]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/blockframe.c
Multi-arch INIT_FRAME_PC() and INIT_FRAME_PC_FIRST().
[thirdparty/binutils-gdb.git] / gdb / blockframe.c
CommitLineData
c906108c
SS
1/* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
b6ba6518
KB
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "bfd.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "frame.h"
29#include "gdbcore.h"
30#include "value.h" /* for read_register */
31#include "target.h" /* for target_has_stack */
32#include "inferior.h" /* for read_pc */
33#include "annotate.h"
4e052eda 34#include "regcache.h"
c906108c
SS
35
36/* Prototypes for exported functions. */
37
53a5351d 38void _initialize_blockframe (void);
c906108c
SS
39
40/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
41 targets. If FRAME_CHAIN_VALID returns zero it means that the given
42 frame is the outermost one and has no caller. */
43
44int
fba45db2 45file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
46{
47 return ((chain) != 0
c4093a6a 48 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
c906108c
SS
49}
50
51/* Use the alternate method of avoiding running up off the end of the
52 frame chain or following frames back into the startup code. See
53 the comments in objfiles.h. */
c5aa993b 54
c906108c 55int
fba45db2 56func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
57{
58 return ((chain) != 0
c4093a6a
JM
59 && !inside_main_func ((thisframe)->pc)
60 && !inside_entry_func ((thisframe)->pc));
c906108c
SS
61}
62
63/* A very simple method of determining a valid frame */
c5aa993b 64
c906108c 65int
fba45db2 66nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
67{
68 return ((chain) != 0);
69}
70
71/* Is ADDR inside the startup file? Note that if your machine
72 has a way to detect the bottom of the stack, there is no need
73 to call this function from FRAME_CHAIN_VALID; the reason for
74 doing so is that some machines have no way of detecting bottom
75 of stack.
76
77 A PC of zero is always considered to be the bottom of the stack. */
78
79int
fba45db2 80inside_entry_file (CORE_ADDR addr)
c906108c
SS
81{
82 if (addr == 0)
83 return 1;
84 if (symfile_objfile == 0)
85 return 0;
7a292a7a
SS
86 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
87 {
88 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 89 at the entry point. */
7a292a7a 90 /* FIXME: Won't always work with zeros for the last two arguments */
c5aa993b 91 if (PC_IN_CALL_DUMMY (addr, 0, 0))
7a292a7a
SS
92 return 0;
93 }
c5aa993b
JM
94 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
95 addr < symfile_objfile->ei.entry_file_highpc);
c906108c
SS
96}
97
98/* Test a specified PC value to see if it is in the range of addresses
99 that correspond to the main() function. See comments above for why
100 we might want to do this.
101
102 Typically called from FRAME_CHAIN_VALID.
103
104 A PC of zero is always considered to be the bottom of the stack. */
105
106int
fba45db2 107inside_main_func (CORE_ADDR pc)
c906108c
SS
108{
109 if (pc == 0)
110 return 1;
111 if (symfile_objfile == 0)
112 return 0;
113
114 /* If the addr range is not set up at symbol reading time, set it up now.
115 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
116 it is unable to set it up and symbol reading time. */
117
c5aa993b
JM
118 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
119 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
c906108c
SS
120 {
121 struct symbol *mainsym;
122
123 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
c5aa993b
JM
124 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
125 {
126 symfile_objfile->ei.main_func_lowpc =
c906108c 127 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 128 symfile_objfile->ei.main_func_highpc =
c906108c 129 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 130 }
c906108c 131 }
c5aa993b
JM
132 return (symfile_objfile->ei.main_func_lowpc <= pc &&
133 symfile_objfile->ei.main_func_highpc > pc);
c906108c
SS
134}
135
136/* Test a specified PC value to see if it is in the range of addresses
137 that correspond to the process entry point function. See comments
138 in objfiles.h for why we might want to do this.
139
140 Typically called from FRAME_CHAIN_VALID.
141
142 A PC of zero is always considered to be the bottom of the stack. */
143
144int
fba45db2 145inside_entry_func (CORE_ADDR pc)
c906108c
SS
146{
147 if (pc == 0)
148 return 1;
149 if (symfile_objfile == 0)
150 return 0;
7a292a7a
SS
151 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
152 {
153 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 154 at the entry point. */
7a292a7a
SS
155 /* FIXME: Won't always work with zeros for the last two arguments */
156 if (PC_IN_CALL_DUMMY (pc, 0, 0))
157 return 0;
158 }
c5aa993b
JM
159 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
160 symfile_objfile->ei.entry_func_highpc > pc);
c906108c
SS
161}
162
163/* Info about the innermost stack frame (contents of FP register) */
164
165static struct frame_info *current_frame;
166
167/* Cache for frame addresses already read by gdb. Valid only while
168 inferior is stopped. Control variables for the frame cache should
169 be local to this module. */
170
171static struct obstack frame_cache_obstack;
172
173void *
fba45db2 174frame_obstack_alloc (unsigned long size)
c906108c
SS
175{
176 return obstack_alloc (&frame_cache_obstack, size);
177}
178
179void
fba45db2 180frame_saved_regs_zalloc (struct frame_info *fi)
c906108c 181{
c5aa993b 182 fi->saved_regs = (CORE_ADDR *)
c906108c
SS
183 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
184 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
185}
186
187
188/* Return the innermost (currently executing) stack frame. */
189
190struct frame_info *
fba45db2 191get_current_frame (void)
c906108c
SS
192{
193 if (current_frame == NULL)
194 {
195 if (target_has_stack)
196 current_frame = create_new_frame (read_fp (), read_pc ());
197 else
198 error ("No stack.");
199 }
200 return current_frame;
201}
202
203void
fba45db2 204set_current_frame (struct frame_info *frame)
c906108c
SS
205{
206 current_frame = frame;
207}
208
209/* Create an arbitrary (i.e. address specified by user) or innermost frame.
