]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/avr-tdep.c
2003-03-26 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
51603483 2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
8818c391
TR
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* Contributed by Theodore A. Roth, troth@verinet.com */
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
33#include "regcache.h"
5f8a3188 34#include "gdb_string.h"
8818c391
TR
35
36/* AVR Background:
37
38 (AVR micros are pure Harvard Architecture processors.)
39
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
45
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
51
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
56
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
60 Program Counter.
61
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
66
67#undef XMALLOC
68#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70#undef EXTRACT_INSN
71#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73/* Constants: prefixed with AVR_ to avoid name space clashes */
74
75enum
2e5ff58c
TR
76{
77 AVR_REG_W = 24,
78 AVR_REG_X = 26,
79 AVR_REG_Y = 28,
80 AVR_FP_REGNUM = 28,
81 AVR_REG_Z = 30,
82
83 AVR_SREG_REGNUM = 32,
84 AVR_SP_REGNUM = 33,
85 AVR_PC_REGNUM = 34,
86
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
91
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
93
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95 AVR_MAX_PUSHES = 18,
96
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
99
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
103
104 Note: I chose these values so as to be consistent with bfd vma
105 addresses.
106
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
110 AVR_MEM_MASK.
111
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
115
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
121
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 124#if 1
2e5ff58c
TR
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 127#else
2e5ff58c
TR
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 130#endif
2e5ff58c 131};
8818c391
TR
132
133/* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
136 LOCALS0
137 SAVED FP
138 SAVED R3
139 SAVED R2
140 RET PC
141 FIRST ARG
142 SECOND ARG */
143
144struct frame_extra_info
2e5ff58c
TR
145{
146 CORE_ADDR return_pc;
147 CORE_ADDR args_pointer;
148 int locals_size;
149 int framereg;
150 int framesize;
151 int is_main;
152};
8818c391
TR
153
154struct gdbarch_tdep
2e5ff58c
TR
155{
156 /* FIXME: TRoth: is there anything to put here? */
157 int foo;
158};
8818c391
TR
159
160/* Lookup the name of a register given it's number. */
161
fa88f677 162static const char *
8818c391
TR
163avr_register_name (int regnum)
164{
2e5ff58c
TR
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177}
178
179/* Index within `registers' of the first byte of the space for
180 register REGNUM. */
181
182static int
183avr_register_byte (int regnum)
184{
185 if (regnum < AVR_PC_REGNUM)
186 return regnum;
187 else
188 return AVR_PC_REG_INDEX;
189}
190
191/* Number of bytes of storage in the actual machine representation for
192 register REGNUM. */
193
194static int
195avr_register_raw_size (int regnum)
196{
197 switch (regnum)
198 {
199 case AVR_PC_REGNUM:
200 return 4;
201 case AVR_SP_REGNUM:
202 case AVR_FP_REGNUM:
203 return 2;
204 default:
205 return 1;
206 }
207}
208
209/* Number of bytes of storage in the program's representation
210 for register N. */
211
212static int
213avr_register_virtual_size (int regnum)
214{
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216}
217
218/* Return the GDB type object for the "standard" data type
219 of data in register N. */
220
221static struct type *
222avr_register_virtual_type (int regnum)
223{
224 switch (regnum)
225 {
226 case AVR_PC_REGNUM:
227 return builtin_type_unsigned_long;
228 case AVR_SP_REGNUM:
229 return builtin_type_unsigned_short;
230 default:
231 return builtin_type_unsigned_char;
232 }
233}
234
235/* Instruction address checks and convertions. */
236
237static CORE_ADDR
238avr_make_iaddr (CORE_ADDR x)
239{
240 return ((x) | AVR_IMEM_START);
241}
242
243static int
244avr_iaddr_p (CORE_ADDR x)
245{
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247}
248
249/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
251
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254static CORE_ADDR
255avr_convert_iaddr_to_raw (CORE_ADDR x)
256{
257 return ((x) & 0xffffffff);
258}
259
260/* SRAM address checks and convertions. */
261
262static CORE_ADDR
263avr_make_saddr (CORE_ADDR x)
264{
265 return ((x) | AVR_SMEM_START);
266}
267
268static int
269avr_saddr_p (CORE_ADDR x)
270{
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272}
273
274static CORE_ADDR
275avr_convert_saddr_to_raw (CORE_ADDR x)
276{
277 return ((x) & 0xffffffff);
278}
279
280/* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
282
283/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
285
286/* static CORE_ADDR */
287/* avr_make_eaddr (CORE_ADDR x) */
288/* { */
289/* return ((x) | AVR_EMEM_START); */
290/* } */
291
292/* static int */
293/* avr_eaddr_p (CORE_ADDR x) */
