]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-linux-tdep.c
2006-01-05 Paul Brook <paul@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
8e9d1a24
DJ
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
faf5f7ad
SB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
faf5f7ad
SB
22
23#include "defs.h"
c20f6dea
SB
24#include "target.h"
25#include "value.h"
faf5f7ad 26#include "gdbtypes.h"
134e61c4 27#include "floatformat.h"
2a451106
KB
28#include "gdbcore.h"
29#include "frame.h"
4e052eda 30#include "regcache.h"
d16aafd8 31#include "doublest.h"
7aa1783e 32#include "solib-svr4.h"
4be87837 33#include "osabi.h"
8e9d1a24
DJ
34#include "trad-frame.h"
35#include "tramp-frame.h"
faf5f7ad 36
34e8f22d 37#include "arm-tdep.h"
0670c0aa 38#include "glibc-tdep.h"
a52e6aac 39
8e9d1a24
DJ
40#include "gdb_string.h"
41
fdf39c9a
RE
42/* Under ARM GNU/Linux the traditional way of performing a breakpoint
43 is to execute a particular software interrupt, rather than use a
44 particular undefined instruction to provoke a trap. Upon exection
45 of the software interrupt the kernel stops the inferior with a
498b1f87 46 SIGTRAP, and wakes the debugger. */
66e810cd 47
2ef47cd0
DJ
48static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
49
50static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 51
c75a2cc8
DJ
52/* However, the EABI syscall interface (new in Nov. 2005) does not look at
53 the operand of the swi if old-ABI compatibility is disabled. Therefore,
54 use an undefined instruction instead. This is supported as of kernel
55 version 2.5.70 (May 2003), so should be a safe assumption for EABI
56 binaries. */
57
58static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
59
60static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
61
62/* All the kernels which support Thumb support using a specific undefined
63 instruction for the Thumb breakpoint. */
64
498b1f87
DJ
65static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
66
67static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
68
9df628e0 69/* Description of the longjmp buffer. */
7a5ea0d4 70#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
a6cdd8c5 71#define ARM_LINUX_JB_PC 21
faf5f7ad 72
faf5f7ad
SB
73/* Extract from an array REGBUF containing the (raw) register state
74 a function return value of type TYPE, and copy that, in virtual format,
75 into VALBUF. */
19d3fc80
RE
76/* FIXME rearnsha/2002-02-23: This function shouldn't be necessary.
77 The ARM generic one should be able to handle the model used by
78 linux and the low-level formatting of the registers should be
79 hidden behind the regcache abstraction. */
80static void
faf5f7ad 81arm_linux_extract_return_value (struct type *type,
b8b527c5 82 char regbuf[],
faf5f7ad
SB
83 char *valbuf)
84{
85 /* ScottB: This needs to be looked at to handle the different
fdf39c9a 86 floating point emulators on ARM GNU/Linux. Right now the code
faf5f7ad
SB
87 assumes that fetch inferior registers does the right thing for
88 GDB. I suspect this won't handle NWFPE registers correctly, nor
89 will the default ARM version (arm_extract_return_value()). */
90
34e8f22d
RE
91 int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type))
92 ? ARM_F0_REGNUM : ARM_A1_REGNUM);
62700349 93 memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
faf5f7ad 94}
134e61c4 95
f38e884d 96/*
fdf39c9a
RE
97 Dynamic Linking on ARM GNU/Linux
98 --------------------------------
f38e884d
SB
99
100 Note: PLT = procedure linkage table
101 GOT = global offset table
102
103 As much as possible, ELF dynamic linking defers the resolution of
104 jump/call addresses until the last minute. The technique used is
105 inspired by the i386 ELF design, and is based on the following
106 constraints.
107
108 1) The calling technique should not force a change in the assembly
109 code produced for apps; it MAY cause changes in the way assembly
110 code is produced for position independent code (i.e. shared
111 libraries).
112
113 2) The technique must be such that all executable areas must not be
114 modified; and any modified areas must not be executed.
115
116 To do this, there are three steps involved in a typical jump:
117
118 1) in the code
119 2) through the PLT
120 3) using a pointer from the GOT
121
122 When the executable or library is first loaded, each GOT entry is
123 initialized to point to the code which implements dynamic name
124 resolution and code finding. This is normally a function in the
fdf39c9a
RE
125 program interpreter (on ARM GNU/Linux this is usually
126 ld-linux.so.2, but it does not have to be). On the first
127 invocation, the function is located and the GOT entry is replaced
128 with the real function address. Subsequent calls go through steps
129 1, 2 and 3 and end up calling the real code.
f38e884d
SB
130
131 1) In the code:
132
133 b function_call
134 bl function_call
135
136 This is typical ARM code using the 26 bit relative branch or branch
137 and link instructions. The target of the instruction
138 (function_call is usually the address of the function to be called.
