]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/avr-tdep.c
configure: require libzstd >= 1.4.0
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
4a94e368 3 Copyright (C) 1996-2022 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
d55e5aa6 26#include "frame.h"
4de283e4
TT
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391 33#include "inferior.h"
d55e5aa6 34#include "symfile.h"
4de283e4
TT
35#include "arch-utils.h"
36#include "regcache.h"
37#include "dis-asm.h"
38#include "objfiles.h"
39#include <algorithm>
76eb8ef1 40#include "gdbarch.h"
8818c391
TR
41
42/* AVR Background:
43
44 (AVR micros are pure Harvard Architecture processors.)
45
46 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
47 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
48 the most part to store program instructions. The sram is 8 bits wide and is
49 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
50 an additional external sram added on as a peripheral.
51
52 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
53 powered down. Eeprom is not directly accessible, it can only be accessed
54 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
55 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
56 not included at this time.
57
58 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
59 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
60 work, the remote target must be able to handle eeprom accesses and perform
61 the address translation.]
62
0963b4bd 63 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
64 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
65 bytes instead of the 16 bit wide words used by the real device for the
66 Program Counter.
67
68 In order for remote targets to work correctly, extra bits must be added to
69 addresses before they are send to the target or received from the target
0963b4bd
MS
70 via the remote serial protocol. The extra bits are the MSBs and are used to
71 decode which memory space the address is referring to. */
8818c391 72
8818c391
TR
73/* Constants: prefixed with AVR_ to avoid name space clashes */
74
487d9753
PL
75/* Address space flags */
76
77/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
78 space. */
79
80#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
81#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
82 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
83
84
8818c391 85enum
2e5ff58c
TR
86{
87 AVR_REG_W = 24,
88 AVR_REG_X = 26,
89 AVR_REG_Y = 28,
90 AVR_FP_REGNUM = 28,
91 AVR_REG_Z = 30,
92
93 AVR_SREG_REGNUM = 32,
94 AVR_SP_REGNUM = 33,
95 AVR_PC_REGNUM = 34,
96
97 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
98 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
99
7d2552b4
TG
100 /* Pseudo registers. */
101 AVR_PSEUDO_PC_REGNUM = 35,
102 AVR_NUM_PSEUDO_REGS = 1,
103
2e5ff58c
TR
104 AVR_PC_REG_INDEX = 35, /* index into array of registers */
105
4add8633 106 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 107
0963b4bd 108 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
109 AVR_MAX_PUSHES = 18,
110
0963b4bd 111 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
112 AVR_LAST_PUSHED_REGNUM = 17,
113
4add8633
TR
114 AVR_ARG1_REGNUM = 24, /* Single byte argument */
115 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
cb86f388 116 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
4add8633
TR
117
118 AVR_RET1_REGNUM = 24, /* Single byte return value */
119 AVR_RETN_REGNUM = 25, /* Multi byte return value */
120
2e5ff58c 121 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 122 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
123 things easier in the future if they didn't need to match.
124
125 Note: I chose these values so as to be consistent with bfd vma
126 addresses.
127
128 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 129 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
130 thus the Most Significant Bit is 0x10000 which gets masked off my
131 AVR_MEM_MASK.
132
133 The problem manifests itself when trying to set a breakpoint in a
134 function which resides in the upper half of the instruction space and
135 thus requires a 17-bit address.
136
137 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 138 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
139 but could be for some remote targets by just adding the correct offset
140 to the address and letting the remote target handle the low-level
0963b4bd 141 details of actually accessing the eeprom. */
2e5ff58c
TR
142
143 AVR_IMEM_START = 0x00000000, /* INSN memory */
144 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 145#if 1
2e5ff58c
TR
146 /* No eeprom mask defined */
147 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 148#else
2e5ff58c
TR
149 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
150 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 151#endif
2e5ff58c 152};
8818c391 153
4add8633
TR
154/* Prologue types:
155
156 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
157 causes the generation of the CALL type prologues). */
158
159enum {
160 AVR_PROLOGUE_NONE, /* No prologue */
161 AVR_PROLOGUE_NORMAL,
162 AVR_PROLOGUE_CALL, /* -mcall-prologues */
163 AVR_PROLOGUE_MAIN,
164 AVR_PROLOGUE_INTR, /* interrupt handler */
165 AVR_PROLOGUE_SIG, /* signal handler */
166};
167
8818c391
TR
168/* Any function with a frame looks like this
169 ....... <-SP POINTS HERE
170 LOCALS1 <-FP POINTS HERE
171 LOCALS0
172 SAVED FP
173 SAVED R3
174 SAVED R2
175 RET PC
176 FIRST ARG
177 SECOND ARG */
178
4add8633 179struct avr_unwind_cache
2e5ff58c 180{
4add8633
TR
181 /* The previous frame's inner most stack address. Used as this
182 frame ID's stack_addr. */
183 CORE_ADDR prev_sp;
184 /* The frame's base, optionally used by the high-level debug info. */
185 CORE_ADDR base;
186 int size;
187 int prologue_type;
188 /* Table indicating the location of each and every register. */
098caef4 189 trad_frame_saved_reg *saved_regs;
2e5ff58c 190};
8818c391 191
ab25d9bb 192struct avr_gdbarch_tdep : gdbarch_tdep_base
2e5ff58c 193{
4e99ad69 194 /* Number of bytes stored to the stack by call instructions.
9c97a070 195 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
345bd07c 196 int call_length = 0;
7d2552b4
TG
197
198 /* Type for void. */
345bd07c 199 struct type *void_type = nullptr;
7d2552b4 200 /* Type for a function returning void. */
345bd07c 201 struct type *func_void_type = nullptr;
7d2552b4 202 /* Type for a pointer to a function. Used for the type of PC. */
345bd07c 203 struct type *pc_type = nullptr;
2e5ff58c 204};
8818c391 205
0963b4bd 206/* Lookup the name of a register given it's number. */
8818c391 207
fa88f677 208static const char *
d93859e2 209avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 210{
4e99ad69 211 static const char * const register_names[] = {
2e5ff58c
TR
212 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
213 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
214 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
215 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
216 "SREG", "SP", "PC2",
217 "pc"
8818c391 218 };
9b9e61c7
AB
219 gdb_static_assert (ARRAY_SIZE (register_names)
220 == (AVR_NUM_REGS + AVR_NUM_PSEUDO_REGS));
8818c391
TR
221 return register_names[regnum];
222}
223
8818c391
TR
224/* Return the GDB type object for the "standard" data type
225 of data in register N. */
226
227static struct type *
866b76ea 228avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 229{
866b76ea 230 if (reg_nr == AVR_PC_REGNUM)
df4df182 231 return builtin_type (gdbarch)->builtin_uint32;
345bd07c 232
08106042 233 avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch);
7d2552b4 234 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
345bd07c
SM
235 return tdep->pc_type;
236
866b76ea 237 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 238 return builtin_type (gdbarch)->builtin_data_ptr;
345bd07c 239
7d2552b4 240 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
241}
242
0963b4bd 243/* Instruction address checks and convertions. */
8818c391
TR
244
245static CORE_ADDR
246avr_make_iaddr (CORE_ADDR x)
247{
248 return ((x) | AVR_IMEM_START);
249}
250
0963b4bd 251/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
252 devices are already up to 128KBytes of flash space.