210 Always returns a non-NULL value. */
211
212struct frame_info *
fba45db2 213create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
c906108c
SS
214{
215 struct frame_info *fi;
216 char *name;
217
218 fi = (struct frame_info *)
219 obstack_alloc (&frame_cache_obstack,
220 sizeof (struct frame_info));
221
736d0890
MS
222 /* Zero all fields by default. */
223 memset (fi, 0, sizeof (struct frame_info));
224
c906108c
SS
225 fi->frame = addr;
226 fi->pc = pc;
c5aa993b 227 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
228 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
229
230#ifdef INIT_EXTRA_FRAME_INFO
231 INIT_EXTRA_FRAME_INFO (0, fi);
232#endif
233
234 return fi;
235}
236
c906108c
SS
237/* Return the frame that FRAME calls (NULL if FRAME is the innermost
238 frame). */
239
240struct frame_info *
fba45db2 241get_next_frame (struct frame_info *frame)
c906108c
SS
242{
243 return frame->next;
244}
245
246/* Flush the entire frame cache. */
247
248void
fba45db2 249flush_cached_frames (void)
c906108c
SS
250{
251 /* Since we can't really be sure what the first object allocated was */
252 obstack_free (&frame_cache_obstack, 0);
253 obstack_init (&frame_cache_obstack);
254
c5aa993b 255 current_frame = NULL; /* Invalidate cache */
c906108c
SS
256 select_frame (NULL, -1);
257 annotate_frames_invalid ();
258}
259
260/* Flush the frame cache, and start a new one if necessary. */
261
262void
fba45db2 263reinit_frame_cache (void)
c906108c
SS
264{
265 flush_cached_frames ();
266
39f77062
KB
267 /* FIXME: The inferior_ptid test is wrong if there is a corefile. */
268 if (PIDGET (inferior_ptid) != 0)
c906108c
SS
269 {
270 select_frame (get_current_frame (), 0);
271 }
272}
273
c906108c
SS
274/* Return nonzero if the function for this frame lacks a prologue. Many
275 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
276 function. */
277
278int
fba45db2 279frameless_look_for_prologue (struct frame_info *frame)
c906108c
SS
280{
281 CORE_ADDR func_start, after_prologue;
53a5351d 282
c906108c
SS
283 func_start = get_pc_function_start (frame->pc);
284 if (func_start)
285 {
286 func_start += FUNCTION_START_OFFSET;
53a5351d
JM
287 /* This is faster, since only care whether there *is* a
288 prologue, not how long it is. */
dad41f9a 289 return PROLOGUE_FRAMELESS_P (func_start);
c906108c
SS
290 }
291 else if (frame->pc == 0)
53a5351d
JM
292 /* A frame with a zero PC is usually created by dereferencing a
293 NULL function pointer, normally causing an immediate core dump
294 of the inferior. Mark function as frameless, as the inferior
295 has no chance of setting up a stack frame. */
c906108c
SS
296 return 1;
297 else
298 /* If we can't find the start of the function, we don't really
299 know whether the function is frameless, but we should be able
300 to get a reasonable (i.e. best we can do under the
301 circumstances) backtrace by saying that it isn't. */
302 return 0;
303}
304
305/* Default a few macros that people seldom redefine. */
306
307#if !defined (INIT_FRAME_PC)
308#define INIT_FRAME_PC(fromleaf, prev) \
309 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
310 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
311#endif
312
313#ifndef FRAME_CHAIN_COMBINE
314#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
315#endif
316
317/* Return a structure containing various interesting information
318 about the frame that called NEXT_FRAME. Returns NULL
319 if there is no such frame. */
320
321struct frame_info *
fba45db2 322get_prev_frame (struct frame_info *next_frame)
c906108c
SS
323{
324 CORE_ADDR address = 0;
325 struct frame_info *prev;
326 int fromleaf = 0;
327 char *name;
328
329 /* If the requested entry is in the cache, return it.
330 Otherwise, figure out what the address should be for the entry
331 we're about to add to the cache. */
332
333 if (!next_frame)
334 {
335#if 0
336 /* This screws value_of_variable, which just wants a nice clean
c5aa993b
JM
337 NULL return from block_innermost_frame if there are no frames.
338 I don't think I've ever seen this message happen otherwise.
339 And returning NULL here is a perfectly legitimate thing to do. */
c906108c
SS
340 if (!current_frame)
341 {
342 error ("You haven't set up a process's stack to examine.");
343 }
344#endif
345
346 return current_frame;
347 }
348
349 /* If we have the prev one, return it */
350 if (next_frame->prev)
351 return next_frame->prev;
352
353 /* On some machines it is possible to call a function without
354 setting up a stack frame for it. On these machines, we
355 define this macro to take two args; a frameinfo pointer
356 identifying a frame and a variable to set or clear if it is
357 or isn't leafless. */
392a587b 358
c906108c
SS
359 /* Still don't want to worry about this except on the innermost
360 frame. This macro will set FROMLEAF if NEXT_FRAME is a
361 frameless function invocation. */
362 if (!(next_frame->next))
363 {
392a587b 364 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
c906108c
SS
365 if (fromleaf)
366 address = FRAME_FP (next_frame);
367 }
c906108c
SS
368
369 if (!fromleaf)
370 {
371 /* Two macros defined in tm.h specify the machine-dependent
c5aa993b
JM
372 actions to be performed here.
