]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/config/arm/tm-arm.h
import gdb-2000-02-04 snapshot
[thirdparty/binutils-gdb.git] / gdb / config / arm / tm-arm.h
CommitLineData
ed9a39eb 1/* Definitions to target GDB to ARM targets.
dfcd3bfb 2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
c906108c 3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c 20
ed9a39eb
JM
21#ifndef TM_ARM_H
22#define TM_ARM_H
23
24/* Forward declarations for prototypes. */
c906108c
SS
25struct type;
26struct value;
c906108c
SS
27
28#define TARGET_BYTE_ORDER_SELECTABLE
29
ed9a39eb
JM
30/* Target byte order on ARM defaults to selectable, and defaults to
31 little endian. */
32#define TARGET_BYTE_ORDER_SELECTABLE_P 1
33#define TARGET_BYTE_ORDER_DEFAULT LITTLE_ENDIAN
c906108c 34
ed9a39eb 35/* IEEE format floating point. */
c906108c 36#define IEEE_FLOAT
ed9a39eb
JM
37#define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
38 ? &floatformat_ieee_double_big \
39 : &floatformat_ieee_double_littlebyte_bigword)
c906108c 40
ed9a39eb
JM
41/* When reading symbols, we need to zap the low bit of the address,
42 which may be set to 1 for Thumb functions. */
c906108c
SS
43
44#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
45
46/* Remove useless bits from addresses in a running program. */
47
ed9a39eb 48CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
c906108c 49
ed9a39eb 50#define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
c906108c 51
ed9a39eb
JM
52/* Offset from address of function to start of its code. Zero on most
53 machines. */
c906108c 54
ed9a39eb 55#define FUNCTION_START_OFFSET 0
c906108c 56
ed9a39eb
JM
57/* Advance PC across any function entry prologue instructions to reach
58 some "real" code. */
c906108c 59
ed9a39eb 60extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
c906108c 61
ed9a39eb 62#define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
c906108c 63
ed9a39eb
JM
64/* Immediately after a function call, return the saved pc. Can't
65 always go through the frames for this because on some machines the
66 new frame is not set up until the new function executes some
67 instructions. */
c906108c 68
ed9a39eb 69#define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
c906108c 70struct frame_info;
ed9a39eb
JM
71extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
72
73/* The following define instruction sequences that will cause ARM
74 cpu's to take an undefined instruction trap. These are used to
75 signal a breakpoint to GDB.
76
77 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
78 modes. A different instruction is required for each mode. The ARM
79 cpu's can also be big or little endian. Thus four different
80 instructions are needed to support all cases.
81
82 Note: ARMv4 defines several new instructions that will take the
83 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
84 not in fact add the new instructions. The new undefined
85 instructions in ARMv4 are all instructions that had no defined
86 behaviour in earlier chips. There is no guarantee that they will
87 raise an exception, but may be treated as NOP's. In practice, it
88 may only safe to rely on instructions matching:
89
90 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
91 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
92 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
93
94 Even this may only true if the condition predicate is true. The
95 following use a condition predicate of ALWAYS so it is always TRUE.