294/* { */
295/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296/* } */
297
298/* static CORE_ADDR */
299/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300/* { */
301/* return ((x) & 0xffffffff); */
302/* } */
303
304/* Convert from address to pointer and vice-versa. */
305
306static void
307avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308{
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312 {
2e5ff58c
TR
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
8818c391
TR
315 }
316 else
317 {
318 /* Strip off any upper segment bits. */
2e5ff58c
TR
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
8818c391
TR
321 }
322}
323
324static CORE_ADDR
66140c26 325avr_pointer_to_address (struct type *type, const void *buf)
8818c391
TR
326{
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
2e5ff58c 329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391 330 {
2e5ff58c
TR
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
332 addr);
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@verinet.com>\n");
8818c391
TR
335 }
336
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391
TR
341 return avr_make_iaddr (addr);
342 else
343 return avr_make_saddr (addr);
344}
345
346static CORE_ADDR
347avr_read_pc (ptid_t ptid)
348{
349 ptid_t save_ptid;
350 CORE_ADDR pc;
351 CORE_ADDR retval;
352
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
358 return retval;
359}
360
361static void
362avr_write_pc (CORE_ADDR val, ptid_t ptid)
363{
364 ptid_t save_ptid;
365
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
370}
371
372static CORE_ADDR
373avr_read_sp (void)
374{
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
376}
377
378static void
379avr_write_sp (CORE_ADDR val)
380{
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
382}
383
384static CORE_ADDR
385avr_read_fp (void)
386{
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
388}
389
390/* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
394
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
396 pointer? */
397
398static void
399avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
2e5ff58c 400 CORE_ADDR *targ_addr, int *targ_len)
8818c391
TR
401{
402 long out_addr;
403 long out_len;
404
405 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406 point and see if the high bit are set with the masks that we want. */
407
408 *targ_addr = memaddr;
409 *targ_len = nr_bytes;
410}
411
412/* Function pointers obtained from the target are half of what gdb expects so
413 multiply by 2. */
414
415static CORE_ADDR
416avr_convert_from_func_ptr_addr (CORE_ADDR addr)
417{
418 return addr * 2;
419}
420
f30ee0bc
AC
421/* avr_scan_prologue is also used as the
422 deprecated_frame_init_saved_regs().
8818c391
TR
423
424 Put here the code to store, into fi->saved_regs, the addresses of
425 the saved registers of frame described by FRAME_INFO. This
426 includes special registers such as pc and fp saved in special ways
427 in the stack frame. sp is even more special: the address we return
428 for it IS the sp for the next frame. */
429
430/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
431 This function decodes a AVR function prologue to determine:
432 1) the size of the stack frame
433 2) which registers are saved on it
434 3) the offsets of saved regs
435 This information is stored in the "extra_info" field of the frame_info.
436
437 A typical AVR function prologue might look like this:
438 push rXX
439 push r28
440 push r29
441 in r28,__SP_L__
442 in r29,__SP_H__
443 sbiw r28,<LOCALS_SIZE>
444 in __tmp_reg__,__SREG__
445 cli
446 out __SP_L__,r28
447 out __SREG__,__tmp_reg__
448 out __SP_H__,r29
449
450 A `-mcall-prologues' prologue look like this:
451 ldi r26,<LOCALS_SIZE>
452 ldi r27,<LOCALS_SIZE>/265
453 ldi r30,pm_lo8(.L_foo_body)
454 ldi r31,pm_hi8(.L_foo_body)
455 rjmp __prologue_saves__+RRR
456 .L_foo_body: */
457
458static void
459avr_scan_prologue (struct frame_info *fi)
460{
461 CORE_ADDR prologue_start;
462 CORE_ADDR prologue_end;
2e5ff58c
TR
463 int i;
464 unsigned short insn;
465 int regno;
466 int scan_stage = 0;
467 char *name;
8818c391 468 struct minimal_symbol *msymbol;
2e5ff58c 469 int prologue_len;
8818c391
TR
470 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
471 int vpc = 0;
472
da50a4b7 473 get_frame_extra_info (fi)->framereg = AVR_SP_REGNUM;
2e5ff58c
TR
474
475 if (find_pc_partial_function
50abf9e5 476 (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
8818c391
TR
477 {
478 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
479
2e5ff58c 480 if (sal.line == 0) /* no line info, use current PC */
50abf9e5 481 prologue_end = get_frame_pc (fi);
2e5ff58c
TR
482 else if (sal.end < prologue_end) /* next line begins after fn end */
483 prologue_end = sal.end; /* (probably means no prologue) */
8818c391
TR
484 }
485 else
486 /* We're in the boondocks: allow for */
487 /* 19 pushes, an add, and "mv fp,sp" */
2e5ff58c 488 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
8818c391 489
50abf9e5 490 prologue_end = min (prologue_end, get_frame_pc (fi));
8818c391
TR
491
492 /* Search the prologue looking for instructions that set up the