139 In position independent code, the target of the instruction is
140 actually an entry in the PLT when calling functions in a shared
141 library. Note that this call is identical to a normal function
142 call, only the target differs.
143
144 2) In the PLT:
145
146 The PLT is a synthetic area, created by the linker. It exists in
147 both executables and libraries. It is an array of stubs, one per
148 imported function call. It looks like this:
149
150 PLT[0]:
151 str lr, [sp, #-4]! @push the return address (lr)
152 ldr lr, [pc, #16] @load from 6 words ahead
153 add lr, pc, lr @form an address for GOT[0]
154 ldr pc, [lr, #8]! @jump to the contents of that addr
155
156 The return address (lr) is pushed on the stack and used for
157 calculations. The load on the second line loads the lr with
158 &GOT[3] - . - 20. The addition on the third leaves:
159
160 lr = (&GOT[3] - . - 20) + (. + 8)
161 lr = (&GOT[3] - 12)
162 lr = &GOT[0]
163
164 On the fourth line, the pc and lr are both updated, so that:
165
166 pc = GOT[2]
167 lr = &GOT[0] + 8
168 = &GOT[2]
169
170 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
171 "tight", but allows us to keep all the PLT entries the same size.
172
173 PLT[n+1]:
174 ldr ip, [pc, #4] @load offset from gotoff
175 add ip, pc, ip @add the offset to the pc
176 ldr pc, [ip] @jump to that address
177 gotoff: .word GOT[n+3] - .
178
179 The load on the first line, gets an offset from the fourth word of
180 the PLT entry. The add on the second line makes ip = &GOT[n+3],
181 which contains either a pointer to PLT[0] (the fixup trampoline) or
182 a pointer to the actual code.
183
184 3) In the GOT:
185
186 The GOT contains helper pointers for both code (PLT) fixups and
187 data fixups. The first 3 entries of the GOT are special. The next
188 M entries (where M is the number of entries in the PLT) belong to
189 the PLT fixups. The next D (all remaining) entries belong to
190 various data fixups. The actual size of the GOT is 3 + M + D.
191
192 The GOT is also a synthetic area, created by the linker. It exists
193 in both executables and libraries. When the GOT is first
194 initialized , all the GOT entries relating to PLT fixups are
195 pointing to code back at PLT[0].
196
197 The special entries in the GOT are:
198
199 GOT[0] = linked list pointer used by the dynamic loader
200 GOT[1] = pointer to the reloc table for this module
201 GOT[2] = pointer to the fixup/resolver code
202
203 The first invocation of function call comes through and uses the
204 fixup/resolver code. On the entry to the fixup/resolver code:
205
206 ip = &GOT[n+3]
207 lr = &GOT[2]
208 stack[0] = return address (lr) of the function call
209 [r0, r1, r2, r3] are still the arguments to the function call
210
211 This is enough information for the fixup/resolver code to work
212 with. Before the fixup/resolver code returns, it actually calls
213 the requested function and repairs &GOT[n+3]. */
214
7aa1783e
RE
215/* Fetch, and possibly build, an appropriate link_map_offsets structure
216 for ARM linux targets using the struct offsets defined in <link.h>.
217 Note, however, that link.h is not actually referred to in this file.
218 Instead, the relevant structs offsets were obtained from examining
219 link.h. (We can't refer to link.h from this file because the host
220 system won't necessarily have it, or if it does, the structs which
221 it defines will refer to the host system, not the target). */
222
223static struct link_map_offsets *
224arm_linux_svr4_fetch_link_map_offsets (void)
225{
226 static struct link_map_offsets lmo;
227 static struct link_map_offsets *lmp = 0;
228
229 if (lmp == 0)
230 {
231 lmp = &lmo;
232
233 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
234 need. */
235
236 lmo.r_map_offset = 4;
237 lmo.r_map_size = 4;
238
239 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
240 need. */
241
242 lmo.l_addr_offset = 0;
243 lmo.l_addr_size = 4;
244
245 lmo.l_name_offset = 4;
246 lmo.l_name_size = 4;
247
248 lmo.l_next_offset = 12;
249 lmo.l_next_size = 4;
250
251 lmo.l_prev_offset = 16;
252 lmo.l_prev_size = 4;
253 }
254
255 return lmp;
256}
257
2a451106
KB
258/* The constants below were determined by examining the following files
259 in the linux kernel sources:
260
261 arch/arm/kernel/signal.c
262 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
263 include/asm-arm/unistd.h
264 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
265
266#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
267#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
268
8e9d1a24
DJ
269/* For ARM EABI, recognize the pattern that glibc uses... alternatively,
270 we could arrange to do this by function name, but they are not always
271 exported. */
272#define ARM_SET_R7_SIGRETURN 0xe3a07077
