]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arc-tdep.c
[AArch64] Track FP registers in prologue analyzer
[thirdparty/binutils-gdb.git] / gdb / arc-tdep.c
CommitLineData
ad0a504f
AK
1/* Target dependent code for ARC arhitecture, for GDB.
2
3 Copyright 2005-2016 Free Software Foundation, Inc.
4 Contributed by Synopsys Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21/* GDB header files. */
22#include "defs.h"
23#include "arch-utils.h"
24#include "disasm.h"
25#include "dwarf2-frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "objfiles.h"
31#include "trad-frame.h"
32
33/* ARC header files. */
34#include "opcode/arc.h"
35#include "arc-tdep.h"
36
37/* Standard headers. */
38#include <algorithm>
39
40/* Default target descriptions. */
41#include "features/arc-v2.c"
42#include "features/arc-arcompact.c"
43
44/* The frame unwind cache for the ARC. Current structure is a stub, because
45 it should be filled in during the prologue analysis. */
46
47struct arc_frame_cache
48{
49 /* The stack pointer at the time this frame was created; i.e. the caller's
50 stack pointer when this function was called. It is used to identify this
51 frame. */
52 CORE_ADDR prev_sp;
53
54 /* Store addresses for registers saved in prologue. */
55 struct trad_frame_saved_reg *saved_regs;
56};
57
58/* Global debug flag. */
59
60int arc_debug;
61
62/* XML target description features. */
63
64static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2";
65static const char
66 core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2";
67static const char
68 core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact";
69static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal";
70
71/* XML target description known registers. */
72
73static const char *const core_v2_register_names[] = {
74 "r0", "r1", "r2", "r3",
75 "r4", "r5", "r6", "r7",
76 "r8", "r9", "r10", "r11",
77 "r12", "r13", "r14", "r15",
78 "r16", "r17", "r18", "r19",
79 "r20", "r21", "r22", "r23",
80 "r24", "r25", "gp", "fp",
81 "sp", "ilink", "r30", "blink",
82 "r32", "r33", "r34", "r35",
83 "r36", "r37", "r38", "r39",
84 "r40", "r41", "r42", "r43",
85 "r44", "r45", "r46", "r47",
86 "r48", "r49", "r50", "r51",
87 "r52", "r53", "r54", "r55",
88 "r56", "r57", "accl", "acch",
89 "lp_count", "pcl",
90};
91
92static const char *const aux_minimal_register_names[] = {
93 "pc", "status32",
94};
95
96static const char *const core_arcompact_register_names[] = {
97 "r0", "r1", "r2", "r3",
98 "r4", "r5", "r6", "r7",
99 "r8", "r9", "r10", "r11",
100 "r12", "r13", "r14", "r15",
101 "r16", "r17", "r18", "r19",
102 "r20", "r21", "r22", "r23",
103 "r24", "r25", "gp", "fp",
104 "sp", "ilink1", "ilink2", "blink",
105 "r32", "r33", "r34", "r35",
106 "r36", "r37", "r38", "r39",
107 "r40", "r41", "r42", "r43",
108 "r44", "r45", "r46", "r47",
109 "r48", "r49", "r50", "r51",
110 "r52", "r53", "r54", "r55",
111 "r56", "r57", "r58", "r59",
112 "lp_count", "pcl",
113};
114
115/* Implement the "write_pc" gdbarch method.
116
117 In ARC PC register is a normal register so in most cases setting PC value
118 is a straightforward process: debugger just writes PC value. However it
119 gets trickier in case when current instruction is an instruction in delay
120 slot. In this case CPU will execute instruction at current PC value, then
121 will set PC to the current value of BTA register; also current instruction
122 cannot be branch/jump and some of the other instruction types. Thus if
123 debugger would try to just change PC value in this case, this instruction
124 will get executed, but then core will "jump" to the original branch target.
125
126 Whether current instruction is a delay-slot instruction or not is indicated
127 by DE bit in STATUS32 register indicates if current instruction is a delay
128 slot instruction. This bit is writable by debug host, which allows debug
129 host to prevent core from jumping after the delay slot instruction. It
130 also works in another direction: setting this bit will make core to treat
131 any current instructions as a delay slot instruction and to set PC to the
132 current value of BTA register.
133
134 To workaround issues with changing PC register while in delay slot
135 instruction, debugger should check for the STATUS32.DE bit and reset it if
136 it is set. No other change is required in this function. Most common
137 case, where this function might be required is calling inferior functions
138 from debugger. Generic GDB logic handles this pretty well: current values
139 of registers are stored, value of PC is changed (that is the job of this
140 function), and after inferior function is executed, GDB restores all
141 registers, include BTA and STATUS32, which also means that core is returned
142 to its original state of being halted on delay slot instructions.