493 frame pointer, adjust the stack pointer, and save registers. */
494
da50a4b7 495 get_frame_extra_info (fi)->framesize = 0;
8818c391
TR
496 prologue_len = prologue_end - prologue_start;
497 read_memory (prologue_start, prologue, prologue_len);
498
499 /* Scanning main()'s prologue
500 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
501 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
502 out __SP_H__,r29
503 out __SP_L__,r28 */
504
505 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
506 {
507 CORE_ADDR locals;
2e5ff58c
TR
508 unsigned char img[] = {
509 0xde, 0xbf, /* out __SP_H__,r29 */
510 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
511 };
512
da50a4b7 513 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
8818c391
TR
514 insn = EXTRACT_INSN (&prologue[vpc]);
515 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
516 if ((insn & 0xf0f0) == 0xe0c0)
517 {
518 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
519 insn = EXTRACT_INSN (&prologue[vpc + 2]);
520 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
521 if ((insn & 0xf0f0) == 0xe0d0)
522 {
523 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
524 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
525 {
8ccd593b 526 deprecated_update_frame_base_hack (fi, locals);
2e5ff58c 527
da50a4b7 528 get_frame_extra_info (fi)->is_main = 1;
2e5ff58c
TR
529 return;
530 }
531 }
532 }
8818c391 533 }
2e5ff58c 534
8818c391
TR
535 /* Scanning `-mcall-prologues' prologue
536 FIXME: mega prologue have a 12 bytes long */
537
2e5ff58c 538 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
8818c391
TR
539 {
540 int loc_size;
541 int body_addr;
542 unsigned num_pushes;
2e5ff58c 543
8818c391
TR
544 insn = EXTRACT_INSN (&prologue[vpc]);
545 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
546 if ((insn & 0xf0f0) != 0xe0a0)
547 break;
8818c391 548 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
2e5ff58c 549
8818c391
TR
550 insn = EXTRACT_INSN (&prologue[vpc + 2]);
551 /* ldi r27,<LOCALS_SIZE> / 256 */
552 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 553 break;
8818c391 554 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
2e5ff58c 555
8818c391
TR
556 insn = EXTRACT_INSN (&prologue[vpc + 4]);
557 /* ldi r30,pm_lo8(.L_foo_body) */
558 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 559 break;
8818c391
TR
560 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
561
562 insn = EXTRACT_INSN (&prologue[vpc + 6]);
563 /* ldi r31,pm_hi8(.L_foo_body) */
564 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 565 break;
8818c391
TR
566 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
567
568 if (body_addr != (prologue_start + 10) / 2)
2e5ff58c 569 break;
8818c391
TR
570
571 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
572 if (!msymbol)
2e5ff58c 573 break;
8818c391
TR
574
575 /* FIXME: prologue for mega have a JMP instead of RJMP */
576 insn = EXTRACT_INSN (&prologue[vpc + 8]);
577 /* rjmp __prologue_saves__+RRR */
578 if ((insn & 0xf000) != 0xc000)
2e5ff58c
TR
579 break;
580
8818c391
TR
581 /* Extract PC relative offset from RJMP */
582 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
583 /* Convert offset to byte addressable mode */
584 i *= 2;
585 /* Destination address */
586 i += vpc + prologue_start + 10;
587 /* Resovle offset (in words) from __prologue_saves__ symbol.
588 Which is a pushes count in `-mcall-prologues' mode */
589 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
590
591 if (num_pushes > AVR_MAX_PUSHES)
2e5ff58c
TR
592 num_pushes = 0;
593
8818c391 594 if (num_pushes)
2e5ff58c
TR
595 {
596 int from;
b2fb4676 597 get_frame_saved_regs (fi)[AVR_FP_REGNUM + 1] = num_pushes;
2e5ff58c 598 if (num_pushes >= 2)
b2fb4676 599 get_frame_saved_regs (fi)[AVR_FP_REGNUM] = num_pushes - 1;
2e5ff58c
TR
600 i = 0;
601 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
602 from <= AVR_LAST_PUSHED_REGNUM; ++from)
b2fb4676 603 get_frame_saved_regs (fi)[from] = ++i;
2e5ff58c 604 }
da50a4b7
AC
605 get_frame_extra_info (fi)->locals_size = loc_size;
606 get_frame_extra_info (fi)->framesize = loc_size + num_pushes;
607 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
8818c391
TR
608 return;
609 }
610
611 /* Scan interrupt or signal function */
612
613 if (prologue_len >= 12)
614 {
2e5ff58c
TR
615 unsigned char img[] = {
616 0x78, 0x94, /* sei */
617 0x1f, 0x92, /* push r1 */
618 0x0f, 0x92, /* push r0 */
619 0x0f, 0xb6, /* in r0,0x3f SREG */
620 0x0f, 0x92, /* push r0 */
621 0x11, 0x24 /* clr r1 */
8818c391
TR
622 };
623 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c
TR
624 {
625 vpc += sizeof (img);
b2fb4676
AC
626 get_frame_saved_regs (fi)[0] = 2;
627 get_frame_saved_regs (fi)[1] = 1;
da50a4b7 628 get_frame_extra_info (fi)->framesize += 3;
2e5ff58c 629 }
8818c391 630 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
2e5ff58c
TR
631 {
632 vpc += sizeof (img) - 1;
b2fb4676
AC
633 get_frame_saved_regs (fi)[0] = 2;
634 get_frame_saved_regs (fi)[1] = 1;
da50a4b7 635 get_frame_extra_info (fi)->framesize += 3;
2e5ff58c 636 }
8818c391
TR
637 }
638
639 /* First stage of the prologue scanning.