96
97 There are other ways of forcing a breakpoint. ARM Linux, RisciX,
98 and I suspect NetBSD will all use a software interrupt rather than
99 an undefined instruction to force a trap. This can be handled by
100 redefining some or all of the following in a target dependent
101 fashion. */
102
103#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
104#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
105#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
106#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
c906108c
SS
107
108/* Stack grows downward. */
109
110#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
111
ed9a39eb
JM
112/* !!!! if we're using RDP, then we're inserting breakpoints and
113 storing their handles instread of what was in memory. It is nice
114 that this is the same size as a handle - otherwise remote-rdp will
c906108c
SS
115 have to change. */
116
ed9a39eb
JM
117/* BREAKPOINT_FROM_PC uses the program counter value to determine
118 whether a 16- or 32-bit breakpoint should be used. It returns a
119 pointer to a string of bytes that encode a breakpoint instruction,
120 stores the length of the string to *lenptr, and adjusts the pc (if
121 necessary) to point to the actual memory location where the
122 breakpoint should be inserted. */
c906108c
SS
123
124extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
125#define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
126
ed9a39eb
JM
127/* Amount PC must be decremented by after a breakpoint. This is often
128 the number of bytes in BREAKPOINT but not always. */
c906108c
SS
129
130#define DECR_PC_AFTER_BREAK 0
131
ed9a39eb
JM
132/* Code to execute to print interesting information about the floating
133 point processor (if any) or emulator. No need to define if there
134 is nothing to do. */
104c1213
JM
135extern void arm_float_info (void);
136
ed9a39eb 137#define FLOAT_INFO { arm_float_info (); }
c906108c
SS
138
139/* Say how long (ordinary) registers are. This is a piece of bogosity
140 used in push_word and a few other places; REGISTER_RAW_SIZE is the
141 real way to know how big a register is. */
142
ed9a39eb
JM
143#define REGISTER_SIZE 4
144
145/* Say how long FP registers are. Used for documentation purposes and
146 code readability in this header. IEEE extended doubles are 80
147 bits. DWORD aligned they use 96 bits. */
148#define FP_REGISTER_RAW_SIZE 12
149
150/* GCC doesn't support long doubles (extended IEEE values). The FP
151 register virtual size is therefore 64 bits. Used for documentation
152 purposes and code readability in this header. */
153#define FP_REGISTER_VIRTUAL_SIZE 8
154
155/* Status registers are the same size as general purpose registers.
156 Used for documentation purposes and code readability in this
157 header. */
158#define STATUS_REGISTER_SIZE REGISTER_SIZE
159
160/* Number of machine registers. The only define actually required
161 is NUM_REGS. The other definitions are used for documentation
162 purposes and code readability. */
163/* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
164 (and called PS for processor status) so the status bits can be cleared
165 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
166 in PS. */
167#define NUM_FREGS 8 /* Number of floating point registers. */
168#define NUM_SREGS 2 /* Number of status registers. */
169#define NUM_GREGS 16 /* Number of general purpose registers. */
170#define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
c906108c
SS
171
172/* An array of names of registers. */
c906108c 173extern char **arm_register_names;
ed9a39eb 174
c906108c
SS
175#define REGISTER_NAME(i) arm_register_names[i]
176
ed9a39eb
JM
177/* Register numbers of various important registers. Note that some of
178 these values are "real" register numbers, and correspond to the
179 general registers of the machine, and some are "phony" register
180 numbers which are too large to be actual register numbers as far as
181 the user is concerned but do serve to get the desired values when
182 passed to read_register. */
c906108c
SS
183
184#define A1_REGNUM 0 /* first integer-like argument */
185#define A4_REGNUM 3 /* last integer-like argument */
186#define AP_REGNUM 11
187#define FP_REGNUM 11 /* Contains address of executing stack frame */
188#define SP_REGNUM 13 /* Contains address of top of stack */
189#define LR_REGNUM 14 /* address to return to from a function call */
190#define PC_REGNUM 15 /* Contains program counter */
191#define F0_REGNUM 16 /* first floating point register */