143
144 This method is useless for ARC 600, because it doesn't have externally
145 exposed BTA register. In the case of ARC 600 it is impossible to restore
146 core to its state in all occasions thus core should never be halted (from
147 the perspective of debugger host) in the delay slot. */
148
149static void
150arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
151{
152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
153
154 if (arc_debug)
155 debug_printf ("arc: Writing PC, new value=%s\n",
156 paddress (gdbarch, new_pc));
157
158 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
159 new_pc);
160
161 ULONGEST status32;
162 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
163 &status32);
164
165 /* Mask for DE bit is 0x40. */
166 if (status32 & 0x40)
167 {
168 if (arc_debug)
169 {
170 debug_printf ("arc: Changing PC while in delay slot. Will "
171 "reset STATUS32.DE bit to zero. Value of STATUS32 "
172 "register is 0x%s\n",
173 phex (status32, ARC_REGISTER_SIZE));
174 }
175
176 /* Reset bit and write to the cache. */
177 status32 &= ~0x40;
178 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
179 status32);
180 }
181}
182
183/* Implement the "virtual_frame_pointer" gdbarch method.
184
185 According to ABI the FP (r27) is used to point to the middle of the current
186 stack frame, just below the saved FP and before local variables, register
187 spill area and outgoing args. However for optimization levels above O2 and
188 in any case in leaf functions, the frame pointer is usually not set at all.
189 The exception being when handling nested functions.
190
191 We use this function to return a "virtual" frame pointer, marking the start
192 of the current stack frame as a register-offset pair. If the FP is not
193 being used, then it should return SP, with an offset of the frame size.
194
195 The current implementation doesn't actually know the frame size, nor
196 whether the FP is actually being used, so for now we just return SP and an
197 offset of zero. This is no worse than other architectures, but is needed
198 to avoid assertion failures.
199
200 TODO: Can we determine the frame size to get a correct offset?
201
202 PC is a program counter where we need the virtual FP. REG_PTR is the base
203 register used for the virtual FP. OFFSET_PTR is the offset used for the
204 virtual FP. */
205
206static void
207arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
208 int *reg_ptr, LONGEST *offset_ptr)
209{
210 *reg_ptr = gdbarch_sp_regnum (gdbarch);
211 *offset_ptr = 0;
212}
213
214/* Implement the "dummy_id" gdbarch method.
215
216 Tear down a dummy frame created by arc_push_dummy_call (). This data has
217 to be constructed manually from the data in our hand. The stack pointer
218 and program counter can be obtained from the frame info. */
219
220static struct frame_id
221arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
222{
223 return frame_id_build (get_frame_sp (this_frame),
224 get_frame_pc (this_frame));
225}
226
227/* Implement the "push_dummy_call" gdbarch method.
228
229 Stack Frame Layout
230
231 This shows the layout of the stack frame for the general case of a
232 function call; a given function might not have a variable number of
233 arguments or local variables, or might not save any registers, so it would
234 not have the corresponding frame areas. Additionally, a leaf function
235 (i.e. one which calls no other functions) does not need to save the
236 contents of the BLINK register (which holds its return address), and a
237 function might not have a frame pointer.
238
239 The stack grows downward, so SP points below FP in memory; SP always
240 points to the last used word on the stack, not the first one.
241
242 | | |
243 | arg word N | | caller's
244 | : | | frame
245 | arg word 10 | |
246 | arg word 9 | |
247 old SP ---> +-----------------------+ --+
248 | | |
249 | callee-saved | |
250 | registers | |
251 | including fp, blink | |
252 | | | callee's
253 new FP ---> +-----------------------+ | frame
254 | | |
255 | local | |
256 | variables | |
257 | | |
258 | register | |
259 | spill area | |
260 | | |
261 | outgoing args | |
262 | | |
263 new SP ---> +-----------------------+ --+
264 | |
265 | unused |
266 | |
267 |
268 |
269 V
270 downwards
271
272 The list of arguments to be passed to a function is considered to be a
273 sequence of _N_ words (as though all the parameters were stored in order in
274 memory with each parameter occupying an integral number of words). Words
275 1..8 are passed in registers 0..7; if the function has more than 8 words of
276 arguments then words 9..@em N are passed on the stack in the caller's frame.
277
278 If the function has a variable number of arguments, e.g. it has a form such
279 as `function (p1, p2, ...);' and _P_ words are required to hold the values
280 of the named parameters (which are passed in registers 0..@em P -1), then
281 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
282 top of the frame so that the anonymous parameter words occupy a continuous
283 region.
284
285 Any arguments are already in target byte order. We just need to store
286 them!