253
0963b4bd 254 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
255
256static CORE_ADDR
257avr_convert_iaddr_to_raw (CORE_ADDR x)
258{
259 return ((x) & 0xffffffff);
260}
261
0963b4bd 262/* SRAM address checks and convertions. */
8818c391
TR
263
264static CORE_ADDR
265avr_make_saddr (CORE_ADDR x)
266{
ee143e81
TG
267 /* Return 0 for NULL. */
268 if (x == 0)
269 return 0;
270
8818c391
TR
271 return ((x) | AVR_SMEM_START);
272}
273
8818c391
TR
274static CORE_ADDR
275avr_convert_saddr_to_raw (CORE_ADDR x)
276{
277 return ((x) & 0xffffffff);
278}
279
0963b4bd
MS
280/* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
8818c391
TR
282
283/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 284 programs in the mega128. */
8818c391
TR
285
286/* static CORE_ADDR */
287/* avr_make_eaddr (CORE_ADDR x) */
288/* { */
289/* return ((x) | AVR_EMEM_START); */
290/* } */
291
292/* static int */
293/* avr_eaddr_p (CORE_ADDR x) */
294/* { */
295/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296/* } */
297
298/* static CORE_ADDR */
299/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300/* { */
301/* return ((x) & 0xffffffff); */
302/* } */
303
0963b4bd 304/* Convert from address to pointer and vice-versa. */
8818c391
TR
305
306static void
9898f801
UW
307avr_address_to_pointer (struct gdbarch *gdbarch,
308 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 309{
e17a4113
UW
310 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
311
487d9753
PL
312 /* Is it a data address in flash? */
313 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
314 {
7d0d9d2b 315 /* A data pointer in flash is byte addressed. */
df86565b 316 store_unsigned_integer (buf, type->length (), byte_order,
487d9753
PL
317 avr_convert_iaddr_to_raw (addr));
318 }
8818c391 319 /* Is it a code address? */
27710edb
SM
320 else if (type->target_type ()->code () == TYPE_CODE_FUNC
321 || type->target_type ()->code () == TYPE_CODE_METHOD)
8818c391 322 {
7d0d9d2b
PL
323 /* A code pointer is word (16 bits) addressed. We shift the address down
324 by 1 bit to convert it to a pointer. */
df86565b 325 store_unsigned_integer (buf, type->length (), byte_order,
4ea2465e 326 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
327 }
328 else
329 {
330 /* Strip off any upper segment bits. */
df86565b 331 store_unsigned_integer (buf, type->length (), byte_order,
2e5ff58c 332 avr_convert_saddr_to_raw (addr));
8818c391
TR
333 }
334}
335
336static CORE_ADDR
9898f801
UW
337avr_pointer_to_address (struct gdbarch *gdbarch,
338 struct type *type, const gdb_byte *buf)
8818c391 339{
e17a4113
UW
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341 CORE_ADDR addr
df86565b 342 = extract_unsigned_integer (buf, type->length (), byte_order);
8818c391 343
487d9753
PL
344 /* Is it a data address in flash? */
345 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
346 {
347 /* A data pointer in flash is already byte addressed. */
348 return avr_make_iaddr (addr);
349 }
8818c391 350 /* Is it a code address? */
27710edb
SM
351 else if (type->target_type ()->code () == TYPE_CODE_FUNC
352 || type->target_type ()->code () == TYPE_CODE_METHOD
353 || TYPE_CODE_SPACE (type->target_type ()))
7d0d9d2b
PL
354 {
355 /* A code pointer is word (16 bits) addressed so we shift it up
356 by 1 bit to convert it to an address. */
357 return avr_make_iaddr (addr << 1);
358 }
8818c391
TR
359 else
360 return avr_make_saddr (addr);
361}
362
8a1d23b2
TG
363static CORE_ADDR
364avr_integer_to_address (struct gdbarch *gdbarch,
365 struct type *type, const gdb_byte *buf)
366{
367 ULONGEST addr = unpack_long (type, buf);
368
1218a4bf
CDA
369 if (TYPE_DATA_SPACE (type))
370 return avr_make_saddr (addr);
371 else
372 return avr_make_iaddr (addr);
8a1d23b2
TG
373}
374
8818c391 375static CORE_ADDR
c113ed0c 376avr_read_pc (readable_regcache *regcache)
8818c391 377{
8619218d 378 ULONGEST pc;
c113ed0c
YQ
379
380 regcache->cooked_read (AVR_PC_REGNUM, &pc);
61a1198a 381 return avr_make_iaddr (pc);
8818c391
TR
382}
383
384static void
61a1198a 385avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 386{
61a1198a 387 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
dda83cd7 388 avr_convert_iaddr_to_raw (val));
7d2552b4
TG
389}
390
05d1431c 391static enum register_status
849d0ba8 392avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
dda83cd7 393 int regnum, gdb_byte *buf)
7d2552b4
TG
394{
395 ULONGEST val;
05d1431c 396 enum register_status status;
7d2552b4
TG
397
398 switch (regnum)
399 {
400 case AVR_PSEUDO_PC_REGNUM:
03f50fc8 401 status = regcache->raw_read (AVR_PC_REGNUM, &val);
05d1431c
PA
402 if (status != REG_VALID)
403 return status;
7d2552b4
TG
404 val >>= 1;
405 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 406 return status;
7d2552b4 407 default:
f34652de 408 internal_error (_("invalid regnum"));
7d2552b4
TG
409 }
410}
411
412static void
413avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
dda83cd7 414 int regnum, const gdb_byte *buf)
7d2552b4
TG
415{
416 ULONGEST val;
417
418 switch (regnum)
419 {
420 case AVR_PSEUDO_PC_REGNUM:
421 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
422 val <<= 1;
423 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
424 break;
425 default:
f34652de 426 internal_error (_("invalid regnum"));
7d2552b4 427 }
8818c391
TR
428}
429
4add8633 430/* Function: avr_scan_prologue
8818c391 431
4add8633 432 This function decodes an AVR function prologue to determine:
8818c391
TR
433 1) the size of the stack frame
434 2) which registers are saved on it
435 3) the offsets of saved regs
4add8633 436 This information is stored in the avr_unwind_cache structure.
8818c391 437
e3d8b004 438 Some devices lack the sbiw instruction, so on those replace this:
dda83cd7 439 sbiw r28, XX
e3d8b004 440 with this:
dda83cd7
SM
441 subi r28,lo8(XX)
442 sbci r29,hi8(XX)
e3d8b004
TR
443
444 A typical AVR function prologue with a frame pointer might look like this:
dda83cd7
SM
445 push rXX ; saved regs
446 ...
