriptor),
4c4b4cd2
PH
3919 VALUE_ADDRESS (bounds),
3920 fat_pntr_bounds_bitpos (desc_type),
3921 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3922
4c4b4cd2 3923 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3924
3925 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3926 return value_addr (descriptor);
3927 else
3928 return descriptor;
3929}
14f9c5c9 3930\f
963a6417
PH
3931/* Dummy definitions for an experimental caching module that is not
3932 * used in the public sources. */
96d887e8 3933
96d887e8
PH
3934static int
3935lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3936 struct symbol **sym, struct block **block)
96d887e8
PH
3937{
3938 return 0;
3939}
3940
3941static void
3942cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3943 struct block *block)
96d887e8
PH
3944{
3945}
4c4b4cd2
PH
3946\f
3947 /* Symbol Lookup */
3948
3949/* Return the result of a standard (literal, C-like) lookup of NAME in
3950 given DOMAIN, visible from lexical block BLOCK. */
3951
3952static struct symbol *
3953standard_lookup (const char *name, const struct block *block,
3954 domain_enum domain)
3955{
3956 struct symbol *sym;
4c4b4cd2 3957
2570f2b7 3958 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3959 return sym;
2570f2b7
UW
3960 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3961 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3962 return sym;
3963}
3964
3965
3966/* Non-zero iff there is at least one non-function/non-enumeral symbol
3967 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3968 since they contend in overloading in the same way. */
3969static int
3970is_nonfunction (struct ada_symbol_info syms[], int n)
3971{
3972 int i;
3973
3974 for (i = 0; i < n; i += 1)
3975 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3976 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3977 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3978 return 1;
3979
3980 return 0;
3981}
3982
3983/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3984 struct types. Otherwise, they may not. */
14f9c5c9
AS
3985
3986static int
d2e4a39e 3987equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3988{
d2e4a39e 3989 if (type0 == type1)
14f9c5c9 3990 return 1;
d2e4a39e 3991 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3992 || TYPE_CODE (type0) != TYPE_CODE (type1))
3993 return 0;
d2e4a39e 3994 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3995 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3996 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3997 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3998 return 1;
d2e4a39e 3999
14f9c5c9
AS
4000 return 0;
4001}
4002
4003/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4004 no more defined than that of SYM1. */
14f9c5c9
AS
4005
4006static int
d2e4a39e 4007lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4008{
4009 if (sym0 == sym1)
4010 return 1;
176620f1 4011 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4012 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4013 return 0;
4014
d2e4a39e 4015 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4016 {
4017 case LOC_UNDEF:
4018 return 1;
4019 case LOC_TYPEDEF:
4020 {
4c4b4cd2
PH
4021 struct type *type0 = SYMBOL_TYPE (sym0);
4022 struct type *type1 = SYMBOL_TYPE (sym1);
4023 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4024 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4025 int len0 = strlen (name0);
4026 return
4027 TYPE_CODE (type0) == TYPE_CODE (type1)
4028 && (equiv_types (type0, type1)
4029 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4030 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4031 }
4032 case LOC_CONST:
4033 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4034 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4035 default:
4036 return 0;
14f9c5c9
AS
4037 }
4038}
4039
4c4b4cd2
PH
4040/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4041 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4042
4043static void
76a01679
JB
4044add_defn_to_vec (struct obstack *obstackp,
4045 struct symbol *sym,
2570f2b7 4046 struct block *block)
14f9c5c9
AS
4047{
4048 int i;
4049 size_t tmp;
4c4b4cd2 4050 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4051
529cad9c
PH
4052 /* Do not try to complete stub types, as the debugger is probably
4053 already scanning all symbols matching a certain name at the
4054 time when this function is called. Trying to replace the stub
4055 type by its associated full type will cause us to restart a scan
4056 which may lead to an infinite recursion. Instead, the client
4057 collecting the matching symbols will end up collecting several
4058 matches, with at least one of them complete. It can then filter
4059 out the stub ones if needed. */
4060
4c4b4cd2
PH
4061 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4062 {
4063 if (lesseq_defined_than (sym, prevDefns[i].sym))
4064 return;
4065 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4066 {
4067 prevDefns[i].sym = sym;
4068 prevDefns[i].block = block;
4c4b4cd2 4069 return;
76a01679 4070 }
4c4b4cd2
PH
4071 }
4072
4073 {
4074 struct ada_symbol_info info;
4075
4076 info.sym = sym;
4077 info.block = block;
4c4b4cd2
PH
4078 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4079 }
4080}
4081
4082/* Number of ada_symbol_info structures currently collected in
4083 current vector in *OBSTACKP. */
4084
76a01679
JB
4085static int
4086num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4087{
4088 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4089}
4090
4091/* Vector of ada_symbol_info structures currently collected in current
4092 vector in *OBSTACKP. If FINISH, close off the vector and return
4093 its final address. */
4094
76a01679 4095static struct ada_symbol_info *
4c4b4cd2
PH
4096defns_collected (struct obstack *obstackp, int finish)
4097{
4098 if (finish)
4099 return obstack_finish (obstackp);
4100 else
4101 return (struct ada_symbol_info *) obstack_base (obstackp);
4102}
4103
96d887e8
PH
4104/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4105 Check the global symbols if GLOBAL, the static symbols if not.
4106 Do wild-card match if WILD. */
4c4b4cd2 4107
96d887e8
PH
4108static struct partial_symbol *
4109ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4110 int global, domain_enum namespace, int wild)
4c4b4cd2 4111{
96d887e8
PH
4112 struct partial_symbol **start;
4113 int name_len = strlen (name);
4114 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4115 int i;
4c4b4cd2 4116
96d887e8 4117 if (length == 0)
4c4b4cd2 4118 {
96d887e8 4119 return (NULL);
4c4b4cd2
PH
4120 }
4121
96d887e8
PH
4122 start = (global ?
4123 pst->objfile->global_psymbols.list + pst->globals_offset :
4124 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4125
96d887e8 4126 if (wild)
4c4b4cd2 4127 {
96d887e8
PH
4128 for (i = 0; i < length; i += 1)
4129 {
4130 struct partial_symbol *psym = start[i];
4c4b4cd2 4131
5eeb2539
AR
4132 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4133 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4134 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4135 return psym;
4136 }
4137 return NULL;
4c4b4cd2 4138 }
96d887e8
PH
4139 else
4140 {
4141 if (global)
4142 {
4143 int U;
4144 i = 0;
4145 U = length - 1;
4146 while (U - i > 4)
4147 {
4148 int M = (U + i) >> 1;
4149 struct partial_symbol *psym = start[M];
4150 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4151 i = M + 1;
4152 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4153 U = M - 1;
4154 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4155 i = M + 1;
4156 else
4157 U = M;
4158 }
4159 }
4160 else
4161 i = 0;
4c4b4cd2 4162
96d887e8
PH
4163 while (i < length)
4164 {
4165 struct partial_symbol *psym = start[i];
4c4b4cd2 4166
5eeb2539
AR
4167 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4168 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4169 {
4170 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4171
96d887e8
PH
4172 if (cmp < 0)
4173 {
4174 if (global)
4175 break;
4176 }
4177 else if (cmp == 0
4178 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4179 + name_len))
96d887e8
PH
4180 return psym;
4181 }
4182 i += 1;
4183 }
4c4b4cd2 4184
96d887e8
PH
4185 if (global)
4186 {
4187 int U;
4188 i = 0;
4189 U = length - 1;
4190 while (U - i > 4)
4191 {
4192 int M = (U + i) >> 1;
4193 struct partial_symbol *psym = start[M];
4194 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4195 i = M + 1;
4196 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4197 U = M - 1;
4198 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4199 i = M + 1;
4200 else
4201 U = M;
4202 }
4203 }
4204 else
4205 i = 0;
4c4b4cd2 4206
96d887e8
PH
4207 while (i < length)
4208 {
4209 struct partial_symbol *psym = start[i];
4c4b4cd2 4210
5eeb2539
AR
4211 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4212 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4213 {
4214 int cmp;
4c4b4cd2 4215
96d887e8
PH
4216 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4217 if (cmp == 0)
4218 {
4219 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4220 if (cmp == 0)
4221 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4222 name_len);
96d887e8 4223 }
4c4b4cd2 4224
96d887e8
PH
4225 if (cmp < 0)
4226 {
4227 if (global)
4228 break;
4229 }
4230 else if (cmp == 0
4231 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4232 + name_len + 5))
96d887e8
PH
4233 return psym;
4234 }
4235 i += 1;
4236 }
4237 }
4238 return NULL;
4c4b4cd2
PH
4239}
4240
96d887e8 4241/* Find a symbol table containing symbol SYM or NULL if none. */
4c4b4cd2 4242
96d887e8
PH
4243static struct symtab *
4244symtab_for_sym (struct symbol *sym)
4c4b4cd2 4245{
96d887e8
PH
4246 struct symtab *s;
4247 struct objfile *objfile;
4248 struct block *b;
4249 struct symbol *tmp_sym;
4250 struct dict_iterator iter;
4251 int j;
4c4b4cd2 4252
11309657 4253 ALL_PRIMARY_SYMTABS (objfile, s)
96d887e8
PH
4254 {
4255 switch (SYMBOL_CLASS (sym))
4256 {
4257 case LOC_CONST:
4258 case LOC_STATIC:
4259 case LOC_TYPEDEF:
4260 case LOC_REGISTER:
4261 case LOC_LABEL:
4262 case LOC_BLOCK:
4263 case LOC_CONST_BYTES:
76a01679
JB
4264 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4265 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4266 return s;
4267 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4268 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4269 return s;
96d887e8
PH
4270 break;
4271 default:
4272 break;
4273 }
4274 switch (SYMBOL_CLASS (sym))
4275 {
4276 case LOC_REGISTER:
4277 case LOC_ARG:
4278 case LOC_REF_ARG:
96d887e8
PH
4279 case LOC_REGPARM_ADDR:
4280 case LOC_LOCAL:
4281 case LOC_TYPEDEF:
96d887e8 4282 case LOC_COMPUTED:
76a01679
JB
4283 for (j = FIRST_LOCAL_BLOCK;
4284 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4285 {
4286 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4287 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4288 return s;
4289 }
4290 break;
96d887e8
PH
4291 default:
4292 break;
4293 }
4294 }
4295 return NULL;
4c4b4cd2
PH
4296}
4297
96d887e8
PH
4298/* Return a minimal symbol matching NAME according to Ada decoding
4299 rules. Returns NULL if there is no such minimal symbol. Names
4300 prefixed with "standard__" are handled specially: "standard__" is
4301 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4302
96d887e8
PH
4303struct minimal_symbol *
4304ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4305{
4c4b4cd2 4306 struct objfile *objfile;
96d887e8
PH
4307 struct minimal_symbol *msymbol;
4308 int wild_match;
4c4b4cd2 4309
96d887e8 4310 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4311 {
96d887e8 4312 name += sizeof ("standard__") - 1;
4c4b4cd2 4313 wild_match = 0;
4c4b4cd2
PH
4314 }
4315 else
96d887e8 4316 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4317
96d887e8
PH
4318 ALL_MSYMBOLS (objfile, msymbol)
4319 {
4320 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4321 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4322 return msymbol;
4323 }
4c4b4cd2 4324
96d887e8
PH
4325 return NULL;
4326}
4c4b4cd2 4327
96d887e8
PH
4328/* For all subprograms that statically enclose the subprogram of the
4329 selected frame, add symbols matching identifier NAME in DOMAIN
4330 and their blocks to the list of data in OBSTACKP, as for
4331 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4332 wildcard prefix. */
4c4b4cd2 4333
96d887e8
PH
4334static void
4335add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4336 const char *name, domain_enum namespace,
96d887e8
PH
4337 int wild_match)
4338{
96d887e8 4339}
14f9c5c9 4340
96d887e8
PH
4341/* True if TYPE is definitely an artificial type supplied to a symbol
4342 for which no debugging information was given in the symbol file. */
14f9c5c9 4343
96d887e8
PH
4344static int
4345is_nondebugging_type (struct type *type)
4346{
4347 char *name = ada_type_name (type);
4348 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4349}
4c4b4cd2 4350
96d887e8
PH
4351/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4352 duplicate other symbols in the list (The only case I know of where
4353 this happens is when object files containing stabs-in-ecoff are
4354 linked with files containing ordinary ecoff debugging symbols (or no
4355 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4356 Returns the number of items in the modified list. */
4c4b4cd2 4357
96d887e8
PH
4358static int
4359remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4360{
4361 int i, j;
4c4b4cd2 4362
96d887e8
PH
4363 i = 0;
4364 while (i < nsyms)
4365 {
339c13b6
JB
4366 int remove = 0;
4367
4368 /* If two symbols have the same name and one of them is a stub type,
4369 the get rid of the stub. */
4370
4371 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4372 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4373 {
4374 for (j = 0; j < nsyms; j++)
4375 {
4376 if (j != i
4377 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4378 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4379 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4380 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4381 remove = 1;
4382 }
4383 }
4384
4385 /* Two symbols with the same name, same class and same address
4386 should be identical. */
4387
4388 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4389 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4390 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4391 {
4392 for (j = 0; j < nsyms; j += 1)
4393 {
4394 if (i != j
4395 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4396 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4397 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4398 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4399 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4400 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4401 remove = 1;
4c4b4cd2 4402 }
4c4b4cd2 4403 }
339c13b6
JB
4404
4405 if (remove)
4406 {
4407 for (j = i + 1; j < nsyms; j += 1)
4408 syms[j - 1] = syms[j];
4409 nsyms -= 1;
4410 }
4411
96d887e8 4412 i += 1;
14f9c5c9 4413 }
96d887e8 4414 return nsyms;
14f9c5c9
AS
4415}
4416
96d887e8
PH
4417/* Given a type that corresponds to a renaming entity, use the type name
4418 to extract the scope (package name or function name, fully qualified,
4419 and following the GNAT encoding convention) where this renaming has been
4420 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4421
96d887e8
PH
4422static char *
4423xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4424{
96d887e8
PH
4425 /* The renaming types adhere to the following convention:
4426 <scope>__<rename>___<XR extension>.
4427 So, to extract the scope, we search for the "___XR" extension,
4428 and then backtrack until we find the first "__". */
76a01679 4429
96d887e8
PH
4430 const char *name = type_name_no_tag (renaming_type);
4431 char *suffix = strstr (name, "___XR");
4432 char *last;
4433 int scope_len;
4434 char *scope;
14f9c5c9 4435
96d887e8
PH
4436 /* Now, backtrack a bit until we find the first "__". Start looking
4437 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4438
96d887e8
PH
4439 for (last = suffix - 3; last > name; last--)
4440 if (last[0] == '_' && last[1] == '_')
4441 break;
76a01679 4442
96d887e8 4443 /* Make a copy of scope and return it. */
14f9c5c9 4444
96d887e8
PH
4445 scope_len = last - name;
4446 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4447
96d887e8
PH
4448 strncpy (scope, name, scope_len);
4449 scope[scope_len] = '\0';
4c4b4cd2 4450
96d887e8 4451 return scope;
4c4b4cd2
PH
4452}
4453
96d887e8 4454/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4455
96d887e8
PH
4456static int
4457is_package_name (const char *name)
4c4b4cd2 4458{
96d887e8
PH
4459 /* Here, We take advantage of the fact that no symbols are generated
4460 for packages, while symbols are generated for each function.
4461 So the condition for NAME represent a package becomes equivalent
4462 to NAME not existing in our list of symbols. There is only one
4463 small complication with library-level functions (see below). */
4c4b4cd2 4464
96d887e8 4465 char *fun_name;
76a01679 4466
96d887e8
PH
4467 /* If it is a function that has not been defined at library level,
4468 then we should be able to look it up in the symbols. */
4469 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4470 return 0;
14f9c5c9 4471
96d887e8
PH
4472 /* Library-level function names start with "_ada_". See if function
4473 "_ada_" followed by NAME can be found. */
14f9c5c9 4474
96d887e8 4475 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4476 functions names cannot contain "__" in them. */
96d887e8
PH
4477 if (strstr (name, "__") != NULL)
4478 return 0;
4c4b4cd2 4479
b435e160 4480 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4481
96d887e8
PH
4482 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4483}
14f9c5c9 4484
96d887e8 4485/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4486 not visible from FUNCTION_NAME. */
14f9c5c9 4487
96d887e8 4488static int
aeb5907d 4489old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4490{
aeb5907d
JB
4491 char *scope;
4492
4493 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4494 return 0;
4495
4496 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4497
96d887e8 4498 make_cleanup (xfree, scope);
14f9c5c9 4499
96d887e8
PH
4500 /* If the rename has been defined in a package, then it is visible. */
4501 if (is_package_name (scope))
aeb5907d 4502 return 0;
14f9c5c9 4503
96d887e8
PH
4504 /* Check that the rename is in the current function scope by checking
4505 that its name starts with SCOPE. */
76a01679 4506
96d887e8
PH
4507 /* If the function name starts with "_ada_", it means that it is
4508 a library-level function. Strip this prefix before doing the
4509 comparison, as the encoding for the renaming does not contain
4510 this prefix. */
4511 if (strncmp (function_name, "_ada_", 5) == 0)
4512 function_name += 5;
f26caa11 4513
aeb5907d 4514 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4515}
4516
aeb5907d
JB
4517/* Remove entries from SYMS that corresponds to a renaming entity that
4518 is not visible from the function associated with CURRENT_BLOCK or
4519 that is superfluous due to the presence of more specific renaming
4520 information. Places surviving symbols in the initial entries of
4521 SYMS and returns the number of surviving symbols.
96d887e8
PH
4522
4523 Rationale:
aeb5907d
JB
4524 First, in cases where an object renaming is implemented as a
4525 reference variable, GNAT may produce both the actual reference
4526 variable and the renaming encoding. In this case, we discard the
4527 latter.
4528
4529 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4530 entity. Unfortunately, STABS currently does not support the definition
4531 of types that are local to a given lexical block, so all renamings types
4532 are emitted at library level. As a consequence, if an application
4533 contains two renaming entities using the same name, and a user tries to
4534 print the value of one of these entities, the result of the ada symbol
4535 lookup will also contain the wrong renaming type.
f26caa11 4536
96d887e8
PH
4537 This function partially covers for this limitation by attempting to
4538 remove from the SYMS list renaming symbols that should be visible
4539 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4540 method with the current information available. The implementation
4541 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4542
4543 - When the user tries to print a rename in a function while there
4544 is another rename entity defined in a package: Normally, the
4545 rename in the function has precedence over the rename in the
4546 package, so the latter should be removed from the list. This is
4547 currently not the case.
4548
4549 - This function will incorrectly remove valid renames if
4550 the CURRENT_BLOCK corresponds to a function which symbol name
4551 has been changed by an "Export" pragma. As a consequence,
4552 the user will be unable to print such rename entities. */
4c4b4cd2 4553
14f9c5c9 4554static int
aeb5907d
JB
4555remove_irrelevant_renamings (struct ada_symbol_info *syms,
4556 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4557{
4558 struct symbol *current_function;
4559 char *current_function_name;
4560 int i;
aeb5907d
JB
4561 int is_new_style_renaming;
4562
4563 /* If there is both a renaming foo___XR... encoded as a variable and
4564 a simple variable foo in the same block, discard the latter.
4565 First, zero out such symbols, then compress. */
4566 is_new_style_renaming = 0;
4567 for (i = 0; i < nsyms; i += 1)
4568 {
4569 struct symbol *sym = syms[i].sym;
4570 struct block *block = syms[i].block;
4571 const char *name;
4572 const char *suffix;
4573
4574 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4575 continue;
4576 name = SYMBOL_LINKAGE_NAME (sym);
4577 suffix = strstr (name, "___XR");
4578
4579 if (suffix != NULL)
4580 {
4581 int name_len = suffix - name;
4582 int j;
4583 is_new_style_renaming = 1;
4584 for (j = 0; j < nsyms; j += 1)
4585 if (i != j && syms[j].sym != NULL
4586 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4587 name_len) == 0
4588 && block == syms[j].block)
4589 syms[j].sym = NULL;
4590 }
4591 }
4592 if (is_new_style_renaming)
4593 {
4594 int j, k;
4595
4596 for (j = k = 0; j < nsyms; j += 1)
4597 if (syms[j].sym != NULL)
4598 {
4599 syms[k] = syms[j];
4600 k += 1;
4601 }
4602 return k;
4603 }
4c4b4cd2
PH
4604
4605 /* Extract the function name associated to CURRENT_BLOCK.
4606 Abort if unable to do so. */
76a01679 4607
4c4b4cd2
PH
4608 if (current_block == NULL)
4609 return nsyms;
76a01679 4610
7f0df278 4611 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4612 if (current_function == NULL)
4613 return nsyms;
4614
4615 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4616 if (current_function_name == NULL)
4617 return nsyms;
4618
4619 /* Check each of the symbols, and remove it from the list if it is
4620 a type corresponding to a renaming that is out of the scope of
4621 the current block. */
4622
4623 i = 0;
4624 while (i < nsyms)
4625 {
aeb5907d
JB
4626 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4627 == ADA_OBJECT_RENAMING
4628 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4629 {
4630 int j;
aeb5907d 4631 for (j = i + 1; j < nsyms; j += 1)
76a01679 4632 syms[j - 1] = syms[j];
4c4b4cd2
PH
4633 nsyms -= 1;
4634 }
4635 else
4636 i += 1;
4637 }
4638
4639 return nsyms;
4640}
4641
339c13b6
JB
4642/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4643 whose name and domain match NAME and DOMAIN respectively.
4644 If no match was found, then extend the search to "enclosing"
4645 routines (in other words, if we're inside a nested function,
4646 search the symbols defined inside the enclosing functions).
4647
4648 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4649
4650static void
4651ada_add_local_symbols (struct obstack *obstackp, const char *name,
4652 struct block *block, domain_enum domain,
4653 int wild_match)
4654{
4655 int block_depth = 0;
4656
4657 while (block != NULL)
4658 {
4659 block_depth += 1;
4660 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4661
4662 /* If we found a non-function match, assume that's the one. */
4663 if (is_nonfunction (defns_collected (obstackp, 0),
4664 num_defns_collected (obstackp)))
4665 return;
4666
4667 block = BLOCK_SUPERBLOCK (block);
4668 }
4669
4670 /* If no luck so far, try to find NAME as a local symbol in some lexically
4671 enclosing subprogram. */
4672 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4673 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4674}
4675
4676/* Add to OBSTACKP all non-local symbols whose name and domain match
4677 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4678 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4679
4680static void
4681ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4682 domain_enum domain, int global,
4683 int wild_match)
4684{
4685 struct objfile *objfile;
4686 struct partial_symtab *ps;
4687
4688 ALL_PSYMTABS (objfile, ps)
4689 {
4690 QUIT;
4691 if (ps->readin
4692 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4693 {
4694 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4695 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4696
4697 if (s == NULL || !s->primary)
4698 continue;
4699 ada_add_block_symbols (obstackp,
4700 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4701 name, domain, objfile, wild_match);
4702 }
4703 }
4704}
4705
4c4b4cd2
PH
4706/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4707 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4708 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4709 indicating the symbols found and the blocks and symbol tables (if
4710 any) in which they were found. This vector are transient---good only to
4711 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4712 symbol match within the nest of blocks whose innermost member is BLOCK0,
4713 is the one match returned (no other matches in that or
4714 enclosing blocks is returned). If there are any matches in or
4715 surrounding BLOCK0, then these alone are returned. Otherwise, the
4716 search extends to global and file-scope (static) symbol tables.
4717 Names prefixed with "standard__" are handled specially: "standard__"
4718 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4719
4720int
4c4b4cd2 4721ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4722 domain_enum namespace,
4723 struct ada_symbol_info **results)
14f9c5c9
AS
4724{
4725 struct symbol *sym;
14f9c5c9 4726 struct block *block;
4c4b4cd2 4727 const char *name;
4c4b4cd2 4728 int wild_match;
14f9c5c9 4729 int cacheIfUnique;
4c4b4cd2 4730 int ndefns;
14f9c5c9 4731
4c4b4cd2
PH
4732 obstack_free (&symbol_list_obstack, NULL);
4733 obstack_init (&symbol_list_obstack);
14f9c5c9 4734
14f9c5c9
AS
4735 cacheIfUnique = 0;
4736
4737 /* Search specified block and its superiors. */
4738
4c4b4cd2
PH
4739 wild_match = (strstr (name0, "__") == NULL);
4740 name = name0;
76a01679
JB
4741 block = (struct block *) block0; /* FIXME: No cast ought to be
4742 needed, but adding const will
4743 have a cascade effect. */
339c13b6
JB
4744
4745 /* Special case: If the user specifies a symbol name inside package
4746 Standard, do a non-wild matching of the symbol name without
4747 the "standard__" prefix. This was primarily introduced in order
4748 to allow the user to specifically access the standard exceptions
4749 using, for instance, Standard.Constraint_Error when Constraint_Error
4750 is ambiguous (due to the user defining its own Constraint_Error
4751 entity inside its program). */
4c4b4cd2
PH
4752 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4753 {
4754 wild_match = 0;
4755 block = NULL;
4756 name = name0 + sizeof ("standard__") - 1;
4757 }
4758
339c13b6 4759 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4760
339c13b6
JB
4761 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4762 wild_match);
4c4b4cd2 4763 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4764 goto done;
d2e4a39e 4765
339c13b6
JB
4766 /* No non-global symbols found. Check our cache to see if we have
4767 already performed this search before. If we have, then return
4768 the same result. */
4769
14f9c5c9 4770 cacheIfUnique = 1;
2570f2b7 4771 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4772 {
4773 if (sym != NULL)
2570f2b7 4774 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4775 goto done;
4776 }
14f9c5c9 4777
339c13b6
JB
4778 /* Search symbols from all global blocks. */
4779
4780 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4781 wild_match);
d2e4a39e 4782
4c4b4cd2 4783 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4784 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4785
4c4b4cd2 4786 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4787 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4788 wild_match);
14f9c5c9 4789
4c4b4cd2
PH
4790done:
4791 ndefns = num_defns_collected (&symbol_list_obstack);
4792 *results = defns_collected (&symbol_list_obstack, 1);
4793
4794 ndefns = remove_extra_symbols (*results, ndefns);
4795
d2e4a39e 4796 if (ndefns == 0)
2570f2b7 4797 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4798
4c4b4cd2 4799 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4800 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4801
aeb5907d 4802 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4803
14f9c5c9
AS
4804 return ndefns;
4805}
4806
d2e4a39e 4807struct symbol *
aeb5907d 4808ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4809 domain_enum namespace, struct block **block_found)
14f9c5c9 4810{
4c4b4cd2 4811 struct ada_symbol_info *candidates;
14f9c5c9
AS
4812 int n_candidates;
4813
aeb5907d 4814 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4815
4816 if (n_candidates == 0)
4817 return NULL;
4c4b4cd2 4818
aeb5907d
JB
4819 if (block_found != NULL)
4820 *block_found = candidates[0].block;
4c4b4cd2 4821
21b556f4 4822 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4823}
4824
4825/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4826 scope and in global scopes, or NULL if none. NAME is folded and
4827 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4828 choosing the first symbol if there are multiple choices.