287
288 BP_ADDR is the return address where breakpoint must be placed. NARGS is
289 the number of arguments to the function. ARGS is the arguments values (in
290 target byte order). SP is the Current value of SP register. STRUCT_RETURN
291 is TRUE if structures are returned by the function. STRUCT_ADDR is the
292 hidden address for returning a struct. Returns SP of a new frame. */
293
294static CORE_ADDR
295arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
297 struct value **args, CORE_ADDR sp, int struct_return,
298 CORE_ADDR struct_addr)
299{
300 if (arc_debug)
301 debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs);
302
303 int arg_reg = ARC_FIRST_ARG_REGNUM;
304
305 /* Push the return address. */
306 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
307
308 /* Are we returning a value using a structure return instead of a normal
309 value return? If so, struct_addr is the address of the reserved space for
310 the return structure to be written on the stack, and that address is
311 passed to that function as a hidden first argument. */
312 if (struct_return)
313 {
314 /* Pass the return address in the first argument register. */
315 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
316
317 if (arc_debug)
318 debug_printf ("arc: struct return address %s passed in R%d",
319 print_core_address (gdbarch, struct_addr), arg_reg);
320
321 arg_reg++;
322 }
323
324 if (nargs > 0)
325 {
326 unsigned int total_space = 0;
327
328 /* How much space do the arguments occupy in total? Must round each
329 argument's size up to an integral number of words. */
330 for (int i = 0; i < nargs; i++)
331 {
332 unsigned int len = TYPE_LENGTH (value_type (args[i]));
333 unsigned int space = align_up (len, 4);
334
335 total_space += space;
336
337 if (arc_debug)
338 debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space);
339 }
340
341 /* Allocate a buffer to hold a memory image of the arguments. */
342 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
343
344 /* Now copy all of the arguments into the buffer, correctly aligned. */
345 gdb_byte *data = memory_image;
346 for (int i = 0; i < nargs; i++)
347 {
348 unsigned int len = TYPE_LENGTH (value_type (args[i]));
349 unsigned int space = align_up (len, 4);
350
351 memcpy (data, value_contents (args[i]), (size_t) len);
352 if (arc_debug)
353 debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n",
354 i, *((int *) value_contents (args[i])), len);
355
356 data += space;
357 }
358
359 /* Now load as much as possible of the memory image into registers. */
360 data = memory_image;
361 while (arg_reg <= ARC_LAST_ARG_REGNUM)
362 {
363 if (arc_debug)
364 debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n",
365 data[0], data[1], data[2], data[3], arg_reg);
366
367 /* Note we don't use write_unsigned here, since that would convert
368 the byte order, but we are already in the correct byte order. */
369 regcache_cooked_write (regcache, arg_reg, data);
370
371 data += ARC_REGISTER_SIZE;
372 total_space -= ARC_REGISTER_SIZE;
373
374 /* All the data is now in registers. */
375 if (total_space == 0)
376 break;
377
378 arg_reg++;
379 }
380
381 /* If there is any data left, push it onto the stack (in a single write
382 operation). */
383 if (total_space > 0)
384 {
385 if (arc_debug)
386 debug_printf ("arc: passing %d bytes on stack\n", total_space);
387
388 sp -= total_space;
389 write_memory (sp, data, (int) total_space);
390 }
391
392 xfree (memory_image);
393 }
394
395 /* Finally, update the SP register. */
396 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
397
398 return sp;
399}
400
401/* Implement the "push_dummy_code" gdbarch method.
402
403 We don't actually push any code. We just identify where a breakpoint can
404 be inserted to which we are can return and the resume address where we
405 should be called.
406
407 ARC does not necessarily have an executable stack, so we can't put the
408 return breakpoint there. Instead we put it at the entry point of the
409 function. This means the SP is unchanged.
410
411 SP is a current stack pointer FUNADDR is an address of the function to be
412 called. ARGS is arguments to pass. NARGS is a number of args to pass.
413 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
414 the function is called. BP_ADDR is an address where breakpoint should be
415 set. Returns the updated stack pointer. */
416
417static CORE_ADDR
418arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
419 struct value **args, int nargs, struct type *value_type,
420 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
421 struct regcache *regcache)
422{
423 *real_pc = funaddr;
424 *bp_addr = entry_point_address ();
425 return sp;
426}
427
428/* Implement the "cannot_fetch_register" gdbarch method. */
429
430static int
431arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
432{
433 /* Assume that register is readable if it is unknown. */
434 return FALSE;
435}
436
437/* Implement the "cannot_store_register" gdbarch method. */
438
439static int
440arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
441{
442 /* Assume that register is writable if it is unknown. */
443 switch (regnum)
444 {
445 case ARC_PCL_REGNUM:
446 return TRUE;
447 default:
448 return FALSE;
449 }
450}
451
452/* Get the return value of a function from the registers/memory used to
453 return it, according to the convention used by the ABI - 4-bytes values are
454 in the R0, while 8-byte values are in the R0-R1.
455
456 TODO: This implementation ignores the case of "complex double", where
457 according to ABI, value is returned in the R0-R3 registers.
458
459 TYPE is a returned value's type. VALBUF is a buffer for the returned
460 value. */
461
462static void
463arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
464 struct regcache *regcache, gdb_byte *valbuf)
465{
466 unsigned int len = TYPE_LENGTH (type);
467
468 if (arc_debug)
469 debug_printf ("arc: extract_return_value\n");
470
471 if (len <= ARC_REGISTER_SIZE)
472 {
473 ULONGEST val;
474
475 /* Get the return value from one register. */
476 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
477 store_unsigned_integer (valbuf, (int) len,
478 gdbarch_byte_order (gdbarch), val);
479
480 if (arc_debug)
481 debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE));
482 }
483 else if (len <= ARC_REGISTER_SIZE * 2)
484 {
485 ULONGEST low, high;
486
487 /* Get the return value from two registers. */
488 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
489 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
490
491 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
492 gdbarch_byte_order (gdbarch), low);
493 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
494 (int) len - ARC_REGISTER_SIZE,
495 gdbarch_byte_order (gdbarch), high);
496
497 if (arc_debug)
498 debug_printf ("arc: returning 0x%s%s\n",
499 phex (high, ARC_REGISTER_SIZE),
500 phex (low, ARC_REGISTER_SIZE));
501 }
502 else
503 error (_("arc: extract_return_value: type length %u too large"), len);
504}
505
506
507/* Store the return value of a function into the registers/memory used to
508 return it, according to the convention used by the ABI.