447 push r28
448 push r29
449 in r28,__SP_L__
450 in r29,__SP_H__
451 sbiw r28,<LOCALS_SIZE>
452 in __tmp_reg__,__SREG__
453 cli
454 out __SP_H__,r29
455 out __SREG__,__tmp_reg__
456 out __SP_L__,r28
e3d8b004
TR
457
458 A typical AVR function prologue without a frame pointer might look like
459 this:
dda83cd7
SM
460 push rXX ; saved regs
461 ...
e3d8b004
TR
462
463 A main function prologue looks like this:
dda83cd7
SM
464 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
465 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
466 out __SP_H__,r29
467 out __SP_L__,r28
e3d8b004
TR
468
469 A signal handler prologue looks like this:
dda83cd7
SM
470 push __zero_reg__
471 push __tmp_reg__
472 in __tmp_reg__, __SREG__
473 push __tmp_reg__
474 clr __zero_reg__
475 push rXX ; save registers r18:r27, r30:r31
476 ...
477 push r28 ; save frame pointer
478 push r29
479 in r28, __SP_L__
480 in r29, __SP_H__
481 sbiw r28, <LOCALS_SIZE>
482 out __SP_H__, r29
483 out __SP_L__, r28
484
e3d8b004 485 A interrupt handler prologue looks like this:
dda83cd7
SM
486 sei
487 push __zero_reg__
488 push __tmp_reg__
489 in __tmp_reg__, __SREG__
490 push __tmp_reg__
491 clr __zero_reg__
492 push rXX ; save registers r18:r27, r30:r31
493 ...
494 push r28 ; save frame pointer
495 push r29
496 in r28, __SP_L__
497 in r29, __SP_H__
498 sbiw r28, <LOCALS_SIZE>
499 cli
500 out __SP_H__, r29
501 sei
502 out __SP_L__, r28
e3d8b004
TR
503
504 A `-mcall-prologues' prologue looks like this (Note that the megas use a
505 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
506 32 bit insn and rjmp is a 16 bit insn):
dda83cd7
SM
507 ldi r26,lo8(<LOCALS_SIZE>)
508 ldi r27,hi8(<LOCALS_SIZE>)
509 ldi r30,pm_lo8(.L_foo_body)
510 ldi r31,pm_hi8(.L_foo_body)
511 rjmp __prologue_saves__+RRR
512 .L_foo_body: */
8818c391 513
4add8633
TR
514/* Not really part of a prologue, but still need to scan for it, is when a
515 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
516 registers. In this case, all local variables live in registers, so there
517 may be some register saves. This is what it looks like:
dda83cd7
SM
518 movw rMM, rNN
519 ...
4add8633 520
0963b4bd
MS
521 There could be multiple movw's. If the target doesn't have a movw insn, it
522 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
523 types. */
524
525static CORE_ADDR
e17a4113 526avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 527 struct avr_unwind_cache *info)
8818c391 528{
e17a4113 529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
530 int i;
531 unsigned short insn;
2e5ff58c 532 int scan_stage = 0;
3b7344d5 533 struct bound_minimal_symbol msymbol;
8818c391
TR
534 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
535 int vpc = 0;
4e99ad69
TG
536 int len;
537
538 len = pc_end - pc_beg;
539 if (len > AVR_MAX_PROLOGUE_SIZE)
540 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 541
4add8633 542 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
543 reading in the bytes of the prologue. The problem is that the figuring
544 out where the end of the prologue is is a bit difficult. The old code
4add8633 545 tried to do that, but failed quite often. */
4e99ad69 546 read_memory (pc_beg, prologue, len);
8818c391
TR
547
548 /* Scanning main()'s prologue
549 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
550 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
551 out __SP_H__,r29
552 out __SP_L__,r28 */
553
4e99ad69 554 if (len >= 4)
8818c391
TR
555 {
556 CORE_ADDR locals;
4e99ad69 557 static const unsigned char img[] = {
2e5ff58c
TR
558 0xde, 0xbf, /* out __SP_H__,r29 */
559 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
560 };
561
e17a4113 562 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 563 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
564 if ((insn & 0xf0f0) == 0xe0c0)
565 {
566 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 567 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
568 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
569 if ((insn & 0xf0f0) == 0xe0d0)
570 {
571 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
572 if (vpc + 4 + sizeof (img) < len
573 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 574 {
dda83cd7
SM
575 info->prologue_type = AVR_PROLOGUE_MAIN;
576 info->base = locals;
577 return pc_beg + 4;
2e5ff58c
TR
578 }
579 }
580 }
8818c391 581 }
2e5ff58c 582
4add8633
TR
583 /* Scanning `-mcall-prologues' prologue
584 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 585
e3d8b004 586 while (1) /* Using a while to avoid many goto's */
8818c391
TR
587 {
588 int loc_size;
589 int body_addr;
590 unsigned num_pushes;
4add8633 591 int pc_offset = 0;
2e5ff58c 592
4e99ad69
TG
593 /* At least the fifth instruction must have been executed to
594 modify frame shape. */
595 if (len < 10)
596 break;
597
e17a4113 598 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 599 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
600 if ((insn & 0xf0f0) != 0xe0a0)
601 break;
8818c391 602 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 603 pc_offset += 2;
2e5ff58c 604
e17a4113 605 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
606 /* ldi r27,<LOCALS_SIZE> / 256 */
607 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 608 break;
8818c391 609 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 610 pc_offset += 2;
2e5ff58c 611
e17a4113 612 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
613 /* ldi r30,pm_lo8(.L_foo_body) */
614 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 615 break;
8818c391 616 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 617 pc_offset += 2;
8818c391 618
e17a4113 619 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
620 /* ldi r31,pm_hi8(.L_foo_body) */
621 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 622 break;
8818c391 623 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 624 pc_offset += 2;
8818c391 625
8818c391 626 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 627 if (!msymbol.minsym)
2e5ff58c 628 break;
8818c391 629
e17a4113 630 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 631 /* rjmp __prologue_saves__+RRR */
e3d8b004 632 if ((insn & 0xf000) == 0xc000)
dda83cd7
SM
633 {
634 /* Extract PC relative offset from RJMP */
635 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
636 /* Convert offset to byte addressable mode */
637 i *= 2;
638 /* Destination address */
639 i += pc_beg + 10;
640
641 if (body_addr != (pc_beg + 10)/2)
642 break;
643
644 pc_offset += 2;
645 }
e3d8b004 646 else if ((insn & 0xfe0e) == 0x940c)
dda83cd7
SM
647 {
648 /* Extract absolute PC address from JMP */
649 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
650 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
651 & 0xffff));
dda83cd7
SM
652 /* Convert address to byte addressable mode */
653 i *= 2;
e3d8b004 654
dda83cd7
SM
655 if (body_addr != (pc_beg + 12)/2)
656 break;
4add8633 657
dda83cd7
SM
658 pc_offset += 4;
659 }
e3d8b004 660 else
dda83cd7 661 break;
2e5ff58c 662
4add8633 663 /* Resolve offset (in words) from __prologue_saves__ symbol.