4829 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4830 table in which the symbol was found (in both cases, these
4831 assignments occur only if the pointers are non-null). */
4832struct symbol *
4833ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4834 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4835{
4836 if (is_a_field_of_this != NULL)
4837 *is_a_field_of_this = 0;
4838
4839 return
4840 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4841 block0, namespace, NULL);
4c4b4cd2 4842}
14f9c5c9 4843
4c4b4cd2
PH
4844static struct symbol *
4845ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4846 const char *linkage_name,
4847 const struct block *block,
21b556f4 4848 const domain_enum domain)
4c4b4cd2
PH
4849{
4850 if (linkage_name == NULL)
4851 linkage_name = name;
76a01679 4852 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4853 NULL);
14f9c5c9
AS
4854}
4855
4856
4c4b4cd2
PH
4857/* True iff STR is a possible encoded suffix of a normal Ada name
4858 that is to be ignored for matching purposes. Suffixes of parallel
4859 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4860 are given by any of the regular expressions:
4c4b4cd2 4861
babe1480
JB
4862 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4863 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4864 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4865 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4866
4867 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4868 match is performed. This sequence is used to differentiate homonyms,
4869 is an optional part of a valid name suffix. */
4c4b4cd2 4870
14f9c5c9 4871static int
d2e4a39e 4872is_name_suffix (const char *str)
14f9c5c9
AS
4873{
4874 int k;
4c4b4cd2
PH
4875 const char *matching;
4876 const int len = strlen (str);
4877
babe1480
JB
4878 /* Skip optional leading __[0-9]+. */
4879
4c4b4cd2
PH
4880 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4881 {
babe1480
JB
4882 str += 3;
4883 while (isdigit (str[0]))
4884 str += 1;
4c4b4cd2 4885 }
babe1480
JB
4886
4887 /* [.$][0-9]+ */
4c4b4cd2 4888
babe1480 4889 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4890 {
babe1480 4891 matching = str + 1;
4c4b4cd2
PH
4892 while (isdigit (matching[0]))
4893 matching += 1;
4894 if (matching[0] == '\0')
4895 return 1;
4896 }
4897
4898 /* ___[0-9]+ */
babe1480 4899
4c4b4cd2
PH
4900 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4901 {
4902 matching = str + 3;
4903 while (isdigit (matching[0]))
4904 matching += 1;
4905 if (matching[0] == '\0')
4906 return 1;
4907 }
4908
529cad9c
PH
4909#if 0
4910 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4911 with a N at the end. Unfortunately, the compiler uses the same
4912 convention for other internal types it creates. So treating
4913 all entity names that end with an "N" as a name suffix causes
4914 some regressions. For instance, consider the case of an enumerated
4915 type. To support the 'Image attribute, it creates an array whose
4916 name ends with N.
4917 Having a single character like this as a suffix carrying some
4918 information is a bit risky. Perhaps we should change the encoding
4919 to be something like "_N" instead. In the meantime, do not do
4920 the following check. */
4921 /* Protected Object Subprograms */
4922 if (len == 1 && str [0] == 'N')
4923 return 1;
4924#endif
4925
4926 /* _E[0-9]+[bs]$ */
4927 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4928 {
4929 matching = str + 3;
4930 while (isdigit (matching[0]))
4931 matching += 1;
4932 if ((matching[0] == 'b' || matching[0] == 's')
4933 && matching [1] == '\0')
4934 return 1;
4935 }
4936
4c4b4cd2
PH
4937 /* ??? We should not modify STR directly, as we are doing below. This
4938 is fine in this case, but may become problematic later if we find
4939 that this alternative did not work, and want to try matching
4940 another one from the begining of STR. Since we modified it, we
4941 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4942 if (str[0] == 'X')
4943 {
4944 str += 1;
d2e4a39e 4945 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4946 {
4947 if (str[0] != 'n' && str[0] != 'b')
4948 return 0;
4949 str += 1;
4950 }
14f9c5c9 4951 }
babe1480 4952
14f9c5c9
AS
4953 if (str[0] == '\000')
4954 return 1;
babe1480 4955
d2e4a39e 4956 if (str[0] == '_')
14f9c5c9
AS
4957 {
4958 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4959 return 0;
d2e4a39e 4960 if (str[2] == '_')
4c4b4cd2 4961 {
61ee279c
PH
4962 if (strcmp (str + 3, "JM") == 0)
4963 return 1;
4964 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4965 the LJM suffix in favor of the JM one. But we will
4966 still accept LJM as a valid suffix for a reasonable
4967 amount of time, just to allow ourselves to debug programs
4968 compiled using an older version of GNAT. */
4c4b4cd2
PH
4969 if (strcmp (str + 3, "LJM") == 0)
4970 return 1;
4971 if (str[3] != 'X')
4972 return 0;
1265e4aa
JB
4973 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4974 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4975 return 1;
4976 if (str[4] == 'R' && str[5] != 'T')
4977 return 1;
4978 return 0;
4979 }
4980 if (!isdigit (str[2]))
4981 return 0;
4982 for (k = 3; str[k] != '\0'; k += 1)
4983 if (!isdigit (str[k]) && str[k] != '_')
4984 return 0;
14f9c5c9
AS
4985 return 1;
4986 }
4c4b4cd2 4987 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4988 {
4c4b4cd2
PH
4989 for (k = 2; str[k] != '\0'; k += 1)
4990 if (!isdigit (str[k]) && str[k] != '_')
4991 return 0;
14f9c5c9
AS
4992 return 1;
4993 }
4994 return 0;
4995}
d2e4a39e 4996
aeb5907d
JB
4997/* Return non-zero if the string starting at NAME and ending before
4998 NAME_END contains no capital letters. */
529cad9c
PH
4999
5000static int
5001is_valid_name_for_wild_match (const char *name0)
5002{
5003 const char *decoded_name = ada_decode (name0);
5004 int i;
5005
5823c3ef
JB
5006 /* If the decoded name starts with an angle bracket, it means that
5007 NAME0 does not follow the GNAT encoding format. It should then
5008 not be allowed as a possible wild match. */
5009 if (decoded_name[0] == '<')
5010 return 0;
5011
529cad9c
PH
5012 for (i=0; decoded_name[i] != '\0'; i++)
5013 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5014 return 0;
5015
5016 return 1;
5017}
5018
4c4b4cd2
PH
5019/* True if NAME represents a name of the form A1.A2....An, n>=1 and
5020 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5021 informational suffixes of NAME (i.e., for which is_name_suffix is
5022 true). */
5023
14f9c5c9 5024static int
4c4b4cd2 5025wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 5026{
5823c3ef
JB
5027 char* match;
5028 const char* start;
5029 start = name0;
5030 while (1)
14f9c5c9 5031 {
5823c3ef
JB
5032 match = strstr (start, patn0);
5033 if (match == NULL)
5034 return 0;
5035 if ((match == name0
5036 || match[-1] == '.'
5037 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
5038 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
5039 && is_name_suffix (match + patn_len))
5040 return (match == name0 || is_valid_name_for_wild_match (name0));
5041 start = match + 1;
96d887e8 5042 }
96d887e8
PH
5043}
5044
5045
5046/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5047 vector *defn_symbols, updating the list of symbols in OBSTACKP
5048 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5049 OBJFILE is the section containing BLOCK.
5050 SYMTAB is recorded with each symbol added. */
5051
5052static void
5053ada_add_block_symbols (struct obstack *obstackp,
76a01679 5054 struct block *block, const char *name,
96d887e8 5055 domain_enum domain, struct objfile *objfile,
2570f2b7 5056 int wild)
96d887e8
PH
5057{
5058 struct dict_iterator iter;
5059 int name_len = strlen (name);
5060 /* A matching argument symbol, if any. */
5061 struct symbol *arg_sym;
5062 /* Set true when we find a matching non-argument symbol. */
5063 int found_sym;
5064 struct symbol *sym;
5065
5066 arg_sym = NULL;
5067 found_sym = 0;
5068 if (wild)
5069 {
5070 struct symbol *sym;
5071 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5072 {
5eeb2539
AR
5073 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5074 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5075 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5076 {
2a2d4dc3
AS
5077 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5078 continue;
5079 else if (SYMBOL_IS_ARGUMENT (sym))
5080 arg_sym = sym;
5081 else
5082 {
76a01679
JB
5083 found_sym = 1;
5084 add_defn_to_vec (obstackp,
5085 fixup_symbol_section (sym, objfile),
2570f2b7 5086 block);
76a01679
JB
5087 }
5088 }
5089 }
96d887e8
PH
5090 }
5091 else
5092 {
5093 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5094 {
5eeb2539
AR
5095 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5096 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5097 {
5098 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5099 if (cmp == 0
5100 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5101 {
2a2d4dc3
AS
5102 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5103 {
5104 if (SYMBOL_IS_ARGUMENT (sym))
5105 arg_sym = sym;
5106 else
5107 {
5108 found_sym = 1;
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (sym, objfile),
5111 block);
5112 }
5113 }
76a01679
JB
5114 }
5115 }
5116 }
96d887e8
PH
5117 }
5118
5119 if (!found_sym && arg_sym != NULL)
5120 {
76a01679
JB
5121 add_defn_to_vec (obstackp,
5122 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5123 block);
96d887e8
PH
5124 }
5125
5126 if (!wild)
5127 {
5128 arg_sym = NULL;
5129 found_sym = 0;
5130
5131 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5132 {
5eeb2539
AR
5133 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5134 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5135 {
5136 int cmp;
5137
5138 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5139 if (cmp == 0)
5140 {
5141 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5142 if (cmp == 0)
5143 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5144 name_len);
5145 }
5146
5147 if (cmp == 0
5148 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5149 {
2a2d4dc3
AS
5150 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5151 {
5152 if (SYMBOL_IS_ARGUMENT (sym))
5153 arg_sym = sym;
5154 else
5155 {
5156 found_sym = 1;
5157 add_defn_to_vec (obstackp,
5158 fixup_symbol_section (sym, objfile),
5159 block);
5160 }
5161 }
76a01679
JB
5162 }
5163 }
76a01679 5164 }
96d887e8
PH
5165
5166 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5167 They aren't parameters, right? */
5168 if (!found_sym && arg_sym != NULL)
5169 {
5170 add_defn_to_vec (obstackp,
76a01679 5171 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5172 block);
96d887e8
PH
5173 }
5174 }
5175}
5176\f
41d27058
JB
5177
5178 /* Symbol Completion */
5179
5180/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5181 name in a form that's appropriate for the completion. The result
5182 does not need to be deallocated, but is only good until the next call.
5183
5184 TEXT_LEN is equal to the length of TEXT.
5185 Perform a wild match if WILD_MATCH is set.
5186 ENCODED should be set if TEXT represents the start of a symbol name
5187 in its encoded form. */
5188
5189static const char *
5190symbol_completion_match (const char *sym_name,
5191 const char *text, int text_len,
5192 int wild_match, int encoded)
5193{
5194 char *result;
5195 const int verbatim_match = (text[0] == '<');
5196 int match = 0;
5197
5198 if (verbatim_match)
5199 {
5200 /* Strip the leading angle bracket. */
5201 text = text + 1;
5202 text_len--;
5203 }
5204
5205 /* First, test against the fully qualified name of the symbol. */
5206
5207 if (strncmp (sym_name, text, text_len) == 0)
5208 match = 1;
5209
5210 if (match && !encoded)
5211 {
5212 /* One needed check before declaring a positive match is to verify
5213 that iff we are doing a verbatim match, the decoded version
5214 of the symbol name starts with '<'. Otherwise, this symbol name
5215 is not a suitable completion. */
5216 const char *sym_name_copy = sym_name;
5217 int has_angle_bracket;
5218
5219 sym_name = ada_decode (sym_name);
5220 has_angle_bracket = (sym_name[0] == '<');
5221 match = (has_angle_bracket == verbatim_match);
5222 sym_name = sym_name_copy;
5223 }
5224
5225 if (match && !verbatim_match)
5226 {
5227 /* When doing non-verbatim match, another check that needs to
5228 be done is to verify that the potentially matching symbol name
5229 does not include capital letters, because the ada-mode would
5230 not be able to understand these symbol names without the
5231 angle bracket notation. */
5232 const char *tmp;
5233
5234 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5235 if (*tmp != '\0')
5236 match = 0;
5237 }
5238
5239 /* Second: Try wild matching... */
5240
5241 if (!match && wild_match)
5242 {
5243 /* Since we are doing wild matching, this means that TEXT
5244 may represent an unqualified symbol name. We therefore must
5245 also compare TEXT against the unqualified name of the symbol. */
5246 sym_name = ada_unqualified_name (ada_decode (sym_name));
5247
5248 if (strncmp (sym_name, text, text_len) == 0)
5249 match = 1;
5250 }
5251
5252 /* Finally: If we found a mach, prepare the result to return. */
5253
5254 if (!match)
5255 return NULL;
5256
5257 if (verbatim_match)
5258 sym_name = add_angle_brackets (sym_name);
5259
5260 if (!encoded)
5261 sym_name = ada_decode (sym_name);
5262
5263 return sym_name;
5264}
5265
2ba95b9b
JB
5266typedef char *char_ptr;
5267DEF_VEC_P (char_ptr);
5268
41d27058
JB
5269/* A companion function to ada_make_symbol_completion_list().
5270 Check if SYM_NAME represents a symbol which name would be suitable
5271 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5272 it is appended at the end of the given string vector SV.
5273
5274 ORIG_TEXT is the string original string from the user command
5275 that needs to be completed. WORD is the entire command on which
5276 completion should be performed. These two parameters are used to
5277 determine which part of the symbol name should be added to the
5278 completion vector.
5279 if WILD_MATCH is set, then wild matching is performed.
5280 ENCODED should be set if TEXT represents a symbol name in its
5281 encoded formed (in which case the completion should also be
5282 encoded). */
5283
5284static void
d6565258 5285symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5286 const char *sym_name,
5287 const char *text, int text_len,
5288 const char *orig_text, const char *word,
5289 int wild_match, int encoded)
5290{
5291 const char *match = symbol_completion_match (sym_name, text, text_len,
5292 wild_match, encoded);
5293 char *completion;
5294
5295 if (match == NULL)
5296 return;
5297
5298 /* We found a match, so add the appropriate completion to the given
5299 string vector. */
5300
5301 if (word == orig_text)
5302 {
5303 completion = xmalloc (strlen (match) + 5);
5304 strcpy (completion, match);
5305 }
5306 else if (word > orig_text)
5307 {
5308 /* Return some portion of sym_name. */
5309 completion = xmalloc (strlen (match) + 5);
5310 strcpy (completion, match + (word - orig_text));
5311 }
5312 else
5313 {
5314 /* Return some of ORIG_TEXT plus sym_name. */
5315 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5316 strncpy (completion, word, orig_text - word);
5317 completion[orig_text - word] = '\0';
5318 strcat (completion, match);
5319 }
5320
d6565258 5321 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5322}
5323
5324/* Return a list of possible symbol names completing TEXT0. The list
5325 is NULL terminated. WORD is the entire command on which completion
5326 is made. */
5327
5328static char **
5329ada_make_symbol_completion_list (char *text0, char *word)
5330{
5331 char *text;
5332 int text_len;
5333 int wild_match;
5334 int encoded;
2ba95b9b 5335 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5336 struct symbol *sym;
5337 struct symtab *s;
5338 struct partial_symtab *ps;
5339 struct minimal_symbol *msymbol;
5340 struct objfile *objfile;
5341 struct block *b, *surrounding_static_block = 0;
5342 int i;
5343 struct dict_iterator iter;
5344
5345 if (text0[0] == '<')
5346 {
5347 text = xstrdup (text0);
5348 make_cleanup (xfree, text);
5349 text_len = strlen (text);
5350 wild_match = 0;
5351 encoded = 1;
5352 }
5353 else
5354 {
5355 text = xstrdup (ada_encode (text0));
5356 make_cleanup (xfree, text);
5357 text_len = strlen (text);
5358 for (i = 0; i < text_len; i++)
5359 text[i] = tolower (text[i]);
5360
5361 encoded = (strstr (text0, "__") != NULL);
5362 /* If the name contains a ".", then the user is entering a fully
5363 qualified entity name, and the match must not be done in wild
5364 mode. Similarly, if the user wants to complete what looks like
5365 an encoded name, the match must not be done in wild mode. */
5366 wild_match = (strchr (text0, '.') == NULL && !encoded);
5367 }
5368
5369 /* First, look at the partial symtab symbols. */
5370 ALL_PSYMTABS (objfile, ps)
5371 {
5372 struct partial_symbol **psym;
5373
5374 /* If the psymtab's been read in we'll get it when we search
5375 through the blockvector. */
5376 if (ps->readin)
5377 continue;
5378
5379 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5380 psym < (objfile->global_psymbols.list + ps->globals_offset
5381 + ps->n_global_syms); psym++)
5382 {
5383 QUIT;
d6565258 5384 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5385 text, text_len, text0, word,
5386 wild_match, encoded);
5387 }
5388
5389 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5390 psym < (objfile->static_psymbols.list + ps->statics_offset
5391 + ps->n_static_syms); psym++)
5392 {
5393 QUIT;
d6565258 5394 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5395 text, text_len, text0, word,
5396 wild_match, encoded);
5397 }
5398 }
5399
5400 /* At this point scan through the misc symbol vectors and add each
5401 symbol you find to the list. Eventually we want to ignore
5402 anything that isn't a text symbol (everything else will be
5403 handled by the psymtab code above). */
5404
5405 ALL_MSYMBOLS (objfile, msymbol)
5406 {
5407 QUIT;
d6565258 5408 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5409 text, text_len, text0, word, wild_match, encoded);
5410 }
5411
5412 /* Search upwards from currently selected frame (so that we can
5413 complete on local vars. */
5414
5415 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5416 {
5417 if (!BLOCK_SUPERBLOCK (b))
5418 surrounding_static_block = b; /* For elmin of dups */
5419
5420 ALL_BLOCK_SYMBOLS (b, iter, sym)
5421 {
d6565258 5422 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5423 text, text_len, text0, word,
5424 wild_match, encoded);
5425 }
5426 }
5427
5428 /* Go through the symtabs and check the externs and statics for
5429 symbols which match. */
5430
5431 ALL_SYMTABS (objfile, s)
5432 {
5433 QUIT;
5434 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5435 ALL_BLOCK_SYMBOLS (b, iter, sym)
5436 {
d6565258 5437 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5438 text, text_len, text0, word,
5439 wild_match, encoded);
5440 }
5441 }
5442
5443 ALL_SYMTABS (objfile, s)
5444 {
5445 QUIT;
5446 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5447 /* Don't do this block twice. */
5448 if (b == surrounding_static_block)
5449 continue;
5450 ALL_BLOCK_SYMBOLS (b, iter, sym)
5451 {
d6565258 5452 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5453 text, text_len, text0, word,
5454 wild_match, encoded);
5455 }
5456 }
5457
5458 /* Append the closing NULL entry. */
2ba95b9b 5459 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5460
2ba95b9b
JB
5461 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5462 return the copy. It's unfortunate that we have to make a copy
5463 of an array that we're about to destroy, but there is nothing much
5464 we can do about it. Fortunately, it's typically not a very large
5465 array. */
5466 {
5467 const size_t completions_size =
5468 VEC_length (char_ptr, completions) * sizeof (char *);
5469 char **result = malloc (completions_size);
5470
5471 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5472
5473 VEC_free (char_ptr, completions);
5474 return result;
5475 }
41d27058
JB
5476}
5477
963a6417 5478 /* Field Access */
96d887e8 5479
73fb9985
JB
5480/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5481 for tagged types. */
5482
5483static int
5484ada_is_dispatch_table_ptr_type (struct type *type)
5485{
5486 char *name;
5487
5488 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5489 return 0;
5490
5491 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5492 if (name == NULL)
5493 return 0;
5494
5495 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5496}
5497
963a6417
PH
5498/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5499 to be invisible to users. */
96d887e8 5500
963a6417
PH
5501int
5502ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5503{
963a6417
PH
5504 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5505 return 1;
73fb9985
JB
5506
5507 /* Check the name of that field. */
5508 {
5509 const char *name = TYPE_FIELD_NAME (type, field_num);
5510
5511 /* Anonymous field names should not be printed.
5512 brobecker/2007-02-20: I don't think this can actually happen
5513 but we don't want to print the value of annonymous fields anyway. */
5514 if (name == NULL)
5515 return 1;
5516
5517 /* A field named "_parent" is internally generated by GNAT for
5518 tagged types, and should not be printed either. */
5519 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5520 return 1;
5521 }
5522
5523 /* If this is the dispatch table of a tagged type, then ignore. */
5524 if (ada_is_tagged_type (type, 1)
5525 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5526 return 1;
5527
5528 /* Not a special field, so it should not be ignored. */
5529 return 0;
963a6417 5530}
96d887e8 5531
963a6417
PH
5532/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5533 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5534
963a6417
PH
5535int
5536ada_is_tagged_type (struct type *type, int refok)
5537{
5538 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5539}
96d887e8 5540
963a6417 5541/* True iff TYPE represents the type of X'Tag */
96d887e8 5542
963a6417
PH
5543int
5544ada_is_tag_type (struct type *type)
5545{
5546 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5547 return 0;
5548 else
96d887e8 5549 {
963a6417
PH
5550 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5551 return (name != NULL
5552 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5553 }
96d887e8
PH
5554}
5555
963a6417 5556/* The type of the tag on VAL. */
76a01679 5557
963a6417
PH
5558struct type *
5559ada_tag_type (struct value *val)
96d887e8 5560{
df407dfe 5561 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5562}
96d887e8 5563
963a6417 5564/* The value of the tag on VAL. */
96d887e8 5565
963a6417
PH
5566struct value *
5567ada_value_tag (struct value *val)
5568{
03ee6b2e 5569 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5570}
5571
963a6417
PH
5572/* The value of the tag on the object of type TYPE whose contents are
5573 saved at VALADDR, if it is non-null, or is at memory address
5574 ADDRESS. */
96d887e8 5575
963a6417 5576static struct value *
10a2c479 5577value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5578 const gdb_byte *valaddr,
963a6417 5579 CORE_ADDR address)
96d887e8 5580{
963a6417
PH
5581 int tag_byte_offset, dummy1, dummy2;
5582 struct type *tag_type;
5583 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5584 NULL, NULL, NULL))
96d887e8 5585 {
fc1a4b47 5586 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5587 ? NULL
5588 : valaddr + tag_byte_offset);
963a6417 5589 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5590
963a6417 5591 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5592 }
963a6417
PH
5593 return NULL;
5594}
96d887e8 5595
963a6417
PH
5596static struct type *
5597type_from_tag (struct value *tag)
5598{
5599 const char *type_name = ada_tag_name (tag);
5600 if (type_name != NULL)
5601 return ada_find_any_type (ada_encode (type_name));
5602 return NULL;
5603}
96d887e8 5604
963a6417
PH
5605struct tag_args
5606{
5607 struct value *tag;
5608 char *name;
5609};
4c4b4cd2 5610
529cad9c
PH
5611
5612static int ada_tag_name_1 (void *);
5613static int ada_tag_name_2 (struct tag_args *);
5614
4c4b4cd2
PH
5615/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5616 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5617 The value stored in ARGS->name is valid until the next call to
5618 ada_tag_name_1. */
5619
5620static int
5621ada_tag_name_1 (void *args0)
5622{
5623 struct tag_args *args = (struct tag_args *) args0;
5624 static char name[1024];
76a01679 5625 char *p;
4c4b4cd2
PH
5626 struct value *val;
5627 args->name = NULL;
03ee6b2e 5628 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5629 if (val == NULL)
5630 return ada_tag_name_2 (args);
03ee6b2e 5631 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5632 if (val == NULL)
5633 return 0;
5634 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5635 for (p = name; *p != '\0'; p += 1)
5636 if (isalpha (*p))
5637 *p = tolower (*p);
5638 args->name = name;
5639 return 0;
5640}
5641
5642/* Utility function for ada_tag_name_1 that tries the second
5643 representation for the dispatch table (in which there is no
5644 explicit 'tsd' field in the referent of the tag pointer, and instead
5645 the tsd pointer is stored just before the dispatch table. */
5646
5647static int
5648ada_tag_name_2 (struct tag_args *args)
5649{
5650 struct type *info_type;
5651 static char name[1024];
5652 char *p;
5653 struct value *val, *valp;
5654
5655 args->name = NULL;
5656 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5657 if (info_type == NULL)
5658 return 0;
5659 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5660 valp = value_cast (info_type, args->tag);
5661 if (valp == NULL)
5662 return 0;
89eef114
UW
5663 val = value_ind (value_ptradd (valp,
5664 value_from_longest (builtin_type_int8, -1)));
4c4b4cd2
PH
5665 if (val == NULL)
5666 return 0;
03ee6b2e 5667 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5668 if (val == NULL)
5669 return 0;
5670 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5671 for (p = name; *p != '\0'; p += 1)
5672 if (isalpha (*p))
5673 *p = tolower (*p);
5674 args->name = name;
5675 return 0;
5676}
5677
5678/* The type name of the dynamic type denoted by the 'tag value TAG, as
5679 * a C string. */
5680
5681const char *
5682ada_tag_name (struct value *tag)
5683{
5684 struct tag_args args;
df407dfe 5685 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5686 return NULL;
76a01679 5687 args.tag = tag;
4c4b4cd2
PH
5688 args.name = NULL;
5689 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5690 return args.name;
5691}
5692
5693/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5694
d2e4a39e 5695struct type *
ebf56fd3 5696ada_parent_type (struct type *type)
14f9c5c9
AS
5697{
5698 int i;
5699
61ee279c 5700 type = ada_check_typedef (type);
14f9c5c9
AS
5701
5702 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5703 return NULL;
5704
5705 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5706 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5707 {
5708 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5709
5710 /* If the _parent field is a pointer, then dereference it. */
5711 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5712 parent_type = TYPE_TARGET_TYPE (parent_type);
5713 /* If there is a parallel XVS type, get the actual base type. */
5714 parent_type = ada_get_base_type (parent_type);
5715
5716 return ada_check_typedef (parent_type);
5717 }
14f9c5c9
AS
5718
5719 return NULL;
5720}
5721
4c4b4cd2
PH
5722/* True iff field number FIELD_NUM of structure type TYPE contains the
5723 parent-type (inherited) fields of a derived type. Assumes TYPE is
5724 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5725
5726int
ebf56fd3 5727ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5728{
61ee279c 5729 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5730 return (name != NULL
5731 && (strncmp (name, "PARENT", 6) == 0
5732 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5733}
5734
4c4b4cd2 5735/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5736 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5737 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5738 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5739 structures. */
14f9c5c9
AS
5740
5741int
ebf56fd3 5742ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5743{
d2e4a39e
AS
5744 const char *name = TYPE_FIELD_NAME (type, field_num);
5745 return (name != NULL
4c4b4cd2
PH
5746 && (strncmp (name, "PARENT", 6) == 0
5747 || strcmp (name, "REP") == 0
5748 || strncmp (name, "_parent", 7) == 0
5749 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5750}
5751
4c4b4cd2
PH
5752/* True iff field number FIELD_NUM of structure or union type TYPE
5753 is a variant wrapper. Assumes TYPE is a structure type with at least
5754 FIELD_NUM+1 fields. */
14f9c5c9
AS
5755
5756int
ebf56fd3 5757ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5758{
d2e4a39e 5759 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5760 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5761 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5762 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5763 == TYPE_CODE_UNION)));
14f9c5c9
AS
5764}
5765
5766/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5767 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5768 returns the type of the controlling discriminant for the variant. */
5769
d2e4a39e 5770struct type *
ebf56fd3 5771ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5772{
d2e4a39e 5773 char *name = ada_variant_discrim_name (var_type);
76a01679 5774 struct type *type =
4c4b4cd2 5775 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5776 if (type == NULL)
6d84d3d8 5777 return builtin_type_int32;
14f9c5c9
AS
5778 else
5779 return type;
5780}
5781
4c4b4cd2 5782/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5783 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5784 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5785
5786int
ebf56fd3 5787ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5788{
d2e4a39e 5789 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5790 return (name != NULL && name[0] == 'O');
5791}
5792
5793/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5794 returns the name of the discriminant controlling the variant.