509
510 TODO: This implementation ignores the case of "complex double", where
511 according to ABI, value is returned in the R0-R3 registers.
512
513 TYPE is a returned value's type. VALBUF is a buffer with the value to
514 return. */
515
516static void
517arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
518 struct regcache *regcache, const gdb_byte *valbuf)
519{
520 unsigned int len = TYPE_LENGTH (type);
521
522 if (arc_debug)
523 debug_printf ("arc: store_return_value\n");
524
525 if (len <= ARC_REGISTER_SIZE)
526 {
527 ULONGEST val;
528
529 /* Put the return value into one register. */
530 val = extract_unsigned_integer (valbuf, (int) len,
531 gdbarch_byte_order (gdbarch));
532 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
533
534 if (arc_debug)
535 debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE));
536 }
537 else if (len <= ARC_REGISTER_SIZE * 2)
538 {
539 ULONGEST low, high;
540
541 /* Put the return value into two registers. */
542 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
543 gdbarch_byte_order (gdbarch));
544 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
545 (int) len - ARC_REGISTER_SIZE,
546 gdbarch_byte_order (gdbarch));
547
548 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
549 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
550
551 if (arc_debug)
552 debug_printf ("arc: storing 0x%s%s\n",
553 phex (high, ARC_REGISTER_SIZE),
554 phex (low, ARC_REGISTER_SIZE));
555 }
556 else
557 error (_("arc_store_return_value: type length too large."));
558}
559
560/* Implement the "return_value" gdbarch method. */
561
562static enum return_value_convention
563arc_return_value (struct gdbarch *gdbarch, struct value *function,
564 struct type *valtype, struct regcache *regcache,
565 gdb_byte *readbuf, const gdb_byte *writebuf)
566{
567 /* If the return type is a struct, or a union, or would occupy more than two
568 registers, the ABI uses the "struct return convention": the calling
569 function passes a hidden first parameter to the callee (in R0). That
570 parameter is the address at which the value being returned should be
571 stored. Otherwise, the result is returned in registers. */
572 int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
573 || TYPE_CODE (valtype) == TYPE_CODE_UNION
574 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
575
576 if (arc_debug)
fa42dd2e
AK
577 debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n",
578 host_address_to_string (readbuf),
579 host_address_to_string (writebuf));
ad0a504f
AK
580
581 if (writebuf != NULL)
582 {
583 /* Case 1. GDB should not ask us to set a struct return value: it
584 should know the struct return location and write the value there
585 itself. */
586 gdb_assert (!is_struct_return);
587 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
588 }
589 else if (readbuf != NULL)
590 {
591 /* Case 2. GDB should not ask us to get a struct return value: it
592 should know the struct return location and read the value from there
593 itself. */
594 gdb_assert (!is_struct_return);
595 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
596 }
597
598 return (is_struct_return
599 ? RETURN_VALUE_STRUCT_CONVENTION
600 : RETURN_VALUE_REGISTER_CONVENTION);
601}
602
603/* Return the base address of the frame. For ARC, the base address is the
604 frame pointer. */
605
606static CORE_ADDR
607arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
608{
609 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
610}
611
612/* Implement the "skip_prologue" gdbarch method.
613
614 Skip the prologue for the function at PC. This is done by checking from
615 the line information read from the DWARF, if possible; otherwise, we scan
616 the function prologue to find its end. */
617
618static CORE_ADDR
619arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
620{
621 if (arc_debug)
622 debug_printf ("arc: skip_prologue\n");
623
624 CORE_ADDR func_addr;
625 const char *func_name;
626
627 /* See what the symbol table says. */
628 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
629 {
630 /* Found a function. */
631 CORE_ADDR postprologue_pc
632 = skip_prologue_using_sal (gdbarch, func_addr);
633
634 if (postprologue_pc != 0)
635 return std::max (pc, postprologue_pc);
636 }
637
638 /* No prologue info in symbol table, have to analyze prologue. */
639
640 /* Find an upper limit on the function prologue using the debug
641 information. If the debug information could not be used to provide that
642 bound, then pass 0 and arc_scan_prologue will estimate value itself. */
643 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
644 /* We don't have a proper analyze_prologue function yet, but its result
645 should be returned here. Currently GDB will just stop at the first
646 instruction of function if debug information doesn't have prologue info;
647 and if there is a debug info about prologue - this code path will not be
648 taken at all. */
649 return (limit_pc == 0 ? pc : limit_pc);
650}
651
652/* Implement the "print_insn" gdbarch method.