dda83cd7 664 Which is a pushes count in `-mcall-prologues' mode */
4aeddc50 665 num_pushes = AVR_MAX_PUSHES - (i - msymbol.value_address ()) / 2;
8818c391
TR
666
667 if (num_pushes > AVR_MAX_PUSHES)
dda83cd7 668 {
6cb06a8c
TT
669 gdb_printf (gdb_stderr, _("Num pushes too large: %d\n"),
670 num_pushes);
dda83cd7
SM
671 num_pushes = 0;
672 }
2e5ff58c 673
8818c391 674 if (num_pushes)
2e5ff58c
TR
675 {
676 int from;
4add8633 677
098caef4 678 info->saved_regs[AVR_FP_REGNUM + 1].set_addr (num_pushes);
2e5ff58c 679 if (num_pushes >= 2)
098caef4 680 info->saved_regs[AVR_FP_REGNUM].set_addr (num_pushes - 1);
4add8633 681
2e5ff58c
TR
682 i = 0;
683 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
684 from <= AVR_LAST_PUSHED_REGNUM; ++from)
098caef4 685 info->saved_regs [from].set_addr (++i);
2e5ff58c 686 }
4add8633
TR
687 info->size = loc_size + num_pushes;
688 info->prologue_type = AVR_PROLOGUE_CALL;
689
4e99ad69 690 return pc_beg + pc_offset;
8818c391
TR
691 }
692
4add8633
TR
693 /* Scan for the beginning of the prologue for an interrupt or signal
694 function. Note that we have to set the prologue type here since the
695 third stage of the prologue may not be present (e.g. no saved registered
696 or changing of the SP register). */
8818c391 697
4add8633 698 if (1)
8818c391 699 {
4e99ad69 700 static const unsigned char img[] = {
2e5ff58c
TR
701 0x78, 0x94, /* sei */
702 0x1f, 0x92, /* push r1 */
703 0x0f, 0x92, /* push r0 */
704 0x0f, 0xb6, /* in r0,0x3f SREG */
705 0x0f, 0x92, /* push r0 */
706 0x11, 0x24 /* clr r1 */
8818c391 707 };
4e99ad69
TG
708 if (len >= sizeof (img)
709 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 710 {
dda83cd7 711 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 712 vpc += sizeof (img);
098caef4
LM
713 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
714 info->saved_regs[0].set_addr (2);
715 info->saved_regs[1].set_addr (1);
dda83cd7 716 info->size += 3;
2e5ff58c 717 }
4e99ad69
TG
718 else if (len >= sizeof (img) - 2
719 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 720 {
dda83cd7
SM
721 info->prologue_type = AVR_PROLOGUE_SIG;
722 vpc += sizeof (img) - 2;
098caef4
LM
723 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
724 info->saved_regs[0].set_addr (2);
725 info->saved_regs[1].set_addr (1);
dda83cd7 726 info->size += 2;
2e5ff58c 727 }
8818c391
TR
728 }
729
730 /* First stage of the prologue scanning.
4add8633 731 Scan pushes (saved registers) */
8818c391 732
4e99ad69 733 for (; vpc < len; vpc += 2)
8818c391 734 {
e17a4113 735 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
736 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
737 {
0963b4bd 738 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
739 int regno = (insn & 0x1f0) >> 4;
740 info->size++;
098caef4 741 info->saved_regs[regno].set_addr (info->size);
2e5ff58c
TR
742 scan_stage = 1;
743 }
8818c391 744 else
2e5ff58c 745 break;
8818c391
TR
746 }
747
243e2c5d 748 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 749
1bd0bb72 750 /* Handle static small stack allocation using rcall or push. */
08106042 751 avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch);
1bd0bb72
TG
752 while (scan_stage == 1 && vpc < len)
753 {
754 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
755 if (insn == 0xd000) /* rcall .+0 */
dda83cd7 756 {
345bd07c 757 info->size += tdep->call_length;
dda83cd7
SM
758 vpc += 2;
759 }
7588d2ec 760 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
dda83cd7
SM
761 {
762 info->size += 1;
763 vpc += 2;
764 }
1bd0bb72 765 else
dda83cd7 766 break;
1bd0bb72
TG
767 }
768
8818c391
TR
769 /* Second stage of the prologue scanning.
770 Scan:
771 in r28,__SP_L__
772 in r29,__SP_H__ */
773
4e99ad69 774 if (scan_stage == 1 && vpc < len)
8818c391 775 {
4e99ad69 776 static const unsigned char img[] = {
2e5ff58c
TR
777 0xcd, 0xb7, /* in r28,__SP_L__ */
778 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 779 };
2e5ff58c 780
4e99ad69
TG
781 if (vpc + sizeof (img) < len
782 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
783 {
784 vpc += 4;
2e5ff58c
TR
785 scan_stage = 2;
786 }
8818c391
TR
787 }
788
0963b4bd 789 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
790 Scan for:
791 sbiw r28,XX or subi r28,lo8(XX)
dda83cd7 792 sbci r29,hi8(XX)
8818c391
TR
793 in __tmp_reg__,__SREG__
794 cli
e3d8b004 795 out __SP_H__,r29
8818c391 796 out __SREG__,__tmp_reg__
e3d8b004 797 out __SP_L__,r28 */
8818c391 798
4e99ad69 799 if (scan_stage == 2 && vpc < len)
8818c391
TR
800 {
801 int locals_size = 0;
4e99ad69 802 static const unsigned char img[] = {
2e5ff58c
TR
803 0x0f, 0xb6, /* in r0,0x3f */
804 0xf8, 0x94, /* cli */
e3d8b004 805 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 806 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 807 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 808 };
4e99ad69 809 static const unsigned char img_sig[] = {
e3d8b004
TR
810 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
811 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 812 };
4e99ad69 813 static const unsigned char img_int[] = {
2e5ff58c 814 0xf8, 0x94, /* cli */
e3d8b004 815 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 816 0x78, 0x94, /* sei */
e3d8b004 817 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 818 };
2e5ff58c 819
e17a4113 820 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 821 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
dda83cd7
SM
822 {
823 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
824 vpc += 2;
825 }
2e5ff58c
TR
826 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
827 {
828 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 829 vpc += 2;
e17a4113 830 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 831 vpc += 2;
1bd0bb72 832 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 833 }
8818c391 834 else
dda83cd7 835 return pc_beg + vpc;
4add8633 836
0963b4bd 837 /* Scan the last part of the prologue. May not be present for interrupt
dda83cd7
SM
838 or signal handler functions, which is why we set the prologue type
839 when we saw the beginning of the prologue previously. */
4add8633 840
4e99ad69
TG
841 if (vpc + sizeof (img_sig) < len
842 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
dda83cd7
SM
843 {
844 vpc += sizeof (img_sig);
845 }
4e99ad69
TG
846 else if (vpc + sizeof (img_int) < len
847 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
dda83cd7
SM
848 {
849 vpc += sizeof (img_int);
850 }
4e99ad69
TG
851 if (vpc + sizeof (img) < len
852 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
dda83cd7
SM
853 {
854 info->prologue_type = AVR_PROLOGUE_NORMAL;
855 vpc += sizeof (img);
856 }
4add8633
TR
857
858 info->size += locals_size;
859
4e99ad69 860 /* Fall through. */
8818c391 861 }
4add8633
TR
862
863 /* If we got this far, we could not scan the prologue, so just return the pc
864 of the frame plus an adjustment for argument move insns. */
865
4e99ad69
TG
866 for (; vpc < len; vpc += 2)
867 {