5795 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5796
d2e4a39e 5797char *
ebf56fd3 5798ada_variant_discrim_name (struct type *type0)
14f9c5c9 5799{
d2e4a39e 5800 static char *result = NULL;
14f9c5c9 5801 static size_t result_len = 0;
d2e4a39e
AS
5802 struct type *type;
5803 const char *name;
5804 const char *discrim_end;
5805 const char *discrim_start;
14f9c5c9
AS
5806
5807 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5808 type = TYPE_TARGET_TYPE (type0);
5809 else
5810 type = type0;
5811
5812 name = ada_type_name (type);
5813
5814 if (name == NULL || name[0] == '\000')
5815 return "";
5816
5817 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5818 discrim_end -= 1)
5819 {
4c4b4cd2
PH
5820 if (strncmp (discrim_end, "___XVN", 6) == 0)
5821 break;
14f9c5c9
AS
5822 }
5823 if (discrim_end == name)
5824 return "";
5825
d2e4a39e 5826 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5827 discrim_start -= 1)
5828 {
d2e4a39e 5829 if (discrim_start == name + 1)
4c4b4cd2 5830 return "";
76a01679 5831 if ((discrim_start > name + 3
4c4b4cd2
PH
5832 && strncmp (discrim_start - 3, "___", 3) == 0)
5833 || discrim_start[-1] == '.')
5834 break;
14f9c5c9
AS
5835 }
5836
5837 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5838 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5839 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5840 return result;
5841}
5842
4c4b4cd2
PH
5843/* Scan STR for a subtype-encoded number, beginning at position K.
5844 Put the position of the character just past the number scanned in
5845 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5846 Return 1 if there was a valid number at the given position, and 0
5847 otherwise. A "subtype-encoded" number consists of the absolute value
5848 in decimal, followed by the letter 'm' to indicate a negative number.
5849 Assumes 0m does not occur. */
14f9c5c9
AS
5850
5851int
d2e4a39e 5852ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5853{
5854 ULONGEST RU;
5855
d2e4a39e 5856 if (!isdigit (str[k]))
14f9c5c9
AS
5857 return 0;
5858
4c4b4cd2 5859 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5860 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5861 LONGEST. */
14f9c5c9
AS
5862 RU = 0;
5863 while (isdigit (str[k]))
5864 {
d2e4a39e 5865 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5866 k += 1;
5867 }
5868
d2e4a39e 5869 if (str[k] == 'm')
14f9c5c9
AS
5870 {
5871 if (R != NULL)
4c4b4cd2 5872 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5873 k += 1;
5874 }
5875 else if (R != NULL)
5876 *R = (LONGEST) RU;
5877
4c4b4cd2 5878 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5879 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5880 number representable as a LONGEST (although either would probably work
5881 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5882 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5883
5884 if (new_k != NULL)
5885 *new_k = k;
5886 return 1;
5887}
5888
4c4b4cd2
PH
5889/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5890 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5891 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5892
d2e4a39e 5893int
ebf56fd3 5894ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5895{
d2e4a39e 5896 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5897 int p;
5898
5899 p = 0;
5900 while (1)
5901 {
d2e4a39e 5902 switch (name[p])
4c4b4cd2
PH
5903 {
5904 case '\0':
5905 return 0;
5906 case 'S':
5907 {
5908 LONGEST W;
5909 if (!ada_scan_number (name, p + 1, &W, &p))
5910 return 0;
5911 if (val == W)
5912 return 1;
5913 break;
5914 }
5915 case 'R':
5916 {
5917 LONGEST L, U;
5918 if (!ada_scan_number (name, p + 1, &L, &p)
5919 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5920 return 0;
5921 if (val >= L && val <= U)
5922 return 1;
5923 break;
5924 }
5925 case 'O':
5926 return 1;
5927 default:
5928 return 0;
5929 }
5930 }
5931}
5932
5933/* FIXME: Lots of redundancy below. Try to consolidate. */
5934
5935/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5936 ARG_TYPE, extract and return the value of one of its (non-static)
5937 fields. FIELDNO says which field. Differs from value_primitive_field
5938 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5939
4c4b4cd2 5940static struct value *
d2e4a39e 5941ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5942 struct type *arg_type)
14f9c5c9 5943{
14f9c5c9
AS
5944 struct type *type;
5945
61ee279c 5946 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5947 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5948
4c4b4cd2 5949 /* Handle packed fields. */
14f9c5c9
AS
5950
5951 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5952 {
5953 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5954 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5955
0fd88904 5956 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5957 offset + bit_pos / 8,
5958 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5959 }
5960 else
5961 return value_primitive_field (arg1, offset, fieldno, arg_type);
5962}
5963
52ce6436
PH
5964/* Find field with name NAME in object of type TYPE. If found,
5965 set the following for each argument that is non-null:
5966 - *FIELD_TYPE_P to the field's type;
5967 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5968 an object of that type;
5969 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5970 - *BIT_SIZE_P to its size in bits if the field is packed, and
5971 0 otherwise;
5972 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5973 fields up to but not including the desired field, or by the total
5974 number of fields if not found. A NULL value of NAME never
5975 matches; the function just counts visible fields in this case.
5976
5977 Returns 1 if found, 0 otherwise. */
5978
4c4b4cd2 5979static int
76a01679
JB
5980find_struct_field (char *name, struct type *type, int offset,
5981 struct type **field_type_p,
52ce6436
PH
5982 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5983 int *index_p)
4c4b4cd2
PH
5984{
5985 int i;
5986
61ee279c 5987 type = ada_check_typedef (type);
76a01679 5988
52ce6436
PH
5989 if (field_type_p != NULL)
5990 *field_type_p = NULL;
5991 if (byte_offset_p != NULL)
d5d6fca5 5992 *byte_offset_p = 0;
52ce6436
PH
5993 if (bit_offset_p != NULL)
5994 *bit_offset_p = 0;
5995 if (bit_size_p != NULL)
5996 *bit_size_p = 0;
5997
5998 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5999 {
6000 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6001 int fld_offset = offset + bit_pos / 8;
6002 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6003
4c4b4cd2
PH
6004 if (t_field_name == NULL)
6005 continue;
6006
52ce6436 6007 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6008 {
6009 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
6010 if (field_type_p != NULL)
6011 *field_type_p = TYPE_FIELD_TYPE (type, i);
6012 if (byte_offset_p != NULL)
6013 *byte_offset_p = fld_offset;
6014 if (bit_offset_p != NULL)
6015 *bit_offset_p = bit_pos % 8;
6016 if (bit_size_p != NULL)
6017 *bit_size_p = bit_size;
76a01679
JB
6018 return 1;
6019 }
4c4b4cd2
PH
6020 else if (ada_is_wrapper_field (type, i))
6021 {
52ce6436
PH
6022 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6023 field_type_p, byte_offset_p, bit_offset_p,
6024 bit_size_p, index_p))
76a01679
JB
6025 return 1;
6026 }
4c4b4cd2
PH
6027 else if (ada_is_variant_part (type, i))
6028 {
52ce6436
PH
6029 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6030 fixed type?? */
4c4b4cd2 6031 int j;
52ce6436
PH
6032 struct type *field_type
6033 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6034
52ce6436 6035 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6036 {
76a01679
JB
6037 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6038 fld_offset
6039 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6040 field_type_p, byte_offset_p,
52ce6436 6041 bit_offset_p, bit_size_p, index_p))
76a01679 6042 return 1;
4c4b4cd2
PH
6043 }
6044 }
52ce6436
PH
6045 else if (index_p != NULL)
6046 *index_p += 1;
4c4b4cd2
PH
6047 }
6048 return 0;
6049}
6050
52ce6436 6051/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6052
52ce6436
PH
6053static int
6054num_visible_fields (struct type *type)
6055{
6056 int n;
6057 n = 0;
6058 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6059 return n;
6060}
14f9c5c9 6061
4c4b4cd2 6062/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6063 and search in it assuming it has (class) type TYPE.
6064 If found, return value, else return NULL.
6065
4c4b4cd2 6066 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6067
4c4b4cd2 6068static struct value *
d2e4a39e 6069ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6070 struct type *type)
14f9c5c9
AS
6071{
6072 int i;
61ee279c 6073 type = ada_check_typedef (type);
14f9c5c9 6074
52ce6436 6075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6076 {
6077 char *t_field_name = TYPE_FIELD_NAME (type, i);
6078
6079 if (t_field_name == NULL)
4c4b4cd2 6080 continue;
14f9c5c9
AS
6081
6082 else if (field_name_match (t_field_name, name))
4c4b4cd2 6083 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6084
6085 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6086 {
06d5cf63
JB
6087 struct value *v = /* Do not let indent join lines here. */
6088 ada_search_struct_field (name, arg,
6089 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6090 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6091 if (v != NULL)
6092 return v;
6093 }
14f9c5c9
AS
6094
6095 else if (ada_is_variant_part (type, i))
4c4b4cd2 6096 {
52ce6436 6097 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6098 int j;
61ee279c 6099 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6100 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6101
52ce6436 6102 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6103 {
06d5cf63
JB
6104 struct value *v = ada_search_struct_field /* Force line break. */
6105 (name, arg,
6106 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6107 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6108 if (v != NULL)
6109 return v;
6110 }
6111 }
14f9c5c9
AS
6112 }
6113 return NULL;
6114}
d2e4a39e 6115
52ce6436
PH
6116static struct value *ada_index_struct_field_1 (int *, struct value *,
6117 int, struct type *);
6118
6119
6120/* Return field #INDEX in ARG, where the index is that returned by
6121 * find_struct_field through its INDEX_P argument. Adjust the address
6122 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6123 * If found, return value, else return NULL. */
6124
6125static struct value *
6126ada_index_struct_field (int index, struct value *arg, int offset,
6127 struct type *type)
6128{
6129 return ada_index_struct_field_1 (&index, arg, offset, type);
6130}
6131
6132
6133/* Auxiliary function for ada_index_struct_field. Like
6134 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6135 * *INDEX_P. */
6136
6137static struct value *
6138ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6139 struct type *type)
6140{
6141 int i;
6142 type = ada_check_typedef (type);
6143
6144 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6145 {
6146 if (TYPE_FIELD_NAME (type, i) == NULL)
6147 continue;
6148 else if (ada_is_wrapper_field (type, i))
6149 {
6150 struct value *v = /* Do not let indent join lines here. */
6151 ada_index_struct_field_1 (index_p, arg,
6152 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6153 TYPE_FIELD_TYPE (type, i));
6154 if (v != NULL)
6155 return v;
6156 }
6157
6158 else if (ada_is_variant_part (type, i))
6159 {
6160 /* PNH: Do we ever get here? See ada_search_struct_field,
6161 find_struct_field. */
6162 error (_("Cannot assign this kind of variant record"));
6163 }
6164 else if (*index_p == 0)
6165 return ada_value_primitive_field (arg, offset, i, type);
6166 else
6167 *index_p -= 1;
6168 }
6169 return NULL;
6170}
6171
4c4b4cd2
PH
6172/* Given ARG, a value of type (pointer or reference to a)*
6173 structure/union, extract the component named NAME from the ultimate
6174 target structure/union and return it as a value with its
f5938064 6175 appropriate type.
14f9c5c9 6176
4c4b4cd2
PH
6177 The routine searches for NAME among all members of the structure itself
6178 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6179 (e.g., '_parent').
6180
03ee6b2e
PH
6181 If NO_ERR, then simply return NULL in case of error, rather than
6182 calling error. */
14f9c5c9 6183
d2e4a39e 6184struct value *
03ee6b2e 6185ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6186{
4c4b4cd2 6187 struct type *t, *t1;
d2e4a39e 6188 struct value *v;
14f9c5c9 6189
4c4b4cd2 6190 v = NULL;
df407dfe 6191 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6192 if (TYPE_CODE (t) == TYPE_CODE_REF)
6193 {
6194 t1 = TYPE_TARGET_TYPE (t);
6195 if (t1 == NULL)
03ee6b2e 6196 goto BadValue;
61ee279c 6197 t1 = ada_check_typedef (t1);
4c4b4cd2 6198 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6199 {
994b9211 6200 arg = coerce_ref (arg);
76a01679
JB
6201 t = t1;
6202 }
4c4b4cd2 6203 }
14f9c5c9 6204
4c4b4cd2
PH
6205 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6206 {
6207 t1 = TYPE_TARGET_TYPE (t);
6208 if (t1 == NULL)
03ee6b2e 6209 goto BadValue;
61ee279c 6210 t1 = ada_check_typedef (t1);
4c4b4cd2 6211 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6212 {
6213 arg = value_ind (arg);
6214 t = t1;
6215 }
4c4b4cd2 6216 else
76a01679 6217 break;
4c4b4cd2 6218 }
14f9c5c9 6219
4c4b4cd2 6220 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6221 goto BadValue;
14f9c5c9 6222
4c4b4cd2
PH
6223 if (t1 == t)
6224 v = ada_search_struct_field (name, arg, 0, t);
6225 else
6226 {
6227 int bit_offset, bit_size, byte_offset;
6228 struct type *field_type;
6229 CORE_ADDR address;
6230
76a01679
JB
6231 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6232 address = value_as_address (arg);
4c4b4cd2 6233 else
0fd88904 6234 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6235
1ed6ede0 6236 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6237 if (find_struct_field (name, t1, 0,
6238 &field_type, &byte_offset, &bit_offset,
52ce6436 6239 &bit_size, NULL))
76a01679
JB
6240 {
6241 if (bit_size != 0)
6242 {
714e53ab
PH
6243 if (TYPE_CODE (t) == TYPE_CODE_REF)
6244 arg = ada_coerce_ref (arg);
6245 else
6246 arg = ada_value_ind (arg);
76a01679
JB
6247 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6248 bit_offset, bit_size,
6249 field_type);
6250 }
6251 else
f5938064 6252 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6253 }
6254 }
6255
03ee6b2e
PH
6256 if (v != NULL || no_err)
6257 return v;
6258 else
323e0a4a 6259 error (_("There is no member named %s."), name);
14f9c5c9 6260
03ee6b2e
PH
6261 BadValue:
6262 if (no_err)
6263 return NULL;
6264 else
6265 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6266}
6267
6268/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6269 If DISPP is non-null, add its byte displacement from the beginning of a
6270 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6271 work for packed fields).
6272
6273 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6274 followed by "___".
14f9c5c9 6275
4c4b4cd2
PH
6276 TYPE can be either a struct or union. If REFOK, TYPE may also
6277 be a (pointer or reference)+ to a struct or union, and the
6278 ultimate target type will be searched.
14f9c5c9
AS
6279
6280 Looks recursively into variant clauses and parent types.
6281
4c4b4cd2
PH
6282 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6283 TYPE is not a type of the right kind. */
14f9c5c9 6284
4c4b4cd2 6285static struct type *
76a01679
JB
6286ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6287 int noerr, int *dispp)
14f9c5c9
AS
6288{
6289 int i;
6290
6291 if (name == NULL)
6292 goto BadName;
6293
76a01679 6294 if (refok && type != NULL)
4c4b4cd2
PH
6295 while (1)
6296 {
61ee279c 6297 type = ada_check_typedef (type);
76a01679
JB
6298 if (TYPE_CODE (type) != TYPE_CODE_PTR
6299 && TYPE_CODE (type) != TYPE_CODE_REF)
6300 break;
6301 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6302 }
14f9c5c9 6303
76a01679 6304 if (type == NULL
1265e4aa
JB
6305 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6306 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6307 {
4c4b4cd2 6308 if (noerr)
76a01679 6309 return NULL;
4c4b4cd2 6310 else
76a01679
JB
6311 {
6312 target_terminal_ours ();
6313 gdb_flush (gdb_stdout);
323e0a4a
AC
6314 if (type == NULL)
6315 error (_("Type (null) is not a structure or union type"));
6316 else
6317 {
6318 /* XXX: type_sprint */
6319 fprintf_unfiltered (gdb_stderr, _("Type "));
6320 type_print (type, "", gdb_stderr, -1);
6321 error (_(" is not a structure or union type"));
6322 }
76a01679 6323 }
14f9c5c9
AS
6324 }
6325
6326 type = to_static_fixed_type (type);
6327
6328 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6329 {
6330 char *t_field_name = TYPE_FIELD_NAME (type, i);
6331 struct type *t;
6332 int disp;
d2e4a39e 6333
14f9c5c9 6334 if (t_field_name == NULL)
4c4b4cd2 6335 continue;
14f9c5c9
AS
6336
6337 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6338 {
6339 if (dispp != NULL)
6340 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6341 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6342 }
14f9c5c9
AS
6343
6344 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6345 {
6346 disp = 0;
6347 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6348 0, 1, &disp);
6349 if (t != NULL)
6350 {
6351 if (dispp != NULL)
6352 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6353 return t;
6354 }
6355 }
14f9c5c9
AS
6356
6357 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6358 {
6359 int j;
61ee279c 6360 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6361
6362 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6363 {
b1f33ddd
JB
6364 /* FIXME pnh 2008/01/26: We check for a field that is
6365 NOT wrapped in a struct, since the compiler sometimes
6366 generates these for unchecked variant types. Revisit
6367 if the compiler changes this practice. */
6368 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6369 disp = 0;
b1f33ddd
JB
6370 if (v_field_name != NULL
6371 && field_name_match (v_field_name, name))
6372 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6373 else
6374 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6375 name, 0, 1, &disp);
6376
4c4b4cd2
PH
6377 if (t != NULL)
6378 {
6379 if (dispp != NULL)
6380 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6381 return t;
6382 }
6383 }
6384 }
14f9c5c9
AS
6385
6386 }
6387
6388BadName:
d2e4a39e 6389 if (!noerr)
14f9c5c9
AS
6390 {
6391 target_terminal_ours ();
6392 gdb_flush (gdb_stdout);
323e0a4a
AC
6393 if (name == NULL)
6394 {
6395 /* XXX: type_sprint */
6396 fprintf_unfiltered (gdb_stderr, _("Type "));
6397 type_print (type, "", gdb_stderr, -1);
6398 error (_(" has no component named <null>"));
6399 }
6400 else
6401 {
6402 /* XXX: type_sprint */
6403 fprintf_unfiltered (gdb_stderr, _("Type "));
6404 type_print (type, "", gdb_stderr, -1);
6405 error (_(" has no component named %s"), name);
6406 }
14f9c5c9
AS
6407 }
6408
6409 return NULL;
6410}
6411
b1f33ddd
JB
6412/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6413 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6414 represents an unchecked union (that is, the variant part of a
6415 record that is named in an Unchecked_Union pragma). */
6416
6417static int
6418is_unchecked_variant (struct type *var_type, struct type *outer_type)
6419{
6420 char *discrim_name = ada_variant_discrim_name (var_type);
6421 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6422 == NULL);
6423}
6424
6425
14f9c5c9
AS
6426/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6427 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6428 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6429 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6430
d2e4a39e 6431int
ebf56fd3 6432ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6433 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6434{
6435 int others_clause;
6436 int i;
d2e4a39e 6437 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6438 struct value *outer;
6439 struct value *discrim;
14f9c5c9
AS
6440 LONGEST discrim_val;
6441
0c281816
JB
6442 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6443 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6444 if (discrim == NULL)
14f9c5c9 6445 return -1;
0c281816 6446 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6447
6448 others_clause = -1;
6449 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6450 {
6451 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6452 others_clause = i;
14f9c5c9 6453 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6454 return i;
14f9c5c9
AS
6455 }
6456
6457 return others_clause;
6458}
d2e4a39e 6459\f
14f9c5c9
AS
6460
6461
4c4b4cd2 6462 /* Dynamic-Sized Records */
14f9c5c9
AS
6463
6464/* Strategy: The type ostensibly attached to a value with dynamic size
6465 (i.e., a size that is not statically recorded in the debugging
6466 data) does not accurately reflect the size or layout of the value.
6467 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6468 conventional types that are constructed on the fly. */
14f9c5c9
AS
6469
6470/* There is a subtle and tricky problem here. In general, we cannot
6471 determine the size of dynamic records without its data. However,
6472 the 'struct value' data structure, which GDB uses to represent
6473 quantities in the inferior process (the target), requires the size
6474 of the type at the time of its allocation in order to reserve space
6475 for GDB's internal copy of the data. That's why the
6476 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6477 rather than struct value*s.
14f9c5c9
AS
6478
6479 However, GDB's internal history variables ($1, $2, etc.) are
6480 struct value*s containing internal copies of the data that are not, in
6481 general, the same as the data at their corresponding addresses in
6482 the target. Fortunately, the types we give to these values are all
6483 conventional, fixed-size types (as per the strategy described
6484 above), so that we don't usually have to perform the
6485 'to_fixed_xxx_type' conversions to look at their values.
6486 Unfortunately, there is one exception: if one of the internal
6487 history variables is an array whose elements are unconstrained
6488 records, then we will need to create distinct fixed types for each
6489 element selected. */
6490
6491/* The upshot of all of this is that many routines take a (type, host
6492 address, target address) triple as arguments to represent a value.
6493 The host address, if non-null, is supposed to contain an internal
6494 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6495 target at the target address. */
14f9c5c9
AS
6496
6497/* Assuming that VAL0 represents a pointer value, the result of
6498 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6499 dynamic-sized types. */
14f9c5c9 6500
d2e4a39e
AS
6501struct value *
6502ada_value_ind (struct value *val0)
14f9c5c9 6503{
d2e4a39e 6504 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6505 return ada_to_fixed_value (val);
14f9c5c9
AS
6506}
6507
6508/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6509 qualifiers on VAL0. */
6510
d2e4a39e
AS
6511static struct value *
6512ada_coerce_ref (struct value *val0)
6513{
df407dfe 6514 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6515 {
6516 struct value *val = val0;
994b9211 6517 val = coerce_ref (val);
d2e4a39e 6518 val = unwrap_value (val);
4c4b4cd2 6519 return ada_to_fixed_value (val);
d2e4a39e
AS
6520 }
6521 else
14f9c5c9
AS
6522 return val0;
6523}
6524
6525/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6526 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6527
6528static unsigned int
ebf56fd3 6529align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6530{
6531 return (off + alignment - 1) & ~(alignment - 1);
6532}
6533
4c4b4cd2 6534/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6535
6536static unsigned int
ebf56fd3 6537field_alignment (struct type *type, int f)
14f9c5c9 6538{
d2e4a39e 6539 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6540 int len;
14f9c5c9
AS
6541 int align_offset;
6542
64a1bf19
JB
6543 /* The field name should never be null, unless the debugging information
6544 is somehow malformed. In this case, we assume the field does not
6545 require any alignment. */
6546 if (name == NULL)
6547 return 1;
6548
6549 len = strlen (name);
6550
4c4b4cd2
PH
6551 if (!isdigit (name[len - 1]))
6552 return 1;
14f9c5c9 6553
d2e4a39e 6554 if (isdigit (name[len - 2]))
14f9c5c9
AS
6555 align_offset = len - 2;
6556 else
6557 align_offset = len - 1;
6558
4c4b4cd2 6559 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6560 return TARGET_CHAR_BIT;
6561
4c4b4cd2
PH
6562 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6563}
6564
6565/* Find a symbol named NAME. Ignores ambiguity. */
6566
6567struct symbol *
6568ada_find_any_symbol (const char *name)
6569{
6570 struct symbol *sym;
6571
6572 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6573 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6574 return sym;
6575
6576 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6577 return sym;
14f9c5c9
AS
6578}
6579
6580/* Find a type named NAME. Ignores ambiguity. */
4c4b4cd2 6581
d2e4a39e 6582struct type *
ebf56fd3 6583ada_find_any_type (const char *name)
14f9c5c9 6584{
4c4b4cd2 6585 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6586
14f9c5c9
AS
6587 if (sym != NULL)
6588 return SYMBOL_TYPE (sym);
6589
6590 return NULL;
6591}
6592
aeb5907d
JB
6593/* Given NAME and an associated BLOCK, search all symbols for
6594 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6595 associated to NAME. Return this symbol if found, return
6596 NULL otherwise. */
6597
6598struct symbol *
6599ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6600{
6601 struct symbol *sym;
6602
6603 sym = find_old_style_renaming_symbol (name, block);
6604
6605 if (sym != NULL)
6606 return sym;
6607
6608 /* Not right yet. FIXME pnh 7/20/2007. */
6609 sym = ada_find_any_symbol (name);
6610 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6611 return sym;
6612 else
6613 return NULL;
6614}
6615
6616static struct symbol *
6617find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6618{
7f0df278 6619 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6620 char *rename;
6621
6622 if (function_sym != NULL)
6623 {
6624 /* If the symbol is defined inside a function, NAME is not fully
6625 qualified. This means we need to prepend the function name
6626 as well as adding the ``___XR'' suffix to build the name of
6627 the associated renaming symbol. */
6628 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6629 /* Function names sometimes contain suffixes used
6630 for instance to qualify nested subprograms. When building
6631 the XR type name, we need to make sure that this suffix is
6632 not included. So do not include any suffix in the function
6633 name length below. */
6634 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6635 const int rename_len = function_name_len + 2 /* "__" */
6636 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6637
529cad9c
PH
6638 /* Strip the suffix if necessary. */
6639 function_name[function_name_len] = '\0';
6640
4c4b4cd2
PH
6641 /* Library-level functions are a special case, as GNAT adds
6642 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6643 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6644 have this prefix, so we need to skip this prefix if present. */
6645 if (function_name_len > 5 /* "_ada_" */
6646 && strstr (function_name, "_ada_") == function_name)
6647 function_name = function_name + 5;
6648
6649 rename = (char *) alloca (rename_len * sizeof (char));
6650 sprintf (rename, "%s__%s___XR", function_name, name);
6651 }
6652 else
6653 {
6654 const int rename_len = strlen (name) + 6;
6655 rename = (char *) alloca (rename_len * sizeof (char));
6656 sprintf (rename, "%s___XR", name);
6657 }
6658
6659 return ada_find_any_symbol (rename);
6660}
6661
14f9c5c9 6662/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6663 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6664 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6665 otherwise return 0. */
6666
14f9c5c9 6667int
d2e4a39e 6668ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6669{
6670 if (type1 == NULL)
6671 return 1;
6672 else if (type0 == NULL)
6673 return 0;
6674 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6675 return 1;
6676 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6677 return 0;
4c4b4cd2
PH
6678 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6679 return 1;
14f9c5c9
AS
6680 else if (ada_is_packed_array_type (type0))
6681 return 1;
4c4b4cd2
PH
6682 else if (ada_is_array_descriptor_type (type0)
6683 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6684 return 1;
aeb5907d
JB
6685 else
6686 {
6687 const char *type0_name = type_name_no_tag (type0);
6688 const char *type1_name = type_name_no_tag (type1);
6689
6690 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6691 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6692 return 1;
6693 }
14f9c5c9
AS
6694 return 0;
6695}
6696
6697/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6698 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6699
d2e4a39e
AS
6700char *
6701ada_type_name (struct type *type)
14f9c5c9 6702{
d2e4a39e 6703 if (type == NULL)
14f9c5c9
AS
6704 return NULL;
6705 else if (TYPE_NAME (type) != NULL)
6706 return TYPE_NAME (type);
6707 else
6708 return TYPE_TAG_NAME (type);
6709}
6710
6711/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6712 SUFFIX to the name of TYPE. */
14f9c5c9 6713
d2e4a39e 6714struct type *
ebf56fd3 6715ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6716{
d2e4a39e 6717 static char *name;
14f9c5c9 6718 static size_t name_len = 0;
14f9c5c9 6719 int len;
d2e4a39e
AS
6720 char *typename = ada_type_name (type);
6721
14f9c5c9
AS
6722 if (typename == NULL)
6723 return NULL;
6724
6725 len = strlen (typename);
6726
d2e4a39e 6727 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6728
6729 strcpy (name, typename);
6730 strcpy (name + len, suffix);
6731
6732 return ada_find_any_type (name);
6733}
6734
6735
6736/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6737 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6738
d2e4a39e
AS
6739static struct type *
6740dynamic_template_type (struct type *type)
14f9c5c9 6741{
61ee279c 6742 type = ada_check_typedef (type);
14f9c5c9
AS
6743
6744 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6745 || ada_type_name (type) == NULL)
14f9c5c9 6746 return NULL;
d2e4a39e 6747 else
14f9c5c9
AS
6748 {
6749 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6751 return type;
14f9c5c9 6752 else
4c4b4cd2 6753 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6754 }
6755}
6756
6757/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6759
d2e4a39e
AS
6760static int
6761is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6762{
6763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6764 return name != NULL
14f9c5c9
AS
6765 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6766 && strstr (name, "___XVL") != NULL;
6767}
6768
4c4b4cd2
PH
6769/* The index of the variant field of TYPE, or -1 if TYPE does not
6770 represent a variant record type. */
14f9c5c9 6771
d2e4a39e 6772static int
4c4b4cd2 6773variant_field_index (struct type *type)
14f9c5c9
AS
6774{
6775 int f;
6776
4c4b4cd2
PH
6777 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6778 return -1;
6779
6780 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6781 {
6782 if (ada_is_variant_part (type, f))
6783 return f;
6784 }
6785 return -1;
14f9c5c9
AS
6786}
6787
4c4b4cd2
PH
6788/* A record type with no fields. */
6789
d2e4a39e
AS
6790static struct type *
6791empty_record (struct objfile *objfile)
14f9c5c9 6792{
d2e4a39e 6793 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6794 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6795 TYPE_NFIELDS (type) = 0;
6796 TYPE_FIELDS (type) = NULL;
b1f33ddd 6797 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6798 TYPE_NAME (type) = "<empty>";
6799 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6800 TYPE_LENGTH (type) = 0;
6801 return type;
6802}
6803
6804/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6805 the value of type TYPE at VALADDR or ADDRESS (see comments at
6806 the beginning of this section) VAL according to GNAT conventions.