373 First, get the frame's chain-pointer.
374 If that is zero, the frame is the outermost frame or a leaf
375 called by the outermost frame. This means that if start
376 calls main without a frame, we'll return 0 (which is fine
377 anyway).
378
379 Nope; there's a problem. This also returns when the current
380 routine is a leaf of main. This is unacceptable. We move
381 this to after the ffi test; I'd rather have backtraces from
382 start go curfluy than have an abort called from main not show
383 main. */
c906108c
SS
384 address = FRAME_CHAIN (next_frame);
385 if (!FRAME_CHAIN_VALID (address, next_frame))
386 return 0;
387 address = FRAME_CHAIN_COMBINE (address, next_frame);
388 }
389 if (address == 0)
390 return 0;
391
392 prev = (struct frame_info *)
393 obstack_alloc (&frame_cache_obstack,
394 sizeof (struct frame_info));
395
bb30608f 396 /* Zero all fields by default. */
0c8053b6 397 memset (prev, 0, sizeof (struct frame_info));
bb30608f 398
c906108c
SS
399 if (next_frame)
400 next_frame->prev = prev;
401 prev->next = next_frame;
c906108c 402 prev->frame = address;
c906108c
SS
403
404/* This change should not be needed, FIXME! We should
405 determine whether any targets *need* INIT_FRAME_PC to happen
406 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
407 express what goes on here.
408
c5aa993b
JM
409 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
410 (where the PC is already set up) and here (where it isn't).
411 INIT_FRAME_PC is only called from here, always after
412 INIT_EXTRA_FRAME_INFO.
413
c906108c
SS
414 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
415 value (which hasn't been set yet). Some other machines appear to
416 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
417
418 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
419 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
420
421 Assuming that some machines need INIT_FRAME_PC after
422 INIT_EXTRA_FRAME_INFO, one possible scheme:
423
424 SETUP_INNERMOST_FRAME()
c5aa993b
JM
425 Default version is just create_new_frame (read_fp ()),
426 read_pc ()). Machines with extra frame info would do that (or the
427 local equivalent) and then set the extra fields.
c906108c 428 SETUP_ARBITRARY_FRAME(argc, argv)
c5aa993b
JM
429 Only change here is that create_new_frame would no longer init extra
430 frame info; SETUP_ARBITRARY_FRAME would have to do that.
c906108c 431 INIT_PREV_FRAME(fromleaf, prev)
c5aa993b
JM
432 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
433 also return a flag saying whether to keep the new frame, or
434 whether to discard it, because on some machines (e.g. mips) it
435 is really awkward to have FRAME_CHAIN_VALID called *before*
436 INIT_EXTRA_FRAME_INFO (there is no good way to get information
437 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
c906108c 438 std_frame_pc(fromleaf, prev)
c5aa993b
JM
439 This is the default setting for INIT_PREV_FRAME. It just does what
440 the default INIT_FRAME_PC does. Some machines will call it from
441 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
442 Some machines won't use it.
c906108c
SS
443 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
444
c906108c 445 INIT_FRAME_PC_FIRST (fromleaf, prev);
c906108c
SS
446
447#ifdef INIT_EXTRA_FRAME_INFO
c5aa993b 448 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
c906108c
SS
449#endif
450
451 /* This entry is in the frame queue now, which is good since
452 FRAME_SAVED_PC may use that queue to figure out its value
453 (see tm-sparc.h). We want the pc saved in the inferior frame. */
c5aa993b 454 INIT_FRAME_PC (fromleaf, prev);
c906108c
SS
455
456 /* If ->frame and ->pc are unchanged, we are in the process of getting
457 ourselves into an infinite backtrace. Some architectures check this
458 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
459 this can't be an architecture-independent check. */
460 if (next_frame != NULL)
461 {
462 if (prev->frame == next_frame->frame
463 && prev->pc == next_frame->pc)
464 {
465 next_frame->prev = NULL;
466 obstack_free (&frame_cache_obstack, prev);
467 return NULL;
468 }
469 }
470
471 find_pc_partial_function (prev->pc, &name,
c5aa993b 472 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
473 if (IN_SIGTRAMP (prev->pc, name))
474 prev->signal_handler_caller = 1;
475
476 return prev;
477}
478
479CORE_ADDR
fba45db2 480get_frame_pc (struct frame_info *frame)
c906108c
SS
481{
482 return frame->pc;
483}
484
485
486#ifdef FRAME_FIND_SAVED_REGS
487/* XXX - deprecated. This is a compatibility function for targets
488 that do not yet implement FRAME_INIT_SAVED_REGS. */
489/* Find the addresses in which registers are saved in FRAME. */
490
491void
fba45db2
KB
492get_frame_saved_regs (struct frame_info *frame,
493 struct frame_saved_regs *saved_regs_addr)
c906108c
SS
494{
495 if (frame->saved_regs == NULL)
496 {
c5aa993b 497 frame->saved_regs = (CORE_ADDR *)
c906108c
SS
498 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
499 }
500 if (saved_regs_addr == NULL)
501 {
502 struct frame_saved_regs saved_regs;
503 FRAME_FIND_SAVED_REGS (frame, saved_regs);
504 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
505 }
506 else
507 {
508 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
509 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
510 }
511}
512#endif
513
514/* Return the innermost lexical block in execution
515 in a specified stack frame. The frame address is assumed valid. */
516
517struct block *
fba45db2 518get_frame_block (struct frame_info *frame)
c906108c
SS
519{
520 CORE_ADDR pc;
521
522 pc = frame->pc;
523 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
524 /* We are not in the innermost frame and we were not interrupted
525 by a signal. We need to subtract one to get the correct block,
526 in case the call instruction was the last instruction of the block.