653
654 arc_get_disassembler () may return different functions depending on bfd
655 type, so it is not possible to pass print_insn directly to
656 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
657 may be used by other functions to get disassemble_info for address. It is
658 important to note, that those print_insn from opcodes always print
659 instruction to the stream specified in the INFO. If this is not desired,
660 then either `print_insn` function in INFO should be set to some function
661 that will not print, or `stream` should be different from standard
662 gdb_stdlog. */
663
664static int
665arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
666{
667 int (*print_insn) (bfd_vma, struct disassemble_info *);
668 /* exec_bfd may be null, if GDB is run without a target BFD file. Opcodes
669 will handle NULL value gracefully. */
670 print_insn = arc_get_disassembler (exec_bfd);
671 gdb_assert (print_insn != NULL);
672 return print_insn (addr, info);
673}
674
675/* Baremetal breakpoint instructions.
676
677 ARC supports both big- and little-endian. However, instructions for
678 little-endian processors are encoded in the middle-endian: half-words are
679 in big-endian, while bytes inside the half-words are in little-endian; data
680 is represented in the "normal" little-endian. Big-endian processors treat
681 data and code identically.
682
683 Assuming the number 0x01020304, it will be presented this way:
684
685 Address : N N+1 N+2 N+3
686 little-endian : 0x04 0x03 0x02 0x01
687 big-endian : 0x01 0x02 0x03 0x04
688 ARC middle-endian : 0x02 0x01 0x04 0x03
689 */
690
691static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
692static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
693static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
694static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
695
696/* Implement the "breakpoint_from_pc" gdbarch method.
697
698 For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
699 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
700 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
701 inserted into delay slot instruction. In this case if branch is taken
702 BLINK value will be set to address of instruction after delay slot, however
703 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
704 then BLINK value will have an invalid value - it will point to the address
705 after the BRK_S (which was there at the moment of branch execution) while
706 it should point to the address after the 32-bit long instruction. To avoid
707 such issues this function disassembles instruction at target location and
708 evaluates it value.
709
710 ARC 600 supports only 16-bit BRK_S.
711
712 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
713 is much better because it doesn't commit unlike TRAP_S, so it can be set in
714 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
715 in GDB for user-space.
716
717 PCPTR is a pointer to the PC where we want to place a breakpoint. LENPTR
718 is a number of bytes used by the breakpoint. Returns the byte sequence of
719 a breakpoint instruction. */
720
721static const gdb_byte *
722arc_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
723 int *lenptr)
724{
725 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
726
727 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
728 BRK. LIMM is part of instruction length, so it can be either 4 or 8
729 bytes for 32-bit instructions. */
730 if ((length_with_limm == 4 || length_with_limm == 8)
731 && !arc_mach_is_arc600 (gdbarch))
732 {
733 *lenptr = sizeof (arc_brk_le);
734 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
735 ? arc_brk_be
736 : arc_brk_le);
737 }
738 else
739 {
740 *lenptr = sizeof (arc_brk_s_le);
741 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
742 ? arc_brk_s_be
743 : arc_brk_s_le);
744 }
745}
746
747/* Implement the "unwind_pc" gdbarch method. */
748
749static CORE_ADDR
750arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
751{
752 int pc_regnum = gdbarch_pc_regnum (gdbarch);
753 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum);
754
755 if (arc_debug)
756 debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc));
757
758 return pc;
759}
760
761/* Implement the "unwind_sp" gdbarch method. */
762
763static CORE_ADDR
764arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
765{
766 int sp_regnum = gdbarch_sp_regnum (gdbarch);
767 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum);
768
769 if (arc_debug)
770 debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp));
771
772 return sp;
773}
774
775/* Implement the "frame_align" gdbarch method. */
776
777static CORE_ADDR
778arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
779{
780 return align_down (sp, 4);
781}
782
783/* Frame unwinder for normal frames. */
784
785static struct arc_frame_cache *
786arc_make_frame_cache (struct frame_info *this_frame)
787{
788 if (arc_debug)
789 debug_printf ("arc: frame_cache\n");
790
791 struct gdbarch *gdbarch = get_frame_arch (this_frame);
792
793 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
794 CORE_ADDR prev_pc = get_frame_pc (this_frame);
795
796 CORE_ADDR entrypoint, prologue_end;
797 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
798 {
799 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
800 if (sal.line == 0)
801 /* No line info so use current PC. */
802 prologue_end = prev_pc;
803 else if (sal.end < prologue_end)
804 /* The next line begins after the function end. */
805 prologue_end = sal.end;
806
807 prologue_end = std::min (prologue_end, prev_pc);
808 }
809 else
810 {
811 entrypoint = get_frame_register_unsigned (this_frame,
812 gdbarch_pc_regnum (gdbarch));
813 prologue_end = 0;
814 }
815
816 /* Allocate new frame cache instance and space for saved register info.