192#define F3_REGNUM 19 /* last floating point argument register */
193#define F7_REGNUM 23 /* last floating point register */
194#define FPS_REGNUM 24 /* floating point status register */
195#define PS_REGNUM 25 /* Contains processor status */
196
197#define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
198
199#define ARM_NUM_ARG_REGS 4
200#define ARM_LAST_ARG_REGNUM A4_REGNUM
201#define ARM_NUM_FP_ARG_REGS 4
202#define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
203
204/* Instruction condition field values. */
205#define INST_EQ 0x0
206#define INST_NE 0x1
207#define INST_CS 0x2
208#define INST_CC 0x3
209#define INST_MI 0x4
210#define INST_PL 0x5
211#define INST_VS 0x6
212#define INST_VC 0x7
213#define INST_HI 0x8
214#define INST_LS 0x9
215#define INST_GE 0xa
216#define INST_LT 0xb
217#define INST_GT 0xc
218#define INST_LE 0xd
219#define INST_AL 0xe
220#define INST_NV 0xf
221
222#define FLAG_N 0x80000000
223#define FLAG_Z 0x40000000
224#define FLAG_C 0x20000000
225#define FLAG_V 0x10000000
226
227
228
229/* Total amount of space needed to store our copies of the machine's
230 register state, the array `registers'. */
ed9a39eb
JM
231
232#define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
233 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
234 (NUM_SREGS * STATUS_REGISTER_SIZE))
c906108c
SS
235
236/* Index within `registers' of the first byte of the space for
237 register N. */
238
ed9a39eb
JM
239#define REGISTER_BYTE(N) \
240 ((N) < F0_REGNUM \
241 ? (N) * REGISTER_SIZE \
242 : ((N) < PS_REGNUM \
243 ? (NUM_GREGS * REGISTER_SIZE + \
244 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
245 : (NUM_GREGS * REGISTER_SIZE + \
246 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
247 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
248
249/* Number of bytes of storage in the actual machine representation for
250 register N. All registers are 4 bytes, except fp0 - fp7, which are
251 12 bytes in length. */
252#define REGISTER_RAW_SIZE(N) \
253 ((N) < F0_REGNUM ? REGISTER_SIZE : \
254 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
255
256/* Number of bytes of storage in a program's representation
257 for register N. */
258#define REGISTER_VIRTUAL_SIZE(N) \
259 ((N) < F0_REGNUM ? REGISTER_SIZE : \
260 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
c906108c
SS
261
262/* Largest value REGISTER_RAW_SIZE can have. */
263
ed9a39eb 264#define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
c906108c
SS
265
266/* Largest value REGISTER_VIRTUAL_SIZE can have. */
ed9a39eb 267#define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
c906108c 268
ed9a39eb
JM
269/* Nonzero if register N requires conversion from raw format to
270 virtual format. */
271extern int arm_register_convertible (unsigned int);
272#define REGISTER_CONVERTIBLE(REGNUM) (arm_register_convertible (REGNUM))
c906108c 273
ed9a39eb
JM
274/* Convert data from raw format for register REGNUM in buffer FROM to
275 virtual format with type TYPE in buffer TO. */
104c1213 276
ed9a39eb
JM
277extern void arm_register_convert_to_virtual (unsigned int regnum,
278 struct type *type,
279 void *from, void *to);
c906108c 280#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
ed9a39eb 281 arm_register_convert_to_virtual (REGNUM, TYPE, FROM, TO)
c906108c 282
ed9a39eb
JM
283/* Convert data from virtual format with type TYPE in buffer FROM to
284 raw format for register REGNUM in buffer TO. */
c906108c 285
ed9a39eb
JM
286extern void arm_register_convert_to_raw (unsigned int regnum,
287 struct type *type,
288 void *from, void *to);
289#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
290 arm_register_convert_to_raw (REGNUM, TYPE, FROM, TO)
104c1213 291
ed9a39eb
JM
292/* Return the GDB type object for the "standard" data type of data in
293 register N. */
c906108c
SS
294
295#define REGISTER_VIRTUAL_TYPE(N) \
ed9a39eb
JM
296 (((unsigned)(N) - F0_REGNUM) < NUM_FREGS \
297 ? builtin_type_double : builtin_type_int)
298
c906108c
SS
299/* The system C compiler uses a similar structure return convention to gcc */
300extern use_struct_convention_fn arm_use_struct_convention;
ed9a39eb
JM
301#define USE_STRUCT_CONVENTION(gcc_p, type) \
302 arm_use_struct_convention (gcc_p, type)
c906108c
SS
303
304/* Store the address of the place in which to copy the structure the
305 subroutine will return. This is called from call_function. */
306
307#define STORE_STRUCT_RETURN(ADDR, SP) \
ed9a39eb 308 write_register (A1_REGNUM, (ADDR))
c906108c 309
ed9a39eb
JM