527 If there are any machines on which the saved pc does not point to
528 after the call insn, we probably want to make frame->pc point after
529 the call insn anyway. */
530 --pc;
531 return block_for_pc (pc);
532}
533
534struct block *
fba45db2 535get_current_block (void)
c906108c
SS
536{
537 return block_for_pc (read_pc ());
538}
539
540CORE_ADDR
fba45db2 541get_pc_function_start (CORE_ADDR pc)
c906108c
SS
542{
543 register struct block *bl;
544 register struct symbol *symbol;
545 register struct minimal_symbol *msymbol;
546 CORE_ADDR fstart;
547
548 if ((bl = block_for_pc (pc)) != NULL &&
549 (symbol = block_function (bl)) != NULL)
550 {
551 bl = SYMBOL_BLOCK_VALUE (symbol);
552 fstart = BLOCK_START (bl);
553 }
554 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
555 {
556 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
557 }
558 else
559 {
560 fstart = 0;
561 }
562 return (fstart);
563}
564
565/* Return the symbol for the function executing in frame FRAME. */
566
567struct symbol *
fba45db2 568get_frame_function (struct frame_info *frame)
c906108c
SS
569{
570 register struct block *bl = get_frame_block (frame);
571 if (bl == 0)
572 return 0;
573 return block_function (bl);
574}
575\f
576
577/* Return the blockvector immediately containing the innermost lexical block
578 containing the specified pc value and section, or 0 if there is none.
579 PINDEX is a pointer to the index value of the block. If PINDEX
580 is NULL, we don't pass this information back to the caller. */
581
582struct blockvector *
fba45db2
KB
583blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
584 int *pindex, struct symtab *symtab)
c906108c
SS
585{
586 register struct block *b;
587 register int bot, top, half;
588 struct blockvector *bl;
589
c5aa993b 590 if (symtab == 0) /* if no symtab specified by caller */
c906108c
SS
591 {
592 /* First search all symtabs for one whose file contains our pc */
593 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
594 return 0;
595 }
596
597 bl = BLOCKVECTOR (symtab);
598 b = BLOCKVECTOR_BLOCK (bl, 0);
599
600 /* Then search that symtab for the smallest block that wins. */
601 /* Use binary search to find the last block that starts before PC. */
602
603 bot = 0;
604 top = BLOCKVECTOR_NBLOCKS (bl);
605
606 while (top - bot > 1)
607 {
608 half = (top - bot + 1) >> 1;
609 b = BLOCKVECTOR_BLOCK (bl, bot + half);
610 if (BLOCK_START (b) <= pc)
611 bot += half;
612 else
613 top = bot + half;
614 }
615
616 /* Now search backward for a block that ends after PC. */
617
618 while (bot >= 0)
619 {
620 b = BLOCKVECTOR_BLOCK (bl, bot);
43e526b9 621 if (BLOCK_END (b) > pc)
c906108c
SS
622 {
623 if (pindex)
624 *pindex = bot;
625 return bl;
626 }
627 bot--;
628 }
629 return 0;
630}
631
632/* Return the blockvector immediately containing the innermost lexical block
633 containing the specified pc value, or 0 if there is none.
634 Backward compatibility, no section. */
635
636struct blockvector *
fba45db2 637blockvector_for_pc (register CORE_ADDR pc, int *pindex)
c906108c
SS
638{
639 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
640 pindex, NULL);
641}
642
643/* Return the innermost lexical block containing the specified pc value
644 in the specified section, or 0 if there is none. */
645
646struct block *
fba45db2 647block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
c906108c
SS
648{
649 register struct blockvector *bl;
650 int index;
651
652 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
653 if (bl)
654 return BLOCKVECTOR_BLOCK (bl, index);
655 return 0;
656}
657
658/* Return the innermost lexical block containing the specified pc value,
659 or 0 if there is none. Backward compatibility, no section. */
660
661struct block *
fba45db2 662block_for_pc (register CORE_ADDR pc)
c906108c
SS
663{
664 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
665}
666
667/* Return the function containing pc value PC in section SECTION.
668 Returns 0 if function is not known. */
669
670struct symbol *
fba45db2 671find_pc_sect_function (CORE_ADDR pc, struct sec *section)
c906108c
SS
672{
673 register struct block *b = block_for_pc_sect (pc, section);
674 if (b == 0)
675 return 0;
676 return block_function (b);
677}
678
679/* Return the function containing pc value PC.