817 * FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
818 struct arc_frame_cache *cache
819 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
820 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
821
822 /* Should call analyze_prologue here, when it will be implemented. */
823
824 return cache;
825}
826
827/* Implement the "this_id" frame_unwind method. */
828
829static void
830arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
831 struct frame_id *this_id)
832{
833 if (arc_debug)
834 debug_printf ("arc: frame_this_id\n");
835
836 struct gdbarch *gdbarch = get_frame_arch (this_frame);
837
838 if (*this_cache == NULL)
839 *this_cache = arc_make_frame_cache (this_frame);
840 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
841
842 CORE_ADDR stack_addr = cache->prev_sp;
843
844 /* There are 4 possible situation which decide how frame_id->code_addr is
845 evaluated:
846
847 1) Function is compiled with option -g. Then frame_id will be created
848 in dwarf_* function and not in this function. NB: even if target
849 binary is compiled with -g, some std functions like __start and _init
850 are not, so they still will follow one of the following choices.
851
852 2) Function is compiled without -g and binary hasn't been stripped in
853 any way. In this case GDB still has enough information to evaluate
854 frame code_addr properly. This case is covered by call to
855 get_frame_func ().
856
857 3) Binary has been striped with option -g (strip debug symbols). In
858 this case there is still enough symbols for get_frame_func () to work
859 properly, so this case is also covered by it.
860
861 4) Binary has been striped with option -s (strip all symbols). In this
862 case GDB cannot get function start address properly, so we return current
863 PC value instead.
864 */
865 CORE_ADDR code_addr = get_frame_func (this_frame);
866 if (code_addr == 0)
867 code_addr = get_frame_register_unsigned (this_frame,
868 gdbarch_pc_regnum (gdbarch));
869
870 *this_id = frame_id_build (stack_addr, code_addr);
871}
872
873/* Implement the "prev_register" frame_unwind method. */
874
875static struct value *
876arc_frame_prev_register (struct frame_info *this_frame,
877 void **this_cache, int regnum)
878{
ad0a504f
AK
879 if (*this_cache == NULL)
880 *this_cache = arc_make_frame_cache (this_frame);
881 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
882
883 struct gdbarch *gdbarch = get_frame_arch (this_frame);
884
885 /* If we are asked to unwind the PC, then we need to return BLINK instead:
886 the saved value of PC points into this frame's function's prologue, not
887 the next frame's function's resume location. */
888 if (regnum == gdbarch_pc_regnum (gdbarch))
889 regnum = ARC_BLINK_REGNUM;
890
891 /* SP is a special case - we should return prev_sp, because
892 trad_frame_get_prev_register will return _current_ SP value.
893 Alternatively we could have stored cache->prev_sp in the cache->saved
894 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
895 leave that logic in this function, instead of prologue analyzers. That I
896 think is a bit more clear as `saved_regs` should contain saved regs, not
897 computable.
898
899 Because value has been computed, "got_constant" should be used, so that
900 returned value will be a "not_lval" - immutable. */
901
902 if (regnum == gdbarch_sp_regnum (gdbarch))
903 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
904
905 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
906}
907
908/* Implement the "init_reg" dwarf2_frame method. */
909
910static void
911arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
912 struct dwarf2_frame_state_reg *reg,
913 struct frame_info *info)
914{
915 if (regnum == gdbarch_pc_regnum (gdbarch))
916 /* The return address column. */
917 reg->how = DWARF2_FRAME_REG_RA;
918 else if (regnum == gdbarch_sp_regnum (gdbarch))
919 /* The call frame address. */
920 reg->how = DWARF2_FRAME_REG_CFA;
921}
922
923/* Structure defining the ARC ordinary frame unwind functions. Since we are
924 the fallback unwinder, we use the default frame sniffer, which always
925 accepts the frame. */
926
927static const struct frame_unwind arc_frame_unwind = {
928 NORMAL_FRAME,
929 default_frame_unwind_stop_reason,
930 arc_frame_this_id,
931 arc_frame_prev_register,
932 NULL,
933 default_frame_sniffer,
934 NULL,
935 NULL
936};
937
938
939static const struct frame_base arc_normal_base = {
940 &arc_frame_unwind,
941 arc_frame_base_address,
942 arc_frame_base_address,
943 arc_frame_base_address
944};
945
946/* Initialize target description for the ARC.