6807 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6808 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6809 an outer-level type (i.e., as opposed to a branch of a variant.) A
6810 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6811 of the variant.
14f9c5c9 6812
4c4b4cd2
PH
6813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6814 length are not statically known are discarded. As a consequence,
6815 VALADDR, ADDRESS and DVAL0 are ignored.
6816
6817 NOTE: Limitations: For now, we assume that dynamic fields and
6818 variants occupy whole numbers of bytes. However, they need not be
6819 byte-aligned. */
6820
6821struct type *
10a2c479 6822ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6823 const gdb_byte *valaddr,
4c4b4cd2
PH
6824 CORE_ADDR address, struct value *dval0,
6825 int keep_dynamic_fields)
14f9c5c9 6826{
d2e4a39e
AS
6827 struct value *mark = value_mark ();
6828 struct value *dval;
6829 struct type *rtype;
14f9c5c9 6830 int nfields, bit_len;
4c4b4cd2 6831 int variant_field;
14f9c5c9 6832 long off;
4c4b4cd2 6833 int fld_bit_len, bit_incr;
14f9c5c9
AS
6834 int f;
6835
4c4b4cd2
PH
6836 /* Compute the number of fields in this record type that are going
6837 to be processed: unless keep_dynamic_fields, this includes only
6838 fields whose position and length are static will be processed. */
6839 if (keep_dynamic_fields)
6840 nfields = TYPE_NFIELDS (type);
6841 else
6842 {
6843 nfields = 0;
76a01679 6844 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6845 && !ada_is_variant_part (type, nfields)
6846 && !is_dynamic_field (type, nfields))
6847 nfields++;
6848 }
6849
14f9c5c9
AS
6850 rtype = alloc_type (TYPE_OBJFILE (type));
6851 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6852 INIT_CPLUS_SPECIFIC (rtype);
6853 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6854 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6855 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6856 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6857 TYPE_NAME (rtype) = ada_type_name (type);
6858 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6859 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6860
d2e4a39e
AS
6861 off = 0;
6862 bit_len = 0;
4c4b4cd2
PH
6863 variant_field = -1;
6864
14f9c5c9
AS
6865 for (f = 0; f < nfields; f += 1)
6866 {
6c038f32
PH
6867 off = align_value (off, field_alignment (type, f))
6868 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6869 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6870 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6871
d2e4a39e 6872 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6873 {
6874 variant_field = f;
6875 fld_bit_len = bit_incr = 0;
6876 }
14f9c5c9 6877 else if (is_dynamic_field (type, f))
4c4b4cd2
PH
6878 {
6879 if (dval0 == NULL)
b5304971
JG
6880 {
6881 /* rtype's length is computed based on the run-time
6882 value of discriminants. If the discriminants are not
6883 initialized, the type size may be completely bogus and
6884 GDB may fail to allocate a value for it. So check the
6885 size first before creating the value. */
6886 check_size (rtype);
6887 dval = value_from_contents_and_address (rtype, valaddr, address);
6888 }
4c4b4cd2
PH
6889 else
6890 dval = dval0;
6891
1ed6ede0
JB
6892 /* Get the fixed type of the field. Note that, in this case, we
6893 do not want to get the real type out of the tag: if the current
6894 field is the parent part of a tagged record, we will get the
6895 tag of the object. Clearly wrong: the real type of the parent
6896 is not the real type of the child. We would end up in an infinite
6897 loop. */
4c4b4cd2
PH
6898 TYPE_FIELD_TYPE (rtype, f) =
6899 ada_to_fixed_type
6900 (ada_get_base_type
6901 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6902 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
1ed6ede0 6903 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
4c4b4cd2
PH
6904 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6905 bit_incr = fld_bit_len =
6906 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6907 }
14f9c5c9 6908 else
4c4b4cd2
PH
6909 {
6910 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6911 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6912 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6913 bit_incr = fld_bit_len =
6914 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6915 else
6916 bit_incr = fld_bit_len =
6917 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6918 }
14f9c5c9 6919 if (off + fld_bit_len > bit_len)
4c4b4cd2 6920 bit_len = off + fld_bit_len;
14f9c5c9 6921 off += bit_incr;
4c4b4cd2
PH
6922 TYPE_LENGTH (rtype) =
6923 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6924 }
4c4b4cd2
PH
6925
6926 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6927 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6928 the record. This can happen in the presence of representation
6929 clauses. */
6930 if (variant_field >= 0)
6931 {
6932 struct type *branch_type;
6933
6934 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6935
6936 if (dval0 == NULL)
6937 dval = value_from_contents_and_address (rtype, valaddr, address);
6938 else
6939 dval = dval0;
6940
6941 branch_type =
6942 to_fixed_variant_branch_type
6943 (TYPE_FIELD_TYPE (type, variant_field),
6944 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6945 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6946 if (branch_type == NULL)
6947 {
6948 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6949 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6950 TYPE_NFIELDS (rtype) -= 1;
6951 }
6952 else
6953 {
6954 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6955 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6956 fld_bit_len =
6957 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6958 TARGET_CHAR_BIT;
6959 if (off + fld_bit_len > bit_len)
6960 bit_len = off + fld_bit_len;
6961 TYPE_LENGTH (rtype) =
6962 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6963 }
6964 }
6965
714e53ab
PH
6966 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6967 should contain the alignment of that record, which should be a strictly
6968 positive value. If null or negative, then something is wrong, most
6969 probably in the debug info. In that case, we don't round up the size
6970 of the resulting type. If this record is not part of another structure,
6971 the current RTYPE length might be good enough for our purposes. */
6972 if (TYPE_LENGTH (type) <= 0)
6973 {
323e0a4a
AC
6974 if (TYPE_NAME (rtype))
6975 warning (_("Invalid type size for `%s' detected: %d."),
6976 TYPE_NAME (rtype), TYPE_LENGTH (type));
6977 else
6978 warning (_("Invalid type size for <unnamed> detected: %d."),
6979 TYPE_LENGTH (type));
714e53ab
PH
6980 }
6981 else
6982 {
6983 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6984 TYPE_LENGTH (type));
6985 }
14f9c5c9
AS
6986
6987 value_free_to_mark (mark);
d2e4a39e 6988 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6989 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6990 return rtype;
6991}
6992
4c4b4cd2
PH
6993/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6994 of 1. */
14f9c5c9 6995
d2e4a39e 6996static struct type *
fc1a4b47 6997template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6998 CORE_ADDR address, struct value *dval0)
6999{
7000 return ada_template_to_fixed_record_type_1 (type, valaddr,
7001 address, dval0, 1);
7002}
7003
7004/* An ordinary record type in which ___XVL-convention fields and
7005 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7006 static approximations, containing all possible fields. Uses
7007 no runtime values. Useless for use in values, but that's OK,
7008 since the results are used only for type determinations. Works on both
7009 structs and unions. Representation note: to save space, we memorize
7010 the result of this function in the TYPE_TARGET_TYPE of the
7011 template type. */
7012
7013static struct type *
7014template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7015{
7016 struct type *type;
7017 int nfields;
7018 int f;
7019
4c4b4cd2
PH
7020 if (TYPE_TARGET_TYPE (type0) != NULL)
7021 return TYPE_TARGET_TYPE (type0);
7022
7023 nfields = TYPE_NFIELDS (type0);
7024 type = type0;
14f9c5c9
AS
7025
7026 for (f = 0; f < nfields; f += 1)
7027 {
61ee279c 7028 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7029 struct type *new_type;
14f9c5c9 7030
4c4b4cd2
PH
7031 if (is_dynamic_field (type0, f))
7032 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7033 else
f192137b 7034 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7035 if (type == type0 && new_type != field_type)
7036 {
7037 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7038 TYPE_CODE (type) = TYPE_CODE (type0);
7039 INIT_CPLUS_SPECIFIC (type);
7040 TYPE_NFIELDS (type) = nfields;
7041 TYPE_FIELDS (type) = (struct field *)
7042 TYPE_ALLOC (type, nfields * sizeof (struct field));
7043 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7044 sizeof (struct field) * nfields);
7045 TYPE_NAME (type) = ada_type_name (type0);
7046 TYPE_TAG_NAME (type) = NULL;
876cecd0 7047 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7048 TYPE_LENGTH (type) = 0;
7049 }
7050 TYPE_FIELD_TYPE (type, f) = new_type;
7051 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7052 }
14f9c5c9
AS
7053 return type;
7054}
7055
4c4b4cd2 7056/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7057 whose address in memory is ADDRESS, returns a revision of TYPE,
7058 which should be a non-dynamic-sized record, in which the variant
7059 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7060 for discriminant values in DVAL0, which can be NULL if the record
7061 contains the necessary discriminant values. */
7062
d2e4a39e 7063static struct type *
fc1a4b47 7064to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7065 CORE_ADDR address, struct value *dval0)
14f9c5c9 7066{
d2e4a39e 7067 struct value *mark = value_mark ();
4c4b4cd2 7068 struct value *dval;
d2e4a39e 7069 struct type *rtype;
14f9c5c9
AS
7070 struct type *branch_type;
7071 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7072 int variant_field = variant_field_index (type);
14f9c5c9 7073
4c4b4cd2 7074 if (variant_field == -1)
14f9c5c9
AS
7075 return type;
7076
4c4b4cd2
PH
7077 if (dval0 == NULL)
7078 dval = value_from_contents_and_address (type, valaddr, address);
7079 else
7080 dval = dval0;
7081
14f9c5c9
AS
7082 rtype = alloc_type (TYPE_OBJFILE (type));
7083 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7084 INIT_CPLUS_SPECIFIC (rtype);
7085 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7086 TYPE_FIELDS (rtype) =
7087 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7088 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7089 sizeof (struct field) * nfields);
14f9c5c9
AS
7090 TYPE_NAME (rtype) = ada_type_name (type);
7091 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7092 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7093 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7094
4c4b4cd2
PH
7095 branch_type = to_fixed_variant_branch_type
7096 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7097 cond_offset_host (valaddr,
4c4b4cd2
PH
7098 TYPE_FIELD_BITPOS (type, variant_field)
7099 / TARGET_CHAR_BIT),
d2e4a39e 7100 cond_offset_target (address,
4c4b4cd2
PH
7101 TYPE_FIELD_BITPOS (type, variant_field)
7102 / TARGET_CHAR_BIT), dval);
d2e4a39e 7103 if (branch_type == NULL)
14f9c5c9 7104 {
4c4b4cd2
PH
7105 int f;
7106 for (f = variant_field + 1; f < nfields; f += 1)
7107 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7108 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7109 }
7110 else
7111 {
4c4b4cd2
PH
7112 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7113 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7114 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7115 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7116 }
4c4b4cd2 7117 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7118
4c4b4cd2 7119 value_free_to_mark (mark);
14f9c5c9
AS
7120 return rtype;
7121}
7122
7123/* An ordinary record type (with fixed-length fields) that describes
7124 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7125 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7126 should be in DVAL, a record value; it may be NULL if the object
7127 at ADDR itself contains any necessary discriminant values.
7128 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7129 values from the record are needed. Except in the case that DVAL,
7130 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7131 unchecked) is replaced by a particular branch of the variant.
7132
7133 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7134 is questionable and may be removed. It can arise during the
7135 processing of an unconstrained-array-of-record type where all the
7136 variant branches have exactly the same size. This is because in
7137 such cases, the compiler does not bother to use the XVS convention
7138 when encoding the record. I am currently dubious of this
7139 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7140
d2e4a39e 7141static struct type *
fc1a4b47 7142to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7143 CORE_ADDR address, struct value *dval)
14f9c5c9 7144{
d2e4a39e 7145 struct type *templ_type;
14f9c5c9 7146
876cecd0 7147 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7148 return type0;
7149
d2e4a39e 7150 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7151
7152 if (templ_type != NULL)
7153 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7154 else if (variant_field_index (type0) >= 0)
7155 {
7156 if (dval == NULL && valaddr == NULL && address == 0)
7157 return type0;
7158 return to_record_with_fixed_variant_part (type0, valaddr, address,
7159 dval);
7160 }
14f9c5c9
AS
7161 else
7162 {
876cecd0 7163 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7164 return type0;
7165 }
7166
7167}
7168
7169/* An ordinary record type (with fixed-length fields) that describes
7170 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7171 union type. Any necessary discriminants' values should be in DVAL,
7172 a record value. That is, this routine selects the appropriate
7173 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7174 indicated in the union's type name. Returns VAR_TYPE0 itself if
7175 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7176
d2e4a39e 7177static struct type *
fc1a4b47 7178to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7179 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7180{
7181 int which;
d2e4a39e
AS
7182 struct type *templ_type;
7183 struct type *var_type;
14f9c5c9
AS
7184
7185 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7186 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7187 else
14f9c5c9
AS
7188 var_type = var_type0;
7189
7190 templ_type = ada_find_parallel_type (var_type, "___XVU");
7191
7192 if (templ_type != NULL)
7193 var_type = templ_type;
7194
b1f33ddd
JB
7195 if (is_unchecked_variant (var_type, value_type (dval)))
7196 return var_type0;
d2e4a39e
AS
7197 which =
7198 ada_which_variant_applies (var_type,
0fd88904 7199 value_type (dval), value_contents (dval));
14f9c5c9
AS
7200
7201 if (which < 0)
7202 return empty_record (TYPE_OBJFILE (var_type));
7203 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7204 return to_fixed_record_type
d2e4a39e
AS
7205 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7206 valaddr, address, dval);
4c4b4cd2 7207 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7208 return
7209 to_fixed_record_type
7210 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7211 else
7212 return TYPE_FIELD_TYPE (var_type, which);
7213}
7214
7215/* Assuming that TYPE0 is an array type describing the type of a value
7216 at ADDR, and that DVAL describes a record containing any
7217 discriminants used in TYPE0, returns a type for the value that
7218 contains no dynamic components (that is, no components whose sizes
7219 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7220 true, gives an error message if the resulting type's size is over
4c4b4cd2 7221 varsize_limit. */
14f9c5c9 7222
d2e4a39e
AS
7223static struct type *
7224to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7225 int ignore_too_big)
14f9c5c9 7226{
d2e4a39e
AS
7227 struct type *index_type_desc;
7228 struct type *result;
14f9c5c9 7229
4c4b4cd2 7230 if (ada_is_packed_array_type (type0) /* revisit? */
876cecd0 7231 || TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7232 return type0;
14f9c5c9
AS
7233
7234 index_type_desc = ada_find_parallel_type (type0, "___XA");
7235 if (index_type_desc == NULL)
7236 {
61ee279c 7237 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7238 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7239 depend on the contents of the array in properly constructed
7240 debugging data. */
529cad9c
PH
7241 /* Create a fixed version of the array element type.
7242 We're not providing the address of an element here,
e1d5a0d2 7243 and thus the actual object value cannot be inspected to do
529cad9c
PH
7244 the conversion. This should not be a problem, since arrays of
7245 unconstrained objects are not allowed. In particular, all
7246 the elements of an array of a tagged type should all be of
7247 the same type specified in the debugging info. No need to
7248 consult the object tag. */
1ed6ede0 7249 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9
AS
7250
7251 if (elt_type0 == elt_type)
4c4b4cd2 7252 result = type0;
14f9c5c9 7253 else
4c4b4cd2
PH
7254 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7255 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7256 }
7257 else
7258 {
7259 int i;
7260 struct type *elt_type0;
7261
7262 elt_type0 = type0;
7263 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7264 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7265
7266 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7267 depend on the contents of the array in properly constructed
7268 debugging data. */
529cad9c
PH
7269 /* Create a fixed version of the array element type.
7270 We're not providing the address of an element here,
e1d5a0d2 7271 and thus the actual object value cannot be inspected to do
529cad9c
PH
7272 the conversion. This should not be a problem, since arrays of
7273 unconstrained objects are not allowed. In particular, all
7274 the elements of an array of a tagged type should all be of
7275 the same type specified in the debugging info. No need to
7276 consult the object tag. */
1ed6ede0
JB
7277 result =
7278 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7279 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7280 {
7281 struct type *range_type =
7282 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7283 dval, TYPE_OBJFILE (type0));
7284 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7285 result, range_type);
7286 }
d2e4a39e 7287 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7288 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7289 }
7290
876cecd0 7291 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7292 return result;
d2e4a39e 7293}
14f9c5c9
AS
7294
7295
7296/* A standard type (containing no dynamically sized components)
7297 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7298 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7299 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7300 ADDRESS or in VALADDR contains these discriminants.
7301
1ed6ede0
JB
7302 If CHECK_TAG is not null, in the case of tagged types, this function
7303 attempts to locate the object's tag and use it to compute the actual
7304 type. However, when ADDRESS is null, we cannot use it to determine the
7305 location of the tag, and therefore compute the tagged type's actual type.
7306 So we return the tagged type without consulting the tag. */
529cad9c 7307
f192137b
JB
7308static struct type *
7309ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7310 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7311{
61ee279c 7312 type = ada_check_typedef (type);
d2e4a39e
AS
7313 switch (TYPE_CODE (type))
7314 {
7315 default:
14f9c5c9 7316 return type;
d2e4a39e 7317 case TYPE_CODE_STRUCT:
4c4b4cd2 7318 {
76a01679 7319 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7320 struct type *fixed_record_type =
7321 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7322 /* If STATIC_TYPE is a tagged type and we know the object's address,
7323 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7324 type from there. Note that we have to use the fixed record
7325 type (the parent part of the record may have dynamic fields
7326 and the way the location of _tag is expressed may depend on
7327 them). */
529cad9c 7328
1ed6ede0 7329 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7330 {
7331 struct type *real_type =
1ed6ede0
JB
7332 type_from_tag (value_tag_from_contents_and_address
7333 (fixed_record_type,
7334 valaddr,
7335 address));
76a01679 7336 if (real_type != NULL)
1ed6ede0 7337 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7338 }
4af88198
JB
7339
7340 /* Check to see if there is a parallel ___XVZ variable.
7341 If there is, then it provides the actual size of our type. */
7342 else if (ada_type_name (fixed_record_type) != NULL)
7343 {
7344 char *name = ada_type_name (fixed_record_type);
7345 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7346 int xvz_found = 0;
7347 LONGEST size;
7348
7349 sprintf (xvz_name, "%s___XVZ", name);
7350 size = get_int_var_value (xvz_name, &xvz_found);
7351 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7352 {
7353 fixed_record_type = copy_type (fixed_record_type);
7354 TYPE_LENGTH (fixed_record_type) = size;
7355
7356 /* The FIXED_RECORD_TYPE may have be a stub. We have
7357 observed this when the debugging info is STABS, and
7358 apparently it is something that is hard to fix.
7359
7360 In practice, we don't need the actual type definition
7361 at all, because the presence of the XVZ variable allows us
7362 to assume that there must be a XVS type as well, which we
7363 should be able to use later, when we need the actual type
7364 definition.
7365
7366 In the meantime, pretend that the "fixed" type we are
7367 returning is NOT a stub, because this can cause trouble
7368 when using this type to create new types targeting it.
7369 Indeed, the associated creation routines often check
7370 whether the target type is a stub and will try to replace
7371 it, thus using a type with the wrong size. This, in turn,
7372 might cause the new type to have the wrong size too.
7373 Consider the case of an array, for instance, where the size
7374 of the array is computed from the number of elements in
7375 our array multiplied by the size of its element. */
7376 TYPE_STUB (fixed_record_type) = 0;
7377 }
7378 }
1ed6ede0 7379 return fixed_record_type;
4c4b4cd2 7380 }
d2e4a39e 7381 case TYPE_CODE_ARRAY:
4c4b4cd2 7382 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7383 case TYPE_CODE_UNION:
7384 if (dval == NULL)
4c4b4cd2 7385 return type;
d2e4a39e 7386 else
4c4b4cd2 7387 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7388 }
14f9c5c9
AS
7389}
7390
f192137b
JB
7391/* The same as ada_to_fixed_type_1, except that it preserves the type
7392 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7393 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7394
7395struct type *
7396ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7397 CORE_ADDR address, struct value *dval, int check_tag)
7398
7399{
7400 struct type *fixed_type =
7401 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7402
7403 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7404 && TYPE_TARGET_TYPE (type) == fixed_type)
7405 return type;
7406
7407 return fixed_type;
7408}
7409
14f9c5c9 7410/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7411 TYPE0, but based on no runtime data. */
14f9c5c9 7412
d2e4a39e
AS
7413static struct type *
7414to_static_fixed_type (struct type *type0)
14f9c5c9 7415{
d2e4a39e 7416 struct type *type;
14f9c5c9
AS
7417
7418 if (type0 == NULL)
7419 return NULL;
7420
876cecd0 7421 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7422 return type0;
7423
61ee279c 7424 type0 = ada_check_typedef (type0);
d2e4a39e 7425
14f9c5c9
AS
7426 switch (TYPE_CODE (type0))
7427 {
7428 default:
7429 return type0;
7430 case TYPE_CODE_STRUCT:
7431 type = dynamic_template_type (type0);
d2e4a39e 7432 if (type != NULL)
4c4b4cd2
PH
7433 return template_to_static_fixed_type (type);
7434 else
7435 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7436 case TYPE_CODE_UNION:
7437 type = ada_find_parallel_type (type0, "___XVU");
7438 if (type != NULL)
4c4b4cd2
PH
7439 return template_to_static_fixed_type (type);
7440 else
7441 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7442 }
7443}
7444
4c4b4cd2
PH
7445/* A static approximation of TYPE with all type wrappers removed. */
7446
d2e4a39e
AS
7447static struct type *
7448static_unwrap_type (struct type *type)
14f9c5c9
AS
7449{
7450 if (ada_is_aligner_type (type))
7451 {
61ee279c 7452 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7453 if (ada_type_name (type1) == NULL)
4c4b4cd2 7454 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7455
7456 return static_unwrap_type (type1);
7457 }
d2e4a39e 7458 else
14f9c5c9 7459 {
d2e4a39e
AS
7460 struct type *raw_real_type = ada_get_base_type (type);
7461 if (raw_real_type == type)
4c4b4cd2 7462 return type;
14f9c5c9 7463 else
4c4b4cd2 7464 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7465 }
7466}
7467
7468/* In some cases, incomplete and private types require
4c4b4cd2 7469 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7470 type Foo;
7471 type FooP is access Foo;
7472 V: FooP;
7473 type Foo is array ...;
4c4b4cd2 7474 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7475 cross-references to such types, we instead substitute for FooP a
7476 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7477 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7478
7479/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7480 exists, otherwise TYPE. */
7481
d2e4a39e 7482struct type *
61ee279c 7483ada_check_typedef (struct type *type)
14f9c5c9 7484{
727e3d2e
JB
7485 if (type == NULL)
7486 return NULL;
7487
14f9c5c9
AS
7488 CHECK_TYPEDEF (type);
7489 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7490 || !TYPE_STUB (type)
14f9c5c9
AS
7491 || TYPE_TAG_NAME (type) == NULL)
7492 return type;
d2e4a39e 7493 else
14f9c5c9 7494 {
d2e4a39e
AS
7495 char *name = TYPE_TAG_NAME (type);
7496 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7497 return (type1 == NULL) ? type : type1;
7498 }
7499}
7500
7501/* A value representing the data at VALADDR/ADDRESS as described by
7502 type TYPE0, but with a standard (static-sized) type that correctly
7503 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7504 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7505 creation of struct values]. */
14f9c5c9 7506
4c4b4cd2
PH
7507static struct value *
7508ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7509 struct value *val0)
14f9c5c9 7510{
1ed6ede0 7511 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7512 if (type == type0 && val0 != NULL)
7513 return val0;
d2e4a39e 7514 else
4c4b4cd2
PH
7515 return value_from_contents_and_address (type, 0, address);
7516}
7517
7518/* A value representing VAL, but with a standard (static-sized) type
7519 that correctly describes it. Does not necessarily create a new
7520 value. */
7521
7522static struct value *
7523ada_to_fixed_value (struct value *val)
7524{
df407dfe
AC
7525 return ada_to_fixed_value_create (value_type (val),
7526 VALUE_ADDRESS (val) + value_offset (val),
4c4b4cd2 7527 val);
14f9c5c9
AS
7528}
7529
4c4b4cd2 7530/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7531 chosen to approximate the real type of VAL as well as possible, but
7532 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7533 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7534
d2e4a39e
AS
7535struct value *
7536ada_to_static_fixed_value (struct value *val)
14f9c5c9 7537{
d2e4a39e 7538 struct type *type =
df407dfe
AC
7539 to_static_fixed_type (static_unwrap_type (value_type (val)));
7540 if (type == value_type (val))
14f9c5c9
AS
7541 return val;
7542 else
4c4b4cd2 7543 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7544}
d2e4a39e 7545\f
14f9c5c9 7546
14f9c5c9
AS
7547/* Attributes */
7548
4c4b4cd2
PH
7549/* Table mapping attribute numbers to names.