680 Returns 0 if function is not known. Backward compatibility, no section */
681
682struct symbol *
fba45db2 683find_pc_function (CORE_ADDR pc)
c906108c
SS
684{
685 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
686}
687
688/* These variables are used to cache the most recent result
689 * of find_pc_partial_function. */
690
c5aa993b
JM
691static CORE_ADDR cache_pc_function_low = 0;
692static CORE_ADDR cache_pc_function_high = 0;
693static char *cache_pc_function_name = 0;
c906108c
SS
694static struct sec *cache_pc_function_section = NULL;
695
696/* Clear cache, e.g. when symbol table is discarded. */
697
698void
fba45db2 699clear_pc_function_cache (void)
c906108c
SS
700{
701 cache_pc_function_low = 0;
702 cache_pc_function_high = 0;
c5aa993b 703 cache_pc_function_name = (char *) 0;
c906108c
SS
704 cache_pc_function_section = NULL;
705}
706
707/* Finds the "function" (text symbol) that is smaller than PC but
708 greatest of all of the potential text symbols in SECTION. Sets
709 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
710 If ENDADDR is non-null, then set *ENDADDR to be the end of the
711 function (exclusive), but passing ENDADDR as non-null means that
712 the function might cause symbols to be read. This function either
713 succeeds or fails (not halfway succeeds). If it succeeds, it sets
714 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
715 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
716 returns 0. */
717
718int
fba45db2
KB
719find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
720 CORE_ADDR *address, CORE_ADDR *endaddr)
c906108c
SS
721{
722 struct partial_symtab *pst;
c5aa993b 723 struct symbol *f;
c906108c
SS
724 struct minimal_symbol *msymbol;
725 struct partial_symbol *psb;
c5aa993b 726 struct obj_section *osect;
c906108c
SS
727 int i;
728 CORE_ADDR mapped_pc;
729
730 mapped_pc = overlay_mapped_address (pc, section);
731
c5aa993b 732 if (mapped_pc >= cache_pc_function_low &&
c906108c
SS
733 mapped_pc < cache_pc_function_high &&
734 section == cache_pc_function_section)
735 goto return_cached_value;
736
737 /* If sigtramp is in the u area, it counts as a function (especially
738 important for step_1). */
739#if defined SIGTRAMP_START
c5aa993b 740 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
c906108c 741 {
c5aa993b
JM
742 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
743 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
744 cache_pc_function_name = "<sigtramp>";
c906108c
SS
745 cache_pc_function_section = section;
746 goto return_cached_value;
747 }
748#endif
749
750 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
751 pst = find_pc_sect_psymtab (mapped_pc, section);
752 if (pst)
753 {
754 /* Need to read the symbols to get a good value for the end address. */
755 if (endaddr != NULL && !pst->readin)
756 {
757 /* Need to get the terminal in case symbol-reading produces
758 output. */
759 target_terminal_ours_for_output ();
760 PSYMTAB_TO_SYMTAB (pst);
761 }
762
763 if (pst->readin)
764 {
765 /* Checking whether the msymbol has a larger value is for the
766 "pathological" case mentioned in print_frame_info. */
767 f = find_pc_sect_function (mapped_pc, section);
768 if (f != NULL
769 && (msymbol == NULL
770 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
771 >= SYMBOL_VALUE_ADDRESS (msymbol))))
772 {
c5aa993b
JM
773 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
774 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
775 cache_pc_function_name = SYMBOL_NAME (f);
c906108c
SS
776 cache_pc_function_section = section;
777 goto return_cached_value;
778 }
779 }
780 else
781 {
782 /* Now that static symbols go in the minimal symbol table, perhaps
783 we could just ignore the partial symbols. But at least for now
784 we use the partial or minimal symbol, whichever is larger. */
785 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
786
787 if (psb
788 && (msymbol == NULL ||
789 (SYMBOL_VALUE_ADDRESS (psb)
790 >= SYMBOL_VALUE_ADDRESS (msymbol))))
791 {
792 /* This case isn't being cached currently. */
793 if (address)
794 *address = SYMBOL_VALUE_ADDRESS (psb);
795 if (name)
796 *name = SYMBOL_NAME (psb);
797 /* endaddr non-NULL can't happen here. */
798 return 1;
799 }
800 }
801 }
802
803 /* Not in the normal symbol tables, see if the pc is in a known section.
804 If it's not, then give up. This ensures that anything beyond the end
805 of the text seg doesn't appear to be part of the last function in the
806 text segment. */
807
808 osect = find_pc_sect_section (mapped_pc, section);
809
810 if (!osect)
811 msymbol = NULL;
812
813 /* Must be in the minimal symbol table. */
814 if (msymbol == NULL)
815 {
816 /* No available symbol. */
817 if (name != NULL)
818 *name = 0;
819 if (address != NULL)
820 *address = 0;
821 if (endaddr != NULL)
822 *endaddr = 0;
823 return 0;
824 }
825
c5aa993b
JM
826 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
827 cache_pc_function_name = SYMBOL_NAME (msymbol);
c906108c
SS
828 cache_pc_function_section = section;
829
830 /* Use the lesser of the next minimal symbol in the same section, or
831 the end of the section, as the end of the function. */
c5aa993b 832
c906108c
SS
833 /* Step over other symbols at this same address, and symbols in
834 other sections, to find the next symbol in this section with
835 a different address. */
836
c5aa993b 837 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
c906108c 838 {
c5aa993b
JM
839 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
840 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
c906108c
SS
841 break;
842 }
843
844 if (SYMBOL_NAME (msymbol + i) != NULL
845 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
846 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
847 else
848 /* We got the start address from the last msymbol in the objfile.