e17a4113 868 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69 869 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
dda83cd7 870 continue;
4e99ad69 871 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
dda83cd7 872 continue;
4e99ad69 873 else
dda83cd7 874 break;
4e99ad69
TG
875 }
876
877 return pc_beg + vpc;
8818c391
TR
878}
879
4add8633 880static CORE_ADDR
6093d2eb 881avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
882{
883 CORE_ADDR func_addr, func_end;
8c201e54 884 CORE_ADDR post_prologue_pc;
8818c391 885
4add8633 886 /* See what the symbol table says */
8818c391 887
8c201e54
TG
888 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
889 return pc;
2e5ff58c 890
8c201e54
TG
891 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
892 if (post_prologue_pc != 0)
325fac50 893 return std::max (pc, post_prologue_pc);
8818c391 894
8c201e54
TG
895 {
896 CORE_ADDR prologue_end = pc;
897 struct avr_unwind_cache info = {0};
098caef4 898 trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 899
8c201e54
TG
900 info.saved_regs = saved_regs;
901
902 /* Need to run the prologue scanner to figure out if the function has a
903 prologue and possibly skip over moving arguments passed via registers
904 to other registers. */
905
906 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
907
908 if (info.prologue_type != AVR_PROLOGUE_NONE)
909 return prologue_end;
910 }
2e5ff58c 911
4e99ad69
TG
912 /* Either we didn't find the start of this function (nothing we can do),
913 or there's no line info, or the line after the prologue is after
0963b4bd 914 the end of the function (there probably isn't a prologue). */
2e5ff58c 915
8c201e54 916 return pc;
4add8633 917}
8818c391 918
0963b4bd
MS
919/* Not all avr devices support the BREAK insn. Those that don't should treat
920 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
921 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 922
04180708 923constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
598cc9dc 924
04180708 925typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
8818c391 926
4c8b6ae0
UW
927/* Determine, for architecture GDBARCH, how a return value of TYPE
928 should be returned. If it is supposed to be returned in registers,
929 and READBUF is non-zero, read the appropriate value from REGCACHE,
930 and copy it into READBUF. If WRITEBUF is non-zero, write the value
931 from WRITEBUF into REGCACHE. */
932
63807e1d 933static enum return_value_convention
6a3a010b 934avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
935 struct type *valtype, struct regcache *regcache,
936 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 937{
1bd0bb72
TG
938 int i;
939 /* Single byte are returned in r24.
940 Otherwise, the MSB of the return value is always in r25, calculate which
941 register holds the LSB. */
942 int lsb_reg;
943
78134374
SM
944 if ((valtype->code () == TYPE_CODE_STRUCT
945 || valtype->code () == TYPE_CODE_UNION
946 || valtype->code () == TYPE_CODE_ARRAY)
df86565b 947 && valtype->length () > 8)
1bd0bb72
TG
948 return RETURN_VALUE_STRUCT_CONVENTION;
949
df86565b 950 if (valtype->length () <= 2)
1bd0bb72 951 lsb_reg = 24;
df86565b 952 else if (valtype->length () <= 4)
1bd0bb72 953 lsb_reg = 22;
df86565b 954 else if (valtype->length () <= 8)
1bd0bb72
TG
955 lsb_reg = 18;
956 else
f3574227 957 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
958
959 if (writebuf != NULL)
960 {
df86565b 961 for (i = 0; i < valtype->length (); i++)
b66f5587 962 regcache->cooked_write (lsb_reg + i, writebuf + i);
4c8b6ae0
UW
963 }
964
965 if (readbuf != NULL)
966 {
df86565b 967 for (i = 0; i < valtype->length (); i++)
dca08e1f 968 regcache->cooked_read (lsb_reg + i, readbuf + i);
4c8b6ae0
UW
969 }
970
1bd0bb72 971 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
972}
973
974
4add8633
TR
975/* Put here the code to store, into fi->saved_regs, the addresses of
976 the saved registers of frame described by FRAME_INFO. This
977 includes special registers such as pc and fp saved in special ways
978 in the stack frame. sp is even more special: the address we return
0963b4bd 979 for it IS the sp for the next frame. */
8818c391 980
63807e1d 981static struct avr_unwind_cache *
bd2b40ac 982avr_frame_unwind_cache (frame_info_ptr this_frame,
dda83cd7 983 void **this_prologue_cache)
8818c391 984{
4e99ad69 985 CORE_ADDR start_pc, current_pc;
4add8633
TR
986 ULONGEST prev_sp;
987 ULONGEST this_base;
988 struct avr_unwind_cache *info;
4e99ad69 989 struct gdbarch *gdbarch;
4add8633
TR
990 int i;
991
4e99ad69 992 if (*this_prologue_cache)
9a3c8263 993 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
994
995 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 996 *this_prologue_cache = info;
94afd7a6 997 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
998
999 info->size = 0;
1000 info->prologue_type = AVR_PROLOGUE_NONE;
1001
4e99ad69
TG
1002 start_pc = get_frame_func (this_frame);
1003 current_pc = get_frame_pc (this_frame);
1004 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1005 avr_scan_prologue (get_frame_arch (this_frame),
1006 start_pc, current_pc, info);
4add8633 1007
3b85b0f1
TR
1008 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1009 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1010 {
1011 ULONGEST high_base; /* High byte of FP */
1012
1013 /* The SP was moved to the FP. This indicates that a new frame
dda83cd7
SM
1014 was created. Get THIS frame's FP value by unwinding it from
1015 the next frame. */
94afd7a6 1016 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1017 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1018 this_base += (high_base << 8);
1019
1020 /* The FP points at the last saved register. Adjust the FP back
dda83cd7 1021 to before the first saved register giving the SP. */
4add8633
TR
1022 prev_sp = this_base + info->size;
1023 }
8818c391 1024 else
4add8633
TR
1025 {
1026 /* Assume that the FP is this frame's SP but with that pushed
dda83cd7 1027 stack space added back. */
94afd7a6 1028 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1029 prev_sp = this_base + info->size;
1030 }
1031
1032 /* Add 1 here to adjust for the post-decrement nature of the push
1033 instruction.*/
4e99ad69 1034 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1035 info->base = avr_make_saddr (this_base);
1036
4e99ad69
TG
1037 gdbarch = get_frame_arch (this_frame);
1038
4add8633 1039 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1040 offsets. */
4e99ad69 1041 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
306b445a 1042 if (info->saved_regs[i].is_addr ())
098caef4
LM
1043 info->saved_regs[i].set_addr (info->prev_sp
1044 - info->saved_regs[i].addr ());
4add8633
TR
1045
1046 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1047 the stack and is at the base of the frame. */
4add8633
TR
1048
1049 if (info->prologue_type != AVR_PROLOGUE_MAIN)
098caef4 1050 info->saved_regs[AVR_PC_REGNUM].set_addr (info->prev_sp);
4add8633 1051