7550 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7551
d2e4a39e 7552static const char *attribute_names[] = {
14f9c5c9
AS
7553 "<?>",
7554
d2e4a39e 7555 "first",
14f9c5c9
AS
7556 "last",
7557 "length",
7558 "image",
14f9c5c9
AS
7559 "max",
7560 "min",
4c4b4cd2
PH
7561 "modulus",
7562 "pos",
7563 "size",
7564 "tag",
14f9c5c9 7565 "val",
14f9c5c9
AS
7566 0
7567};
7568
d2e4a39e 7569const char *
4c4b4cd2 7570ada_attribute_name (enum exp_opcode n)
14f9c5c9 7571{
4c4b4cd2
PH
7572 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7573 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7574 else
7575 return attribute_names[0];
7576}
7577
4c4b4cd2 7578/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7579
4c4b4cd2
PH
7580static LONGEST
7581pos_atr (struct value *arg)
14f9c5c9 7582{
24209737
PH
7583 struct value *val = coerce_ref (arg);
7584 struct type *type = value_type (val);
14f9c5c9 7585
d2e4a39e 7586 if (!discrete_type_p (type))
323e0a4a 7587 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7588
7589 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7590 {
7591 int i;
24209737 7592 LONGEST v = value_as_long (val);
14f9c5c9 7593
d2e4a39e 7594 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7595 {
7596 if (v == TYPE_FIELD_BITPOS (type, i))
7597 return i;
7598 }
323e0a4a 7599 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7600 }
7601 else
24209737 7602 return value_as_long (val);
4c4b4cd2
PH
7603}
7604
7605static struct value *
3cb382c9 7606value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7607{
3cb382c9 7608 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7609}
7610
4c4b4cd2 7611/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7612
d2e4a39e
AS
7613static struct value *
7614value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7615{
d2e4a39e 7616 if (!discrete_type_p (type))
323e0a4a 7617 error (_("'VAL only defined on discrete types"));
df407dfe 7618 if (!integer_type_p (value_type (arg)))
323e0a4a 7619 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7620
7621 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7622 {
7623 long pos = value_as_long (arg);
7624 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7625 error (_("argument to 'VAL out of range"));
d2e4a39e 7626 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7627 }
7628 else
7629 return value_from_longest (type, value_as_long (arg));
7630}
14f9c5c9 7631\f
d2e4a39e 7632
4c4b4cd2 7633 /* Evaluation */
14f9c5c9 7634
4c4b4cd2
PH
7635/* True if TYPE appears to be an Ada character type.
7636 [At the moment, this is true only for Character and Wide_Character;
7637 It is a heuristic test that could stand improvement]. */
14f9c5c9 7638
d2e4a39e
AS
7639int
7640ada_is_character_type (struct type *type)
14f9c5c9 7641{
7b9f71f2
JB
7642 const char *name;
7643
7644 /* If the type code says it's a character, then assume it really is,
7645 and don't check any further. */
7646 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7647 return 1;
7648
7649 /* Otherwise, assume it's a character type iff it is a discrete type
7650 with a known character type name. */
7651 name = ada_type_name (type);
7652 return (name != NULL
7653 && (TYPE_CODE (type) == TYPE_CODE_INT
7654 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7655 && (strcmp (name, "character") == 0
7656 || strcmp (name, "wide_character") == 0
5a517ebd 7657 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7658 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7659}
7660
4c4b4cd2 7661/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7662
7663int
ebf56fd3 7664ada_is_string_type (struct type *type)
14f9c5c9 7665{
61ee279c 7666 type = ada_check_typedef (type);
d2e4a39e 7667 if (type != NULL
14f9c5c9 7668 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7669 && (ada_is_simple_array_type (type)
7670 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7671 && ada_array_arity (type) == 1)
7672 {
7673 struct type *elttype = ada_array_element_type (type, 1);
7674
7675 return ada_is_character_type (elttype);
7676 }
d2e4a39e 7677 else
14f9c5c9
AS
7678 return 0;
7679}
7680
7681
7682/* True if TYPE is a struct type introduced by the compiler to force the
7683 alignment of a value. Such types have a single field with a
4c4b4cd2 7684 distinctive name. */
14f9c5c9
AS
7685
7686int
ebf56fd3 7687ada_is_aligner_type (struct type *type)
14f9c5c9 7688{
61ee279c 7689 type = ada_check_typedef (type);
714e53ab
PH
7690
7691 /* If we can find a parallel XVS type, then the XVS type should
7692 be used instead of this type. And hence, this is not an aligner
7693 type. */
7694 if (ada_find_parallel_type (type, "___XVS") != NULL)
7695 return 0;
7696
14f9c5c9 7697 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7698 && TYPE_NFIELDS (type) == 1
7699 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7700}
7701
7702/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7703 the parallel type. */
14f9c5c9 7704
d2e4a39e
AS
7705struct type *
7706ada_get_base_type (struct type *raw_type)
14f9c5c9 7707{
d2e4a39e
AS
7708 struct type *real_type_namer;
7709 struct type *raw_real_type;
14f9c5c9
AS
7710
7711 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7712 return raw_type;
7713
7714 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7715 if (real_type_namer == NULL
14f9c5c9
AS
7716 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7717 || TYPE_NFIELDS (real_type_namer) != 1)
7718 return raw_type;
7719
7720 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7721 if (raw_real_type == NULL)
14f9c5c9
AS
7722 return raw_type;
7723 else
7724 return raw_real_type;
d2e4a39e 7725}
14f9c5c9 7726
4c4b4cd2 7727/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7728
d2e4a39e
AS
7729struct type *
7730ada_aligned_type (struct type *type)
14f9c5c9
AS
7731{
7732 if (ada_is_aligner_type (type))
7733 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7734 else
7735 return ada_get_base_type (type);
7736}
7737
7738
7739/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7740 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7741
fc1a4b47
AC
7742const gdb_byte *
7743ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7744{
d2e4a39e 7745 if (ada_is_aligner_type (type))
14f9c5c9 7746 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7747 valaddr +
7748 TYPE_FIELD_BITPOS (type,
7749 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7750 else
7751 return valaddr;
7752}
7753
4c4b4cd2
PH
7754
7755
14f9c5c9 7756/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7757 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7758const char *
7759ada_enum_name (const char *name)
14f9c5c9 7760{
4c4b4cd2
PH
7761 static char *result;
7762 static size_t result_len = 0;
d2e4a39e 7763 char *tmp;
14f9c5c9 7764
4c4b4cd2
PH
7765 /* First, unqualify the enumeration name:
7766 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7767 all the preceeding characters, the unqualified name starts
7768 right after that dot.
4c4b4cd2 7769 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7770 translates dots into "__". Search forward for double underscores,
7771 but stop searching when we hit an overloading suffix, which is
7772 of the form "__" followed by digits. */
4c4b4cd2 7773
c3e5cd34
PH
7774 tmp = strrchr (name, '.');
7775 if (tmp != NULL)
4c4b4cd2
PH
7776 name = tmp + 1;
7777 else
14f9c5c9 7778 {
4c4b4cd2
PH
7779 while ((tmp = strstr (name, "__")) != NULL)
7780 {
7781 if (isdigit (tmp[2]))
7782 break;
7783 else
7784 name = tmp + 2;
7785 }
14f9c5c9
AS
7786 }
7787
7788 if (name[0] == 'Q')
7789 {
14f9c5c9
AS
7790 int v;
7791 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7792 {
7793 if (sscanf (name + 2, "%x", &v) != 1)
7794 return name;
7795 }
14f9c5c9 7796 else
4c4b4cd2 7797 return name;
14f9c5c9 7798
4c4b4cd2 7799 GROW_VECT (result, result_len, 16);
14f9c5c9 7800 if (isascii (v) && isprint (v))
4c4b4cd2 7801 sprintf (result, "'%c'", v);
14f9c5c9 7802 else if (name[1] == 'U')
4c4b4cd2 7803 sprintf (result, "[\"%02x\"]", v);
14f9c5c9 7804 else
4c4b4cd2 7805 sprintf (result, "[\"%04x\"]", v);
14f9c5c9
AS
7806
7807 return result;
7808 }
d2e4a39e 7809 else
4c4b4cd2 7810 {
c3e5cd34
PH
7811 tmp = strstr (name, "__");
7812 if (tmp == NULL)
7813 tmp = strstr (name, "$");
7814 if (tmp != NULL)
4c4b4cd2
PH
7815 {
7816 GROW_VECT (result, result_len, tmp - name + 1);
7817 strncpy (result, name, tmp - name);
7818 result[tmp - name] = '\0';
7819 return result;
7820 }
7821
7822 return name;
7823 }
14f9c5c9
AS
7824}
7825
d2e4a39e 7826static struct value *
ebf56fd3 7827evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
4c4b4cd2 7828 enum noside noside)
14f9c5c9 7829{
76a01679 7830 return (*exp->language_defn->la_exp_desc->evaluate_exp)
4c4b4cd2 7831 (expect_type, exp, pos, noside);
14f9c5c9
AS
7832}
7833
7834/* Evaluate the subexpression of EXP starting at *POS as for
7835 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7836 expression. */
14f9c5c9 7837
d2e4a39e
AS
7838static struct value *
7839evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7840{
4c4b4cd2 7841 return (*exp->language_defn->la_exp_desc->evaluate_exp)
14f9c5c9
AS
7842 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7843}
7844
7845/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7846 value it wraps. */
14f9c5c9 7847
d2e4a39e
AS
7848static struct value *
7849unwrap_value (struct value *val)
14f9c5c9 7850{
df407dfe 7851 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7852 if (ada_is_aligner_type (type))
7853 {
de4d072f 7854 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7855 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7856 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7857 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7858
7859 return unwrap_value (v);
7860 }
d2e4a39e 7861 else
14f9c5c9 7862 {
d2e4a39e 7863 struct type *raw_real_type =
61ee279c 7864 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7865
14f9c5c9 7866 if (type == raw_real_type)
4c4b4cd2 7867 return val;
14f9c5c9 7868
d2e4a39e 7869 return
4c4b4cd2
PH
7870 coerce_unspec_val_to_type
7871 (val, ada_to_fixed_type (raw_real_type, 0,
df407dfe 7872 VALUE_ADDRESS (val) + value_offset (val),
1ed6ede0 7873 NULL, 1));
14f9c5c9
AS
7874 }
7875}
d2e4a39e
AS
7876
7877static struct value *
7878cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7879{
7880 LONGEST val;
7881
df407dfe 7882 if (type == value_type (arg))
14f9c5c9 7883 return arg;
df407dfe 7884 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7885 val = ada_float_to_fixed (type,
df407dfe 7886 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7887 value_as_long (arg)));
d2e4a39e 7888 else
14f9c5c9 7889 {
a53b7a21 7890 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7891 val = ada_float_to_fixed (type, argd);
7892 }
7893
7894 return value_from_longest (type, val);
7895}
7896
d2e4a39e 7897static struct value *
a53b7a21 7898cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7899{
df407dfe 7900 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7901 value_as_long (arg));
a53b7a21 7902 return value_from_double (type, val);
14f9c5c9
AS
7903}
7904
4c4b4cd2
PH
7905/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7906 return the converted value. */
7907
d2e4a39e
AS
7908static struct value *
7909coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7910{
df407dfe 7911 struct type *type2 = value_type (val);
14f9c5c9
AS
7912 if (type == type2)
7913 return val;
7914
61ee279c
PH
7915 type2 = ada_check_typedef (type2);
7916 type = ada_check_typedef (type);
14f9c5c9 7917
d2e4a39e
AS
7918 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7919 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7920 {
7921 val = ada_value_ind (val);
df407dfe 7922 type2 = value_type (val);
14f9c5c9
AS
7923 }
7924
d2e4a39e 7925 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7926 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7927 {
7928 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7929 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7930 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7931 error (_("Incompatible types in assignment"));
04624583 7932 deprecated_set_value_type (val, type);
14f9c5c9 7933 }
d2e4a39e 7934 return val;
14f9c5c9
AS
7935}
7936
4c4b4cd2
PH
7937static struct value *
7938ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7939{
7940 struct value *val;
7941 struct type *type1, *type2;
7942 LONGEST v, v1, v2;
7943
994b9211
AC
7944 arg1 = coerce_ref (arg1);
7945 arg2 = coerce_ref (arg2);
df407dfe
AC
7946 type1 = base_type (ada_check_typedef (value_type (arg1)));
7947 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7948
76a01679
JB
7949 if (TYPE_CODE (type1) != TYPE_CODE_INT
7950 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7951 return value_binop (arg1, arg2, op);
7952
76a01679 7953 switch (op)
4c4b4cd2
PH
7954 {
7955 case BINOP_MOD:
7956 case BINOP_DIV:
7957 case BINOP_REM:
7958 break;
7959 default:
7960 return value_binop (arg1, arg2, op);
7961 }
7962
7963 v2 = value_as_long (arg2);
7964 if (v2 == 0)
323e0a4a 7965 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7966
7967 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7968 return value_binop (arg1, arg2, op);
7969
7970 v1 = value_as_long (arg1);
7971 switch (op)
7972 {
7973 case BINOP_DIV:
7974 v = v1 / v2;
76a01679
JB
7975 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7976 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7977 break;
7978 case BINOP_REM:
7979 v = v1 % v2;
76a01679
JB
7980 if (v * v1 < 0)
7981 v -= v2;
4c4b4cd2
PH
7982 break;
7983 default:
7984 /* Should not reach this point. */
7985 v = 0;
7986 }
7987
7988 val = allocate_value (type1);
990a07ab 7989 store_unsigned_integer (value_contents_raw (val),
df407dfe 7990 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7991 return val;
7992}
7993
7994static int
7995ada_value_equal (struct value *arg1, struct value *arg2)
7996{
df407dfe
AC
7997 if (ada_is_direct_array_type (value_type (arg1))
7998 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7999 {
f58b38bf
JB
8000 /* Automatically dereference any array reference before
8001 we attempt to perform the comparison. */
8002 arg1 = ada_coerce_ref (arg1);
8003 arg2 = ada_coerce_ref (arg2);
8004
4c4b4cd2
PH
8005 arg1 = ada_coerce_to_simple_array (arg1);
8006 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8007 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8008 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8009 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8010 /* FIXME: The following works only for types whose
76a01679
JB
8011 representations use all bits (no padding or undefined bits)
8012 and do not have user-defined equality. */
8013 return
df407dfe 8014 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8015 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8016 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8017 }
8018 return value_equal (arg1, arg2);
8019}
8020
52ce6436
PH
8021/* Total number of component associations in the aggregate starting at
8022 index PC in EXP. Assumes that index PC is the start of an
8023 OP_AGGREGATE. */
8024
8025static int
8026num_component_specs (struct expression *exp, int pc)
8027{
8028 int n, m, i;
8029 m = exp->elts[pc + 1].longconst;
8030 pc += 3;
8031 n = 0;
8032 for (i = 0; i < m; i += 1)
8033 {
8034 switch (exp->elts[pc].opcode)
8035 {
8036 default:
8037 n += 1;
8038 break;
8039 case OP_CHOICES:
8040 n += exp->elts[pc + 1].longconst;
8041 break;
8042 }
8043 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8044 }
8045 return n;
8046}
8047
8048/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8049 component of LHS (a simple array or a record), updating *POS past
8050 the expression, assuming that LHS is contained in CONTAINER. Does
8051 not modify the inferior's memory, nor does it modify LHS (unless
8052 LHS == CONTAINER). */
8053
8054static void
8055assign_component (struct value *container, struct value *lhs, LONGEST index,
8056 struct expression *exp, int *pos)
8057{
8058 struct value *mark = value_mark ();
8059 struct value *elt;
8060 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8061 {
6d84d3d8 8062 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8063 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8064 }
8065 else
8066 {
8067 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8068 elt = ada_to_fixed_value (unwrap_value (elt));
8069 }
8070
8071 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8072 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8073 else
8074 value_assign_to_component (container, elt,
8075 ada_evaluate_subexp (NULL, exp, pos,
8076 EVAL_NORMAL));
8077
8078 value_free_to_mark (mark);
8079}
8080
8081/* Assuming that LHS represents an lvalue having a record or array
8082 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8083 of that aggregate's value to LHS, advancing *POS past the
8084 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8085 lvalue containing LHS (possibly LHS itself). Does not modify
8086 the inferior's memory, nor does it modify the contents of
8087 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8088
8089static struct value *
8090assign_aggregate (struct value *container,
8091 struct value *lhs, struct expression *exp,
8092 int *pos, enum noside noside)
8093{
8094 struct type *lhs_type;
8095 int n = exp->elts[*pos+1].longconst;
8096 LONGEST low_index, high_index;
8097 int num_specs;
8098 LONGEST *indices;
8099 int max_indices, num_indices;
8100 int is_array_aggregate;
8101 int i;
8102 struct value *mark = value_mark ();
8103
8104 *pos += 3;
8105 if (noside != EVAL_NORMAL)
8106 {
8107 int i;
8108 for (i = 0; i < n; i += 1)
8109 ada_evaluate_subexp (NULL, exp, pos, noside);
8110 return container;
8111 }
8112
8113 container = ada_coerce_ref (container);
8114 if (ada_is_direct_array_type (value_type (container)))
8115 container = ada_coerce_to_simple_array (container);
8116 lhs = ada_coerce_ref (lhs);
8117 if (!deprecated_value_modifiable (lhs))
8118 error (_("Left operand of assignment is not a modifiable lvalue."));
8119
8120 lhs_type = value_type (lhs);
8121 if (ada_is_direct_array_type (lhs_type))
8122 {
8123 lhs = ada_coerce_to_simple_array (lhs);
8124 lhs_type = value_type (lhs);
8125 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8126 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8127 is_array_aggregate = 1;
8128 }
8129 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8130 {
8131 low_index = 0;
8132 high_index = num_visible_fields (lhs_type) - 1;
8133 is_array_aggregate = 0;
8134 }
8135 else
8136 error (_("Left-hand side must be array or record."));
8137
8138 num_specs = num_component_specs (exp, *pos - 3);
8139 max_indices = 4 * num_specs + 4;
8140 indices = alloca (max_indices * sizeof (indices[0]));
8141 indices[0] = indices[1] = low_index - 1;
8142 indices[2] = indices[3] = high_index + 1;
8143 num_indices = 4;
8144
8145 for (i = 0; i < n; i += 1)
8146 {
8147 switch (exp->elts[*pos].opcode)
8148 {
8149 case OP_CHOICES:
8150 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8151 &num_indices, max_indices,
8152 low_index, high_index);
8153 break;
8154 case OP_POSITIONAL:
8155 aggregate_assign_positional (container, lhs, exp, pos, indices,
8156 &num_indices, max_indices,
8157 low_index, high_index);
8158 break;
8159 case OP_OTHERS:
8160 if (i != n-1)
8161 error (_("Misplaced 'others' clause"));
8162 aggregate_assign_others (container, lhs, exp, pos, indices,
8163 num_indices, low_index, high_index);
8164 break;
8165 default:
8166 error (_("Internal error: bad aggregate clause"));
8167 }
8168 }
8169
8170 return container;
8171}
8172
8173/* Assign into the component of LHS indexed by the OP_POSITIONAL
8174 construct at *POS, updating *POS past the construct, given that
8175 the positions are relative to lower bound LOW, where HIGH is the
8176 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8177 updating *NUM_INDICES as needed. CONTAINER is as for
8178 assign_aggregate. */
8179static void
8180aggregate_assign_positional (struct value *container,
8181 struct value *lhs, struct expression *exp,
8182 int *pos, LONGEST *indices, int *num_indices,
8183 int max_indices, LONGEST low, LONGEST high)
8184{
8185 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8186
8187 if (ind - 1 == high)
e1d5a0d2 8188 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8189 if (ind <= high)
8190 {
8191 add_component_interval (ind, ind, indices, num_indices, max_indices);
8192 *pos += 3;
8193 assign_component (container, lhs, ind, exp, pos);
8194 }
8195 else
8196 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8197}
8198
8199/* Assign into the components of LHS indexed by the OP_CHOICES
8200 construct at *POS, updating *POS past the construct, given that
8201 the allowable indices are LOW..HIGH. Record the indices assigned
8202 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8203 needed. CONTAINER is as for assign_aggregate. */
8204static void
8205aggregate_assign_from_choices (struct value *container,
8206 struct value *lhs, struct expression *exp,
8207 int *pos, LONGEST *indices, int *num_indices,
8208 int max_indices, LONGEST low, LONGEST high)
8209{
8210 int j;
8211 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8212 int choice_pos, expr_pc;
8213 int is_array = ada_is_direct_array_type (value_type (lhs));
8214
8215 choice_pos = *pos += 3;
8216
8217 for (j = 0; j < n_choices; j += 1)
8218 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8219 expr_pc = *pos;
8220 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8221
8222 for (j = 0; j < n_choices; j += 1)
8223 {
8224 LONGEST lower, upper;
8225 enum exp_opcode op = exp->elts[choice_pos].opcode;
8226 if (op == OP_DISCRETE_RANGE)
8227 {
8228 choice_pos += 1;
8229 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8230 EVAL_NORMAL));
8231 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8232 EVAL_NORMAL));
8233 }
8234 else if (is_array)
8235 {
8236 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8237 EVAL_NORMAL));
8238 upper = lower;
8239 }
8240 else
8241 {
8242 int ind;
8243 char *name;
8244 switch (op)
8245 {
8246 case OP_NAME:
8247 name = &exp->elts[choice_pos + 2].string;
8248 break;
8249 case OP_VAR_VALUE:
8250 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8251 break;
8252 default:
8253 error (_("Invalid record component association."));
8254 }
8255 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8256 ind = 0;
8257 if (! find_struct_field (name, value_type (lhs), 0,
8258 NULL, NULL, NULL, NULL, &ind))
8259 error (_("Unknown component name: %s."), name);
8260 lower = upper = ind;
8261 }
8262
8263 if (lower <= upper && (lower < low || upper > high))
8264 error (_("Index in component association out of bounds."));
8265
8266 add_component_interval (lower, upper, indices, num_indices,
8267 max_indices);
8268 while (lower <= upper)
8269 {
8270 int pos1;
8271 pos1 = expr_pc;
8272 assign_component (container, lhs, lower, exp, &pos1);
8273 lower += 1;
8274 }
8275 }
8276}
8277
8278/* Assign the value of the expression in the OP_OTHERS construct in
8279 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8280 have not been previously assigned. The index intervals already assigned
8281 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8282 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8283static void
8284aggregate_assign_others (struct value *container,
8285 struct value *lhs, struct expression *exp,
8286 int *pos, LONGEST *indices, int num_indices,
8287 LONGEST low, LONGEST high)
8288{
8289 int i;
8290 int expr_pc = *pos+1;
8291
8292 for (i = 0; i < num_indices - 2; i += 2)
8293 {
8294 LONGEST ind;
8295 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8296 {
8297 int pos;
8298 pos = expr_pc;
8299 assign_component (container, lhs, ind, exp, &pos);
8300 }
8301 }
8302 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8303}
8304
8305/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8306 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8307 modifying *SIZE as needed. It is an error if *SIZE exceeds
8308 MAX_SIZE. The resulting intervals do not overlap. */
8309static void
8310add_component_interval (LONGEST low, LONGEST high,
8311 LONGEST* indices, int *size, int max_size)
8312{
8313 int i, j;
8314 for (i = 0; i < *size; i += 2) {
8315 if (high >= indices[i] && low <= indices[i + 1])
8316 {
8317 int kh;
8318 for (kh = i + 2; kh < *size; kh += 2)
8319 if (high < indices[kh])
8320 break;
8321 if (low < indices[i])
8322 indices[i] = low;
8323 indices[i + 1] = indices[kh - 1];
8324 if (high > indices[i + 1])
8325 indices[i + 1] = high;
8326 memcpy (indices + i + 2, indices + kh, *size - kh);
8327 *size -= kh - i - 2;
8328 return;
8329 }
8330 else if (high < indices[i])
8331 break;
8332 }
8333
8334 if (*size == max_size)
8335 error (_("Internal error: miscounted aggregate components."));
8336 *size += 2;
8337 for (j = *size-1; j >= i+2; j -= 1)
8338 indices[j] = indices[j - 2];
8339 indices[i] = low;
8340 indices[i + 1] = high;
8341}
8342
6e48bd2c
JB
8343/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8344 is different. */
8345
8346static struct value *
8347ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8348{
8349 if (type == ada_check_typedef (value_type (arg2)))
8350 return arg2;
8351
8352 if (ada_is_fixed_point_type (type))
8353 return (cast_to_fixed (type, arg2));
8354
8355 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8356 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8357
8358 return value_cast (type, arg2);
8359}
8360
52ce6436 8361static struct value *
ebf56fd3 8362ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8363 int *pos, enum noside noside)
14f9c5c9
AS
8364{
8365 enum exp_opcode op;
14f9c5c9
AS
8366 int tem, tem2, tem3;
8367 int pc;
8368 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8369 struct type *type;
52ce6436 8370 int nargs, oplen;
d2e4a39e 8371 struct value **argvec;
14f9c5c9 8372
d2e4a39e
AS
8373 pc = *pos;
8374 *pos += 1;
14f9c5c9
AS
8375 op = exp->elts[pc].opcode;
8376
d2e4a39e 8377 switch (op)
14f9c5c9
AS
8378 {
8379 default:
8380 *pos -= 1;
6e48bd2c
JB
8381 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8382 arg1 = unwrap_value (arg1);
8383
8384 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8385 then we need to perform the conversion manually, because
8386 evaluate_subexp_standard doesn't do it. This conversion is
8387 necessary in Ada because the different kinds of float/fixed
8388 types in Ada have different representations.
8389
8390 Similarly, we need to perform the conversion from OP_LONG
8391 ourselves. */
8392 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8393 arg1 = ada_value_cast (expect_type, arg1, noside);
8394
8395 return arg1;
4c4b4cd2
PH
8396
8397 case OP_STRING:
8398 {
76a01679
JB
8399 struct value *result;
8400 *pos -= 1;
8401 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8402 /* The result type will have code OP_STRING, bashed there from
8403 OP_ARRAY. Bash it back. */
df407dfe
AC
8404 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8405 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8406 return result;
4c4b4cd2 8407 }
14f9c5c9
AS
8408
8409 case UNOP_CAST:
8410 (*pos) += 2;
8411 type = exp->elts[pc + 1].type;
8412 arg1 = evaluate_subexp (type, exp, pos, noside);
8413 if (noside == EVAL_SKIP)
4c4b4cd2 8414 goto nosideret;
6e48bd2c 8415 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8416 return arg1;
8417
4c4b4cd2
PH
8418 case UNOP_QUAL:
8419 (*pos) += 2;
8420 type = exp->elts[pc + 1].type;
8421 return ada_evaluate_subexp (type, exp, pos, noside);
8422
14f9c5c9
AS
8423 case BINOP_ASSIGN:
8424 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8425 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8426 {
8427 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8428 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8429 return arg1;
8430 return ada_value_assign (arg1, arg1);
8431 }
003f3813
JB
8432 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8433 except if the lhs of our assignment is a convenience variable.