849 So the end address is the end of the section. */
850 cache_pc_function_high = osect->endaddr;
851
c5aa993b 852return_cached_value:
c906108c
SS
853
854 if (address)
855 {
856 if (pc_in_unmapped_range (pc, section))
c5aa993b 857 *address = overlay_unmapped_address (cache_pc_function_low, section);
c906108c 858 else
c5aa993b 859 *address = cache_pc_function_low;
c906108c 860 }
c5aa993b 861
c906108c
SS
862 if (name)
863 *name = cache_pc_function_name;
864
865 if (endaddr)
866 {
867 if (pc_in_unmapped_range (pc, section))
c5aa993b 868 {
c906108c
SS
869 /* Because the high address is actually beyond the end of
870 the function (and therefore possibly beyond the end of
871 the overlay), we must actually convert (high - 1)
872 and then add one to that. */
873
c5aa993b 874 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
c906108c 875 section);
c5aa993b 876 }
c906108c 877 else
c5aa993b 878 *endaddr = cache_pc_function_high;
c906108c
SS
879 }
880
881 return 1;
882}
883
884/* Backward compatibility, no section argument */
885
886int
fba45db2
KB
887find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
888 CORE_ADDR *endaddr)
c906108c 889{
c5aa993b 890 asection *section;
c906108c
SS
891
892 section = find_pc_overlay (pc);
893 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
894}
895
896/* Return the innermost stack frame executing inside of BLOCK,
897 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
898
899struct frame_info *
fba45db2 900block_innermost_frame (struct block *block)
c906108c
SS
901{
902 struct frame_info *frame;
903 register CORE_ADDR start;
904 register CORE_ADDR end;
905
906 if (block == NULL)
907 return NULL;
908
909 start = BLOCK_START (block);
910 end = BLOCK_END (block);
911
912 frame = NULL;
913 while (1)
914 {
915 frame = get_prev_frame (frame);
916 if (frame == NULL)
917 return NULL;
918 if (frame->pc >= start && frame->pc < end)
919 return frame;
920 }
921}
922
923/* Return the full FRAME which corresponds to the given CORE_ADDR
924 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
925
926struct frame_info *
fba45db2 927find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
c906108c
SS
928{
929 struct frame_info *frame = NULL;
930
c5aa993b 931 if (frame_addr == (CORE_ADDR) 0)
c906108c
SS
932 return NULL;
933
934 while (1)
935 {
936 frame = get_prev_frame (frame);
937 if (frame == NULL)
938 return NULL;
939 if (FRAME_FP (frame) == frame_addr)
940 return frame;
941 }
942}
943
944#ifdef SIGCONTEXT_PC_OFFSET
945/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
946
947CORE_ADDR
fba45db2 948sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
949{
950 CORE_ADDR sigcontext_addr;
35fc8285 951 char *buf;
c906108c
SS
952 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
953 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
954
35fc8285 955 buf = alloca (ptrbytes);
c906108c
SS
956 /* Get sigcontext address, it is the third parameter on the stack. */
957 if (frame->next)
958 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
959 + FRAME_ARGS_SKIP
960 + sigcontext_offs,
961 ptrbytes);
962 else
963 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
c5aa993b 964 + sigcontext_offs,
c906108c
SS
965 ptrbytes);
966
967 /* Don't cause a memory_error when accessing sigcontext in case the stack
968 layout has changed or the stack is corrupt. */
969 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
970 return extract_unsigned_integer (buf, ptrbytes);
971}
972#endif /* SIGCONTEXT_PC_OFFSET */
973
7a292a7a
SS
974
975/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
976 below is for infrun.c, which may give the macro a pc without that
977 subtracted out. */
978
979extern CORE_ADDR text_end;
980
981int
fba45db2
KB
982pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
983 CORE_ADDR frame_address)
7a292a7a
SS
984{
985 return ((pc) >= text_end - CALL_DUMMY_LENGTH
986 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
987}
988
989int
fba45db2
KB
990pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
991 CORE_ADDR frame_address)
7a292a7a
SS
992{
993 return ((pc) >= text_end
994 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
995}
996
997/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
998 top of the stack frame which we are checking, where "bottom" and
999 "top" refer to some section of memory which contains the code for
1000 the call dummy. Calls to this macro assume that the contents of
1001 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1002 are the things to pass.
1003
1004 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1005 have that meaning, but the 29k doesn't use ON_STACK. This could be
1006 fixed by generalizing this scheme, perhaps by passing in a frame
1007 and adding a few fields, at least on machines which need them for
1008 PC_IN_CALL_DUMMY.
1009
1010 Something simpler, like checking for the stack segment, doesn't work,
1011 since various programs (threads implementations, gcc nested function
1012 stubs, etc) may either allocate stack frames in another segment, or
1013 allocate other kinds of code on the stack. */
1014
1015int
fba45db2 1016pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
7a292a7a
SS
1017{
1018 return (INNER_THAN ((sp), (pc))
1019 && (frame_address != 0)
1020 && INNER_THAN ((pc), (frame_address)));
1021}
1022
1023int
fba45db2
KB
1024pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1025 CORE_ADDR frame_address)
7a292a7a
SS
1026{
1027 return ((pc) >= CALL_DUMMY_ADDRESS ()
1028 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1029}
1030
c906108c
SS
1031
1032/*
1033 * GENERIC DUMMY FRAMES
1034 *
1035 * The following code serves to maintain the dummy stack frames for
1036 * inferior function calls (ie. when gdb calls into the inferior via
1037 * call_function_by_hand). This code saves the machine state before
b7d6b182 1038 * the call in host memory, so we must maintain an independent stack
c906108c
SS
1039 * and keep it consistant etc. I am attempting to make this code
1040 * generic enough to be used by many targets.