640 Scan pushes */
641
642 for (; vpc <= prologue_len; vpc += 2)
643 {
644 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
645 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
646 {
647 /* Bits 4-9 contain a mask for registers R0-R32. */
648 regno = (insn & 0x1f0) >> 4;
da50a4b7
AC
649 ++get_frame_extra_info (fi)->framesize;
650 get_frame_saved_regs (fi)[regno] = get_frame_extra_info (fi)->framesize;
2e5ff58c
TR
651 scan_stage = 1;
652 }
8818c391 653 else
2e5ff58c 654 break;
8818c391
TR
655 }
656
657 /* Second stage of the prologue scanning.
658 Scan:
659 in r28,__SP_L__
660 in r29,__SP_H__ */
661
662 if (scan_stage == 1 && vpc + 4 <= prologue_len)
663 {
2e5ff58c
TR
664 unsigned char img[] = {
665 0xcd, 0xb7, /* in r28,__SP_L__ */
666 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
667 };
668 unsigned short insn1;
2e5ff58c 669
8818c391 670 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
671 {
672 vpc += 4;
da50a4b7 673 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
2e5ff58c
TR
674 scan_stage = 2;
675 }
8818c391
TR
676 }
677
678 /* Third stage of the prologue scanning. (Really two stages)
679 Scan for:
680 sbiw r28,XX or subi r28,lo8(XX)
681 sbci r29,hi8(XX)
682 in __tmp_reg__,__SREG__
683 cli
684 out __SP_L__,r28
685 out __SREG__,__tmp_reg__
686 out __SP_H__,r29 */
687
688 if (scan_stage == 2 && vpc + 12 <= prologue_len)
689 {
690 int locals_size = 0;
2e5ff58c
TR
691 unsigned char img[] = {
692 0x0f, 0xb6, /* in r0,0x3f */
693 0xf8, 0x94, /* cli */
694 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
695 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
696 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 697 };
2e5ff58c
TR
698 unsigned char img_sig[] = {
699 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
700 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 701 };
2e5ff58c
TR
702 unsigned char img_int[] = {
703 0xf8, 0x94, /* cli */
704 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
705 0x78, 0x94, /* sei */
706 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 707 };
2e5ff58c 708
8818c391
TR
709 insn = EXTRACT_INSN (&prologue[vpc]);
710 vpc += 2;
2e5ff58c
TR
711 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
712 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
713 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
714 {
715 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
716 insn = EXTRACT_INSN (&prologue[vpc]);
717 vpc += 2;
718 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
719 }
8818c391 720 else
2e5ff58c 721 return;
da50a4b7
AC
722 get_frame_extra_info (fi)->locals_size = locals_size;
723 get_frame_extra_info (fi)->framesize += locals_size;
8818c391
TR
724 }
725}
726
727/* This function actually figures out the frame address for a given pc and
728 sp. This is tricky because we sometimes don't use an explicit
729 frame pointer, and the previous stack pointer isn't necessarily recorded
730 on the stack. The only reliable way to get this info is to
731 examine the prologue. */
732
733static void
734avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
735{
736 int reg;
737
11c02a10 738 if (get_next_frame (fi))
8bedc050 739 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
8818c391 740
a00a19e9 741 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
8818c391
TR
742 frame_saved_regs_zalloc (fi);
743
da50a4b7
AC
744 get_frame_extra_info (fi)->return_pc = 0;
745 get_frame_extra_info (fi)->args_pointer = 0;
746 get_frame_extra_info (fi)->locals_size = 0;
747 get_frame_extra_info (fi)->framereg = 0;
748 get_frame_extra_info (fi)->framesize = 0;
749 get_frame_extra_info (fi)->is_main = 0;
2e5ff58c 750
8818c391
TR
751 avr_scan_prologue (fi);
752
1e2330ba
AC
753 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
754 get_frame_base (fi)))
8818c391
TR
755 {
756 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
757 by assuming it's always FP. */
1e2330ba 758 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
8ccd593b 759 AVR_PC_REGNUM));
8818c391 760 }
da50a4b7
AC
761 else if (!get_next_frame (fi))
762 /* this is the innermost frame? */
763 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
764 else if (get_frame_extra_info (fi)->is_main != 1)
765 /* not the innermost frame, not `main' */
8818c391
TR
766 /* If we have an next frame, the callee saved it. */
767 {
11c02a10 768 struct frame_info *next_fi = get_next_frame (fi);
da50a4b7
AC
769 if (get_frame_extra_info (fi)->framereg == AVR_SP_REGNUM)