3b85b0f1
TR
1052 /* The previous frame's SP needed to be computed. Save the computed
1053 value. */
08106042 1054 avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch);
a9a87d35
LM
1055 info->saved_regs[AVR_SP_REGNUM].set_value (info->prev_sp
1056 - 1 + tdep->call_length);
3b85b0f1 1057
4add8633 1058 return info;
8818c391
TR
1059}
1060
1061static CORE_ADDR
bd2b40ac 1062avr_unwind_pc (struct gdbarch *gdbarch, frame_info_ptr next_frame)
8818c391 1063{
4add8633
TR
1064 ULONGEST pc;
1065
11411de3 1066 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1067
1068 return avr_make_iaddr (pc);
8818c391
TR
1069}
1070
30244cd8 1071static CORE_ADDR
bd2b40ac 1072avr_unwind_sp (struct gdbarch *gdbarch, frame_info_ptr next_frame)
30244cd8
UW
1073{
1074 ULONGEST sp;
1075
11411de3 1076 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1077
1078 return avr_make_saddr (sp);
1079}
1080
4add8633
TR
1081/* Given a GDB frame, determine the address of the calling function's
1082 frame. This will be used to create a new GDB frame struct. */
8818c391 1083
4add8633 1084static void
bd2b40ac 1085avr_frame_this_id (frame_info_ptr this_frame,
dda83cd7
SM
1086 void **this_prologue_cache,
1087 struct frame_id *this_id)
8818c391 1088{
4add8633 1089 struct avr_unwind_cache *info
94afd7a6 1090 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1091 CORE_ADDR base;
1092 CORE_ADDR func;
1093 struct frame_id id;
1094
1095 /* The FUNC is easy. */
94afd7a6 1096 func = get_frame_func (this_frame);
4add8633 1097
4add8633
TR
1098 /* Hopefully the prologue analysis either correctly determined the
1099 frame's base (which is the SP from the previous frame), or set
1100 that base to "NULL". */
1101 base = info->prev_sp;
1102 if (base == 0)
1103 return;
1104
1105 id = frame_id_build (base, func);
4add8633 1106 (*this_id) = id;
8818c391
TR
1107}
1108
94afd7a6 1109static struct value *
bd2b40ac 1110avr_frame_prev_register (frame_info_ptr this_frame,
4e99ad69 1111 void **this_prologue_cache, int regnum)
8818c391 1112{
4add8633 1113 struct avr_unwind_cache *info
94afd7a6 1114 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1115
7d2552b4 1116 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1117 {
a9a87d35 1118 if (info->saved_regs[AVR_PC_REGNUM].is_addr ())
dda83cd7 1119 {
94afd7a6
UW
1120 /* Reading the return PC from the PC register is slightly
1121 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1122 but in reality, only two bytes (3 in upcoming mega256) are
1123 stored on the stack.
1124
1125 Also, note that the value on the stack is an addr to a word
1126 not a byte, so we will need to multiply it by two at some
1127 point.
1128
1129 And to confuse matters even more, the return address stored
1130 on the stack is in big endian byte order, even though most
0963b4bd 1131 everything else about the avr is little endian. Ick! */
94afd7a6 1132 ULONGEST pc;
4e99ad69 1133 int i;
e362b510 1134 gdb_byte buf[3];
4e99ad69 1135 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 1136 avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch);
94afd7a6 1137
098caef4 1138 read_memory (info->saved_regs[AVR_PC_REGNUM].addr (),
dda83cd7 1139 buf, tdep->call_length);
94afd7a6 1140
4e99ad69
TG
1141 /* Extract the PC read from memory as a big-endian. */
1142 pc = 0;
1143 for (i = 0; i < tdep->call_length; i++)
1144 pc = (pc << 8) | buf[i];
94afd7a6 1145
dda83cd7
SM
1146 if (regnum == AVR_PC_REGNUM)
1147 pc <<= 1;
7d2552b4
TG
1148
1149 return frame_unwind_got_constant (this_frame, regnum, pc);
dda83cd7 1150 }
94afd7a6
UW
1151
1152 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1153 }
94afd7a6
UW
1154
1155 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1156}
8818c391 1157
4add8633 1158static const struct frame_unwind avr_frame_unwind = {
a154d838 1159 "avr prologue",
4add8633 1160 NORMAL_FRAME,
8fbca658 1161 default_frame_unwind_stop_reason,
4add8633 1162 avr_frame_this_id,
94afd7a6
UW
1163 avr_frame_prev_register,
1164 NULL,
1165 default_frame_sniffer
4add8633
TR
1166};
1167
8818c391 1168static CORE_ADDR
bd2b40ac 1169avr_frame_base_address (frame_info_ptr this_frame, void **this_cache)
8818c391 1170{
4add8633 1171 struct avr_unwind_cache *info
94afd7a6 1172 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1173
4add8633
TR
1174 return info->base;
1175}
8818c391 1176
4add8633
TR
1177static const struct frame_base avr_frame_base = {
1178 &avr_frame_unwind,
1179 avr_frame_base_address,
1180 avr_frame_base_address,
1181 avr_frame_base_address
1182};
ced15480 1183
94afd7a6
UW
1184/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1185 frame. The frame ID's base needs to match the TOS value saved by
1186 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1187
4add8633 1188static struct frame_id
bd2b40ac 1189avr_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
4add8633
TR
1190{
1191 ULONGEST base;
8818c391 1192
94afd7a6
UW
1193 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1194 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1195}
1196
4add8633 1197/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1198 order. The below implements a FILO (stack) to do this. */
8818c391 1199
0fecb1a7 1200struct avr_stack_item
4add8633
TR
1201{
1202 int len;
0fecb1a7 1203 struct avr_stack_item *prev;
7c543f7b 1204 gdb_byte *data;
4add8633 1205};
8818c391 1206
0fecb1a7
TT
1207static struct avr_stack_item *
1208push_stack_item (struct avr_stack_item *prev, const bfd_byte *contents,
1209 int len)
8818c391 1210{
0fecb1a7
TT
1211 struct avr_stack_item *si;
1212 si = XNEW (struct avr_stack_item);
7c543f7b 1213 si->data = (gdb_byte *) xmalloc (len);
4add8633
TR
1214 si->len = len;
1215 si->prev = prev;
1216 memcpy (si->data, contents, len);
1217 return si;
8818c391
TR
1218}
1219
0fecb1a7
TT
1220static struct avr_stack_item *
1221pop_stack_item (struct avr_stack_item *si)
8818c391 1222{
0fecb1a7 1223 struct avr_stack_item *dead = si;
4add8633
TR
1224 si = si->prev;
1225 xfree (dead->data);
1226 xfree (dead);
1227 return si;
8818c391
TR
1228}
1229
8818c391
TR
1230/* Setup the function arguments for calling a function in the inferior.
1231
1232 On the AVR architecture, there are 18 registers (R25 to R8) which are
1233 dedicated for passing function arguments. Up to the first 18 arguments
1234 (depending on size) may go into these registers. The rest go on the stack.
1235
4add8633 1236 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1237 arguments, including char, have one free register above them). For example,
4add8633
TR
1238 an int in arg1 and a char in arg2 would be passed as such:
1239
1240 arg1 -> r25:r24
1241 arg2 -> r22
1242
1243 Arguments that are larger than 2 bytes will be split between two or more
1244 registers as available, but will NOT be split between a register and the
0963b4bd 1245 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1246 similar to the d10v). */
1247
1248/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1249 inaccurate.