8434 In the case of assigning to a convenience variable, the lhs
8435 should be exactly the result of the evaluation of the rhs. */
8436 type = value_type (arg1);
8437 if (VALUE_LVAL (arg1) == lval_internalvar)
8438 type = NULL;
8439 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8440 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8441 return arg1;
df407dfe
AC
8442 if (ada_is_fixed_point_type (value_type (arg1)))
8443 arg2 = cast_to_fixed (value_type (arg1), arg2);
8444 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8445 error
323e0a4a 8446 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8447 else
df407dfe 8448 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8449 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8450
8451 case BINOP_ADD:
8452 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8453 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8454 if (noside == EVAL_SKIP)
4c4b4cd2 8455 goto nosideret;
2ac8a782
JB
8456 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8457 return (value_from_longest
8458 (value_type (arg1),
8459 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8460 if ((ada_is_fixed_point_type (value_type (arg1))
8461 || ada_is_fixed_point_type (value_type (arg2)))
8462 && value_type (arg1) != value_type (arg2))
323e0a4a 8463 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8464 /* Do the addition, and cast the result to the type of the first
8465 argument. We cannot cast the result to a reference type, so if
8466 ARG1 is a reference type, find its underlying type. */
8467 type = value_type (arg1);
8468 while (TYPE_CODE (type) == TYPE_CODE_REF)
8469 type = TYPE_TARGET_TYPE (type);
f44316fa 8470 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8471 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8472
8473 case BINOP_SUB:
8474 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8475 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8476 if (noside == EVAL_SKIP)
4c4b4cd2 8477 goto nosideret;
2ac8a782
JB
8478 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8479 return (value_from_longest
8480 (value_type (arg1),
8481 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8482 if ((ada_is_fixed_point_type (value_type (arg1))
8483 || ada_is_fixed_point_type (value_type (arg2)))
8484 && value_type (arg1) != value_type (arg2))
323e0a4a 8485 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8486 /* Do the substraction, and cast the result to the type of the first
8487 argument. We cannot cast the result to a reference type, so if
8488 ARG1 is a reference type, find its underlying type. */
8489 type = value_type (arg1);
8490 while (TYPE_CODE (type) == TYPE_CODE_REF)
8491 type = TYPE_TARGET_TYPE (type);
f44316fa 8492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8493 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8494
8495 case BINOP_MUL:
8496 case BINOP_DIV:
8497 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8498 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8499 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8500 goto nosideret;
8501 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8502 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8503 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8504 else
4c4b4cd2 8505 {
a53b7a21 8506 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8507 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8508 arg1 = cast_from_fixed (type, arg1);
df407dfe 8509 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8510 arg2 = cast_from_fixed (type, arg2);
f44316fa 8511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8512 return ada_value_binop (arg1, arg2, op);
8513 }
8514
8515 case BINOP_REM:
8516 case BINOP_MOD:
8517 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8518 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8519 if (noside == EVAL_SKIP)
76a01679 8520 goto nosideret;
4c4b4cd2 8521 else if (noside == EVAL_AVOID_SIDE_EFFECTS
76a01679 8522 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
df407dfe 8523 return value_zero (value_type (arg1), not_lval);
14f9c5c9 8524 else
f44316fa
UW
8525 {
8526 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8527 return ada_value_binop (arg1, arg2, op);
8528 }
14f9c5c9 8529
4c4b4cd2
PH
8530 case BINOP_EQUAL:
8531 case BINOP_NOTEQUAL:
14f9c5c9 8532 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8533 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8534 if (noside == EVAL_SKIP)
76a01679 8535 goto nosideret;
4c4b4cd2 8536 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8537 tem = 0;
4c4b4cd2 8538 else
f44316fa
UW
8539 {
8540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8541 tem = ada_value_equal (arg1, arg2);
8542 }
4c4b4cd2 8543 if (op == BINOP_NOTEQUAL)
76a01679 8544 tem = !tem;
fbb06eb1
UW
8545 type = language_bool_type (exp->language_defn, exp->gdbarch);
8546 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8547
8548 case UNOP_NEG:
8549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8550 if (noside == EVAL_SKIP)
8551 goto nosideret;
df407dfe
AC
8552 else if (ada_is_fixed_point_type (value_type (arg1)))
8553 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8554 else
f44316fa
UW
8555 {
8556 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8557 return value_neg (arg1);
8558 }
4c4b4cd2 8559
2330c6c6
JB
8560 case BINOP_LOGICAL_AND:
8561 case BINOP_LOGICAL_OR:
8562 case UNOP_LOGICAL_NOT:
000d5124
JB
8563 {
8564 struct value *val;
8565
8566 *pos -= 1;
8567 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8568 type = language_bool_type (exp->language_defn, exp->gdbarch);
8569 return value_cast (type, val);
000d5124 8570 }
2330c6c6
JB
8571
8572 case BINOP_BITWISE_AND:
8573 case BINOP_BITWISE_IOR:
8574 case BINOP_BITWISE_XOR:
000d5124
JB
8575 {
8576 struct value *val;
8577
8578 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8579 *pos = pc;
8580 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8581
8582 return value_cast (value_type (arg1), val);
8583 }
2330c6c6 8584
14f9c5c9
AS
8585 case OP_VAR_VALUE:
8586 *pos -= 1;
6799def4 8587
14f9c5c9 8588 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8589 {
8590 *pos += 4;
8591 goto nosideret;
8592 }
8593 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8594 /* Only encountered when an unresolved symbol occurs in a
8595 context other than a function call, in which case, it is
52ce6436 8596 invalid. */
323e0a4a 8597 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8598 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8599 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8600 {
0c1f74cf
JB
8601 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8602 if (ada_is_tagged_type (type, 0))
8603 {
8604 /* Tagged types are a little special in the fact that the real
8605 type is dynamic and can only be determined by inspecting the
8606 object's tag. This means that we need to get the object's
8607 value first (EVAL_NORMAL) and then extract the actual object
8608 type from its tag.
8609
8610 Note that we cannot skip the final step where we extract
8611 the object type from its tag, because the EVAL_NORMAL phase
8612 results in dynamic components being resolved into fixed ones.
8613 This can cause problems when trying to print the type
8614 description of tagged types whose parent has a dynamic size:
8615 We use the type name of the "_parent" component in order
8616 to print the name of the ancestor type in the type description.
8617 If that component had a dynamic size, the resolution into
8618 a fixed type would result in the loss of that type name,
8619 thus preventing us from printing the name of the ancestor
8620 type in the type description. */
8621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8622 return value_zero (type_from_tag (ada_value_tag (arg1)), not_lval);
8623 }
8624
4c4b4cd2
PH
8625 *pos += 4;
8626 return value_zero
8627 (to_static_fixed_type
8628 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8629 not_lval);
8630 }
d2e4a39e 8631 else
4c4b4cd2
PH
8632 {
8633 arg1 =
8634 unwrap_value (evaluate_subexp_standard
8635 (expect_type, exp, pos, noside));
8636 return ada_to_fixed_value (arg1);
8637 }
8638
8639 case OP_FUNCALL:
8640 (*pos) += 2;
8641
8642 /* Allocate arg vector, including space for the function to be
8643 called in argvec[0] and a terminating NULL. */
8644 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8645 argvec =
8646 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8647
8648 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8649 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8650 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8651 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8652 else
8653 {
8654 for (tem = 0; tem <= nargs; tem += 1)
8655 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8656 argvec[tem] = 0;
8657
8658 if (noside == EVAL_SKIP)
8659 goto nosideret;
8660 }
8661
df407dfe 8662 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8663 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
df407dfe
AC
8664 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8665 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8666 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8667 argvec[0] = value_addr (argvec[0]);
8668
df407dfe 8669 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8670 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8671 {
61ee279c 8672 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8673 {
8674 case TYPE_CODE_FUNC:
61ee279c 8675 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8676 break;
8677 case TYPE_CODE_ARRAY:
8678 break;
8679 case TYPE_CODE_STRUCT:
8680 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8681 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8682 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8683 break;
8684 default:
323e0a4a 8685 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8686 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8687 break;
8688 }
8689 }
8690
8691 switch (TYPE_CODE (type))
8692 {
8693 case TYPE_CODE_FUNC:
8694 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8695 return allocate_value (TYPE_TARGET_TYPE (type));
8696 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8697 case TYPE_CODE_STRUCT:
8698 {
8699 int arity;
8700
4c4b4cd2
PH
8701 arity = ada_array_arity (type);
8702 type = ada_array_element_type (type, nargs);
8703 if (type == NULL)
323e0a4a 8704 error (_("cannot subscript or call a record"));
4c4b4cd2 8705 if (arity != nargs)
323e0a4a 8706 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8708 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8709 return
8710 unwrap_value (ada_value_subscript
8711 (argvec[0], nargs, argvec + 1));
8712 }
8713 case TYPE_CODE_ARRAY:
8714 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8715 {
8716 type = ada_array_element_type (type, nargs);
8717 if (type == NULL)
323e0a4a 8718 error (_("element type of array unknown"));
4c4b4cd2 8719 else
0a07e705 8720 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8721 }
8722 return
8723 unwrap_value (ada_value_subscript
8724 (ada_coerce_to_simple_array (argvec[0]),
8725 nargs, argvec + 1));
8726 case TYPE_CODE_PTR: /* Pointer to array */
8727 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8728 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8729 {
8730 type = ada_array_element_type (type, nargs);
8731 if (type == NULL)
323e0a4a 8732 error (_("element type of array unknown"));
4c4b4cd2 8733 else
0a07e705 8734 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8735 }
8736 return
8737 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8738 nargs, argvec + 1));
8739
8740 default:
e1d5a0d2
PH
8741 error (_("Attempt to index or call something other than an "
8742 "array or function"));
4c4b4cd2
PH
8743 }
8744
8745 case TERNOP_SLICE:
8746 {
8747 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8748 struct value *low_bound_val =
8749 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8750 struct value *high_bound_val =
8751 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8752 LONGEST low_bound;
8753 LONGEST high_bound;
994b9211
AC
8754 low_bound_val = coerce_ref (low_bound_val);
8755 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8756 low_bound = pos_atr (low_bound_val);
8757 high_bound = pos_atr (high_bound_val);
963a6417 8758
4c4b4cd2
PH
8759 if (noside == EVAL_SKIP)
8760 goto nosideret;
8761
4c4b4cd2
PH
8762 /* If this is a reference to an aligner type, then remove all
8763 the aligners. */
df407dfe
AC
8764 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8765 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8766 TYPE_TARGET_TYPE (value_type (array)) =
8767 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8768
df407dfe 8769 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8770 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8771
8772 /* If this is a reference to an array or an array lvalue,
8773 convert to a pointer. */
df407dfe
AC
8774 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8775 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8776 && VALUE_LVAL (array) == lval_memory))
8777 array = value_addr (array);
8778
1265e4aa 8779 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8780 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8781 (value_type (array))))
0b5d8877 8782 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8783
8784 array = ada_coerce_to_simple_array_ptr (array);
8785
714e53ab
PH
8786 /* If we have more than one level of pointer indirection,
8787 dereference the value until we get only one level. */
df407dfe
AC
8788 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8789 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8790 == TYPE_CODE_PTR))
8791 array = value_ind (array);
8792
8793 /* Make sure we really do have an array type before going further,
8794 to avoid a SEGV when trying to get the index type or the target
8795 type later down the road if the debug info generated by
8796 the compiler is incorrect or incomplete. */
df407dfe 8797 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8798 error (_("cannot take slice of non-array"));
714e53ab 8799
df407dfe 8800 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8801 {
0b5d8877 8802 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8803 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8804 low_bound);
8805 else
8806 {
8807 struct type *arr_type0 =
df407dfe 8808 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8809 NULL, 1);
f5938064
JG
8810 return ada_value_slice_from_ptr (array, arr_type0,
8811 longest_to_int (low_bound),
8812 longest_to_int (high_bound));
4c4b4cd2
PH
8813 }
8814 }
8815 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8816 return array;
8817 else if (high_bound < low_bound)
df407dfe 8818 return empty_array (value_type (array), low_bound);
4c4b4cd2 8819 else
529cad9c
PH
8820 return ada_value_slice (array, longest_to_int (low_bound),
8821 longest_to_int (high_bound));
4c4b4cd2 8822 }
14f9c5c9 8823
4c4b4cd2
PH
8824 case UNOP_IN_RANGE:
8825 (*pos) += 2;
8826 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8827 type = exp->elts[pc + 1].type;
14f9c5c9 8828
14f9c5c9 8829 if (noside == EVAL_SKIP)
4c4b4cd2 8830 goto nosideret;
14f9c5c9 8831
4c4b4cd2
PH
8832 switch (TYPE_CODE (type))
8833 {
8834 default:
e1d5a0d2
PH
8835 lim_warning (_("Membership test incompletely implemented; "
8836 "always returns true"));
fbb06eb1
UW
8837 type = language_bool_type (exp->language_defn, exp->gdbarch);
8838 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
8839
8840 case TYPE_CODE_RANGE:
030b4912
UW
8841 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8842 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
8843 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8844 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
8845 type = language_bool_type (exp->language_defn, exp->gdbarch);
8846 return
8847 value_from_longest (type,
4c4b4cd2
PH
8848 (value_less (arg1, arg3)
8849 || value_equal (arg1, arg3))
8850 && (value_less (arg2, arg1)
8851 || value_equal (arg2, arg1)));
8852 }
8853
8854 case BINOP_IN_BOUNDS:
14f9c5c9 8855 (*pos) += 2;
4c4b4cd2
PH
8856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8857 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 8858
4c4b4cd2
PH
8859 if (noside == EVAL_SKIP)
8860 goto nosideret;
14f9c5c9 8861
4c4b4cd2 8862 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
8863 {
8864 type = language_bool_type (exp->language_defn, exp->gdbarch);
8865 return value_zero (type, not_lval);
8866 }
14f9c5c9 8867
4c4b4cd2 8868 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 8869
df407dfe 8870 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
323e0a4a 8871 error (_("invalid dimension number to 'range"));
14f9c5c9 8872
4c4b4cd2
PH
8873 arg3 = ada_array_bound (arg2, tem, 1);
8874 arg2 = ada_array_bound (arg2, tem, 0);
d2e4a39e 8875
f44316fa
UW
8876 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8878 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8879 return
fbb06eb1 8880 value_from_longest (type,
4c4b4cd2
PH
8881 (value_less (arg1, arg3)
8882 || value_equal (arg1, arg3))
8883 && (value_less (arg2, arg1)
8884 || value_equal (arg2, arg1)));
8885
8886 case TERNOP_IN_RANGE:
8887 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8888 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8889 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8890
8891 if (noside == EVAL_SKIP)
8892 goto nosideret;
8893
f44316fa
UW
8894 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8895 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 8896 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 8897 return
fbb06eb1 8898 value_from_longest (type,
4c4b4cd2
PH
8899 (value_less (arg1, arg3)
8900 || value_equal (arg1, arg3))
8901 && (value_less (arg2, arg1)
8902 || value_equal (arg2, arg1)));
8903
8904 case OP_ATR_FIRST:
8905 case OP_ATR_LAST:
8906 case OP_ATR_LENGTH:
8907 {
76a01679
JB
8908 struct type *type_arg;
8909 if (exp->elts[*pos].opcode == OP_TYPE)
8910 {
8911 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8912 arg1 = NULL;
8913 type_arg = exp->elts[pc + 2].type;
8914 }
8915 else
8916 {
8917 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8918 type_arg = NULL;
8919 }
8920
8921 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 8922 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
8923 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8924 *pos += 4;
8925
8926 if (noside == EVAL_SKIP)
8927 goto nosideret;
8928
8929 if (type_arg == NULL)
8930 {
8931 arg1 = ada_coerce_ref (arg1);
8932
df407dfe 8933 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
8934 arg1 = ada_coerce_to_simple_array (arg1);
8935
df407dfe 8936 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
323e0a4a 8937 error (_("invalid dimension number to '%s"),
76a01679
JB
8938 ada_attribute_name (op));
8939
8940 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8941 {
df407dfe 8942 type = ada_index_type (value_type (arg1), tem);
76a01679
JB
8943 if (type == NULL)
8944 error
323e0a4a 8945 (_("attempt to take bound of something that is not an array"));
76a01679
JB
8946 return allocate_value (type);
8947 }
8948
8949 switch (op)
8950 {
8951 default: /* Should never happen. */
323e0a4a 8952 error (_("unexpected attribute encountered"));
76a01679
JB
8953 case OP_ATR_FIRST:
8954 return ada_array_bound (arg1, tem, 0);
8955 case OP_ATR_LAST:
8956 return ada_array_bound (arg1, tem, 1);
8957 case OP_ATR_LENGTH:
8958 return ada_array_length (arg1, tem);
8959 }
8960 }
8961 else if (discrete_type_p (type_arg))
8962 {
8963 struct type *range_type;
8964 char *name = ada_type_name (type_arg);
8965 range_type = NULL;
8966 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8967 range_type =
8968 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8969 if (range_type == NULL)
8970 range_type = type_arg;
8971 switch (op)
8972 {
8973 default:
323e0a4a 8974 error (_("unexpected attribute encountered"));
76a01679 8975 case OP_ATR_FIRST:
690cc4eb
PH
8976 return value_from_longest
8977 (range_type, discrete_type_low_bound (range_type));
76a01679 8978 case OP_ATR_LAST:
690cc4eb
PH
8979 return value_from_longest
8980 (range_type, discrete_type_high_bound (range_type));
76a01679 8981 case OP_ATR_LENGTH:
323e0a4a 8982 error (_("the 'length attribute applies only to array types"));
76a01679
JB
8983 }
8984 }
8985 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 8986 error (_("unimplemented type attribute"));
76a01679
JB
8987 else
8988 {
8989 LONGEST low, high;
8990
8991 if (ada_is_packed_array_type (type_arg))
8992 type_arg = decode_packed_array_type (type_arg);
8993
8994 if (tem < 1 || tem > ada_array_arity (type_arg))
323e0a4a 8995 error (_("invalid dimension number to '%s"),
76a01679
JB
8996 ada_attribute_name (op));
8997
8998 type = ada_index_type (type_arg, tem);
8999 if (type == NULL)
9000 error
323e0a4a 9001 (_("attempt to take bound of something that is not an array"));
76a01679
JB
9002 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9003 return allocate_value (type);
9004
9005 switch (op)
9006 {
9007 default:
323e0a4a 9008 error (_("unexpected attribute encountered"));
76a01679
JB
9009 case OP_ATR_FIRST:
9010 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9011 return value_from_longest (type, low);
9012 case OP_ATR_LAST:
9013 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9014 return value_from_longest (type, high);
9015 case OP_ATR_LENGTH:
9016 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9017 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9018 return value_from_longest (type, high - low + 1);
9019 }
9020 }
14f9c5c9
AS
9021 }
9022
4c4b4cd2
PH
9023 case OP_ATR_TAG:
9024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9025 if (noside == EVAL_SKIP)
76a01679 9026 goto nosideret;
4c4b4cd2
PH
9027
9028 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9029 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9030
9031 return ada_value_tag (arg1);
9032
9033 case OP_ATR_MIN:
9034 case OP_ATR_MAX:
9035 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9036 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9037 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 if (noside == EVAL_SKIP)
76a01679 9039 goto nosideret;
d2e4a39e 9040 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9041 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9042 else
f44316fa
UW
9043 {
9044 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9045 return value_binop (arg1, arg2,
9046 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9047 }
14f9c5c9 9048
4c4b4cd2
PH
9049 case OP_ATR_MODULUS:
9050 {
76a01679
JB
9051 struct type *type_arg = exp->elts[pc + 2].type;
9052 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9053
76a01679
JB
9054 if (noside == EVAL_SKIP)
9055 goto nosideret;
4c4b4cd2 9056
76a01679 9057 if (!ada_is_modular_type (type_arg))
323e0a4a 9058 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9059
76a01679
JB
9060 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9061 ada_modulus (type_arg));
4c4b4cd2
PH
9062 }
9063
9064
9065 case OP_ATR_POS:
9066 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 if (noside == EVAL_SKIP)
76a01679 9069 goto nosideret;
3cb382c9
UW
9070 type = builtin_type (exp->gdbarch)->builtin_int;
9071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9072 return value_zero (type, not_lval);
14f9c5c9 9073 else
3cb382c9 9074 return value_pos_atr (type, arg1);
14f9c5c9 9075
4c4b4cd2
PH
9076 case OP_ATR_SIZE:
9077 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9078 type = value_type (arg1);
9079
9080 /* If the argument is a reference, then dereference its type, since
9081 the user is really asking for the size of the actual object,
9082 not the size of the pointer. */
9083 if (TYPE_CODE (type) == TYPE_CODE_REF)
9084 type = TYPE_TARGET_TYPE (type);
9085
4c4b4cd2 9086 if (noside == EVAL_SKIP)
76a01679 9087 goto nosideret;
4c4b4cd2 9088 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9089 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9090 else
6d2e05aa 9091 return value_from_longest (builtin_type_int32,
8c1c099f 9092 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9093
9094 case OP_ATR_VAL:
9095 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9096 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9097 type = exp->elts[pc + 2].type;
14f9c5c9 9098 if (noside == EVAL_SKIP)
76a01679 9099 goto nosideret;
4c4b4cd2 9100 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9101 return value_zero (type, not_lval);
4c4b4cd2 9102 else
76a01679 9103 return value_val_atr (type, arg1);
4c4b4cd2
PH
9104
9105 case BINOP_EXP:
9106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9107 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9108 if (noside == EVAL_SKIP)
9109 goto nosideret;
9110 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9111 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9112 else
f44316fa
UW
9113 {
9114 /* For integer exponentiation operations,
9115 only promote the first argument. */
9116 if (is_integral_type (value_type (arg2)))
9117 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9118 else
9119 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9120
9121 return value_binop (arg1, arg2, op);
9122 }
4c4b4cd2
PH
9123
9124 case UNOP_PLUS:
9125 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9126 if (noside == EVAL_SKIP)
9127 goto nosideret;
9128 else
9129 return arg1;
9130
9131 case UNOP_ABS:
9132 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9133 if (noside == EVAL_SKIP)
9134 goto nosideret;
f44316fa 9135 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9136 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9137 return value_neg (arg1);
14f9c5c9 9138 else
4c4b4cd2 9139 return arg1;
14f9c5c9
AS
9140
9141 case UNOP_IND:
6b0d7253 9142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9143 if (noside == EVAL_SKIP)
4c4b4cd2 9144 goto nosideret;
df407dfe 9145 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9146 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9147 {
9148 if (ada_is_array_descriptor_type (type))
9149 /* GDB allows dereferencing GNAT array descriptors. */
9150 {
9151 struct type *arrType = ada_type_of_array (arg1, 0);
9152 if (arrType == NULL)
323e0a4a 9153 error (_("Attempt to dereference null array pointer."));
00a4c844 9154 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9155 }
9156 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9157 || TYPE_CODE (type) == TYPE_CODE_REF
9158 /* In C you can dereference an array to get the 1st elt. */
9159 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9160 {
9161 type = to_static_fixed_type
9162 (ada_aligned_type
9163 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9164 check_size (type);
9165 return value_zero (type, lval_memory);
9166 }
4c4b4cd2 9167 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9168 {
9169 /* GDB allows dereferencing an int. */
9170 if (expect_type == NULL)
9171 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9172 lval_memory);
9173 else
9174 {
9175 expect_type =
9176 to_static_fixed_type (ada_aligned_type (expect_type));
9177 return value_zero (expect_type, lval_memory);
9178 }
9179 }
4c4b4cd2 9180 else
323e0a4a 9181 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9182 }
76a01679 9183 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9184 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9185
96967637
JB
9186 if (TYPE_CODE (type) == TYPE_CODE_INT)
9187 /* GDB allows dereferencing an int. If we were given
9188 the expect_type, then use that as the target type.
9189 Otherwise, assume that the target type is an int. */
9190 {
9191 if (expect_type != NULL)
9192 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9193 arg1));
9194 else
9195 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9196 (CORE_ADDR) value_as_address (arg1));
9197 }
6b0d7253 9198
4c4b4cd2
PH
9199 if (ada_is_array_descriptor_type (type))
9200 /* GDB allows dereferencing GNAT array descriptors. */
9201 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9202 else
4c4b4cd2 9203 return ada_value_ind (arg1);
14f9c5c9
AS
9204
9205 case STRUCTOP_STRUCT:
9206 tem = longest_to_int (exp->elts[pc + 1].longconst);
9207 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9209 if (noside == EVAL_SKIP)
4c4b4cd2 9210 goto nosideret;
14f9c5c9 9211 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9212 {
df407dfe 9213 struct type *type1 = value_type (arg1);
76a01679
JB
9214 if (ada_is_tagged_type (type1, 1))
9215 {
9216 type = ada_lookup_struct_elt_type (type1,
9217 &exp->elts[pc + 2].string,
9218 1, 1, NULL);
9219 if (type == NULL)
9220 /* In this case, we assume that the field COULD exist
9221 in some extension of the type. Return an object of
9222 "type" void, which will match any formal
9223 (see ada_type_match). */
9224 return value_zero (builtin_type_void, lval_memory);
9225 }
9226 else
9227 type =
9228 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9229 0, NULL);
9230
9231 return value_zero (ada_aligned_type (type), lval_memory);
9232 }
14f9c5c9 9233 else
76a01679
JB
9234 return
9235 ada_to_fixed_value (unwrap_value
9236 (ada_value_struct_elt
03ee6b2e 9237 (arg1, &exp->elts[pc + 2].string, 0)));
14f9c5c9 9238 case OP_TYPE:
4c4b4cd2
PH
9239 /* The value is not supposed to be used. This is here to make it
9240 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9241 (*pos) += 2;
9242 if (noside == EVAL_SKIP)
4c4b4cd2 9243 goto nosideret;
14f9c5c9 9244 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9245 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9246 else
323e0a4a 9247 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9248
9249 case OP_AGGREGATE:
9250 case OP_CHOICES:
9251 case OP_OTHERS:
9252 case OP_DISCRETE_RANGE:
9253 case OP_POSITIONAL:
9254 case OP_NAME:
9255 if (noside == EVAL_NORMAL)
9256 switch (op)
9257 {
9258 case OP_NAME:
9259 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9260 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9261 case OP_AGGREGATE:
9262 error (_("Aggregates only allowed on the right of an assignment"));
9263 default:
e1d5a0d2 9264 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9265 }
9266
9267 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9268 *pos += oplen - 1;
9269 for (tem = 0; tem < nargs; tem += 1)
9270 ada_evaluate_subexp (NULL, exp, pos, noside);
9271 goto nosideret;
14f9c5c9
AS
9272 }
9273
9274nosideret:
cb18ec49 9275 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9276}
14f9c5c9 9277\f
d2e4a39e 9278
4c4b4cd2 9279 /* Fixed point */
14f9c5c9
AS
9280
9281/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9282 type name that encodes the 'small and 'delta information.