947
948 Returns TRUE if input tdesc was valid and in this case it will assign TDESC
949 and TDESC_DATA output parameters. */
950
951static int
952arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
953 struct tdesc_arch_data **tdesc_data)
954{
955 if (arc_debug)
956 debug_printf ("arc: Target description initialization.\n");
957
958 const struct target_desc *tdesc_loc = info.target_desc;
959
960 /* Depending on whether this is ARCompact or ARCv2 we will assign
961 different default registers sets (which will differ in exactly two core
962 registers). GDB will also refuse to accept register feature from invalid
963 ISA - v2 features can be used only with v2 ARChitecture. We read
964 bfd_arch_info, which looks like to be a safe bet here, as it looks like it
965 is always initialized even when we don't pass any elf file to GDB at all
966 (it uses default arch in this case). Also GDB will call this function
967 multiple times, and if XML target description file contains architecture
968 specifications, then GDB will set this architecture to info.bfd_arch_info,
969 overriding value from ELF file if they are different. That means that,
970 where matters, this value is always our best guess on what CPU we are
971 debugging. It has been noted that architecture specified in tdesc file
972 has higher precedence over ELF and even "set architecture" - that is,
973 using "set architecture" command will have no effect when tdesc has "arch"
974 tag. */
975 /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet. */
976 const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2);
977 int is_reduced_rf;
978 const char *const *core_regs;
979 const char *core_feature_name;
980
981 /* If target doesn't provide a description - use default one. */
982 if (!tdesc_has_registers (tdesc_loc))
983 {
984 if (is_arcv2)
985 {
986 tdesc_loc = tdesc_arc_v2;
987 if (arc_debug)
988 debug_printf ("arc: Using default register set for ARC v2.\n");
989 }
990 else
991 {
992 tdesc_loc = tdesc_arc_arcompact;
993 if (arc_debug)
994 debug_printf ("arc: Using default register set for ARCompact.\n");
995 }
996 }
997 else
998 {
999 if (arc_debug)
1000 debug_printf ("arc: Using provided register set.\n");
1001 }
1002 gdb_assert (tdesc_loc != NULL);
1003
1004 /* Now we can search for base registers. Core registers can be either full
1005 or reduced. Summary:
1006
1007 - core.v2 + aux-minimal
1008 - core-reduced.v2 + aux-minimal
1009 - core.arcompact + aux-minimal
1010
1011 NB: It is entirely feasible to have ARCompact with reduced core regs, but
1012 we ignore that because GCC doesn't support that and at the same time
1013 ARCompact is considered obsolete, so there is not much reason to support
1014 that. */
1015 const struct tdesc_feature *feature
1016 = tdesc_find_feature (tdesc_loc, core_v2_feature_name);
1017 if (feature != NULL)
1018 {
1019 /* Confirm that register and architecture match, to prevent accidents in
1020 some situations. This code will trigger an error if:
1021
1022 1. XML tdesc doesn't specify arch explicitly, registers are for arch
1023 X, but ELF specifies arch Y.
1024
1025 2. XML tdesc specifies arch X, but contains registers for arch Y.
1026
1027 It will not protect from case where XML or ELF specify arch X,
1028 registers are for the same arch X, but the real target is arch Y. To
1029 detect this case we need to check IDENTITY register. */
1030 if (!is_arcv2)
1031 {
1032 arc_print (_("Error: ARC v2 target description supplied for "
1033 "non-ARCv2 target.\n"));
1034 return FALSE;
1035 }
1036
1037 is_reduced_rf = FALSE;
1038 core_feature_name = core_v2_feature_name;
1039 core_regs = core_v2_register_names;
1040 }
1041 else
1042 {
1043 feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name);
1044 if (feature != NULL)
1045 {
1046 if (!is_arcv2)
1047 {
1048 arc_print (_("Error: ARC v2 target description supplied for "
1049 "non-ARCv2 target.\n"));
1050 return FALSE;
1051 }
1052
1053 is_reduced_rf = TRUE;
1054 core_feature_name = core_reduced_v2_feature_name;
1055 core_regs = core_v2_register_names;
1056 }
1057 else
1058 {
1059 feature = tdesc_find_feature (tdesc_loc,
1060 core_arcompact_feature_name);
1061 if (feature != NULL)
1062 {
1063 if (is_arcv2)
1064 {
1065 arc_print (_("Error: ARCompact target description supplied "
1066 "for non-ARCompact target.\n"));
1067 return FALSE;
1068 }
1069
1070 is_reduced_rf = FALSE;
1071 core_feature_name = core_arcompact_feature_name;
1072 core_regs = core_arcompact_register_names;
1073 }
1074 else
1075 {
1076 arc_print (_("Error: Couldn't find core register feature in "
1077 "supplied target description."));
1078 return FALSE;
1079 }
1080 }
1081 }
1082
1083 struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc ();
1084
1085 gdb_assert (feature != NULL);
1086 int valid_p = 1;
1087
1088 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1089 {
1090 /* If rf16, then skip extra registers. */
1091 if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM)
1092 || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM)))
1093 continue;
1094
1095 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i,
1096 core_regs[i]);
1097
1098 /* - Ignore errors in extension registers - they are optional.
1099 - Ignore missing ILINK because it doesn't make sense for Linux.
1100 - Ignore missing ILINK2 when architecture is ARCompact, because it
1101 doesn't make sense for Linux targets.