8818c391
TR
1250
1251 An exceptional case exists for struct arguments (and possibly other
1252 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1253 not a multiple of WORDSIZE bytes. In this case the argument is never split
1254 between the registers and the stack, but instead is copied in its entirety
1255 onto the stack, AND also copied into as many registers as there is room
1256 for. In other words, space in registers permitting, two copies of the same
1257 argument are passed in. As far as I can tell, only the one on the stack is
1258 used, although that may be a function of the level of compiler
1259 optimization. I suspect this is a compiler bug. Arguments of these odd
1260 sizes are left-justified within the word (as opposed to arguments smaller
1261 than WORDSIZE bytes, which are right-justified).
1262
1263 If the function is to return an aggregate type such as a struct, the caller
1264 must allocate space into which the callee will copy the return value. In
1265 this case, a pointer to the return value location is passed into the callee
1266 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1267 registers R0 to R2. */
8818c391
TR
1268
1269static CORE_ADDR
7d9b040b 1270avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
dda83cd7
SM
1271 struct regcache *regcache, CORE_ADDR bp_addr,
1272 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1273 function_call_return_method return_method,
1274 CORE_ADDR struct_addr)
8818c391 1275{
4add8633 1276 int i;
e362b510 1277 gdb_byte buf[3];
08106042 1278 avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch);
345bd07c 1279 int call_length = tdep->call_length;
4add8633
TR
1280 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1281 int regnum = AVR_ARGN_REGNUM;
0fecb1a7 1282 struct avr_stack_item *si = NULL;
8818c391 1283
cf84fa6b 1284 if (return_method == return_method_struct)
8818c391 1285 {
fd6d6815 1286 regcache_cooked_write_unsigned
dda83cd7 1287 (regcache, regnum--, (struct_addr >> 8) & 0xff);
fd6d6815 1288 regcache_cooked_write_unsigned
dda83cd7 1289 (regcache, regnum--, struct_addr & 0xff);
fd6d6815 1290 /* SP being post decremented, we need to reserve one byte so that the
dda83cd7 1291 return address won't overwrite the result (or vice-versa). */
fd6d6815 1292 if (sp == struct_addr)
dda83cd7 1293 sp--;
8818c391
TR
1294 }
1295
4add8633 1296 for (i = 0; i < nargs; i++)
8818c391 1297 {
4add8633
TR
1298 int last_regnum;
1299 int j;
1300 struct value *arg = args[i];
4991999e 1301 struct type *type = check_typedef (value_type (arg));
50888e42 1302 const bfd_byte *contents = value_contents (arg).data ();
df86565b 1303 int len = type->length ();
4add8633 1304
cb86f388 1305 /* Calculate the potential last register needed.
dda83cd7
SM
1306 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1307 shall be used. So, last needed register will be regnum-1(24). */
cb86f388 1308 last_regnum = regnum - (len + (len & 1)) + 1;
4add8633 1309
0963b4bd 1310 /* If there are registers available, use them. Once we start putting
dda83cd7 1311 stuff on the stack, all subsequent args go on stack. */
cb86f388 1312 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
dda83cd7
SM
1313 {
1314 /* Skip a register for odd length args. */
1315 if (len & 1)
1316 regnum--;
1317
1318 /* Write MSB of argument into register and subsequent bytes in
1319 decreasing register numbers. */
1320 for (j = 0; j < len; j++)
1321 regcache_cooked_write_unsigned
1322 (regcache, regnum--, contents[len - j - 1]);
1323 }
0963b4bd 1324 /* No registers available, push the args onto the stack. */
4add8633 1325 else
dda83cd7
SM
1326 {
1327 /* From here on, we don't care about regnum. */
1328 si = push_stack_item (si, contents, len);
1329 }
8818c391 1330 }
909cd28e 1331
0963b4bd 1332 /* Push args onto the stack. */
4add8633
TR
1333 while (si)
1334 {
1335 sp -= si->len;
0963b4bd 1336 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1337 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1338 si = pop_stack_item (si);
1339 }
3605c34a 1340
4add8633
TR
1341 /* Set the return address. For the avr, the return address is the BP_ADDR.
1342 Need to push the return address onto the stack noting that it needs to be
1343 in big-endian order on the stack. */
6d1915d4
TG
1344 for (i = 1; i <= call_length; i++)
1345 {
1346 buf[call_length - i] = return_pc & 0xff;
1347 return_pc >>= 8;
1348 }
3605c34a 1349
6d1915d4 1350 sp -= call_length;
0963b4bd 1351 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1352 write_memory (sp + 1, buf, call_length);
3605c34a 1353
0963b4bd 1354 /* Finally, update the SP register. */
4add8633
TR
1355 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1356 avr_convert_saddr_to_raw (sp));
3605c34a 1357
6d1915d4
TG
1358 /* Return SP value for the dummy frame, where the return address hasn't been
1359 pushed. */
1360 return sp + call_length;
3605c34a
TR
1361}
1362
53f6a2c9
TG
1363/* Unfortunately dwarf2 register for SP is 32. */
1364
1365static int
1366avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1367{
1368 if (reg >= 0 && reg < 32)
1369 return reg;
1370 if (reg == 32)
1371 return AVR_SP_REGNUM;
53f6a2c9
TG
1372 return -1;
1373}
1374
487d9753
PL
1375/* Implementation of `address_class_type_flags' gdbarch method.