1041 *
1042 * The cheapest and most generic way to do CALL_DUMMY on a new target
1043 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1044 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1045 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1046 * being executed by the target. Also FRAME_CHAIN_VALID as
c4093a6a 1047 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
cce74817 1048 * generic_fix_call_dummy. */
c906108c 1049
7a292a7a
SS
1050/* Dummy frame. This saves the processor state just prior to setting
1051 up the inferior function call. Older targets save the registers
72229eb7 1052 on the target stack (but that really slows down function calls). */
7a292a7a
SS
1053
1054struct dummy_frame
1055{
1056 struct dummy_frame *next;
1057
1058 CORE_ADDR pc;
1059 CORE_ADDR fp;
1060 CORE_ADDR sp;
43ff13b4 1061 CORE_ADDR top;
7a292a7a
SS
1062 char *registers;
1063};
1064
c906108c
SS
1065static struct dummy_frame *dummy_frame_stack = NULL;
1066
1067/* Function: find_dummy_frame(pc, fp, sp)
1068 Search the stack of dummy frames for one matching the given PC, FP and SP.
1069 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1070
c5aa993b 1071char *
fba45db2 1072generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
c906108c 1073{
c5aa993b 1074 struct dummy_frame *dummyframe;
c906108c
SS
1075
1076 if (pc != entry_point_address ())
1077 return 0;
1078
1079 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1080 dummyframe = dummyframe->next)
43ff13b4
JM
1081 if (fp == dummyframe->fp
1082 || fp == dummyframe->sp
1083 || fp == dummyframe->top)
c906108c 1084 /* The frame in question lies between the saved fp and sp, inclusive */
7a292a7a 1085 return dummyframe->registers;
c906108c
SS
1086
1087 return 0;
1088}
1089
1090/* Function: pc_in_call_dummy (pc, fp)
1091 Return true if this is a dummy frame created by gdb for an inferior call */
1092
1093int
fba45db2 1094generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
c906108c
SS
1095{
1096 /* if find_dummy_frame succeeds, then PC is in a call dummy */
7a292a7a
SS
1097 /* Note: SP and not FP is passed on. */
1098 return (generic_find_dummy_frame (pc, sp) != 0);
c906108c
SS
1099}
1100
1101/* Function: read_register_dummy
1102 Find a saved register from before GDB calls a function in the inferior */
1103
1104CORE_ADDR
fba45db2 1105generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
c906108c
SS
1106{
1107 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1108
1109 if (dummy_regs)
1110 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
c5aa993b 1111 REGISTER_RAW_SIZE (regno));
c906108c
SS
1112 else
1113 return 0;
1114}
1115
1116/* Save all the registers on the dummy frame stack. Most ports save the
1117 registers on the target stack. This results in lots of unnecessary memory
1118 references, which are slow when debugging via a serial line. Instead, we
1119 save all the registers internally, and never write them to the stack. The
1120 registers get restored when the called function returns to the entry point,
1121 where a breakpoint is laying in wait. */
1122
1123void
fba45db2 1124generic_push_dummy_frame (void)
c906108c
SS
1125{
1126 struct dummy_frame *dummy_frame;
1127 CORE_ADDR fp = (get_current_frame ())->frame;
1128
1129 /* check to see if there are stale dummy frames,
1130 perhaps left over from when a longjump took us out of a
1131 function that was called by the debugger */
1132
1133 dummy_frame = dummy_frame_stack;
1134 while (dummy_frame)
1135 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1136 {
1137 dummy_frame_stack = dummy_frame->next;
b8c9b27d
KB
1138 xfree (dummy_frame->registers);
1139 xfree (dummy_frame);
c906108c
SS
1140 dummy_frame = dummy_frame_stack;
1141 }
1142 else
1143 dummy_frame = dummy_frame->next;
1144
1145 dummy_frame = xmalloc (sizeof (struct dummy_frame));
7a292a7a
SS
1146 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1147
4478b372
JB
1148 dummy_frame->pc = read_pc ();
1149 dummy_frame->sp = read_sp ();
c5aa993b
JM
1150 dummy_frame->top = dummy_frame->sp;
1151 dummy_frame->fp = fp;
7a292a7a 1152 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
c906108c
SS
1153 dummy_frame->next = dummy_frame_stack;
1154 dummy_frame_stack = dummy_frame;
1155}
1156
43ff13b4 1157void
fba45db2 1158generic_save_dummy_frame_tos (CORE_ADDR sp)
43ff13b4
JM
1159{
1160 dummy_frame_stack->top = sp;
1161}
1162
ed9a39eb 1163/* Restore the machine state from either the saved dummy stack or a
c906108c
SS
1164 real stack frame. */
1165
1166void
ed9a39eb 1167generic_pop_current_frame (void (*popper) (struct frame_info * frame))
c906108c
SS
1168{
1169 struct frame_info *frame = get_current_frame ();
ed9a39eb 1170
c5aa993b 1171 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c
SS
1172 generic_pop_dummy_frame ();
1173 else
ed9a39eb 1174 (*popper) (frame);
c906108c
SS
1175}
1176
1177/* Function: pop_dummy_frame
1178 Restore the machine state from a saved dummy stack frame. */
1179
1180void
fba45db2 1181generic_pop_dummy_frame (void)
c906108c
SS
1182{
1183 struct dummy_frame *dummy_frame = dummy_frame_stack;
1184
1185 /* FIXME: what if the first frame isn't the right one, eg..