770 deprecated_update_frame_base_hack (fi, (get_frame_base (next_fi)
771 + 2 /* ret addr */
772 + get_frame_extra_info (next_fi)->framesize));
8818c391
TR
773 /* FIXME: I don't analyse va_args functions */
774 else
2e5ff58c
TR
775 {
776 CORE_ADDR fp = 0;
777 CORE_ADDR fp1 = 0;
778 unsigned int fp_low, fp_high;
779
780 /* Scan all frames */
11c02a10 781 for (; next_fi; next_fi = get_next_frame (next_fi))
2e5ff58c
TR
782 {
783 /* look for saved AVR_FP_REGNUM */
b2fb4676
AC
784 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM] && !fp)
785 fp = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM];
2e5ff58c 786 /* look for saved AVR_FP_REGNUM + 1 */
b2fb4676
AC
787 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1] && !fp1)
788 fp1 = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1];
2e5ff58c
TR
789 }
790 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
791 : read_register (AVR_FP_REGNUM)) & 0xff;
792 fp_high =
793 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
794 read_register (AVR_FP_REGNUM + 1)) & 0xff;
8ccd593b 795 deprecated_update_frame_base_hack (fi, fp_low | (fp_high << 8));
2e5ff58c 796 }
8818c391
TR
797 }
798
799 /* TRoth: Do we want to do this if we are in main? I don't think we should
800 since return_pc makes no sense when we are in main. */
801
da50a4b7
AC
802 if ((get_frame_pc (fi)) && (get_frame_extra_info (fi)->is_main == 0))
803 /* We are not in CALL_DUMMY */
8818c391
TR
804 {
805 CORE_ADDR addr;
806 int i;
2e5ff58c 807
da50a4b7 808 addr = get_frame_base (fi) + get_frame_extra_info (fi)->framesize + 1;
2e5ff58c 809
8818c391
TR
810 /* Return address in stack in different endianness */
811
da50a4b7 812 get_frame_extra_info (fi)->return_pc =
2e5ff58c 813 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
da50a4b7 814 get_frame_extra_info (fi)->return_pc |=
2e5ff58c
TR
815 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
816
8818c391
TR
817 /* This return address in words,
818 must be converted to the bytes address */
da50a4b7 819 get_frame_extra_info (fi)->return_pc *= 2;
8818c391
TR
820
821 /* Resolve a pushed registers addresses */
822 for (i = 0; i < NUM_REGS; i++)
2e5ff58c 823 {
b2fb4676
AC
824 if (get_frame_saved_regs (fi)[i])
825 get_frame_saved_regs (fi)[i] = addr - get_frame_saved_regs (fi)[i];
2e5ff58c 826 }
8818c391
TR
827 }
828}
829
830/* Restore the machine to the state it had before the current frame was
831 created. Usually used either by the "RETURN" command, or by
832 call_function_by_hand after the dummy_frame is finished. */
833
834static void
835avr_pop_frame (void)
836{
837 unsigned regnum;
838 CORE_ADDR saddr;
839 struct frame_info *frame = get_current_frame ();
840
1e2330ba
AC
841 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
842 get_frame_base (frame),
843 get_frame_base (frame)))
8818c391 844 {
2e5ff58c 845 generic_pop_dummy_frame ();
8818c391
TR
846 }
847 else
848 {
849 /* TRoth: Why only loop over 8 registers? */
850
851 for (regnum = 0; regnum < 8; regnum++)
2e5ff58c
TR
852 {
853 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
854 actual value we want, not the address of the value we want. */
b2fb4676 855 if (get_frame_saved_regs (frame)[regnum] && regnum != AVR_SP_REGNUM)
2e5ff58c 856 {
b2fb4676 857 saddr = avr_make_saddr (get_frame_saved_regs (frame)[regnum]);
2e5ff58c
TR
858 write_register (regnum,
859 read_memory_unsigned_integer (saddr, 1));
860 }
b2fb4676 861 else if (get_frame_saved_regs (frame)[regnum] && regnum == AVR_SP_REGNUM)
1e2330ba 862 write_register (regnum, get_frame_base (frame) + 2);
2e5ff58c 863 }
8818c391
TR
864
865 /* Don't forget the update the PC too! */
da50a4b7 866 write_pc (get_frame_extra_info (frame)->return_pc);
8818c391
TR
867 }
868 flush_cached_frames ();
869}
870
871/* Return the saved PC from this frame. */
872
873static CORE_ADDR
874avr_frame_saved_pc (struct frame_info *frame)
875{
1e2330ba
AC
876 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
877 get_frame_base (frame),
878 get_frame_base (frame)))
879 return deprecated_read_register_dummy (get_frame_pc (frame),
880 get_frame_base (frame),
135c175f 881 AVR_PC_REGNUM);
8818c391 882 else
da50a4b7 883 return get_frame_extra_info (frame)->return_pc;
8818c391
TR
884}
885
886static CORE_ADDR
887avr_saved_pc_after_call (struct frame_info *frame)
888{
889 unsigned char m1, m2;
890 unsigned int sp = read_register (AVR_SP_REGNUM);
891 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