310/* Extract from an array REGBUF containing the (raw) register state a
311 function return value of type TYPE, and copy that, in virtual
312 format, into VALBUF. */
c906108c 313
ed9a39eb 314extern void arm_extract_return_value (struct type *, char[], char *);
c906108c 315#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
ed9a39eb 316 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
c906108c 317
ed9a39eb
JM
318/* Write into appropriate registers a function return value of type
319 TYPE, given in virtual format. */
c906108c 320
ed9a39eb 321extern void convert_to_extended (void *dbl, void *ptr);
c906108c
SS
322#define STORE_RETURN_VALUE(TYPE,VALBUF) \
323 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
324 char _buf[MAX_REGISTER_RAW_SIZE]; \
325 convert_to_extended (VALBUF, _buf); \
326 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
327 } else \
328 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
329
330/* Extract from an array REGBUF containing the (raw) register state
331 the address in which a function should return its structure value,
332 as a CORE_ADDR (or an expression that can be used as one). */
333
7a292a7a 334#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
ed9a39eb 335 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
c906108c
SS
336
337/* Specify that for the native compiler variables for a particular
338 lexical context are listed after the beginning LBRAC instead of
339 before in the executables list of symbols. */
340#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
c906108c 341\f
c5aa993b 342
ed9a39eb
JM
343/* Define other aspects of the stack frame. We keep the offsets of
344 all saved registers, 'cause we need 'em a lot! We also keep the
345 current size of the stack frame, and the offset of the frame
346 pointer from the stack pointer (for frameless functions, and when
347 we're still in the prologue of a function with a frame) */
c906108c
SS
348
349#define EXTRA_FRAME_INFO \
350 struct frame_saved_regs fsr; \
351 int framesize; \
352 int frameoffset; \
353 int framereg;
354
ed9a39eb 355extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
96baa820 356#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
ed9a39eb 357 arm_init_extra_frame_info ((fromleaf), (fi))
c906108c
SS
358
359/* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
ed9a39eb 360CORE_ADDR arm_target_read_fp (void);
c906108c
SS
361#define TARGET_READ_FP() arm_target_read_fp ()
362
ed9a39eb
JM
363/* Describe the pointer in each stack frame to the previous stack
364 frame (its caller). */
c906108c 365
ed9a39eb
JM
366/* FRAME_CHAIN takes a frame's nominal address and produces the
367 frame's chain-pointer.
c906108c
SS
368
369 However, if FRAME_CHAIN_VALID returns zero,
370 it means the given frame is the outermost one and has no caller. */
371
ed9a39eb
JM
372#define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
373extern CORE_ADDR arm_frame_chain (struct frame_info *);
c906108c 374
ed9a39eb
JM
375extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
376#define FRAME_CHAIN_VALID(chain, thisframe) \
377 arm_frame_chain_valid (chain, thisframe)
c906108c
SS
378
379/* Define other aspects of the stack frame. */
380
96baa820
JM
381/* A macro that tells us whether the function invocation represented
382 by FI does not have a frame on the stack associated with it. If it
383 does not, FRAMELESS is set to 1, else 0.
384
ed9a39eb
JM
385 Sometimes we have functions that do a little setup (like saving the
386 vN registers with the stmdb instruction, but DO NOT set up a frame.
96baa820 387 The symbol table will report this as a prologue. However, it is
ed9a39eb 388 important not to try to parse these partial frames as frames, or we
96baa820
JM
389 will get really confused.
390
ed9a39eb
JM
391 So I will demand 3 instructions between the start & end of the
392 prologue before I call it a real prologue, i.e. at least
96baa820
JM
393 mov ip, sp,
394 stmdb sp!, {}
395 sub sp, ip, #4. */
396
104c1213 397extern int arm_frameless_function_invocation (struct frame_info *fi);
96baa820
JM
398#define FRAMELESS_FUNCTION_INVOCATION(FI) \
399(arm_frameless_function_invocation (FI))
ed9a39eb 400
c906108c
SS
401/* Saved Pc. */
402
403#define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
ed9a39eb 404extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
c906108c
SS
405
406#define FRAME_ARGS_ADDRESS(fi) (fi->frame)
407
408#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
409
410/* Return number of args passed to a frame.