1186 because one call-by-hand function has done a longjmp into another one? */
1187
1188 if (!dummy_frame)
1189 error ("Can't pop dummy frame!");
1190 dummy_frame_stack = dummy_frame->next;
7a292a7a 1191 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
c906108c 1192 flush_cached_frames ();
7a292a7a 1193
b8c9b27d
KB
1194 xfree (dummy_frame->registers);
1195 xfree (dummy_frame);
c906108c
SS
1196}
1197
1198/* Function: frame_chain_valid
1199 Returns true for a user frame or a call_function_by_hand dummy frame,
1200 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
c5aa993b 1201
c906108c 1202int
fba45db2 1203generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
c906108c 1204{
c5aa993b
JM
1205 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1206 return 1; /* don't prune CALL_DUMMY frames */
1207 else /* fall back to default algorithm (see frame.h) */
c906108c
SS
1208 return (fp != 0
1209 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
c5aa993b 1210 && !inside_entry_file (FRAME_SAVED_PC (fi)));
c906108c 1211}
c5aa993b 1212
c4093a6a 1213int
fba45db2 1214generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
c4093a6a
JM
1215{
1216 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1217 return 1; /* don't prune CALL_DUMMY frames */
1218 else /* fall back to default algorithm (see frame.h) */
1219 return (fp != 0
1220 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1221 && !inside_main_func ((fi)->pc)
1222 && !inside_entry_func ((fi)->pc));
1223}
1224
cce74817
JM
1225/* Function: fix_call_dummy
1226 Stub function. Generic dumy frames typically do not need to fix
1227 the frame being created */
1228
1229void
fba45db2
KB
1230generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1231 struct value **args, struct type *type, int gcc_p)
cce74817
JM
1232{
1233 return;
1234}
1235
c906108c
SS
1236/* Function: get_saved_register
1237 Find register number REGNUM relative to FRAME and put its (raw,
1238 target format) contents in *RAW_BUFFER.
1239
1240 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1241 fetched). Note that this is never set to anything other than zero
1242 in this implementation.
1243
1244 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1245 whether the value was fetched from memory, from a register, or in a
1246 strange and non-modifiable way (e.g. a frame pointer which was
1247 calculated rather than fetched). We will use not_lval for values
1248 fetched from generic dummy frames.
1249
7036d6ce 1250 Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
c906108c
SS
1251 offset into the registers array. If the value is stored in a dummy
1252 frame, set *ADDRP to zero.
1253
1254 To use this implementation, define a function called
1255 "get_saved_register" in your target code, which simply passes all
1256 of its arguments to this function.
1257
1258 The argument RAW_BUFFER must point to aligned memory. */
1259
1260void
fba45db2
KB
1261generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1262 struct frame_info *frame, int regnum,
1263 enum lval_type *lval)
c906108c
SS
1264{
1265 if (!target_has_registers)
1266 error ("No registers.");
1267
1268 /* Normal systems don't optimize out things with register numbers. */
1269 if (optimized != NULL)
1270 *optimized = 0;
1271
c5aa993b 1272 if (addrp) /* default assumption: not found in memory */
c906108c
SS
1273 *addrp = 0;
1274
1275 /* Note: since the current frame's registers could only have been
1276 saved by frames INTERIOR TO the current frame, we skip examining
1277 the current frame itself: otherwise, we would be getting the
1278 previous frame's registers which were saved by the current frame. */
1279
1280 while (frame && ((frame = frame->next) != NULL))
1281 {
1282 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1283 {
c5aa993b 1284 if (lval) /* found it in a CALL_DUMMY frame */
c906108c
SS
1285 *lval = not_lval;
1286 if (raw_buffer)
c5aa993b
JM
1287 memcpy (raw_buffer,
1288 generic_find_dummy_frame (frame->pc, frame->frame) +
c906108c
SS
1289 REGISTER_BYTE (regnum),
1290 REGISTER_RAW_SIZE (regnum));
c5aa993b 1291 return;
c906108c
SS
1292 }
1293
1294 FRAME_INIT_SAVED_REGS (frame);
1295 if (frame->saved_regs != NULL
1296 && frame->saved_regs[regnum] != 0)
1297 {
c5aa993b 1298 if (lval) /* found it saved on the stack */
c906108c
SS
1299 *lval = lval_memory;
1300 if (regnum == SP_REGNUM)
1301 {
c5aa993b
JM
1302 if (raw_buffer) /* SP register treated specially */
1303 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
c906108c
SS
1304 frame->saved_regs[regnum]);
1305 }
1306 else
1307 {
c5aa993b 1308 if (addrp) /* any other register */
c906108c
SS
1309 *addrp = frame->saved_regs[regnum];
1310 if (raw_buffer)
c5aa993b 1311 read_memory (frame->saved_regs[regnum], raw_buffer,
c906108c
SS
1312 REGISTER_RAW_SIZE (regnum));
1313 }
1314 return;
1315 }
1316 }
1317
1318 /* If we get thru the loop to this point, it means the register was
1319 not saved in any frame. Return the actual live-register value. */
1320
c5aa993b 1321 if (lval) /* found it in a live register */
c906108c
SS
1322 *lval = lval_register;
1323 if (addrp)
1324 *addrp = REGISTER_BYTE (regnum);
1325 if (raw_buffer)
1326 read_register_gen (regnum, raw_buffer);
1327}
c906108c
SS
1328
1329void
53a5351d 1330_initialize_blockframe (void)
c906108c
SS
1331{
1332 obstack_init (&frame_cache_obstack);
1333}