892 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
893 return (m2 | (m1 << 8)) * 2;
894}
895
8818c391
TR
896/* Returns the return address for a dummy. */
897
898static CORE_ADDR
899avr_call_dummy_address (void)
900{
901 return entry_point_address ();
902}
903
8818c391
TR
904/* Setup the return address for a dummy frame, as called by
905 call_function_by_hand. Only necessary when you are using an empty
906 CALL_DUMMY. */
907
908static CORE_ADDR
909avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
910{
911 unsigned char buf[2];
912 int wordsize = 2;
45cf40d1 913#if 0
8818c391
TR
914 struct minimal_symbol *msymbol;
915 CORE_ADDR mon_brk;
45cf40d1 916#endif
8818c391
TR
917
918 buf[0] = 0;
919 buf[1] = 0;
920 sp -= wordsize;
921 write_memory (sp + 1, buf, 2);
922
923#if 0
924 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
925 left-over from Denis' original patch which used avr-mon for the target
926 instead of the generic remote target. */
927 if ((strcmp (target_shortname, "avr-mon") == 0)
928 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
929 {
930 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
931 store_unsigned_integer (buf, wordsize, mon_brk / 2);
932 sp -= wordsize;
933 write_memory (sp + 1, buf + 1, 1);
934 write_memory (sp + 2, buf, 1);
935 }
936#endif
937 return sp;
938}
939
940static CORE_ADDR
941avr_skip_prologue (CORE_ADDR pc)
942{
943 CORE_ADDR func_addr, func_end;
944 struct symtab_and_line sal;
945
946 /* See what the symbol table says */
947
948 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
949 {
950 sal = find_pc_line (func_addr, 0);
951
ced15480
TR
952 /* troth/2002-08-05: For some very simple functions, gcc doesn't
953 generate a prologue and the sal.end ends up being the 2-byte ``ret''
954 instruction at the end of the function, but func_end ends up being
955 the address of the first instruction of the _next_ function. By
956 adjusting func_end by 2 bytes, we can catch these functions and not
957 return sal.end if it is the ``ret'' instruction. */
958
959 if (sal.line != 0 && sal.end < (func_end-2))
2e5ff58c 960 return sal.end;
8818c391
TR
961 }
962
963/* Either we didn't find the start of this function (nothing we can do),
964 or there's no line info, or the line after the prologue is after
965 the end of the function (there probably isn't a prologue). */
966
967 return pc;
968}
969
970static CORE_ADDR
971avr_frame_address (struct frame_info *fi)
972{
1e2330ba 973 return avr_make_saddr (get_frame_base (fi));
8818c391
TR
974}
975
a5afb99f
AC
976/* Given a GDB frame, determine the address of the calling function's
977 frame. This will be used to create a new GDB frame struct, and
e9582e71
AC
978 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
979 will be called for the new frame.
8818c391
TR
980
981 For us, the frame address is its stack pointer value, so we look up
982 the function prologue to determine the caller's sp value, and return it. */
983
984static CORE_ADDR
985avr_frame_chain (struct frame_info *frame)
986{
1e2330ba
AC
987 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
988 get_frame_base (frame),
989 get_frame_base (frame)))
8818c391
TR
990 {
991 /* initialize the return_pc now */
da50a4b7 992 get_frame_extra_info (frame)->return_pc
1e2330ba
AC
993 = deprecated_read_register_dummy (get_frame_pc (frame),
994 get_frame_base (frame),
135c175f 995 AVR_PC_REGNUM);
1e2330ba 996 return get_frame_base (frame);
8818c391 997 }
da50a4b7
AC
998 return (get_frame_extra_info (frame)->is_main ? 0
999 : get_frame_base (frame) + get_frame_extra_info (frame)->framesize + 2 /* ret addr */ );
8818c391
TR
1000}
1001
1002/* Store the address of the place in which to copy the structure the
1003 subroutine will return. This is called from call_function.
1004
1005 We store structs through a pointer passed in the first Argument
1006 register. */
1007
1008static void
1009avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1010{
1011 write_register (0, addr);
1012}
1013
8818c391
TR
1014/* Setup the function arguments for calling a function in the inferior.
1015
1016 On the AVR architecture, there are 18 registers (R25 to R8) which are
1017 dedicated for passing function arguments. Up to the first 18 arguments
1018 (depending on size) may go into these registers. The rest go on the stack.
1019
1020 Arguments that are larger than WORDSIZE bytes will be split between two or
1021 more registers as available, but will NOT be split between a register and
1022 the stack.