4c4b4cd2 9283 Otherwise, return NULL. */
14f9c5c9 9284
d2e4a39e 9285static const char *
ebf56fd3 9286fixed_type_info (struct type *type)
14f9c5c9 9287{
d2e4a39e 9288 const char *name = ada_type_name (type);
14f9c5c9
AS
9289 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9290
d2e4a39e
AS
9291 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9292 {
14f9c5c9
AS
9293 const char *tail = strstr (name, "___XF_");
9294 if (tail == NULL)
4c4b4cd2 9295 return NULL;
d2e4a39e 9296 else
4c4b4cd2 9297 return tail + 5;
14f9c5c9
AS
9298 }
9299 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9300 return fixed_type_info (TYPE_TARGET_TYPE (type));
9301 else
9302 return NULL;
9303}
9304
4c4b4cd2 9305/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9306
9307int
ebf56fd3 9308ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9309{
9310 return fixed_type_info (type) != NULL;
9311}
9312
4c4b4cd2
PH
9313/* Return non-zero iff TYPE represents a System.Address type. */
9314
9315int
9316ada_is_system_address_type (struct type *type)
9317{
9318 return (TYPE_NAME (type)
9319 && strcmp (TYPE_NAME (type), "system__address") == 0);
9320}
9321
14f9c5c9
AS
9322/* Assuming that TYPE is the representation of an Ada fixed-point
9323 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9324 delta cannot be determined. */
14f9c5c9
AS
9325
9326DOUBLEST
ebf56fd3 9327ada_delta (struct type *type)
14f9c5c9
AS
9328{
9329 const char *encoding = fixed_type_info (type);
9330 long num, den;
9331
9332 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9333 return -1.0;
d2e4a39e 9334 else
14f9c5c9
AS
9335 return (DOUBLEST) num / (DOUBLEST) den;
9336}
9337
9338/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9339 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9340
9341static DOUBLEST
ebf56fd3 9342scaling_factor (struct type *type)
14f9c5c9
AS
9343{
9344 const char *encoding = fixed_type_info (type);
9345 unsigned long num0, den0, num1, den1;
9346 int n;
d2e4a39e 9347
14f9c5c9
AS
9348 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9349
9350 if (n < 2)
9351 return 1.0;
9352 else if (n == 4)
9353 return (DOUBLEST) num1 / (DOUBLEST) den1;
d2e4a39e 9354 else
14f9c5c9
AS
9355 return (DOUBLEST) num0 / (DOUBLEST) den0;
9356}
9357
9358
9359/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9360 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9361
9362DOUBLEST
ebf56fd3 9363ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9364{
d2e4a39e 9365 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9366}
9367
4c4b4cd2
PH
9368/* The representation of a fixed-point value of type TYPE
9369 corresponding to the value X. */
14f9c5c9
AS
9370
9371LONGEST
ebf56fd3 9372ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9373{
9374 return (LONGEST) (x / scaling_factor (type) + 0.5);
9375}
9376
9377
4c4b4cd2 9378 /* VAX floating formats */
14f9c5c9
AS
9379
9380/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9381 types. */
9382
14f9c5c9 9383int
d2e4a39e 9384ada_is_vax_floating_type (struct type *type)
14f9c5c9 9385{
d2e4a39e 9386 int name_len =
14f9c5c9 9387 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9388 return
14f9c5c9 9389 name_len > 6
d2e4a39e 9390 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9391 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9392 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9393}
9394
9395/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9396 ada_is_vax_floating_point. */
9397
14f9c5c9 9398int
d2e4a39e 9399ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9400{
d2e4a39e 9401 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9402}
9403
4c4b4cd2 9404/* A value representing the special debugging function that outputs
14f9c5c9 9405 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9406 ada_is_vax_floating_type (TYPE). */
9407
d2e4a39e
AS
9408struct value *
9409ada_vax_float_print_function (struct type *type)
9410{
9411 switch (ada_vax_float_type_suffix (type))
9412 {
9413 case 'F':
9414 return get_var_value ("DEBUG_STRING_F", 0);
9415 case 'D':
9416 return get_var_value ("DEBUG_STRING_D", 0);
9417 case 'G':
9418 return get_var_value ("DEBUG_STRING_G", 0);
9419 default:
323e0a4a 9420 error (_("invalid VAX floating-point type"));
d2e4a39e 9421 }
14f9c5c9 9422}
14f9c5c9 9423\f
d2e4a39e 9424
4c4b4cd2 9425 /* Range types */
14f9c5c9
AS
9426
9427/* Scan STR beginning at position K for a discriminant name, and
9428 return the value of that discriminant field of DVAL in *PX. If
9429 PNEW_K is not null, put the position of the character beyond the
9430 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9431 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9432
9433static int
07d8f827 9434scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9435 int *pnew_k)
14f9c5c9
AS
9436{
9437 static char *bound_buffer = NULL;
9438 static size_t bound_buffer_len = 0;
9439 char *bound;
9440 char *pend;
d2e4a39e 9441 struct value *bound_val;
14f9c5c9
AS
9442
9443 if (dval == NULL || str == NULL || str[k] == '\0')
9444 return 0;
9445
d2e4a39e 9446 pend = strstr (str + k, "__");
14f9c5c9
AS
9447 if (pend == NULL)
9448 {
d2e4a39e 9449 bound = str + k;
14f9c5c9
AS
9450 k += strlen (bound);
9451 }
d2e4a39e 9452 else
14f9c5c9 9453 {
d2e4a39e 9454 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9455 bound = bound_buffer;
d2e4a39e
AS
9456 strncpy (bound_buffer, str + k, pend - (str + k));
9457 bound[pend - (str + k)] = '\0';
9458 k = pend - str;
14f9c5c9 9459 }
d2e4a39e 9460
df407dfe 9461 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9462 if (bound_val == NULL)
9463 return 0;
9464
9465 *px = value_as_long (bound_val);
9466 if (pnew_k != NULL)
9467 *pnew_k = k;
9468 return 1;
9469}
9470
9471/* Value of variable named NAME in the current environment. If
9472 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9473 otherwise causes an error with message ERR_MSG. */
9474
d2e4a39e
AS
9475static struct value *
9476get_var_value (char *name, char *err_msg)
14f9c5c9 9477{
4c4b4cd2 9478 struct ada_symbol_info *syms;
14f9c5c9
AS
9479 int nsyms;
9480
4c4b4cd2
PH
9481 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9482 &syms);
14f9c5c9
AS
9483
9484 if (nsyms != 1)
9485 {
9486 if (err_msg == NULL)
4c4b4cd2 9487 return 0;
14f9c5c9 9488 else
8a3fe4f8 9489 error (("%s"), err_msg);
14f9c5c9
AS
9490 }
9491
4c4b4cd2 9492 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9493}
d2e4a39e 9494
14f9c5c9 9495/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9496 no such variable found, returns 0, and sets *FLAG to 0. If
9497 successful, sets *FLAG to 1. */
9498
14f9c5c9 9499LONGEST
4c4b4cd2 9500get_int_var_value (char *name, int *flag)
14f9c5c9 9501{
4c4b4cd2 9502 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9503
14f9c5c9
AS
9504 if (var_val == 0)
9505 {
9506 if (flag != NULL)
4c4b4cd2 9507 *flag = 0;
14f9c5c9
AS
9508 return 0;
9509 }
9510 else
9511 {
9512 if (flag != NULL)
4c4b4cd2 9513 *flag = 1;
14f9c5c9
AS
9514 return value_as_long (var_val);
9515 }
9516}
d2e4a39e 9517
14f9c5c9
AS
9518
9519/* Return a range type whose base type is that of the range type named
9520 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9521 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9522 Extract discriminant values, if needed, from DVAL. If a new type
9523 must be created, allocate in OBJFILE's space. The bounds
9524 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9525 the named range type. */
14f9c5c9 9526
d2e4a39e 9527static struct type *
ebf56fd3 9528to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9529{
9530 struct type *raw_type = ada_find_any_type (name);
9531 struct type *base_type;
d2e4a39e 9532 char *subtype_info;
14f9c5c9
AS
9533
9534 if (raw_type == NULL)
6d84d3d8 9535 base_type = builtin_type_int32;
14f9c5c9
AS
9536 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9537 base_type = TYPE_TARGET_TYPE (raw_type);
9538 else
9539 base_type = raw_type;
9540
9541 subtype_info = strstr (name, "___XD");
9542 if (subtype_info == NULL)
690cc4eb
PH
9543 {
9544 LONGEST L = discrete_type_low_bound (raw_type);
9545 LONGEST U = discrete_type_high_bound (raw_type);
9546 if (L < INT_MIN || U > INT_MAX)
9547 return raw_type;
9548 else
9549 return create_range_type (alloc_type (objfile), raw_type,
9550 discrete_type_low_bound (raw_type),
9551 discrete_type_high_bound (raw_type));
9552 }
14f9c5c9
AS
9553 else
9554 {
9555 static char *name_buf = NULL;
9556 static size_t name_len = 0;
9557 int prefix_len = subtype_info - name;
9558 LONGEST L, U;
9559 struct type *type;
9560 char *bounds_str;
9561 int n;
9562
9563 GROW_VECT (name_buf, name_len, prefix_len + 5);
9564 strncpy (name_buf, name, prefix_len);
9565 name_buf[prefix_len] = '\0';
9566
9567 subtype_info += 5;
9568 bounds_str = strchr (subtype_info, '_');
9569 n = 1;
9570
d2e4a39e 9571 if (*subtype_info == 'L')
4c4b4cd2
PH
9572 {
9573 if (!ada_scan_number (bounds_str, n, &L, &n)
9574 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9575 return raw_type;
9576 if (bounds_str[n] == '_')
9577 n += 2;
9578 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9579 n += 1;
9580 subtype_info += 1;
9581 }
d2e4a39e 9582 else
4c4b4cd2
PH
9583 {
9584 int ok;
9585 strcpy (name_buf + prefix_len, "___L");
9586 L = get_int_var_value (name_buf, &ok);
9587 if (!ok)
9588 {
323e0a4a 9589 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9590 L = 1;
9591 }
9592 }
14f9c5c9 9593
d2e4a39e 9594 if (*subtype_info == 'U')
4c4b4cd2
PH
9595 {
9596 if (!ada_scan_number (bounds_str, n, &U, &n)
9597 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9598 return raw_type;
9599 }
d2e4a39e 9600 else
4c4b4cd2
PH
9601 {
9602 int ok;
9603 strcpy (name_buf + prefix_len, "___U");
9604 U = get_int_var_value (name_buf, &ok);
9605 if (!ok)
9606 {
323e0a4a 9607 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9608 U = L;
9609 }
9610 }
14f9c5c9 9611
d2e4a39e 9612 if (objfile == NULL)
4c4b4cd2 9613 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9614 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9615 TYPE_NAME (type) = name;
14f9c5c9
AS
9616 return type;
9617 }
9618}
9619
4c4b4cd2
PH
9620/* True iff NAME is the name of a range type. */
9621
14f9c5c9 9622int
d2e4a39e 9623ada_is_range_type_name (const char *name)
14f9c5c9
AS
9624{
9625 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9626}
14f9c5c9 9627\f
d2e4a39e 9628
4c4b4cd2
PH
9629 /* Modular types */
9630
9631/* True iff TYPE is an Ada modular type. */
14f9c5c9 9632
14f9c5c9 9633int
d2e4a39e 9634ada_is_modular_type (struct type *type)
14f9c5c9 9635{
4c4b4cd2 9636 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9637
9638 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9639 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9640 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9641}
9642
4c4b4cd2
PH
9643/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9644
61ee279c 9645ULONGEST
d2e4a39e 9646ada_modulus (struct type * type)
14f9c5c9 9647{
d37209fd 9648 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9649}
d2e4a39e 9650\f
f7f9143b
JB
9651
9652/* Ada exception catchpoint support:
9653 ---------------------------------
9654
9655 We support 3 kinds of exception catchpoints:
9656 . catchpoints on Ada exceptions
9657 . catchpoints on unhandled Ada exceptions
9658 . catchpoints on failed assertions
9659
9660 Exceptions raised during failed assertions, or unhandled exceptions
9661 could perfectly be caught with the general catchpoint on Ada exceptions.
9662 However, we can easily differentiate these two special cases, and having
9663 the option to distinguish these two cases from the rest can be useful
9664 to zero-in on certain situations.
9665
9666 Exception catchpoints are a specialized form of breakpoint,
9667 since they rely on inserting breakpoints inside known routines
9668 of the GNAT runtime. The implementation therefore uses a standard
9669 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9670 of breakpoint_ops.
9671
0259addd
JB
9672 Support in the runtime for exception catchpoints have been changed
9673 a few times already, and these changes affect the implementation
9674 of these catchpoints. In order to be able to support several
9675 variants of the runtime, we use a sniffer that will determine
9676 the runtime variant used by the program being debugged.
9677
f7f9143b
JB
9678 At this time, we do not support the use of conditions on Ada exception
9679 catchpoints. The COND and COND_STRING fields are therefore set
9680 to NULL (most of the time, see below).
9681
9682 Conditions where EXP_STRING, COND, and COND_STRING are used:
9683
9684 When a user specifies the name of a specific exception in the case
9685 of catchpoints on Ada exceptions, we store the name of that exception
9686 in the EXP_STRING. We then translate this request into an actual
9687 condition stored in COND_STRING, and then parse it into an expression
9688 stored in COND. */
9689
9690/* The different types of catchpoints that we introduced for catching
9691 Ada exceptions. */
9692
9693enum exception_catchpoint_kind
9694{
9695 ex_catch_exception,
9696 ex_catch_exception_unhandled,
9697 ex_catch_assert
9698};
9699
3d0b0fa3
JB
9700/* Ada's standard exceptions. */
9701
9702static char *standard_exc[] = {
9703 "constraint_error",
9704 "program_error",
9705 "storage_error",
9706 "tasking_error"
9707};
9708
0259addd
JB
9709typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9710
9711/* A structure that describes how to support exception catchpoints
9712 for a given executable. */
9713
9714struct exception_support_info
9715{
9716 /* The name of the symbol to break on in order to insert
9717 a catchpoint on exceptions. */
9718 const char *catch_exception_sym;
9719
9720 /* The name of the symbol to break on in order to insert
9721 a catchpoint on unhandled exceptions. */
9722 const char *catch_exception_unhandled_sym;
9723
9724 /* The name of the symbol to break on in order to insert
9725 a catchpoint on failed assertions. */
9726 const char *catch_assert_sym;
9727
9728 /* Assuming that the inferior just triggered an unhandled exception
9729 catchpoint, this function is responsible for returning the address
9730 in inferior memory where the name of that exception is stored.
9731 Return zero if the address could not be computed. */
9732 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9733};
9734
9735static CORE_ADDR ada_unhandled_exception_name_addr (void);
9736static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9737
9738/* The following exception support info structure describes how to
9739 implement exception catchpoints with the latest version of the
9740 Ada runtime (as of 2007-03-06). */
9741
9742static const struct exception_support_info default_exception_support_info =
9743{
9744 "__gnat_debug_raise_exception", /* catch_exception_sym */
9745 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9746 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9747 ada_unhandled_exception_name_addr
9748};
9749
9750/* The following exception support info structure describes how to
9751 implement exception catchpoints with a slightly older version
9752 of the Ada runtime. */
9753
9754static const struct exception_support_info exception_support_info_fallback =
9755{
9756 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9757 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9758 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9759 ada_unhandled_exception_name_addr_from_raise
9760};
9761
9762/* For each executable, we sniff which exception info structure to use
9763 and cache it in the following global variable. */
9764
9765static const struct exception_support_info *exception_info = NULL;
9766
9767/* Inspect the Ada runtime and determine which exception info structure
9768 should be used to provide support for exception catchpoints.
9769
9770 This function will always set exception_info, or raise an error. */
9771
9772static void
9773ada_exception_support_info_sniffer (void)
9774{
9775 struct symbol *sym;
9776
9777 /* If the exception info is already known, then no need to recompute it. */
9778 if (exception_info != NULL)
9779 return;
9780
9781 /* Check the latest (default) exception support info. */
9782 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9783 NULL, VAR_DOMAIN);
9784 if (sym != NULL)
9785 {
9786 exception_info = &default_exception_support_info;
9787 return;
9788 }
9789
9790 /* Try our fallback exception suport info. */
9791 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9792 NULL, VAR_DOMAIN);
9793 if (sym != NULL)
9794 {
9795 exception_info = &exception_support_info_fallback;
9796 return;
9797 }
9798
9799 /* Sometimes, it is normal for us to not be able to find the routine
9800 we are looking for. This happens when the program is linked with
9801 the shared version of the GNAT runtime, and the program has not been
9802 started yet. Inform the user of these two possible causes if
9803 applicable. */
9804
9805 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9806 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9807
9808 /* If the symbol does not exist, then check that the program is
9809 already started, to make sure that shared libraries have been
9810 loaded. If it is not started, this may mean that the symbol is
9811 in a shared library. */
9812
9813 if (ptid_get_pid (inferior_ptid) == 0)
9814 error (_("Unable to insert catchpoint. Try to start the program first."));
9815
9816 /* At this point, we know that we are debugging an Ada program and
9817 that the inferior has been started, but we still are not able to
9818 find the run-time symbols. That can mean that we are in
9819 configurable run time mode, or that a-except as been optimized
9820 out by the linker... In any case, at this point it is not worth
9821 supporting this feature. */
9822
9823 error (_("Cannot insert catchpoints in this configuration."));
9824}
9825
9826/* An observer of "executable_changed" events.
9827 Its role is to clear certain cached values that need to be recomputed
9828 each time a new executable is loaded by GDB. */
9829
9830static void
781b42b0 9831ada_executable_changed_observer (void)
0259addd
JB
9832{
9833 /* If the executable changed, then it is possible that the Ada runtime
9834 is different. So we need to invalidate the exception support info
9835 cache. */
9836 exception_info = NULL;
9837}
9838
f7f9143b
JB
9839/* Return the name of the function at PC, NULL if could not find it.
9840 This function only checks the debugging information, not the symbol
9841 table. */
9842
9843static char *
9844function_name_from_pc (CORE_ADDR pc)
9845{
9846 char *func_name;
9847
9848 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9849 return NULL;
9850
9851 return func_name;
9852}
9853
9854/* True iff FRAME is very likely to be that of a function that is
9855 part of the runtime system. This is all very heuristic, but is
9856 intended to be used as advice as to what frames are uninteresting
9857 to most users. */
9858
9859static int
9860is_known_support_routine (struct frame_info *frame)
9861{
4ed6b5be 9862 struct symtab_and_line sal;
f7f9143b
JB
9863 char *func_name;
9864 int i;
f7f9143b 9865
4ed6b5be
JB
9866 /* If this code does not have any debugging information (no symtab),
9867 This cannot be any user code. */
f7f9143b 9868
4ed6b5be 9869 find_frame_sal (frame, &sal);
f7f9143b
JB
9870 if (sal.symtab == NULL)
9871 return 1;
9872
4ed6b5be
JB
9873 /* If there is a symtab, but the associated source file cannot be
9874 located, then assume this is not user code: Selecting a frame
9875 for which we cannot display the code would not be very helpful
9876 for the user. This should also take care of case such as VxWorks
9877 where the kernel has some debugging info provided for a few units. */
f7f9143b 9878
9bbc9174 9879 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
9880 return 1;
9881
4ed6b5be
JB
9882 /* Check the unit filename againt the Ada runtime file naming.
9883 We also check the name of the objfile against the name of some
9884 known system libraries that sometimes come with debugging info
9885 too. */
9886
f7f9143b
JB
9887 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9888 {
9889 re_comp (known_runtime_file_name_patterns[i]);
9890 if (re_exec (sal.symtab->filename))
9891 return 1;
4ed6b5be
JB
9892 if (sal.symtab->objfile != NULL
9893 && re_exec (sal.symtab->objfile->name))
9894 return 1;
f7f9143b
JB
9895 }
9896
4ed6b5be 9897 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 9898
4ed6b5be 9899 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
9900 if (func_name == NULL)
9901 return 1;
9902
9903 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9904 {
9905 re_comp (known_auxiliary_function_name_patterns[i]);
9906 if (re_exec (func_name))
9907 return 1;
9908 }
9909
9910 return 0;
9911}
9912
9913/* Find the first frame that contains debugging information and that is not
9914 part of the Ada run-time, starting from FI and moving upward. */
9915
0ef643c8 9916void
f7f9143b
JB
9917ada_find_printable_frame (struct frame_info *fi)
9918{
9919 for (; fi != NULL; fi = get_prev_frame (fi))
9920 {
9921 if (!is_known_support_routine (fi))
9922 {
9923 select_frame (fi);
9924 break;
9925 }
9926 }
9927
9928}
9929
9930/* Assuming that the inferior just triggered an unhandled exception
9931 catchpoint, return the address in inferior memory where the name
9932 of the exception is stored.
9933
9934 Return zero if the address could not be computed. */
9935
9936static CORE_ADDR
9937ada_unhandled_exception_name_addr (void)
0259addd
JB
9938{
9939 return parse_and_eval_address ("e.full_name");
9940}
9941
9942/* Same as ada_unhandled_exception_name_addr, except that this function
9943 should be used when the inferior uses an older version of the runtime,
9944 where the exception name needs to be extracted from a specific frame
9945 several frames up in the callstack. */
9946
9947static CORE_ADDR
9948ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
9949{
9950 int frame_level;
9951 struct frame_info *fi;
9952
9953 /* To determine the name of this exception, we need to select
9954 the frame corresponding to RAISE_SYM_NAME. This frame is
9955 at least 3 levels up, so we simply skip the first 3 frames
9956 without checking the name of their associated function. */
9957 fi = get_current_frame ();
9958 for (frame_level = 0; frame_level < 3; frame_level += 1)
9959 if (fi != NULL)
9960 fi = get_prev_frame (fi);
9961
9962 while (fi != NULL)
9963 {
9964 const char *func_name =
9965 function_name_from_pc (get_frame_address_in_block (fi));
9966 if (func_name != NULL
0259addd 9967 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
9968 break; /* We found the frame we were looking for... */
9969 fi = get_prev_frame (fi);
9970 }
9971
9972 if (fi == NULL)
9973 return 0;
9974
9975 select_frame (fi);
9976 return parse_and_eval_address ("id.full_name");
9977}
9978
9979/* Assuming the inferior just triggered an Ada exception catchpoint
9980 (of any type), return the address in inferior memory where the name
9981 of the exception is stored, if applicable.
9982
9983 Return zero if the address could not be computed, or if not relevant. */
9984
9985static CORE_ADDR
9986ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9987 struct breakpoint *b)
9988{
9989 switch (ex)
9990 {
9991 case ex_catch_exception:
9992 return (parse_and_eval_address ("e.full_name"));
9993 break;
9994
9995 case ex_catch_exception_unhandled:
0259addd 9996 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
9997 break;
9998
9999 case ex_catch_assert:
10000 return 0; /* Exception name is not relevant in this case. */
10001 break;
10002
10003 default:
10004 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10005 break;
10006 }
10007
10008 return 0; /* Should never be reached. */
10009}
10010
10011/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10012 any error that ada_exception_name_addr_1 might cause to be thrown.
10013 When an error is intercepted, a warning with the error message is printed,
10014 and zero is returned. */
10015
10016static CORE_ADDR
10017ada_exception_name_addr (enum exception_catchpoint_kind ex,
10018 struct breakpoint *b)
10019{
10020 struct gdb_exception e;
10021 CORE_ADDR result = 0;
10022
10023 TRY_CATCH (e, RETURN_MASK_ERROR)
10024 {
10025 result = ada_exception_name_addr_1 (ex, b);
10026 }
10027
10028 if (e.reason < 0)
10029 {
10030 warning (_("failed to get exception name: %s"), e.message);
10031 return 0;
10032 }
10033
10034 return result;
10035}
10036
10037/* Implement the PRINT_IT method in the breakpoint_ops structure
10038 for all exception catchpoint kinds. */
10039
10040static enum print_stop_action
10041print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10042{
10043 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10044 char exception_name[256];
10045
10046 if (addr != 0)
10047 {
10048 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10049 exception_name [sizeof (exception_name) - 1] = '\0';
10050 }
10051
10052 ada_find_printable_frame (get_current_frame ());
10053
10054 annotate_catchpoint (b->number);
10055 switch (ex)
10056 {
10057 case ex_catch_exception:
10058 if (addr != 0)
10059 printf_filtered (_("\nCatchpoint %d, %s at "),
10060 b->number, exception_name);
10061 else
10062 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10063 break;
10064 case ex_catch_exception_unhandled:
10065 if (addr != 0)
10066 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10067 b->number, exception_name);
10068 else
10069 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10070 b->number);
10071 break;
10072 case ex_catch_assert:
10073 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10074 b->number);
10075 break;
10076 }
10077
10078 return PRINT_SRC_AND_LOC;
10079}
10080
10081/* Implement the PRINT_ONE method in the breakpoint_ops structure
10082 for all exception catchpoint kinds. */
10083
10084static void
10085print_one_exception (enum exception_catchpoint_kind ex,
10086 struct breakpoint *b, CORE_ADDR *last_addr)
10087{
79a45b7d
TT
10088 struct value_print_options opts;
10089
10090 get_user_print_options (&opts);
10091 if (opts.addressprint)
f7f9143b
JB
10092 {
10093 annotate_field (4);
10094 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10095 }
10096
10097 annotate_field (5);
10098 *last_addr = b->loc->address;
10099 switch (ex)
10100 {
10101 case ex_catch_exception:
10102 if (b->exp_string != NULL)
10103 {
10104 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10105
10106 ui_out_field_string (uiout, "what", msg);
10107 xfree (msg);
10108 }
10109 else
10110 ui_out_field_string (uiout, "what", "all Ada exceptions");
10111
10112 break;
10113
10114 case ex_catch_exception_unhandled:
10115 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10116 break;
10117
10118 case ex_catch_assert:
10119 ui_out_field_string (uiout, "what", "failed Ada assertions");
10120 break;
10121
10122 default:
10123 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10124 break;
10125 }
10126}
10127
10128/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10129 for all exception catchpoint kinds. */
10130
10131static void
10132print_mention_exception (enum exception_catchpoint_kind ex,
10133 struct breakpoint *b)
10134{
10135 switch (ex)
10136 {
10137 case ex_catch_exception:
10138 if (b->exp_string != NULL)
10139 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10140 b->number, b->exp_string);
10141 else
10142 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10143
10144 break;
10145
10146 case ex_catch_exception_unhandled:
10147 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10148 b->number);
10149 break;
10150
10151 case ex_catch_assert:
10152 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10153 break;
10154
10155 default:
10156 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10157 break;
10158 }
10159}
10160
10161/* Virtual table for "catch exception" breakpoints. */
10162
10163static enum print_stop_action
10164print_it_catch_exception (struct breakpoint *b)
10165{
10166 return print_it_exception (ex_catch_exception, b);
10167}
10168
10169static void
10170print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10171{
10172 print_one_exception (ex_catch_exception, b, last_addr);
10173}
10174
10175static void
10176print_mention_catch_exception (struct breakpoint *b)
10177{
10178 print_mention_exception (ex_catch_exception, b);
10179}
10180
10181static struct breakpoint_ops catch_exception_breakpoint_ops =
10182{
ce78b96d
JB
10183 NULL, /* insert */
10184 NULL, /* remove */
10185 NULL, /* breakpoint_hit */
f7f9143b
JB
10186 print_it_catch_exception,
10187 print_one_catch_exception,
10188 print_mention_catch_exception
10189};
10190
10191/* Virtual table for "catch exception unhandled" breakpoints. */
10192
10193static enum print_stop_action
10194print_it_catch_exception_unhandled (struct breakpoint *b)
10195{
10196 return print_it_exception (ex_catch_exception_unhandled, b);
10197}
10198
10199static void
10200print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10201{
10202 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10203}
10204
10205static void
10206print_mention_catch_exception_unhandled (struct breakpoint *b)
10207{
10208 print_mention_exception (ex_catch_exception_unhandled, b);
10209}
10210
10211static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10212 NULL, /* insert */
10213 NULL, /* remove */
10214 NULL, /* breakpoint_hit */
f7f9143b
JB
10215 print_it_catch_exception_unhandled,
10216 print_one_catch_exception_unhandled,
10217 print_mention_catch_exception_unhandled
10218};
10219
10220/* Virtual table for "catch assert" breakpoints. */
10221
10222static enum print_stop_action
10223print_it_catch_assert (struct breakpoint *b)
10224{
10225 return print_it_exception (ex_catch_assert, b);
10226}
10227
10228static void
10229print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10230{
10231 print_one_exception (ex_catch_assert, b, last_addr);
10232}
10233
10234static void
10235print_mention_catch_assert (struct breakpoint *b)
10236{
10237 print_mention_exception (ex_catch_assert, b);
10238}
10239
10240static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10241 NULL, /* insert */
10242 NULL, /* remove */
10243 NULL, /* breakpoint_hit */
f7f9143b
JB
10244 print_it_catch_assert,
10245 print_one_catch_assert,
10246 print_mention_catch_assert
10247};
10248
10249/* Return non-zero if B is an Ada exception catchpoint. */
10250
10251int
10252ada_exception_catchpoint_p (struct breakpoint *b)
10253{
10254 return (b->ops == &catch_exception_breakpoint_ops
10255 || b->ops == &catch_exception_unhandled_breakpoint_ops
10256 || b->ops == &catch_assert_breakpoint_ops);
10257}
10258
f7f9143b
JB
10259/* Return a newly allocated copy of the first space-separated token
10260 in ARGSP, and then adjust ARGSP to point immediately after that
10261 token.