411 Can return -1, meaning no way to tell. */
412
392a587b 413#define FRAME_NUM_ARGS(fi) (-1)
c906108c 414
ed9a39eb 415/* Return number of bytes at start of arglist that are not really args. */
c906108c
SS
416
417#define FRAME_ARGS_SKIP 0
418
ed9a39eb
JM
419/* Put here the code to store, into a struct frame_saved_regs, the
420 addresses of the saved registers of frame described by FRAME_INFO.
c906108c 421 This includes special registers such as pc and fp saved in special
ed9a39eb
JM
422 ways in the stack frame. sp is even more special: the address we
423 return for it IS the sp for the next frame. */
c906108c
SS
424
425struct frame_saved_regs;
426struct frame_info;
104c1213
JM
427void arm_frame_find_saved_regs (struct frame_info * fi,
428 struct frame_saved_regs * fsr);
c906108c
SS
429
430#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
ed9a39eb 431 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
c5aa993b 432
c906108c
SS
433/* Things needed for making the inferior call functions. */
434
435#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
ed9a39eb
JM
436 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
437extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
438 CORE_ADDR);
c906108c
SS
439
440/* Push an empty stack frame, to record the current PC, etc. */
441
ed9a39eb 442void arm_push_dummy_frame (void);
c906108c
SS
443
444#define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
445
446/* Discard from the stack the innermost frame, restoring all registers. */
447
ed9a39eb 448void arm_pop_frame (void);
c906108c
SS
449
450#define POP_FRAME arm_pop_frame ()
451
452/* This sequence of words is the instructions
453
c5aa993b
JM
454 mov lr,pc
455 mov pc,r4
456 illegal
c906108c
SS
457
458 Note this is 12 bytes. */
459
ed9a39eb
JM
460#define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
461#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
c906108c
SS
462
463#define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
ed9a39eb 464extern int arm_call_dummy_breakpoint_offset (void);
c906108c 465
ed9a39eb
JM
466/* Insert the specified number of args and function address into a
467 call sequence of the above form stored at DUMMYNAME. */
c906108c
SS
468
469#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
ed9a39eb 470 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
c906108c 471
ed9a39eb
JM
472void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
473 int nargs, struct value ** args,
474 struct type * type, int gcc_p);
c906108c 475
ed9a39eb 476CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
c906108c 477
ed9a39eb
JM
478/* Macros for setting and testing a bit in a minimal symbol that marks
479 it as Thumb function. The MSB of the minimal symbol's "info" field
480 is used for this purpose. This field is already being used to store
481 the symbol size, so the assumption is that the symbol size cannot
482 exceed 2^31.
c5aa993b 483
c906108c 484 COFF_MAKE_MSYMBOL_SPECIAL
ed9a39eb
JM
485 ELF_MAKE_MSYMBOL_SPECIAL
486
487 These macros test whether the COFF or ELF symbol corresponds to a
488 thumb function, and set a "special" bit in a minimal symbol to
489 indicate that it does.
490
491 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
492 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
493 MSYMBOL_SIZE Returns the size of the minimal symbol,
494 i.e. the "info" field with the "special" bit
495 masked out
496 */
c5aa993b
JM
497
498extern int coff_sym_is_thumb (int val);
ed9a39eb 499
c906108c 500#define MSYMBOL_SET_SPECIAL(msym) \
ed9a39eb 501 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
c906108c
SS
502#define MSYMBOL_IS_SPECIAL(msym) \
503 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
504#define MSYMBOL_SIZE(msym) \
505 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
506
ed9a39eb 507/* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
c906108c 508#define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
ed9a39eb
JM
509 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
510 MSYMBOL_SET_SPECIAL(msym); }
c5aa993b 511
c906108c
SS
512#define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
513 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
514
dfcd3bfb
JM
515/* The first 0x20 bytes are the trap vectors. */
516#define LOWEST_PC 0x20
517
ed9a39eb 518#endif /* TM_ARM_H */