1023
1024 An exceptional case exists for struct arguments (and possibly other
1025 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1026 not a multiple of WORDSIZE bytes. In this case the argument is never split
1027 between the registers and the stack, but instead is copied in its entirety
1028 onto the stack, AND also copied into as many registers as there is room
1029 for. In other words, space in registers permitting, two copies of the same
1030 argument are passed in. As far as I can tell, only the one on the stack is
1031 used, although that may be a function of the level of compiler
1032 optimization. I suspect this is a compiler bug. Arguments of these odd
1033 sizes are left-justified within the word (as opposed to arguments smaller
1034 than WORDSIZE bytes, which are right-justified).
1035
1036 If the function is to return an aggregate type such as a struct, the caller
1037 must allocate space into which the callee will copy the return value. In
1038 this case, a pointer to the return value location is passed into the callee
1039 in register R0, which displaces one of the other arguments passed in via
1040 registers R0 to R2. */
1041
1042static CORE_ADDR
1043avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2e5ff58c 1044 int struct_return, CORE_ADDR struct_addr)
8818c391
TR
1045{
1046 int stack_alloc, stack_offset;
1047 int wordsize;
1048 int argreg;
1049 int argnum;
1050 struct type *type;
1051 CORE_ADDR regval;
1052 char *val;
1053 char valbuf[4];
1054 int len;
1055
2e5ff58c 1056 wordsize = 1;
8818c391
TR
1057#if 0
1058 /* Now make sure there's space on the stack */
2e5ff58c
TR
1059 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1060 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1061 sp -= stack_alloc; /* make room on stack for args */
8818c391
TR
1062 /* we may over-allocate a little here, but that won't hurt anything */
1063#endif
1064 argreg = 25;
2e5ff58c 1065 if (struct_return) /* "struct return" pointer takes up one argreg */
8818c391
TR
1066 {
1067 write_register (--argreg, struct_addr);
1068 }
1069
1070 /* Now load as many as possible of the first arguments into registers, and
1071 push the rest onto the stack. There are 3N bytes in three registers
1072 available. Loop thru args from first to last. */
1073
1074 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1075 {
1076 type = VALUE_TYPE (args[argnum]);
1077 len = TYPE_LENGTH (type);
1078 val = (char *) VALUE_CONTENTS (args[argnum]);
1079
1080 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1081 some *&^%$ things get passed on the stack AND in the registers! */
1082 while (len > 0)
2e5ff58c
TR
1083 { /* there's room in registers */
1084 len -= wordsize;
1085 regval = extract_address (val + len, wordsize);
1086 write_register (argreg--, regval);
1087 }
8818c391
TR
1088 }
1089 return sp;
1090}
1091
1092/* Initialize the gdbarch structure for the AVR's. */
1093
1094static struct gdbarch *
2e5ff58c
TR
1095avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1096{
8818c391
TR
1097 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1098 be bigger or not. Initial testing seems to show that `call my_func()`
1099 works and backtrace from a breakpoint within the call looks correct.
1100 Admittedly, I haven't tested with more than a very simple program. */
2e5ff58c 1101 static LONGEST avr_call_dummy_words[] = { 0 };
8818c391 1102
2e5ff58c
TR
1103 struct gdbarch *gdbarch;
1104 struct gdbarch_tdep *tdep;
8818c391
TR
1105
1106 /* Find a candidate among the list of pre-declared architectures. */
1107 arches = gdbarch_list_lookup_by_info (arches, &info);
1108 if (arches != NULL)
1109 return arches->gdbarch;
1110
1111 /* None found, create a new architecture from the information provided. */
1112 tdep = XMALLOC (struct gdbarch_tdep);
1113 gdbarch = gdbarch_alloc (&info, tdep);
1114
a5afb99f
AC
1115 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1116 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1117 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1118
8818c391
TR
1119 /* If we ever need to differentiate the device types, do it here. */
1120 switch (info.bfd_arch_info->mach)
1121 {
1122 case bfd_mach_avr1:
1123 case bfd_mach_avr2:
1124 case bfd_mach_avr3:
1125 case bfd_mach_avr4:
1126 case bfd_mach_avr5:
1127 break;
1128 }
1129
1130 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1131 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1132 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1133 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1134 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1135 set_gdbarch_addr_bit (gdbarch, 32);
2e5ff58c 1136 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
8818c391
TR
1137
1138 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1139 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1140 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1141
1142 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1143 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1144 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1145
1146 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1147 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1148 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1149 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1150 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1151
1152 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1153
1154 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1155 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1156 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1157
1158 set_gdbarch_register_name (gdbarch, avr_register_name);
1159 set_gdbarch_register_size (gdbarch, 1);
1160 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1161 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1162 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
a0ed5532 1163 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