1102
1103 In theory those optional registers should be in separate features, but
1104 that would create numerous but tiny features, which looks like an
1105 overengineering of a rather simple task. */
1106 if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM
1107 || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM
1108 || (i == ARC_R30_REGNUM && is_arcv2)))
1109 {
1110 arc_print (_("Error: Cannot find required register `%s' in "
1111 "feature `%s'.\n"), core_regs[i], core_feature_name);
1112 tdesc_data_cleanup (tdesc_data_loc);
1113 return FALSE;
1114 }
1115 }
1116
1117 /* Mandatory AUX registeres are intentionally few and are common between
1118 ARCompact and ARC v2, so same code can be used for both. */
1119 feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name);
1120 if (feature == NULL)
1121 {
1122 arc_print (_("Error: Cannot find required feature `%s' in supplied "
1123 "target description.\n"), aux_minimal_feature_name);
1124 tdesc_data_cleanup (tdesc_data_loc);
1125 return FALSE;
1126 }
1127
1128 for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++)
1129 {
1130 const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM];
1131 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name);
1132 if (!valid_p)
1133 {
1134 arc_print (_("Error: Cannot find required register `%s' "
1135 "in feature `%s'.\n"),
1136 name, tdesc_feature_name (feature));
1137 tdesc_data_cleanup (tdesc_data_loc);
1138 return FALSE;
1139 }
1140 }
1141
1142 *tdesc = tdesc_loc;
1143 *tdesc_data = tdesc_data_loc;
1144
1145 return TRUE;
1146}
1147
1148/* Implement the "init" gdbarch method. */
1149
1150static struct gdbarch *
1151arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1152{
1153 const struct target_desc *tdesc;
1154 struct tdesc_arch_data *tdesc_data;
1155
1156 if (arc_debug)
1157 debug_printf ("arc: Architecture initialization.\n");
1158
1159 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
1160 return NULL;
1161
1162 struct gdbarch *gdbarch = gdbarch_alloc (&info, NULL);
1163
1164 /* Data types. */
1165 set_gdbarch_short_bit (gdbarch, 16);
1166 set_gdbarch_int_bit (gdbarch, 32);
1167 set_gdbarch_long_bit (gdbarch, 32);
1168 set_gdbarch_long_long_bit (gdbarch, 64);
1169 set_gdbarch_long_long_align_bit (gdbarch, 32);
1170 set_gdbarch_float_bit (gdbarch, 32);
1171 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1172 set_gdbarch_double_bit (gdbarch, 64);
1173 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1174 set_gdbarch_ptr_bit (gdbarch, 32);
1175 set_gdbarch_addr_bit (gdbarch, 32);
1176 set_gdbarch_char_signed (gdbarch, 0);
1177
1178 set_gdbarch_write_pc (gdbarch, arc_write_pc);
1179
1180 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
1181
1182 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
1183 parsed by gdbarch_init, and then it will add all of the remaining
1184 registers and will increase number of registers. */
1185 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
1186 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1187 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
1188 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
1189 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
1190 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
1191
1192 set_gdbarch_dummy_id (gdbarch, arc_dummy_id);
1193 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
1194 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
1195
1196 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
1197 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
1198
1199 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1200
1201 set_gdbarch_return_value (gdbarch, arc_return_value);
1202
1203 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
1204 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1205
1206 set_gdbarch_breakpoint_from_pc (gdbarch, arc_breakpoint_from_pc);
1207
1208 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
1209 if (!arc_mach_is_arc600 (gdbarch))
1210 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1211 else
1212 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1213
1214 set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc);
1215 set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp);
1216
1217 set_gdbarch_frame_align (gdbarch, arc_frame_align);
1218
1219 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
1220
1221 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1222
1223 /* "nonsteppable" watchpoint means that watchpoint triggers before
1224 instruction is committed, therefore it is required to remove watchpoint
1225 to step though instruction that triggers it. ARC watchpoints trigger
1226 only after instruction is committed, thus there is no need to remove
1227 them. In fact on ARC watchpoint for memory writes may trigger with more
1228 significant delay, like one or two instructions, depending on type of
1229 memory where write is performed (CCM or external) and next instruction
1230 after the memory write. */
1231 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
1232
1233 /* This doesn't include possible long-immediate value. */
1234 set_gdbarch_max_insn_length (gdbarch, 4);
1235
1236 /* Frame unwinders and sniffers. */
1237 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
1238 dwarf2_append_unwinders (gdbarch);
1239 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
1240 frame_base_set_default (gdbarch, &arc_normal_base);
1241
1242 /* Setup stuff specific to a particular environment (baremetal or Linux).
1243 It can override functions set earlier. */
1244 gdbarch_init_osabi (info, gdbarch);
1245
1246 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1247
1248 return gdbarch;
1249}
1250
1251/* Implement the "dump_tdep" gdbarch method. */
1252
1253static void
1254arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1255{
1256 /* Empty for now. */
1257}
1258
1259/* Suppress warning from -Wmissing-prototypes. */
1260extern initialize_file_ftype _initialize_arc_tdep;
1261
1262void
1263_initialize_arc_tdep (void)
1264{
1265 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
1266
1267 initialize_tdesc_arc_v2 ();
1268 initialize_tdesc_arc_arcompact ();
1269
1270 /* Register ARC-specific commands with gdb. */
1271
1272 /* Debug internals for ARC GDB. */
1273 add_setshow_zinteger_cmd ("arc", class_maintenance,
1274 &arc_debug,
1275 _("Set ARC specific debugging."),
1276 _("Show ARC specific debugging."),
1277 _("Non-zero enables ARC specific debugging."),
1278 NULL, NULL, &setdebuglist, &showdebuglist);
1279}