273#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
274#define ARM_EABI_SYSCALL 0xef000000
2a451106 275
8e9d1a24
DJ
276static void
277arm_linux_sigtramp_cache (struct frame_info *next_frame,
278 struct trad_frame_cache *this_cache,
279 CORE_ADDR func, int regs_offset)
2a451106 280{
8e9d1a24
DJ
281 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
282 CORE_ADDR base = sp + regs_offset;
283 int i;
2a451106 284
8e9d1a24
DJ
285 for (i = 0; i < 16; i++)
286 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 287
8e9d1a24 288 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 289
8e9d1a24
DJ
290 /* The VFP or iWMMXt registers may be saved on the stack, but there's
291 no reliable way to restore them (yet). */
2a451106 292
8e9d1a24
DJ
293 /* Save a frame ID. */
294 trad_frame_set_id (this_cache, frame_id_build (sp, func));
295}
2a451106 296
8e9d1a24
DJ
297static void
298arm_linux_sigreturn_init (const struct tramp_frame *self,
299 struct frame_info *next_frame,
300 struct trad_frame_cache *this_cache,
301 CORE_ADDR func)
2a451106 302{
8e9d1a24
DJ
303 arm_linux_sigtramp_cache (next_frame, this_cache, func,
304 0x0c /* Offset to registers. */);
305}
2a451106 306
8e9d1a24
DJ
307static void
308arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
309 struct frame_info *next_frame,
310 struct trad_frame_cache *this_cache,
311 CORE_ADDR func)
312{
313 arm_linux_sigtramp_cache (next_frame, this_cache, func,
314 0x88 /* Offset to ucontext_t. */
315 + 0x14 /* Offset to sigcontext. */
316 + 0x0c /* Offset to registers. */);
2a451106
KB
317}
318
8e9d1a24
DJ
319static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
320 SIGTRAMP_FRAME,
321 4,
322 {
323 { ARM_LINUX_SIGRETURN_INSTR, -1 },
324 { TRAMP_SENTINEL_INSN }
325 },
326 arm_linux_sigreturn_init
327};
328
329static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
330 SIGTRAMP_FRAME,
331 4,
332 {
333 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
334 { TRAMP_SENTINEL_INSN }
335 },
336 arm_linux_rt_sigreturn_init
337};
338
339static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
340 SIGTRAMP_FRAME,
341 4,
342 {
343 { ARM_SET_R7_SIGRETURN, -1 },
344 { ARM_EABI_SYSCALL, -1 },
345 { TRAMP_SENTINEL_INSN }
346 },
347 arm_linux_sigreturn_init
348};
349
350static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
351 SIGTRAMP_FRAME,
352 4,
353 {
354 { ARM_SET_R7_RT_SIGRETURN, -1 },
355 { ARM_EABI_SYSCALL, -1 },
356 { TRAMP_SENTINEL_INSN }
357 },
358 arm_linux_rt_sigreturn_init
359};
360
97e03143
RE
361static void
362arm_linux_init_abi (struct gdbarch_info info,
363 struct gdbarch *gdbarch)
364{
365 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
366
367 tdep->lowest_pc = 0x8000;
2ef47cd0 368 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 369 {
c75a2cc8
DJ
370 if (tdep->arm_abi == ARM_ABI_AAPCS)
371 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
372 else
373 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87
DJ
374 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
375 }
2ef47cd0 376 else
498b1f87 377 {
c75a2cc8
DJ
378 if (tdep->arm_abi == ARM_ABI_AAPCS)
379 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
380 else
381 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87
DJ
382 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
383 }
66e810cd 384 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 385 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
9df628e0 386
28e97307
DJ
387 if (tdep->fp_model == ARM_FLOAT_AUTO)
388 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 389
a6cdd8c5
RE
390 tdep->jb_pc = ARM_LINUX_JB_PC;
391 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 392
7aa1783e
RE
393 set_solib_svr4_fetch_link_map_offsets
394 (gdbarch, arm_linux_svr4_fetch_link_map_offsets);
395
84320456 396 /* The following override shouldn't be needed. */
26e9b323 397 set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value);
0e18d038
RE
398
399 /* Shared library handling. */
0e18d038 400 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
bb41a796 401 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
402
403 /* Enable TLS support. */
404 set_gdbarch_fetch_tls_load_module_address (gdbarch,
405 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
406
407 tramp_frame_prepend_unwinder (gdbarch,
408 &arm_linux_sigreturn_tramp_frame);
409 tramp_frame_prepend_unwinder (gdbarch,
410 &arm_linux_rt_sigreturn_tramp_frame);
411 tramp_frame_prepend_unwinder (gdbarch,
412 &arm_eabi_linux_sigreturn_tramp_frame);
413 tramp_frame_prepend_unwinder (gdbarch,
414 &arm_eabi_linux_rt_sigreturn_tramp_frame);
97e03143
RE
415}
416
faf5f7ad
SB
417void
418_initialize_arm_linux_tdep (void)
419{
05816f70
MK
420 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
421 arm_linux_init_abi);
faf5f7ad 422}