8818c391 1164 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
a0ed5532 1165 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 4);
8818c391
TR
1166 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1167
8818c391
TR
1168 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1169
8818c391
TR
1170 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1171 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1172 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1173 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1174 set_gdbarch_call_dummy_length (gdbarch, 0);
8818c391
TR
1175 set_gdbarch_call_dummy_p (gdbarch, 1);
1176 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
8818c391
TR
1177 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1178
1179/* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1180
1181 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1182 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
b81774d8 1183 set_gdbarch_deprecated_push_arguments (gdbarch, avr_push_arguments);
45cf40d1 1184 set_gdbarch_push_return_address (gdbarch, avr_push_return_address);
749b82f6 1185 set_gdbarch_deprecated_pop_frame (gdbarch, avr_pop_frame);
8818c391 1186
8818c391 1187 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
4183d812 1188 set_gdbarch_deprecated_store_struct_return (gdbarch, avr_store_struct_return);
8818c391 1189
f30ee0bc 1190 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, avr_scan_prologue);
e9582e71 1191 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
8818c391 1192 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1193 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1194
1195 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1196
1197 set_gdbarch_function_start_offset (gdbarch, 0);
2e5ff58c
TR
1198 set_gdbarch_remote_translate_xfer_address (gdbarch,
1199 avr_remote_translate_xfer_address);
8818c391 1200 set_gdbarch_frame_args_skip (gdbarch, 0);
2e5ff58c 1201 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
618ce49f 1202 set_gdbarch_deprecated_frame_chain (gdbarch, avr_frame_chain);
8bedc050 1203 set_gdbarch_deprecated_frame_saved_pc (gdbarch, avr_frame_saved_pc);
8818c391
TR
1204 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1205 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1206 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1207 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1208
2e5ff58c
TR
1209 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1210 avr_convert_from_func_ptr_addr);
8818c391
TR
1211
1212 return gdbarch;
1213}
1214
1215/* Send a query request to the avr remote target asking for values of the io
1216 registers. If args parameter is not NULL, then the user has requested info
1217 on a specific io register [This still needs implemented and is ignored for
1218 now]. The query string should be one of these forms:
1219
1220 "Ravr.io_reg" -> reply is "NN" number of io registers
1221
1222 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1223 registers to be read. The reply should be "<NAME>,VV;" for each io register
1224 where, <NAME> is a string, and VV is the hex value of the register.
1225
1226 All io registers are 8-bit. */
1227
1228static void
1229avr_io_reg_read_command (char *args, int from_tty)
1230{
2e5ff58c
TR
1231 int bufsiz = 0;
1232 char buf[400];
1233 char query[400];
1234 char *p;
1235 unsigned int nreg = 0;
1236 unsigned int val;
1237 int i, j, k, step;
8818c391
TR
1238
1239/* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1240/* args, from_tty); */
1241
2e5ff58c 1242 if (!current_target.to_query)
8818c391 1243 {
2e5ff58c
TR
1244 fprintf_unfiltered (gdb_stderr,
1245 "ERR: info io_registers NOT supported by current target\n");
8818c391
TR
1246 return;
1247 }
1248
1249 /* Just get the maximum buffer size. */
1250 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1251 if (bufsiz > sizeof (buf))
1252 bufsiz = sizeof (buf);
8818c391
TR
1253
1254 /* Find out how many io registers the target has. */
1255 strcpy (query, "avr.io_reg");
2e5ff58c 1256 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1257
1258 if (strncmp (buf, "", bufsiz) == 0)
1259 {
2e5ff58c
TR
1260 fprintf_unfiltered (gdb_stderr,
1261 "info io_registers NOT supported by target\n");
8818c391
TR
1262 return;
1263 }
1264
2e5ff58c 1265 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1266 {
2e5ff58c
TR
1267 fprintf_unfiltered (gdb_stderr,
1268 "Error fetching number of io registers\n");
8818c391
TR
1269 return;
1270 }
1271
2e5ff58c 1272 reinitialize_more_filter ();
8818c391
TR
1273
1274 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1275
1276 /* only fetch up to 8 registers at a time to keep the buffer small */
1277 step = 8;
1278
2e5ff58c 1279 for (i = 0; i < nreg; i += step)
8818c391 1280 {
91ccbfc1
TR
1281 /* how many registers this round? */
1282 j = step;
1283 if ((i+j) >= nreg)
1284 j = nreg - i; /* last block is less than 8 registers */
8818c391 1285
2e5ff58c 1286 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1287 target_query ((int) 'R', query, buf, &bufsiz);
1288
1289 p = buf;
2e5ff58c
TR
1290 for (k = i; k < (i + j); k++)
1291 {
1292 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1293 {
1294 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1295 while ((*p != ';') && (*p != '\0'))
1296 p++;
1297 p++; /* skip over ';' */
1298 if (*p == '\0')
1299 break;
1300 }
1301 }
8818c391
TR
1302 }
1303}
1304
1305void
1306_initialize_avr_tdep (void)
1307{
1308 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1309
1310 /* Add a new command to allow the user to query the avr remote target for
1311 the values of the io space registers in a saner way than just using
1312 `x/NNNb ADDR`. */
1313
1314 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1315 io_registers' to signify it is not available on other platforms. */
1316
1317 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1318 "query remote avr target for io space register values", &infolist);
8818c391 1319}