10262
10263 Return NULL if ARGPS does not contain any more tokens. */
10264
10265static char *
10266ada_get_next_arg (char **argsp)
10267{
10268 char *args = *argsp;
10269 char *end;
10270 char *result;
10271
10272 /* Skip any leading white space. */
10273
10274 while (isspace (*args))
10275 args++;
10276
10277 if (args[0] == '\0')
10278 return NULL; /* No more arguments. */
10279
10280 /* Find the end of the current argument. */
10281
10282 end = args;
10283 while (*end != '\0' && !isspace (*end))
10284 end++;
10285
10286 /* Adjust ARGSP to point to the start of the next argument. */
10287
10288 *argsp = end;
10289
10290 /* Make a copy of the current argument and return it. */
10291
10292 result = xmalloc (end - args + 1);
10293 strncpy (result, args, end - args);
10294 result[end - args] = '\0';
10295
10296 return result;
10297}
10298
10299/* Split the arguments specified in a "catch exception" command.
10300 Set EX to the appropriate catchpoint type.
10301 Set EXP_STRING to the name of the specific exception if
10302 specified by the user. */
10303
10304static void
10305catch_ada_exception_command_split (char *args,
10306 enum exception_catchpoint_kind *ex,
10307 char **exp_string)
10308{
10309 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10310 char *exception_name;
10311
10312 exception_name = ada_get_next_arg (&args);
10313 make_cleanup (xfree, exception_name);
10314
10315 /* Check that we do not have any more arguments. Anything else
10316 is unexpected. */
10317
10318 while (isspace (*args))
10319 args++;
10320
10321 if (args[0] != '\0')
10322 error (_("Junk at end of expression"));
10323
10324 discard_cleanups (old_chain);
10325
10326 if (exception_name == NULL)
10327 {
10328 /* Catch all exceptions. */
10329 *ex = ex_catch_exception;
10330 *exp_string = NULL;
10331 }
10332 else if (strcmp (exception_name, "unhandled") == 0)
10333 {
10334 /* Catch unhandled exceptions. */
10335 *ex = ex_catch_exception_unhandled;
10336 *exp_string = NULL;
10337 }
10338 else
10339 {
10340 /* Catch a specific exception. */
10341 *ex = ex_catch_exception;
10342 *exp_string = exception_name;
10343 }
10344}
10345
10346/* Return the name of the symbol on which we should break in order to
10347 implement a catchpoint of the EX kind. */
10348
10349static const char *
10350ada_exception_sym_name (enum exception_catchpoint_kind ex)
10351{
0259addd
JB
10352 gdb_assert (exception_info != NULL);
10353
f7f9143b
JB
10354 switch (ex)
10355 {
10356 case ex_catch_exception:
0259addd 10357 return (exception_info->catch_exception_sym);
f7f9143b
JB
10358 break;
10359 case ex_catch_exception_unhandled:
0259addd 10360 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10361 break;
10362 case ex_catch_assert:
0259addd 10363 return (exception_info->catch_assert_sym);
f7f9143b
JB
10364 break;
10365 default:
10366 internal_error (__FILE__, __LINE__,
10367 _("unexpected catchpoint kind (%d)"), ex);
10368 }
10369}
10370
10371/* Return the breakpoint ops "virtual table" used for catchpoints
10372 of the EX kind. */
10373
10374static struct breakpoint_ops *
4b9eee8c 10375ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10376{
10377 switch (ex)
10378 {
10379 case ex_catch_exception:
10380 return (&catch_exception_breakpoint_ops);
10381 break;
10382 case ex_catch_exception_unhandled:
10383 return (&catch_exception_unhandled_breakpoint_ops);
10384 break;
10385 case ex_catch_assert:
10386 return (&catch_assert_breakpoint_ops);
10387 break;
10388 default:
10389 internal_error (__FILE__, __LINE__,
10390 _("unexpected catchpoint kind (%d)"), ex);
10391 }
10392}
10393
10394/* Return the condition that will be used to match the current exception
10395 being raised with the exception that the user wants to catch. This
10396 assumes that this condition is used when the inferior just triggered
10397 an exception catchpoint.
10398
10399 The string returned is a newly allocated string that needs to be
10400 deallocated later. */
10401
10402static char *
10403ada_exception_catchpoint_cond_string (const char *exp_string)
10404{
3d0b0fa3
JB
10405 int i;
10406
10407 /* The standard exceptions are a special case. They are defined in
10408 runtime units that have been compiled without debugging info; if
10409 EXP_STRING is the not-fully-qualified name of a standard
10410 exception (e.g. "constraint_error") then, during the evaluation
10411 of the condition expression, the symbol lookup on this name would
10412 *not* return this standard exception. The catchpoint condition
10413 may then be set only on user-defined exceptions which have the
10414 same not-fully-qualified name (e.g. my_package.constraint_error).
10415
10416 To avoid this unexcepted behavior, these standard exceptions are
10417 systematically prefixed by "standard". This means that "catch
10418 exception constraint_error" is rewritten into "catch exception
10419 standard.constraint_error".
10420
10421 If an exception named contraint_error is defined in another package of
10422 the inferior program, then the only way to specify this exception as a
10423 breakpoint condition is to use its fully-qualified named:
10424 e.g. my_package.constraint_error. */
10425
10426 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10427 {
10428 if (strcmp (standard_exc [i], exp_string) == 0)
10429 {
10430 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10431 exp_string);
10432 }
10433 }
f7f9143b
JB
10434 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10435}
10436
10437/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10438
10439static struct expression *
10440ada_parse_catchpoint_condition (char *cond_string,
10441 struct symtab_and_line sal)
10442{
10443 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10444}
10445
10446/* Return the symtab_and_line that should be used to insert an exception
10447 catchpoint of the TYPE kind.
10448
10449 EX_STRING should contain the name of a specific exception
10450 that the catchpoint should catch, or NULL otherwise.
10451
10452 The idea behind all the remaining parameters is that their names match
10453 the name of certain fields in the breakpoint structure that are used to
10454 handle exception catchpoints. This function returns the value to which
10455 these fields should be set, depending on the type of catchpoint we need
10456 to create.
10457
10458 If COND and COND_STRING are both non-NULL, any value they might
10459 hold will be free'ed, and then replaced by newly allocated ones.
10460 These parameters are left untouched otherwise. */
10461
10462static struct symtab_and_line
10463ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10464 char **addr_string, char **cond_string,
10465 struct expression **cond, struct breakpoint_ops **ops)
10466{
10467 const char *sym_name;
10468 struct symbol *sym;
10469 struct symtab_and_line sal;
10470
0259addd
JB
10471 /* First, find out which exception support info to use. */
10472 ada_exception_support_info_sniffer ();
10473
10474 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10475 the Ada exceptions requested by the user. */
10476
10477 sym_name = ada_exception_sym_name (ex);
10478 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10479
10480 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10481 that should be compiled with debugging information. As a result, we
10482 expect to find that symbol in the symtabs. If we don't find it, then
10483 the target most likely does not support Ada exceptions, or we cannot
10484 insert exception breakpoints yet, because the GNAT runtime hasn't been
10485 loaded yet. */
10486
10487 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10488 in such a way that no debugging information is produced for the symbol
10489 we are looking for. In this case, we could search the minimal symbols
10490 as a fall-back mechanism. This would still be operating in degraded
10491 mode, however, as we would still be missing the debugging information
10492 that is needed in order to extract the name of the exception being
10493 raised (this name is printed in the catchpoint message, and is also
10494 used when trying to catch a specific exception). We do not handle
10495 this case for now. */
10496
10497 if (sym == NULL)
0259addd 10498 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10499
10500 /* Make sure that the symbol we found corresponds to a function. */
10501 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10502 error (_("Symbol \"%s\" is not a function (class = %d)"),
10503 sym_name, SYMBOL_CLASS (sym));
10504
10505 sal = find_function_start_sal (sym, 1);
10506
10507 /* Set ADDR_STRING. */
10508
10509 *addr_string = xstrdup (sym_name);
10510
10511 /* Set the COND and COND_STRING (if not NULL). */
10512
10513 if (cond_string != NULL && cond != NULL)
10514 {
10515 if (*cond_string != NULL)
10516 {
10517 xfree (*cond_string);
10518 *cond_string = NULL;
10519 }
10520 if (*cond != NULL)
10521 {
10522 xfree (*cond);
10523 *cond = NULL;
10524 }
10525 if (exp_string != NULL)
10526 {
10527 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10528 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10529 }
10530 }
10531
10532 /* Set OPS. */
4b9eee8c 10533 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10534
10535 return sal;
10536}
10537
10538/* Parse the arguments (ARGS) of the "catch exception" command.
10539
10540 Set TYPE to the appropriate exception catchpoint type.
10541 If the user asked the catchpoint to catch only a specific
10542 exception, then save the exception name in ADDR_STRING.
10543
10544 See ada_exception_sal for a description of all the remaining
10545 function arguments of this function. */
10546
10547struct symtab_and_line
10548ada_decode_exception_location (char *args, char **addr_string,
10549 char **exp_string, char **cond_string,
10550 struct expression **cond,
10551 struct breakpoint_ops **ops)
10552{
10553 enum exception_catchpoint_kind ex;
10554
10555 catch_ada_exception_command_split (args, &ex, exp_string);
10556 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10557 cond, ops);
10558}
10559
10560struct symtab_and_line
10561ada_decode_assert_location (char *args, char **addr_string,
10562 struct breakpoint_ops **ops)
10563{
10564 /* Check that no argument where provided at the end of the command. */
10565
10566 if (args != NULL)
10567 {
10568 while (isspace (*args))
10569 args++;
10570 if (*args != '\0')
10571 error (_("Junk at end of arguments."));
10572 }
10573
10574 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10575 ops);
10576}
10577
4c4b4cd2
PH
10578 /* Operators */
10579/* Information about operators given special treatment in functions
10580 below. */
10581/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10582
10583#define ADA_OPERATORS \
10584 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10585 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10586 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10587 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10588 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10589 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10590 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10591 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10592 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10593 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10594 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10595 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10596 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10597 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10598 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10599 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10600 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10601 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10602 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10603
10604static void
10605ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10606{
10607 switch (exp->elts[pc - 1].opcode)
10608 {
76a01679 10609 default:
4c4b4cd2
PH
10610 operator_length_standard (exp, pc, oplenp, argsp);
10611 break;
10612
10613#define OP_DEFN(op, len, args, binop) \
10614 case op: *oplenp = len; *argsp = args; break;
10615 ADA_OPERATORS;
10616#undef OP_DEFN
52ce6436
PH
10617
10618 case OP_AGGREGATE:
10619 *oplenp = 3;
10620 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10621 break;
10622
10623 case OP_CHOICES:
10624 *oplenp = 3;
10625 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10626 break;
4c4b4cd2
PH
10627 }
10628}
10629
10630static char *
10631ada_op_name (enum exp_opcode opcode)
10632{
10633 switch (opcode)
10634 {
76a01679 10635 default:
4c4b4cd2 10636 return op_name_standard (opcode);
52ce6436 10637
4c4b4cd2
PH
10638#define OP_DEFN(op, len, args, binop) case op: return #op;
10639 ADA_OPERATORS;
10640#undef OP_DEFN
52ce6436
PH
10641
10642 case OP_AGGREGATE:
10643 return "OP_AGGREGATE";
10644 case OP_CHOICES:
10645 return "OP_CHOICES";
10646 case OP_NAME:
10647 return "OP_NAME";
4c4b4cd2
PH
10648 }
10649}
10650
10651/* As for operator_length, but assumes PC is pointing at the first
10652 element of the operator, and gives meaningful results only for the
52ce6436 10653 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10654
10655static void
76a01679
JB
10656ada_forward_operator_length (struct expression *exp, int pc,
10657 int *oplenp, int *argsp)
4c4b4cd2 10658{
76a01679 10659 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10660 {
10661 default:
10662 *oplenp = *argsp = 0;
10663 break;
52ce6436 10664
4c4b4cd2
PH
10665#define OP_DEFN(op, len, args, binop) \
10666 case op: *oplenp = len; *argsp = args; break;
10667 ADA_OPERATORS;
10668#undef OP_DEFN
52ce6436
PH
10669
10670 case OP_AGGREGATE:
10671 *oplenp = 3;
10672 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10673 break;
10674
10675 case OP_CHOICES:
10676 *oplenp = 3;
10677 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10678 break;
10679
10680 case OP_STRING:
10681 case OP_NAME:
10682 {
10683 int len = longest_to_int (exp->elts[pc + 1].longconst);
10684 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10685 *argsp = 0;
10686 break;
10687 }
4c4b4cd2
PH
10688 }
10689}
10690
10691static int
10692ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10693{
10694 enum exp_opcode op = exp->elts[elt].opcode;
10695 int oplen, nargs;
10696 int pc = elt;
10697 int i;
76a01679 10698
4c4b4cd2
PH
10699 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10700
76a01679 10701 switch (op)
4c4b4cd2 10702 {
76a01679 10703 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10704 case OP_ATR_FIRST:
10705 case OP_ATR_LAST:
10706 case OP_ATR_LENGTH:
10707 case OP_ATR_IMAGE:
10708 case OP_ATR_MAX:
10709 case OP_ATR_MIN:
10710 case OP_ATR_MODULUS:
10711 case OP_ATR_POS:
10712 case OP_ATR_SIZE:
10713 case OP_ATR_TAG:
10714 case OP_ATR_VAL:
10715 break;
10716
10717 case UNOP_IN_RANGE:
10718 case UNOP_QUAL:
323e0a4a
AC
10719 /* XXX: gdb_sprint_host_address, type_sprint */
10720 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10721 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10722 fprintf_filtered (stream, " (");
10723 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10724 fprintf_filtered (stream, ")");
10725 break;
10726 case BINOP_IN_BOUNDS:
52ce6436
PH
10727 fprintf_filtered (stream, " (%d)",
10728 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10729 break;
10730 case TERNOP_IN_RANGE:
10731 break;
10732
52ce6436
PH
10733 case OP_AGGREGATE:
10734 case OP_OTHERS:
10735 case OP_DISCRETE_RANGE:
10736 case OP_POSITIONAL:
10737 case OP_CHOICES:
10738 break;
10739
10740 case OP_NAME:
10741 case OP_STRING:
10742 {
10743 char *name = &exp->elts[elt + 2].string;
10744 int len = longest_to_int (exp->elts[elt + 1].longconst);
10745 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10746 break;
10747 }
10748
4c4b4cd2
PH
10749 default:
10750 return dump_subexp_body_standard (exp, stream, elt);
10751 }
10752
10753 elt += oplen;
10754 for (i = 0; i < nargs; i += 1)
10755 elt = dump_subexp (exp, stream, elt);
10756
10757 return elt;
10758}
10759
10760/* The Ada extension of print_subexp (q.v.). */
10761
76a01679
JB
10762static void
10763ada_print_subexp (struct expression *exp, int *pos,
10764 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10765{
52ce6436 10766 int oplen, nargs, i;
4c4b4cd2
PH
10767 int pc = *pos;
10768 enum exp_opcode op = exp->elts[pc].opcode;
10769
10770 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10771
52ce6436 10772 *pos += oplen;
4c4b4cd2
PH
10773 switch (op)
10774 {
10775 default:
52ce6436 10776 *pos -= oplen;
4c4b4cd2
PH
10777 print_subexp_standard (exp, pos, stream, prec);
10778 return;
10779
10780 case OP_VAR_VALUE:
4c4b4cd2
PH
10781 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10782 return;
10783
10784 case BINOP_IN_BOUNDS:
323e0a4a 10785 /* XXX: sprint_subexp */
4c4b4cd2 10786 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10787 fputs_filtered (" in ", stream);
4c4b4cd2 10788 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10789 fputs_filtered ("'range", stream);
4c4b4cd2 10790 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
10791 fprintf_filtered (stream, "(%ld)",
10792 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
10793 return;
10794
10795 case TERNOP_IN_RANGE:
4c4b4cd2 10796 if (prec >= PREC_EQUAL)
76a01679 10797 fputs_filtered ("(", stream);
323e0a4a 10798 /* XXX: sprint_subexp */
4c4b4cd2 10799 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10800 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10801 print_subexp (exp, pos, stream, PREC_EQUAL);
10802 fputs_filtered (" .. ", stream);
10803 print_subexp (exp, pos, stream, PREC_EQUAL);
10804 if (prec >= PREC_EQUAL)
76a01679
JB
10805 fputs_filtered (")", stream);
10806 return;
4c4b4cd2
PH
10807
10808 case OP_ATR_FIRST:
10809 case OP_ATR_LAST:
10810 case OP_ATR_LENGTH:
10811 case OP_ATR_IMAGE:
10812 case OP_ATR_MAX:
10813 case OP_ATR_MIN:
10814 case OP_ATR_MODULUS:
10815 case OP_ATR_POS:
10816 case OP_ATR_SIZE:
10817 case OP_ATR_TAG:
10818 case OP_ATR_VAL:
4c4b4cd2 10819 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
10820 {
10821 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10822 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10823 *pos += 3;
10824 }
4c4b4cd2 10825 else
76a01679 10826 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
10827 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10828 if (nargs > 1)
76a01679
JB
10829 {
10830 int tem;
10831 for (tem = 1; tem < nargs; tem += 1)
10832 {
10833 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10834 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10835 }
10836 fputs_filtered (")", stream);
10837 }
4c4b4cd2 10838 return;
14f9c5c9 10839
4c4b4cd2 10840 case UNOP_QUAL:
4c4b4cd2
PH
10841 type_print (exp->elts[pc + 1].type, "", stream, 0);
10842 fputs_filtered ("'(", stream);
10843 print_subexp (exp, pos, stream, PREC_PREFIX);
10844 fputs_filtered (")", stream);
10845 return;
14f9c5c9 10846
4c4b4cd2 10847 case UNOP_IN_RANGE:
323e0a4a 10848 /* XXX: sprint_subexp */
4c4b4cd2 10849 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 10850 fputs_filtered (" in ", stream);
4c4b4cd2
PH
10851 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10852 return;
52ce6436
PH
10853
10854 case OP_DISCRETE_RANGE:
10855 print_subexp (exp, pos, stream, PREC_SUFFIX);
10856 fputs_filtered ("..", stream);
10857 print_subexp (exp, pos, stream, PREC_SUFFIX);
10858 return;
10859
10860 case OP_OTHERS:
10861 fputs_filtered ("others => ", stream);
10862 print_subexp (exp, pos, stream, PREC_SUFFIX);
10863 return;
10864
10865 case OP_CHOICES:
10866 for (i = 0; i < nargs-1; i += 1)
10867 {
10868 if (i > 0)
10869 fputs_filtered ("|", stream);
10870 print_subexp (exp, pos, stream, PREC_SUFFIX);
10871 }
10872 fputs_filtered (" => ", stream);
10873 print_subexp (exp, pos, stream, PREC_SUFFIX);
10874 return;
10875
10876 case OP_POSITIONAL:
10877 print_subexp (exp, pos, stream, PREC_SUFFIX);
10878 return;
10879
10880 case OP_AGGREGATE:
10881 fputs_filtered ("(", stream);
10882 for (i = 0; i < nargs; i += 1)
10883 {
10884 if (i > 0)
10885 fputs_filtered (", ", stream);
10886 print_subexp (exp, pos, stream, PREC_SUFFIX);
10887 }
10888 fputs_filtered (")", stream);
10889 return;
4c4b4cd2
PH
10890 }
10891}
14f9c5c9
AS
10892
10893/* Table mapping opcodes into strings for printing operators
10894 and precedences of the operators. */
10895
d2e4a39e
AS
10896static const struct op_print ada_op_print_tab[] = {
10897 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10898 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10899 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10900 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10901 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10902 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10903 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10904 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10905 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10906 {">=", BINOP_GEQ, PREC_ORDER, 0},
10907 {">", BINOP_GTR, PREC_ORDER, 0},
10908 {"<", BINOP_LESS, PREC_ORDER, 0},
10909 {">>", BINOP_RSH, PREC_SHIFT, 0},
10910 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10911 {"+", BINOP_ADD, PREC_ADD, 0},
10912 {"-", BINOP_SUB, PREC_ADD, 0},
10913 {"&", BINOP_CONCAT, PREC_ADD, 0},
10914 {"*", BINOP_MUL, PREC_MUL, 0},
10915 {"/", BINOP_DIV, PREC_MUL, 0},
10916 {"rem", BINOP_REM, PREC_MUL, 0},
10917 {"mod", BINOP_MOD, PREC_MUL, 0},
10918 {"**", BINOP_EXP, PREC_REPEAT, 0},
10919 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10920 {"-", UNOP_NEG, PREC_PREFIX, 0},
10921 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10922 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10923 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10924 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
10925 {".all", UNOP_IND, PREC_SUFFIX, 1},
10926 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10927 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 10928 {NULL, 0, 0, 0}
14f9c5c9
AS
10929};
10930\f
72d5681a
PH
10931enum ada_primitive_types {
10932 ada_primitive_type_int,
10933 ada_primitive_type_long,
10934 ada_primitive_type_short,
10935 ada_primitive_type_char,
10936 ada_primitive_type_float,
10937 ada_primitive_type_double,
10938 ada_primitive_type_void,
10939 ada_primitive_type_long_long,
10940 ada_primitive_type_long_double,
10941 ada_primitive_type_natural,
10942 ada_primitive_type_positive,
10943 ada_primitive_type_system_address,
10944 nr_ada_primitive_types
10945};
6c038f32
PH
10946
10947static void
d4a9a881 10948ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
10949 struct language_arch_info *lai)
10950{
d4a9a881 10951 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 10952 lai->primitive_type_vector
d4a9a881 10953 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
10954 struct type *);
10955 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 10956 init_type (TYPE_CODE_INT,
d4a9a881 10957 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10958 0, "integer", (struct objfile *) NULL);
72d5681a 10959 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 10960 init_type (TYPE_CODE_INT,
d4a9a881 10961 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10962 0, "long_integer", (struct objfile *) NULL);
72d5681a 10963 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 10964 init_type (TYPE_CODE_INT,
d4a9a881 10965 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10966 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
10967 lai->string_char_type =
10968 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
10969 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10970 0, "character", (struct objfile *) NULL);
72d5681a 10971 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 10972 init_type (TYPE_CODE_FLT,
d4a9a881 10973 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 10974 0, "float", (struct objfile *) NULL);
72d5681a 10975 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 10976 init_type (TYPE_CODE_FLT,
d4a9a881 10977 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10978 0, "long_float", (struct objfile *) NULL);
72d5681a 10979 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 10980 init_type (TYPE_CODE_INT,
d4a9a881 10981 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10982 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 10983 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 10984 init_type (TYPE_CODE_FLT,
d4a9a881 10985 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 10986 0, "long_long_float", (struct objfile *) NULL);
72d5681a 10987 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 10988 init_type (TYPE_CODE_INT,
d4a9a881 10989 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10990 0, "natural", (struct objfile *) NULL);
72d5681a 10991 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 10992 init_type (TYPE_CODE_INT,
d4a9a881 10993 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 10994 0, "positive", (struct objfile *) NULL);
72d5681a 10995 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 10996
72d5681a 10997 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
10998 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10999 (struct objfile *) NULL));
72d5681a
PH
11000 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11001 = "system__address";
fbb06eb1
UW
11002
11003 lai->bool_type_symbol = "boolean";
11004 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11005}
6c038f32
PH
11006\f
11007 /* Language vector */
11008
11009/* Not really used, but needed in the ada_language_defn. */
11010
11011static void
11012emit_char (int c, struct ui_file *stream, int quoter)
11013{
11014 ada_emit_char (c, stream, quoter, 1);
11015}
11016
11017static int
11018parse (void)
11019{
11020 warnings_issued = 0;
11021 return ada_parse ();
11022}
11023
11024static const struct exp_descriptor ada_exp_descriptor = {
11025 ada_print_subexp,
11026 ada_operator_length,
11027 ada_op_name,
11028 ada_dump_subexp_body,
11029 ada_evaluate_subexp
11030};
11031
11032const struct language_defn ada_language_defn = {
11033 "ada", /* Language name */
11034 language_ada,
6c038f32
PH
11035 range_check_off,
11036 type_check_off,
11037 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11038 that's not quite what this means. */
6c038f32 11039 array_row_major,
9a044a89 11040 macro_expansion_no,
6c038f32
PH
11041 &ada_exp_descriptor,
11042 parse,
11043 ada_error,
11044 resolve,
11045 ada_printchar, /* Print a character constant */
11046 ada_printstr, /* Function to print string constant */
11047 emit_char, /* Function to print single char (not used) */
6c038f32 11048 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11049 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11050 ada_val_print, /* Print a value using appropriate syntax */
11051 ada_value_print, /* Print a top-level value */
11052 NULL, /* Language specific skip_trampoline */
2b2d9e11 11053 NULL, /* name_of_this */
6c038f32
PH
11054 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11055 basic_lookup_transparent_type, /* lookup_transparent_type */
11056 ada_la_decode, /* Language specific symbol demangler */
11057 NULL, /* Language specific class_name_from_physname */
11058 ada_op_print_tab, /* expression operators for printing */
11059 0, /* c-style arrays */
11060 1, /* String lower bound */
6c038f32 11061 ada_get_gdb_completer_word_break_characters,
41d27058 11062 ada_make_symbol_completion_list,
72d5681a 11063 ada_language_arch_info,
e79af960 11064 ada_print_array_index,
41f1b697 11065 default_pass_by_reference,
6c038f32
PH
11066 LANG_MAGIC
11067};
11068
d2e4a39e 11069void
6c038f32 11070_initialize_ada_language (void)
14f9c5c9 11071{
6c038f32
PH
11072 add_language (&ada_language_defn);
11073
11074 varsize_limit = 65536;
6c038f32
PH
11075
11076 obstack_init (&symbol_list_obstack);
11077
11078 decoded_names_store = htab_create_alloc
11079 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11080 NULL, xcalloc, xfree);
6b69afc4
JB
11081
11082 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11083}