1376
1377 This method maps DW_AT_address_class attributes to a
1378 type_instance_flag_value. */
1379
314ad88d 1380static type_instance_flags
487d9753
PL
1381avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1382{
1383 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1384 __flash qualifier. Note that this attribute is only valid with
1385 pointer types and therefore the flag is set to the pointer type and
1386 not its target type. */
1387 if (dwarf2_addr_class == 1 && byte_size == 2)
1388 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1389 return 0;
1390}
1391
1392/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1393
1394 Convert a type_instance_flag_value to an address space qualifier. */
1395
1396static const char*
314ad88d
PA
1397avr_address_class_type_flags_to_name (struct gdbarch *gdbarch,
1398 type_instance_flags type_flags)
487d9753
PL
1399{
1400 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1401 return "flash";
1402 else
1403 return NULL;
1404}
1405
1406/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1407
1408 Convert an address space qualifier to a type_instance_flag_value. */
1409
314ad88d 1410static bool
487d9753 1411avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
314ad88d
PA
1412 const char* name,
1413 type_instance_flags *type_flags_ptr)
487d9753
PL
1414{
1415 if (strcmp (name, "flash") == 0)
1416 {
1417 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
314ad88d 1418 return true;
487d9753
PL
1419 }
1420 else
314ad88d 1421 return false;
487d9753
PL
1422}
1423
0963b4bd 1424/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1425
1426static struct gdbarch *
2e5ff58c
TR
1427avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1428{
2e5ff58c 1429 struct gdbarch *gdbarch;
4e99ad69
TG
1430 struct gdbarch_list *best_arch;
1431 int call_length;
8818c391 1432
4e99ad69 1433 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1434 switch (info.bfd_arch_info->mach)
1435 {
1436 case bfd_mach_avr1:
9c97a070 1437 case bfd_mach_avrxmega1:
8818c391 1438 case bfd_mach_avr2:
9c97a070 1439 case bfd_mach_avrxmega2:
8818c391 1440 case bfd_mach_avr3:
9c97a070 1441 case bfd_mach_avrxmega3:
8818c391 1442 case bfd_mach_avr4:
9c97a070 1443 case bfd_mach_avrxmega4:
8818c391 1444 case bfd_mach_avr5:
9c97a070 1445 case bfd_mach_avrxmega5:
4e99ad69
TG
1446 default:
1447 call_length = 2;
1448 break;
1449 case bfd_mach_avr6:
9c97a070
PL
1450 case bfd_mach_avrxmega6:
1451 case bfd_mach_avrxmega7:
4e99ad69 1452 call_length = 3;
8818c391
TR
1453 break;
1454 }
1455
4e99ad69
TG
1456 /* If there is already a candidate, use it. */
1457 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1458 best_arch != NULL;
1459 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1460 {
345bd07c 1461 avr_gdbarch_tdep *tdep
08106042 1462 = gdbarch_tdep<avr_gdbarch_tdep> (best_arch->gdbarch);
345bd07c
SM
1463
1464 if (tdep->call_length == call_length)
4e99ad69
TG
1465 return best_arch->gdbarch;
1466 }
1467
0963b4bd 1468 /* None found, create a new architecture from the information provided. */
345bd07c 1469 avr_gdbarch_tdep *tdep = new avr_gdbarch_tdep;
4e99ad69
TG
1470 gdbarch = gdbarch_alloc (&info, tdep);
1471
1472 tdep->call_length = call_length;
1473
7d2552b4
TG
1474 /* Create a type for PC. We can't use builtin types here, as they may not
1475 be defined. */
77b7c781
UW
1476 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1477 "void");
7d2552b4 1478 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
88dfca6c
UW
1479 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1480 tdep->func_void_type);
7d2552b4 1481
8818c391
TR
1482 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1483 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1484 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1486 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1487 set_gdbarch_addr_bit (gdbarch, 32);
8818c391 1488
53375380
PA
1489 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1490 set_gdbarch_wchar_signed (gdbarch, 1);
1491
8818c391
TR
1492 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1493 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1494 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1495
8da61cc4
DJ
1496 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1497 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1498 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1499
1500 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1501 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1502
1503 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1504
1505 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1506 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1507
1508 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1509 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1510
7d2552b4
TG
1511 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1512 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1513 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1514
4c8b6ae0 1515 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391 1516
4add8633 1517 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1518
53f6a2c9
TG
1519 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1520
8818c391
TR
1521 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1522 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1523 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1524
8818c391 1525 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1526 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1527
04180708
YQ
1528 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1529 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
8818c391 1530
94afd7a6 1531 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1532 frame_base_set_default (gdbarch, &avr_frame_base);
1533
94afd7a6 1534 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1535
1536 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1537 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1538
487d9753
PL
1539 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1540 set_gdbarch_address_class_name_to_type_flags
1541 (gdbarch, avr_address_class_name_to_type_flags);
1542 set_gdbarch_address_class_type_flags_to_name
1543 (gdbarch, avr_address_class_type_flags_to_name);
1544
8818c391
TR
1545 return gdbarch;
1546}
1547
1548/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1549 registers. If args parameter is not NULL, then the user has requested info
8818c391 1550 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1551 now]. The query string should be one of these forms:
8818c391
TR
1552
1553 "Ravr.io_reg" -> reply is "NN" number of io registers
1554
1555 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1556 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1557 where, <NAME> is a string, and VV is the hex value of the register.
1558
0963b4bd 1559 All io registers are 8-bit. */
8818c391
TR
1560
1561static void
1d12d88f 1562avr_io_reg_read_command (const char *args, int from_tty)
8818c391 1563{
2e5ff58c 1564 char query[400];
2e5ff58c
TR
1565 unsigned int nreg = 0;
1566 unsigned int val;
8818c391 1567
0963b4bd 1568 /* Find out how many io registers the target has. */
9018be22 1569 gdb::optional<gdb::byte_vector> buf
328d42d8
SM
1570 = target_read_alloc (current_inferior ()->top_target (),
1571 TARGET_OBJECT_AVR, "avr.io_reg");
8818c391 1572
9018be22 1573 if (!buf)
8818c391 1574 {
6cb06a8c
TT
1575 gdb_printf (gdb_stderr,
1576 _("ERR: info io_registers NOT supported "
1577 "by current target\n"));
8818c391
TR
1578 return;
1579 }
1580
9018be22
SM
1581 const char *bufstr = (const char *) buf->data ();
1582
001f13d8 1583 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1584 {
6cb06a8c
TT
1585 gdb_printf (gdb_stderr,
1586 _("Error fetching number of io registers\n"));
8818c391
TR
1587 return;
1588 }
1589
6cb06a8c 1590 gdb_printf (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1591
1592 /* only fetch up to 8 registers at a time to keep the buffer small */
9018be22 1593 int step = 8;
8818c391 1594
9018be22 1595 for (int i = 0; i < nreg; i += step)
8818c391 1596 {
91ccbfc1 1597 /* how many registers this round? */
9018be22 1598 int j = step;
91ccbfc1 1599 if ((i+j) >= nreg)
dda83cd7 1600 j = nreg - i; /* last block is less than 8 registers */
8818c391 1601
2e5ff58c 1602 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
328d42d8
SM
1603 buf = target_read_alloc (current_inferior ()->top_target (),
1604 TARGET_OBJECT_AVR, query);
9018be22
SM
1605
1606 if (!buf)
dda83cd7 1607 {
6cb06a8c
TT
1608 gdb_printf (gdb_stderr,
1609 _("ERR: error reading avr.io_reg:%x,%x\n"),
1610 i, j);
dda83cd7
SM
1611 return;
1612 }
8818c391 1613
9018be22
SM
1614 const char *p = (const char *) buf->data ();
1615 for (int k = i; k < (i + j); k++)
2e5ff58c
TR
1616 {
1617 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1618 {
6cb06a8c 1619 gdb_printf ("[%02x] %-15s : %02x\n", k, query, val);
2e5ff58c
TR
1620 while ((*p != ';') && (*p != '\0'))
1621 p++;
1622 p++; /* skip over ';' */
1623 if (*p == '\0')
1624 break;
1625 }
1626 }
8818c391
TR
1627 }
1628}
1629
6c265988 1630void _initialize_avr_tdep ();
8818c391 1631void
6c265988 1632_initialize_avr_tdep ()
8818c391 1633{
ec29a63c 1634 gdbarch_register (bfd_arch_avr, avr_gdbarch_init);
8818c391
TR
1635
1636 /* Add a new command to allow the user to query the avr remote target for
1637 the values of the io space registers in a saner way than just using
0963b4bd 1638 `x/NNNb ADDR`. */
8818c391
TR
1639
1640 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1641 io_registers' to signify it is not available on other platforms. */
8818c391 1642
5f515954 1643 add_info ("io_registers", avr_io_reg_read_command,
c6170c2c 1644 _("Query remote AVR target for I/O space register values."));
8818c391 1645}